(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 31511, 731] NotebookOptionsPosition[ 29937, 696] NotebookOutlinePosition[ 30335, 712] CellTagsIndexPosition[ 30292, 709] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Mp", "=", "938.272"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Mn", "=", "939.565"}], ";"}], RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], RowBox[{"(*", RowBox[{ RowBox[{"binding", " ", "energy", " ", SuperscriptBox[ RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Esep", "=", "5.49351"}], ";", " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}], "\[IndentingNewLine]", RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range", "=", "2.5"}], ";"}]}], "Input", CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, { 3.87957152299862*^9, 3.8795715245943327`*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[BoxData[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"q", " ", "r", " ", RowBox[{"SphericalBesselJ", "[", RowBox[{"ang", ",", RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fOut", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{"fIn", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfIn", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOut", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.8782888301901093`*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], ",", RowBox[{"{", RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQB2IQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv 7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A 0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg Ou25wmUQ/SJDj2UTkGboNwXTYsrMXCDaRKYDTAMAeD3S4g== "], CellLabel->"In[30]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[{{1.020408163265306*^-6, 4.241741718763919}, { 0.0002625153897959781, 4.241762892770343}}], LineBox[{{0.032150270491836795`, 4.244349502137258}, { 0.061340522887435564`, 4.246725267883429}, {0.12268002536670786`, 4.251742615733744}, {0.24535903032525244`, 4.261880121628202}, { 0.49071704024234164`, 4.282576552952344}, {0.98143306007652, 4.325740981044393}, {1.7571434715124448`, 4.399245471999349}}], LineBox[{{1.7890312266144854`, 4.402416451480064}, {2.527954346461434, 4.479534064972313}}], LineBox[{{2.5598421015634747`, 4.483027265533171}, {4.012882440943803, 4.659045426871684}, {4.6008376977796654`, 4.741106043528902}}], LineBox[{{4.632725452881706, 4.7457631820549615`}, {5.073489574391078, 4.812494616133865}}], LineBox[CompressedData[" 1:eJwVk2s41IkChycx2VKJMTPGDHOf//znIvW0tSG/ckluW2pbpFi5zMYiodyO WmrlFJJkCyWtW6wutC0dD8oqxy2XbKkMlegmQhHOsR9+z+/L+7zfXp5PiKuf BoVCiZnfP3+loE97KJAGu7rVZca2+ig66uszsIWJtAftz06/00fu147ffvFg 4qfvAuKqPugjOYspVcQxcel3x9PLPuljr+eNJ2l1TFDbjqs6FtJAezFk7eZg CBDjU00cGiI/btd7tYuFZ6k9qenbaTDXI8s149m4OVMTxG2koXWBx/2WVDbs byyNeNxEg/fo8eeZF9lYEkwGnG2lIbF9mCGtZ2O9xmU66+E8n1J82FmLA95E gab1y3l+idQ1898c2OV/tBJrGiBRk5iQZBkjTOvXBCcbAwR8Sc/5zY0Lo4HN WyhtBshweXsnypuLkcqcxbadBqjNs33trOIi/pzXxpM9BmDaf/568iAXRWYE l1Ab4F7G7na7s1ykF7kbJY0aQKokFg51c2GzyubFOI2ON97/UZHbeUizfK+4 tIcOZgU9dc6DB3Vcs++evXTYLAqt7PDhwfhWUqGxio7sMr5GTBgPcw3pflf2 0+E0/cv5/57i4cmta26TiXSUnXZtDWrnIWV2rm9nKR0hf71aXe7Mx1jxwrx9 c3TUojRQvpOP24UJCSJNBnSrQ/OL9/DhG79Uc/ArBq6WT+ldDuHDkrhEOWTA wFjWkrGsU3xsNVJ0q+UMRAaaXv25m4+hTWRqiycDsboH5Tt3C8B+ac3fUcdA c7K5b6efAOOx5KauRgY4WpTsrcECqN/oK3e1MlAzlbTEMV6AirAFZ+J6GaA8 P/faKm+eH256YDDJQEJlTZH0pQCaKxYP58iZSPagimaDhKhvvNjmfYGJDSt1 JofDhciZPOvqWsDEqJZe48NYIXQiMhiOZUy4XeP8ePWEEDastDOu1UyItNeU 7S0V4tjWlKKqHiZqK/euaXoz78uNqpxaYYhJ3Trbs/tEyFpf4XDyhCFKBv+i J4aJcNO7bkN8hiF2325+FRotwqPOXkZ0tiHuBvx93CFZhA/rEiqTSw1xqmak ZbZYBKKNdDJsMYQ8yHin77AISaMr700tZ2FvY4y/mUqMOeFQ74YcFnwtxC6T IWKYP5NoWxWw4H+tfU31QTEaJW+6t5SzoDov0rL9RQx+2kxefB0LwSFt+W4F YuQUOLKCB1mIZgj641+Ica/Xm6FaZYT0gKZdrd4SeFn0cAI6jZDxJNz6tEoC +mjYh+dPjXBmm4nMLVSC7h+Xi4OHjJBlHj7dHy9Bl/sN3pVZI+QuN/51IleC kaD1lk0EGyV/7H/IfirBq9ib/6s4wkbdIsNtge4EWOxuho4VB4P5SodHPxDI J568i3biQAc21pv3ESjYYa4x586B26GQNYIYAmaPK3I3RnAwMtRg2JtNoFE3 reNOKQecprABBzWBLJkwpM/EGFEnmg+QAVKkjpoGjzBMkEsMBGWFSJEsvsJ1 JExw9+4nP+ohKWx/8NGtX2cC3Vm+20CSFPrTRJWGhwkKf4qyOFciReSC6rcP c0zQ7SLWWvxeCmmOsuOoARdmKw5nDoeTmKatLRr7nYsq7R6iMZYEddGH5P23 uNhEUVZfTiTxc0PdIKWeix0jvX1eGSRiR8tvbpvvNLJlrfThDRI2S1wyame4 uH18pLp+jMTKtFqrGRcebI/YuVycJvE5r8s2y52H1kM56jgNGUhJ+J3Nvjz0 BThqfaMng1dS9mx/FA8adoUu5WYyZComE74q4MFew6v/fKgMFrUTLm4afDyY qjwQdUgGw62uz+yW8eExqkP9/rAMdydsip1YfASqq0i9NBkSQ18uvLCKj5Qa enhSuQzXH18/6u/LR1d0KzXivQzCw0et65v58P5oKXcJkoNMtUqZuS7AUj1K e1e4HB4uNn9X3xGgamX9gV1xcrzl9wTndwlAC7arVqXIkcZtaXk3KcC9IReH hKtyUIKTFh22FGLlMy/VrXE5koc2EmSnEE9neDpWs3LY/fFt4J+DQiQbvShv 0FLgc6v+2ZhpIV64qT510BXwj1Q3n+fPd9YZeuzdOgWChvvO+USIQLl/5DI/ TgGqtZLdLhKj7JW1ffFRBcjXDTETFmJ4UKlvTVMUcHJ8c8BzhxgV1smrLS8o oFnSn/kxQQxVTXr993UKZNNef/AfFKP9Rr76hJYSwZtzjsX8KUFch1+i/jIl tM1X8527JSBHJcQ5uhJXqUHWEaMSJCpLQwolSuhuy45uIwmsK66Yq9uiBP9x 763HeQTychvYn04q4eAd0DV8SYpsT3nPd5lKbHoyZORxV4os1ulTFblKROcn RZsPSpGS6U0NK1diladrhoeMRHTKl5G37UqErfPe7VxNIsLJp8TxkRLqVWXs 42oSoYvv+5b0K2GT39exhSqD/7HMRwFjSmT6LQ3x2y6D67/M7gzom8JCcWK5 +7gMzhZZcRvZpsiu67yy3FgO++m5tReFpriZu0PX116ODZHNpbvXmEJ7faH/ eK4cv6nZgSkOprCH5zc5KxT4PxetQL8= "]], LineBox[CompressedData[" 1:eJwVlns0VIsfxeeMPIrcpITQ0MP0kseZF8P5kseJHrgllfoVkSipkGcNSR5z M5WUVChJ6haFuF3OicJPSh5JlMb7kYSG0WDm5/fHXnvt9Vlrr7X/2/qeJ1y9 qRQKRTCn/3up1vBqhV4ziP18/Ir5O33y4p6lr57NZRzFXua80SdVLCZqJINm UNs0uMkxVZ9cKi1sTRw3A0eHoP4Kjj5Jj0Wn8uRQMI3NzpFPoJE7BGas76tR +JWwZN+CJD2y+aQ6ZrYOBYecqDd2mB7p/ucv+wgjFJ6mbY9KFumSnhrP3ZRZ KKT9Nz+O5alLhtwyDVmPo/D20RmW/RYd8lauSZG/HwpjdNFJYxttsuazV01G AAqGPIqBpoI2KVqQ2t50CoX+ukvGZbVapNNxCcKNQCErR+uaiZsWKTGp3K7C n+P+IvxIsCa55+XOgcd/o0AEpMd4NWqQscNx08KCuX4avSUvU4PM1y1VXVqM QoOlUgXvhAapxNNlRJWjcMxV0PteVYMsse2L3laPQkv13obCP5eSGu/PLB8Z RcEp9q+/GkXqpI3soZHBBAqMXRRnylt1MsD4i7XbbxS4zmk6t7LUyaor4FuO MEDW7629zFmdDN49v+jSYgYkVDYG/ShYTDYLb27fhDIgfzhKre6iGnn5V1l0 4BkG3H0jdzekT5UMaBQc8ohggIZG/BL5v1XJrQVe1vg5BqCVh9JVglRJhRPz EdpFBvgqnxXx5FTJyKGdvPpUBnRp0QUthgtJn87vZ42KGaBEazZQuKBMcuu1 IodFDLCK3RavmKBEaj0Z3tc6xQDzy5Mtlh5K5CSfsHg9w4AY8dNz1ZuUyAJH 7+n0eUzQXq1m3fBJkVxTlR/utIQJ5LVHA/fXK5JqZQ5heWZM0OCGGad1ypN9 ecEhvqeY0MwWdntHy5FuutKO3BAmlAd/PBexV458kxznMBjOhJvMHXs+mcmR 2UHXNf3OM8FoXLf+QD+V9LQq/cc/hQmTK0yybrhQyY6GGWlAMRN66l2/6Jki 5Mep8xeDJUygS++J7aykhK2/ymiRlAlBvw0fR8hmicKvKe6TVBYEtV7XWfZq lrhScX/tGWUW8OfdcIuwmyWc+dVvQ3VYMGDdLuxwnSHqVigvirRiwb/e80O2 nJMQr+2v3IiJYYGtVC5vTFNM9Pq8fBcex4IhdP73rIFJQuFiD/V0Igs8nHPD U0omCbyaedzrCgvYRT+8rPZMEnUO7da2d1lQW2ZYmXp7gmjCV32Xr2BBwI0w 70ETEdHlWGyZgLDhsERruOXCGCHn/+1UtDwbqF169Z0eY8SqJKXcsPlsoPuN +dDQMcLn7d7FfmpsaDkxtYHVPUoMOcn6HPXZENItSyY3jxLjW3GBijUbeOHb 7buXjxDIjrauZB4bSmSxrV3xg0RN+a6VQbFsOBj09Mjw5kFCYNTg5R7PhiUT ErGtbICgqdb00ARsqGtJnBaGDBDwrqivIIMNFIH3z6Kj/QTP6fJQUzkb3OVC vT339xIUHB9fNsuGf5NfPA0O6yRqXlSazlA4MPXegHrcspMQGGKnhfM4kPKV fzQb6SRoikxRrgoHKO5O7Q2JQgKqVk5ydDiQWXPfnw3fCJ6t7Pc+Cw6E/ggt MHncTlCsi5HMMA4sGpJscWtrJvba9te2RnGApx74dOhIM1HooJmiFsOBgTie 8vREE+G7PXzN+UQOQNh/ovjqTUTDPisnn3QO4Mb0aI+dDcTdkKqUDWUcMFa2 Dl3U+pawfdxiWEoxB+EhA573P2VE/DLxtsaL5pDZfq+VnliApdTUdFckzXEk N9X34zMsI+xm2PNkcyBlbeExKwqx4nbL+ynXzYHinSx0zC/GejNiZ9wezPEg 2nP31y8xG/riR+1V5pAfc3hlW3sFNsPeqNQrbwGZ30KS7vrVYYF7vSrE5y2g