Commit 3332c0f4 authored by himyss's avatar himyss

data

parent 9c694860
This source diff could not be displayed because it is too large. You can view the blob instead.
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 36835, 818]
NotebookOptionsPosition[ 35260, 783]
NotebookOutlinePosition[ 35658, 799]
CellTagsIndexPosition[ 35615, 796]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Mp", "=", "938.272"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Mn", "=", "939.565"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ebind", "=", "3.925"}], " ", ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"binding", " ", "energy", " ",
SuperscriptBox[
RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Esep", "=", "24.81432"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[
RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9,
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"q", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"ang", ",",
RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fOut", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfIn", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOut", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9,
3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9,
3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9,
3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9,
3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9,
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQDQD6hcRW
"],
CellLabel->"In[17]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{1.020408163265306*^-6, 1.9434682115973003`}, {
0.01533589602798134, 1.943748439521205}, {0.030670771647799414`,
1.9440288987650578`}, {0.061340522887435564`, 1.9445905124319236`}, {
0.12268002536670786`, 1.9457165290480463`}, {0.24535903032525244`,
1.9479797883972108`}, {0.49071704024234164`, 1.9525517709481117`}, {
0.98143306007652, 1.9618821897394834`}, {2.0454178542729324`,
1.9830133301383182`}, {2.958029656364833, 2.002196235245252}}],
LineBox[{{2.9899174114668736`, 2.002885289545698}, {3.0500121108208624`,
2.004187416350027}}],
LineBox[{{3.081899865922903, 2.004880251719722}, {4.298771468715699,
2.032343111696474}}],
LineBox[{{4.330659223817739, 2.033090717404738}, {5.230370406745517,
2.054815538265406}}],
LineBox[{{5.262258161847558, 2.0556086163065914`}, {7.124041306441138,
2.104932858194773}, {8.173138546173233, 2.1356335947117246`}, {
9.151727315943587, 2.1664489328692977`}, {10.112311928229225`,
2.1989922535225253`}}],
LineBox[{{10.144199683331266`, 2.2001147155868095`}, {
10.439885863942887`, 2.2106589009365796`}}],
LineBox[{{10.471773619044928`, 2.2118108967365178`}, {
11.793784171133385`, 2.2623054642685347`}}],
LineBox[{{11.825671926235426`, 2.263593437218421}, {13.228344634183118`,
2.3239364957656083`}, {14.211533911287631`, 2.371048144684206}, {
15.2772759429202, 2.427408695591982}, {15.997201695816472`,
2.469068213762979}}],
LineBox[{{16.029089450918512`, 2.47098698944541}, {17.299275412626642`,
2.553095173962763}, {18.35757366702705, 2.631220222064354}, {
18.575031439058826`, 2.648544318091664}}],
LineBox[{{18.606919194160866`, 2.6511241773082332`}, {
20.415705990432443`, 2.8164527768403436`}, {20.583264093501196`,
2.83393478503636}}],
LineBox[{{20.615151848603237`, 2.8373095136538247`}, {21.76163442231778,
2.9698829793498738`}}],
LineBox[{{21.79352217741982, 2.9739133900641055`}, {22.463514267959305`,
3.0635652845752426`}, {22.476388432909584`, 3.065386539629232}}],
LineBox[{{22.508276188011624`, 3.0699145486974073`}, {22.57976882002402,
3.0801551872074895`}, {22.712631165240843`, 3.0995193790226563`}, {
22.978355855674483`, 3.1396008842680088`}, {23.509805236541766`,
3.225647302026706}, {23.525311334850716`, 3.2282846262936955`}, {
23.540817433159667`, 3.230929516488219}, {23.571829629777568`,
3.236242127181056}, {23.63385402301337, 3.2469596083432255`}, {
23.745330149653963`, 3.2665373628853254`}}], LineBox[CompressedData["
1:eJwVzns4lIkCx/GZ1kYxNzNjJoNhLBMHW6vtmMv7vr+1o7KqTRutGemm+w1d
XHbbcmlLtehZk2IzLpMkZzsuzzhswlRjEpWktBK2cLJLORJFOe0f3+f778dl
w56Vm2bQaLT1H/r7s26/TJx7zQ/JnPljd2qskSGl9vZYyLD4P/6aefNs4Gy5
8FWxjQw3+xdmHiFtAJPra5mDDE6aK0NxGhscVk2/0ShkSNZHeR8/bQPaFwZ6
XrwMZ9zf+53iMKBWDTR1HJRh7WZps9SegcrFwkxOkgz7jav0JgkDW5cnuCcf
l2G+2HeV4wIGWjVk0OYcGYILEmbPW81AwQFTpletDDJ1b99YLgOq0gfSapoc
w11v1Os/ZyL3suXIiIUcV0Ndns+hmJgo96vxnCXHZdbT6MdLmCitzl76C0eO
sEVJZYfCmeA3RkQfksixb3eMHilM9Pf21wSo5NiwhVdQ087EMcH4sntH5Ujq
nn/RKpGFTLP5qfGEHNXp4rkbT7Cgi8+Or0iXw9J2r8qsZcHQSZzPzJKDlbQ9
q7yEhT5dylToBTn4z2cenNXOgv9c20udJjm0fV1VA3w2pvy8rfo+VmB/7uEf
naLZsBp8f659lgKpTx69mxnLBjfnrq+JoYDj8/qXY9+z4flu79oLfAUipNv2
DRxjI6yhxrDNTYG4z6+52+ezYQhcsmlYpYATp8/dfI+NKPVG43iyAtYH1p7K
UXDA1A32KI8pwOKE1U/5c1D6NHo68aQCe7ZK1235ioOBnYeVNtoPHm+tIiyM
g4hD5wzORQqYAmN3lcVysFT/sCTQrMAjVXidysDB3OGgn3NslEgrObHkuMIW
ps/aynrYSvTQHEagskVkrPquG1+JZo+oKx8ts4WOto3xb0clZoaNufwaYQs7
7o9Hr/soMfRm68yzSbaw8Kv/bmiFEp4bvhF3N9uiN3FBJKVVIvXhMP3dDi7c
7ZhpUWeVCOtO0ZMHuNheMlCVf06JXSu9LqYf5uLVvWxriyIlfGMKItdpubD6
hF5hNigRy/w6vb6OCx9TC31lhxINxck//CLgIWH2Fl2kiEDL7YSjf9znoS4X
N7ViAhN017fhvTxY+NqPmlwJxDwUiv4a4uEnTcsiDy8CIeJb/wy05COv1Hd4
SEmg3ThaZqHgo3E5jYiNIMCon19dVsQH7+ezv6fmE+Ayg96fzrDD7HZua8x5
Ar9dY2xk6uxAE6Q1ai4S6OIn1eX+yw5D2UmV3mUEJqcqI61v2cFUsCOttZ7A
X9ZElchSgLhywn9ODwFR9ZqQ0BQBdr+q8pvxjAAnKPr6wUwBIhd+9umfAwTM
du8vG/UCBNe4O9S+IMAT3vQvuiGAp5H1et00AVVL+5EuKyG6WnsvFjuRkOuj
HdVaIe5zw/NOSUhMmgrdki4I0RTy4HSCO4ksNf3blmohDI+akpf6kLga7dFx
+4kQGb0Va14SJELvhA+mes6B/8gRjt8aEsH6S+wvb85BEdszvjGHROeqTcVK
qQg+/WETFnkkvhv9YnE5RKj6LTXWX0/ibh6jI1Itgnnz8/21pSTadloFpKSJ
MHilOKailkRce2PMjTcieG+T7tR1k0hu+yjGo8sBBnL1n4+fkuj+tVPd/dYB
JO/odvv/kpg+b/T6Q+iI5XX9W7UvSRCBnaq2EEdE8Ys2naBT0Kqaq460OaKy
4ZO1sa4UdLMnr4Z0O0GZtepJpZSCjL+9Z/8MMW7sTFnzv39QGFhBm5pwE+OB
4Jlm1wIKjMdx9T67xRjfVfjtxgAKvYqW+Ot0Z8jtJSu/3kLBbdToeyffGcYX
wa0nd1BwuaWT9BmcEXQjcUXTHgpnqjooZbMzwqN6lwfEUaiQ3r1dPu6MH0x5
QYpUCuOr4/c8C3ZBQ4w4QHqJQldogls6T4K3Yy8yHC5TYLOzJnO9JFgQX/+Y
U0GhxLK/cFIlQfGh9fumaj747k+T+QckyDhZWNjaRGGRZvExc5cE64qkM74f
pPC6wWGQXuuKbI+JZdHDFE7eqt5X+LsrLM+cYtWMUPB9bdRmjLri/3eklrw=
"]], LineBox[CompressedData["
1:eJwVjnk0VXsfxpGxzENHx/BKabqFyqs30v7ae59jkySHUo4KyVAyXSVTiuhe
Y64bqyshRZOLRCr9fpGrASFTqCjz7GQW3d4/nvWsz3rW+qxntbO3jauIkJBQ
yM/8v6uNaIX320loVPIt/8JWx82Xf4uWNSYhZuSI2DljNVzYoZWlZ0KCnG7n
htlFNo7Tf/zMmiBh29dnM/Yv2Jhu7Z1Iokho6rnnfd+CjQvW03yWJQm+446K
6m6rcOw/S/pajiRo8AOuxlSwMPj2btU4SoJ18ocLbn+y8KRa7Ta2EwnsXc7W
9W4szPe9bqDsSkJK5upAWpaFt6jv+p+kFwkekU6urk4rca3vOWI8hAQr1j2z
LE0VfFHdCUbCSHBGVh/NZ5WxYRVjOhhOwtgJl3l+gzJOV1eluiNJmDoreP08
Whl7VxVzW2NJ+FocUWM6o4TlNSb34jQShAPNrwz2KeKXVe1WZekk5PPeicVU
KeJAv4p9TzJI2Dht3ReWo4g7q5L2F2WTYP7SccLBXREX+G21y71PgmKX9oXX
IwrY5tVpfuIzEjpmfOIDxRXwH/4Dnsc6SBjHC6ef1MliNjfIl/eJhDa3+fNP
MmVxluqKQG4nCSfkP5Zp+cviwrLNlzZ3k6CdVZjEZsniOgmfG7NDJFikpv+Z
4SKDZdOm3ycukMAdFUkYlZHGl18uM3nBpmB+kneJkyGF5VOSqSJ1CnZv2lne
HSyFUzx0LHI0f+6ry6NfH5TCt2XNDsZpU3BqcOrKMXkpXGn/u++hTRT0ikb/
/nekJBYZkb89sZMCVVJh79ZzEjhERVNO+xAFxv0JjFmcGK4pkDpMOFAA+T4H
mrzEsKbVVDbfkQKLCP7F61ZiGEVVG6U4UVAtxyr4IC+GRWaDTkh7UuA8aM4b
TxHF0W0tZdNBFCwKFUmq5C/DSTeunHqbRsHNEE9BsqgI/mocWtKfTsGONRld
dkPC2KDVXUQ8k4KzuZ8ToUEYN8lDKtyiIO2d6pUrGcJY9eJoxaMHFHzLLJFh
EcI4/fgetYznFBipHsUOEUL4zkaxN792/vwzdu1wteUSalA3XfD6QoGoe88z
tXVL6Ltc6Ga3bgq0eKU6mT8WkdX0ZPyhfgpE1szRlg8X0WR5N2/3OAW2d4KT
WRqLCPgvP0oI0VAuZ7VBZ34BtcZHTFz7Dw0Z2qXRni1zSOQi0k5eTYMRH3SK
iufQLwELvLg1NEiKujxYf3UOhTn4F59fT8N39fCdMXZzaO0Gl+DjejRkB7ol
GTfPIu8XpJguQUPr8E7+0qcZJD4pvOrFERp281iFbOlpNJufGt99jAaLLt7E
05EpNOSlJyrpQoP9sguake+mUF0ff8zKjYb7YTIql/+YQtfaSyo7vGmwznvo
eEBjCulWePnNhtOwqzhWsXbHJDqQ9OGt3k0avuy98/VwlAAx+3xMebdo6LTz
GLU9JUDG0hIlZ3JosHJWq/CyESCtKIOssns0rLwdMTKvKUCD5xIC9xTRUBu4
41Bo6QQKc+LouFXSEMTKQpPfxlGOfkFYeh8N57tXdOfNj6LTKhNzJQM0nLSv
jHKpHUUG8/oB9UM0tE9aDphljSJckX9SdJwGjfmnRekWo6j1QL695ywNLJGm
+eDrI0gy9O9thlIceJ9ctrxozzByf/2gt2YTByYeS/fpvRpAG53vWi16cWDv
cGgI3t6DXl03yhd4c+CjwCwoR6kHnfjwRqHflwNK4qxHd791o2zrocaGAA5c
OpRkLlbUjbSIzQ65oRx4O+b1XtywG61Uz3PjxXHAoeW/p9WIr0ikuSD8zn0O
LDMfy0053oXazUsL7YY4MPqUw58dakfkvmz7gBEOzDfYqp552I7u2iYsJY9x
oOFG+tya4HYUdNTVovEbB6Ju5unKrWhH7ACFLzbfOfAP62C8+pY2ZJ/hoWAt
w4W75YOfPp5rRc3Tq3ws9LggGBzwcDVoQg03g7YQ/lyIFF0wUaZrkaJQcalR
ABeGO4OmW0ZqEI8/wTE8ywXpx+YSH1JqUKOy+5EtwVw4nvtgddJwNWq5ZJeg
FvGTTUw+taa+RR1u+hMzSVywTXnQFvb9Fer5pbcov5ALp3YOKvmPVqDZh/t3
aQu4EHjvh2dsZxH68djvUdRpM8hfcrY46pdL7NHnckKmzKAx+fPEp9hKospR
z+OkPwNra9oFvsvrCUUX96fXAxgYH6k/kLu2njjinilTd5aBN7tMeHW764lp
P6VCgxAG8mdfmE/51RNrL8/ML0YyUM2yTE1uqyfCC1Fs4lUGijQUOrfnNBBG
Etb5j0oZOJ5MkXsMG4ko6d9E+p8ycDU9W1Bt1UjUK5Tbsp8zwBdTKTd1ayTc
1Q3mwsoZaJM9MiSa2kikbFUlmbc//WsPZwpmG4lJh873bR0MxN8fIwIeNxHg
tGqdzGcG5Id7lXTrmoiYEzaBRBcDu5XWFbf1NRHavi/Vs3sYCCm/kSDHaib2
R+W6eo0ysMll4En/r81EWkxXyY1xBoqVO3RMY5uJ/kT28gYBA2fGdQvjbjYT
4X/F5hnOMJAmnXNwWUMzUZ1RKeQxx0AiS+rS5oFmgnV7yeavBQbEhTnfzYVa
COd7O27VLDLgbulY5cBqIfLyfWZ+/GDA09d83Em3hfgXBlLKRQ==
"]],
LineBox[{{23.777217904756004`, 3.272213571286108}, {24.500912064223318`,
3.4109378348607606`}}],
LineBox[{{24.61034969639067, 3.4337160525576738`}, {24.730449091526378`,
3.4593125448441233`}}],
LineBox[{{24.53279981932536, 3.417522268161458}, {24.563001917687984`,
3.423798359927806}, {24.57846194128863, 3.4270260774198293`}}]},
Annotation[#, "Charting`Private`Tag$5933#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {-7.026255643989277, 9.975712471055067}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9},
3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9,
3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9,
3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9,
3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9,
