Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mathematica
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ivan
mathematica
Commits
d1d49668
Commit
d1d49668
authored
Dec 26, 2022
by
himyss
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
data added
parent
3332c0f4
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
5871 additions
and
231 deletions
+5871
-231
bounded3He.nb
bounded3He.nb
+824
-219
bounded8He.nb
bounded8He.nb
+12
-12
tMatrix3He.nb
tMatrix3He.nb
+5035
-0
No files found.
bounded3He.nb
View file @
d1d49668
...
...
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[
36311, 828
]
NotebookOptionsPosition[
34323, 787
]
NotebookOutlinePosition[
34721, 803
]
CellTagsIndexPosition[
34678, 800
]
NotebookDataLength[
62484, 1433
]
NotebookOptionsPosition[
59044, 1368
]
NotebookOutlinePosition[
59472, 1385
]
CellTagsIndexPosition[
59429, 1382
]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
...
...
@@ -56,7 +56,7 @@ Cell[BoxData[{
RowBox[{
RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "
0.742
"}], ";"}]}], "Input",
RowBox[{"range", "=", "
1.6
"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
...
...
@@ -69,8 +69,9 @@ Cell[BoxData[{
3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9,
3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9,
3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}, {
3.880087577450821*^9, 3.8800876498236017`*^9}},
CellLabel->"In[77]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
3.880087577450821*^9, 3.8800876498236017`*^9}, {3.880095497014333*^9,
3.880095545116588*^9}, {3.880535317453936*^9, 3.8805353221622753`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
...
...
@@ -146,7 +147,7 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[8
4
]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
...
...
@@ -187,7 +188,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "
2
00"}], "}"}]}], "]"}]], "Input",
RowBox[{"U", ",", "0", ",", "
1
00"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9,
3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
...
...
@@ -205,120 +206,118 @@ Cell[BoxData[
3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, {
3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9,
3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, {
3.880086380215939*^9, 3.8800863803996*^9}},
CellLabel->"In[90]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
3.880086380215939*^9, 3.8800863803996*^9}, {3.88053533924759*^9,
3.880535339536429*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{4.081632653061224*^-6, 3.0993440325837347`}, {
0.00499839233763319, 3.09936427718092}}],
LineBox[{{3.8501838081184587`, 3.1153700731572442`}, {4.497804249705671,
3.118150852990969}}], LineBox[CompressedData["
1:eJwVU3s01AkDnUIiZN5ovIaZScnm0R4VuiRpPZJU855fKSE2SURbSQ9l16NZ
j80jFJLaymOFUrSlSWvLs3dIptUWwhprw+f745577rn3j3vuOdd8x17/XXNJ
JFLqLP7PxbQmc0k8Baf04xSGo/Phlrqu4dLGxSiTmNTGrNTCrm8mdW11l+NS
cgN54XYt+Fjt+sJY74BgHe7U/RQtVHQcPvDI0RHXAgYOe97WwmrKkuvqR52g
fCZo0fmihd3/yfOK+cCbphO6tYu1sbfpg/11Hzc82HvqXTyhjSThPM5UmDvi
mpVV1wu1EfjwUJBtsAcKxp+ID/Vpo1HTcNMegSeai/ta7KwWwJYcnzkQ9R2i
t8z3izy0AMSos7VvmDdOCbfJnZ4sQOH5ByxVsi+qqEu299rpoDJl1as2fz+Y
iXOez83XQVSds1+e9yYcrJD/l6Kni7vNxSNnRP6Q12RtXJ2hi5D1K+tD+Jtx
cMfCWhpbD7mltr/tCQ1ALuOaafSfejg7Wn8sImYLPnWsealMXQhl2YHo4Mit
OFQxoLnnG33c95D/kpCwDZlrd1okletjzsaX71Lj+WD3BpxdDTIUd7ZYRJ3g
ozOcychxIyPNpjWQf5oP5obcZV/dyTDTU7w3S+ODO+fbRb9vIAMtvynL8/lw
6zYx3rmZjHivsx/b7/Ah1zrCHQsig+TpOcKc4oPldd2InzqrXavnFMQKUCiw
7s7oJ0Po/qH5+WEBdp1RrSv+i4yq9Qbp5AQBoi6cpN78m4xg3zju8SQBfIM8
Bnu/kNEqcvEKyhFgbNuLkYBpMi5EN6Vb1wsQKtn1uIJJgfvVLl4tSYhwm9JN
gd4UnGaqfNoShaiLqlPfeoeCdIWi796PQhS3s9c8b6QgPzY7tjJViNyaeZsl
DyiofuVcnJ4lhOCgPT3iDwr680983XpJiCTLuUE1LylwW0y58qpJiOn/7gc+
U1Hw1XHZ/H4NEYLD6oJCHKiY/3E6r1NLhEo/krqvIxXUnKf2TboiGI4Zjq9w
omLJ1H7ZJboIgs7xgYXuVAga66pDOCJkdq9O+rSZiuoNnrsG3UUY11iS4R1F
RYQw8J7quAgmTx3qFTep0Mv/2ON0WgQNl4o1R25TcbVv38yxn0QQX56QOTZS
8SEs3kknQwS1WKuMumYqpEfzqs1KRJjer5+uekOFd9Gzsg0KER4qo82FGjQs
HvT6OUdHjDLHiMjxbTQ02bWX9+iLoVy2ctxHQsPOGOFTDl2M6gJC78oOGvJJ
Ibo3jMV4u3PIJDqcBgb1VOJ9GzFuX2bd8jtOg7pjw6HPfmIoWryGTG/Q0HvM
YeeaDDEmNw9PhOrRwWXopUScEyP61ltlKI2O0LIPNwvzxPjebSxknxEdY23Z
C9RLxNjzE1sk59Ix33JOpaJaDIOrtaacNXTYNLXM8X8uht+HpBW/7KMjTnt3
/s5FErzP/dNe+zUdd8/jUYapBEcM7R6PvqND3d5otMlCgq6TRGL/AB3JohYP
K2sJJvZNXepV0VFw1X7ws5MEuQV9XBcaAw99Sc4xUgmifTKiM3wZoP187uWZ
QgkYWSrL5c0MaHdSWyOLZ/Nyf05FKwMkZspD0WUJbMs5us4vGPicnVC1rFwC
irWyLfwvBpou7ElpbZBgj93CKSdN5uyvnd0Me2b75KXEF3gw8aa193KpiRQp
zR6Vk38w0UEVF5xlS7GipPHHW51MNG/pyozjSnHt15nsxLdMVL9oPu5tI0W/
e2SV6zATab2VkmFnKaqG3VxAM4Dbl5NkR4kUkpnnTXFSA5ToL4l9mCNFS3Hy
iZ+/GsBGKZhQL5BCeXfe60eahrh560yMW5EU57veWZKphlAEDRyovyqFzUEx
p93KEB9vl0ZW1kuRuSBxhRXfEMtCeGH53VL4Vb5uca0xRFWjpSzGQobaDNe+
HYlGcMoKeFvFk+GIKHRmQYYRHoSdkIwslWEbb+TD4wtG6GK+F4U7yDCyYlrt
7B0jqMIv8gPXyWC0fOzVtyojrDJi+2/cLQOJpunHC1+ExkjTdbwrsz4/5tgP
4SxM/jOUxrouQ1yADVV8mAWH2IbX5EoZ/E5bu2xLZqH06Paor3UyvN8/fqzw
VxbSfrp4sbVZhgmNLmXyEAtECW/uDx9l6PnVpV071hjZVhM++wZlEBbfNVMk
GaPjquJc0IgMcxQrdUpyjeFZGWK7aVKGX3oLeQ8ajGHQs2U5VYNALfNEUba2
CWY+Zcn+ohHgWvtMThSZINcmXqOPQcCiM/vk5xoTOEYEX3ljQKA7a2B6fosJ
IkcdVW0sAl+Wtp+q/scEyn9fpNRbEtiutOye8DTFn/NYd+QOBApP9SWfVpni
vFkByzmAQIMhx1h42wx6SbaKZVsJbN5C7FZ/ZIajo/f2m/AJDH5/zaO50wxE
U3/zjIjA7h768rIhM7DDlsbeCyTA9lWp7luao+Rmdef6/QRsVpNc76Sbg2Hu
eczxAAG5/MnQxovmSEx6YW0VQ0CnNL9MrcIcwZKvx7UPEfi925Tb/sQcS9Tc
7FoSCPgM8HtMddm45tuS4i8nMNcw/m5/ChsmNdJVa9MJaH5am9eZz0aq+XC/
fSaBaUcvm+EbbESMUZzp2QTeFMjHL7WzYZfN//tZIYF//SNvOCyyQHV/33pJ
OYFe7xB6YKUFuBsPjPpUErCdHBjY9NACWTXz8l1+I+CXM+UV88oCB3+0Gjet
nd27LsYtRN0Sq2z3Fr1rIFCqq9mhJrBE/Q+TpOCnBEpIav5juhyMX1cOJ7QR
CD55jvSYx8HyvraevA4CfMm6a/+4clC04UpD+/PZvYsiEnxiOEhiiOPX9BIo
6Cro+FbJwdYb9TOMEQLuQ2kbMru4SOu7PGQ7RiBMvFX79DgXjxiZ3d7jBM6H
CnZ8ZvDgdPj7uwmTBPR/73nEEvDA/s706ODc7ahYX/4Nv4+Hpem3HnSobYer
eppW/CgP/wPj1umt
1.], LineBox[CompressedData["
1:eJwVymk4FIoCh/E5Ci2WMZulsY1thkkzGNss/iUlZSpJGoUKMyUZUqZljjok
qUhcTWWp0HYKnXjqUMpSosiNtKgI2VIuSctJTvfD+7xffuYbo/3C1QgEwoFf
/f+M9MmCPJNq0c7CSbdxng5uzGCZRsnyPUov5RJHXHRQrSguZMpKPC72f60d
ctPBfU6MVEN2x4P50K62V6iDB0eeeH+WPvYIGLvs2OOlgwb3xL+HpZ0eXxOn
QmYF6KAxoyNmQDri8Twz1lAjXgc+tzXFfdIpj752zcT2Sh00aTvPnL6eiJR3
Xj6ZIbpYkO5198JyAzixFJ61GkSEz/uuzdU2Q3VzWSVFRoQvK3yUttgSo9kv
ytd2E/FXm3JHgysT00VVKfYyPVw8ELaxewkTxdpNswq36CHPeenyfyRMhBB2
B8yJ0kOqyoA1V8lESku6n26sHjatu/7qWDUTyqcKqvZePVB6BzwDfVi4ZRmf
tuGYHnZ+WkXqD7LFp6d/Oigr9MAn2ZZMT2Bj44/CK79RSWj+TdLQlM5GgMs6
wQd9EkJHD/Vkn2HjZ8xcgw4jEpJaBvVZNWzcMNW7c9vsl0+7tM9XfS7qLXfp
57N/+dksv+zDcxEWHL6tbeEvP5352UZlD57P7EMm8SRI/zmeWxTIAd+rmzvQ
Q0KWeLh2VygHAd/vp83vJ+HuWa8hXxkHORrF53OHSDDw/uo8Ec/BovoflOBR
Eh5krW9ZdIKDgcfMpYQpElj2zGkDTzk4ONLDbjIi433obZntKi5U5oo95/zJ
MCijpf+UcJHIqLKXBJKxUFNe/mQjFy0zxBTqOjJyrjLU9sRy8fvEcHLWJjKW
fT94+mEGF/6GzH0VsWRczfRr3trCBSeJdvh8BhnR9/sdS3wdwPFZ3WvyhIy7
uBLJDnAAhrxX5LeTQayUF1wKdoBZLmGuZQcZpSXfSIXRDlBcFK7i95Ixppo9
pspwwNi5UN0zE2TsjJxX+sdTB1S3vgpYQqdgLzGeHbDeERGVzCJxJAWPUvlh
reGOsB5x0YqUU2CsTshZsc0Rm6d6Wo/soKDqW8rspQmOqLDzvdCVQAGh59SQ
x1lH+Eh/rmzMoiCxvOoi650jsqxbM67eoSBVomE1udUJQc0vb04YUiHiaE0M
xjmhuPVAXJQpFaPqpPr2vU5Y0H5oZNCSisBrxptLjzihdNDOe3weFVYzeFc3
XXFCXMSMlOWLqLhbvonX+N4JR0fHiphxVEwQq71ObOEheJl/35U2Ki733acl
xfIg+J9p88eXVKy/9ahfvpuHIkJ3jctbKuqkzw/5pPLQ3r9yWucHKjKqRpom
L/EgWWXunKRJA3urSUDYIA/Lwg22Owlo2FS/J4Irc0YgM0Dn8J80hAmsxRPR
zjBKVyUU/EVDxLUWXmW8M5ifMkPr/qZBdtpK3eugM+oYa4tNH9CwLfpxQeB5
Z+icO8USvaNht77F24ReZxBVL/OZ5vo4Lm0Mag51gd/7hz/szugj61WcZ6bM
Bd5Od6/FXtTHf1aa2gXKXcD4XD+zrlQfKn7c97cJLli97sbn5Gp95OmanPyc
54Lv9dGzj/Xo4/KNmHb6axdMq+hdW8MyQLWm4crIta5Q22cb4XvHAH0F9j4v
NrjC/5aZeKjBAFpY6Ll4iyv+GLDxO9FmgEBFNM9ijyuOfVi5gDFkgJGBe4Yd
Oa6YCt3fP0U1hHFjbLdPlyvqZE6ffsgNsevIo+22UjfYZ+wosucZIY/ZvVUV
7QZSGolotsAIdXVfwjUUbjDh1TjYLDcCcZIR2J3ihhZZx974zUa4ELVLcOqy
GySdb/yt843wVGytPuujG47fV7cd1ZkDrt6+7ME4d5hp2+fPVKOjYsYzZv1e
d/TOXGyqr0fHAoJ9ZWGSO97UyMdFZnT4j3R0hmS5IyL3fNkbER07m1xY7dfd
0V4+tiFCScetQyOVNWPuSHY7uef5FB1e+xeJz3x3h2qGM7GYaIxmRW6XUo0P
iTCj6Zy5MTqlS9XdSHzIGpNN33saQ23RBXEJl49HUa8+EVKN4a0W8va0nA/K
wUJFFt0E//1Wvn2Xgg/5SfdlKfNMIBnV0lizjw/L+Gvrzy4wQWRXhS3pGB/u
mvi8cLMJ0qpocSklfIwZy3YE3zRB2+5mjR0f+Yg787huYbApQj8J2eKtAgit
vt4RR5hBm0RoaYsTwPpLjUPhdjNUcGq2BykFaJC06BrtNwNl26JKWZoA4SV7
+mQ5ZngwIPZJLBWAnr3z5Jk2M3DehMhujgsQEBP0Y3ipOV7/MNfymBRgS/Ep
XnKQOVLn9JbcUxei8EDnbu9Ic/QGyr48oQmh2dF00+ewOVSt8uQPrkJIj4pL
A5vMQWjYX8hQCqHeaRMpkDBwtd/T+9IBIWLMd3VXbGVAoqExPC9NCC2+96Zt
CQyUeaY6CvOFeNH1ga4oYkBWdbxmTbUQ/ROc15xxBlquF3QdURfhWUX7fJNc
CyifhCeRdURYPueeIvy6BWxHbZinaCJY2Z/rGmuwQJL9legLNiLQiwIS332x
gOulsp/VS0Q4fIR9Y8UaS5zNu0f/clQE3ffnWZlWVshZx362OlsEA62vq6Jg
BZVRZkZZnghDMcqcgiArpGWHasSWiPBxvGsWO9MKu9P+GRluEeHLdKeuHg1r
7Fi28fLSFyJ8zXG3a7e0hnxWQ9jltyLU2inVeZ7WiEjOfiEdE2Fj8Zva+fut
4fc7t7ab7AHl5NOmV2o28BWolPPpHrjFWpKqsLRBVli3ldzUA5Ju52o51wb/
Ao9CgpE=
"]], LineBox[CompressedData["
1:eJwVj3k4lXkbxw8RIVt2TQnz0ttiHTU0/e5MSumlbENU9DzPOQ+SpUhx0GYY
hVfa1FjKlqRDJIXnV5hk6aqTcZDerCHbsW/FnPeP+7qvz3Uv3+93w/EAR0qc
xWJxRfX/XjUi1axgRUD1mAuR0KKN/2AyC3pFvLq/7+RMuTZWSjZ9IviFgK4y
1dKWM9pYZ5szrtwl2o+c67ae0cLo/M32uH0EvNaSP3DguyaOUF2noOtOwOPa
QOfrxhq4qWjVYeRBwFCoZ2DGtDpeZz+d5XmEABPdK5WnX6hjJqbR8qY3AZf1
FWR89qlj8blzbDlfAhJ+OjipdlIN/94uqJw5R0Bu6Df/OIEKbg2tllbhEpAf
LDDh5qpgwzWPnUyiCFDLe71OMkwF19vFDPpdFM2LVnz+S0sFy1Waq3bFE+Bb
G+fWwF6Dk9P/e6LhLgEWN5eAr6aMe6y4ZQNpBJz6JHZtcFQJm7fS4iszRf53
7tULeq2E/1aEW5BNgIRZc8Gbs0pY48JodekjAvIWCl0CehRxGmmnnVFFQFKS
saFNsgJ+sFGy/nQnAeaRhkc/58li/tpdi/7dBHgptgRpnZLF3xS4mzm9BIS5
UhlNv8hi+5mpBPcBAhzDNZVvNMvgqVe9TjuForl++PrLUjIYPGs+SbFIGCiQ
8U8/L419HVgKYuIkaMzuji50lMbXrHfAwgoSwl6yr6/Xl8ZfDEvuDUuR8Hxw
zwq9Oil8Zfo+570CCYE67oUJKlK4NeHieOp6EqZuL1usrJLE4hcY3ZQNJFSV
l+/gpUjiTSGLTlf1SKiINd/z0E8SR3qcehplQIKaYUVxkpYk1jckwkkjEoqt
wzuWwyVwwEtrya2IhE6fY0+LDqzAK6fENF8eJeFZ/GpJZR0xPMe7ldDrRQJO
2dGf/I2Fh/yNJKQJErScO/td21j4Xb/nmD2HhCxr8mD2NRZO/VhW2xFAgteX
c/l7ZVl4a7V/8Fw0CeYqd0tU5JYY1+S2BqP7JDRPZBRE7V9gbB0Cdzlli/Ix
1Yt1SguMlZxUWWiuKL9EoFFw2zyjE2N+r/KhSD8vidvpM898PZsYZldCQmhv
7JRy4hwT6W3zI6eWhBRbSTnZrzNMrnFRZFo/CSd/3un7pGOSOak6Pl82SMJc
I/dH08eTjPmCccj7IRKi5cVNp89PMria5ychJOGSWEW7jeEk0+rKc/OdI4Gc
X1YUC5tgpLmPTS1WUaAjcafOW2+cod88+tL0bwqi9+70Yx8YYbYWjnj3b6bg
0lKKGckaYaaSt3xiGVHAitxoV18yzER7PvpgZkaBYYelUuO6YebWWAG+bUUB
XZWpnjj7lalTLUilDoj+HQrSJl4MMBuP59t/9xfpLV5Am3/vZer+tORNBFBw
ujUrWt6ul2G31SsNBFFg7C+Xs02hl8k6ONTMDxHtJ0rle97qYXTQZo88LgX6
Z2o39z7qZtTWFnKcrlKg8XIT+3xfJyPeUhT9oIACxQkT4zapj0ymknV3WiEF
t8o5T1PT2xn4D//XFB4FYQvZpW+3tTPcmomVUSUUbKfuGMX7tDFzxWZXnSso
eOb286ddfAEzmlh6e7lB5H+TTvyqZ83Mx33lxS5DFGR8XyriZzQx1g5ZbiEj
Ij2DX90X2huZfOfEpZQxCjrZHi5Lqo3MuWPU/uZJEQfUJV1PqGe0QpS6Hb+J
7m/45rTFvWbcMnyUDq5mQ2DT/faY3JdMy4xm4H4jNoDJtptLbQ8Y/v1zW9Ap
EXcFZa4sf4GUWU/LLUNE7FF8KOrvCuTkOW5jcYYN0RF9flPCStSsQh/dEs4G
r0aFkhPKGAkuuyRqX2QDj6z3PAyvUAfHeHw2WcRDbbYjl/5CfZu+lPCK2ZD0
WdrWs/QtmntyaIfuBBswpeKVM9iC5LZbvF0zxQbFe1e1GzcIkE6FlpfkjIif
e9TWuAuQbU3PxYF5NsR2FVYYvRGg280hDYViHHBb5aEykd2KLKdvH7ZS4sBd
oz5919/aUYRFd5izMQfIoEe/zKd+QsvPgktjTnIg9Q+d4A+CLtSxsjj+XiAH
tl8Pc58TdqHnzuPeVcEceL5l8MgqmW50WhggPxPKgd7trmuFVt1owMCfQ0Vx
YKuq+iI/rRvxb3A0dydxoGPwjIG4dw/KPu3JFSvmgHWXPZUm6EV2xntsIqY5
kP+DbLphcj96fcTIx+8UDXzdcqcA+WGkTNAv/gyhgc2kB3frDKOjdObqd2do
+F+VgG9rNoxmgtcUm0fQwAtRvDL22zDSj51d+H6JBnHXCIecjGEUXcxcSbpB
w8RXnn2N0QiylDrIKy2nQUJCz0nDZhTFyMWJD7ygocUh/qus6yh6r/TKWauK
BkM/l31T7FFErzWfj3xFg45aTtz92FF000TD2raBhhM9evu5DaNoyqPzQ3sH
DaN2PGsDhzEE3pr/Wv2Zhi+Ts34njo2heLZjGOqiIfRjpHRuwBjSDapZm9VH
g/KyZ823xDF0KCaP8h+lwfjoDLHp3Ri6G99Vli6kQd7RdPcPnWNoIElLhj9B
w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
1xZDJ9PUhej4w23ZTd9p+MnX/uzZ9UJUyAucXV6mwdrHf8neQIj+AW9jz+g=
1:eJwVj3s4lHkbx+dBZEyOScIma0O9ZEu0m/xueuZkhhB6qq0sOaSyOUdWI0Kx
WAkhVLKS7U0YSTwPSuggM4nKbqOIVFLkbLzz/nFf9/W5Pt/7vq7vGu/f3Hzl
aDRahmz+v+fac7ZEDW4HlmZQU4i/LpW0W7vplowTfqp5UeyjSzG2fmubfb8d
jHTsFOb0dCltaXXv2a/bIfFivM5E+krKNMFqulweh1zWRiY/QYfakbHJ5sMP
ONC7jjxvuKBNPQvWQpvW4SCdiIzd5qVNETvHWScscBBY5QclmWhT3iuqPFVs
cPCW21d56PZyKqJgY8R6Dg4RdzQKZ99oUQVlP9YcDsRBPaLfwIbQpNpe+LQV
BeHgeMH/bPQ6TWqCnv1KHIJDufWwI39Bg+IdncVsT+AwZl2RkFGiQc3+2OLM
SMWh4wDz4K4ZdWp3vftwxd84bOKMOYtC1aiEj4lzkkoc7AtPhk+ZqFE3DepU
tYU4GHTVVY33qVJLBQabf2/E4bWctqsPV5W6jb+Lc+rEQcwW4tT6ZdSKJ5F6
o2Myn7J7a42WCuWweM3C6BsOe20Fxu1iOhVk2WfvOYODycTZ0/FZdKo1EwIa
MSboHaMX9uvQqfBdyjVpmkxov9R3fPEHZeqZJM95gxUTpg5kj3XsU6L+HG+I
OxbJBJ0O+TapuQIVJMr49ZcTTBjP67kxhSlQ/Eofe85JJixR6M7mP5enFH9T
xgyTmGCgWjq2RCBPxYy4CzqzmeCjOx2Z2yNH+fV/iLUQMuHhMwMukY1Rtp26
MR8nmEAP/DvmUY6U1L3xcW/vNBMcVOwKsZ1ScjKV3HpvngmNM+XdNapSstLR
dy5fgQWrVLjLspMWyLWtN6N5y1ngt2WPv/rJeVKjgR1VvokFikdnfhXFz5Lv
ysMjAkJYQFMscDjfN0l6Gkj/LYtgQYYvueF28SR5Pz2R/T5a9k9LMYblO0mW
hOWsDIxngaXrhuriz99Ib7u6O4ezWNBRXqZmrvyN/LdrXhokZEGeb+jqBudx
sns6Pil8lgW50ckrzAzGSPwwY6xGyoItWufdCl58Jqv/ySIm5diQe/Oax6mo
z2Rm81WzSBU2FPS+XKFfP0q6pD54eFyfDRBpFr2f+Yl8tFpFPcaODfqXBWMf
w0bIe6zM3FOn2HAwaiYz3GaQHPSrfxydyAbLCqPq2Y8DpGLSgFzoWTb8kjab
P3h5gOQ8sD7qk8kGRiz95Hu1AfIR+5U9fpkNpv5izrnRN6SYY/xhSTMbDEOX
x7c0SMg3jsJtZzAOuDwyS3LY9oKUP/w6JG4JB3prAy0HGntJ45SlZVHKMp/y
tNPYvpf0e7hHM1CDA2V1WQ6x7B5yhLf4znGNjGd6uoP3dpNf+ZwMhj0HcjdO
iHyKukhsx8s36QIOjG0xiIwyvE+2NXp8H5bAgWM5HuG5vHtkhkWXD5HMAa8s
9ZLyyBbSULVtwDCDA8UdquqXRU0kPK55V1nEAcraotbLpIEU8P4cETfK/AQR
LIm7SdI4nK86CxwQuMTW4hqFqK22ZeM8jQsCrUmpyegllGGCQiUKXIBOYXPO
0xJkqGQ9UcbgAhXecIibWo6g9fvJn/S5UGzgm974+RYS4Isze7dyQaIc+MPl
+QZEsxdixVFcUFfezHJPbEd78KGO3t+54KUx/F8lmw5UzV6ZpXGKC4ZDTR/m
3nWgAOfotfFnuWB5YEfNdfwR6tprx/PLl+V7Ihe4U0/Q5YjWrP80cMHF+/V2
BwMRwiuem9TRHEHSWmrDNuxByTpTTqIkR1jlncYAQwnKamt725ziCCWZCro/
gwQVReVFVaU7Qtjbhvs6XhIkfLXtalaOI8TcJXNiiyRosChh3vMvR0hQqtss
1e9HDqaa11+1OoLV1mkY1HyD5reYLx1cwgNc8b4e88NbdGyPT/NUPA8ijHk3
TD2GkGrRiMQ2mQd3R8YXfw4eQhVvgxfjUnngVXNaZ/MfQ2joiMCWcZ4Hp3j1
K/rvDaH9Jy8KDUt5kP36bYPepmHEL+kp57bxwNbuCW6t8h6ZjvLO5TP4ILcz
5I+O8hHUH2d1EJ3nQyZ7A9f8709o7QrVtGMX+JD3nFlQ3PIJBZYP1V66yAe8
56NI7uUnNCHKU1Eo5QPNbu6nLMVRtNQYq2oT8iFZ+E7j0/5RZNH6GHPr5UN2
e1phEuMziqb7Fx3Uc4INa6aVxszH0PJzF16eueQE3ZvUgg/6f0Gl6uuiHuQ7
Q6Ft6aD4yDhqClnNNLm+A66l2R6xcPqGCg2L9be5u4CpSlu/WdckaoiZpQU8
dQHzK8+XVayeRmt4SvPf73IFnwGpUbTXDKruNEt58cwVJAJRWH/gLEptlVoa
7nMDq2vJ9BtH59C50PeBXn1uwO/wjDvBnkcx2t+pGe3eCY8hARtRXkDXzJZ0
hEl2gs1dh6t+HQtIcQLTbdrvDl8iPZPUfpOivywrYwuH3KFafMbdSWsRmXmX
Oy8c9YBztuNnpH8tolfculseHzxAPGjAOLKcBqIr0eYo1BP+KQyjkjxoMF3l
amv01RPqWS3i3Wk0WLwdUpMYtAumfO8M3W2mAc+SxYz5tguiquS90TQNHuzb
cOhwKAFBpf66B0ww0PQJqL8YTkCdT1P7elMM9gdcWvY0koDnr9K50zKeDNG6
ZRUjyzPe1Gasw8A4eWp2IYGAYXTHlTTHQHCLTM3IJuBLvPIfWlYY/KzkcrOm
jgCuYKswFzBIZJyRG64n4CI9OvaAPQZdGs3uqxoJkE/tXLnWAYMAfauZ2GYC
hC3q925txyDnx5UOnIey+ydGU+0sDCb2SsQv+whYKdHp/8zHAH7VXbvsNQEJ
V6yfVTlhkOLndhz1E3ClsiIv0hkDo+B7+iWDBBznf7ok3YGBa2KZ79FRAm6f
Hsin78SgIKW/tmiMgO++9q9/LOPhjFV00VcCFrpF6enusj75qTespwhQ8egT
a3li8Kj4Pu3QDAHjsXrV3TLWKZW65c8RIN6WH5CzCwPv6zZXHy8QEEgGfSEI
DG7cPDa1uEgAx+Sa86rdGPwPGOM7RQ==
"]],
LineBox[{{0.7314343869017764, 3.102323629352612}, {1.9628681609693666`,
3.107407951595617}, {3.722632787710295, 3.1148253544083313`}}],
LineBox[{{0.13254941274579646`, 3.099881775754108}, {
0.24536209154974226`, 3.100340227512465}, {0.4907201014668314,
3.101339758144879}, {0.6038833664936131, 3.101801887304794}}]},
Annotation[#, "Charting`Private`Tag$18876#1"]& ], {}}, {}},
LineBox[{{35.51863317699764, 11.596563375425081`}, {
35.5187070404136, -6.351023695319389}}]},
Annotation[#, "Charting`Private`Tag$4532#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -350,7 +349,7 @@ w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0,
200}, {-6.959527542228844, 11.975586222486642
`}},
PlotRange->{{0,
100}, {-6.351023695319389, 11.596563375425081
`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -373,8 +372,11 @@ w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9,
3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9,
3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}, {
3.880087582924012*^9, 3.8800876543745813`*^9}},
CellLabel->"Out[90]=",ExpressionUUID->"d721930c-928c-45cb-8146-dfcae2431ec5"]
3.880087582924012*^9, 3.8800876543745813`*^9}, 3.880094554518929*^9, {
3.88009550172042*^9, 3.880095549656839*^9}, 3.880450030900723*^9, {
3.8805353288921747`*^9, 3.880535341553361*^9}, 3.880612842330372*^9,
3.880950027979465*^9},
CellLabel->"Out[14]=",ExpressionUUID->"09944d10-7523-457d-b94c-dbdbf3669e9b"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -419,7 +421,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "
17
0"}], "}"}]}], "]"}]}]}]], "Input",
RowBox[{"U", ",", "
6
0"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
...
...
@@ -430,10 +432,11 @@ Cell[BoxData[
3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, {
3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9,
3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9,
3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9},
CellLabel->"In[96]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9, {
3.880095506086014*^9, 3.880095529013947*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData["
178.1243246255173
`"], "Output",
Cell[BoxData["
49.82150997759732
`"], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
...
...
@@ -448,8 +451,10 @@ Cell[BoxData["178.1243246255173`"], "Output",
3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, {
3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, {
3.880086385464319*^9, 3.8800865107303*^9}, {3.8800875839389973`*^9,
3.880087671218701*^9}},
CellLabel->"Out[96]=",ExpressionUUID->"8446f902-e811-45cc-a8bf-ab7c70890a1f"]
3.880087671218701*^9}, 3.880094555917272*^9, {3.880095507297576*^9,
3.88009555113643*^9}, 3.880450032982963*^9, 3.880535343801962*^9,
3.880612844013884*^9, 3.8809500300512943`*^9},
CellLabel->"Out[15]=",ExpressionUUID->"34307ed9-f9b6-46f0-83b9-36af98fe8641"]
}, Open ]],
Cell[BoxData[
...
...
@@ -495,17 +500,20 @@ Cell[BoxData[
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9,
3.8800859424236307`*^9}},
CellLabel->"In[
97
]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
CellLabel->"In[
16
]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData["1.
344522780057045
`"], "Output",
Cell[BoxData["1.
8472893558629866
`"], "Output",
CellChangeTimes->{
3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9,
3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9,
3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9},
3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9,
3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9,
3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9}},
CellLabel->"Out[97]=",ExpressionUUID->"fbc9f7e4-1f37-4a69-b281-392c36da0aff"]
3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9},
3.880094557765129*^9, {3.880095510469705*^9, 3.880095552895302*^9},
3.88045003501324*^9, 3.8805353471630363`*^9, 3.880612846206691*^9,
3.880950033016953*^9},
CellLabel->"Out[16]=",ExpressionUUID->"39e4bab8-8774-4076-8cb8-c3b0ab3ddb14"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -559,9 +567,9 @@ Cell[BoxData[
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9,
3.8800859833274717`*^9}},
CellLabel->"In[
98
]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
CellLabel->"In[
17
]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData["0.
8003232743677815
`"], "Output",
Cell[BoxData["0.
7088388229648961
`"], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9,
...
...
@@ -569,8 +577,10 @@ Cell[BoxData["0.8003232743677815`"], "Output",
3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9,
3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9},
3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}, {
3.880087588111286*^9, 3.88008767445716*^9}},
CellLabel->"Out[98]=",ExpressionUUID->"fb1c1bd4-f3ef-407c-ae27-b9cbd3bbd016"]
3.880087588111286*^9, 3.88008767445716*^9}, 3.880094560272614*^9, {
3.8800955121968946`*^9, 3.8800955547288637`*^9}, 3.880450039503292*^9,
3.880535349939876*^9, 3.880612851865893*^9, 3.880950035526105*^9},
CellLabel->"Out[17]=",ExpressionUUID->"80708da8-ef7e-44aa-a0e1-3d0babfbe844"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -610,75 +620,87 @@ Cell[BoxData[
3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9,
3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9},
3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}},
CellLabel->"In[
99
]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
CellLabel->"In[
18
]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVU3k01QsXVZoQj8gzT9cUEc/zUi/2TwohlaFBPaREkVCGhEqITJeISEIl
ohIyJtFgnl/JzB1/0jNXV8p3vz/OOmuvtdc6+5y9j6LLORvXlTw8PEXc+n/P
DHVZo3syxiicsdHnY8dtozc9ClaHFE5jNsV9xqkoAMvvaq8pKFyECv/fn3iL
riOzLk5+tUI0embcNcwLU+Fp6Hf2m/xtFATvopXk56Hnh3vytHw+7u9tvZWY
VY61A+NqX+Qrwedq8tkg4D366l76TbIrUc04euTclkYUPExr+FxchdqXnyRt
WY2w9rV2mjCpQYRwdp3EwWbc4qu6xXJ7hVQVOa3DW9qw4U7jypmP9XCmjn01
cetCdnOWz2f5Jojv46eFfPyA+bQyjZHYJtjo7vvvT72PMHVroXVzmuCxm1Mf
H/8Rk7zf7Kt6mnH6xydBlV19MDC03h59vRVbDzeeKC34hM6nSyvVpjrQ4b1X
SOXkIC43b7bQderBlqkcGe9Xo3hUXK76OKUHsYrTKcrMUXSn7eRVae2BUuDd
TSnrx6DsdrhGYlsvNoZ7bH10eAzNvOHaPKL/QtTtjlXElzGIGw5s6Hj3AZHv
annT+Wh48jR6wFO7H5pSjvrOaxmY2DARa3G8H+/uxemmKjGg5m9hpJ7cjy/+
L5TDDRm4t0Mgm8bph57Y84BQXwaSmmJPObwdQPLDtlcTfQz40xJmzI4N4bXM
QI1dKhPPTadzVBKGcIW9X/91ERNT+fvteOuH8Ohm2I7hBibcvUXKa9WG0fns
UL36FBMOP5OC9eeGwXeuK+CbMQtZAi3XRHaPAiXdsYZ9LBgZXjp2xXEU92ba
BRJJFga9NPWnAkYxom78nrrIgkR3DLO1YBQCqqFrkqXZSEyz2hMlPIZSmxyP
3CNs6DQvKX7bNIb77ikxNu5stP8oXHQ1GUPNVY5moT8b/E6ChSb+Yzjeoa3q
mMTGNZV2oeWBMQS09zSXv2VD6VAo6+zCGK7cffSsrIuNuijtukGhcSgONjw4
NsTG0ud4nyrjcWxRqpJ+MMdGuiwsNh0dx8GqSGvTX2wY7JtSSrswjtnpkPmE
dST8nu/r9csbRwnB4ZeRISFGXy6k143jpvmqrY4qJJ5vfBZh2z8Oixrzveba
JP4LFN6qK0hDc21zjShIxBbU/XZPlYvT9AbmTUloDHqzhQga/jTR8gqxJuGG
rtuTvjQ0vQ2KDj9Ggifna9VADA0RQRXyNBcSaatkBpvv03D3jKDhpDsJHTfj
n5UvaRhxUWvL8iLR2HRKLv8DDfe299b8PE/CeXMs0qZoCBFbubj6Ionv8cXO
19fRIZvx6nxFCAl1u6Uc1+10KNo1DktHkqh7ofjGzpaOBN9/S1qjSRyWNGOY
eNLx48LXWLU4EtOXPNfoRdAhUDXiuJlKImo4UU3pLh2Vu93kB5JIKBiXm4uU
0xFDC3+rl0KiInfwNE8nHbO7bPb8lUpi/5qVMVNsOuakBe6Pp5Fgu6sVDq9g
oF9XsNMgncSVFqu2NikGzIL6Gg0ySEho+/5Xo8fAfqXfYsa5+Bk19bdCKwbe
ZviJ/XWHhPlcjU6GKwPv7s+e0OPiUfvxAzdCGbhkmXCxn8sPrFh7/mIqAyNf
/A9qcrGwtFay+zMGWPrfllS48/JDbMoONTHwXOSKdzNXz87RgA+m4wz8ysst
k+Dq7d+Z+U3/BwMN5uLdwtx9fB/US6iIMbFw5Enrc+6+/OvY28S0mLhBnCz6
lUAi54zgUV5TJvJ224TMx5LY3vZH8KwjE9MBpabJ3Ht2bzmcORbAhEg0W2w4
gsSZpJDaTioTEXln57uukli5kDPyKp+JMDv67DmuP+mHGnme1jPB85eQfEUg
iWYZUZO4eSZmKlSNzbh+u1w2OBksyIJb7A6HeG4eFsf+ifBQZUE6zJZ1mZsX
zbxH7/ccZoGxTf+Ziz2JN3ztbAMfFtos1CTsuHk75jnHp36DheVId6tpbh5j
dY2s1tSwwGoIDt20lcRkdU9nvTwboRZVVX+LkwiX48wUG7DhUX+CXCNEQuaq
nGj2ATZWXTR537uahJXpafvL19jYV6UUF7jARlHnr09/s9joNR1UH+1lw4ux
iVb6hMuz4RvSTmZj1PHTutdNJGQHVhv7x7Bh2xel3UYnkZyu87IujPt/LayL
DKkJJLQUchx92OAtfiAsfn0C1YrpJ+us2UgLVjQKcPoMVwcnIXF+Nl6LSt7e
JvwFfHznVVdfY4FfMVxtxGAaltYdVuUhTMQLt2hkO89Buv38ubkSOlwG7F7x
tn5Fwt24nYOT4/B5G+5yTm0RNH/aKym7MRR7r7eV2PMT1RdWVk59HkH2JY8J
nUM8hPt0vCL5xxDCspYOzE+uIK5Zm2z5OtQPnp5RoiaIl5i3C9sj1NAH1Qun
Au00VhP8H8/gV/4H0BdSDwq8XEMIcQr7fgz1woJxJiTJZx1xUHOt83mxHljT
qZpycvyE2+LxfZ4XuzDR4HKlsUiAiOy2dLaV7IS2yAdZEydBYjJ6r66rXxv4
sXB8cE6IqHaL92yRaYHZF4dvSvbCRJ2wbszI+0b01Z9c4bBZhDCycVRpfvoO
ZVFvHBUWRAjb81Tl2/Q3OLXab7S9fQNxMy6irkC6ASd8L5WtTxclBuzuaDsk
v8YWN812q+NiRK+N+DYFvTp0bNgs4LdtIyHVIaDt8fAlqp+EZWzmFSfaaR90
UiyrcWmFxv7WIXEiZ+xq56b5CvAPBpl7lf5OnLLVXqz+9AKMh4rJWcESxD8J
DUHX1pchWV1yVaW9JLEj0yX2iHEJqOmn3h9XkCJaGm/kSlUUwyH5n/b1LCmi
zdqXI2L/DN93PeBk1UoTJpX9/zkxi0Bj7Aysvy5DWGgcTlaOeowcQ13ptuOy
xM66gmMiWvkoivATcdOSI7yHIxPvqOfhuv0JS94FOWIsY4An6OAD6A9m519v
kyfKzmoZ/xmZi7RNGUVtlgqEqFmIH/V7Ni7XxaVZVioQNycjfCzO3sNeafsH
zcqKhMaJFIV4sbsw9np/VCRakZiRFZM/VpqBLBkX5dYFRSK4d3iF4KHbUG7I
u2V9VImI6LKczdufCqpWvUZ3rRLh1MkpfxqcglNzq7qaNCjErZJdZx0LbsKl
eFYhOoFCPDlaHboglQTPMNsli0QKUVZotmgmlgQ/29KP629SiO8LRybvCCYh
asEvnnqLQrTEeulY8yThyTbOj9RMChFr8VOunZEIzuvlDw8fU4jK6vmWncWJ
oHavj3vznkK4HHypztmTiPTcs+6RTRSiePtYRZpJInIvtJuYt1AILwnZ3O2G
iXghTl1saacQbk0nwyJ0EjHoIOre8y+Xr/rLduvviVCjSZqM0yjElFRZGD+D
Cp3SILn7DAohf3rWqmOYiu0RAxxXFoWwLI49cauPCiu1zGfkBIVoDrzgq9lK
ha+HgtzMDIWwc3Zf9i6hInjHVc7zOQoR2TguZl5ERYTgeO+FBQqR/3HxnGIe
FWlPc2O+f6cQ+9QK5vrTqci5ssqtapFC9FmmSFUnU/H4gOvO4CUKITny9lpm
PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
"]]},
Annotation[#, "Charting`Private`Tag$
22258
#1"]& ]}, {}},
Annotation[#, "Charting`Private`Tag$
6686
#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -710,7 +732,7 @@ PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.
8003187560651602
}},
PlotRange->{{0, 10}, {0., 0.
7088375225314254
}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -723,8 +745,10 @@ PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9,
3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9},
3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}, {
3.880087591163252*^9, 3.880087675790471*^9}},
CellLabel->"Out[99]=",ExpressionUUID->"a19709bd-12a5-47c1-be49-b078c7a3cbb6"]
3.880087591163252*^9, 3.880087675790471*^9}, 3.88009456141636*^9, {
3.880095513424275*^9, 3.880095556137561*^9}, 3.88045004068221*^9,
3.880535351094419*^9, 3.8806128530849047`*^9, 3.880950036573413*^9},
CellLabel->"Out[18]=",ExpressionUUID->"7811fcb1-4c6e-4b69-84c5-2a4539505a01"]
}, Open ]],
Cell[BoxData[
...
...
@@ -774,19 +798,577 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880086242737124*^9, 3.880086251815425*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
CellLabel->"In[19]:=",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[BoxData["1.
5612379745157818
`"], "Output",
Cell[BoxData["1.
990237974515781
`"], "Output",
CellChangeTimes->{{3.880086253659615*^9, 3.880086304157057*^9},
3.880086352535798*^9, {3.8800863938671637`*^9, 3.880086521539238*^9}, {
3.880087593758895*^9, 3.880087646136713*^9}, 3.8800876779743423`*^9},
3.880087593758895*^9, 3.880087646136713*^9}, 3.8800876779743423`*^9,
3.8800945643277493`*^9, {3.8800955160531816`*^9, 3.8800955589398813`*^9},
3.880450043503827*^9},
CellLabel->"Out[19]=",ExpressionUUID->"347850e7-84fd-46b7-86c9-4d8581f3799d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox["2", "3"],
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"],
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"], " ",
SuperscriptBox["myCoeff", "2"], " ",
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.880095066018161*^9, 3.8800950760469503`*^9}, {
3.880095479252779*^9, 3.880095482250162*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],
Cell[BoxData["1.5627722778696047`"], "Output",
CellChangeTimes->{
3.880095484411269*^9, {3.8800955177242403`*^9, 3.8800955604897947`*^9},
3.880450045304723*^9, 3.880535359224338*^9, 3.880612865473521*^9,
3.8809500412555923`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"0d862d62-21ad-40be-bf86-361b15cd5a3e"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PsiR", "[", "r_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"myNorm", " ",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"myNorm", " ", "myCoeff", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}]}]], "Input",
CellChangeTimes->{{3.880450259849861*^9, 3.88045026245728*^9}, {
3.880450342004263*^9, 3.880450428007826*^9}, {3.8804505083503447`*^9,
3.88045054654538*^9}, {3.8804509533799887`*^9, 3.880450954981093*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PsiR", "[", "r", "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.880450434981985*^9, 3.880450437069388*^9}, {
3.880450467622654*^9, 3.880450475414855*^9}, 3.880450957309256*^9},
CellLabel->"In[21]:=",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
"]]},
Annotation[#, "Charting`Private`Tag$12839#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7088375225314254}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.880450477448555*^9, {3.8804505437974977`*^9, 3.880450549561881*^9},
3.880450904266193*^9, 3.880450960572151*^9, 3.8805353762901163`*^9,
3.880613017272277*^9},
CellLabel->"Out[21]=",ExpressionUUID->"bfcaf053-8156-415b-a766-14cb460d5213"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"myPsiR", "[", "r_", "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{"PsiR", "[", "r", "]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.880451016501692*^9, 3.880451021730836*^9}, {
3.880451090050208*^9, 3.8804511103964*^9}, {3.880451390037879*^9,
3.8804513904750967`*^9}, {3.880613601521275*^9, 3.8806136353054867`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"726dafeb-13ea-42c8-bb65-5a6d68e2f75b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"myPsiR", "[", "r", "]"}],
RowBox[{"Sin", "[",
RowBox[{"10", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8806136371930943`*^9, 3.880613751137649*^9}, {
3.880613827324993*^9, 3.8806138290488358`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"717762d6-1e69-485a-ab75-de90dc3644c9"],
Cell[BoxData["0.0010508523874437625`"], "Output",
CellChangeTimes->{3.880613685926548*^9, 3.880950054868312*^9},
CellLabel->"Out[22]=",ExpressionUUID->"26f52ff1-a852-4dff-9697-265208673679"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"myPsiR", "[", "r", "]"}],
RowBox[{"Sin", "[",
RowBox[{"q", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"PsiP", "[", "q", "]"}], "]"}]}], "Input",
CellChangeTimes->{{3.8804512707170753`*^9, 3.880451307528953*^9}, {
3.880451370661892*^9, 3.880451405277438*^9}, {3.8804517177532797`*^9,
3.88045175856171*^9}, {3.880451907905079*^9, 3.8804519184783583`*^9}, {
3.880451961747505*^9, 3.8804519620769672`*^9}, {3.880451997308036*^9,
3.880452058978894*^9}, {3.880452125277264*^9, 3.880452125385812*^9}, {
3.880536060261842*^9, 3.880536067939273*^9}, {3.880536216471127*^9,
3.880536222232499*^9}, {3.880613145434863*^9, 3.880613180632429*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"c1ceda09-1e18-4730-a8a4-798bf3a10de8"],
Cell[BoxData[
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], " ",
RowBox[{"(",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{
FractionBox[
RowBox[{"2.901469663670466`*^7", " ",
RowBox[{"(",
RowBox[{
RowBox[{"4.3395022`*^7", " ", "q", " ",
RowBox[{"Cos", "[",
RowBox[{"1.6`", " ", "q"}], "]"}]}], "+",
RowBox[{"1.8229557`*^7", " ",
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ", "q"}], "]"}]}]}], ")"}]}],
RowBox[{"3.32316748416249`*^14", "+",
RowBox[{"1.883127934380484`*^15", " ",
SuperscriptBox["q", "2"]}]}]], "+",
RowBox[{"1.3270979362006529`*^8", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1.1933018414019887`"}], "+", "q"}], ")"}]}],
"]"}],
RowBox[{
RowBox[{"-", "4.46823272`*^8"}], "+",
RowBox[{"3.74442791`*^8", " ", "q"}]}]], "-",
FractionBox[
RowBox[{"1.`", " ",
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ",
RowBox[{"(",
RowBox[{
"1.1933018414019887`", "\[VeryThinSpace]", "+", "q"}],
")"}]}], "]"}]}],
RowBox[{"4.46823272`*^8", "+",
RowBox[{"3.74442791`*^8", " ", "q"}]}]]}], ")"}]}]}],
RowBox[{
RowBox[{"Im", "[", "q", "]"}], "<", "0.42008405941123844`"}]},
{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"0.8458586727012287`", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0.`", ",",
RowBox[{"1.1933018414019887`", " ", "r"}]}], "]"}]}],
RowBox[{"r", "<", "1.6`"}]},
{
RowBox[{"1.3094304126855005`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "0.42008405941123844`"}], " ", "r"}]]}],
RowBox[{"r", ">", "1.6`"}]},
{"0.`",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"q", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0.`", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"Im", "[", "q", "]"}], "\[GreaterEqual]",
"0.42008405941123844`"}]}]}], "]"}],
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True], ")"}]}]], "Print",
CellChangeTimes->{3.880536153618195*^9, 3.880536286816221*^9,
3.8806131692510443`*^9, 3.88061329435061*^9},
CellLabel->
"During evaluation of \
In[25]:=",ExpressionUUID->"f909ae20-7144-47db-9cdf-70f17a037f9b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]", " ",
RowBox[{"q", ">", "0"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880536344175078*^9, 3.8805363711858873`*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"5b2f680a-fc53-4293-bc32-a5a09105f2c2"],
Cell[BoxData[
TemplateBox[{
"Integrate", "idiv",
"\"Integral of \\!\\(\\*SuperscriptBox[RowBox[{\\\"(\\\", \
RowBox[{FractionBox[RowBox[{\\\"0.03000292302147212`\\\", \\\" \\\", \
\\\"q\\\"}], RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"0.0001455306836108173`\
\\\", \\\" \\\", SuperscriptBox[\\\"q\\\", \\\"2\\\"]}]}]], \\\"+\\\", \
FractionBox[RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"21\\\", \
\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
\\\")\\\"}], \\\" \\\", \\\"q\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"18\\\", \
\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
\\\")\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"q\\\"}]}], \
\\\")\\\"}]}], RowBox[{RowBox[{\\\"-\\\", \\\"55446.43758797824`\\\"}], \\\"+\
\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"q\\\", \
\\\"2\\\"]}]}]], \\\"+\\\", FractionBox[RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\
\"206.16218021559547`\\\"}], \\\" \\\", \\\"q\\\"}], \\\"+\\\", \
RowBox[{\\\"105.27001771946456`\\\", \\\" \\\", \\\"q\\\", \\\" \\\", \
RowBox[{\\\"Cos\\\", \\\"[\\\", RowBox[{\\\"0.008108368342902897`\\\", \\\" \
\\\", \\\"q\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8726.245184279049`\\\
\", \\\" \\\", RowBox[{\\\"Sin\\\", \\\"[\\\", \
RowBox[{\\\"0.008108368342902897`\\\", \\\" \\\", \\\"q\\\"}], \
\\\"]\\\"}]}]}], RowBox[{RowBox[{\\\"6871.403165219998`\\\", \\\"\
\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"1.`\\\", \\\" \\\", \
SuperscriptBox[\\\"q\\\", \\\"2\\\"]}]}]]}], \\\")\\\"}], \\\"2\\\"]\\) does \
not converge on \\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \
\\\"\[Infinity]\\\"}], \\\"}\\\"}]\\).\"", 2, 30, 1, 26470880187150754667,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.880536439018804*^9},
CellLabel->
"Out[100]=",ExpressionUUID->"f2064ae6-052c-4c29-85b6-4122f8ffe9c5"]
"During evaluation of \
In[30]:=",ExpressionUUID->"aa1683e9-4807-4c48-a219-fedc79848a4f"],
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"0.03000292302147212`", " ", "q"}],
RowBox[{"1", "+",
RowBox[{"0.0001455306836108173`", " ",
SuperscriptBox["q", "2"]}]}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"0.008108368342902897`", " ", "\[ImaginaryI]"}]}], ")"}],
" ", "q"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"4363.122592139528`", " ", "\[ImaginaryI]"}]}], ")"}],
"+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.016216736685805793`", " ", "\[ImaginaryI]"}]}],
")"}], " ", "q"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"4363.122592139528`", " ", "\[ImaginaryI]"}]}], ")"}],
"-",
RowBox[{"52.63500885973228`", " ", "q"}]}], ")"}]}], "-",
RowBox[{"52.63500885973228`", " ", "q"}]}], ")"}]}],
RowBox[{
RowBox[{"-", "55446.43758797824`"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "2"]}]}]], "+",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "206.16218021559547`"}], " ", "q"}], "+",
RowBox[{"105.27001771946456`", " ", "q", " ",
RowBox[{"Cos", "[",
RowBox[{"0.008108368342902897`", " ", "q"}], "]"}]}], "+",
RowBox[{"8726.245184279049`", " ",
RowBox[{"Sin", "[",
RowBox[{"0.008108368342902897`", " ", "q"}], "]"}]}]}],
RowBox[{"6871.403165219998`", "\[VeryThinSpace]", "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "2"]}]}]]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"q", ">", "0"}]}]}], "]"}]], "Output",
CellChangeTimes->{3.88053643909369*^9},
CellLabel->"Out[30]=",ExpressionUUID->"a7707aa6-c791-47d1-aafc-aca2444dec48"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>0.9 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7"
...
...
@@ -802,33 +1384,56 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2191, 52, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2752, 74, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[558, 20, 2286, 53, 140, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2847, 75, 2801, 74, 161, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5673, 153, 2495, 57, 68, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[8171, 212, 9109, 166, 211, "Output",ExpressionUUID->"09944d10-7523-457d-b94c-dbdbf3669e9b"]
}, Open ]],
Cell[CellGroupData[{
Cell[17317, 383, 2179, 53, 68, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[19499, 438, 1292, 18, 30, "Output",ExpressionUUID->"34307ed9-f9b6-46f0-83b9-36af98fe8641"]
}, Open ]],
Cell[20806, 459, 420, 10, 36, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[21251, 473, 1091, 29, 49, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[22345, 504, 755, 11, 30, "Output",ExpressionUUID->"39e4bab8-8774-4076-8cb8-c3b0ab3ddb14"]
}, Open ]],
Cell[CellGroupData[{
Cell[23137, 520, 1957, 49, 49, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[25097, 571, 799, 11, 30, "Output",ExpressionUUID->"80708da8-ef7e-44aa-a0e1-3d0babfbe844"]
}, Open ]],
Cell[CellGroupData[{
Cell[25933, 587, 1343, 35, 49, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[27279, 624, 6653, 126, 213, "Output",ExpressionUUID->"7811fcb1-4c6e-4b69-84c5-2a4539505a01"]
}, Open ]],
Cell[33947, 753, 397, 10, 26, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[
5579, 152, 2446, 56, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0
"],
Cell[
8028, 210, 9175, 166, 235, "Output",ExpressionUUID->"d721930c-928c-45cb-8146-dfcae2431ec5
"]
Cell[
34369, 767, 1112, 33, 49, "Input",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea
"],
Cell[
35484, 802, 442, 6, 30, "Output",ExpressionUUID->"347850e7-84fd-46b7-86c9-4d8581f3799d
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
17240, 381, 2130, 52, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eb
a"],
Cell[
19373, 435, 1127, 16, 33, "Output",ExpressionUUID->"8446f902-e811-45cc-a8bf-ab7c70890a1f
"]
Cell[
35963, 813, 1356, 40, 49, "Input",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8e
a"],
Cell[
37322, 855, 318, 5, 30, "Output",ExpressionUUID->"0d862d62-21ad-40be-bf86-361b15cd5a3e
"]
}, Open ]],
Cell[
20515, 454, 420, 10, 39, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5
"],
Cell[
37655, 863, 1185, 32, 49, "Input",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79
"],
Cell[CellGroupData[{
Cell[
20960, 468, 1091, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630
"],
Cell[
22054, 499, 585, 8, 33, "Output",ExpressionUUID->"fbc9f7e4-1f37-4a69-b281-392c36da0aff
"]
Cell[
38865, 899, 389, 8, 28, "Input",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897
"],
Cell[
39257, 909, 6274, 122, 213, "Output",ExpressionUUID->"bfcaf053-8156-415b-a766-14cb460d5213
"]
}, Open ]],
Cell[45546, 1034, 442, 8, 28, "Input",ExpressionUUID->"726dafeb-13ea-42c8-bb65-5a6d68e2f75b"],
Cell[CellGroupData[{
Cell[
22676, 512, 1957, 49, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7
"],
Cell[
24636, 563, 631, 9, 33, "Output",ExpressionUUID->"fb1c1bd4-f3ef-407c-ae27-b9cbd3bbd016
"]
Cell[
46013, 1046, 463, 11, 28, "Input",ExpressionUUID->"717762d6-1e69-485a-ab75-de90dc3644c9
"],
Cell[
46479, 1059, 192, 2, 30, "Output",ExpressionUUID->"26f52ff1-a852-4dff-9697-265208673679
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
25304, 577, 1343, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427
"],
Cell[
26650, 614, 5758, 112, 237, "Output",ExpressionUUID->"a19709bd-12a5-47c1-be49-b078c7a3cbb6
"]
Cell[
46708, 1066, 1118, 25, 73, "Input",ExpressionUUID->"c1ceda09-1e18-4730-a8a4-798bf3a10de8
"],
Cell[
47829, 1093, 5936, 151, 82, "Print",ExpressionUUID->"f909ae20-7144-47db-9cdf-70f17a037f9b
"]
}, Open ]],
Cell[32423, 729, 397, 10, 29, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[32845, 743, 1116, 34, 53, "Input",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[33964, 779, 343, 5, 33, "Output",ExpressionUUID->"f2064ae6-052c-4c29-85b6-4122f8ffe9c5"]
Cell[53802, 1249, 462, 11, 28, "Input",ExpressionUUID->"5b2f680a-fc53-4293-bc32-a5a09105f2c2"],
Cell[54267, 1262, 2335, 39, 42, "Message",ExpressionUUID->"aa1683e9-4807-4c48-a219-fedc79848a4f"],
Cell[56605, 1303, 2423, 62, 79, "Output",ExpressionUUID->"a7707aa6-c791-47d1-aafc-aca2444dec48"]
}, Open ]]
}
]
...
...
bounded8He.nb
View file @
d1d49668
...
...
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 516
15
, 1230]
NotebookOptionsPosition[ 487
23
, 1173]
NotebookOutlinePosition[ 491
21
, 1189]
CellTagsIndexPosition[ 49
078
, 1186]
NotebookDataLength[ 516
40
, 1230]
NotebookOptionsPosition[ 487
48
, 1173]
NotebookOutlinePosition[ 491
46
, 1189]
CellTagsIndexPosition[ 49
103
, 1186]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
...
...
@@ -1035,9 +1035,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{
FractionBox["1", "p"],
SqrtBox[
FractionBox["2",
RowBox[{"\[Pi]", " ", "p"}]]], "myNorm", " ",
FractionBox["2", "\[Pi]"]], "myNorm", " ",
RowBox[{"(",
RowBox[{
FractionBox[
...
...
@@ -1125,9 +1125,9 @@ Cell[BoxData[
CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9},
3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, {
3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9,
3.88087538894692*^9}
},
CellLabel->
"In[100]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-
691e1006d400"],
3.88087538894692*^9}
, {3.881035003112468*^9,
3.881035013631791*^9}},ExpressionUUID->"c77c7be5-a519-41e6-b069-\
691e1006d400"],
Cell[CellGroupData[{
...
...
@@ -1227,10 +1227,10 @@ Cell[CellGroupData[{
Cell[42550, 996, 569, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[43122, 1013, 585, 17, 50, "Output",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da"]
}, Open ]],
Cell[43722, 1033, 3
093
, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[43722, 1033, 3
118
, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{
Cell[468
40
, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[484
10
, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
Cell[468
65
, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[484
35
, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
}, Open ]]
}
]
...
...
tMatrix3He.nb
0 → 100644
View file @
d1d49668
This source diff could not be displayed because it is too large. You can
view the blob
instead.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment