bounded3He.nb 31.6 KB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     31511,        731]
NotebookOptionsPosition[     29937,        696]
NotebookOutlinePosition[     30335,        712]
CellTagsIndexPosition[     30292,        709]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"Mp", "=", "938.272"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mn", "=", "939.565"}], ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"binding", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Esep", "=", "5.49351"}], ";", " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
 CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
   3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 
   3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 
   3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
   3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 
   3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
   3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 
   3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, {
   3.87957152299862*^9, 3.8795715245943327`*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"fIn", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"q", " ", "r", " ", 
   RowBox[{"SphericalBesselJ", "[", 
    RowBox[{"ang", ",", 
     RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"fOut", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{
      FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
    FractionBox["1", "2"]], " ", 
   RowBox[{"BesselK", "[", 
    RowBox[{
     RowBox[{"ang", "+", 
      FractionBox["1", "2"]}], ",", 
     RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfInR", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{"fIn", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfIn", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfInR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOutR", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
      FractionBox["1", "2"]], " ", 
     RowBox[{"BesselK", "[", 
      RowBox[{
       RowBox[{"ang", "+", 
        FractionBox["1", "2"]}], ",", 
       RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOut", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfOutR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
 CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
   3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 
   3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
   3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 
   3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 
   3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 
   3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
