read_binary.cpp 9.34 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
   Name:           read_binary.cpp
   Created by:     Stefan Ritt <stefan.ritt@psi.ch>
   Date:           July 30th, 2014

   Purpose:        Example file to read binary data saved by DRSOsc.
 
   Compile and run it with:
 
      gcc -o read_binary read_binary.cpp
 
      ./read_binary <filename>

   This program assumes that a pulse from a signal generator is split
   and fed into channels #1 and #2. It then calculates the time difference
   between these two pulses to show the performance of the DRS board
   for time measurements.

   $Id: read_binary.cpp 22290 2016-04-27 14:51:37Z ritt $
*/

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <math.h>

//for ROOT
#include "TROOT.h"
#include "TFile.h"
#include "TTree.h"
#include "TH1F.h"

typedef struct {
   char           tag[3];
   char           version;
} FHEADER;

typedef struct {
   char           time_header[4];
} THEADER;

typedef struct {
   char           bn[2];
   unsigned short board_serial_number;
} BHEADER;

typedef struct {
   char           event_header[4];
   unsigned int   event_serial_number;
   unsigned short year;
   unsigned short month;
   unsigned short day;
   unsigned short hour;
   unsigned short minute;
   unsigned short second;
   unsigned short millisecond;
   unsigned short range;	// range center in mV
} EHEADER;

typedef struct {
   char           tc[2];
   unsigned short trigger_cell;
} TCHEADER;

typedef struct {
   char           c[1];
   char           cn[3];
} CHEADER;

/*-----------------------------------------------------------------------------*/

int main(int argc, const char * argv[])
{
   FHEADER  fh;
   THEADER  th;
   BHEADER  bh;
   EHEADER  eh;
   TCHEADER tch;
   CHEADER  ch;
   
   unsigned int scaler;
   unsigned short voltage[1024];
   double waveform[16][4][1024], time[16][4][1024];
   float bin_width[16][4][1024];
   int i, j, b, chn, n, chn_index, n_boards;
   double t1, t2, t3, t4, dt, dt34;
   char filename[256];

   int ndt;
   double threshold, sumdt, sumdt2;


//for ROOT

   TFile* rfile = new TFile("/home/dariak/NeuRad_tests/data/rawDataDSR4/NeuRad_test_08_2.root", "RECREATE");
   TTree* rtree = new TTree("rtree", "tree for drs4 analysis");
   //rtree->Branch("t1", &t1, "t1/D"); //br for time of threshold crossing signal in 1 ch
  // rtree->Branch("t2", &t2, "t2/D"); //br for time of threshold crossing signal in 2 ch
   int ncell;
   const int ncellMax = 1030;
   double amp_ch1[ncellMax], time_ch1[ncellMax];	//variable size array 
//------for other channels 
//   double amp_ch2[ncellMax], time_ch2[ncellMax];

   rtree->Branch("ncell", &ncell, "ncell/I"); 
   rtree->Branch("amp_ch1", amp_ch1, "amp_ch1[ncell]/D"); 
   rtree->Branch("time_ch1", time_ch1, "time_ch1[ncell]/D"); 

//------for other channels 
//   rtree->Branch("amp_ch2", amp_ch2, "amp_ch2[ncell]/D"); 
//  rtree->Branch("time_ch2", time_ch2, "time_ch2[ncell]/D"); 

   if (argc > 1)
      strcpy(filename, argv[1]);
   else {
      printf("Usage: read_binary <filename>\n");
      return 0;
   }
   
   // open the binary waveform file
   FILE *f = fopen(filename, "r");
   if (f == NULL) {
      printf("Cannot find file \'%s\'\n", filename);
      return 0;
   }

   // read file header
   fread(&fh, sizeof(fh), 1, f);
   if (fh.tag[0] != 'D' || fh.tag[1] != 'R' || fh.tag[2] != 'S') {
      printf("Found invalid file header in file \'%s\', aborting.\n", filename);
      return 0;
   }
   
   if (fh.version != '2') {
      printf("Found invalid file version \'%c\' in file \'%s\', should be \'2\', aborting.\n", fh.version, filename);
      return 0;
   }

   // read time header
   fread(&th, sizeof(th), 1, f);
   if (memcmp(th.time_header, "TIME", 4) != 0) {
      printf("Invalid time header in file \'%s\', aborting.\n", filename);
      return 0;
   }

   for (b = 0 ; ; b++) {
      // read board header
      fread(&bh, sizeof(bh), 1, f);
      if (memcmp(bh.bn, "B#", 2) != 0) {
         // probably event header found
         fseek(f, -4, SEEK_CUR);
         break;
      }
      
      printf("Found data for board #%d\n", bh.board_serial_number);
      
      // read time bin widths
      memset(bin_width[b], sizeof(bin_width[0]), 0);
      for (chn=0 ; chn<5 ; chn++) {
         fread(&ch, sizeof(ch), 1, f);
         if (ch.c[0] != 'C') {
            // event header found
            fseek(f, -4, SEEK_CUR);
            break;
         }
         i = ch.cn[2] - '0' - 1;
         printf("Found timing calibration for channel #%d\n", i+1);
         fread(&bin_width[b][i][0], sizeof(float), 1024, f);
	/*my printf
		printf("bin width %d \n", bin_width[b][i][10]); */
         // fix for 2048 bin mode: double channel
         if (bin_width[b][i][1023] > 10 || bin_width[b][i][1023] < 0.01) {
            for (j=0 ; j<512 ; j++)
               bin_width[b][i][j+512] = bin_width[b][i][j];
	/*my printf
		printf("bin width %d \n", bin_width[b][i][j+512]); */
         }
      }
   }
   n_boards = b;
   
   // initialize statistics
   ndt = 0;
   sumdt = sumdt2 = 0;
   
   // loop over all events in the data file
   for (n=0 ; ; n++) {
      // read event header
      i = (int)fread(&eh, sizeof(eh), 1, f);
      if (i < 1)
         break;
      
      if ( !(eh.event_serial_number%100) ) {
	 printf("Found event #%d\n", eh.event_serial_number);
      }
      
      // loop over all boards in data file
      for (b=0 ; b<n_boards ; b++) {
         
         // read board header
         fread(&bh, sizeof(bh), 1, f);
         if (memcmp(bh.bn, "B#", 2) != 0) {
            printf("Invalid board header in file \'%s\', aborting.\n", filename);
            return 0;
         }
         
         // read trigger cell
         fread(&tch, sizeof(tch), 1, f);
         if (memcmp(tch.tc, "T#", 2) != 0) {
            printf("Invalid trigger cell header in file \'%s\', aborting.\n", filename);
            return 0;
         }

         if (n_boards > 1)
            printf("Found data for board #%d\n", bh.board_serial_number);
         
         // reach channel data
         for (chn=0 ; chn<4 ; chn++) {
            
            // read channel header
            fread(&ch, sizeof(ch), 1, f);
            if (ch.c[0] != 'C') {
               // event header found
               fseek(f, -4, SEEK_CUR);
               break;
            }
            chn_index = ch.cn[2] - '0' - 1;
	//	printf("print channel %d \n",chn_index);
            fread(&scaler, sizeof(int), 1, f);
            fread(voltage, sizeof(short), 1024, f);
            
            for (i=0 ; i<1024 ; i++) {
               // convert data to volts
               waveform[b][chn_index][i] = (voltage[i] / 65536. + eh.range/1000.0 - 0.5); //calculation of amplitudes values for each cell
	
		//for ROOT
	       ncell = i;
	       if(chn_index == 0) {amp_ch1[i] = waveform[b][chn_index][i];}
	     //  if(chn_index == 1) {amp_ch2[i] = waveform[b][chn_index][i];}

               // calculate time for this cell
               for (j=0,time[b][chn_index][i]=0 ; j<i ; j++){
                  time[b][chn_index][i] += bin_width[b][chn_index][(j+tch.trigger_cell) % 1024];
	       }
            }	    
         } // end of the channel loop (chn)
         
         // align cell #0 of all channels
         t1 = time[b][0][(1024-tch.trigger_cell) % 1024];
	//my print;
	// printf("t1 %1.6lf \n",time[b][0][(1024-tch.trigger_cell) % 1024]);
         for (chn=1 ; chn<4 ; chn++) {
            t2 = time[b][chn][(1024-tch.trigger_cell) % 1024];
//adding channels 3 and 4
            t3 = time[b][chn][(1024-tch.trigger_cell) % 1024];
            t4 = time[b][chn][(1024-tch.trigger_cell) % 1024];
	//my prinf
	//printf("t2 %f for %d %d %d \n",time[b][chn][(1024-tch.trigger_cell) % 1024], b, chn, i);
            dt = t1 - t2;
            dt34 = t3 - t4;
            for (i=0 ; i<1024 ; i++) {
               time[b][chn][i] += dt;  //each element of time gets dt correction
		//my print;
	      // printf("time %1.6lf for %d %d %d \n",time[b][chn][i], b, chn, i);
	    }
		
         }
         
         t1 = t2 = t3 = t4 = 0;
         threshold = -0.045; //my threshold, used to be 0.3


	    //for ROOT
	 for(i=0 ; i<1024 ; i++) {
	    time_ch1[i] = time[b][0][i];
	   // time_ch2[i] = time[b][1][i];
	 }

             // find peak in channel 1 above threshold
         for (i=0 ; i<1022 ; i++) {

            if (waveform[b][0][i] < threshold && waveform[b][0][i+1] >= threshold) {
               t1 = (threshold-waveform[b][0][i])/(waveform[b][0][i+1]-waveform[b][0][i])*(time[b][0][i+1]-time[b][0][i])+time[b][0][i];
		//my prinf
		//printf("t1 recalc %1.6lf %d \n",t1, i);
               break;
            }

	 }
         
         // find peak in channel 2 above threshold
         for (i=0 ; i<1022 ; i++) {
            if (waveform[b][1][i] < threshold && waveform[b][1][i+1] >= threshold) {
               t2 = (threshold-waveform[b][1][i])/(waveform[b][1][i+1]-waveform[b][1][i])*(time[b][1][i+1]-time[b][1][i])+time[b][1][i];
		//my prinf
		//printf("t2 recalc %1.6lf \n",t2);
               break;
            }
	 }

         // calculate distance of peaks with statistics
         if (t1 > 0 && t2 > 0) {
            ndt++;
            dt = t2 - t1;
            sumdt += dt;
            sumdt2 += dt*dt;
         }
      } //end of the boards loop

      rtree->Fill();
   } // end of the events loop
   
   // print statistics
   printf("dT = %1.3lfns +- %1.1lfps\n", sumdt/ndt, 1000*sqrt(1.0/(ndt-1)*(sumdt2-1.0/ndt*sumdt*sumdt)));

   rfile->Write();
   rfile->Close();
   return 1;
}