ZDNeVKPyCVPNGBJy4+c4HU0/t+sT9rj7pCyabwHC3Ftfxbc/Yf3HeFyVaxaQ v3qE2GjUih04d7uYlmMBPTYfml44fca2Zn/K21JjAdlSPcvEiHaMPuJ0NV2F C77HJl0Y+d+wzmj0MHaNC22WXnzb8m5sjYbqpcA0Lmi77ojwaO/G/PL6X2Td 5oLoR5/rgaluTNR4U3leDhfG16UZ0Ex7MKVVyPOaYi7kzv5SysjuwYyq3iGu rVzgpv28mXGhFwtfcCTj8HJLMN3onu7C7seWXE1rS8iyBOrV5W4c7yEsZ9G6 sOp0K9BcX3hLN/sn9urUCjvDRxi4LAysXGMzjt2hZepY7gSoHQx1mzUXYWWR EorvBwBPNZZYMjKB6TspzqzcbQ2vtSacxi6LscL6tUmfm62hXLmUmzMyhfGr pMa0/TaQ0mEQbGcjwa6eHvQ7+MUGBuiOZ4cOTmORS/X+MNizGRhdHSdSDs1g D9fK1wYJN0N974lK/sFZTEGEaL06YAsLdA97RVpIsQfGBWfv9NtCnSb38RsN GbbWM2/77HE7KNcbVuB0yLD2LaXPdn23g6lwvtu4HQUa74VvxE7bQ+yBnLq1 dygw9dyFazBuD2mUjSWp3ykgKzlVFBfgAKQP86GXGQJOxvZ2kRMOsBGaT5tF IVC9f9NR/9M45Dv/znpQjsBiL9+Xt4Nx0Jkxm3hNIHDAN2vhhzM4hC1tWthF IjB5Sv0ZGonD1GhB8vJKBFbFiyWzsTjkXNH4nFSNAO8ZwRek4lASeCz90AcE zBWd84tKcQieqb3b1YlAnEoCdeAlDhJdj89TXQg0qFXs1C7HYXP4h1bVHgR8 ddDfZytw0J15b2reh8B1E00b/C0OmnVL3C4NISDaJ2xq+4LDtdqVJzf8QgAO aa1Z+A0H6fwzNpgIgSQf11CsE4ddz3Z3uEwgYHDytU52Lw5No2tDQsQIuMTl eh8fwcF81TC9bBqBW0mdLzJGcWhQvODyfgaBAYH2gsZxHBZ6Rdh9m53bk85/ whTjUHepP3nuwUBd5hvK0d84/FEl6FuEUGFZjtQ1fRqHGBupkj6VCp6PWPff zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg= "]]}, Annotation[#, "Charting`Private`Tag$5733#1"]& ], {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 50}, {-8.900837493810066, 14.534402649413224`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, 3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}}, CellLabel->"Out[30]=",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"U", ",", "30"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.87957154916846*^9}, CellLabel->"In[31]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[BoxData[ RowBox[{"{", RowBox[{"U", "\[Rule]", "26.327091087132676`"}], "}"}]], "Output", CellChangeTimes->{ 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, 3.879571550250393*^9}, CellLabel->"Out[31]=",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], "-", RowBox[{"coeff", " ", "*", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.879571556146941*^9, 3.87957155754856*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[BoxData[ RowBox[{"{", RowBox[{"coeff", "\[Rule]", "2.5426173021971623`"}], "}"}]], "Output", CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9}, CellLabel->"Out[32]=",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"2.5426173021971623", "*", "A"}], ")"}], "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], "\[Equal]", "1"}], ",", " ", RowBox[{"{", RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.879571567743319*^9, 3.879571576536313*^9}}, CellLabel->"In[33]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[BoxData[ RowBox[{"{", RowBox[{"A", "\[Rule]", "0.6401531831830206`"}], "}"}]], "Output", CellChangeTimes->{ 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { 3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9}, CellLabel->"Out[33]=",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"0.6401531831830206", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { 3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, 3.87957160585564*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVl3k4VG0fxwdRIXtIWacoZa0eicfvRqWyj6VCKS12UumxRaSo3ilZYsaD bJWyVSpLJEspshPyWuYcChExDGZ5z/vHuc71+edc931+n+/3PkfVI5Bynp9E Ik0T1//vGZEeQnrn7posxPylGlYaYdLQpWJ1TMUbtEgZXlvtXYD3seaGikoo 6Fr9oo3Z+UBGLVVZUOU2DF15o//KLgz8/g72X1KmQViVI8nG7g50rXolzyoX QGGb/OUpGzqs/c7QmFauAFWX+MawI88g+0tW0JTyZ5hu4jk1766E4pLb3/20 B8CIc6u8YuILeEIH7dclDCRrN2zPudMFAWM7sLLiCXC1fWovzt8PI6f61334 PAHu7hZfQuX7waEvXvsrPgFrHQzM+7T7YV/zj9AxhUmY6rUQCXLtB4EX+RKy cZOQ4qfyRaKsH9IiVE3+cZ+CL34xjTyPAfggvYlmKDENjgbp/A5vv4OwaqzG 8L5Z0Jd/5p1hMARNxg90Ig/Ogv357tKgI0Nw63imgSJlFhTqtVwNXYeAP6Hc wtV3FtrW91TlRA7BCveX57eMWagqmh0abBiCqUGnp238cyDakWv902YYWtI0 dtS2zMHHUMHl5F0jcKdsj557/xzkiKseK94zAofbTQ25Y3NwzzSJWWs8Ag1r 3Y4Y8+bgbLfIeIfVCLy7muBdrvcH6nWGDHL8RqDIcbmg9OEfuLL0/d3ysxG4 J9GsmX16Ho4FZ3b4q41ChYHia5uAebgqt/mhueYo4KcCgR0+D/Mn/JgS+qNg VCTteCx1HlIo1sGJpqPw84jbtQ2t85DctVtC9/QomN+Ybgs1WgCd7OigzvRR YDHFgymyTAizOP+aLsoAsqIHj0dmwp3LgbVu0gywOVB2u0iPCZs5VgsbFRiQ n3g8c501EySM3D/7azCAopP9qeYGE368Gfr60pQBRV76CjvnmBB4Ou7q/SsM 8Pju+F6gZRG8xiWGr3UxQDh91D+ofxHIrfs/relnwEuXgC3D44tg4dnbEjPE AIGBuNBKviUYfiSifm6CAXl9lbuDDJZA/NdSUxWXAeM9Kk+HcpaAF8vKeaeB wb2UImer0iWwx2v3lO3C4C+n/YKV1Utg3BD3LkcPg7huB4+UviX4mdGUd84I g+1dt7ZYibEgYkU4LdwGA5/2XwkVoSyIkjWTWyA8lUoIBY04FqwmUlZP/INB pa3QTHIyC/aJ6r18E46BSJuy5cUSFpgnqiU4xmJQ+JUiqDHGAtUxx27VFAxm vpSHJtstg7S7ShPpNQZBjbEegRorkPEOS6qfxkAJPyS0uHsF0gvcGptmMWjm X/8sAq3A4wlOU+M8BtsQde72iRWISe0xfbKMQX9lyvW8uytgqOfat1YQB9PS x5n9v1dgeaUn1UQBh5lWL7PT7BWIbpU/XbsFh/RpzfHxdauQahD+01AZB6Zm idaC6ip8qkncK7MVh4L8t+/EHFfh3kpw/nktHCTTmwbMy1dhcluocLgJDjUV dyK/NKxC8Bp7jxCEg2+flZp9xyqE9Gf7+pvh0Lixw/vU5CpU1IffNzmEQ2hC PytkCxvqNvoLXbPGQb0k/V/edjZUW9l3G9ji0PX1JLq1lw1ZeLb1pB0OWiKM uCQbNgw318FfjjiM3pyULb7OBje+k+I+Ljjcyyus3ENlQ+jw2DaGKw5G9QGn qmhsiNlbwLA/iUMKaT6/6SUbqKfirORP43AkfHUPhrNhkbzSgc7jsEir7vOe Y4PO4VThqxdwyC2PipjlsEFXV34sxxMHDlOggSPLgZ9K369h3ji8uCjqIH+E AxVxNXqkABxa6NKhRc4cYHc2hQoF4jDeoJBldo4Dbf7T4/wXcVDYtGPKL4oD hidytYeCcNhjrivJT+WA3kXbddWXcLD1NzBIpXOg9aylYOJlHGI/HLzx4TUH 3Gr+9VQKxiFzyqrAuZ4D1Sz9lh6Cyzc6tk21c0DoLZ1y4yoOneDKvD7EgdjD 11fU/8Fh2ttjs+wvDoi+T66vJXhdsrfp82UOyP2mFtmF4KBWc9ETreUCM1C9 vJdg45//UHtkuDCSrohRQnFwlop65aPGhZ0JBtqNBF80vtXP0+GCvdbfNK0w HO5coPKS/+aCjByb/B+C8xKSt2lacuFh2aHWEYLfV6Zbvj/OhQDdhdSd4TgM 4DlBjhe48Dlk5LofwQtiz1InLnPhBPyKzyVYzPBFdWQ0F6jL7JJ2grefLcek 73MheoTNnCfYjPp+fcG/XJCbG3DZEIGD29uPOibPuLA0dWdoC8FXR786db3l QpaTYLQawQ9EesK9GrngdNXCTIngwr2D2ZxOLpi6OKhJEPzRHfuUOMIFSoeO Kot4/sjtyWmNGWJ/gT9NegleeTUnXb3KhZa71PBnBMsMsQwp63mwyWzPtysE a68jnf4hywOjoEX7vQQf1l97K2IrD2ar/kxNEfs/6yZWKKnPgzvxVvlpBEfe 2tj5GHgwRdoVaURwWukWlpE1D3ykaq52E+/35QBZqcOFBw3+e+6fJbhlzc4D F7x4IBDX+OknMZ9xbX2f1WAenE0pVDlHMOmEYULCDR7sSNpB7yHmu7fIYrAy kwd9MpzfdMIHu282/HaFPKC7TrXMEL748DlvH6vgAZLLat73f5+czl0R7+GB WWulTgnhW3mULz2PwYObWSMp3wkfuwou1RrO8kD9gYUyl/B1TRQSeilIQoI9 8RnbCJ8lZQ7QIkRJKFrYIkmT8F2pwGKXhTQJeaqLFW8j8rCvy4YyqEJCgWqv HLm+OBz0oow91iAh81/00e8+OFA4TiFB2iR0PjArpYTIk5/GyUwhYxJ6WXYo 2JDIW3a476TuMRJKTZXY+u0MDrq161lxJ0loqv1geySR39o1TwWHz5LQzGLn lKI7MT8qrkK9SELbF49cNnMj1vPo5LGJ2yS0qfpj91ZnHIrx1XMogYRc1WpE 44n++HsH/VLqQxKK6JapYFAIn172Ug/mktCbTU+DIon+oTfYNmS/I6EywSdX bQ/joLl+poNVR0Jn4mvPBxD9VWH9n2Hbz8R6UtXbYg/g0NfbtMLpIaE4BWmZ NKL/ZCdM9Vx+k5CtVce14/twSNywJ1NKjQ/dPFaZaqpO5I/S+dx7Ox9ibB5P 6iMTffLwYkWtNh8aXPwh76mKQ7tyUXeAER+aVaV+8CH6WUxfXaTZkQ/pVXCf iUoR+XOWD7kRx4dOFup8q1rFQCH9zc0BKh+KDqzBmlkYFAw7Jukl86HwR0Z3 u5gYNHk9KB5+xId2/iVQ+vk3BkLhwmNGlXxo3xLtij2GQUwW237hFx+q6xWS aW/CwE63PGjnPB+itNVP+zYS58+Hyw88lvmQqtDEF94H4nxjTLa3C/KjV7JL yeJVGPzZ1m9bpMSPLG7n3G8rxMCj8LX1BTt+tLj78/nOexiYVgQc6XvFj0w2 TwbNWGEgdlTTW7ySH3UN3M2jHsZgcGAs/lAtPyrqEtqw7QAGIWy3prIWfuSu 9/yWMXH+loKlxYMxfsSot7MV24GBykeNg0flBJCNQWCPiQAGpK4R9C5MAFm1 +jqMvmBA7ERNdli0AFqduxQkW8iA9aQMfsN4AeT5xLLY7DEDpLRONLxOEUBz uXfvX6czYFtch0VJqQAqbhs3SYxhwFGjOpuccQHUltTTJW7PgKTcXLd4yhoU 8f2iYfnkKKhfuRDiqCmIhMus65W2Et9TzFRnkWohpCKvpumbMAxHx3yuJQat QxOFha+ODQ6CDZ6wU0lJGPE2Vjz5N2AAJus9rjcViSBLvk8HBF36QFuyV9Hc fQNKta0afGzRC8LAPDM4L4bMBlKZXtHdYDHtsqTmJIHSg+V856s7oa/uHJ/L LknUWVe3IXp7B7yObzilwpRE/dlVEX70NrggGDzS2iqF2q12yZn9aIGzl8Jf i9Kl0SH7F1HHU7+AjufOVqszMogzs/BLJLoJ2qR2iQQbbkSDT3STKv0+QlVx TPouAVmUJ8vFm/MaIJxP067lv7LoUmDPi0vDdSA8GHY4oEwOaRu37d1/+AOM PVZNzoqQR9dIY7yW3veQvH3TmgqnTcinmyZtplINCfQLn86oKCD9Yb53fl8r wSX5ZKvoDwW0/9Os2bmycmAdyF/OqtmMTk9QIjdlvAFszCykLm4LeuoK1rTO Msj5W2/z1zOK6A0F2UUIv4Kim8GSnlpKKHasWolx4wXEOZ21FGAqIY4hPulM LgWi7gviviqjDHJ+oVd8EaTtSC/6aqmCTF1Uv05rP4eoWmqaZYUK2uAvB2v7 n4L1Zqf8L1tV0bGSCw1CtY/BNOCTq+RtVXQ97bO38EIeZG3x2NrCVEWF45dx Y81c2Fr/5KGNqxqKk8s/uTMnGxK06jQ7a9RQYGbSvDF6BBfm13R81iQjo2T3 ji3vM8DjxR+V2/fJSJsqfHPBIx38YhzYRx+QkeadnQUDx9Mh2KHsm2gSGSUd F4lrsEmHeGbwvYSHZJTbE++Tuz8dig2XV1MzyKgkQ/UZVSodlj/weh8/J6Pp udwBqXo6JHSKUhs+kVHmuZkHvep0oOf6e936TEZa/5Wy0VOkQ+6VVvPDzWTk cIiZdl+aDm9kE1aaW8nIvq6sx5lEh0EXaa+uHjKKORH1UXyABhrYJnMGRkZ9 /UNnNO/RQLcsTClvjIxcfob5V8fSYP/N78vnf5DRh7US8w7hNLDSyCidmCQj 6p81nne9aHDJV0Vpbo6MzI3sWsnmNIgwjl5+OU9Ge81+3uw0pMHNDYzuK0wy qrl3oChWlwZpJbl3WSwykojad2hekQY519d4Vq6Q0b4Hh1+XyNDguf15swg2 Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC "]]}, Annotation[#, "Charting`Private`Tag$7735#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.6401531715334164}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, 3.879571608345409*^9}, CellLabel->"Out[34]=",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1864, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[2425, 68, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[5252, 146, 1588, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[6843, 195, 9076, 164, 235, "Output",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"] }, Open ]], Cell[CellGroupData[{ Cell[15956, 364, 1731, 47, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[17690, 413, 743, 12, 33, "Output",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"] }, Open ]], Cell[CellGroupData[{ Cell[18470, 430, 955, 26, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[19428, 458, 270, 5, 33, "Output",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"] }, Open ]], Cell[CellGroupData[{ Cell[19735, 468, 1805, 46, 111, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[21543, 516, 339, 6, 33, "Output",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"] }, Open ]], Cell[CellGroupData[{ Cell[21919, 527, 1267, 34, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[23189, 563, 6732, 130, 237, "Output",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"] }, Open ]] } ] *)