   3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 
   3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
   3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 
   3.8782888301901093`*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
       ",", "0"}], "]"}], 
     RowBox[{"dfIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
      "]"}]], "-", 
    FractionBox[
     RowBox[{"fOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
       "0"}], "]"}], 
     RowBox[{"dfOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
    ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQB2IQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQ/SJDj2UTkGboNwXTYsrMXCDaRKYDTAMAeD3S4g==
  "],
 CellLabel->"In[30]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[{{1.020408163265306*^-6, 4.241741718763919}, {
       0.0002625153897959781, 4.241762892770343}}], 
      LineBox[{{0.032150270491836795`, 4.244349502137258}, {
       0.061340522887435564`, 4.246725267883429}, {0.12268002536670786`, 
       4.251742615733744}, {0.24535903032525244`, 4.261880121628202}, {
       0.49071704024234164`, 4.282576552952344}, {0.98143306007652, 
       4.325740981044393}, {1.7571434715124448`, 4.399245471999349}}], 
      LineBox[{{1.7890312266144854`, 4.402416451480064}, {2.527954346461434, 
       4.479534064972313}}], 
      LineBox[{{2.5598421015634747`, 4.483027265533171}, {4.012882440943803, 
       4.659045426871684}, {4.6008376977796654`, 4.741106043528902}}], 
      LineBox[{{4.632725452881706, 4.7457631820549615`}, {5.073489574391078, 
       4.812494616133865}}], LineBox[CompressedData["
1:eJwVk2s41IkChycx2VKJMTPGDHOf//znIvW0tSG/ckluW2pbpFi5zMYiodyO
WmrlFJJkCyWtW6wutC0dD8oqxy2XbKkMlegmQhHOsR9+z+/L+7zfXp5PiKuf
BoVCiZnfP3+loE97KJAGu7rVZca2+ig66uszsIWJtAftz06/00fu147ffvFg
4qfvAuKqPugjOYspVcQxcel3x9PLPuljr+eNJ2l1TFDbjqs6FtJAezFk7eZg
CBDjU00cGiI/btd7tYuFZ6k9qenbaTDXI8s149m4OVMTxG2koXWBx/2WVDbs
byyNeNxEg/fo8eeZF9lYEkwGnG2lIbF9mCGtZ2O9xmU66+E8n1J82FmLA95E
gab1y3l+idQ1898c2OV/tBJrGiBRk5iQZBkjTOvXBCcbAwR8Sc/5zY0Lo4HN
WyhtBshweXsnypuLkcqcxbadBqjNs33trOIi/pzXxpM9BmDaf/568iAXRWYE
l1Ab4F7G7na7s1ykF7kbJY0aQKokFg51c2GzyubFOI2ON97/UZHbeUizfK+4
tIcOZgU9dc6DB3Vcs++evXTYLAqt7PDhwfhWUqGxio7sMr5GTBgPcw3pflf2
0+E0/cv5/57i4cmta26TiXSUnXZtDWrnIWV2rm9nKR0hf71aXe7Mx1jxwrx9
c3TUojRQvpOP24UJCSJNBnSrQ/OL9/DhG79Uc/ArBq6WT+ldDuHDkrhEOWTA
wFjWkrGsU3xsNVJ0q+UMRAaaXv25m4+hTWRqiycDsboH5Tt3C8B+ac3fUcdA
c7K5b6efAOOx5KauRgY4WpTsrcECqN/oK3e1MlAzlbTEMV6AirAFZ+J6GaA8
P/faKm+eH256YDDJQEJlTZH0pQCaKxYP58iZSPagimaDhKhvvNjmfYGJDSt1
JofDhciZPOvqWsDEqJZe48NYIXQiMhiOZUy4XeP8ePWEEDastDOu1UyItNeU
7S0V4tjWlKKqHiZqK/euaXoz78uNqpxaYYhJ3Trbs/tEyFpf4XDyhCFKBv+i
J4aJcNO7bkN8hiF2325+FRotwqPOXkZ0tiHuBvx93CFZhA/rEiqTSw1xqmak
ZbZYBKKNdDJsMYQ8yHin77AISaMr700tZ2FvY4y/mUqMOeFQ74YcFnwtxC6T
IWKYP5NoWxWw4H+tfU31QTEaJW+6t5SzoDov0rL9RQx+2kxefB0LwSFt+W4F
YuQUOLKCB1mIZgj641+Ica/Xm6FaZYT0gKZdrd4SeFn0cAI6jZDxJNz6tEoC
+mjYh+dPjXBmm4nMLVSC7h+Xi4OHjJBlHj7dHy9Bl/sN3pVZI+QuN/51IleC
kaD1lk0EGyV/7H/IfirBq9ib/6s4wkbdIsNtge4EWOxuho4VB4P5SodHPxDI
J568i3biQAc21pv3ESjYYa4x586B26GQNYIYAmaPK3I3RnAwMtRg2JtNoFE3
reNOKQecprABBzWBLJkwpM/EGFEnmg+QAVKkjpoGjzBMkEsMBGWFSJEsvsJ1
JExw9+4nP+ohKWx/8NGtX2cC3Vm+20CSFPrTRJWGhwkKf4qyOFciReSC6rcP
c0zQ7SLWWvxeCmmOsuOoARdmKw5nDoeTmKatLRr7nYsq7R6iMZYEddGH5P23
uNhEUVZfTiTxc0PdIKWeix0jvX1eGSRiR8tvbpvvNLJlrfThDRI2S1wyame4
uH18pLp+jMTKtFqrGRcebI/YuVycJvE5r8s2y52H1kM56jgNGUhJ+J3Nvjz0
BThqfaMng1dS9mx/FA8adoUu5WYyZComE74q4MFew6v/fKgMFrUTLm4afDyY
qjwQdUgGw62uz+yW8eExqkP9/rAMdydsip1YfASqq0i9NBkSQ18uvLCKj5Qa
enhSuQzXH18/6u/LR1d0KzXivQzCw0et65v58P5oKXcJkoNMtUqZuS7AUj1K
e1e4HB4uNn9X3xGgamX9gV1xcrzl9wTndwlAC7arVqXIkcZtaXk3KcC9IReH
hKtyUIKTFh22FGLlMy/VrXE5koc2EmSnEE9neDpWs3LY/fFt4J+DQiQbvShv
0FLgc6v+2ZhpIV64qT510BXwj1Q3n+fPd9YZeuzdOgWChvvO+USIQLl/5DI/
TgGqtZLdLhKj7JW1ffFRBcjXDTETFmJ4UKlvTVMUcHJ8c8BzhxgV1smrLS8o
oFnSn/kxQQxVTXr993UKZNNef/AfFKP9Rr76hJYSwZtzjsX8KUFch1+i/jIl
tM1X8527JSBHJcQ5uhJXqUHWEaMSJCpLQwolSuhuy45uIwmsK66Yq9uiBP9x
763HeQTychvYn04q4eAd0DV8SYpsT3nPd5lKbHoyZORxV4os1ulTFblKROcn
RZsPSpGS6U0NK1diladrhoeMRHTKl5G37UqErfPe7VxNIsLJp8TxkRLqVWXs
42oSoYvv+5b0K2GT39exhSqD/7HMRwFjSmT6LQ3x2y6D67/M7gzom8JCcWK5
+7gMzhZZcRvZpsiu67yy3FgO++m5tReFpriZu0PX116ODZHNpbvXmEJ7faH/
eK4cv6nZgSkOprCH5zc5KxT4PxetQL8=
       "]], LineBox[CompressedData["
1:eJwVlns0VIsfxeeMPIrcpITQ0MP0kseZF8P5kseJHrgllfoVkSipkGcNSR5z
M5WUVChJ6haFuF3OicJPSh5JlMb7kYSG0WDm5/fHXnvt9Vlrr7X/2/qeJ1y9
qRQKRTCn/3up1vBqhV4ziP18/Ir5O33y4p6lr57NZRzFXua80SdVLCZqJINm
UNs0uMkxVZ9cKi1sTRw3A0eHoP4Kjj5Jj0Wn8uRQMI3NzpFPoJE7BGas76tR
+JWwZN+CJD2y+aQ6ZrYOBYecqDd2mB7p/ucv+wgjFJ6mbY9KFumSnhrP3ZRZ
KKT9Nz+O5alLhtwyDVmPo/D20RmW/RYd8lauSZG/HwpjdNFJYxttsuazV01G
AAqGPIqBpoI2KVqQ2t50CoX+ukvGZbVapNNxCcKNQCErR+uaiZsWKTGp3K7C
n+P+IvxIsCa55+XOgcd/o0AEpMd4NWqQscNx08KCuX4avSUvU4PM1y1VXVqM
QoOlUgXvhAapxNNlRJWjcMxV0PteVYMsse2L3laPQkv13obCP5eSGu/PLB8Z
RcEp9q+/GkXqpI3soZHBBAqMXRRnylt1MsD4i7XbbxS4zmk6t7LUyaor4FuO
MEDW7629zFmdDN49v+jSYgYkVDYG/ShYTDYLb27fhDIgfzhKre6iGnn5V1l0
4BkG3H0jdzekT5UMaBQc8ohggIZG/BL5v1XJrQVe1vg5BqCVh9JVglRJhRPz
EdpFBvgqnxXx5FTJyKGdvPpUBnRp0QUthgtJn87vZ42KGaBEazZQuKBMcuu1
IodFDLCK3RavmKBEaj0Z3tc6xQDzy5Mtlh5K5CSfsHg9w4AY8dNz1ZuUyAJH
7+n0eUzQXq1m3fBJkVxTlR/utIQJ5LVHA/fXK5JqZQ5heWZM0OCGGad1ypN9
ecEhvqeY0MwWdntHy5FuutKO3BAmlAd/PBexV458kxznMBjOhJvMHXs+mcmR
2UHXNf3OM8FoXLf+QD+V9LQq/cc/hQmTK0yybrhQyY6GGWlAMRN66l2/6Jki
5Mep8xeDJUygS++J7aykhK2/ymiRlAlBvw0fR8hmicKvKe6TVBYEtV7XWfZq
lrhScX/tGWUW8OfdcIuwmyWc+dVvQ3VYMGDdLuxwnSHqVigvirRiwb/e80O2
nJMQr+2v3IiJYYGtVC5vTFNM9Pq8fBcex4IhdP73rIFJQuFiD/V0Igs8nHPD
U0omCbyaedzrCgvYRT+8rPZMEnUO7da2d1lQW2ZYmXp7gmjCV32Xr2BBwI0w
70ETEdHlWGyZgLDhsERruOXCGCHn/+1UtDwbqF169Z0eY8SqJKXcsPlsoPuN
+dDQMcLn7d7FfmpsaDkxtYHVPUoMOcn6HPXZENItSyY3jxLjW3GBijUbeOHb
7buXjxDIjrauZB4bSmSxrV3xg0RN+a6VQbFsOBj09Mjw5kFCYNTg5R7PhiUT
ErGtbICgqdb00ARsqGtJnBaGDBDwrqivIIMNFIH3z6Kj/QTP6fJQUzkb3OVC
vT339xIUHB9fNsuGf5NfPA0O6yRqXlSazlA4MPXegHrcspMQGGKnhfM4kPKV
fzQb6SRoikxRrgoHKO5O7Q2JQgKqVk5ydDiQWXPfnw3fCJ6t7Pc+Cw6E/ggt
MHncTlCsi5HMMA4sGpJscWtrJvba9te2RnGApx74dOhIM1HooJmiFsOBgTie
8vREE+G7PXzN+UQOQNh/ovjqTUTDPisnn3QO4Mb0aI+dDcTdkKqUDWUcMFa2
Dl3U+pawfdxiWEoxB+EhA573P2VE/DLxtsaL5pDZfq+VnliApdTUdFckzXEk
N9X34zMsI+xm2PNkcyBlbeExKwqx4nbL+ynXzYHinSx0zC/GejNiZ9wezPEg
2nP31y8xG/riR+1V5pAfc3hlW3sFNsPeqNQrbwGZ30KS7vrVYYF7vSrE5y2g
ZDNeVKPyCVPNGBJy4+c4HU0/t+sT9rj7pCyabwHC3Ftfxbc/Yf3HeFyVaxaQ
v3qE2GjUih04d7uYlmMBPTYfml44fca2Zn/K21JjAdlSPcvEiHaMPuJ0NV2F
C77HJl0Y+d+wzmj0MHaNC22WXnzb8m5sjYbqpcA0Lmi77ojwaO/G/PL6X2Td
5oLoR5/rgaluTNR4U3leDhfG16UZ0Ex7MKVVyPOaYi7kzv5SysjuwYyq3iGu
rVzgpv28mXGhFwtfcCTj8HJLMN3onu7C7seWXE1rS8iyBOrV5W4c7yEsZ9G6
sOp0K9BcX3hLN/sn9urUCjvDRxi4LAysXGMzjt2hZepY7gSoHQx1mzUXYWWR
EorvBwBPNZZYMjKB6TspzqzcbQ2vtSacxi6LscL6tUmfm62hXLmUmzMyhfGr
pMa0/TaQ0mEQbGcjwa6eHvQ7+MUGBuiOZ4cOTmORS/X+MNizGRhdHSdSDs1g
D9fK1wYJN0N974lK/sFZTEGEaL06YAsLdA97RVpIsQfGBWfv9NtCnSb38RsN
GbbWM2/77HE7KNcbVuB0yLD2LaXPdn23g6lwvtu4HQUa74VvxE7bQ+yBnLq1
dygw9dyFazBuD2mUjSWp3ykgKzlVFBfgAKQP86GXGQJOxvZ2kRMOsBGaT5tF
IVC9f9NR/9M45Dv/znpQjsBiL9+Xt4Nx0Jkxm3hNIHDAN2vhhzM4hC1tWthF
IjB5Sv0ZGonD1GhB8vJKBFbFiyWzsTjkXNH4nFSNAO8ZwRek4lASeCz90AcE
zBWd84tKcQieqb3b1YlAnEoCdeAlDhJdj89TXQg0qFXs1C7HYXP4h1bVHgR8
ddDfZytw0J15b2reh8B1E00b/C0OmnVL3C4NISDaJ2xq+4LDtdqVJzf8QgAO
aa1Z+A0H6fwzNpgIgSQf11CsE4ddz3Z3uEwgYHDytU52Lw5No2tDQsQIuMTl
eh8fwcF81TC9bBqBW0mdLzJGcWhQvODyfgaBAYH2gsZxHBZ6Rdh9m53bk85/
whTjUHepP3nuwUBd5hvK0d84/FEl6FuEUGFZjtQ1fRqHGBupkj6VCp6PWPff
zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg=
       "]]},
     Annotation[#, "Charting`Private`Tag$5733#1"]& ], {}}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 50}, {-8.900837493810066, 14.534402649413224`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 
   3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 
   3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 
   3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 
   3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 
   3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 
   3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 
   3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 
   3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
   3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, 
   3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}},
 CellLabel->"Out[30]=",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     FractionBox[
      RowBox[{"fIn", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
        ",", "0"}], "]"}], 
      RowBox[{"dfIn", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
       "]"}]], "-", 
     FractionBox[
      RowBox[{"fOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
        "0"}], "]"}], 
      RowBox[{"dfOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], 
       "]"}]]}], "\[Equal]", "0"}], ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "30"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
   3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 
   3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
   3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 
   3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
   3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 
   3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 
   3.87957154916846*^9},
 CellLabel->"In[31]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"U", "\[Rule]", "26.327091087132676`"}], "}"}]], "Output",
 CellChangeTimes->{
  3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 
   3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
   3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
   3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 
   3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
   3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 
   3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, 
   3.879571550250393*^9},
 CellLabel->"Out[31]=",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], 
        "p"], ",", "range", ",", "0"}], "]"}], "-", 
     RowBox[{"coeff", " ", "*", 
      RowBox[{"fOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
        "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", 
   RowBox[{"{", 
    RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
   3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
   3.879571556146941*^9, 3.87957155754856*^9}},
 CellLabel->"In[32]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"coeff", "\[Rule]", "2.5426173021971623`"}], "}"}]], "Output",
 CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9, 
  3.8795715629434137`*^9},
 CellLabel->"Out[32]=",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox["A", "2"], " ", 
      RowBox[{"Integrate", "[", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], 
            "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", 
        RowBox[{"{", 
         RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"2.5426173021971623", "*", "A"}], ")"}], "2"], " ", 
      RowBox[{"Integrate", "[", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}], "2"], ",", " ", 
        RowBox[{"{", 
         RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], 
    "\[Equal]", "1"}], ",", " ", 
   RowBox[{"{", 
    RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 
   3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
   3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 
   3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 
   3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 
   3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
   3.879571567743319*^9, 3.879571576536313*^9}},
 CellLabel->"In[33]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"A", "\[Rule]", "0.6401531831830206`"}], "}"}]], "Output",
 CellChangeTimes->{
  3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
   3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9},
 CellLabel->"Out[33]=",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Piecewise", "[", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"0.6401531831830206", 
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], 
            "p"], ",", "r", ",", "0"}], "]"}]}], ",", 
        RowBox[{"r", "<", "range"}]}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", 
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}]}], ",", 
        RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
  3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, 
  3.87957160585564*^9}},
 CellLabel->"In[34]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3k4VG0fxwdRIXtIWacoZa0eicfvRqWyj6VCKS12UumxRaSo3ilZYsaD
bJWyVSpLJEspshPyWuYcChExDGZ5z/vHuc71+edc931+n+/3PkfVI5Bynp9E
Ik0T1//vGZEeQnrn7posxPylGlYaYdLQpWJ1TMUbtEgZXlvtXYD3seaGikoo
6Fr9oo3Z+UBGLVVZUOU2DF15o//KLgz8/g72X1KmQViVI8nG7g50rXolzyoX
QGGb/OUpGzqs/c7QmFauAFWX+MawI88g+0tW0JTyZ5hu4jk1766E4pLb3/20
B8CIc6u8YuILeEIH7dclDCRrN2zPudMFAWM7sLLiCXC1fWovzt8PI6f61334
PAHu7hZfQuX7waEvXvsrPgFrHQzM+7T7YV/zj9AxhUmY6rUQCXLtB4EX+RKy
cZOQ4qfyRaKsH9IiVE3+cZ+CL34xjTyPAfggvYlmKDENjgbp/A5vv4OwaqzG
8L5Z0Jd/5p1hMARNxg90Ig/Ogv357tKgI0Nw63imgSJlFhTqtVwNXYeAP6Hc
wtV3FtrW91TlRA7BCveX57eMWagqmh0abBiCqUGnp238cyDakWv902YYWtI0
dtS2zMHHUMHl5F0jcKdsj557/xzkiKseK94zAofbTQ25Y3NwzzSJWWs8Ag1r
3Y4Y8+bgbLfIeIfVCLy7muBdrvcH6nWGDHL8RqDIcbmg9OEfuLL0/d3ysxG4
J9GsmX16Ho4FZ3b4q41ChYHia5uAebgqt/mhueYo4KcCgR0+D/Mn/JgS+qNg
VCTteCx1HlIo1sGJpqPw84jbtQ2t85DctVtC9/QomN+Ybgs1WgCd7OigzvRR
YDHFgymyTAizOP+aLsoAsqIHj0dmwp3LgbVu0gywOVB2u0iPCZs5VgsbFRiQ
n3g8c501EySM3D/7azCAopP9qeYGE368Gfr60pQBRV76CjvnmBB4Ou7q/SsM
8Pju+F6gZRG8xiWGr3UxQDh91D+ofxHIrfs/relnwEuXgC3D44tg4dnbEjPE
AIGBuNBKviUYfiSifm6CAXl9lbuDDJZA/NdSUxWXAeM9Kk+HcpaAF8vKeaeB
wb2UImer0iWwx2v3lO3C4C+n/YKV1Utg3BD3LkcPg7huB4+UviX4mdGUd84I
g+1dt7ZYibEgYkU4LdwGA5/2XwkVoSyIkjWTWyA8lUoIBY04FqwmUlZP/INB
pa3QTHIyC/aJ6r18E46BSJuy5cUSFpgnqiU4xmJQ+JUiqDHGAtUxx27VFAxm
vpSHJtstg7S7ShPpNQZBjbEegRorkPEOS6qfxkAJPyS0uHsF0gvcGptmMWjm
X/8sAq3A4wlOU+M8BtsQde72iRWISe0xfbKMQX9lyvW8uytgqOfat1YQB9PS
x5n9v1dgeaUn1UQBh5lWL7PT7BWIbpU/XbsFh/RpzfHxdauQahD+01AZB6Zm
idaC6ip8qkncK7MVh4L8t+/EHFfh3kpw/nktHCTTmwbMy1dhcluocLgJDjUV
dyK/NKxC8Bp7jxCEg2+flZp9xyqE9Gf7+pvh0Lixw/vU5CpU1IffNzmEQ2hC
PytkCxvqNvoLXbPGQb0k/V/edjZUW9l3G9ji0PX1JLq1lw1ZeLb1pB0OWiKM
uCQbNgw318FfjjiM3pyULb7OBje+k+I+Ljjcyyus3ENlQ+jw2DaGKw5G9QGn
qmhsiNlbwLA/iUMKaT6/6SUbqKfirORP43AkfHUPhrNhkbzSgc7jsEir7vOe
Y4PO4VThqxdwyC2PipjlsEFXV34sxxMHDlOggSPLgZ9K369h3ji8uCjqIH+E
AxVxNXqkABxa6NKhRc4cYHc2hQoF4jDeoJBldo4Dbf7T4/wXcVDYtGPKL4oD
hidytYeCcNhjrivJT+WA3kXbddWXcLD1NzBIpXOg9aylYOJlHGI/HLzx4TUH
3Gr+9VQKxiFzyqrAuZ4D1Sz9lh6Cyzc6tk21c0DoLZ1y4yoOneDKvD7EgdjD
11fU/8Fh2ttjs+wvDoi+T66vJXhdsrfp82UOyP2mFtmF4KBWc9ETreUCM1C9
vJdg45//UHtkuDCSrohRQnFwlop65aPGhZ0JBtqNBF80vtXP0+GCvdbfNK0w
HO5coPKS/+aCjByb/B+C8xKSt2lacuFh2aHWEYLfV6Zbvj/OhQDdhdSd4TgM
4DlBjhe48Dlk5LofwQtiz1InLnPhBPyKzyVYzPBFdWQ0F6jL7JJ2grefLcek
73MheoTNnCfYjPp+fcG/XJCbG3DZEIGD29uPOibPuLA0dWdoC8FXR786db3l
QpaTYLQawQ9EesK9GrngdNXCTIngwr2D2ZxOLpi6OKhJEPzRHfuUOMIFSoeO
Kot4/sjtyWmNGWJ/gT9NegleeTUnXb3KhZa71PBnBMsMsQwp63mwyWzPtysE
a68jnf4hywOjoEX7vQQf1l97K2IrD2ar/kxNEfs/6yZWKKnPgzvxVvlpBEfe
2tj5GHgwRdoVaURwWukWlpE1D3ykaq52E+/35QBZqcOFBw3+e+6fJbhlzc4D
F7x4IBDX+OknMZ9xbX2f1WAenE0pVDlHMOmEYULCDR7sSNpB7yHmu7fIYrAy
kwd9MpzfdMIHu282/HaFPKC7TrXMEL748DlvH6vgAZLLat73f5+czl0R7+GB
WWulTgnhW3mULz2PwYObWSMp3wkfuwou1RrO8kD9gYUyl/B1TRQSeilIQoI9
8RnbCJ8lZQ7QIkRJKFrYIkmT8F2pwGKXhTQJeaqLFW8j8rCvy4YyqEJCgWqv
HLm+OBz0oow91iAh81/00e8+OFA4TiFB2iR0PjArpYTIk5/GyUwhYxJ6WXYo
2JDIW3a476TuMRJKTZXY+u0MDrq161lxJ0loqv1geySR39o1TwWHz5LQzGLn
lKI7MT8qrkK9SELbF49cNnMj1vPo5LGJ2yS0qfpj91ZnHIrx1XMogYRc1WpE
44n++HsH/VLqQxKK6JapYFAIn172Ug/mktCbTU+DIon+oTfYNmS/I6EywSdX
bQ/joLl+poNVR0Jn4mvPBxD9VWH9n2Hbz8R6UtXbYg/g0NfbtMLpIaE4BWmZ
NKL/ZCdM9Vx+k5CtVce14/twSNywJ1NKjQ/dPFaZaqpO5I/S+dx7Ox9ibB5P
6iMTffLwYkWtNh8aXPwh76mKQ7tyUXeAER+aVaV+8CH6WUxfXaTZkQ/pVXCf
iUoR+XOWD7kRx4dOFup8q1rFQCH9zc0BKh+KDqzBmlkYFAw7Jukl86HwR0Z3
u5gYNHk9KB5+xId2/iVQ+vk3BkLhwmNGlXxo3xLtij2GQUwW237hFx+q6xWS
aW/CwE63PGjnPB+itNVP+zYS58+Hyw88lvmQqtDEF94H4nxjTLa3C/KjV7JL
yeJVGPzZ1m9bpMSPLG7n3G8rxMCj8LX1BTt+tLj78/nOexiYVgQc6XvFj0w2
TwbNWGEgdlTTW7ySH3UN3M2jHsZgcGAs/lAtPyrqEtqw7QAGIWy3prIWfuSu
9/yWMXH+loKlxYMxfsSot7MV24GBykeNg0flBJCNQWCPiQAGpK4R9C5MAFm1
+jqMvmBA7ERNdli0AFqduxQkW8iA9aQMfsN4AeT5xLLY7DEDpLRONLxOEUBz
uXfvX6czYFtch0VJqQAqbhs3SYxhwFGjOpuccQHUltTTJW7PgKTcXLd4yhoU
8f2iYfnkKKhfuRDiqCmIhMus65W2Et9TzFRnkWohpCKvpumbMAxHx3yuJQat
QxOFha+ODQ6CDZ6wU0lJGPE2Vjz5N2AAJus9rjcViSBLvk8HBF36QFuyV9Hc
fQNKta0afGzRC8LAPDM4L4bMBlKZXtHdYDHtsqTmJIHSg+V856s7oa/uHJ/L
LknUWVe3IXp7B7yObzilwpRE/dlVEX70NrggGDzS2iqF2q12yZn9aIGzl8Jf
i9Kl0SH7F1HHU7+AjufOVqszMogzs/BLJLoJ2qR2iQQbbkSDT3STKv0+QlVx
TPouAVmUJ8vFm/MaIJxP067lv7LoUmDPi0vDdSA8GHY4oEwOaRu37d1/+AOM
PVZNzoqQR9dIY7yW3veQvH3TmgqnTcinmyZtplINCfQLn86oKCD9Yb53fl8r
wSX5ZKvoDwW0/9Os2bmycmAdyF/OqtmMTk9QIjdlvAFszCykLm4LeuoK1rTO
Msj5W2/z1zOK6A0F2UUIv4Kim8GSnlpKKHasWolx4wXEOZ21FGAqIY4hPulM
LgWi7gviviqjDHJ+oVd8EaTtSC/6aqmCTF1Uv05rP4eoWmqaZYUK2uAvB2v7
n4L1Zqf8L1tV0bGSCw1CtY/BNOCTq+RtVXQ97bO38EIeZG3x2NrCVEWF45dx
Y81c2Fr/5KGNqxqKk8s/uTMnGxK06jQ7a9RQYGbSvDF6BBfm13R81iQjo2T3
ji3vM8DjxR+V2/fJSJsqfHPBIx38YhzYRx+QkeadnQUDx9Mh2KHsm2gSGSUd
F4lrsEmHeGbwvYSHZJTbE++Tuz8dig2XV1MzyKgkQ/UZVSodlj/weh8/J6Pp
udwBqXo6JHSKUhs+kVHmuZkHvep0oOf6e936TEZa/5Wy0VOkQ+6VVvPDzWTk
cIiZdl+aDm9kE1aaW8nIvq6sx5lEh0EXaa+uHjKKORH1UXyABhrYJnMGRkZ9
/UNnNO/RQLcsTClvjIxcfob5V8fSYP/N78vnf5DRh7US8w7hNLDSyCidmCQj
6p81nne9aHDJV0Vpbo6MzI3sWsnmNIgwjl5+OU9Ge81+3uw0pMHNDYzuK0wy
qrl3oChWlwZpJbl3WSwykojad2hekQY519d4Vq6Q0b4Hh1+XyNDguf15swg2
Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC

       "]]},
     Annotation[#, "Charting`Private`Tag$7735#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.6401531715334164}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, 
   3.879571608345409*^9},
 CellLabel->"Out[34]=",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"]
}, Open  ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1864, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2425, 68, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5252, 146, 1588, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6843, 195, 9076, 164, 235, "Output",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"]
}, Open  ]],
Cell[CellGroupData[{
Cell[15956, 364, 1731, 47, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[17690, 413, 743, 12, 33, "Output",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"]
}, Open  ]],
Cell[CellGroupData[{
Cell[18470, 430, 955, 26, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[19428, 458, 270, 5, 33, "Output",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"]
}, Open  ]],
Cell[CellGroupData[{
Cell[19735, 468, 1805, 46, 111, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[21543, 516, 339, 6, 33, "Output",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"]
}, Open  ]],
Cell[CellGroupData[{
Cell[21919, 527, 1267, 34, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[23189, 563, 6732, 130, 237, "Output",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"]
}, Open  ]]
}
]
*)