Commit d1d49668 authored by himyss's avatar himyss

data added

parent 3332c0f4
......@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 36311, 828]
NotebookOptionsPosition[ 34323, 787]
NotebookOutlinePosition[ 34721, 803]
CellTagsIndexPosition[ 34678, 800]
NotebookDataLength[ 62484, 1433]
NotebookOptionsPosition[ 59044, 1368]
NotebookOutlinePosition[ 59472, 1385]
CellTagsIndexPosition[ 59429, 1382]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
......@@ -56,7 +56,7 @@ Cell[BoxData[{
RowBox[{
RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "0.742"}], ";"}]}], "Input",
RowBox[{"range", "=", "1.6"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
......@@ -69,8 +69,9 @@ Cell[BoxData[{
3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9,
3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9,
3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}, {
3.880087577450821*^9, 3.8800876498236017`*^9}},
CellLabel->"In[77]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
3.880087577450821*^9, 3.8800876498236017`*^9}, {3.880095497014333*^9,
3.880095545116588*^9}, {3.880535317453936*^9, 3.8805353221622753`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
......@@ -146,7 +147,7 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[84]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
......@@ -187,7 +188,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "200"}], "}"}]}], "]"}]], "Input",
RowBox[{"U", ",", "0", ",", "100"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9,
3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
......@@ -205,120 +206,118 @@ Cell[BoxData[
3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, {
3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9,
3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, {
3.880086380215939*^9, 3.8800863803996*^9}},
CellLabel->"In[90]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
3.880086380215939*^9, 3.8800863803996*^9}, {3.88053533924759*^9,
3.880535339536429*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{4.081632653061224*^-6, 3.0993440325837347`}, {
0.00499839233763319, 3.09936427718092}}],
LineBox[{{3.8501838081184587`, 3.1153700731572442`}, {4.497804249705671,
3.118150852990969}}], LineBox[CompressedData["
1:eJwVU3s01AkDnUIiZN5ovIaZScnm0R4VuiRpPZJU855fKSE2SURbSQ9l16NZ
j80jFJLaymOFUrSlSWvLs3dIptUWwhprw+f745577rn3j3vuOdd8x17/XXNJ
JFLqLP7PxbQmc0k8Baf04xSGo/Phlrqu4dLGxSiTmNTGrNTCrm8mdW11l+NS
cgN54XYt+Fjt+sJY74BgHe7U/RQtVHQcPvDI0RHXAgYOe97WwmrKkuvqR52g
fCZo0fmihd3/yfOK+cCbphO6tYu1sbfpg/11Hzc82HvqXTyhjSThPM5UmDvi
mpVV1wu1EfjwUJBtsAcKxp+ID/Vpo1HTcNMegSeai/ta7KwWwJYcnzkQ9R2i
t8z3izy0AMSos7VvmDdOCbfJnZ4sQOH5ByxVsi+qqEu299rpoDJl1as2fz+Y
iXOez83XQVSds1+e9yYcrJD/l6Kni7vNxSNnRP6Q12RtXJ2hi5D1K+tD+Jtx
cMfCWhpbD7mltr/tCQ1ALuOaafSfejg7Wn8sImYLPnWsealMXQhl2YHo4Mit
OFQxoLnnG33c95D/kpCwDZlrd1okletjzsaX71Lj+WD3BpxdDTIUd7ZYRJ3g
ozOcychxIyPNpjWQf5oP5obcZV/dyTDTU7w3S+ODO+fbRb9vIAMtvynL8/lw
6zYx3rmZjHivsx/b7/Ah1zrCHQsig+TpOcKc4oPldd2InzqrXavnFMQKUCiw
7s7oJ0Po/qH5+WEBdp1RrSv+i4yq9Qbp5AQBoi6cpN78m4xg3zju8SQBfIM8
Bnu/kNEqcvEKyhFgbNuLkYBpMi5EN6Vb1wsQKtn1uIJJgfvVLl4tSYhwm9JN
gd4UnGaqfNoShaiLqlPfeoeCdIWi796PQhS3s9c8b6QgPzY7tjJViNyaeZsl
DyiofuVcnJ4lhOCgPT3iDwr680983XpJiCTLuUE1LylwW0y58qpJiOn/7gc+
U1Hw1XHZ/H4NEYLD6oJCHKiY/3E6r1NLhEo/krqvIxXUnKf2TboiGI4Zjq9w
omLJ1H7ZJboIgs7xgYXuVAga66pDOCJkdq9O+rSZiuoNnrsG3UUY11iS4R1F
RYQw8J7quAgmTx3qFTep0Mv/2ON0WgQNl4o1R25TcbVv38yxn0QQX56QOTZS
8SEs3kknQwS1WKuMumYqpEfzqs1KRJjer5+uekOFd9Gzsg0KER4qo82FGjQs
HvT6OUdHjDLHiMjxbTQ02bWX9+iLoVy2ctxHQsPOGOFTDl2M6gJC78oOGvJJ
Ibo3jMV4u3PIJDqcBgb1VOJ9GzFuX2bd8jtOg7pjw6HPfmIoWryGTG/Q0HvM
YeeaDDEmNw9PhOrRwWXopUScEyP61ltlKI2O0LIPNwvzxPjebSxknxEdY23Z
C9RLxNjzE1sk59Ix33JOpaJaDIOrtaacNXTYNLXM8X8uht+HpBW/7KMjTnt3
/s5FErzP/dNe+zUdd8/jUYapBEcM7R6PvqND3d5otMlCgq6TRGL/AB3JohYP
K2sJJvZNXepV0VFw1X7ws5MEuQV9XBcaAw99Sc4xUgmifTKiM3wZoP187uWZ
QgkYWSrL5c0MaHdSWyOLZ/Nyf05FKwMkZspD0WUJbMs5us4vGPicnVC1rFwC
irWyLfwvBpou7ElpbZBgj93CKSdN5uyvnd0Me2b75KXEF3gw8aa193KpiRQp
zR6Vk38w0UEVF5xlS7GipPHHW51MNG/pyozjSnHt15nsxLdMVL9oPu5tI0W/
e2SV6zATab2VkmFnKaqG3VxAM4Dbl5NkR4kUkpnnTXFSA5ToL4l9mCNFS3Hy
iZ+/GsBGKZhQL5BCeXfe60eahrh560yMW5EU57veWZKphlAEDRyovyqFzUEx
p93KEB9vl0ZW1kuRuSBxhRXfEMtCeGH53VL4Vb5uca0xRFWjpSzGQobaDNe+
HYlGcMoKeFvFk+GIKHRmQYYRHoSdkIwslWEbb+TD4wtG6GK+F4U7yDCyYlrt
7B0jqMIv8gPXyWC0fOzVtyojrDJi+2/cLQOJpunHC1+ExkjTdbwrsz4/5tgP
4SxM/jOUxrouQ1yADVV8mAWH2IbX5EoZ/E5bu2xLZqH06Paor3UyvN8/fqzw
VxbSfrp4sbVZhgmNLmXyEAtECW/uDx9l6PnVpV071hjZVhM++wZlEBbfNVMk
GaPjquJc0IgMcxQrdUpyjeFZGWK7aVKGX3oLeQ8ajGHQs2U5VYNALfNEUba2
CWY+Zcn+ohHgWvtMThSZINcmXqOPQcCiM/vk5xoTOEYEX3ljQKA7a2B6fosJ
IkcdVW0sAl+Wtp+q/scEyn9fpNRbEtiutOye8DTFn/NYd+QOBApP9SWfVpni
vFkByzmAQIMhx1h42wx6SbaKZVsJbN5C7FZ/ZIajo/f2m/AJDH5/zaO50wxE
U3/zjIjA7h768rIhM7DDlsbeCyTA9lWp7luao+Rmdef6/QRsVpNc76Sbg2Hu
eczxAAG5/MnQxovmSEx6YW0VQ0CnNL9MrcIcwZKvx7UPEfi925Tb/sQcS9Tc
7FoSCPgM8HtMddm45tuS4i8nMNcw/m5/ChsmNdJVa9MJaH5am9eZz0aq+XC/
fSaBaUcvm+EbbESMUZzp2QTeFMjHL7WzYZfN//tZIYF//SNvOCyyQHV/33pJ
OYFe7xB6YKUFuBsPjPpUErCdHBjY9NACWTXz8l1+I+CXM+UV88oCB3+0Gjet
nd27LsYtRN0Sq2z3Fr1rIFCqq9mhJrBE/Q+TpOCnBEpIav5juhyMX1cOJ7QR