3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9,
3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9,
3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9,
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}},
CellLabel->"Out[17]=",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9,
3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"U", "\[Rule]", "46.48728734369617`"}], "}"}]], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9,
3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9},
CellLabel->"Out[38]=",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617`"}], ")"}]}]],
"p"], ",", "range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9},
CellLabel->"In[39]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"coeff", "\[Rule]", "8.80922839269386`"}], "}"}]], "Output",
CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9},
CellLabel->"Out[39]=",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"8.80922839269386", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9},
3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9,
3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9,
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"A", "\[Rule]", "0.7583626465084375`"}], "}"}]], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375", " ", "8.80922839269386", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8ld8fAHA72XuP616bzGz1OdkyspPsrDKSFhF9zVRmipIZJRUVFdkk
WxkZGZn33oTIvIjf/f31vN6v53WeMz6fc87nEfO8aONNRUFB0UpJQfH/Z06k
J52y193jElFVJn1jMcc/D2DMT2POQ8XCm1Z/DU84+FIfg8GEQXagy+JxjRDI
aUwSpcUkQsbsv0QejWgIOHY1cEv0EUTeaoz+pJ4OA7t+GSuiL0DBeUQxUK0Q
Do3NSC2JVgNVRfk3U6V3UNCZd+m3aAeIC/540yPYDGXliWMBCj+gNK/J1OpW
P/hC36PFkFmgFOTU23/6AygKNz+N3Z0FbGrrNcXmH5BFIzTeWTQL1pc9+q2n
fkB7h4/Ii6FZ0HYOrzkvNAbSdnuF3tpzcIWTI2bu/hgQ/aReTVLOg6K6QchW
1DhcSL9Z/y0VDxLsUQsY80kImpeZrSz7Bc02ZwNvj0zBlOsofVPHLzjEFOmS
j58C25HbCj1z5PddOQav16dAs4sQNi+wAJ6+MgPFbNNA/baYjSdhAWzOO/1l
M5mGrAix49fdfkP48VDHtsppaOLkf6TFtgR6H8yNrsfNwNGk9npDuSVgvkn3
Uyh9Bp7Rhc5ZGy3Bjkbu6Q+5M3CPNKR4IWIJQlwT2j5/nAGHnxlfHhOX4PzK
eJ3lrxlYKGVb321cBsmQ3l3Wk7PAIBYr9VNzBVz+3MKyU81Bu26aYqThCuwe
vfvMh2kO4h1zNYRtVmCdorflDc8cUKVWGZ/1X4Gt3Ox3WLk52Nlf9B3OWYH9
Yr6GCNs5+D1uX/KVahVUZSQzaQrnoDtLSqaxexUe7CzW6KrPw53Ko8puo6vw
kN80VQDmweTbCa39+VWIpQo5tWg8D58POZvqHqxCp6LYDf8z81B7LfV8lfJf
SP2rsTkcPg+v7Ugv3jz8CwXrAie96+chma1LtsB9DUIvJw4paeOhWkP4vWXQ
GkjuvZIQ1cPDnOtF2Atfg3/P9x/um+JB5zWn3enMNXj+/UhX6hk8EE2dbzL3
roEE1xqRMhQP+jFLX8N01mHmX1EGxzs8BJWCk5TpOpg+jylmq8bD4760uUGH
dWjYF0k8aMDDiqg6STFkHR7QsH0o78FDbm0kFl+yDtFx76TOEPGwvcF61YZn
AySfSKd3CxAAJ+x5cIDbAH0n/+rvGAJYGlQmvlbegM5GwaCvkgQoTnfMpbfY
gDbG0YsZKgSwUSxoq4/ZgK+yab5epgR47aciILe6AW/Fzk7xXSHASEps0cj+
BsSxqvPIhBGA5uOQQjzTJlSevpUrE0kAJ9pw/WmpTVi3Z3u0m0AA+sKWgEzX
TbA7kBybeUwAzzG7BuruTWDI2pqoqSMAQ/Z04KXRTSgmZozVNhHgnVOQ0E/8
Jjyy2EoqayUA9Y+EsE+UWxCHW6Lz6iFA0cgn1UsaW/C9epWGd5wA5lnGM5MG
W+AY33Yu5ycB1k8PpprbbIFinKQX1ywBDIeXlqQCt0CPmIMGfxEA/x1TMlm4
BfZZgfLZmwRIfvDawfzNFsxz6J99RiKAur027ae6Ldhn/ilQuEeAhEFbzwcj
WxDa1GrgT0UE6YF4IXOWbbhXSWI1YCbCt3TOrmrBbUgzOJ82wEqEUJv8MCmZ
beCMd3xgy0GEjr7qISqDbZCjtBKR4CXChW+LqdVh2xC0TsfAgiECR2oYSCVs
w5hX+hUxLBE+naJbzsjYhhj8oL2EOBEYv4qaBZdvA8tbx+v7UkSoTH5Fmqjd
hoY20fcDMkRwttQqMevchql7L7weyRHhVY8NrdT8NhRMRXJtKhDBLulnRcbf
bWBwyudIUiLCnnmAJxUFCbodlSK5VIhg0R3XMCFAgj//3j9aP0qEzbscQWbS
JDjV3GdsoU6EXLM8oWo1sk1L3B5qEGG5syosw4oEvJqog6RFhId3DKWpXEmg
SRPKz6VDhOMn+4cu+pOg1Pn0NxFdIuAPu8VNhJIgN0llif8YEVI6fquaxZMg
Zdn3Iu1xImgmhs5U3SfB7Rk3h2myp0xo0yQLSFAwcq/gNRDhNn06ZJSRwNzc
3+oCIoJSu8gyZS0Jylv/8+Q9QYSRhJdPLnaQYGnUfbiS7FvGmmYTQyS4Ive0
TE+PHK9DraSTcyTQvrBEaCT72xfrkqpVEmzbLkcr6pPjFT/pIHlAAq9K16hk
sjFG/rQZTDtg7U05MUF2O+12BaXADixYPs0WNiDCpdZYz4tSO9DiK1hjQbbI
nBHdpuoOuB+7nhhAdhfV4dIItAM4id2Gm2SHinVZUFvsQMONHNf/yJZASauJ
Z3ZASsPZ+zrZ/a6nHrD57EDSiu6gG9lRN9m1MkN24OwP85faZMs/GRgXjtoB
ydb8hUNkj356cKvo7g58ELFPbyOPL370tLhc1g58X00qDCNbdZu//W3RDnjh
rwmKkD3FM+6v+Zbc/oT+v0ry/JPUclkb6nbgyewRk+Nka9u5Vxh27sBh87C9
avL6EUKwp7uHdkDiwUUBabIz0uZ2bGZ3gPOaZ+Ft8vqfePMsd/TPDvDovcwg
31aw3Oun5763A+HE0lUM2dlLsng8/S6cWu+odiTHc0O2/Mi62C6sX1JIyiPn
Q6Hppb4bCruQR+X/qIycL6f8VK9S6uzCnNp7jjfaRHhR/LGWxW4XKH0rLe9o
EsHhc5j7A/ddcDydw3GOnH/Uszo0QoG7kNC7a6hAzk8XTKOZTPwuoJ7Bf9mq
RGDPbv+hX7ULM42NXwaPEKG++k5k5+ddwJ9fEDghTwT/EXOsdd8uKP5rncuT
JUIrd99514Vd8NQ7MXGUvL/CUke3Q4X2AHzeR9SKEkGyPPvJgfQefPZ69qhW
mAgDPS4oXm0PfDn9j5YLEuEI40zCfcs9WENsRH/y/p6OW+Apu7UHB8lD5/VZ
iJBc9OrT0aQ9yG3RzRxmJIJOS5BrzaM9EHodYe56mAgPKNaK29/twTqfkJ0+
DRFMw3ePzs7tAWHgFkUA+Tx6G8xky2f6D4TD+uS0pgnQ/Zgz7LXDP+DNeXO7
fIJ8nn0WyNPz+gehvtFHeH4QQIBf5ndA1D94UhDjWNlPgNgmw5im9//ANY8Q
erSFAA4cURUXsPtAJXFB3qiAAMG68aMHivvQ+iFSp/kJAe74JB1kHNuHixam
dQpZBGj4lG3W4LgP3cL8EqPJBJA+VzXLmbIPpdz3xi+HE2CnYpWzbncftkcj
W1qsCcA1ua1lc/gAtDi2bpqYE0CBnsKdwHMATfaSU3VGBDjnzPKKXeUAjkZa
lN7QIc+HRs7Ax+8A3tb41+uKEyDX3usK6/cDeJphY47/i4eCcP8FpdMUKE22
9vhiLB6UGg9vJ7hQoJuZcfcZI/HQSFNC+/McBZIp4j8Qvo6HqaQ5TFIwBVrS
T5MVOo8HkXyX078SKdAz1QX9SHPyffr51OeCWgpkptghNsGGh3Tmo7kcWEpk
krHKLZ46D1ib/pfnpSmR70pJfFnCPLx9GFzdqECJ3t97kC0fNQ/fRF8PBulQ
Is3jua3UQfPAoiLJ2GVHiQyyCEUiZuR6w4EvNCaBEtWrn9hloJ6H6Lw96/VF
SpR8ZLVr5vwcWClVXZJbo0S7d92YRdznQKTpcponiRIJVVmxWzrMwaeZhW/f
aKlQbZHftXt6c/BXYvTUaxEqpPk71jJGYA48X7238LGiQmr8hpyu7bNwojrI
dKSCCpVErHKuCM4CxcAUqr1BjVKCgiJ+PJ2G2F/1BTf+o0bvKvIe+DychsMU
OVRat6mRs8SQHuH2NHAcOfP5/QNqVD15PuJL4DRIJPQZl7+hRh6NAef+qU/D
SZ1my0I8NWLu/95v1zYF958+db5tQ4P6O0kg2fMTJK/4hNrJ0qI3J4WjjZLG
4Yj2T9s8JVpE+e9klcO1cThK4ai4oE6LXp26cTbMbRz07pnio/Rpkbtv5esN
5XFwLZK3e+lMi25KM+Hbh8fg4eBfRaoUWkQ/F7bSLTkGtGpRhPI1WuQfxCZA
7BuFuY1MB8Y6OrRpmhpz5cwwFJ5QvTzRQofebW+JYAyHwS2pN6W8kw41yJcH
TigNww9x2g7bETpkffkK4R79MPTZhug8WaNDWjfF8uuqhqD+rTnmiOwh1LhX
9MdRaAgyAykXLDMPoYuVlnusK4Nwcv7CzfRL9AhJl6sFf+kHo5u4Vwah9Oj1
SWz7uQ/9oMc9/mMzkh5xRrlyeD/rB21DC82z9+jR7x27vNT4fpAtVlzDPadH
4xUu9neM+4HRe93v/Tg92uvzxe139UH33E27EePD6EL+ytesyW9gOZcqJyLC
gMZ7207fseqFbrm5QWdxBsQuoiDrptkLZpc1IrNlGVD1PfcTxpheMKGa/Man
wYCOiLRQWK/0gB5G7hqnFQPalnTmM03rATXn1kb6aAZ0aTo4rH6oG4QGSfZr
8wwoP9MY73CxCxZaPG+1v2ZE8gSdDdnBdhBNG7mQXMmI1Jxc/Cvq28HO1dLe
roYR3VD9E2z5oh3qt7Vkp9oZkUH2iYWayHZIP8I+uDXLiKpkPwyHyLaDTmaD
lJQAE6qi9RvTi2uDexeEvsbFM6FRiTvKFCZfQIF9SFjfjRklVo/kNey3AD4J
H/3Amxk92ko882S5BXIYtggEf2ZEdErgj59sASYavnf3QpnRRJtn9K36FljY
PGM0lMaMSA5nB1ijWqB4fCLo/GdmhGVp9U+hagGhkvmGFBkW9JFWYLWLoxkY
YMNjfI0FWS2tMmEcGiH0hDT9hx0WdKrMXnDYuBHw+mfLUihZkQFH8PPHWo3Q
bNK0o8fKis5WijEbCzfCDZuk+y9kWdHmwVadb2cD/PaWaL3mwYpwBkJRJcv1
0H3PXpr9KysSOWY+1WNSB8ZLTltYezbUfOHYpDV8glyumIEoRzZk5x4p3iH9
CdZ1XpaPn2VDE/7OLbYcnyD/zq7vQ082VKSc3F44Xw07Uk9GDgezoT0LLZxk
UjW88pyoXrnDhuRWHMYqflYB24hbRH0jG5Kd3laPSP8II81elE7y7GjVapQU
IvceVk78ELipyI5o+L1/3xR4D4eaTh3NV2FHrDeVQh4efg/qDdq+eE12dDr6
MNcKoRIyath6QgzZ0e4vvRsGxZVwqrI2664rOxrLPQj1w1bCl2IupbpUdnRs
bVnHTrIC3t/+7IrZYEdX5Yuck2zeQsnJLr6EbXb0QaD8SbT+W3jM1N+/tMuO
PH8lLMYefQu3Un8a1VBxoGc5lslveN6S6/UdBQc2DlRiTJdXOPYGZp4rHdyV
40Av1l7oEH3fAEvbk7wtDw6kdSmD4yxnOfjQXp3q7eVAv7WldRt+vgQB0Y7h
3T4O1FyYZCrR8RJ6NYW/Sn/nQNxsgaU5716CekBrXfQYB6qYUZNrjXsJdAPc
2epEDoS1H7i7JP8SivM/2OdScqKn1O6HMiNLYU5nuzPwKCcS8P6t+0vhBZwL
CX/P9JgTXVJL4k5vfAbqKpPvZXI4kb3a3Gx42TNg+Is+GOVzov9ktjiuPHkG
by7Rfbz1jBNdFS/0Tgl9BnvBaVXr7ziRIC/KC1Z+Bg8vPq8Z7+JEHPXP0geK
i6EjYKDp1T9OVNtu29ibVQSKvnK95h5cSPaigrJVcSFMnhe9+NqLC6lObJ7Q
fVAI9wI42Vj8uBC39pCielwh/Lq0a/01iAu59XFctvUuhKcRXd+tI7hQk46N
mYpkIfCm+084ZHKhFqNqquulBXBQ+3LRvYcLGb5Rfdhdmw9fOeQZr2pxo86o
rh8pTLlwPDDwV7YuN+LcqhXzWM+BsraytmbgRg3LrZOG4zmQHKEcy2bEjbaM
4iJMX+WAOV7930sbbrR9z/S+hkUOdFaf+DPjz41kn2jWFKQ/gVb30wNWudxI
RaHkp4FcNtSURWfLU/MgmZMBdkWpWUBnbi+QSceDzAzf7mqEZ4H1L6lHlAw8
qEZz2nrSOwsIuJ6HQ2w8SCpktsNTJws4H/Gm3xLhQc7ClThTQib4x7y6PajF
gwaiMuJv6mWCoOPQ1YhgHnRscoSfj+4hhFPKWnVP8CBPgSjsSP19wBswjkhO
86BX14PEVl7fB6vbi27/zZH7wzI+5sm5D+Ks5RfVf/OgvectX5LD70O30NGU
/G3y+HI/v5fVug8imsd7r3Dyol39DRO6j+nQHGRjLmzKi8SUn9qTatOAYfyG
SVAlL5JKjHhfPpkC6tdfMKd85EVGbPf9dFpTwINjpL/8Ey+6X6gSPPYyBapM
1FxWG3mRbqKkrmNYCrnM/HPpSg8vSm/2o9bnToGmZK/sG3heZC+U7vLVKpl8
Xlkux/PxoZVD4YYOQ/dg/plYRl4EH8pQ9HgzznsHFmOnSdS3+NCuP9MHfco7
8NezwM0vhg+Zmr6zqF9IBApRMTnlO3xo/azyn6W6RBDIxDQ3Z/KhL8b04mre
iWCVILoy/44Pta786bb7eBtqfYXN5X/xIVz8mWbf8wmQIc1PU23PjwzcmRgj
KePA2VXy+awjP9J7K6sTvRIL4hmqJ1mc+ZHU+QzJjJ+xUHlgkXrOkx/9NV6g
mq6LhcGhaCGWi/yo99LmE+HwWOCMWzx67jY/Sh906OXbjoH06QZv5hp+dIYi
7FX3bjSkPvZp88AIoFvND/6uSv0H169FX47ACSB17oguR4H/wNUmVzRTUgCZ
hOf5dzL9B/IMQ9e75QXQR/HQnz2rt6AjzFBaQ0sA9V+Yf25XewuozognMtkI
IMPjet5OtrfgKu/MyY8xAuiV4btAAY4ocMpw6WUiCCAZq0+4SmwECFUwCPov
CKB1jTzeaIYI+Nn30bdjSQD985H+4fU3HLxYOSjj1wVQm2xRjF9zOATd+aJ6
QCmIbh6mue5zLhyibyk+WhUSRIIV+glHXtyAFwGUXkM2gmi3ajIrWD8Mtg2K
SXn1gsg5sqlAp/waRNTkxXxuEkRqBMuCQznXgELlMfOvz4LozpyB7syda3BI
NEVMpUsQNZilcbf4XAMeUqjp52FBxFXaxqoieg1UX5s/Iq6QLXnAXpN+FYK4
1zWVcULI54j2M9nYKzA7rxfanCCEaDInUqWSQ0Avr7dQ9q4QGlNzWaeODIF8
R6ee9GQhxBkZ5rEcGAKuXZew5x4Iob69GqklixD48Sa/m/qpEPpILcGexhIC
/eH7GMN6IYT+tvz0Tb8EzeyfOtrWhZBOqVX7wdNgKDymLNjjIYwusxQODI8E
QrMlQ8yulzDaomhwe9QYCDNuswsyfsLo6qxyTlBJIOCiH3yKDxJGr97KLtqG
BkLRF9IZFC6MNG0+CNPzB0LxqeasigxhxGPygfOwawCUeNjyPG4TRvUvzlFT
bV6A13FX2X2PiKAKbgGXHCc/WNR1iY5TEkHfgmwNNY39QH7dYO2pqgjCxeXn
zaj6Qakn1/cpLRFU9c8szJvZD0qgIsvJSAT9uT1/AdvkC0WkFVFLNxFkyNz+
IUjOFx4HBiiopYkgPkEP930GH0iwP2dGvSGCLpfU+cSsnYPCU+PO3tsiKF2J
imQ8cw5qTe2D2nZFUEJlRKBg3zn4e8w47S6VKKJgr+hYLjsHzpJyw5xsokjk
yuIvQ/9zoLL111NcThR9F6pqKcV7wmRW9A1DD1HUz1A/tU3wALXxghcJPaIo
xbw5j4/DHdgU/LbLv5G/F003hKN1h8UoBeORAVFUi83YC1lxgyJczZz0D1GE
GbSgo69zAy7/QdFOvCgK8Fciypx2g50IajM6CgyasHh/8XiKK4wyqjeZ8GPI
f691KVosLpAlk/26xwyDYpPZc/kNnGB9zag4xgKDMh8WTUodcYJT9X+faJ3C
IIo3krIneZyAzvbkvWIbDCJJHGR3Es/A1QjShZtnMIiW8zZNdfIZsPl6WvqI
LwZFvn+B1510BKarXE/vRZP79yma9b97GqIak7LMqjGIrtP7+6KAPSxMNGaQ
PmGQTLsRywC9PTjsrqU+r8UgoULjnvZNO5BXd0qkbsSQ6+eQkpl+Oxh5KXmj
5gsG7XZc8ui9awcqmQ1n5QYx6Ngh/ss3KOwAH7gqwvgHg2b5gaJ73QYsBO2L
O8XFUBZL6mAZnTVkzSk0npUUQ6xuHLasJCuYe00/tiglhlxv0Ffd+G0FEaiW
jVVODA3IXuEI+WYFr7xxEbbKYuhJZRfPzGMrYHizajN+TAzl/ZScalC2gjaD
ZIplBzG01SgxdrHXEk4EtZ1lTxRDh2hEWD9MmsHOyC+jz3fEkEsh/+rtL2ZQ
qc+kcv2eGFLnXO4KLjMDSX5r+okUMYRjDMBFRZoB0+cflSUPxVBloIZ7hqgZ
jPAvM6MiMaQ9t3o9zfskBLdyNQY1iCEWXtrrzhSmkCfkKd69IYaWJ4ddswKN
QFtVTsFzSwwFLd9cDTxrBIOm6xrb22JoKb9V28bUCOivx5uJ74kholdWk5GE
EQT3lYZEUGHRzPVdu8kJQ0Dxa43yrFg0qh12us7aEGb+xLokSWORNVfd2IK+
AYi3PH9oeRaLpt/GTRac0oNe+e2icWcsign4ms97Qg9CH5pUXHDFoid9LctZ
KnrQdf7X13gPLFo8RH+4nlsPQtjkDjf4YpFtLJdm2vgJaHApC1e8gkXOmbH5
tgEnwGm70p0tCYss3RlYGTMQpB5plu2vx6KGQ5sp4zTHoUTz7OHoRiwa55Oc
oPh9DBr01wnKzViU4hEdrNN3DJbPSBantWIR4wib8FrOMTCLvyNq3Y1F/OGO
oRc0jwHdTxuub6NYlDb9tMXvki6Ep87+61nHIjaOx7a4NW3wWaPp65DFIR9x
u84GZU1wLTXodZbHoeAcbKO5iCY4eMR2/TmCQ2/7ohx/MWiC0VfqL9zKOPRd
pfS49ZwGSL6kqvHQwKFsa4uYH5kaMO9JUUzSxyHalm1sO6UGePXvhsq44NCS
b7lPzZQaeL79i0lMwSHH5PGjke2qEBBtu3cyDYdOH/cwr/+gCldtK4eZ7uNQ
WkGNFUuxKtzeuJqc+hCHfHWH8RP/qUKZFmk3MweHNlFdjZauKpCaDoaevcQh
FGrbOVyhAqn9TEmf23DIzomPy7JMGR4/DfSL78Ah5tiMw5dyleHplV59ky4c
Mhks1S5MVoYPPKk7Xb04JMuZI6R4URnGnTj9Br7jEEvGaMSqkjJIzfLrz8zi
kMfZzjrmj0qgVHlDpGgeh5i+nUpkKVEC7bgxkjcBh8rmfDqEHimBuVTOm18L
5PatDNc9wpUgxB8jsrqKQ6rvujTvICWI0P2P9G4Nh46LHD2zoawEccwzg1c2
cIjKsS05EKcEWeVP725v45AzJo4hjk4JCm/R+H7awaGtydIQkxVFeGntrRex
h0Nr6xo5+QOKUIn9Inx8H4fuxty9yfFREerXJEkHBziUYZWxl/NYEf4HOcku
zw==
"]]},
Annotation[#, "Charting`Private`Tag$14210#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7583624694778662}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}},
CellLabel->"Out[49]=",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"84ca56fb-4ca2-40f0-a192-c9d705a4a16d"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1791, 47, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2352, 69, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5178, 147, 1556, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6737, 196, 10268, 183, 235, "Output",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[17042, 384, 1706, 46, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[18751, 432, 716, 11, 33, "Output",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[19504, 448, 906, 25, 54, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[20413, 475, 241, 4, 33, "Output",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[20691, 484, 1752, 45, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22446, 531, 317, 6, 33, "Output",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[22800, 542, 1216, 33, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[24019, 577, 11225, 203, 242, "Output",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
}
]
*)
......@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 46895, 1013]
NotebookOptionsPosition[ 45096, 974]
NotebookOutlinePosition[ 45494, 990]
CellTagsIndexPosition[ 45451, 987]
NotebookDataLength[ 51615, 1230]
NotebookOptionsPosition[ 48723, 1173]
NotebookOutlinePosition[ 49121, 1189]
CellTagsIndexPosition[ 49078, 1186]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
......@@ -56,7 +56,7 @@ Cell[BoxData[{
RowBox[{
RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "2.399"}], ";"}]}], "Input",
RowBox[{"range", "=", "3.735"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
......@@ -65,9 +65,9 @@ Cell[BoxData[{
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}, {3.880087700774041*^9, 3.880087701627767*^9}, {
3.8800877975749063`*^9, 3.880087987460205*^9}},
CellLabel->
"In[218]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
3.8800877975749063`*^9, 3.880087987460205*^9}, 3.880694076159418*^9, {
3.880694106655357*^9, 3.88069421626336*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
......@@ -143,8 +143,7 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->
"In[225]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
CellLabel->"In[9]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
......@@ -185,7 +184,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "150"}], "}"}]}], "]"}]], "Input",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9,
3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
......@@ -200,250 +199,107 @@ Cell[BoxData[
3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9,
3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, {
3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9,
3.879569049028247*^9}, 3.880087707720909*^9},
CellLabel->
"In[231]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9},
CellLabel->"In[15]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{3.061224489795918*^-6, 1.940807922738254}, {
3.061224489795918*^-6, 1.940807922738254}}],
LineBox[{{2.282297965209684, 1.9845387764422011`}, {2.9941734674575162`,
1.9993610965838908`}, {2.99539175357331, 1.9993869892252918`}}],
LineBox[{{3.8625306041212233`, 2.018295309200041}, {6.136253562818797,
2.0729010424770893`}, {6.182822765517297, 2.0741037793717307`}, {
6.229391968215797, 2.075310175845261}, {6.322530373612798,
2.0777340178746426`}, {6.508807184406798, 2.0826263971026}, {
6.881360805994801, 2.0925940258106626`}, {7.626468049170805,
2.113295145936034}, {8.843893520444967, 2.14950944837228}}],
LineBox[{{10.791098607617133`, 2.2145823816793007`}, {
11.308156126004256`, 2.2335674387661397`}, {12.038647322831405`,
2.261777314434328}, {12.088172683001606`, 2.2637520106504767`}, {
12.137698043171804`, 2.265734881901272}, {12.236748763512203`,
2.2697253612238386`}, {12.434850204193001`, 2.2778067751671274`}, {
12.831053085554595`, 2.2943838922288315`}, {13.623458848277785`,
2.3293019531410413`}, {13.672984208447986`, 2.3315669181473053`}, {
13.722509568618184`, 2.3338420034147838`}, {13.821560288958583`,
2.338422816820904}, {13.979240340272746`, 2.3458005797934325`}}],
LineBox[{{17.861058649914543`, 2.568496428309608}, {18.182932399399863`,
2.5914197321642227`}}],
LineBox[{{20.612359074679755`, 2.7965701464575736`}, {
21.384177652356154`, 2.8766877426854762`}}],
LineBox[{{23.74486483122288, 3.188517520757271}, {24.5194156385197,
3.320930813286054}, {24.545732075444665`, 3.3257699818548376`}}],
LineBox[CompressedData["
1:eJwVy31QkwUAx/Gx22xsbD4Pe2luS4FDwESyJZO9PM9+jgWdoCODAaHkuNuJ
gAdYm8hUVIidIA0QbQiIZrwYJBfd5RRFC08pIenAViBnIy44okA5a3qW2R/f
+/z1Dc0p3GZlMhgM1Yv+Nz1pJDf+Rhy6pTEfbpzjgn7zKus+1Khks6sOXeaB
YTDQp5PVyDs7FeAY5uEbenBfRoYamzlPGzt8PCTGjc2NFaoh8ny8eIIbhJS1
8yPDZ9QwpzfmDGcHwUIqWq4/U6PC9FVgMclHuOCTHw9yNKisj8/8LoqP37hR
hE6kgafV1rwTfOSxNpR71mqgUQ7eSSziY+/fSbu/eFeDo8w19YpRPiomHbHn
PRqEFx/OHmkTIGE8oNByUwP7zv4j9q8F4HidnatGNPCfCizInxSgZuSEvHlG
g72Dm5cSJMtxaqAr4KREi4Z2nmy+ejk6LkwMV36ghc/35EmYkUCI5eg5wxEt
kmJKDa+ZCbila2z/1mixyrzscUkugSqnXWHv0GKlzez+toZAgZXMt45rkRzZ
NFQxQWBa4aFDZ7RgTJnCzi0Q2DGWHTy5pEXIRe4Ym0Via3z35VS+DqwdzsqL
60isD03kGKGD/N6ejK4KEp0//THxPFmHp5leW1wTidDahp6+TB26+4Vt8l4S
wc995jfe14GtmhPP/0Li8f0DbWHtOvz68q0bC4ZgXHH3GgKCKLBcIUSdTAhl
SqbkmpSCkT1vdm0UouslxlzJagqnfQ4nL02IZvuWukWawqafP7teVSdEWers
gwfFL36H37uMFMHPc33ZdIjCYsF2plkpQtFArDO9mgL5T3o5UkXIUZbH3P2U
gvWeacbfKIKRWHmw30shyhQRW7pOjKu3b6aUTlNQNQrIiFQxYsvyw1UPKWyr
7mltcIgR8afnzudcGotT0Vk/DIkROPSOrIWi0SVRDjr2S/C989glx3kaU/sY
fa8wpch6K/hhdg8N9y5lS+cGKWY5Ta8a+mj4rSjZkisFs6q7hTNKw8i/MM0d
lUJ1/G75SaYedNyzWdulFRhIzrhWItDDcng2Y2FpBVL4vr+yZHqobrvaxl+X
Ie+jR7vDlHq4hN0JVK8MrbXilB6LHu8dOCv13pIj+u0zx+r36NGexvy9jFDg
Chk5YNuvhxv8aPl2BdLa6xiRtXqs37SryPRIgf8APFhbCQ==
"]], LineBox[CompressedData["
1:eJwVjHc41f0fxu2shKzsRFl5tJD1eeucYxyjiLPzIFJCRSGrEk0rRROJjBPy
EBXqe5KQpCOEyMpWOlkd+9fvj/u6r9f1uq97s9cJFx8+Hh6eyb/5fw90BQ9G
SuGgMndeZrvORlZIRoFz6UYcmI+ZF/cIbmSltJ5tElDEQWCwXlxftjTrg4Vi
TcFWHITgwg0zx6RY5tL0ohmEA09fL8adG5Isio2etrU1DkhmV5/WWEmyzkQu
PbrjgAPXWsvwXWMbWMUj9+9YUHEw1DAcPPFKgqVW1XPxchAOvF9KV/qkibPM
OYWrXWE4uCN5sUhWVpxF0Yo6q38OByM3+WWn08RYyUkqJ1qu46CTE6RUlS3K
4vN2pyk9xsH5J0NGj3uFWap3DdoDnuBAffHQcm2wMMu0eXU/6z8cCJU5p9uI
CbOCTTIJPq9x8NBXSE7Lah1rSLzf8GkHDnKb1bMs6gRZ16yz3FO/4SDsvbKk
e5Aga8d5r/iI7ziYjbhnuUldkBU9MzRq8wsHR/ZWuu84L8BS+Dqe0S+Eh2jd
778rnflZrzc+aaoTx0PaH2fb8yL8LB9H/8VCaTzcwR9rTajhY5WyptzOquJh
a1L2irsJH8sxb0Zc2ggP/tRjltwdvKzZ/memXDM8HPDjuaI0w8O6pxhytNcK
D9LlS4Z25TyssQTuW6YjHiQ6KgILzHlYMadXwnE+eGgReFiRXbSKVVitGz99
Cw9vaWYXln2XMEZEgxz9Hh6W3JPGdwktYfzlV/FWD/Hghqfv7ny8iB3QFn+4
vhAPItXx5TbjC9iEhBQ59y0efHa9fsc5x8VUexTfdUzjIdvFpCJuZA6rle2Z
fsXFw/3xMAu4M4cd35+unrOKh/3rn0atEeewFzVqkSdFCeC7P6k9tGwWcynQ
3CWiQYDUW6eaG5JmsMshBlmmzgQYHn3VKRP0G7uynudBJpkAP20O6WTq/8au
5bSkCbgToL7NKF5sjIMlfj4d3+xHALWVDVZnPTlYqkFVqFcsATgq20b8qqew
7BEbp2vPCfBiGFfW/mcCy4naZPfrFQG0DZv9r8ZNYLkykzjXWgI4mBHNE2Qm
MOa+xL2qLQSARLP3AUbj2H8ZbZqlEwQIVP5UPH9lFMNInktdKtbQb2JgW+Q9
hLF+7py31LQGQ7Jn06jAEFYTK/A7W9camoJRp0bud6yuNG8kwNgabO0PG1+b
HMQ+Sky18Dpbg6b9SmbJhQGsuy48XyfWGjx0bsccLvmG/TG65XZ2whrgRKnU
YcM27DTB05PFsYZaX4gNyW3FOAcNAtb9sYZ8bgq7WqUVGzvZEJvKbwMeMyrX
WzZ8xr4yl8v+U7YBirPIvUJeNlat6iM94WQDB3wfx7buaMAuCBl9opXZgPoz
D7LXYhm2KsPfnfXSBkqKRIdFnEux8C3skTHsL/fqHvnOLMGCwG81pOnv3swn
X4zNxLzDM7bfHLYBnjw7RwnlB5j1lFD8B3lbUK8TfG2J3UJiXzpszSP/8q93
bk15VUh6PHWdfIwtKGyd2Gg1VI0Ulg/W/b5sC5zZUzdrVV+jrRpsXN5NWzCc
3ZMvaMNCENhgKf3EFqqTvfdLPKlBp4Ve7h7rsoU7b0IFNGzrUY/RPfVbxnag
+fzf32+GPqFBO0pfoIUdrFKGFMR3s9E4Qy7DDmcH8Ymv7Ohn2Gg+JkVpzckO
DE5StMbn2Ujy0zU5vyN2wGpN2N0114IIvhHikGoHpNTSrIrvraj4NoM7OW0H
Q9NScuTYDiQprBdLWLADduyNoEesDhQUtrAhc80OHtEes+8vd6A91LRtLuJE
YK5C1P3gTlStyCa90CKCdveGm4OHulBjOq48lkIETSWtbm3NbjSSrRuk8poI
t17o7F+J6EW2MgsrIbVEsDlKtnB62ouYsfVX2Y1EaDFxm/cY7EUBPt5ZFzuI
8KUruP2jTR+a3ZrBHucQofb4Yeb4un7Ex5T6p2KLPTCFJV9GNvYj1RLupNNV
e0g1N2YfMxtEolovdM2T7KEiWntq24FBNH839JhOqj18DiyQbvEeRM0X50f4
s+wh4VmfyHDCIIomzw68eGEPDYeiOuT7BlHv6q8OjTF7GJksF3sf9R1lOI6+
nbd2gGV+tTBi0RBSmWy/nyHgCJapgd/8ukeQ96vHeaJijtDYfeKj/c8RVJh0
pixEyhH8Q58MK6+NINPdsh+cVB0h5Esjb7LGKCJFuS6uGjuCk7YBz6ujoyh5
Qyvl3+OOcCBmTZI4PYoEdrNl1T87gqjxpU3Di2NoIrIxKSvTCYhmEcOaoxOo
KMTJ89amAzCXkVoVbTGFtkMnpbn9AFhJhNm+ieKgjeUB0wNZzmBq2sB16/qN
rKq2TBz3cIGcXyM6K2Iz6E2JLa+J0kFIlv/ng/TOWZTnfLby2/BB2H487ILD
6TnUfrGxZeGRKzyc3TOgXTyP/Dy3Xf91wg3GXEynv6lwkbPBzOFte0lgWFfT
975sATX2NSvLmZNA2e0eSbNyAe27wWwXQCRY/My4EMNaQLtnPW0G8STg2c8v
Svy4gOQq2brpB0iQvTk6QWh0AfUQin9LHyXBTv4zBaZKi+jooWPnVtNIED3W
n1N1aRGdi++71z5LAj52Oif/+BLK9cdV8nNJ8Mhss3x98BJqcsjr2rFEAm6o
8vPJiCWksP6EQiIvGYJN1t+wjV9CpQmrqdYSZAjz6+c4Fy2hoUSVG8+3kaHx
nX9zEWcJEW/QL9+lkeFnzNbHg5HL6OQpLLf+EBluRZ7oHY1bRmnOW+rmPMgg
57/JYC5xGX2XmhRw8SWDdEm6vXbWMopMCY8RPU0GDdOuLdPvltHTm3ejIhLI
4LAt8+tmqRUkk9YRfIhFBsuZO44+xSvoPLfM3+0tGfh6ch36nq+gSVqyj2Md
GUJAycDrzQqqUbMjWzSRIUasuSOmbQWdLKg0VekkA0Fz1/UdSyvoQ3U677df
ZHD71iR5kLiKYr4fTmKoUYArd+b+Fs4qmiLAFVcNCginPY3pXlxF1HzlCw5a
FCBYDNzMEFxDhgHtQeZ6FEhxfnHFWmkN9c5bk5SNKZAkaC6vbrOG9orqqvQ4
UUDOguS4PmsNcQw5THo0BfBCJ9fM/uGBTfuJhfgLFJDQ0hXZt4cH9gXkFG2P
pcBgi/64kxkP3CyglKxdpUCYga1XlA0PGGm8Kc9OpYA6WbHawIMHIjemsCYL
KaCbvTvzVwoPrJvf9SWimwJtYckvSas8YCiT2OHdSwG9SY10V0FeoOwc63Qc
+Pvn9P4gXZwXmIEPutVGKbAevYq7qMgLDqMCA2+nKXClGJO3MuaFlM72STFR
Kng128bFBPGCalUo7wMTKlw3lTv+nMMLs+tox2rNqHBqF6e7cIEXGl3NW35Y
UqE42pi3hI8PQqd4siwIVBgzip7pk+ED9uZr0OdMhafvSNSJvXxw8cqDcxrH
qRBSat/8/hIfjLm9WclPp0JT1XunNn1+eP0o26flIRVcz90cbzLmh9RfcR8X
sqnQw/BK6tzHD/uuEtOJTCq0vY1v0aHyw/3qVvMfFVSIb4GdlZf4wWnLSMQ/
bCoYFR41eDfMD2Uc0cVyPhpIkH8Q7MsFoBnzMcsXpEGxydylf2oEYCKRFXlP
mAaq/HdL9T4JgPr2kLVoCRoMLZh99x8XgMRjAwK2ijT44ZJ1V1FNEPwGn2/4
uoMGpLPuOUeSBOHSf9LOTbtp4FgoN/EjXRCyzgekvDamQYlwsXByoSB0qm6R
zbaggVLjo70GjYJgTU9U9LejgfYeiYw2ISHY3OattepBA9cBEZz6JSEwz8aO
cA7TILnSJS8rTQgoQYr5g0doMNFlirfOE4JESbZuvT8NxHr+rC42CMGyg5lh
chgNFCTHPqpJrIPOd1JmGsk0GCN+ZDdkroOk568PWGM0oO2u//fpkDBQyrO4
oTU0OMoXoxK3LAwaZbEPC97R4I754PH7MiLwrJjIEW+iQX969kICQQQ6H39J
au2kQc7hryMFTBFQvzXV7DFNA6EKPtyHGFEYv9ESkjJHg6/9D34YZYpCadIz
1VouDby4l43+VIkC/np44LY1GkhTPr2NmBeFozFCElNidBDiiFx5c0IMSk6q
OkZo0YFHLDi24bQ4nA3knSvUpoNo1EIU8bY47PMfetCrRwePR6c8LSvFoc2X
+cNqJx2MbgVyY3nXA9fdKF4Y0eHSlzN0dup6sHJ0+pBKoUOORHnIfx0SIGq/
I7ieTofpivzuOL4N0GYro7TgToe0tup87vYNcAT/1Y/hQwcNFce0+ksb4JrZ
EdEtQXSI6smv2asuCZ91ou1KrtPh/ZUnSp2TktBf0NX4JJEOVXXja26CUjCl
s8ch7wYdFKpKXxmrSYGo7g+njNt0ML/vo2foKgU4XZprfDYdbjqzO0zfSoEL
s7z9ci4dHq132aTSLwUeulLkiwV0sJt8KRW2IgWRug3U8Kd0OMnMJuTslYZn
ukb/Hq2iw05mQ4DhC2moYd7oP/yaDk95lUJ3dkkDW/en579v6OCe1ufcsCgN
P3VzvEn1dDiv+MYLQxthq560H76VDrXFS1ddWjbCbb2p0+qTdGieLvlAlZeF
3Cd280pTdFD8qLOnGScLz/Qeh8r//uvF99bonpIFth4jXOIPHcAsNeBlsywI
6zeeW+ZjwHVq4bhomhzIFWrxcgUZcCHV5fSDRjnQ1L8QMyPMgBa/h0DlkQcr
fZO4CQkGyKRHPIw6IQ/h+rnXOhUZoBmzJFR4SAGuFPKKt6kwoD9lC/XTAwVI
0z+U8EmdAcZfpDKivilAqb5Mct1WBgzovUiqOLwJJvVjUp/tZMARLFrNN04R
Fgu/yZXsYUBgtlgR87MiCG/fe+eJCQPitV39hTSUQHM7594jSwaoMq19POqV
YOR4cc41WwYYWvme3D+tDP8DgMXNgg==
1.], LineBox[CompressedData["
1:eJwVkmk4FAoDhWcsY4axjZ2yJVESZh/VHEVETRJRSrfsEY0oQ6K4Ksl+dXOj
vaRFsoWoSZZEm+pWSqlQuEQSwny+H+d5/5z3ec6PY7Qj3M1fikAgpMzm/zRO
nz5foF+yfGq18vxd9hJ+JdncYFdQOr/t9Bn/yw4Svjj6xgWzoNN87xXCoa5V
En6jlTCQFFTM96nAB8/VEn5z6nOnn4F3+c9PXLdxFEj4D3mJVQOBT/il2/LE
dC8JvyWzQ/g18AP/nUrVaodQCd+5Vk7QEzjEf1t3MNn1Lwm/TZFFkdlKwLmP
tg9uj0j4K9Id7l1eR0azOE75xwIC/JdMKlorqoA9sX70jhcBa839hzUd1THW
bng3I5OAWy/ioh5ytKH4I2jidgsBtrSFxTLxc2AvKt/9QJGIwN9Z+Re9DDHe
+UO834OI8MZeevFaY6yKE5kKC4hI2UyaPx1qAqLgVa/NTyJ8m2IDrINMkea+
SfO4QApiOZ31IZvMwIxJzfYsloK1akLut8iFsGjZ55NpIo0/fiyzEIRaoGys
n3zttDTOFjTM+XXcEr0eb0y2sWVQmsbreO5mhet3LMSWn2UQWb3MNX+NNQxX
fXxllC+L8s1NUm9crXHynmv5kTOyGJt0LVf3sIZHU0H38HlZiGz9dFO3WsOo
/rHDoyJZHLiT8iUmzBqlZuYuebdlcbju32ivDGuYO2+4evWFLPLuC8+qvbAG
8ZZF3g0lEu62XBw56m0DKZH8rzcpJNzSfiqM22YDkkG21KU0Ei4ETH7f7WuD
qotmNZFZJKRIrRvyDLGBcb0bXzePBHfeeP/8WBvEpyf3/nmFhL4rzt3iPBvM
JYT6f2omQf3o0L8Tb2xg61ia0EiRQ7AjtzbYi46EebIXJTlyGDTTaSjZQkeT
rpPgx0k5RMhPtE78QYeJ++qF/QVy2N92+93RYDoGFR9l9BbKIWMDZ+pKDB1F
9m/L1WrlULGNbdt3io72MkHE8h45SEUzq3Z20WEVfyCevJSMw5s0xLe66Yju
zlZNsyODavuzefIbHaRfnHxtRzI0Zspep4zQce7VotqlbmSYJTHGi6QZ6Jor
7BEHkbEug87un8/AynaBXWMuGacKrctDdjJw0m+H+X9jsz9849t8OoyBS1oK
mdLTZIzK53a0RzBQ7Z9WYSBNgcuuSeLSWAaudL7bEqxMwaR1vYCaykCyizNp
pRkFm2rcv167zgBvKvWQljcFmo/36Q1+Z8CW8SEnuYGCFZIrlsY/GbjeMLw1
oJWCMKt3dhsnGFhnnKOxtp2CxiwE1RGZ0C8YjV3SRUGUJ6U8jcbEf2Kjzaun
KXjxMU+whMFEcQDBrYMlj8wftQd372Oi/gZDta1YHmHPM7ZviWVigXC4XrdS
HmtKfO2c4pnQdr78KrxOHqRwCtHwMBPRscbOVm3y2N/nnvAkl4nfHwtLFPrl
EdDVf8Cygglqh6k220wBS5/o7B8YnfWVEsOrCxWgc2PA+/U4E96KrYHUEgWM
pd61fTDFhJv3Tr/AKgWUOPv//keGhb8eqV7mtCjAtPFmjIs6C9+yhATnAQWo
1jqKiugsnDJs6GPaUNFTFLU3KIKFrx7fz1xpoGLj3JnOwr0s5DP9J+WfUtGQ
nuz4LYaFJvXk/aK3VFyIPKG9M5EF2Qjx9gNDVOxYXlUdksPCvNbb6Qt1FdH5
bGomrIKF1iKrbSYRing5nng4apKFPeE3xKGLlWAfQv1ePsMCrVDmaBFXCWXv
c7zGpNiIy/hz5YSDErLuXzTfp8DG6KYs4xYfJbimNj2KnsNGxnho9rJMJbQa
KKjsX87GA6b7ZOqEEh6syvr70CE2Bkss9EdfK6M7oKYtJpkNZZvimQs9yiAd
/iK1J4UNEWvaK3hUGU5NrF2+WWz4Ov2dpUlWQatjh539OTYYacIhNxMVtDuZ
9Mven+1f9Xki9lHBJ+eKZUeJHFRV3lQ2facC6ZAPEQdlOSi+piv0+6ICk2Pk
QhGFg6yRLnHxgAoCHm2m7VTloFBDcn3XtAr6XCQ9zkYc7NF6vTjFQBUja5wy
qHYcvH9Wru4boAriuref0hM40OWqjeRKVNFc5zEvMokDAxPT+iQKDRmWz3y9
jnBQdtblRKIaDYZKzV8MMzjgLF36u2wBDWgr7yk5zcHTz57l/a40JLhk9rXX
cfC8rp7RfokGpxrqotv3ObDsUNrbW0KDyqIjIacaOWhL6n+qXEvDGfn4Ab/H
HNTUBt/Kb6fh3sPQwZ/vORgPqA8pI6qB4OQ0ojXNwbrzMY+kdqihubLeZorA
hVz4m/TIMDVkLODv+SjDhRpZw3UmRg2GcqzRQioXcwfKOjfnqAGN88a4c7jQ
X+NsgWY1JNhLJrxtucjOjzKQMNRBsKsgnhFxoWzk+emmiQY22/e2vI7jwvLD
qWgjlgbKHLVzVA9xEZu0r7LGUQNBghjTxJRZ/4lKeniIBp55L3cJ+IeLvvzh
/u4yDZzb25hjUcuFSXwJ8ZyrJqZEv7b6i7k4bnWia9JPExvjzBYUNMzu8/m9
44hIE/JJKVXKj7lQ3TZ51P68JvZkCjpHOrnYF1ajt2lCE/bXXi2oIvCwmF4d
f++mFgqK5YaHZXh4OXrs5ONmLYzf4lQvpPCwYe+uZMMuLVyryltzSpWHqC1Z
wTk0bWg0+QjjjXnwfGJe9z5aGz1dPdUO9jwYFUVJ67rrAN1aSQeceJAe/Dx3
ercO8r46ra1cw4O6fm4pN00HgqGiD2YePJRKmQ82PNRB5VSYDDWABxO/r/be
Dro4ovVr7fPDPCiu3x4931UPOc3Nn+8f4yFy0WCIvlAPp0V5otJ0HhbOZE8l
ZOmhomPZxZwTPBhubyEde6UH/ZemiT/zeLjn5hb0dlQP/wPemLhN
"]], LineBox[CompressedData["
1:eJwVkHtYzPkXxytNpTTd1Q+lhCQVbaVEn0MtRbGrtG30vUkSEhKtVLpoRYmS
SqjtvopQKKPPd+lidHEZoptmrDJDRjS6SPxm/zjPeV7Peb+f8z7HjNmzcZuS
goLCSXn917dYqSdNDAZCXcmIvrWlHiueTNHxlAaCZM7/Audy9NhtL1yL7WWB
sGlT2D+vt+uyREpJq4YCAQ8aZEU/3HXYWQfjshSnEFDdnpDTqKDDdm0NoEY5
BHyLndRwrNdm/VZwZa81CPiUEbO6c4U2u2HowMw6QwL2zbq0wuMCl+X2bui/
OoOAQ8vDbwYv4rKtfMurxcYERJiGnFKt12Q9CntXnTaX7zsp8IkWT2PB7+fQ
EFsC1n+1lE3312C/r5ptT9gRYNRyzWz+uDrLsx2f9HEgIN9nqcG8PHXWaWrl
aeRCgNBrovDm26nsEp5+7fQ1BHDHpUMlGWrsUJk0ftpaApSnW7tfWaXGXjn7
wEvJm4A/kl0XLx9WZRfuiRZ+2EiA1Gz+BtZflZ0z541qI0GAQnD7q/X2KqyQ
W/+kjiZA23aX0W4ph704ce58VRABWVG74xvKOezM5+ts80IJGLMO2v3dnMPq
/3nDb38kAa993aMezlNmOdL4YrM0AmziNTMl/kps+NT+536nCXiouWZXj4kS
2zN3jcrJTPk9TwsaGvsV2erNGttHcgkQt86p2hqpyAbxMxa0lBLwstDa3/ov
BfZeUdHliH8IMMu+HzcTfcc2rEpPeQMB+93CrbvfTOLc7pBpfc0EJP3yy9bB
E5N4r671bs92Ajx1LqgP9H7DpnE1NibdBAi8xSgifQLHbG661iwjYPNhlZ3J
C8fxu8gFr7+NErDdfEa4z+sx7HcmRddugoAWh3W52ufHsDV//f48RRJcou6n
r9Mawz2OL+z3ckm4Kxbor1Eaxct0xbdmLCDBNvg3v2buF1xivVa8wYoEi5VZ
9hUCGdb1rDBKsiFhdnbeerccGZbEhkd9tCdhr+HkpcPzZTj7w9iyhpUk7KAf
X2Y9hvHIg6n1uzeT8CQ++/BPf3/Cs/MlIxkECc78fsuWqE/Y4yDfto4mwfpz
eli/5yecO+94gUoICVt/9YvIeT+EXePVki5FkHB84Udxs/0QPuai6vUklQRq
b13e6toP+Kru28TRdBKy4+4PKG3/gF9Kmu4aZ5KglGVie8LgA16Yfcw2NJeE
ptzyR8MRg7hdxtGbUkrCxbpa3efL32PDK8pd9iwJJglWavFSMYakN7qb78v9
WndtakrFOHRLw7qjTSRcb3hwPYUWY5564t22VhIyfR6r6L94i6ntUwqCO0lI
T5t7MIg/gMtMlUKyP5Nwe05gK+K/wXn8H1+P6FLQ0LxVrdRShH1GrJRH9CjQ
ndZpbjEqxOrm/pphBhTUJ5IGnEYhPhRdNZswkvObUd8OWoh9bWl3VxMKWj2j
rINQH9Y8ey/1uyUFvEByyWe/HhxDJZnGrqTgpbTtc/LXDuyQes1ydBUFiaJ1
Zw+Xd+DB2l67Pe5yTvCe+cW/AwfoOf5MrqEg7mhwckTtc7y0aWAH8qbAXy+1
LS7uGR6y8rjxw5+CBROKzrx5TzE9qr46LpyCMqUjvN7jLTjM5bCS0T4Kwv9y
uJ4w/hBHx76vv7qfAlZ8RKoT+hBnq7Yu7YukID/VZcUrbz5+bJhq6XqEgpB1
gr6x2c0YOWlpfjtOQdUm5xhm8B42jtJ7drBQrp9689DOJTfxwrsJ6VrFFJia
3b/HdavBTooyr9ISCoaOJc3S8KvGvsefNXaUy/P/XtCvFHcdn8w5e8uhigLh
CDHHqbkST9Qanh/mUaCwc1fX+/OXcOfXmcyeDgpA5d9gs0eZSD3OQ2Pwhdxv
ylMdvnMOLeMcqA7plOsnF8+3Kc5FuVrtKkyPPE9rjE2MYz7aMjfusu9rOb/j
1ARIipHQ+43MWUrB4j832uvGVqG3+RXJyio0vJy8rHDqWx0ymt+5+KgqDVV3
FFsML95BHpc5XZNqch4fT3znykNlNcSiUQ25fluTYF/MXRT6UPuJRIcG4R81
KUu+YCQdjpjxyJgGNm/KbWf6HvqyekVljgMNXg59Y9JPTUj577Iu7lIaBvNn
6GgtbUb6mvpqiU40lJUGXBAfbkZ2gndMmAsNrYs6u/jKD1AYmW3ktpKGQ9JO
u1/1+Gjg4HDCoBcNFZVZWU/NW9DLsvIAFERDw1SDgl0Gj1Cd+nS1/jM0ZDpd
aAqzECDTpEZxVCYNTm63b0y4C9CxHxF8bhYNPZ8KvHcxArRRJkhxyqHB5pT5
0vE8AZL0ntY8eYkG+2jD7CbtZ8jomqbeTxU0RLYKbHyHn6HI3zgmRxv/my/r
Xl/cgeyKZD8Zj8n/8ehi4YGGTlRHUornxuVzb+Puo12dyG1ma7v2BA1FvbYj
0UOdyPdM4Q7l7zR8Naq2gVldKDJu46X3UxgIdsxUmdzXhWq3VKnXaTGwSOLe
xBh3IzDYJfKzYEDbRtF8Z3APWn/s37R0PwaMVqUxYW2v0Jq1aV6O/gxsNj6w
6IPoFQKus3rP7wwkMdHuW0ZeoSVZaUkWgQzwJGZVGrP7kH6Jc3T9VgbcempK
ru3pQ92Np3YMhjMwfdz4rIGqEIVwlrt7nGDA4taDIKt8IaL5A4rSkww0zas2
iy8XooDU0zgjjYHYiimLnl4XIi+Dt8v6TjPwY/yeJ9EoRLbzziyJzGZgBi85
1eKdEI24i02Kihl42TZgmWQnQh/VMno8SxngVt6JiXARIXHrityPZQyENHy8
GOguQp2+GQYuFQw4ZruTxn4ixAtynfb0OgNjy+9U+kSJUM0CCf9gNQNPv45a
6caL0JXBjGTjm3I/T7nqYYoI5UdIlHbUMtBu9rHfMk+EcpwyWe4dBkJzRcWP
i0TozDfXmGoeA3vftyXvrRShFFbiElDPQKJn4ZlpN0UoITFz/AdmYK716raC
ehH6P9mIOYE=
1:eJwVjnk8lPsegMcSXdINhZgilBRZb7mlz+/7DsYrcSOpDrKco4bIljXLpI6L
xCSnxVI6Rc5VtiIV/V6uZC2JMORaO8rOIDOvnO4fz+f54/nn2eYV4OgtzmAw
An7wf597MSWc9kWgURC1uWDNOqp22uF9ylkEjHh+6VuhLGX7+uKRpgAEvJ3R
JlUlspRr4KC9VQSCiacaVmnqslRsfa7tgSQEQxl+yslrZaiaYHUrnUIEAdwP
Z/ol1lLChWkesxiBz7Te5FCTNGUaSfXJP0Ew86+R1Kvp0lRBnOd5+gWCZElu
e6OWNMVLuX//fROCHSf2pabbSVEe+Tri0V8R/LPhUsfeKkkqU/ebXdAUgks+
ZWc4KZJUx6OG26fnEHRnyPy02U2SIp/4GDkIEdRcuv/L7KoEpTJwzFBxDUAj
czXd0laCWp246T62EWAwZqnz66IYlb2Hu2ZYCcCpT/vOvrdilFkgp/CTCkB+
Jm04lidGBc+bLbUzAYCtO3/OWYz6vNyTWq0N0HX4qtLESwb1Vor5Kt0UIGxL
cq+UwSq+o5HLPOgEoF16LDJeQYTXJxs16DsDSNIKR3kfhThuvjZk6wkAvZRR
pJolxB71o02rLgB7hw7vz94uxJp+uyNrfwZgWg55G8Ayzn9W0WkdAmB5Peai
S/ISLrJvTXVMBxAvqSvX8hXgrZWn9ltkAIwdNx3deUCA07bNjJrcAGiz2RVy
aZ0ABwoUDm7KBIh3Wpk3LZnHxpknxrvuAWRsUCQDRXO4YnTY2q0UQPCo73Fi
7iyujhYyOG0A78TH75WjKbxY/Hkmvh3g+g6p45cnJ7HhcPtATgeAYutDqeGs
SfzAppD60A1w9pDxwUPCCZys5MpFgwBnPiZduVE9jp1LqleV5gDC47LSxl2/
4Olh7vfXigQc56g13V0YwTuV/acGNhFQvL65srNsBHsdOtkvUiZA0bXhRUjg
CP5YYvTKiElA52k2Y2RiGFfFDMXkaBOgplASHvV1CCcqW66c/wcBV+/t2l2y
NIC32UrTWscJiHWOlisq4GPTTot21ZME1MdNTTIJPma7cwvkXQgIlsmaV+D3
YN+QZafVUwRUFJbK8uR68NOs8cf80wR4KXl7lER1YfbEO/drYT/6b6Exv/t1
YN+rt/77/TcC/L5pVO53aMXRyp23F24SUHVW3uhvuS049Z584MRtAvS+13T9
Md2Mn5QnM/k5BNCeP7m7XGvC9Kfo0PI8ArIZB2Sc+t/gtD2eOn7lBKzz5Dfb
5dTip+90r/R0ELB2u7q5s20p5mnV5Ak/EjBj4u9uTRfjs+EnKLUeAjboRBnM
/PIYa6r/e8HtEwG8vCL+UVSA086NuA+NEuDBjsm8aJCNfeXumo4vEgBbm7vb
KxKQhu3GflqFBSC1eGd3VjlKqf9uqOHGgrrLOxKN3jUjCPpstMWdBQ/6R9oN
2C1IoPbWWNWTBZWhcYq1VS3INSjHdKM3CxI7DbfnFbQifaa52Vp/FjAKwqUj
LrxDb4Mi0Uw0C5y9Z01mEt6jDVsEdlQ2C3wX9irRgg50PeSLr0cfC6S6zOYa
7XuRKjsq6Gg/C7gx626pxfai31VkI9gDLOAlxlfbPO5FZdV6v+qNsIDDjzti
LtuH2qQD734bZ8HnsEEJ7us+tD578QNPxIJuo8H5QpN+lFgncbBG1QLMW8wU
Ji4MoOhNW/+uedICqjw7Fhw3DqM/dNc0nR+wACHDcN5LfgxJCcQ215yyhIq2
61ui1CfQQ8PS2Dt/WsIN9zfPMqVmkK7Xf+xX/K3A+E6pbFfjLOq1eV52bNwK
zPXtsNaxedR+P0ofhbDBcZPN4osZAfr2xMFcc44N+fImt9/4LKLVyuDyhHPW
QC9+8HTpW0K2hmyr6AVrKPpKl2lELKM3bgY+Z0NIeJRk8ivIiJDCz5yXOaEk
bKzltEXKi9Apzj25tnASGth/7itXEaHFYMUy02gSpORdfY11REg7cUm4cpmE
MPttdWxLEeKW4RTeDRJSK3VT+bEitF/6SEn5cxJIKulI44IIJaxLEh97SYJz
YkCU3YoIvZevdVJ9RUK9rL15hySNOEzT5dhaEvzWBN76okijm0YqLLKZhKFr
6TtMjWkkcBn4wO8jwXqDnO3hABqB5+Ydcv/78UuMjYvCaHTltGMEGiTBODef
UxRLI82gOuaDURIe+HKkmak0ckgo8PafIkFJ4Yiz6mMaZV8ZfHZ3hoSR8BDH
wac0GuOpyrTPkaC/x9C+sIpG3KyUor1LJOyKLHYmW2jUkvua4bNMQkp3lp9a
B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O
0+gvaaJrhg==
"]],
LineBox[{{0.580471590483438, 1.9514200875838648`}, {1.4721511207270248`,
1.9683836516713138`}, {2.186634699903562, 1.9825925710320407`}}],
LineBox[{{8.939556785751089, 2.152490616868101}, {9.207993935126206,
2.160967792009999}, {9.299305334729599, 2.163889625808596}, {
9.481928133936387, 2.16979276003634}, {9.847173732349962,
2.181842875836804}, {10.577664929177109`, 2.2069690219426485`}, {
10.59036934281167, 2.2074186517273064`}}],
LineBox[{{15.835754719747317`, 2.4414299437024716`}, {
16.687319194227936`, 2.4915397677971853`}, {16.73197212591572,
2.4942919725966415`}}],
LineBox[{{22.763523401115037`, 3.0445179991141096`}, {
22.947972382630205`, 3.069820622958715}}],
LineBox[{{3.091055018879432, 2.0014259047659824`}, {3.343293478053214,
2.006857035698921}, {3.7422877758768687`, 2.015614922736117}, {
3.7668673388151013`, 2.016161269426587}}],
LineBox[{{18.917112571488154`, 2.6470421147113985`}, {
19.747774596335077`, 2.7162552749872737`}}],
LineBox[{{21.479840917662276`, 2.887241944107288}, {21.568829651773182`,
2.8971921120413873`}, {21.76553538422295, 2.9196521759320224`}, {
22.158946849122486`, 2.96659757335866}, {22.200608173424442`,
2.9717348968934307`}}],
LineBox[{{14.074903605578868`, 2.35032866174145}, {15.180775289873466`,
2.405721642181061}}],
LineBox[{{17.05545921690165, 2.5146262200643115`}, {17.42684360447982,
2.5388652813832806`}, {17.76539538460842, 2.561843832651462}}],
LineBox[{{0.09344920708285748, 1.9424942553287703`}, {
0.18402156866230668`, 1.9441367148350859`}, {0.36804007610012357`,
1.947498215336329}, {0.48480832517731554`, 1.949648438817852}}],
LineBox[{{15.52807047584685, 2.4243668761537593`}, {15.740091454441195`,
2.4360684247050886`}}],
LineBox[{{18.492341839908118`, 2.6142740417093675`}, {
18.821449306182032`, 2.6395162373133374`}}],
LineBox[{{19.94153124592807, 2.733470483245029}, {20.169965455101522`,
2.754330941876069}, {20.516695809373633`, 2.7872225167896643`}}],
LineBox[{{23.226047178497186`, 3.1094414545487137`}, {23.64920156591676,
3.17340116189556}}],
LineBox[{{22.30769504889355, 2.985091982002679}, {22.552358314022023`,
3.0164564905150737`}, {22.667860135808915`, 3.031688294707287}}],
LineBox[{{15.343333012503038`, 2.4143697715089045`}, {
15.432407210540728`, 2.419167306163315}}],
LineBox[{{18.278595664705986`, 2.5983979935088914`}, {18.36672775876869,
2.6048959453198033`}, {18.396678574601996`, 2.607119481454969}}],
LineBox[{{16.827635391221843`, 2.500232297983178}, {16.959795951595527`,
2.5085393163924277`}}],
LineBox[{{24.641395340750787`, 3.343565604471415}, {24.655365320941417`,
3.3461915693103883`}}],
LineBox[{{10.686032608117792`, 2.210818688735391}, {10.695435342311011`,
2.2111542530000747`}}],
LineBox[{{23.043635647936327`, 3.083246216359192}, {23.05083928655206,
3.084265758591256}}],
LineBox[{{15.25449064936491, 2.409626312171736}, {15.25449064936491,
2.409626312171736}}],
LineBox[{{19.8193359030368, 2.7225634976773403`}, {19.845867980621946`,
2.7249171149694478`}}]},
Annotation[#, "Charting`Private`Tag$48818#1"]& ], {}}, {}},
LineBox[{{28.992520401116344`, 6.989114408516514}, {
28.992522325141426`, -3.5027620306546083`}}]},
Annotation[#, "Charting`Private`Tag$12001#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
......@@ -475,7 +331,7 @@ ehH6P9mIOYE=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 150}, {-4.790211036257171, 7.236631161024249}},
PlotRange->{{0, 50}, {-3.5027620306546083`, 6.989114408516514}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
......@@ -494,9 +350,9 @@ ehH6P9mIOYE=
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}, {3.88008674094413*^9,
3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9,
3.880087992161138*^9}},
CellLabel->
"Out[231]=",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf7"]
3.880087992161138*^9}, 3.88069400745238*^9, {3.88086082362481*^9,
3.880860840824017*^9}, 3.880869126504476*^9},
CellLabel->"Out[15]=",ExpressionUUID->"fc3a6f0e-96cd-440d-9384-66ff4e3f2956"]
}, Open ]],
Cell[CellGroupData[{
......@@ -550,10 +406,9 @@ Cell[BoxData[
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9},
3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9},
CellLabel->
"In[232]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
CellLabel->"In[16]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData["48.01652525001887`"], "Output",
Cell[BoxData["35.89034438287419`"], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
......@@ -563,9 +418,10 @@ Cell[BoxData["48.01652525001887`"], "Output",
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, {
3.880086743953726*^9, 3.8800867473357487`*^9}, 3.880087715279483*^9, {
3.880087808333634*^9, 3.880087992954145*^9}},
CellLabel->
"Out[232]=",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844"]
3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9,
3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9},
3.880860843173624*^9, 3.8808691277708607`*^9},
CellLabel->"Out[16]=",ExpressionUUID->"43c6b393-af8b-4903-9f47-817769bc3c06"]
}, Open ]],
Cell[CellGroupData[{
......@@ -598,15 +454,15 @@ Cell[BoxData[
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.8800866773952007`*^9, 3.880086704667201*^9}},
CellLabel->
"In[233]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
CellLabel->"In[17]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData["8.088071130275875`"], "Output",
Cell[BoxData["25.351749791847226`"], "Output",
CellChangeTimes->{
3.879570442808729*^9, 3.87957064413636*^9, 3.8800867486475277`*^9,
3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}},
CellLabel->
"Out[233]=",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127"]
3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9},
3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9,
3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9},
CellLabel->"Out[17]=",ExpressionUUID->"c1ef58b4-3b2f-4db8-b274-f079d4bf1a4d"]
}, Open ]],
Cell[CellGroupData[{
......@@ -659,16 +515,16 @@ Cell[BoxData[
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.8800866795052*^9, 3.880086723648281*^9}},
CellLabel->
"In[234]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
CellLabel->"In[18]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData["0.7696211451653487`"], "Output",
Cell[BoxData["0.6514573663189586`"], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.8800867527823553`*^9,
3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}},
CellLabel->
"Out[234]=",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414"]
3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9},
3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9,
3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"948665ac-1376-42e6-910e-4a23a2bb0b60"]
}, Open ]],
Cell[CellGroupData[{
......@@ -707,171 +563,166 @@ Cell[BoxData[
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9,
3.88008672825279*^9}, 3.880086759707464*^9},
CellLabel->
"In[235]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
CellLabel->"In[19]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnc4Fd4fx+3M7L0uV8gOyag+x6qkbCozI3tHIdIXWaWQrWyVsgpllJXs
mRGi7HuJIuRexO/+/jrP6znPc57zeb8+5/McEQcfkxsUZGRkreRkZP9fn911
oDnh9ODstOZbkZOTUWfbhjGXrmDcoIIpRakd4wiH7Y2RGEwwjEa71KdhbsKz
5gRhakwchHI597ljIsHzTKDXjnAmyC0f46LCPIHhPdeUdeES2NPQaE0QKoQj
3+Yk1oTrwH6QyrKDpwryu3P9fgp3waFlzoUW8k9QXhH3zVNuEiY1pqQuOA2D
CwxlrvrPg9P27WqlqW9AVvC3/tuDeWheLT0SsvcNMqgEprqL5mEv705DBd8U
dHY5C5WMzcNNk45d/NUpkDTbL7ihvgAdol7DiSNTgHeVKP1OvggpFxvxxZ3T
4J4c1jiYuATFZSX5LoU/wHvx+Hx1+TJkZWkGND6ehRnbCdqWrmUYrJabkciZ
BdPxWLm+hWXw4wzZiyqdBdUeXPAi3wpkkTHw8HXNAuWbYhaumBWY3+f8Uk4+
BxmhImdv2/0EcYn48mDfOWhh581UY1kDvb5aChOdeVBO6GzUlV4DG8+IJCHj
eXhOE7RgfG4Nxuxyc6dt5uEhcUzePXQN4kTUuJRuz4PFj5T2LPwa9Dl2BqqX
zMPKK5atveZf4LOe6VRFvwD0IlESP1TXQXb/uwL7pwXoPJ0kf1d3HTzy1acc
+hYg+mrOKUGTdcC9tJku/roAFIm156081uEzC1Un9eoC7B6sunx9tg713D1J
MhyL8HPK/OUAxQYo16a+ZHFYhN4MiePNvRugoCrDQL+1CPHVyifsJjbAydJy
tXZ/ES4MaqodLG6AxJkCd0vqJWg7Yq13+nAD7pdEHA/kWoIPtxLdak/8gbTX
LsJ0qktQZkYsqUz7A2o+rWHPg5bgEUuPVP71TWAP7T+f+nsJ6k4J1hh4b5I8
AiN2ZwkWbH1g/84mDAgvOeUdLIFGGbvZlfRN0PEP/OjGhAO8nnUYU/8mRF9L
CFKRwoF25NpAsMYWDDTuFVVdx4H3K7CU0NuCE/FEbVUXHGQNJS2MWGzBxzxa
iVIvHKwLqxDl/bdgkPbPc/sQHOR8uCu69HIL4t9XM1M+wQFhmznQhGsb/Inx
9fwtOMAKOhweYrfhs+iZB8ntODDQqY4rO7ENDx2+WBF6cFCcfDWH9vI2EDBa
a4ljODCRz+9ojNwGjIuY6/YKDu5abBp7Jm1DIGNs//xvHJSE6U7x5m4D+Wtt
7pYtHJD1Lq8H1G/DecdFzQsHOChzVeST3tiGs/w3n8Wy4GH8cVTR+ME25OvN
vl/jwAPV+zG5aMa/sBkvnaXJiwdL6jvasxJ/wW3hsKRGBA+0BZ88023/wtNa
hsL+E3hw+GbWRNn7F7Rar0a3GOCBPnvWy2/iLyi87gukMMHDW0tvgR9LfyE4
8EqBojkeKCdjguvJd4Ds9M+S61Z4KBqvV/I7tQNrhzdUN53xcCnj/Nx3nR1Q
eRw5WuaGh60rI4mXTHZgcvVG7hVPPOh+XVuT8NoBrJjs2yA/PCyNYl5+L9iB
wVmNwvUQPDxKLbO4VLkDtULFgWJheFAxV6eu/7gDPLJuLufD8RAzYuqQOr4D
ASnHCy0j8aCQMsNCubQDVusWKxfvk/Iw9Wry3dyBxGOa+lIxeJAcjha4dJQA
cmpy5u/i8TCYzN5Tx0+AK+eb9hwe4iHIJC9Y4jgBmBKPvz9IwEPXUN0YhQ4B
pr3EXSmT8OCfdO6+rzEBHoUUWXkm44HPeFjpuy0BjN5+sWt7ggf3wdXEumAC
TP5OS9NMwwNbYjBIxBBgpSewwzkdD/WGNL9SUgjQeS+N+k4GKW/mJ08pCghw
tFTd6G4mHhgGhPV9KwjAllXx3DcLD9WPSonTHwjges6A1iQbD9YGai/1uwlw
2fpOgOhTkt+j7RZ1XwnAeerFyiyJS/tMqCUWCZA4d9k98RkezBJ+VKX8IYA1
/84f2Rw87F/ydKAgI4K+oUpUPYmLGIksvkxEyHj2SlAlFw+Xe+83TfMR4dTX
g8Y8Ev99wOatL0kExvBll10S5+jnCtSdJAJvtwyPdh4ezjHI9IhrE6EmN20g
hMS/umuDU4yIUJxJ9iifxGnxupIUtkRQpjIyfU/isxe/jPl4EMHwe6DwBxIv
0dndnw4iQsKE958KEj/u+qmkH00EAUvt3mQSq8YFzdU+IcL8rSNlTiSeuUCd
JJ5PhKvEyZRjJI6lTYaUciJ42CxHjpLup9Ap9Iv8AxEChtxCAkg8HvP6qU8X
EWhVcoMoSHzvvKr+9BgRWgXH74aT6pc88pl4cYEIIn3eCT9JeQ22G7+s3SCC
onpX0TkSB0V/txA/JIIV47XPiaR8Mec8qFMYd+EwO/t3F8mH3+coBx+JXQju
dHWkI/kSWjhH81dpF06GxB1gSD57KOhehaJdkLodNnGc5PsYStiIu7YLjPuq
xsyk/vhia5jK4rwLYQHav3+m4CE8jFUt3X8XbvK8GKgj9dNEfeq9oge7QENp
b3mc1H/RE1fEpDN2IXAD0fQ8xoMSgbfzTdEuqFgm7Ng8wkPCyRzmpo+7kMk5
U3blAR40K5/nTPzeBdyf+MisKJKfflet6/u7EJtVHtAegYfsNamlJdo9EJZi
qpq/h4dtqQrZLZE9sOqiE/gTioeS4vcfjprtgVb3aLNtAB4s2oKvp17fA8sG
lzOc/qT3P69BJeC1Bxycp1g/+uDBBtOsfzx6D2ZdVdpm3PHAmt05qV27B3s6
Z/8Luo6Hxrr4u91te/Ath2q2zgYPHuOXRI2H9mAl4EzRqiUePnMOudmu7IFg
S4eVOGm+BCdOEIIE9iFMx6955QIexCuynx5K7gN5QrPne108DPfZoOiT+/AS
i48P1MKDLMNczBODfRiUzBRr18DD7P0VrvJ7+6Bjdo2mTpY0T4pK65UT9iGv
jCqEVQoPGp+8bRsy9+HvBwFfK3E8pJJtFne+3Yek8IjVT0J40Luzpzy/sA/3
JNOdcUfx8MaX0ZRH7x/QSS+Gh6zioDeLPbjM4h98YMuVjcPhYKmNL1fL6R8k
s7uTxczhgI/3+E/P8H9w+oEd1mgcB1EtupEtNf/g4FdqG88nHFiwhVe5ix7A
xBvfruhUHPiejp44lD8AXu/VuLjHOIh3TjhMOXMAWuX3y+7E4aCpPlu/6eoB
/KiWl5cLw4GkY+08++MD8LbqSut1xMFu1Qb7x70DiFmLW/8jiwOO7wQ1E7pD
wCsV7q+J40COluw6jusQkm8/rRkXxoGj9dFSVsVDyK1Q1gpjJdVDJa3j7HoI
RfvPzSi3liDH3CmAefQQhm1uEo+8W4L8Ox4rClfIkEaqoRef3BIoNNMRYmzI
kKfpraiKY0vQTPWS+ocjGQrXDjtUEVyCmYQFTIIvGRq+SaMiyLgEQnk2V5bj
SCwyonp+eRGy2gzb8j+Qoc5/NIZc+YuQzKScwyZKjm5891HvpFmEiNx9461V
chT1YMp86PU8GCnU+klvkiOvCpHLrnnzINRyM8mBSI4sKXjLNlPmoX5uZXCQ
mgItDii34sLm4c+xCcMyIQpk+e002TnDeXAorbnsbESBHONyJmd+z4Fmnbfe
eBUFumtD/N4iOQdkwzPoQwgl4jxm7hF2bwailhvzQ/6jRLX/3Dsu+M8AHdkz
CrVYSvTpAo8txmkG2GSvtdWkUiIqb3HWrfMzcCxm6HxFJSUK0I1xk2GZgYsa
rQYFS5SoPaaxtkL3BzwpLLSONaFClp3bDc/zp0E8wDnITIoa+aTf2IrLmgRZ
9R+muQrUiJc8eEjq/iQok12VX1GhJuX9dmLKZxK0HuothWtTowb1IOUA3Umw
LZIxe21NjYJ/f33ivTEBaSN/5CkeUyO694Ki0ZcmgPpkOK5ikxp9JPfdmD86
Dgvb6RYMH2nQVVvdb+kto1CgqXRz+hMNsjAof/K8fBTsEvofV3TTIPV/Kt2f
s0dhUoy6y3ScBml1agedvDUKQ6b+Gk83aVCQ9EW9celRaHxzCSMrdQQFCwX4
CGeNQLoX+YpB+hFkliLRZRoxDBcX3cOS/WhRFA3bk5C7Q3AuDFuqE0SLxujC
QqJ9hkCLc2ry711atCDOJpV7fQjUdS+rWj2kRRriLO/+ag2BVLH8JvYFLcpv
qjc+QzsEDDe2XGumaNE/lgNV4dRB6F0IMxs/T4eyL8+ZTfgMgMFCorSQED3i
d9M5SQm90Cu9MGItRo/ozr5TuivZC/o3T93NlqJH9ZZ24gxsvXCB4vsgzyl6
1H9RpMJysQe0MNK32I3oEdMp5+b+hz1w0vpzM20EPYo12Us7+N4NAiNE881F
evR1NotMMLELVj453OssY0BK3+wZbot2gHDSuPujagbU1CATeutoB5jZGpib
NTAgHy4l1ZjddmgkqEnNdDKgLhoFi6kv7ZAsyzqyM8+A6H55xptGtYNGepOE
BB8j0qYfI3db+QwP3QUG7kczoh8PB6R6W9tAjnVMUNuOCZm12BaE5LfCUsJS
ROoNJuQeLID8klvhGf0ODufBhLgqCskCIluBkYrn7cMgJiT8Bt/67EYrrPy9
dm4siQkJyP3T+E+qFYqnpr3d2pjQC3L39PB3LSDwcrHp8fGjiI2s+wzP12ag
h237qc2jqK68PjLGrxGCNCVp3+0eRcYX88rwFo2wpG1V/picGb0ISxKyP90I
rRdadrWYmZFSypmo9CONEGKS8KREihk9lJY7zpP7EX7eOPb5lj0zUqRLdL7y
5QP0PjSXZB1gRhe4JHN09Rrg/Jrljqg5CzL6JRsxFlALORyRw+FXWRCj2VGX
r3a1sKXxumLKigWNfnlqsnKxFvLi91zSHFjQEPPKoa5ILexKPB2n82VBfp+U
qYf730Opw3TdejwLIsSRB6rIvgeWcbvQxmYWdJviq23D3xoYb3Uit5RhRV8S
mzxL6qpgXXOSL0yeFdUItiZPlVTBkRZD5TxFVlSd1nxdIKsKVJrUXZZUWVGU
qUxvS0gVpDSw9PnrsqJXIbPtBaerwLD6Q8YDW1Yk2SyaXt36FtqLORQ+JrKi
46dqsoa/voGa2DZbzDYrilyl/riDrYSXF3t4YgisKDdv98MmZyVkMX75srbH
iqrCUvB7RyrhXuKPcw0UbEhoc1vBfryC9J/elbNgYUNekiPuZu4VMPdC4fCB
NBtSL/F/+Sq5HI52PM3dsWdD0oe7m7FbpeBMHTjT38+G5rMGRyYIJcAn3PV1
b4gN0cKrsu75EuhXFRyQHGVDjDdmMnv7S0DF8/PHiG9s6PYDhkDK4hKgGebM
VsGzIeXzfjUaJiVQnPfOPIecHYlZBtzprngJCxqEbi9lduRnE3KW6vYLcPS/
U8OYxY4Mei2IWKViUFH8XnP8GTtqw9S90xMtBvo/6N25PHY0r/dmIpS1GCr9
aN7fe86OwvS+HGNYL4J936Tarbfs6B6urry9rAjSfF40TPWwo2KRAptK6SLo
8hxuKf3Hjuz5dN/SnCgEeRfp/kv2HEjr4VXZZ3b58N1N2KfMiQM506tyFRjl
w0NPdpajrhwobYZypUozH5b99owHvDkQXnnq2AE2HwpDe0aNQzlQwDJtnfRy
HnAne0xbpHOgp0EKzbOBeXD44fXq9T4ONCYmmjutkAsDbDIMgWqciPztXfHS
w2w46+W1nH2aEwUtOX/FLmdDeUd5RytwosdVAa/KvmTDo9ATUSznOFGSX1no
TnE2XFpS+ffahBNZPJzQcLicDd11mr/nPDhRn4PZs5jcLPh8/cqwUQ4nEra8
SllplAkN5RHZMpRc6ORdwvqD+TSguWTOl07DhaYdXQZSB9LAeFkik5yeC1UG
OXO9aUgDHLYvbYyFCx3hds3nT0kD9kzu5HtCXGjWOY+6STcNPCJLY0fUuNAb
2U0KxdJU4L86Fhjqy4XkdyKNHO+nwB1yKaPeaS70vMjZ9feNZFjSYRgXn+VC
d6H/vZxFMhjFrtr9t8CFxizoou6cSwYx5goflZ9cKP7eF6czEsnQK6D8OI/A
hYK122jsl5NASPVsfwA7N9oJaFoQ9E2CVm+TS4J63Oj9oe4nTEwi0E+FXPCu
5ka7b5qm/r1JAJXbJUyP33OjV7s4hXNZCWDPNv6lop4bZQ4G38qPSIDaCydt
Npq50TVP+8xE0wRwrvntF9DHjYa3UzMN/z6ElkdO2SFL3EjWwvG+NjwkzSuD
X9E8PEjTVCX82fd4WHwukpIbyoMWDkSS2IxiYTVqlkh5jweVVhkZU2nEwh+H
fDvXSB4kTp5/mVY8FsiERaRPxJP2meMazu3HAF86prU1nQd9xxfVZJfEgFGM
8PriWx6UzFWXkXEkBj64CF6SWeZBxySIoQGD9yFFkpeqzpwXreQO2iclR4K1
rfiL+au86Dne+XRjRCSIpShdPGrNi1TNPOd2/COh+vByoqMDL2r+6eGSZBoJ
I2MRAkd9eNGoe9FJa85IYL+/quwYy4vuaWqRX8iOgOTZphtMDbwoicF2XbHy
P0jMcu6wx/AhsbiOY3GEcLh9K+JmKJYPlT69hjvxIxxsTXKE08X5EDFssvHX
53CQoR+73SvDh7jGaXyLnoRDV7Cu5Ck1PnTmuQ3mQD4cKK6JxTGa8KEpt3uM
Np53IZB77uL7SD4U/YRGwXYzFCxTbPoZcXyoZtRf4sypEBCoouf3WCGd73C9
6Q0mBH4MvXfpWuNDp/vC6tXoQ8CJmY08eosP2f0tTo+cDgbv+HalQ3J+pEdu
LfQvKhgi7slnbgjwI2YhXdbgr0FQ4knuNGbCj/KTJCmPxd8Ggk4xMbeRH9Vy
6dvtiwZCaENuZFsLP8IHJVrQsAUCmWIW03IbP4p04V4RJA+EI8KPRRR7+NHp
Da36wB8BwEUM0mv7yo86j7sNtD8NAKWyS5n4dX7kq8/tucgbAN6cW6onsALo
+0LEsR7BmzC/qBXUGiOAHjS0cNBd9AOt3P4CqQcCiMlP3uFQ3Q/yrlr2JT8S
QDFR1G0UMn5g2+Mn6pgqgB5x30xXOOoHk5V5vZSFAkjRS0VTYtgXvtw5wOg2
CqB/uzd/3LLzhVbW+q6OLQF09edvt+cUPlBw5gR/n70gcrdsib0z4AGtBvSR
e06CqKEsI2mh1gPm7OZXjrsKohHZrk27Ag/ARqTWR3sLIqvKwtiEQA8oaide
Q3cEEcfNBfNWAQ8oNmzNqEoRRBjH7bf3vd3hpb0pV1aHILq8Y/Yfs7AblN0P
ZHWRFULmUV41ym+cYfW0TcR9BSHk2JfrLJrrDDJbOpuFSkJojYo3VCjBGV45
cIzOqAkhe37W55puzvASqjIszwkhtUCP94qizlBEXBc2sBNCRj+2dmrSbkCW
l6fcySQh1EhfQb4V5wQx5o76lNtCiPGN0yuKdAcoMJyyvkEQQjw6tme3oh3g
g565d8eeEDqkTa7cvOUAf86cT3pAIYxo9jsP+a84gLW49Fd2FmFUWJu9z8Lj
AIo7fxzEpIVRJjZaKuKpPXzPiAjRtRdG7Ee91E5UXIeTU/klMX3CKGSrS6/l
jw2wyLkSKgaFkZ7frytPJ21gNVzu/PiwMMpQk5yOb7WBImzDguSkMKqaEj1a
kGwDHB4jwt1LwqjzAG/+XskGdkMp9WnIMKiUYEbpG2wNEwwqLRd4MUiwxTGh
ks0KMo5nl/XpY1CT+PeWi8FXYWvzXHHkZQwa7k7sWXa8CoaNf56qGWKQcAlP
RLbBVaAxvfiw2ASDFJ0Dq1XErkJgKNE97BoGkXnyu10cvAImA1ckZV0wKPjv
NueE9BVgDOQofBiBQf9lzniLr5tDeHNChn4dBt3Mv/JT+5UprEw3pxDrMchm
bdrYOdMULPY2E198wKBB7mvy6bGmIKNiGUfZjEF0npmCYi6mMP5aPKShHYPC
n0Z6L4uZgmJ6k5X0CAad7Lx1lrvQBJa8NoQYfmPQ8jHutNISY7jMb17cLSaC
RkWiNh7WG0LGglyzlbgIcttAU8fzDWGhjPbbqoQIEonm5v4WYwih6AMLs7QI
CqMQOB1ibgilN7ChpidEkLxFTnjJhgHQV26YTJ0RQUvy0TsfZQ2gQ+cR2S8L
ERSz/DHduPoSaHp3WLHGiaBEXG/T3I4e7I4vn2uLF0GPTat+W83qQbU2o+Lt
hyJocFXgFb5bD8R5jWmnH4ugONP6kNM5esDYNln9Mk0EcZpyV/fo6sE47y8m
VCSC5kPfHQRnXADfzxzN3k0i6OVQbXqR/nnIFXAQ690m1TN388Xwog6oK0nL
OeyIoA89yfFLIzoword1ikAQQRe6jbBH2nSA9na0vti+CCq/e0HPr0AHfIde
+YdSiKJffP6KeDsdQNGbzTLMoih9SmLDYlob5n5H2SRIiqJSzpGitVktEPv0
Is3AShS9kxr5r4NZE/plCEVT1qKoOVYXNCg0ISjtQpW7rSja+lDdWLeFoMdt
eSDaXhQdFXedHZtA4M8iTdfkIopWeXM6E4sQNNmU35EPEEWvork79zQQWBKq
r7MkiCKXVeUbKwtnIVG2VepLoyjqXqm0CSdowEtVK7qIZlG0Js9h6TKjAU3a
W7gTraLII+Uxt1OnBvy6Jl6c9FkU9ftbPcrO0AD96Hhh415RdIs6NIRMXQNo
fphwDE6Iov0mC0LyPXW4kzj/r29LFM0fTP1xEFAD502qoS4pLDJd+vgX80AF
bF/p9FvLYNGev1gJebAKWNhH9fyWxSIujoPVdWcVODdA2c55AouqJzR2d7VU
QPw1RYP9KSwqWT6/2LB3EhYdyIqJ2liUo2Xye8nnJDh92Qs6boNFdg844YmD
Mji8+YOJe4xFBB359VVvRfCMMN2/mIRFC1Ix7I62ihBoWv2V8QkWvXoZw4S/
rAix24GPEtNI52ddNhKSVYRyNeJe+jMsklLiylVfPQHElsOx56+x6AvjPaK4
1wlI/MKY0NaBRbdPpn4MDFaArEIv1+guLBr10u8tc1eAwoB+7Qs9WMRw8UBw
00oB3nEl7vb0YxHNo17L4rMKMGXJ7jo8ikWh9v/9fk6lABLzvNpz81g08Jvi
haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
7Nt6Jwf+HhihjQ0s+liw9eeynhyEnv6P+HYTi57vRD8TkZOD+0xzIwHbWKQu
6FDCxC4HGRWFDwgELGqMjUmQm5aFgntULvW7WPRJ7LK6Y6ssvDa+oRW6j0VX
+Ew2Kl7IQrVou+DZAyw61kb1jCNBFho3xYmHh1hE8XVJIslfFv4HFzk/YQ==
1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI
0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/
P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD
3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0
za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3
nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv
LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty
Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz
cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w
q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u
8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj
oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902
nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI
E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz
+mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9
LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp
r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd
l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC
2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C
zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ
WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW
AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3
IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP
E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb
RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i
oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg
UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A
8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE
MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB
AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA
3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C
bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg
/ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj
B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k
GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj
6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z
wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ
MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF
TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU
7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3
ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P
B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK
3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7
109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi
R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ
Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT
GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT
/PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW
12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h
SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G
cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2
naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ
/yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T
ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm
/jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO
PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx
3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB
kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI
UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E
bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ
wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC
ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ
AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe
LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB
gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps
m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv
ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta
+ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF
z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR
u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7
alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8
i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV
qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95
Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64
KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb
6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3
w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS
T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27
RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj
1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer
+3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA
2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F
zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd
MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV
QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL
N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY
04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/
D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s
3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt
FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM
1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY
46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ
OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab
SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP
VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+
u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs
CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B
NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA
XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219
CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6
EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea
F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb
zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX
7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI
WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c
Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83
cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP
LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD
tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG
FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY
LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577
YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe
YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW
dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv
XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj
MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK
3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai
QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z
Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd
jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn
2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf
zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX
z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt
WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls
nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD
2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7
nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw
w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj
6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN
sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4
VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF
XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl
KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq
+qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm
Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX
FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6
76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K
T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6
8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx
52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB
WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY
9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8
+pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU
juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t
O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w
bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj
LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry
JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8
oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP
a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ
NDieNYT/AXAvkZQ=
"]]},
Annotation[#, "Charting`Private`Tag$51114#1"]& ]}, {}},
Annotation[#, "Charting`Private`Tag$14136#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
......@@ -903,7 +754,7 @@ haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7696209539853472}},
PlotRange->{{0, 10}, {0., 0.6514573659417787}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
......@@ -913,22 +764,30 @@ haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, {
3.880086754549075*^9, 3.8800867612813787`*^9}, 3.880087724555195*^9, {
3.880087813143466*^9, 3.880087997646585*^9}},
CellLabel->
"Out[235]=",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed"]
3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9,
3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9},
3.880860852002902*^9, 3.880869132289547*^9},
CellLabel->"Out[19]=",ExpressionUUID->"512149a4-22e4-4c08-9068-29ce9e398f67"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{
"R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}],
" ", "==", " ",
RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}, {
3.880694241216975*^9,
3.880694245436596*^9}},ExpressionUUID->"3894cc59-ff84-4f88-8130-\
0b3a87025770"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox["2", "3"],
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
......@@ -943,7 +802,8 @@ Cell[BoxData[
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"], "r"}], ",",
",", "0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
......@@ -957,19 +817,358 @@ Cell[BoxData[
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], "r"}], ",",
"0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}},
CellLabel->
"In[236]:=",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"],
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}]], "Input",
CellLabel->"In[20]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"],
Cell[BoxData["1.6882859930125582`"], "Output",
Cell[BoxData["1.6819723510511688`"], "Output",
CellChangeTimes->{
3.88008775773094*^9, {3.880087791981393*^9, 3.8800879996867847`*^9}},
3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9},
3.88086085882454*^9, 3.880869134852079*^9},
CellLabel->"Out[20]=",ExpressionUUID->"96772995-7f2f-4004-8007-b9946c1988b9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"r"}], "]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}], " ", "+",
" ",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ", "myCoeff", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", "r"}],
"]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"PsiP", "[", "q", "]"}], "]"}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.880694278090423*^9, 3.88069431541903*^9}, {
3.880694387538165*^9, 3.880694410158606*^9}, {3.88069522788339*^9,
3.880695238148691*^9}, {3.880695299107029*^9, 3.880695399255343*^9}, {
3.880695592119051*^9, 3.880695593735093*^9}, {3.880695831316757*^9,
3.8806958598656263`*^9}, {3.880696512328432*^9, 3.880696654085586*^9}, {
3.8806967062490797`*^9, 3.880696714868608*^9}, {3.88086092671025*^9,
3.880860943550437*^9}, {3.88086099431623*^9, 3.88086102694107*^9}, {
3.880861085731583*^9, 3.880861089817754*^9}, {3.880861136990347*^9,
3.880861156730859*^9}, 3.880861188011704*^9, {3.880861225989965*^9,
3.88086123636522*^9}, {3.88086158804482*^9,
3.880861594138795*^9}},ExpressionUUID->"16514567-4615-434d-b213-\
33ee847a7d1f"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "6.811476328478858`*^-9"}], " ", "q"}], "+",
RowBox[{"3.745279174922489`*^-13", " ",
SuperscriptBox["q", "3"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "3.3578902009161846`*^6"}], " ", "q"}], "-",
RowBox[{"1.4210854715202004`*^-14", " ",
SuperscriptBox["q", "3"]}]}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}],
"+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6.77804201786032`*^8"}], "+",
RowBox[{"1.0913936421275139`*^-11", " ",
SuperscriptBox["q", "2"]}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}]}],
RowBox[{
RowBox[{"-", "7.41024534448729`*^8"}], "+",
RowBox[{"22558.281403320576`", " ",
SuperscriptBox["q", "2"]}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "4"]}]}]]], "Print",
CellChangeTimes->{3.88086116052841*^9, 3.88086120125912*^9,
3.880861255393458*^9},
CellLabel->
"Out[236]=",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444"]
"During evaluation of \
In[50]:=",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"a", " ", "x"}], "]"}], " ",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "b"}], " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "r", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], " ", "&&", " ",
RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880861385537384*^9, 3.880861404667945*^9}, {
3.880861435828167*^9, 3.880861482626848*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "b"}], " ", "r"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"a", " ",
RowBox[{"Cos", "[",
RowBox[{"a", " ", "r"}], "]"}]}], "+",
RowBox[{"b", " ",
RowBox[{"Sin", "[",
RowBox[{"a", " ", "r"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{{3.880861434068989*^9, 3.880861457611085*^9},
3.880861494055222*^9, 3.880869147295782*^9},
CellLabel->"Out[21]=",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"a", " ", "x"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"b", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "r"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], " ", "&&", " ",
RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880861521929137*^9, 3.8808615332101803`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"b", " ",
RowBox[{"Cos", "[",
RowBox[{"b", " ", "r"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"a", " ", "r"}], "]"}]}], "-",
RowBox[{"a", " ",
RowBox[{"Cos", "[",
RowBox[{"a", " ", "r"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"b", " ", "r"}], "]"}]}]}],
RowBox[{
SuperscriptBox["a", "2"], "-",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{3.8808615368747*^9, 3.880869149783291*^9},
CellLabel->"Out[22]=",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{
SqrtBox[
FractionBox["2",
RowBox[{"\[Pi]", " ", "p"}]]], "myNorm", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "-",
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["q", "p"], ")"}], "2"], "-",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}],
"2"]}]], "+",
RowBox[{"myCoeff",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ",
"range"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "+",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["q", "p"], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}],
"2"]}]]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9},
3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, {
3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9,
3.88087538894692*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ",
"\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ",
"\:043e\:0442\:043a\:0443\:0434\:0430", " ",
"\:0432\:0437\:044f\:043b\:0441\:044f", " ",
RowBox[{"1", "/", "p"}], "??"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"AccuracyGoal", "\[Rule]", "4"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, {
3.8808621852190742`*^9, 3.8808621872400637`*^9}, {3.8808622612561007`*^9,
3.8808622622720737`*^9}, {3.880869441370618*^9, 3.880869443208253*^9}, {
3.880869501822802*^9, 3.880869501983926*^9}, {3.880869536444581*^9,
3.8808695572733717`*^9}, 3.8808697342790833`*^9, 3.880869832570633*^9, {
3.880870060957982*^9, 3.880870064343985*^9}, {3.88087011615005*^9,
3.880870127514163*^9}, 3.8808701957015953`*^9, {3.8808705574838667`*^9,
3.88087055832367*^9}, {3.88087073089237*^9, 3.8808707380182533`*^9}, {
3.880874814478899*^9, 3.880874818483645*^9}, {3.8808752703279543`*^9,
3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, {
3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9,
3.880875587481934*^9}},
CellLabel->
"In[101]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[BoxData["0.9999996279403691`"], "Output",
CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, {
3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9,
3.880875593014206*^9}},
CellLabel->
"Out[101]=",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
......@@ -989,31 +1188,49 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1896, 49, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2457, 71, 2806, 75, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[558, 20, 1962, 49, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2523, 71, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5349, 149, 2249, 53, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[7601, 204, 8104, 150, 239, "Output",ExpressionUUID->"fc3a6f0e-96cd-440d-9384-66ff4e3f2956"]
}, Open ]],
Cell[CellGroupData[{
Cell[15742, 359, 1902, 49, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[17647, 410, 931, 13, 33, "Output",ExpressionUUID->"43c6b393-af8b-4903-9f47-817769bc3c06"]
}, Open ]],
Cell[CellGroupData[{
Cell[18615, 428, 1042, 28, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[19660, 458, 431, 6, 33, "Output",ExpressionUUID->"c1ef58b4-3b2f-4db8-b274-f079d4bf1a4d"]
}, Open ]],
Cell[CellGroupData[{
Cell[20128, 469, 1903, 48, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22034, 519, 511, 7, 33, "Output",ExpressionUUID->"948665ac-1376-42e6-910e-4a23a2bb0b60"]
}, Open ]],
Cell[CellGroupData[{
Cell[5288, 150, 2232, 54, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[7523, 206, 16900, 292, 235, "Output",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf7"]
Cell[22582, 531, 1243, 34, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[23828, 567, 11200, 202, 237, "Output",ExpressionUUID->"512149a4-22e4-4c08-9068-29ce9e398f67"]
}, Open ]],
Cell[35043, 772, 392, 10, 29, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"],
Cell[CellGroupData[{
Cell[24460, 503, 1906, 50, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[26369, 555, 793, 12, 33, "Output",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844"]
Cell[35460, 786, 1239, 38, 53, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"],
Cell[36702, 826, 265, 4, 33, "Output",ExpressionUUID->"96772995-7f2f-4004-8007-b9946c1988b9"]
}, Open ]],
Cell[CellGroupData[{
Cell[27199, 572, 1046, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[28248, 603, 290, 5, 33, "Output",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127"]
Cell[37004, 835, 2750, 70, 117, "Input",ExpressionUUID->"16514567-4615-434d-b213-33ee847a7d1f"],
Cell[39757, 907, 1424, 41, 46, "Print",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"]
}, Open ]],
Cell[CellGroupData[{
Cell[28575, 613, 1907, 49, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[30485, 664, 368, 6, 33, "Output",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414"]
Cell[41218, 953, 645, 17, 29, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"],
Cell[41866, 972, 647, 19, 53, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"]
}, Open ]],
Cell[CellGroupData[{
Cell[30890, 675, 1247, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[32140, 712, 11288, 205, 239, "Output",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed"]
Cell[42550, 996, 569, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[43122, 1013, 585, 17, 50, "Output",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da"]
}, Open ]],
Cell[43722, 1033, 3093, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{
Cell[43465, 922, 1391, 43, 75, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"],
Cell[44859, 967, 221, 4, 33, "Output",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444"]
Cell[46840, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[48410, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
}, Open ]]
}
]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment