BeReaction.cpp 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * BeReaction.cpp
 *
 *  Created on: 24.5.2010
 *      Author: Vratislav
 */

#include "BeReaction.h"

ClassImp(BeReaction);

Int_t ranseed = 1;
//TRandom3	BeReaction::ranTheta(1277372118);
//TRandom3	BeReaction::ranTheta(0);
//TRandom3	BeReaction::ranMass(1277372118);
TRandom3	BeReaction::ranMass(0);
TRandom3	BeReaction::ranTheta(0);
Double_t BeReaction::LipM[] = {0};
Double_t BeReaction::BeDecayM[] = {0};
Double_t BeReaction::BeStateEnergy[] = {0};
Double_t BeReaction::DipDecayM[] = {0};
TF1 BeReaction::theta("thetaCM", "TMath::Sin(x)", 0., TMath::Pi());
TF1 BeReaction::thetaUniform("thetaCM", "1", 0., TMath::Pi());
TF1 BeReaction::dipEnergy("dpexcitation", "TMath::Sqrt( x*([0] - x) )", 0., 1.);

BeReaction::BeReaction()
{
	ReadParameters();
//	PrintParameters();

}

BeReaction::~BeReaction() {

}

void BeReaction::ReadParameters(const char *parameterfile)
{
39
	std::ifstream parfile;
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	parfile.open(parameterfile);												//parameter file opening
	if (!parfile.is_open()) {
		Warning("BeReaction::ReadParameters", "File %s opening error\n", parameterfile);
		return;
	}//if

	Double_t value;
	TString line;

	while (parfile.good()) {
		parfile >> value;
		line.ReadLine(parfile);
		if (line.Contains("//")) line.Resize(line.Index("//"));
		line.ToLower();
		if (line.Contains("6li")) {
			LipM[0] = value;
			continue;
		}
		if (line.Contains("proton")) {
			LipM[1] = value;
			BeDecayM[2] = 2* value;
			DipDecayM[2] = value;
			DipDecayM[3] = value;
			continue;
		}
		if (line.Contains("neutron")) {
			LipM[3] = value;
			continue;
		}
		if (line.Contains("4he") || line.Contains("alpha")) {
			BeDecayM[3] = value;
			continue;
		}
		if (line.Contains("6be_g.s._e")) {
			BeStateEnergy[0] = value;
			continue;
		}
		if (line.Contains("6be_g.s._gamma")) {
			BeStateEnergy[1] = value;
			continue;
		}
		if (line.Contains("6be_e.s._e")) {
			BeStateEnergy[2] = value;
			continue;
		}
		if (line.Contains("6be_e.s._gamma")) {
			BeStateEnergy[3] = value;
			continue;
		}
		if (line.Contains("6be_(g.s.)_prob")) {
			BeStateEnergy[4] = value;
			continue;
		}
		if (line.Contains("6be_3body_thr")) {
			BeStateEnergy[5] = value;
			continue;
		}
	}//while

	//set 6Be mass
	LipM[2] = BeDecayM[3] /*4He*/ + 2*DipDecayM[3] /*proton*/ - BeStateEnergy[5] /*threshold*/;
	BeDecayM[0] = BeDecayM[3] + 2*DipDecayM[3] - BeStateEnergy[5];

	parfile.close();
	if (parfile.is_open()) {												//parameter file closing
		Warning("BeReaction::ReadParameters", "File %s closing error\n", parameterfile);
		return;
	}

	Info("BeReaction::ReadParameters", "Mass and other parameters were set");
	return;
}

void BeReaction::FillProcess(Double_t _LiT, Double_t _LiThetaIn, Double_t _LiPhi)
{

	//simple MC generator using phase volume

	Double_t	operatingMarray[4] = {0};		//auxiliary array for mass setting
//	SetLipMasses(operatingMarray);				//to simulate in zero approximation
//	SetLipMasses_uniformBeMass(operatingMarray);	//to determine energy resolution
	SetLipMasses_discreteBeMass(operatingMarray);	//to determine energy resolution
	fLip.SetName("fLip");
//	fLip.FillReaction(_LiThetaIn, _LiT, operatingMarray, ThetaCMdistr(0., TMath::Pi()), _LiPhi);
//	fLip.FillReaction(_LiThetaIn, _LiT, operatingMarray, ThetaCMdistrUniform(0., TMath::Pi()), _LiPhi);
	fLip.FillReaction(_LiThetaIn, _LiT, operatingMarray, ThetaCMdistrDiscrete(), _LiPhi);
	SetBeDecayMasses(operatingMarray);
	fBeDecay.SetName("fBeDecay");
	fBeDecay.FillReaction(fLip.GetThetaA(), fLip.GetTa(), operatingMarray, ThetaCMdistr(0., TMath::Pi()), fLip.GetPhiA() );
	SetDipDecayMasses(operatingMarray);
	fDipDecay.SetName("fDipDecay");
	fcorrect = fDipDecay.FillReaction( fBeDecay.GetThetaA(), fBeDecay.GetTa(), operatingMarray, ThetaCMdistr(0., TMath::Pi()), fBeDecay.GetPhiA() );
	if (fcorrect != 1) {
		cout << operatingMarray[0] - 2*DipDecayM[2] << endl;
	}

}

void BeReaction::FillProcess(Double_t _LiT, Double_t _LiThetaIn,
		Double_t _LiPhi, Double_t *_p_alpha, Double_t *_p_p1, Double_t *_p_p2,
		Double_t _thetaCMmin, Double_t _thetaCMmax)
{

	Double_t thetaCM = ThetaCMdistr(_thetaCMmin, _thetaCMmax);
	FillProcess(_LiT, _LiThetaIn, _LiPhi, _p_alpha, _p_p1, _p_p2, thetaCM);
}

void BeReaction::FillProcess(Double_t _LiT, Double_t _LiThetaIn,
		Double_t _LiPhi, Double_t *_p_alpha, Double_t *_p_p1, Double_t *_p_p2,
		Double_t _thetaCM)
{
	//function variables: LiT, LiThetaIn, LiPhiIn, BeThetaCM, impulses array
	//_LiT:
	//_thetaCMmin: in rad
	//_thetaCMmax: in rad


	//physical generator based on theoretical calculations

		//set masses for 6Li + p --> 6Be + n: mass of 6Be taken from generator
161 162 163 164 165 166 167 168 169 170 171 172
//	TLorentzVector pa(_p_alpha[0], _p_alpha[1], _p_alpha[2]);	//alpha in the a-p-p CM
//	pa.SetE( E( Power(pa.P(), 2), BeDecayM[3] ) );
	TLorentzVector pa(_p_alpha[0], _p_alpha[1], _p_alpha[2], E( Power(pa.P(), 2), BeDecayM[3] ));	//alpha in the a-p-p CM

//	TLorentzVector pp1(_p_p1[0], _p_p1[1], _p_p1[2]);			//proton in the a-p-p CM
//	pp1.SetE( E( Power(pp1.P(), 2), LipM[1] ) );
	TLorentzVector pp1(_p_p1[0], _p_p1[1], _p_p1[2], E( Power(pp1.P(), 2), LipM[1] ));			//proton in the a-p-p CM

//	TLorentzVector pp2(_p_p2[0], _p_p2[1], _p_p2[2]);			//proton in the a-p-p CM
//	pp2.SetE( E( Power(pp2.P(), 2), LipM[1] ) );
	TLorentzVector pp2(_p_p2[0], _p_p2[1], _p_p2[2], E( Power(pp2.P(), 2), LipM[1] ));			//proton in the a-p-p CM

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	TLorentzVector pbe;											//6Be in the a-p-p CM
	pbe = pa + pp1 + pp2;

	Double_t	operatingMarray[4] = {0};		//auxilliary array for mass setting
	operatingMarray[0] = LipM[0];
	operatingMarray[1] = LipM[1];
	operatingMarray[2] = pbe.E();
	operatingMarray[3] = LipM[3];

		//reaction 6Li + p --> 6Be + n: BeThetaCM taken from generator
	fLip.SetName("fLip");
//	fLip.FillReaction(_LiThetaIn, _LiT, operatingMarray, _thetaCM*TMath::DegToRad(), _LiPhi);
	fLip.FillReaction(_LiThetaIn, _LiT, operatingMarray, _thetaCM/*ThetaCMdistr(_thetaCMmin, _thetaCMmax)*/, _LiPhi);	//thetaCM from generator is not used

	//transformation from a-p-p CM system into lab system
	TRotation r1;
	r1.SetZAxis(-GetNeutronP(), GetBeP());
	TLorentzRotation rot(r1);

	//rotation to CM system where axis are parallel with lab system (CMaux)
	pa.Transform(rot);
	pp1.Transform(rot);
	pp2.Transform(rot);

	TVector3 beta = GetBe().BoostVector();

	//CMaux --> lab
	pa.Boost(beta);
	pp1.Boost(beta);
	pp2.Boost(beta);


	//set the variables fBeDecay.fTb(.ThetaA, .PhiA) (alpha),
	//					fDipDecay.fTa(.ThetaA, .PhiA) (one of the protons),
	//					fDipDecay.fTb(.ThetaB, .PhiB) (one of the protons)
		//set variables for the alpha particle
	fBeDecay.SetM(3, BeDecayM[3]);
	fBeDecay.SetPhiB(pa.Phi());
	fBeDecay.SetThetaB(pa.Theta());
	fBeDecay.SetTb(pa.E()-BeDecayM[3]);

		//set variables for the first proton
	fDipDecay.SetM(2, DipDecayM[2]);
	fDipDecay.SetPhiA(pp1.Phi());
	fDipDecay.SetThetaA(pp1.Theta());
	fDipDecay.SetTa(pp1.E()-DipDecayM[2]);

		//set variables for the second proton
	fDipDecay.SetM(3, DipDecayM[3]);
	fDipDecay.SetPhiB(pp2.Phi());
	fDipDecay.SetThetaB(pp2.Theta());
	fDipDecay.SetTb(pp2.E()-DipDecayM[3]);
//	Info("BeReaction::FillProcess", "%f\t%f\t%f", pp2.E(), pp2.Phi(), pp2.Theta());

	return;

}

void BeReaction::PrintParameters()
{
	cout <<endl;
	for (Int_t i = 0; i < 4; i++) {
		cout << "LipM[" << i << "] is " << LipM[i] << endl;
	}

	cout <<endl;
	for (Int_t i = 0; i < 4; i++) {
		cout << "BeDecayM[" << i << "] is " << BeDecayM[i] << endl;
	}

	cout <<endl;
	for (Int_t i = 0; i < 6; i++) {
		cout << "BeStateEnergy[" << i << "] is " << BeStateEnergy[i] << endl;
	}

	cout <<endl;
	for (Int_t i = 0; i < 4; i++) {
		cout << "DipDecayM[" << i << "] is " << DipDecayM[i] << endl;
	}

	return;
}

Double_t BeReaction::ThetaCMdistr(Double_t tmin, Double_t tmax) const {

	return theta.GetRandom(tmin, tmax);

}

Double_t BeReaction::ThetaCMdistrUniform(Double_t tmin, Double_t tmax) const {

	return thetaUniform.GetRandom(tmin, tmax);

}

Double_t BeReaction::ThetaCMdistrDiscrete() const {

	const Int_t nopoints = 6;
	const Double_t angles[nopoints] = {20*TMath::DegToRad(),
										45*TMath::DegToRad(),
										70*TMath::DegToRad(),
										95*TMath::DegToRad(),
										120*TMath::DegToRad(),
										150*TMath::DegToRad()};

	Int_t angle = ranMass.Integer(nopoints);
	return angles[angle];
}

void BeReaction::SetLipMasses(Double_t _lpm[]) {

	for (Int_t i = 0; i < 4; i++) _lpm[i] = 0.;

	//constant masses setting
	_lpm[0] = LipM[0];		//mass of 6Li
	_lpm[1] = LipM[1];		//mass of proton
	_lpm[3] = LipM[3];		//mass of neutron

	//variable 6Be mass setting
	if ( BeStateEnergy[4] >= ranMass.Uniform(0., 1.) ) {
		while (_lpm[2] <= BeDecayM[3] + 2*DipDecayM[3]) {
			_lpm[2] = LipM[2] + ranMass.Gaus(BeStateEnergy[0], BeStateEnergy[1]);
//			printf("%f\t>\t%f\n",  BeStateEnergy[0], BeStateEnergy[1]);
//			printf("%f\t>\t%f\n",  _lpm[2], fBeDecay.GetMb()+2*fDipDecay.GetMa());
			//		_lpm[2] = BeDecayM[3] + 2*DipDecayM[4] + ranMass.Gaus(BeStateEnergy[0], BeStateEnergy[1]);
		}//while
	}//if
	else {
		while (_lpm[2] <= BeDecayM[3] + 2*DipDecayM[3]) {
			_lpm[2] = LipM[2] + ranMass.Gaus(BeStateEnergy[2], BeStateEnergy[3]);
//			printf("%f\t>\t%f\n",  _lpm[2], fBeDecay.GetMb()+2*fDipDecay.GetMa());
	//		_lpm[2] = BeDecayM[3] + 2*DipDecayM[4] + ranMass.Gaus(BeStateEnergy[2], BeStateEnergy[3]);
		}//while
	}//if

//	printf("%f\t%f\t%f\t%f\n", LipM[0], LipM[1], LipM[2], LipM[3]);
	return;
}

void BeReaction::SetLipMasses_uniformBeMass(Double_t _lpm[]) {

	//constant masses setting
	_lpm[0] = LipM[0];		//mass of 6Li
	_lpm[1] = LipM[1];		//mass of proton
	_lpm[3] = LipM[3];		//mass of neutron


	//uniform distrubution 6Be mass setting in range (Emin;Emax)
	const Double_t Emin = 0.;
	const Double_t Emax = 20.;
//	while (_lpm[2] <= fBeDecay.GetMb()+2*fDipDecay.GetMa()) {
		_lpm[2] = BeDecayM[3] + 2*DipDecayM[3] + ranMass.Uniform(Emin, Emax);
//		_lpm[2] = LipM[2] + BeStateEnergy[5] + ranMass.Uniform(Emin, Emax);
//	}

	return;
}

void BeReaction::SetLipMasses_discreteBeMass(Double_t _lpm[]) {

	//constant masses setting
	_lpm[0] = LipM[0];		//mass of 6Li
	_lpm[1] = LipM[1];		//mass of proton
	_lpm[3] = LipM[3];		//mass of neutron


	//discrete distrubution 6Be mass 1.4, 3, 6, 9, 13
	const Int_t nopoints = 5;
	const Double_t masses[nopoints] = {1.4, 3, 6, 9, 13};
	Int_t mass = ranMass.Integer(nopoints);

	_lpm[2] = BeDecayM[3] + 2*DipDecayM[3] + masses[mass];

	return;
}

void BeReaction::SetBeDecayMasses(Double_t _bdm[]) {

	//constant masses setting
	_bdm[1] = BeDecayM[1];		//zero mass
	_bdm[3] = BeDecayM[3];		//mass of 4He

	//variable 6Be mass setting
	_bdm[0] = fLip.GetMa();

	//variable diproton mass setting
	const Double_t freeEnergy = fLip.GetMa() - (BeDecayM[0] + BeStateEnergy[5]);
	//TF1 dipEnergy("dpexcitation", "TMath::Sqrt( x*([0] - x) )", 0., freeEnergy);
	dipEnergy.SetRange(0., freeEnergy);
	dipEnergy.SetParameter(0, freeEnergy);
	const Double_t random = dipEnergy.GetRandom();
	_bdm[2] = BeDecayM[2] + random;		//problem
//	if (BeDecayM[2] > _bdm[2]) {
//		printf("//////////////////\t%f\t%f\t%f\n", BeDecayM[2], random, freeEnergy);
//		printf("//////////////////\t%f\t%f\t%f\t%f\n", fLip.GetMa(), BeDecayM[0], fLip.GetMa() -BeDecayM[0], BeStateEnergy[5]);
//	}

}

void BeReaction::SetDipDecayMasses(Double_t _2pm[])
{

	if (fBeDecay.GetMa()/2. < 938.272) {
		printf("\n\n%f\t%f\n\n", fBeDecay.GetMa()/2., fBeDecay.GetMb());
	}
	_2pm[0] = fBeDecay.GetMa();
	DipDecayM[0] = _2pm[0];
	_2pm[1] = 0;
	_2pm[2] = DipDecayM[2];
	_2pm[3] = DipDecayM[3];
}

TVector3 BeReaction::GetAlphaP()
{
	TVector3 vAlpha(1., 1., 1.);
	Double_t pc = TMath::Sqrt(TMath::Power(GetAlphaT(), 2) + 2*GetAlphaT()*fBeDecay.GetMb());
	vAlpha.SetMagThetaPhi(pc, GetAlphaTheta(), GetAlphaPhi());

	return vAlpha;
}

TLorentzVector BeReaction::GetAlpha()
{
//	TLorentzVector *vAlpha = new TLorentzVector(GetAlphaP(), GetAlphaT()+fBeDecay.GetMb());
//	cout << "getalfa Zacatek" << endl;
//	cout << GetAlphaT()+fBeDecay.GetMb() << endl;
//	cout << fBeDecay.GetMb() << endl;
//	cout << GetAlphaT() << endl;
//	cout << "getalfa konec" << endl;
	return TLorentzVector(GetAlphaP(), GetAlphaT()+fBeDecay.GetMb());
}

TVector3 BeReaction::GetP1P()
{
	TVector3 vP1(1., 1., 1.);
	Double_t pc = TMath::Sqrt(TMath::Power(GetP1T(), 2) + 2*GetP1T()*fDipDecay.GetMa());
	vP1.SetMagThetaPhi(pc, GetP1Theta(), GetP1Phi());

	return vP1;
}

TLorentzVector BeReaction::GetP1()
{
//	TLorentzVector *vP1 = new TLorentzVector(*GetP1P(), GetP1T()+fDipDecay.GetMa());

	return TLorentzVector(GetP1P(), GetP1T()+fDipDecay.GetMa());
}

TVector3 BeReaction::GetP2P()
{
	TVector3 vP2(1., 1., 1.);
	Double_t pc = TMath::Sqrt(TMath::Power(GetP2T(), 2) + 2*GetP2T()*fDipDecay.GetMb());
	vP2.SetMagThetaPhi(pc, GetP2Theta(), GetP2Phi());

	return vP2;
}

TLorentzVector BeReaction::GetP2()
{
//	TLorentzVector *vP2 = new TLorentzVector(*GetP2P(), GetP2T()+fDipDecay.GetMb());
//	Info("BeReaction::GetP2", "\t%f\t%f\t%f", GetP2P().Mag(), GetP2T(), GetP2Theta());
	return TLorentzVector(GetP2P(), GetP2T()+fDipDecay.GetMb());
}

//TVector3* BeReaction::GetNeutronP()
TVector3 BeReaction::GetNeutronP()
{
//	TVector3 *vN = new TVector3(1., 1., 1.);
	TVector3 vN(1., 1., 1.);
	Double_t pc = TMath::Sqrt(TMath::Power(GetNeutronT(), 2) + 2*GetNeutronT()*fLip.GetMb());
//	vN->SetMagThetaPhi(pc, GetNeutronTheta(), GetNeutronPhi());
	vN.SetMagThetaPhi(pc, GetNeutronTheta(), GetNeutronPhi());

	return vN;
}

TLorentzVector BeReaction::GetNeutron()
{
//	TLorentzVector *vN = new TLorentzVector(*GetNeutronP(), GetNeutronT()+fLip.GetMb());
//	TLorentzVector vN = new TLorentzVector(GetNeutronP(), GetNeutronT()+fLip.GetMb());

//	return vN;
	return TLorentzVector(GetNeutronP(), GetNeutronT()+fLip.GetMb());
}

TVector3 BeReaction::GetBeP()
{
	TVector3 vBe(1., 1., 1.);
	Double_t pc = TMath::Sqrt(TMath::Power(GetBeT(), 2) + 2*GetBeT()*fLip.GetMa());
	vBe.SetMagThetaPhi(pc, GetBeTheta(), GetBePhi());

	return vBe;
}

TLorentzVector BeReaction::GetBe()
{
	return TLorentzVector(GetBeP(), GetBeT()+fLip.GetMa());
}

Double_t BeReaction::T(Double_t pc2, Double_t mc2)
{
	return TMath::Power(mc2*mc2 + pc2, 0.5) - mc2;
}

Double_t BeReaction::E(Double_t pc2, Double_t mc2)
{
	return TMath::Power(mc2*mc2 + pc2, 0.5);
}

void BeReaction::Reset()
{
	fLip.Reset();
	fBeDecay.Reset();
	fDipDecay.Reset();
	fcorrect = 0;

	return;
}