CD55jvSYx8HyvraevA4CfMm6a/+4clC04UpD+/PZvYsiEnxiOEhiiOPX9BIo
6Cro+FbJwdYb9TOMEQLuQ2kbMru4SOu7PGQ7RiBMvFX79DgXjxiZ3d7jBM6H
CnZ8ZvDgdPj7uwmTBPR/73nEEvDA/s706ODc7ahYX/4Nv4+Hpem3HnSobYer
eppW/CgP/wPj1umt
1.], LineBox[CompressedData["
1:eJwVymk4FIoCh/E5Ci2WMZulsY1thkkzGNss/iUlZSpJGoUKMyUZUqZljjok
qUhcTWWp0HYKnXjqUMpSosiNtKgI2VIuSctJTvfD+7xffuYbo/3C1QgEwoFf
/f+M9MmCPJNq0c7CSbdxng5uzGCZRsnyPUov5RJHXHRQrSguZMpKPC72f60d
ctPBfU6MVEN2x4P50K62V6iDB0eeeH+WPvYIGLvs2OOlgwb3xL+HpZ0eXxOn
QmYF6KAxoyNmQDri8Twz1lAjXgc+tzXFfdIpj752zcT2Sh00aTvPnL6eiJR3
Xj6ZIbpYkO5198JyAzixFJ61GkSEz/uuzdU2Q3VzWSVFRoQvK3yUttgSo9kv
ytd2E/FXm3JHgysT00VVKfYyPVw8ELaxewkTxdpNswq36CHPeenyfyRMhBB2
B8yJ0kOqyoA1V8lESku6n26sHjatu/7qWDUTyqcKqvZePVB6BzwDfVi4ZRmf
tuGYHnZ+WkXqD7LFp6d/Oigr9MAn2ZZMT2Bj44/CK79RSWj+TdLQlM5GgMs6
wQd9EkJHD/Vkn2HjZ8xcgw4jEpJaBvVZNWzcMNW7c9vsl0+7tM9XfS7qLXfp
57N/+dksv+zDcxEWHL6tbeEvP5352UZlD57P7EMm8SRI/zmeWxTIAd+rmzvQ
Q0KWeLh2VygHAd/vp83vJ+HuWa8hXxkHORrF53OHSDDw/uo8Ec/BovoflOBR
Eh5krW9ZdIKDgcfMpYQpElj2zGkDTzk4ONLDbjIi433obZntKi5U5oo95/zJ
MCijpf+UcJHIqLKXBJKxUFNe/mQjFy0zxBTqOjJyrjLU9sRy8fvEcHLWJjKW
fT94+mEGF/6GzH0VsWRczfRr3trCBSeJdvh8BhnR9/sdS3wdwPFZ3WvyhIy7
uBLJDnAAhrxX5LeTQayUF1wKdoBZLmGuZQcZpSXfSIXRDlBcFK7i95Ixppo9
pspwwNi5UN0zE2TsjJxX+sdTB1S3vgpYQqdgLzGeHbDeERGVzCJxJAWPUvlh
reGOsB5x0YqUU2CsTshZsc0Rm6d6Wo/soKDqW8rspQmOqLDzvdCVQAGh59SQ
x1lH+Eh/rmzMoiCxvOoi650jsqxbM67eoSBVomE1udUJQc0vb04YUiHiaE0M
xjmhuPVAXJQpFaPqpPr2vU5Y0H5oZNCSisBrxptLjzihdNDOe3weFVYzeFc3
XXFCXMSMlOWLqLhbvonX+N4JR0fHiphxVEwQq71ObOEheJl/35U2Ki733acl
xfIg+J9p88eXVKy/9ahfvpuHIkJ3jctbKuqkzw/5pPLQ3r9yWucHKjKqRpom
L/EgWWXunKRJA3urSUDYIA/Lwg22Owlo2FS/J4Irc0YgM0Dn8J80hAmsxRPR
zjBKVyUU/EVDxLUWXmW8M5ifMkPr/qZBdtpK3eugM+oYa4tNH9CwLfpxQeB5
Z+icO8USvaNht77F24ReZxBVL/OZ5vo4Lm0Mag51gd/7hz/szugj61WcZ6bM
Bd5Od6/FXtTHf1aa2gXKXcD4XD+zrlQfKn7c97cJLli97sbn5Gp95OmanPyc
54Lv9dGzj/Xo4/KNmHb6axdMq+hdW8MyQLWm4crIta5Q22cb4XvHAH0F9j4v
NrjC/5aZeKjBAFpY6Ll4iyv+GLDxO9FmgEBFNM9ijyuOfVi5gDFkgJGBe4Yd
Oa6YCt3fP0U1hHFjbLdPlyvqZE6ffsgNsevIo+22UjfYZ+wosucZIY/ZvVUV
7QZSGolotsAIdXVfwjUUbjDh1TjYLDcCcZIR2J3ihhZZx974zUa4ELVLcOqy
GySdb/yt843wVGytPuujG47fV7cd1ZkDrt6+7ME4d5hp2+fPVKOjYsYzZv1e
d/TOXGyqr0fHAoJ9ZWGSO97UyMdFZnT4j3R0hmS5IyL3fNkbER07m1xY7dfd
0V4+tiFCScetQyOVNWPuSHY7uef5FB1e+xeJz3x3h2qGM7GYaIxmRW6XUo0P
iTCj6Zy5MTqlS9XdSHzIGpNN33saQ23RBXEJl49HUa8+EVKN4a0W8va0nA/K
wUJFFt0E//1Wvn2Xgg/5SfdlKfNMIBnV0lizjw/L+Gvrzy4wQWRXhS3pGB/u
mvi8cLMJ0qpocSklfIwZy3YE3zRB2+5mjR0f+Yg787huYbApQj8J2eKtAgit
vt4RR5hBm0RoaYsTwPpLjUPhdjNUcGq2BykFaJC06BrtNwNl26JKWZoA4SV7
+mQ5ZngwIPZJLBWAnr3z5Jk2M3DehMhujgsQEBP0Y3ipOV7/MNfymBRgS/Ep
XnKQOVLn9JbcUxei8EDnbu9Ic/QGyr48oQmh2dF00+ewOVSt8uQPrkJIj4pL
A5vMQWjYX8hQCqHeaRMpkDBwtd/T+9IBIWLMd3VXbGVAoqExPC9NCC2+96Zt
CQyUeaY6CvOFeNH1ga4oYkBWdbxmTbUQ/ROc15xxBlquF3QdURfhWUX7fJNc
CyifhCeRdURYPueeIvy6BWxHbZinaCJY2Z/rGmuwQJL9legLNiLQiwIS332x
gOulsp/VS0Q4fIR9Y8UaS5zNu0f/clQE3ffnWZlWVshZx362OlsEA62vq6Jg
BZVRZkZZnghDMcqcgiArpGWHasSWiPBxvGsWO9MKu9P+GRluEeHLdKeuHg1r
7Fi28fLSFyJ8zXG3a7e0hnxWQ9jltyLU2inVeZ7WiEjOfiEdE2Fj8Zva+fut
4fc7t7ab7AHl5NOmV2o28BWolPPpHrjFWpKqsLRBVli3ldzUA5Ju52o51wb/
Ao9CgpE=
"]], LineBox[CompressedData["
1:eJwVj3k4lXkbxw8RIVt2TQnz0ttiHTU0/e5MSumlbENU9DzPOQ+SpUhx0GYY
hVfa1FjKlqRDJIXnV5hk6aqTcZDerCHbsW/FnPeP+7qvz3Uv3+93w/EAR0qc
xWJxRfX/XjUi1axgRUD1mAuR0KKN/2AyC3pFvLq/7+RMuTZWSjZ9IviFgK4y
1dKWM9pYZ5szrtwl2o+c67ae0cLo/M32uH0EvNaSP3DguyaOUF2noOtOwOPa
QOfrxhq4qWjVYeRBwFCoZ2DGtDpeZz+d5XmEABPdK5WnX6hjJqbR8qY3AZf1
FWR89qlj8blzbDlfAhJ+OjipdlIN/94uqJw5R0Bu6Df/OIEKbg2tllbhEpAf
LDDh5qpgwzWPnUyiCFDLe71OMkwF19vFDPpdFM2LVnz+S0sFy1Waq3bFE+Bb
G+fWwF6Dk9P/e6LhLgEWN5eAr6aMe6y4ZQNpBJz6JHZtcFQJm7fS4iszRf53
7tULeq2E/1aEW5BNgIRZc8Gbs0pY48JodekjAvIWCl0CehRxGmmnnVFFQFKS
saFNsgJ+sFGy/nQnAeaRhkc/58li/tpdi/7dBHgptgRpnZLF3xS4mzm9BIS5
UhlNv8hi+5mpBPcBAhzDNZVvNMvgqVe9TjuForl++PrLUjIYPGs+SbFIGCiQ
8U8/L419HVgKYuIkaMzuji50lMbXrHfAwgoSwl6yr6/Xl8ZfDEvuDUuR8Hxw
zwq9Oil8Zfo+570CCYE67oUJKlK4NeHieOp6EqZuL1usrJLE4hcY3ZQNJFSV
l+/gpUjiTSGLTlf1SKiINd/z0E8SR3qcehplQIKaYUVxkpYk1jckwkkjEoqt
wzuWwyVwwEtrya2IhE6fY0+LDqzAK6fENF8eJeFZ/GpJZR0xPMe7ldDrRQJO
2dGf/I2Fh/yNJKQJErScO/td21j4Xb/nmD2HhCxr8mD2NRZO/VhW2xFAgteX
c/l7ZVl4a7V/8Fw0CeYqd0tU5JYY1+S2BqP7JDRPZBRE7V9gbB0Cdzlli/Ix
1Yt1SguMlZxUWWiuKL9EoFFw2zyjE2N+r/KhSD8vidvpM898PZsYZldCQmhv
7JRy4hwT6W3zI6eWhBRbSTnZrzNMrnFRZFo/CSd/3un7pGOSOak6Pl82SMJc
I/dH08eTjPmCccj7IRKi5cVNp89PMria5ychJOGSWEW7jeEk0+rKc/OdI4Gc
X1YUC5tgpLmPTS1WUaAjcafOW2+cod88+tL0bwqi9+70Yx8YYbYWjnj3b6bg
0lKKGckaYaaSt3xiGVHAitxoV18yzER7PvpgZkaBYYelUuO6YebWWAG+bUUB
XZWpnjj7lalTLUilDoj+HQrSJl4MMBuP59t/9xfpLV5Am3/vZer+tORNBFBw
ujUrWt6ul2G31SsNBFFg7C+Xs02hl8k6ONTMDxHtJ0rle97qYXTQZo88LgX6
Z2o39z7qZtTWFnKcrlKg8XIT+3xfJyPeUhT9oIACxQkT4zapj0ymknV3WiEF
t8o5T1PT2xn4D//XFB4FYQvZpW+3tTPcmomVUSUUbKfuGMX7tDFzxWZXnSso
eOb286ddfAEzmlh6e7lB5H+TTvyqZ83Mx33lxS5DFGR8XyriZzQx1g5ZbiEj
Ij2DX90X2huZfOfEpZQxCjrZHi5Lqo3MuWPU/uZJEQfUJV1PqGe0QpS6Hb+J
7m/45rTFvWbcMnyUDq5mQ2DT/faY3JdMy4xm4H4jNoDJtptLbQ8Y/v1zW9Ap
EXcFZa4sf4GUWU/LLUNE7FF8KOrvCuTkOW5jcYYN0RF9flPCStSsQh/dEs4G
r0aFkhPKGAkuuyRqX2QDj6z3PAyvUAfHeHw2WcRDbbYjl/5CfZu+lPCK2ZD0
WdrWs/QtmntyaIfuBBswpeKVM9iC5LZbvF0zxQbFe1e1GzcIkE6FlpfkjIif
e9TWuAuQbU3PxYF5NsR2FVYYvRGg280hDYViHHBb5aEykd2KLKdvH7ZS4sBd
oz5919/aUYRFd5izMQfIoEe/zKd+QsvPgktjTnIg9Q+d4A+CLtSxsjj+XiAH
tl8Pc58TdqHnzuPeVcEceL5l8MgqmW50WhggPxPKgd7trmuFVt1owMCfQ0Vx
YKuq+iI/rRvxb3A0dydxoGPwjIG4dw/KPu3JFSvmgHWXPZUm6EV2xntsIqY5
kP+DbLphcj96fcTIx+8UDXzdcqcA+WGkTNAv/gyhgc2kB3frDKOjdObqd2do
+F+VgG9rNoxmgtcUm0fQwAtRvDL22zDSj51d+H6JBnHXCIecjGEUXcxcSbpB
w8RXnn2N0QiylDrIKy2nQUJCz0nDZhTFyMWJD7ygocUh/qus6yh6r/TKWauK
BkM/l31T7FFErzWfj3xFg45aTtz92FF000TD2raBhhM9evu5DaNoyqPzQ3sH
DaN2PGsDhzEE3pr/Wv2Zhi+Ts34njo2heLZjGOqiIfRjpHRuwBjSDapZm9VH
g/KyZ823xDF0KCaP8h+lwfjoDLHp3Ri6G99Vli6kQd7RdPcPnWNoIElLhj9B
w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
1xZDJ9PUhej4w23ZTd9p+MnX/uzZ9UJUyAucXV6mwdrHf8neQIj+AW9jz+g=
1:eJwVj3s4lHkbx+dBZEyOScIma0O9ZEu0m/xueuZkhhB6qq0sOaSyOUdWI0Kx
WAkhVLKS7U0YSTwPSuggM4nKbqOIVFLkbLzz/nFf9/W5Pt/7vq7vGu/f3Hzl
aDRahmz+v+fac7ZEDW4HlmZQU4i/LpW0W7vplowTfqp5UeyjSzG2fmubfb8d
jHTsFOb0dCltaXXv2a/bIfFivM5E+krKNMFqulweh1zWRiY/QYfakbHJ5sMP
ONC7jjxvuKBNPQvWQpvW4SCdiIzd5qVNETvHWScscBBY5QclmWhT3iuqPFVs
cPCW21d56PZyKqJgY8R6Dg4RdzQKZ99oUQVlP9YcDsRBPaLfwIbQpNpe+LQV
BeHgeMH/bPQ6TWqCnv1KHIJDufWwI39Bg+IdncVsT+AwZl2RkFGiQc3+2OLM
SMWh4wDz4K4ZdWp3vftwxd84bOKMOYtC1aiEj4lzkkoc7AtPhk+ZqFE3DepU
tYU4GHTVVY33qVJLBQabf2/E4bWctqsPV5W6jb+Lc+rEQcwW4tT6ZdSKJ5F6
o2Myn7J7a42WCuWweM3C6BsOe20Fxu1iOhVk2WfvOYODycTZ0/FZdKo1EwIa
MSboHaMX9uvQqfBdyjVpmkxov9R3fPEHZeqZJM95gxUTpg5kj3XsU6L+HG+I
OxbJBJ0O+TapuQIVJMr49ZcTTBjP67kxhSlQ/Eofe85JJixR6M7mP5enFH9T
xgyTmGCgWjq2RCBPxYy4CzqzmeCjOx2Z2yNH+fV/iLUQMuHhMwMukY1Rtp26
MR8nmEAP/DvmUY6U1L3xcW/vNBMcVOwKsZ1ScjKV3HpvngmNM+XdNapSstLR
dy5fgQWrVLjLspMWyLWtN6N5y1ngt2WPv/rJeVKjgR1VvokFikdnfhXFz5Lv
ysMjAkJYQFMscDjfN0l6Gkj/LYtgQYYvueF28SR5Pz2R/T5a9k9LMYblO0mW
hOWsDIxngaXrhuriz99Ib7u6O4ezWNBRXqZmrvyN/LdrXhokZEGeb+jqBudx
sns6Pil8lgW50ckrzAzGSPwwY6xGyoItWufdCl58Jqv/ySIm5diQe/Oax6mo
z2Rm81WzSBU2FPS+XKFfP0q6pD54eFyfDRBpFr2f+Yl8tFpFPcaODfqXBWMf
w0bIe6zM3FOn2HAwaiYz3GaQHPSrfxydyAbLCqPq2Y8DpGLSgFzoWTb8kjab
P3h5gOQ8sD7qk8kGRiz95Hu1AfIR+5U9fpkNpv5izrnRN6SYY/xhSTMbDEOX
x7c0SMg3jsJtZzAOuDwyS3LY9oKUP/w6JG4JB3prAy0HGntJ45SlZVHKMp/y
tNPYvpf0e7hHM1CDA2V1WQ6x7B5yhLf4znGNjGd6uoP3dpNf+ZwMhj0HcjdO
iHyKukhsx8s36QIOjG0xiIwyvE+2NXp8H5bAgWM5HuG5vHtkhkWXD5HMAa8s
9ZLyyBbSULVtwDCDA8UdquqXRU0kPK55V1nEAcraotbLpIEU8P4cETfK/AQR
LIm7SdI4nK86CxwQuMTW4hqFqK22ZeM8jQsCrUmpyegllGGCQiUKXIBOYXPO
0xJkqGQ9UcbgAhXecIibWo6g9fvJn/S5UGzgm974+RYS4Isze7dyQaIc+MPl
+QZEsxdixVFcUFfezHJPbEd78KGO3t+54KUx/F8lmw5UzV6ZpXGKC4ZDTR/m
3nWgAOfotfFnuWB5YEfNdfwR6tprx/PLl+V7Ihe4U0/Q5YjWrP80cMHF+/V2
BwMRwiuem9TRHEHSWmrDNuxByTpTTqIkR1jlncYAQwnKamt725ziCCWZCro/
gwQVReVFVaU7Qtjbhvs6XhIkfLXtalaOI8TcJXNiiyRosChh3vMvR0hQqtss
1e9HDqaa11+1OoLV1mkY1HyD5reYLx1cwgNc8b4e88NbdGyPT/NUPA8ijHk3
TD2GkGrRiMQ2mQd3R8YXfw4eQhVvgxfjUnngVXNaZ/MfQ2joiMCWcZ4Hp3j1
K/rvDaH9Jy8KDUt5kP36bYPepmHEL+kp57bxwNbuCW6t8h6ZjvLO5TP4ILcz
5I+O8hHUH2d1EJ3nQyZ7A9f8709o7QrVtGMX+JD3nFlQ3PIJBZYP1V66yAe8
56NI7uUnNCHKU1Eo5QPNbu6nLMVRtNQYq2oT8iFZ+E7j0/5RZNH6GHPr5UN2
e1phEuMziqb7Fx3Uc4INa6aVxszH0PJzF16eueQE3ZvUgg/6f0Gl6uuiHuQ7
Q6Ft6aD4yDhqClnNNLm+A66l2R6xcPqGCg2L9be5u4CpSlu/WdckaoiZpQU8
dQHzK8+XVayeRmt4SvPf73IFnwGpUbTXDKruNEt58cwVJAJRWH/gLEptlVoa
7nMDq2vJ9BtH59C50PeBXn1uwO/wjDvBnkcx2t+pGe3eCY8hARtRXkDXzJZ0
hEl2gs1dh6t+HQtIcQLTbdrvDl8iPZPUfpOivywrYwuH3KFafMbdSWsRmXmX
Oy8c9YBztuNnpH8tolfculseHzxAPGjAOLKcBqIr0eYo1BP+KQyjkjxoMF3l
amv01RPqWS3i3Wk0WLwdUpMYtAumfO8M3W2mAc+SxYz5tguiquS90TQNHuzb
cOhwKAFBpf66B0ww0PQJqL8YTkCdT1P7elMM9gdcWvY0koDnr9K50zKeDNG6
ZRUjyzPe1Gasw8A4eWp2IYGAYXTHlTTHQHCLTM3IJuBLvPIfWlYY/KzkcrOm
jgCuYKswFzBIZJyRG64n4CI9OvaAPQZdGs3uqxoJkE/tXLnWAYMAfauZ2GYC
hC3q925txyDnx5UOnIey+ydGU+0sDCb2SsQv+whYKdHp/8zHAH7VXbvsNQEJ
V6yfVTlhkOLndhz1E3ClsiIv0hkDo+B7+iWDBBznf7ok3YGBa2KZ79FRAm6f
Hsin78SgIKW/tmiMgO++9q9/LOPhjFV00VcCFrpF6enusj75qTespwhQ8egT
a3li8Kj4Pu3QDAHjsXrV3TLWKZW65c8RIN6WH5CzCwPv6zZXHy8QEEgGfSEI
DG7cPDa1uEgAx+Sa86rdGPwPGOM7RQ==
"]],
LineBox[{{0.7314343869017764, 3.102323629352612}, {1.9628681609693666`,
3.107407951595617}, {3.722632787710295, 3.1148253544083313`}}],
LineBox[{{0.13254941274579646`, 3.099881775754108}, {
0.24536209154974226`, 3.100340227512465}, {0.4907201014668314,
3.101339758144879}, {0.6038833664936131, 3.101801887304794}}]},
Annotation[#, "Charting`Private`Tag$18876#1"]& ], {}}, {}},
LineBox[{{35.51863317699764, 11.596563375425081`}, {
35.5187070404136, -6.351023695319389}}]},
Annotation[#, "Charting`Private`Tag$4532#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
......@@ -350,7 +349,7 @@ w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 200}, {-6.959527542228844, 11.975586222486642`}},
PlotRange->{{0, 100}, {-6.351023695319389, 11.596563375425081`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
......@@ -373,8 +372,11 @@ w7rYiAEJ4RiKvnOl0GKWBvcnrvx2KSFqzKhl+czTYHpPjWYUhEg9Z8nxziIN
3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9,
3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9,
3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}, {
3.880087582924012*^9, 3.8800876543745813`*^9}},
CellLabel->"Out[90]=",ExpressionUUID->"d721930c-928c-45cb-8146-dfcae2431ec5"]
3.880087582924012*^9, 3.8800876543745813`*^9}, 3.880094554518929*^9, {
3.88009550172042*^9, 3.880095549656839*^9}, 3.880450030900723*^9, {
3.8805353288921747`*^9, 3.880535341553361*^9}, 3.880612842330372*^9,
3.880950027979465*^9},
CellLabel->"Out[14]=",ExpressionUUID->"09944d10-7523-457d-b94c-dbdbf3669e9b"]
}, Open ]],
Cell[CellGroupData[{
......@@ -419,7 +421,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "170"}], "}"}]}], "]"}]}]}]], "Input",
RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
......@@ -430,10 +432,11 @@ Cell[BoxData[
3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, {
3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9,
3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9,
3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9},
CellLabel->"In[96]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9, {
3.880095506086014*^9, 3.880095529013947*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData["178.1243246255173`"], "Output",
Cell[BoxData["49.82150997759732`"], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
......@@ -448,8 +451,10 @@ Cell[BoxData["178.1243246255173`"], "Output",
3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, {
3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, {
3.880086385464319*^9, 3.8800865107303*^9}, {3.8800875839389973`*^9,
3.880087671218701*^9}},
CellLabel->"Out[96]=",ExpressionUUID->"8446f902-e811-45cc-a8bf-ab7c70890a1f"]
3.880087671218701*^9}, 3.880094555917272*^9, {3.880095507297576*^9,
3.88009555113643*^9}, 3.880450032982963*^9, 3.880535343801962*^9,
3.880612844013884*^9, 3.8809500300512943`*^9},
CellLabel->"Out[15]=",ExpressionUUID->"34307ed9-f9b6-46f0-83b9-36af98fe8641"]
}, Open ]],
Cell[BoxData[
......@@ -495,17 +500,20 @@ Cell[BoxData[
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9,
3.8800859424236307`*^9}},
CellLabel->"In[97]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
CellLabel->"In[16]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData["1.344522780057045`"], "Output",
Cell[BoxData["1.8472893558629866`"], "Output",
CellChangeTimes->{
3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9,
3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9,
3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9},
3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9,
3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9,
3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9}},
CellLabel->"Out[97]=",ExpressionUUID->"fbc9f7e4-1f37-4a69-b281-392c36da0aff"]
3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9},
3.880094557765129*^9, {3.880095510469705*^9, 3.880095552895302*^9},
3.88045003501324*^9, 3.8805353471630363`*^9, 3.880612846206691*^9,
3.880950033016953*^9},
CellLabel->"Out[16]=",ExpressionUUID->"39e4bab8-8774-4076-8cb8-c3b0ab3ddb14"]
}, Open ]],
Cell[CellGroupData[{
......@@ -559,9 +567,9 @@ Cell[BoxData[
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9,
3.8800859833274717`*^9}},
CellLabel->"In[98]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
CellLabel->"In[17]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData["0.8003232743677815`"], "Output",
Cell[BoxData["0.7088388229648961`"], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9,
......@@ -569,8 +577,10 @@ Cell[BoxData["0.8003232743677815`"], "Output",
3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9,
3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9},
3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}, {
3.880087588111286*^9, 3.88008767445716*^9}},
CellLabel->"Out[98]=",ExpressionUUID->"fb1c1bd4-f3ef-407c-ae27-b9cbd3bbd016"]
3.880087588111286*^9, 3.88008767445716*^9}, 3.880094560272614*^9, {
3.8800955121968946`*^9, 3.8800955547288637`*^9}, 3.880450039503292*^9,
3.880535349939876*^9, 3.880612851865893*^9, 3.880950035526105*^9},
CellLabel->"Out[17]=",ExpressionUUID->"80708da8-ef7e-44aa-a0e1-3d0babfbe844"]
}, Open ]],
Cell[CellGroupData[{
......@@ -610,75 +620,87 @@ Cell[BoxData[
3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9,
3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9},
3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}},
CellLabel->"In[99]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
CellLabel->"In[18]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVU3k01QsXVZoQj8gzT9cUEc/zUi/2TwohlaFBPaREkVCGhEqITJeISEIl
ohIyJtFgnl/JzB1/0jNXV8p3vz/OOmuvtdc6+5y9j6LLORvXlTw8PEXc+n/P
DHVZo3syxiicsdHnY8dtozc9ClaHFE5jNsV9xqkoAMvvaq8pKFyECv/fn3iL
riOzLk5+tUI0embcNcwLU+Fp6Hf2m/xtFATvopXk56Hnh3vytHw+7u9tvZWY
VY61A+NqX+Qrwedq8tkg4D366l76TbIrUc04euTclkYUPExr+FxchdqXnyRt
WY2w9rV2mjCpQYRwdp3EwWbc4qu6xXJ7hVQVOa3DW9qw4U7jypmP9XCmjn01
cetCdnOWz2f5Jojv46eFfPyA+bQyjZHYJtjo7vvvT72PMHVroXVzmuCxm1Mf
H/8Rk7zf7Kt6mnH6xydBlV19MDC03h59vRVbDzeeKC34hM6nSyvVpjrQ4b1X
SOXkIC43b7bQderBlqkcGe9Xo3hUXK76OKUHsYrTKcrMUXSn7eRVae2BUuDd
TSnrx6DsdrhGYlsvNoZ7bH10eAzNvOHaPKL/QtTtjlXElzGIGw5s6Hj3AZHv
annT+Wh48jR6wFO7H5pSjvrOaxmY2DARa3G8H+/uxemmKjGg5m9hpJ7cjy/+
L5TDDRm4t0Mgm8bph57Y84BQXwaSmmJPObwdQPLDtlcTfQz40xJmzI4N4bXM
QI1dKhPPTadzVBKGcIW9X/91ERNT+fvteOuH8Ohm2I7hBibcvUXKa9WG0fns
UL36FBMOP5OC9eeGwXeuK+CbMQtZAi3XRHaPAiXdsYZ9LBgZXjp2xXEU92ba
BRJJFga9NPWnAkYxom78nrrIgkR3DLO1YBQCqqFrkqXZSEyz2hMlPIZSmxyP
3CNs6DQvKX7bNIb77ikxNu5stP8oXHQ1GUPNVY5moT8b/E6ChSb+Yzjeoa3q
mMTGNZV2oeWBMQS09zSXv2VD6VAo6+zCGK7cffSsrIuNuijtukGhcSgONjw4
NsTG0ud4nyrjcWxRqpJ+MMdGuiwsNh0dx8GqSGvTX2wY7JtSSrswjtnpkPmE
dST8nu/r9csbRwnB4ZeRISFGXy6k143jpvmqrY4qJJ5vfBZh2z8Oixrzveba
JP4LFN6qK0hDc21zjShIxBbU/XZPlYvT9AbmTUloDHqzhQga/jTR8gqxJuGG
rtuTvjQ0vQ2KDj9Ggifna9VADA0RQRXyNBcSaatkBpvv03D3jKDhpDsJHTfj
n5UvaRhxUWvL8iLR2HRKLv8DDfe299b8PE/CeXMs0qZoCBFbubj6Ionv8cXO
19fRIZvx6nxFCAl1u6Uc1+10KNo1DktHkqh7ofjGzpaOBN9/S1qjSRyWNGOY
eNLx48LXWLU4EtOXPNfoRdAhUDXiuJlKImo4UU3pLh2Vu93kB5JIKBiXm4uU
0xFDC3+rl0KiInfwNE8nHbO7bPb8lUpi/5qVMVNsOuakBe6Pp5Fgu6sVDq9g
oF9XsNMgncSVFqu2NikGzIL6Gg0ySEho+/5Xo8fAfqXfYsa5+Bk19bdCKwbe
ZviJ/XWHhPlcjU6GKwPv7s+e0OPiUfvxAzdCGbhkmXCxn8sPrFh7/mIqAyNf
/A9qcrGwtFay+zMGWPrfllS48/JDbMoONTHwXOSKdzNXz87RgA+m4wz8ysst
k+Dq7d+Z+U3/BwMN5uLdwtx9fB/US6iIMbFw5Enrc+6+/OvY28S0mLhBnCz6
lUAi54zgUV5TJvJ224TMx5LY3vZH8KwjE9MBpabJ3Ht2bzmcORbAhEg0W2w4
gsSZpJDaTioTEXln57uukli5kDPyKp+JMDv67DmuP+mHGnme1jPB85eQfEUg
iWYZUZO4eSZmKlSNzbh+u1w2OBksyIJb7A6HeG4eFsf+ifBQZUE6zJZ1mZsX
zbxH7/ccZoGxTf+Ziz2JN3ztbAMfFtos1CTsuHk75jnHp36DheVId6tpbh5j
dY2s1tSwwGoIDt20lcRkdU9nvTwboRZVVX+LkwiX48wUG7DhUX+CXCNEQuaq
nGj2ATZWXTR537uahJXpafvL19jYV6UUF7jARlHnr09/s9joNR1UH+1lw4ux
iVb6hMuz4RvSTmZj1PHTutdNJGQHVhv7x7Bh2xel3UYnkZyu87IujPt/LayL
DKkJJLQUchx92OAtfiAsfn0C1YrpJ+us2UgLVjQKcPoMVwcnIXF+Nl6LSt7e
JvwFfHznVVdfY4FfMVxtxGAaltYdVuUhTMQLt2hkO89Buv38ubkSOlwG7F7x
tn5Fwt24nYOT4/B5G+5yTm0RNH/aKym7MRR7r7eV2PMT1RdWVk59HkH2JY8J
nUM8hPt0vCL5xxDCspYOzE+uIK5Zm2z5OtQPnp5RoiaIl5i3C9sj1NAH1Qun
Au00VhP8H8/gV/4H0BdSDwq8XEMIcQr7fgz1woJxJiTJZx1xUHOt83mxHljT
qZpycvyE2+LxfZ4XuzDR4HKlsUiAiOy2dLaV7IS2yAdZEydBYjJ6r66rXxv4
sXB8cE6IqHaL92yRaYHZF4dvSvbCRJ2wbszI+0b01Z9c4bBZhDCycVRpfvoO
ZVFvHBUWRAjb81Tl2/Q3OLXab7S9fQNxMy6irkC6ASd8L5WtTxclBuzuaDsk
v8YWN812q+NiRK+N+DYFvTp0bNgs4LdtIyHVIaDt8fAlqp+EZWzmFSfaaR90
UiyrcWmFxv7WIXEiZ+xq56b5CvAPBpl7lf5OnLLVXqz+9AKMh4rJWcESxD8J
DUHX1pchWV1yVaW9JLEj0yX2iHEJqOmn3h9XkCJaGm/kSlUUwyH5n/b1LCmi
zdqXI2L/DN93PeBk1UoTJpX9/zkxi0Bj7Aysvy5DWGgcTlaOeowcQ13ptuOy
xM66gmMiWvkoivATcdOSI7yHIxPvqOfhuv0JS94FOWIsY4An6OAD6A9m519v
kyfKzmoZ/xmZi7RNGUVtlgqEqFmIH/V7Ni7XxaVZVioQNycjfCzO3sNeafsH
zcqKhMaJFIV4sbsw9np/VCRakZiRFZM/VpqBLBkX5dYFRSK4d3iF4KHbUG7I
u2V9VImI6LKczdufCqpWvUZ3rRLh1MkpfxqcglNzq7qaNCjErZJdZx0LbsKl
eFYhOoFCPDlaHboglQTPMNsli0QKUVZotmgmlgQ/29KP629SiO8LRybvCCYh
asEvnnqLQrTEeulY8yThyTbOj9RMChFr8VOunZEIzuvlDw8fU4jK6vmWncWJ
oHavj3vznkK4HHypztmTiPTcs+6RTRSiePtYRZpJInIvtJuYt1AILwnZ3O2G
iXghTl1saacQbk0nwyJ0EjHoIOre8y+Xr/rLduvviVCjSZqM0yjElFRZGD+D
Cp3SILn7DAohf3rWqmOYiu0RAxxXFoWwLI49cauPCiu1zGfkBIVoDrzgq9lK
ha+HgtzMDIWwc3Zf9i6hInjHVc7zOQoR2TguZl5ERYTgeO+FBQqR/3HxnGIe
FWlPc2O+f6cQ+9QK5vrTqci5ssqtapFC9FmmSFUnU/H4gOvO4CUKITny9lpm
PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
"]]},
Annotation[#, "Charting`Private`Tag$22258#1"]& ]}, {}},
Annotation[#, "Charting`Private`Tag$6686#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
......@@ -710,7 +732,7 @@ PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.8003187560651602}},
PlotRange->{{0, 10}, {0., 0.7088375225314254}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
......@@ -723,8 +745,10 @@ PBWlSu9kjX5RiK1pp7TDoqionVPlLC9TCNGQHMnTYVT8D5IsW4M=
3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9,
3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9},
3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}, {
3.880087591163252*^9, 3.880087675790471*^9}},
CellLabel->"Out[99]=",ExpressionUUID->"a19709bd-12a5-47c1-be49-b078c7a3cbb6"]
3.880087591163252*^9, 3.880087675790471*^9}, 3.88009456141636*^9, {
3.880095513424275*^9, 3.880095556137561*^9}, 3.88045004068221*^9,
3.880535351094419*^9, 3.8806128530849047`*^9, 3.880950036573413*^9},
CellLabel->"Out[18]=",ExpressionUUID->"7811fcb1-4c6e-4b69-84c5-2a4539505a01"]
}, Open ]],
Cell[BoxData[
......@@ -774,19 +798,577 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880086242737124*^9, 3.880086251815425*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
CellLabel->"In[19]:=",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[BoxData["1.5612379745157818`"], "Output",
Cell[BoxData["1.990237974515781`"], "Output",
CellChangeTimes->{{3.880086253659615*^9, 3.880086304157057*^9},
3.880086352535798*^9, {3.8800863938671637`*^9, 3.880086521539238*^9}, {
3.880087593758895*^9, 3.880087646136713*^9}, 3.8800876779743423`*^9},
3.880087593758895*^9, 3.880087646136713*^9}, 3.8800876779743423`*^9,
3.8800945643277493`*^9, {3.8800955160531816`*^9, 3.8800955589398813`*^9},
3.880450043503827*^9},
CellLabel->"Out[19]=",ExpressionUUID->"347850e7-84fd-46b7-86c9-4d8581f3799d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox["2", "3"],
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"],
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"], " ",
SuperscriptBox["myCoeff", "2"], " ",
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.880095066018161*^9, 3.8800950760469503`*^9}, {
3.880095479252779*^9, 3.880095482250162*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],
Cell[BoxData["1.5627722778696047`"], "Output",
CellChangeTimes->{
3.880095484411269*^9, {3.8800955177242403`*^9, 3.8800955604897947`*^9},
3.880450045304723*^9, 3.880535359224338*^9, 3.880612865473521*^9,
3.8809500412555923`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"0d862d62-21ad-40be-bf86-361b15cd5a3e"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PsiR", "[", "r_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"myNorm", " ",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"myNorm", " ", "myCoeff", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}]}]], "Input",
CellChangeTimes->{{3.880450259849861*^9, 3.88045026245728*^9}, {
3.880450342004263*^9, 3.880450428007826*^9}, {3.8804505083503447`*^9,
3.88045054654538*^9}, {3.8804509533799887`*^9, 3.880450954981093*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PsiR", "[", "r", "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.880450434981985*^9, 3.880450437069388*^9}, {
3.880450467622654*^9, 3.880450475414855*^9}, 3.880450957309256*^9},
CellLabel->"In[21]:=",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
"]]},
Annotation[#, "Charting`Private`Tag$12839#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7088375225314254}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.880450477448555*^9, {3.8804505437974977`*^9, 3.880450549561881*^9},
3.880450904266193*^9, 3.880450960572151*^9, 3.8805353762901163`*^9,
3.880613017272277*^9},
CellLabel->"Out[21]=",ExpressionUUID->"bfcaf053-8156-415b-a766-14cb460d5213"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"myPsiR", "[", "r_", "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{"PsiR", "[", "r", "]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.880451016501692*^9, 3.880451021730836*^9}, {
3.880451090050208*^9, 3.8804511103964*^9}, {3.880451390037879*^9,
3.8804513904750967`*^9}, {3.880613601521275*^9, 3.8806136353054867`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"726dafeb-13ea-42c8-bb65-5a6d68e2f75b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"myPsiR", "[", "r", "]"}],
RowBox[{"Sin", "[",
RowBox[{"10", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8806136371930943`*^9, 3.880613751137649*^9}, {
3.880613827324993*^9, 3.8806138290488358`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"717762d6-1e69-485a-ab75-de90dc3644c9"],
Cell[BoxData["0.0010508523874437625`"], "Output",
CellChangeTimes->{3.880613685926548*^9, 3.880950054868312*^9},
CellLabel->"Out[22]=",ExpressionUUID->"26f52ff1-a852-4dff-9697-265208673679"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"myPsiR", "[", "r", "]"}],
RowBox[{"Sin", "[",
RowBox[{"q", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"PsiP", "[", "q", "]"}], "]"}]}], "Input",
CellChangeTimes->{{3.8804512707170753`*^9, 3.880451307528953*^9}, {
3.880451370661892*^9, 3.880451405277438*^9}, {3.8804517177532797`*^9,
3.88045175856171*^9}, {3.880451907905079*^9, 3.8804519184783583`*^9}, {
3.880451961747505*^9, 3.8804519620769672`*^9}, {3.880451997308036*^9,
3.880452058978894*^9}, {3.880452125277264*^9, 3.880452125385812*^9}, {
3.880536060261842*^9, 3.880536067939273*^9}, {3.880536216471127*^9,
3.880536222232499*^9}, {3.880613145434863*^9, 3.880613180632429*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"c1ceda09-1e18-4730-a8a4-798bf3a10de8"],
Cell[BoxData[
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], " ",
RowBox[{"(",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{
FractionBox[
RowBox[{"2.901469663670466`*^7", " ",
RowBox[{"(",
RowBox[{
RowBox[{"4.3395022`*^7", " ", "q", " ",
RowBox[{"Cos", "[",
RowBox[{"1.6`", " ", "q"}], "]"}]}], "+",
RowBox[{"1.8229557`*^7", " ",
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ", "q"}], "]"}]}]}], ")"}]}],
RowBox[{"3.32316748416249`*^14", "+",
RowBox[{"1.883127934380484`*^15", " ",
SuperscriptBox["q", "2"]}]}]], "+",
RowBox[{"1.3270979362006529`*^8", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1.1933018414019887`"}], "+", "q"}], ")"}]}],
"]"}],
RowBox[{
RowBox[{"-", "4.46823272`*^8"}], "+",
RowBox[{"3.74442791`*^8", " ", "q"}]}]], "-",
FractionBox[
RowBox[{"1.`", " ",
RowBox[{"Sin", "[",
RowBox[{"1.6`", " ",
RowBox[{"(",
RowBox[{
"1.1933018414019887`", "\[VeryThinSpace]", "+", "q"}],
")"}]}], "]"}]}],
RowBox[{"4.46823272`*^8", "+",
RowBox[{"3.74442791`*^8", " ", "q"}]}]]}], ")"}]}]}],
RowBox[{
RowBox[{"Im", "[", "q", "]"}], "<", "0.42008405941123844`"}]},
{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"0.8458586727012287`", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0.`", ",",
RowBox[{"1.1933018414019887`", " ", "r"}]}], "]"}]}],
RowBox[{"r", "<", "1.6`"}]},
{
RowBox[{"1.3094304126855005`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "0.42008405941123844`"}], " ", "r"}]]}],
RowBox[{"r", ">", "1.6`"}]},
{"0.`",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"q", " ", "r"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0.`", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"Im", "[", "q", "]"}], "\[GreaterEqual]",
"0.42008405941123844`"}]}]}], "]"}],
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True], ")"}]}]], "Print",
CellChangeTimes->{3.880536153618195*^9, 3.880536286816221*^9,
3.8806131692510443`*^9, 3.88061329435061*^9},
CellLabel->
"Out[100]=",ExpressionUUID->"f2064ae6-052c-4c29-85b6-4122f8ffe9c5"]
"During evaluation of \
In[25]:=",ExpressionUUID->"f909ae20-7144-47db-9cdf-70f17a037f9b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]", " ",
RowBox[{"q", ">", "0"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880536344175078*^9, 3.8805363711858873`*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"5b2f680a-fc53-4293-bc32-a5a09105f2c2"],
Cell[BoxData[
TemplateBox[{
"Integrate", "idiv",
"\"Integral of \\!\\(\\*SuperscriptBox[RowBox[{\\\"(\\\", \
RowBox[{FractionBox[RowBox[{\\\"0.03000292302147212`\\\", \\\" \\\", \
\\\"q\\\"}], RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"0.0001455306836108173`\
\\\", \\\" \\\", SuperscriptBox[\\\"q\\\", \\\"2\\\"]}]}]], \\\"+\\\", \
FractionBox[RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"21\\\", \
\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
\\\")\\\"}], \\\" \\\", \\\"q\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"18\\\", \
\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
\\\")\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"q\\\"}]}], \
\\\")\\\"}]}], RowBox[{RowBox[{\\\"-\\\", \\\"55446.43758797824`\\\"}], \\\"+\
\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"q\\\", \
\\\"2\\\"]}]}]], \\\"+\\\", FractionBox[RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\
\"206.16218021559547`\\\"}], \\\" \\\", \\\"q\\\"}], \\\"+\\\", \
RowBox[{\\\"105.27001771946456`\\\", \\\" \\\", \\\"q\\\", \\\" \\\", \
RowBox[{\\\"Cos\\\", \\\"[\\\", RowBox[{\\\"0.008108368342902897`\\\", \\\" \
\\\", \\\"q\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8726.245184279049`\\\
\", \\\" \\\", RowBox[{\\\"Sin\\\", \\\"[\\\", \
RowBox[{\\\"0.008108368342902897`\\\", \\\" \\\", \\\"q\\\"}], \
\\\"]\\\"}]}]}], RowBox[{RowBox[{\\\"6871.403165219998`\\\", \\\"\
\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"1.`\\\", \\\" \\\", \
SuperscriptBox[\\\"q\\\", \\\"2\\\"]}]}]]}], \\\")\\\"}], \\\"2\\\"]\\) does \
not converge on \\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \
\\\"\[Infinity]\\\"}], \\\"}\\\"}]\\).\"", 2, 30, 1, 26470880187150754667,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.880536439018804*^9},
CellLabel->
"During evaluation of \
In[30]:=",ExpressionUUID->"aa1683e9-4807-4c48-a219-fedc79848a4f"],
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"0.03000292302147212`", " ", "q"}],
RowBox[{"1", "+",
RowBox[{"0.0001455306836108173`", " ",
SuperscriptBox["q", "2"]}]}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"0.008108368342902897`", " ", "\[ImaginaryI]"}]}], ")"}],
" ", "q"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"4363.122592139528`", " ", "\[ImaginaryI]"}]}], ")"}],
"+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.016216736685805793`", " ", "\[ImaginaryI]"}]}],
")"}], " ", "q"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"4363.122592139528`", " ", "\[ImaginaryI]"}]}], ")"}],
"-",
RowBox[{"52.63500885973228`", " ", "q"}]}], ")"}]}], "-",
RowBox[{"52.63500885973228`", " ", "q"}]}], ")"}]}],
RowBox[{
RowBox[{"-", "55446.43758797824`"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "2"]}]}]], "+",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "206.16218021559547`"}], " ", "q"}], "+",
RowBox[{"105.27001771946456`", " ", "q", " ",
RowBox[{"Cos", "[",
RowBox[{"0.008108368342902897`", " ", "q"}], "]"}]}], "+",
RowBox[{"8726.245184279049`", " ",
RowBox[{"Sin", "[",
RowBox[{"0.008108368342902897`", " ", "q"}], "]"}]}]}],
RowBox[{"6871.403165219998`", "\[VeryThinSpace]", "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "2"]}]}]]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"q", ">", "0"}]}]}], "]"}]], "Output",
CellChangeTimes->{3.88053643909369*^9},
CellLabel->"Out[30]=",ExpressionUUID->"a7707aa6-c791-47d1-aafc-aca2444dec48"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>0.9 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7"
......@@ -802,33 +1384,56 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2191, 52, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2752, 74, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[558, 20, 2286, 53, 140, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2847, 75, 2801, 74, 161, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5673, 153, 2495, 57, 68, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[8171, 212, 9109, 166, 211, "Output",ExpressionUUID->"09944d10-7523-457d-b94c-dbdbf3669e9b"]
}, Open ]],
Cell[CellGroupData[{
Cell[17317, 383, 2179, 53, 68, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[19499, 438, 1292, 18, 30, "Output",ExpressionUUID->"34307ed9-f9b6-46f0-83b9-36af98fe8641"]
}, Open ]],
Cell[20806, 459, 420, 10, 36, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[21251, 473, 1091, 29, 49, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[22345, 504, 755, 11, 30, "Output",ExpressionUUID->"39e4bab8-8774-4076-8cb8-c3b0ab3ddb14"]
}, Open ]],
Cell[CellGroupData[{
Cell[23137, 520, 1957, 49, 49, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[25097, 571, 799, 11, 30, "Output",ExpressionUUID->"80708da8-ef7e-44aa-a0e1-3d0babfbe844"]
}, Open ]],
Cell[CellGroupData[{
Cell[25933, 587, 1343, 35, 49, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[27279, 624, 6653, 126, 213, "Output",ExpressionUUID->"7811fcb1-4c6e-4b69-84c5-2a4539505a01"]
}, Open ]],
Cell[33947, 753, 397, 10, 26, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[5579, 152, 2446, 56, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[8028, 210, 9175, 166, 235, "Output",ExpressionUUID->"d721930c-928c-45cb-8146-dfcae2431ec5"]
Cell[34369, 767, 1112, 33, 49, "Input",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[35484, 802, 442, 6, 30, "Output",ExpressionUUID->"347850e7-84fd-46b7-86c9-4d8581f3799d"]
}, Open ]],
Cell[CellGroupData[{
Cell[17240, 381, 2130, 52, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[19373, 435, 1127, 16, 33, "Output",ExpressionUUID->"8446f902-e811-45cc-a8bf-ab7c70890a1f"]
Cell[35963, 813, 1356, 40, 49, "Input",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],
Cell[37322, 855, 318, 5, 30, "Output",ExpressionUUID->"0d862d62-21ad-40be-bf86-361b15cd5a3e"]
}, Open ]],
Cell[20515, 454, 420, 10, 39, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[37655, 863, 1185, 32, 49, "Input",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],
Cell[CellGroupData[{
Cell[20960, 468, 1091, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[22054, 499, 585, 8, 33, "Output",ExpressionUUID->"fbc9f7e4-1f37-4a69-b281-392c36da0aff"]
Cell[38865, 899, 389, 8, 28, "Input",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],
Cell[39257, 909, 6274, 122, 213, "Output",ExpressionUUID->"bfcaf053-8156-415b-a766-14cb460d5213"]
}, Open ]],
Cell[45546, 1034, 442, 8, 28, "Input",ExpressionUUID->"726dafeb-13ea-42c8-bb65-5a6d68e2f75b"],
Cell[CellGroupData[{
Cell[22676, 512, 1957, 49, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[24636, 563, 631, 9, 33, "Output",ExpressionUUID->"fb1c1bd4-f3ef-407c-ae27-b9cbd3bbd016"]
Cell[46013, 1046, 463, 11, 28, "Input",ExpressionUUID->"717762d6-1e69-485a-ab75-de90dc3644c9"],
Cell[46479, 1059, 192, 2, 30, "Output",ExpressionUUID->"26f52ff1-a852-4dff-9697-265208673679"]
}, Open ]],
Cell[CellGroupData[{
Cell[25304, 577, 1343, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[26650, 614, 5758, 112, 237, "Output",ExpressionUUID->"a19709bd-12a5-47c1-be49-b078c7a3cbb6"]
Cell[46708, 1066, 1118, 25, 73, "Input",ExpressionUUID->"c1ceda09-1e18-4730-a8a4-798bf3a10de8"],
Cell[47829, 1093, 5936, 151, 82, "Print",ExpressionUUID->"f909ae20-7144-47db-9cdf-70f17a037f9b"]
}, Open ]],
Cell[32423, 729, 397, 10, 29, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[32845, 743, 1116, 34, 53, "Input",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[33964, 779, 343, 5, 33, "Output",ExpressionUUID->"f2064ae6-052c-4c29-85b6-4122f8ffe9c5"]
Cell[53802, 1249, 462, 11, 28, "Input",ExpressionUUID->"5b2f680a-fc53-4293-bc32-a5a09105f2c2"],
Cell[54267, 1262, 2335, 39, 42, "Message",ExpressionUUID->"aa1683e9-4807-4c48-a219-fedc79848a4f"],
Cell[56605, 1303, 2423, 62, 79, "Output",ExpressionUUID->"a7707aa6-c791-47d1-aafc-aca2444dec48"]
}, Open ]]
}
]
......
......@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 51615, 1230]
NotebookOptionsPosition[ 48723, 1173]
NotebookOutlinePosition[ 49121, 1189]
CellTagsIndexPosition[ 49078, 1186]
NotebookDataLength[ 51640, 1230]
NotebookOptionsPosition[ 48748, 1173]
NotebookOutlinePosition[ 49146, 1189]
CellTagsIndexPosition[ 49103, 1186]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
......@@ -1035,9 +1035,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{
FractionBox["1", "p"],
SqrtBox[
FractionBox["2",
RowBox[{"\[Pi]", " ", "p"}]]], "myNorm", " ",
FractionBox["2", "\[Pi]"]], "myNorm", " ",
RowBox[{"(",
RowBox[{
FractionBox[
......@@ -1125,9 +1125,9 @@ Cell[BoxData[
CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9},
3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, {
3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9,
3.88087538894692*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
3.88087538894692*^9}, {3.881035003112468*^9,
3.881035013631791*^9}},ExpressionUUID->"c77c7be5-a519-41e6-b069-\
691e1006d400"],
Cell[CellGroupData[{
......@@ -1227,10 +1227,10 @@ Cell[CellGroupData[{
Cell[42550, 996, 569, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[43122, 1013, 585, 17, 50, "Output",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da"]
}, Open ]],
Cell[43722, 1033, 3093, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[43722, 1033, 3118, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{
Cell[46840, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[48410, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
Cell[46865, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[48435, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
}, Open ]]
}
]
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment