Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mathematica
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ivan
mathematica
Commits
3332c0f4
Commit
3332c0f4
authored
Dec 24, 2022
by
himyss
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
data
parent
9c694860
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
36879 additions
and
482 deletions
+36879
-482
FullTMatrix.nb
FullTMatrix.nb
+35354
-0
bounded.nb
bounded.nb
+826
-0
bounded8He.nb
bounded8He.nb
+699
-482
No files found.
FullTMatrix.nb
0 → 100644
View file @
3332c0f4
This source diff could not be displayed because it is too large. You can
view the blob
instead.
bounded.nb
0 → 100644
View file @
3332c0f4
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 36835, 818]
NotebookOptionsPosition[ 35260, 783]
NotebookOutlinePosition[ 35658, 799]
CellTagsIndexPosition[ 35615, 796]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Mp", "=", "938.272"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Mn", "=", "939.565"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ebind", "=", "3.925"}], " ", ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"binding", " ", "energy", " ",
SuperscriptBox[
RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Esep", "=", "24.81432"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[
RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9,
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"q", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"ang", ",",
RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fOut", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfIn", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOut", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9,
3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9,
3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9,
3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9,
3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9,
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQDQD6hcRW
"],
CellLabel->"In[17]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{1.020408163265306*^-6, 1.9434682115973003`}, {
0.01533589602798134, 1.943748439521205}, {0.030670771647799414`,
1.9440288987650578`}, {0.061340522887435564`, 1.9445905124319236`}, {
0.12268002536670786`, 1.9457165290480463`}, {0.24535903032525244`,
1.9479797883972108`}, {0.49071704024234164`, 1.9525517709481117`}, {
0.98143306007652, 1.9618821897394834`}, {2.0454178542729324`,
1.9830133301383182`}, {2.958029656364833, 2.002196235245252}}],
LineBox[{{2.9899174114668736`, 2.002885289545698}, {3.0500121108208624`,
2.004187416350027}}],
LineBox[{{3.081899865922903, 2.004880251719722}, {4.298771468715699,
2.032343111696474}}],
LineBox[{{4.330659223817739, 2.033090717404738}, {5.230370406745517,
2.054815538265406}}],
LineBox[{{5.262258161847558, 2.0556086163065914`}, {7.124041306441138,
2.104932858194773}, {8.173138546173233, 2.1356335947117246`}, {
9.151727315943587, 2.1664489328692977`}, {10.112311928229225`,
2.1989922535225253`}}],
LineBox[{{10.144199683331266`, 2.2001147155868095`}, {
10.439885863942887`, 2.2106589009365796`}}],
LineBox[{{10.471773619044928`, 2.2118108967365178`}, {
11.793784171133385`, 2.2623054642685347`}}],
LineBox[{{11.825671926235426`, 2.263593437218421}, {13.228344634183118`,
2.3239364957656083`}, {14.211533911287631`, 2.371048144684206}, {
15.2772759429202, 2.427408695591982}, {15.997201695816472`,
2.469068213762979}}],
LineBox[{{16.029089450918512`, 2.47098698944541}, {17.299275412626642`,
2.553095173962763}, {18.35757366702705, 2.631220222064354}, {
18.575031439058826`, 2.648544318091664}}],
LineBox[{{18.606919194160866`, 2.6511241773082332`}, {
20.415705990432443`, 2.8164527768403436`}, {20.583264093501196`,
2.83393478503636}}],
LineBox[{{20.615151848603237`, 2.8373095136538247`}, {21.76163442231778,
2.9698829793498738`}}],
LineBox[{{21.79352217741982, 2.9739133900641055`}, {22.463514267959305`,
3.0635652845752426`}, {22.476388432909584`, 3.065386539629232}}],
LineBox[{{22.508276188011624`, 3.0699145486974073`}, {22.57976882002402,
3.0801551872074895`}, {22.712631165240843`, 3.0995193790226563`}, {
22.978355855674483`, 3.1396008842680088`}, {23.509805236541766`,
3.225647302026706}, {23.525311334850716`, 3.2282846262936955`}, {
23.540817433159667`, 3.230929516488219}, {23.571829629777568`,
3.236242127181056}, {23.63385402301337, 3.2469596083432255`}, {
23.745330149653963`, 3.2665373628853254`}}], LineBox[CompressedData["
1:eJwVzns4lIkCx/GZ1kYxNzNjJoNhLBMHW6vtmMv7vr+1o7KqTRutGemm+w1d
XHbbcmlLtehZk2IzLpMkZzsuzzhswlRjEpWktBK2cLJLORJFOe0f3+f778dl
w56Vm2bQaLT1H/r7s26/TJx7zQ/JnPljd2qskSGl9vZYyLD4P/6aefNs4Gy5
8FWxjQw3+xdmHiFtAJPra5mDDE6aK0NxGhscVk2/0ShkSNZHeR8/bQPaFwZ6
XrwMZ9zf+53iMKBWDTR1HJRh7WZps9SegcrFwkxOkgz7jav0JgkDW5cnuCcf
l2G+2HeV4wIGWjVk0OYcGYILEmbPW81AwQFTpletDDJ1b99YLgOq0gfSapoc
w11v1Os/ZyL3suXIiIUcV0Ndns+hmJgo96vxnCXHZdbT6MdLmCitzl76C0eO
sEVJZYfCmeA3RkQfksixb3eMHilM9Pf21wSo5NiwhVdQ087EMcH4sntH5Ujq
nn/RKpGFTLP5qfGEHNXp4rkbT7Cgi8+Or0iXw9J2r8qsZcHQSZzPzJKDlbQ9
q7yEhT5dylToBTn4z2cenNXOgv9c20udJjm0fV1VA3w2pvy8rfo+VmB/7uEf
naLZsBp8f659lgKpTx69mxnLBjfnrq+JoYDj8/qXY9+z4flu79oLfAUipNv2
DRxjI6yhxrDNTYG4z6+52+ezYQhcsmlYpYATp8/dfI+NKPVG43iyAtYH1p7K
UXDA1A32KI8pwOKE1U/5c1D6NHo68aQCe7ZK1235ioOBnYeVNtoPHm+tIiyM
g4hD5wzORQqYAmN3lcVysFT/sCTQrMAjVXidysDB3OGgn3NslEgrObHkuMIW
ps/aynrYSvTQHEagskVkrPquG1+JZo+oKx8ts4WOto3xb0clZoaNufwaYQs7
7o9Hr/soMfRm68yzSbaw8Kv/bmiFEp4bvhF3N9uiN3FBJKVVIvXhMP3dDi7c
7ZhpUWeVCOtO0ZMHuNheMlCVf06JXSu9LqYf5uLVvWxriyIlfGMKItdpubD6
hF5hNigRy/w6vb6OCx9TC31lhxINxck//CLgIWH2Fl2kiEDL7YSjf9znoS4X
N7ViAhN017fhvTxY+NqPmlwJxDwUiv4a4uEnTcsiDy8CIeJb/wy05COv1Hd4
SEmg3ThaZqHgo3E5jYiNIMCon19dVsQH7+ezv6fmE+Ayg96fzrDD7HZua8x5
Ar9dY2xk6uxAE6Q1ai4S6OIn1eX+yw5D2UmV3mUEJqcqI61v2cFUsCOttZ7A
X9ZElchSgLhywn9ODwFR9ZqQ0BQBdr+q8pvxjAAnKPr6wUwBIhd+9umfAwTM
du8vG/UCBNe4O9S+IMAT3vQvuiGAp5H1et00AVVL+5EuKyG6WnsvFjuRkOuj
HdVaIe5zw/NOSUhMmgrdki4I0RTy4HSCO4ksNf3blmohDI+akpf6kLga7dFx
+4kQGb0Va14SJELvhA+mes6B/8gRjt8aEsH6S+wvb85BEdszvjGHROeqTcVK
qQg+/WETFnkkvhv9YnE5RKj6LTXWX0/ibh6jI1Itgnnz8/21pSTadloFpKSJ
MHilOKailkRce2PMjTcieG+T7tR1k0hu+yjGo8sBBnL1n4+fkuj+tVPd/dYB
JO/odvv/kpg+b/T6Q+iI5XX9W7UvSRCBnaq2EEdE8Ys2naBT0Kqaq460OaKy
4ZO1sa4UdLMnr4Z0O0GZtepJpZSCjL+9Z/8MMW7sTFnzv39QGFhBm5pwE+OB
4Jlm1wIKjMdx9T67xRjfVfjtxgAKvYqW+Ot0Z8jtJSu/3kLBbdToeyffGcYX
wa0nd1BwuaWT9BmcEXQjcUXTHgpnqjooZbMzwqN6lwfEUaiQ3r1dPu6MH0x5
QYpUCuOr4/c8C3ZBQ4w4QHqJQldogls6T4K3Yy8yHC5TYLOzJnO9JFgQX/+Y
U0GhxLK/cFIlQfGh9fumaj747k+T+QckyDhZWNjaRGGRZvExc5cE64qkM74f
pPC6wWGQXuuKbI+JZdHDFE7eqt5X+LsrLM+cYtWMUPB9bdRmjLri/3eklrw=
"]], LineBox[CompressedData["
1:eJwVjnk0VXsfxpGxzENHx/BKabqFyqs30v7ae59jkySHUo4KyVAyXSVTiuhe
Y64bqyshRZOLRCr9fpGrASFTqCjz7GQW3d4/nvWsz3rW+qxntbO3jauIkJBQ
yM/8v6uNaIX320loVPIt/8JWx82Xf4uWNSYhZuSI2DljNVzYoZWlZ0KCnG7n
htlFNo7Tf/zMmiBh29dnM/Yv2Jhu7Z1Iokho6rnnfd+CjQvW03yWJQm+446K
6m6rcOw/S/pajiRo8AOuxlSwMPj2btU4SoJ18ocLbn+y8KRa7Ta2EwnsXc7W
9W4szPe9bqDsSkJK5upAWpaFt6jv+p+kFwkekU6urk4rca3vOWI8hAQr1j2z
LE0VfFHdCUbCSHBGVh/NZ5WxYRVjOhhOwtgJl3l+gzJOV1eluiNJmDoreP08
Whl7VxVzW2NJ+FocUWM6o4TlNSb34jQShAPNrwz2KeKXVe1WZekk5PPeicVU
KeJAv4p9TzJI2Dht3ReWo4g7q5L2F2WTYP7SccLBXREX+G21y71PgmKX9oXX
IwrY5tVpfuIzEjpmfOIDxRXwH/4Dnsc6SBjHC6ef1MliNjfIl/eJhDa3+fNP
MmVxluqKQG4nCSfkP5Zp+cviwrLNlzZ3k6CdVZjEZsniOgmfG7NDJFikpv+Z
4SKDZdOm3ycukMAdFUkYlZHGl18uM3nBpmB+kneJkyGF5VOSqSJ1CnZv2lne
HSyFUzx0LHI0f+6ry6NfH5TCt2XNDsZpU3BqcOrKMXkpXGn/u++hTRT0ikb/
/nekJBYZkb89sZMCVVJh79ZzEjhERVNO+xAFxv0JjFmcGK4pkDpMOFAA+T4H
mrzEsKbVVDbfkQKLCP7F61ZiGEVVG6U4UVAtxyr4IC+GRWaDTkh7UuA8aM4b
TxHF0W0tZdNBFCwKFUmq5C/DSTeunHqbRsHNEE9BsqgI/mocWtKfTsGONRld
dkPC2KDVXUQ8k4KzuZ8ToUEYN8lDKtyiIO2d6pUrGcJY9eJoxaMHFHzLLJFh
EcI4/fgetYznFBipHsUOEUL4zkaxN792/vwzdu1wteUSalA3XfD6QoGoe88z
tXVL6Ltc6Ga3bgq0eKU6mT8WkdX0ZPyhfgpE1szRlg8X0WR5N2/3OAW2d4KT
WRqLCPgvP0oI0VAuZ7VBZ34BtcZHTFz7Dw0Z2qXRni1zSOQi0k5eTYMRH3SK
iufQLwELvLg1NEiKujxYf3UOhTn4F59fT8N39fCdMXZzaO0Gl+DjejRkB7ol
GTfPIu8XpJguQUPr8E7+0qcZJD4pvOrFERp281iFbOlpNJufGt99jAaLLt7E
05EpNOSlJyrpQoP9sguake+mUF0ff8zKjYb7YTIql/+YQtfaSyo7vGmwznvo
eEBjCulWePnNhtOwqzhWsXbHJDqQ9OGt3k0avuy98/VwlAAx+3xMebdo6LTz
GLU9JUDG0hIlZ3JosHJWq/CyESCtKIOssns0rLwdMTKvKUCD5xIC9xTRUBu4
41Bo6QQKc+LouFXSEMTKQpPfxlGOfkFYeh8N57tXdOfNj6LTKhNzJQM0nLSv
jHKpHUUG8/oB9UM0tE9aDphljSJckX9SdJwGjfmnRekWo6j1QL695ywNLJGm
+eDrI0gy9O9thlIceJ9ctrxozzByf/2gt2YTByYeS/fpvRpAG53vWi16cWDv
cGgI3t6DXl03yhd4c+CjwCwoR6kHnfjwRqHflwNK4qxHd791o2zrocaGAA5c
OpRkLlbUjbSIzQ65oRx4O+b1XtywG61Uz3PjxXHAoeW/p9WIr0ikuSD8zn0O
LDMfy0053oXazUsL7YY4MPqUw58dakfkvmz7gBEOzDfYqp552I7u2iYsJY9x
oOFG+tya4HYUdNTVovEbB6Ju5unKrWhH7ACFLzbfOfAP62C8+pY2ZJ/hoWAt
w4W75YOfPp5rRc3Tq3ws9LggGBzwcDVoQg03g7YQ/lyIFF0wUaZrkaJQcalR
ABeGO4OmW0ZqEI8/wTE8ywXpx+YSH1JqUKOy+5EtwVw4nvtgddJwNWq5ZJeg
FvGTTUw+taa+RR1u+hMzSVywTXnQFvb9Fer5pbcov5ALp3YOKvmPVqDZh/t3
aQu4EHjvh2dsZxH68djvUdRpM8hfcrY46pdL7NHnckKmzKAx+fPEp9hKospR
z+OkPwNra9oFvsvrCUUX96fXAxgYH6k/kLu2njjinilTd5aBN7tMeHW764lp
P6VCgxAG8mdfmE/51RNrL8/ML0YyUM2yTE1uqyfCC1Fs4lUGijQUOrfnNBBG
Etb5j0oZOJ5MkXsMG4ko6d9E+p8ycDU9W1Bt1UjUK5Tbsp8zwBdTKTd1ayTc
1Q3mwsoZaJM9MiSa2kikbFUlmbc//WsPZwpmG4lJh873bR0MxN8fIwIeNxHg
tGqdzGcG5Id7lXTrmoiYEzaBRBcDu5XWFbf1NRHavi/Vs3sYCCm/kSDHaib2
R+W6eo0ysMll4En/r81EWkxXyY1xBoqVO3RMY5uJ/kT28gYBA2fGdQvjbjYT
4X/F5hnOMJAmnXNwWUMzUZ1RKeQxx0AiS+rS5oFmgnV7yeavBQbEhTnfzYVa
COd7O27VLDLgbulY5cBqIfLyfWZ+/GDA09d83Em3hfgXBlLKRQ==
"]],
LineBox[{{23.777217904756004`, 3.272213571286108}, {24.500912064223318`,
3.4109378348607606`}}],
LineBox[{{24.61034969639067, 3.4337160525576738`}, {24.730449091526378`,
3.4593125448441233`}}],
LineBox[{{24.53279981932536, 3.417522268161458}, {24.563001917687984`,
3.423798359927806}, {24.57846194128863, 3.4270260774198293`}}]},
Annotation[#, "Charting`Private`Tag$5933#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {-7.026255643989277, 9.975712471055067}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9},
3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9,
3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9,
3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9,
3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9,
3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9,
3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9,
3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9,
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}},
CellLabel->"Out[17]=",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9,
3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"U", "\[Rule]", "46.48728734369617`"}], "}"}]], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9,
3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9},
CellLabel->"Out[38]=",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617`"}], ")"}]}]],
"p"], ",", "range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9},
CellLabel->"In[39]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"coeff", "\[Rule]", "8.80922839269386`"}], "}"}]], "Output",
CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9},
CellLabel->"Out[39]=",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"8.80922839269386", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9},
3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9,
3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9,
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"A", "\[Rule]", "0.7583626465084375`"}], "}"}]], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375", " ", "8.80922839269386", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8ld8fAHA72XuP616bzGz1OdkyspPsrDKSFhF9zVRmipIZJRUVFdkk
WxkZGZn33oTIvIjf/f31vN6v53WeMz6fc87nEfO8aONNRUFB0UpJQfH/Z06k
J52y193jElFVJn1jMcc/D2DMT2POQ8XCm1Z/DU84+FIfg8GEQXagy+JxjRDI
aUwSpcUkQsbsv0QejWgIOHY1cEv0EUTeaoz+pJ4OA7t+GSuiL0DBeUQxUK0Q
Do3NSC2JVgNVRfk3U6V3UNCZd+m3aAeIC/540yPYDGXliWMBCj+gNK/J1OpW
P/hC36PFkFmgFOTU23/6AygKNz+N3Z0FbGrrNcXmH5BFIzTeWTQL1pc9+q2n
fkB7h4/Ii6FZ0HYOrzkvNAbSdnuF3tpzcIWTI2bu/hgQ/aReTVLOg6K6QchW
1DhcSL9Z/y0VDxLsUQsY80kImpeZrSz7Bc02ZwNvj0zBlOsofVPHLzjEFOmS
j58C25HbCj1z5PddOQav16dAs4sQNi+wAJ6+MgPFbNNA/baYjSdhAWzOO/1l
M5mGrAix49fdfkP48VDHtsppaOLkf6TFtgR6H8yNrsfNwNGk9npDuSVgvkn3
Uyh9Bp7Rhc5ZGy3Bjkbu6Q+5M3CPNKR4IWIJQlwT2j5/nAGHnxlfHhOX4PzK
eJ3lrxlYKGVb321cBsmQ3l3Wk7PAIBYr9VNzBVz+3MKyU81Bu26aYqThCuwe
vfvMh2kO4h1zNYRtVmCdorflDc8cUKVWGZ/1X4Gt3Ox3WLk52Nlf9B3OWYH9
Yr6GCNs5+D1uX/KVahVUZSQzaQrnoDtLSqaxexUe7CzW6KrPw53Ko8puo6vw
kN80VQDmweTbCa39+VWIpQo5tWg8D58POZvqHqxCp6LYDf8z81B7LfV8lfJf
SP2rsTkcPg+v7Ugv3jz8CwXrAie96+chma1LtsB9DUIvJw4paeOhWkP4vWXQ
GkjuvZIQ1cPDnOtF2Atfg3/P9x/um+JB5zWn3enMNXj+/UhX6hk8EE2dbzL3
roEE1xqRMhQP+jFLX8N01mHmX1EGxzs8BJWCk5TpOpg+jylmq8bD4760uUGH
dWjYF0k8aMDDiqg6STFkHR7QsH0o78FDbm0kFl+yDtFx76TOEPGwvcF61YZn
AySfSKd3CxAAJ+x5cIDbAH0n/+rvGAJYGlQmvlbegM5GwaCvkgQoTnfMpbfY
gDbG0YsZKgSwUSxoq4/ZgK+yab5epgR47aciILe6AW/Fzk7xXSHASEps0cj+
BsSxqvPIhBGA5uOQQjzTJlSevpUrE0kAJ9pw/WmpTVi3Z3u0m0AA+sKWgEzX
TbA7kBybeUwAzzG7BuruTWDI2pqoqSMAQ/Z04KXRTSgmZozVNhHgnVOQ0E/8
Jjyy2EoqayUA9Y+EsE+UWxCHW6Lz6iFA0cgn1UsaW/C9epWGd5wA5lnGM5MG
W+AY33Yu5ycB1k8PpprbbIFinKQX1ywBDIeXlqQCt0CPmIMGfxEA/x1TMlm4
BfZZgfLZmwRIfvDawfzNFsxz6J99RiKAur027ae6Ldhn/ilQuEeAhEFbzwcj
WxDa1GrgT0UE6YF4IXOWbbhXSWI1YCbCt3TOrmrBbUgzOJ82wEqEUJv8MCmZ
beCMd3xgy0GEjr7qISqDbZCjtBKR4CXChW+LqdVh2xC0TsfAgiECR2oYSCVs
w5hX+hUxLBE+naJbzsjYhhj8oL2EOBEYv4qaBZdvA8tbx+v7UkSoTH5Fmqjd
hoY20fcDMkRwttQqMevchql7L7weyRHhVY8NrdT8NhRMRXJtKhDBLulnRcbf
bWBwyudIUiLCnnmAJxUFCbodlSK5VIhg0R3XMCFAgj//3j9aP0qEzbscQWbS
JDjV3GdsoU6EXLM8oWo1sk1L3B5qEGG5syosw4oEvJqog6RFhId3DKWpXEmg
SRPKz6VDhOMn+4cu+pOg1Pn0NxFdIuAPu8VNhJIgN0llif8YEVI6fquaxZMg
Zdn3Iu1xImgmhs5U3SfB7Rk3h2myp0xo0yQLSFAwcq/gNRDhNn06ZJSRwNzc
3+oCIoJSu8gyZS0Jylv/8+Q9QYSRhJdPLnaQYGnUfbiS7FvGmmYTQyS4Ive0
TE+PHK9DraSTcyTQvrBEaCT72xfrkqpVEmzbLkcr6pPjFT/pIHlAAq9K16hk
sjFG/rQZTDtg7U05MUF2O+12BaXADixYPs0WNiDCpdZYz4tSO9DiK1hjQbbI
nBHdpuoOuB+7nhhAdhfV4dIItAM4id2Gm2SHinVZUFvsQMONHNf/yJZASauJ
Z3ZASsPZ+zrZ/a6nHrD57EDSiu6gG9lRN9m1MkN24OwP85faZMs/GRgXjtoB
ydb8hUNkj356cKvo7g58ELFPbyOPL370tLhc1g58X00qDCNbdZu//W3RDnjh
rwmKkD3FM+6v+Zbc/oT+v0ry/JPUclkb6nbgyewRk+Nka9u5Vxh27sBh87C9
avL6EUKwp7uHdkDiwUUBabIz0uZ2bGZ3gPOaZ+Ft8vqfePMsd/TPDvDovcwg
31aw3Oun5763A+HE0lUM2dlLsng8/S6cWu+odiTHc0O2/Mi62C6sX1JIyiPn
Q6Hppb4bCruQR+X/qIycL6f8VK9S6uzCnNp7jjfaRHhR/LGWxW4XKH0rLe9o
EsHhc5j7A/ddcDydw3GOnH/Uszo0QoG7kNC7a6hAzk8XTKOZTPwuoJ7Bf9mq
RGDPbv+hX7ULM42NXwaPEKG++k5k5+ddwJ9fEDghTwT/EXOsdd8uKP5rncuT
JUIrd99514Vd8NQ7MXGUvL/CUke3Q4X2AHzeR9SKEkGyPPvJgfQefPZ69qhW
mAgDPS4oXm0PfDn9j5YLEuEI40zCfcs9WENsRH/y/p6OW+Apu7UHB8lD5/VZ
iJBc9OrT0aQ9yG3RzRxmJIJOS5BrzaM9EHodYe56mAgPKNaK29/twTqfkJ0+
DRFMw3ePzs7tAWHgFkUA+Tx6G8xky2f6D4TD+uS0pgnQ/Zgz7LXDP+DNeXO7
fIJ8nn0WyNPz+gehvtFHeH4QQIBf5ndA1D94UhDjWNlPgNgmw5im9//ANY8Q
erSFAA4cURUXsPtAJXFB3qiAAMG68aMHivvQ+iFSp/kJAe74JB1kHNuHixam
dQpZBGj4lG3W4LgP3cL8EqPJBJA+VzXLmbIPpdz3xi+HE2CnYpWzbncftkcj
W1qsCcA1ua1lc/gAtDi2bpqYE0CBnsKdwHMATfaSU3VGBDjnzPKKXeUAjkZa
lN7QIc+HRs7Ax+8A3tb41+uKEyDX3usK6/cDeJphY47/i4eCcP8FpdMUKE22
9vhiLB6UGg9vJ7hQoJuZcfcZI/HQSFNC+/McBZIp4j8Qvo6HqaQ5TFIwBVrS
T5MVOo8HkXyX078SKdAz1QX9SHPyffr51OeCWgpkptghNsGGh3Tmo7kcWEpk
krHKLZ46D1ib/pfnpSmR70pJfFnCPLx9GFzdqECJ3t97kC0fNQ/fRF8PBulQ
Is3jua3UQfPAoiLJ2GVHiQyyCEUiZuR6w4EvNCaBEtWrn9hloJ6H6Lw96/VF
SpR8ZLVr5vwcWClVXZJbo0S7d92YRdznQKTpcponiRIJVVmxWzrMwaeZhW/f
aKlQbZHftXt6c/BXYvTUaxEqpPk71jJGYA48X7238LGiQmr8hpyu7bNwojrI
dKSCCpVErHKuCM4CxcAUqr1BjVKCgiJ+PJ2G2F/1BTf+o0bvKvIe+DychsMU
OVRat6mRs8SQHuH2NHAcOfP5/QNqVD15PuJL4DRIJPQZl7+hRh6NAef+qU/D
SZ1my0I8NWLu/95v1zYF958+db5tQ4P6O0kg2fMTJK/4hNrJ0qI3J4WjjZLG
4Yj2T9s8JVpE+e9klcO1cThK4ai4oE6LXp26cTbMbRz07pnio/Rpkbtv5esN
5XFwLZK3e+lMi25KM+Hbh8fg4eBfRaoUWkQ/F7bSLTkGtGpRhPI1WuQfxCZA
7BuFuY1MB8Y6OrRpmhpz5cwwFJ5QvTzRQofebW+JYAyHwS2pN6W8kw41yJcH
TigNww9x2g7bETpkffkK4R79MPTZhug8WaNDWjfF8uuqhqD+rTnmiOwh1LhX
9MdRaAgyAykXLDMPoYuVlnusK4Nwcv7CzfRL9AhJl6sFf+kHo5u4Vwah9Oj1
SWz7uQ/9oMc9/mMzkh5xRrlyeD/rB21DC82z9+jR7x27vNT4fpAtVlzDPadH
4xUu9neM+4HRe93v/Tg92uvzxe139UH33E27EePD6EL+ytesyW9gOZcqJyLC
gMZ7207fseqFbrm5QWdxBsQuoiDrptkLZpc1IrNlGVD1PfcTxpheMKGa/Man
wYCOiLRQWK/0gB5G7hqnFQPalnTmM03rATXn1kb6aAZ0aTo4rH6oG4QGSfZr
8wwoP9MY73CxCxZaPG+1v2ZE8gSdDdnBdhBNG7mQXMmI1Jxc/Cvq28HO1dLe
roYR3VD9E2z5oh3qt7Vkp9oZkUH2iYWayHZIP8I+uDXLiKpkPwyHyLaDTmaD
lJQAE6qi9RvTi2uDexeEvsbFM6FRiTvKFCZfQIF9SFjfjRklVo/kNey3AD4J
H/3Amxk92ko882S5BXIYtggEf2ZEdErgj59sASYavnf3QpnRRJtn9K36FljY
PGM0lMaMSA5nB1ijWqB4fCLo/GdmhGVp9U+hagGhkvmGFBkW9JFWYLWLoxkY
YMNjfI0FWS2tMmEcGiH0hDT9hx0WdKrMXnDYuBHw+mfLUihZkQFH8PPHWo3Q
bNK0o8fKis5WijEbCzfCDZuk+y9kWdHmwVadb2cD/PaWaL3mwYpwBkJRJcv1
0H3PXpr9KysSOWY+1WNSB8ZLTltYezbUfOHYpDV8glyumIEoRzZk5x4p3iH9
CdZ1XpaPn2VDE/7OLbYcnyD/zq7vQ082VKSc3F44Xw07Uk9GDgezoT0LLZxk
UjW88pyoXrnDhuRWHMYqflYB24hbRH0jG5Kd3laPSP8II81elE7y7GjVapQU
IvceVk78ELipyI5o+L1/3xR4D4eaTh3NV2FHrDeVQh4efg/qDdq+eE12dDr6
MNcKoRIyath6QgzZ0e4vvRsGxZVwqrI2664rOxrLPQj1w1bCl2IupbpUdnRs
bVnHTrIC3t/+7IrZYEdX5Yuck2zeQsnJLr6EbXb0QaD8SbT+W3jM1N+/tMuO
PH8lLMYefQu3Un8a1VBxoGc5lslveN6S6/UdBQc2DlRiTJdXOPYGZp4rHdyV
40Av1l7oEH3fAEvbk7wtDw6kdSmD4yxnOfjQXp3q7eVAv7WldRt+vgQB0Y7h
3T4O1FyYZCrR8RJ6NYW/Sn/nQNxsgaU5716CekBrXfQYB6qYUZNrjXsJdAPc
2epEDoS1H7i7JP8SivM/2OdScqKn1O6HMiNLYU5nuzPwKCcS8P6t+0vhBZwL
CX/P9JgTXVJL4k5vfAbqKpPvZXI4kb3a3Gx42TNg+Is+GOVzov9ktjiuPHkG
by7Rfbz1jBNdFS/0Tgl9BnvBaVXr7ziRIC/KC1Z+Bg8vPq8Z7+JEHPXP0geK
i6EjYKDp1T9OVNtu29ibVQSKvnK95h5cSPaigrJVcSFMnhe9+NqLC6lObJ7Q
fVAI9wI42Vj8uBC39pCielwh/Lq0a/01iAu59XFctvUuhKcRXd+tI7hQk46N
mYpkIfCm+084ZHKhFqNqquulBXBQ+3LRvYcLGb5Rfdhdmw9fOeQZr2pxo86o
rh8pTLlwPDDwV7YuN+LcqhXzWM+BsraytmbgRg3LrZOG4zmQHKEcy2bEjbaM
4iJMX+WAOV7930sbbrR9z/S+hkUOdFaf+DPjz41kn2jWFKQ/gVb30wNWudxI
RaHkp4FcNtSURWfLU/MgmZMBdkWpWUBnbi+QSceDzAzf7mqEZ4H1L6lHlAw8
qEZz2nrSOwsIuJ6HQ2w8SCpktsNTJws4H/Gm3xLhQc7ClThTQib4x7y6PajF
gwaiMuJv6mWCoOPQ1YhgHnRscoSfj+4hhFPKWnVP8CBPgSjsSP19wBswjkhO
86BX14PEVl7fB6vbi27/zZH7wzI+5sm5D+Ks5RfVf/OgvectX5LD70O30NGU
/G3y+HI/v5fVug8imsd7r3Dyol39DRO6j+nQHGRjLmzKi8SUn9qTatOAYfyG
SVAlL5JKjHhfPpkC6tdfMKd85EVGbPf9dFpTwINjpL/8Ey+6X6gSPPYyBapM
1FxWG3mRbqKkrmNYCrnM/HPpSg8vSm/2o9bnToGmZK/sG3heZC+U7vLVKpl8
Xlkux/PxoZVD4YYOQ/dg/plYRl4EH8pQ9HgzznsHFmOnSdS3+NCuP9MHfco7
8NezwM0vhg+Zmr6zqF9IBApRMTnlO3xo/azyn6W6RBDIxDQ3Z/KhL8b04mre
iWCVILoy/44Pta786bb7eBtqfYXN5X/xIVz8mWbf8wmQIc1PU23PjwzcmRgj
KePA2VXy+awjP9J7K6sTvRIL4hmqJ1mc+ZHU+QzJjJ+xUHlgkXrOkx/9NV6g
mq6LhcGhaCGWi/yo99LmE+HwWOCMWzx67jY/Sh906OXbjoH06QZv5hp+dIYi
7FX3bjSkPvZp88AIoFvND/6uSv0H169FX47ACSB17oguR4H/wNUmVzRTUgCZ
hOf5dzL9B/IMQ9e75QXQR/HQnz2rt6AjzFBaQ0sA9V+Yf25XewuozognMtkI
IMPjet5OtrfgKu/MyY8xAuiV4btAAY4ocMpw6WUiCCAZq0+4SmwECFUwCPov
CKB1jTzeaIYI+Nn30bdjSQD985H+4fU3HLxYOSjj1wVQm2xRjF9zOATd+aJ6
QCmIbh6mue5zLhyibyk+WhUSRIIV+glHXtyAFwGUXkM2gmi3ajIrWD8Mtg2K
SXn1gsg5sqlAp/waRNTkxXxuEkRqBMuCQznXgELlMfOvz4LozpyB7syda3BI
NEVMpUsQNZilcbf4XAMeUqjp52FBxFXaxqoieg1UX5s/Iq6QLXnAXpN+FYK4
1zWVcULI54j2M9nYKzA7rxfanCCEaDInUqWSQ0Avr7dQ9q4QGlNzWaeODIF8
R6ee9GQhxBkZ5rEcGAKuXZew5x4Iob69GqklixD48Sa/m/qpEPpILcGexhIC
/eH7GMN6IYT+tvz0Tb8EzeyfOtrWhZBOqVX7wdNgKDymLNjjIYwusxQODI8E
QrMlQ8yulzDaomhwe9QYCDNuswsyfsLo6qxyTlBJIOCiH3yKDxJGr97KLtqG
BkLRF9IZFC6MNG0+CNPzB0LxqeasigxhxGPygfOwawCUeNjyPG4TRvUvzlFT
bV6A13FX2X2PiKAKbgGXHCc/WNR1iY5TEkHfgmwNNY39QH7dYO2pqgjCxeXn
zaj6Qakn1/cpLRFU9c8szJvZD0qgIsvJSAT9uT1/AdvkC0WkFVFLNxFkyNz+
IUjOFx4HBiiopYkgPkEP930GH0iwP2dGvSGCLpfU+cSsnYPCU+PO3tsiKF2J
imQ8cw5qTe2D2nZFUEJlRKBg3zn4e8w47S6VKKJgr+hYLjsHzpJyw5xsokjk
yuIvQ/9zoLL111NcThR9F6pqKcV7wmRW9A1DD1HUz1A/tU3wALXxghcJPaIo
xbw5j4/DHdgU/LbLv5G/F003hKN1h8UoBeORAVFUi83YC1lxgyJczZz0D1GE
GbSgo69zAy7/QdFOvCgK8Fciypx2g50IajM6CgyasHh/8XiKK4wyqjeZ8GPI
f691KVosLpAlk/26xwyDYpPZc/kNnGB9zag4xgKDMh8WTUodcYJT9X+faJ3C
IIo3krIneZyAzvbkvWIbDCJJHGR3Es/A1QjShZtnMIiW8zZNdfIZsPl6WvqI
LwZFvn+B1510BKarXE/vRZP79yma9b97GqIak7LMqjGIrtP7+6KAPSxMNGaQ
PmGQTLsRywC9PTjsrqU+r8UgoULjnvZNO5BXd0qkbsSQ6+eQkpl+Oxh5KXmj
5gsG7XZc8ui9awcqmQ1n5QYx6Ngh/ss3KOwAH7gqwvgHg2b5gaJ73QYsBO2L
O8XFUBZL6mAZnTVkzSk0npUUQ6xuHLasJCuYe00/tiglhlxv0Ffd+G0FEaiW
jVVODA3IXuEI+WYFr7xxEbbKYuhJZRfPzGMrYHizajN+TAzl/ZScalC2gjaD
ZIplBzG01SgxdrHXEk4EtZ1lTxRDh2hEWD9MmsHOyC+jz3fEkEsh/+rtL2ZQ
qc+kcv2eGFLnXO4KLjMDSX5r+okUMYRjDMBFRZoB0+cflSUPxVBloIZ7hqgZ
jPAvM6MiMaQ9t3o9zfskBLdyNQY1iCEWXtrrzhSmkCfkKd69IYaWJ4ddswKN
QFtVTsFzSwwFLd9cDTxrBIOm6xrb22JoKb9V28bUCOivx5uJ74kholdWk5GE
EQT3lYZEUGHRzPVdu8kJQ0Dxa43yrFg0qh12us7aEGb+xLokSWORNVfd2IK+
AYi3PH9oeRaLpt/GTRac0oNe+e2icWcsign4ms97Qg9CH5pUXHDFoid9LctZ
KnrQdf7X13gPLFo8RH+4nlsPQtjkDjf4YpFtLJdm2vgJaHApC1e8gkXOmbH5
tgEnwGm70p0tCYss3RlYGTMQpB5plu2vx6KGQ5sp4zTHoUTz7OHoRiwa55Oc
oPh9DBr01wnKzViU4hEdrNN3DJbPSBantWIR4wib8FrOMTCLvyNq3Y1F/OGO
oRc0jwHdTxuub6NYlDb9tMXvki6Ep87+61nHIjaOx7a4NW3wWaPp65DFIR9x
u84GZU1wLTXodZbHoeAcbKO5iCY4eMR2/TmCQ2/7ohx/MWiC0VfqL9zKOPRd
pfS49ZwGSL6kqvHQwKFsa4uYH5kaMO9JUUzSxyHalm1sO6UGePXvhsq44NCS
b7lPzZQaeL79i0lMwSHH5PGjke2qEBBtu3cyDYdOH/cwr/+gCldtK4eZ7uNQ
WkGNFUuxKtzeuJqc+hCHfHWH8RP/qUKZFmk3MweHNlFdjZauKpCaDoaevcQh
FGrbOVyhAqn9TEmf23DIzomPy7JMGR4/DfSL78Ah5tiMw5dyleHplV59ky4c
Mhks1S5MVoYPPKk7Xb04JMuZI6R4URnGnTj9Br7jEEvGaMSqkjJIzfLrz8zi
kMfZzjrmj0qgVHlDpGgeh5i+nUpkKVEC7bgxkjcBh8rmfDqEHimBuVTOm18L
5PatDNc9wpUgxB8jsrqKQ6rvujTvICWI0P2P9G4Nh46LHD2zoawEccwzg1c2
cIjKsS05EKcEWeVP725v45AzJo4hjk4JCm/R+H7awaGtydIQkxVFeGntrRex
h0Nr6xo5+QOKUIn9Inx8H4fuxty9yfFREerXJEkHBziUYZWxl/NYEf4HOcku
zw==
"]]},
Annotation[#, "Charting`Private`Tag$14210#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7583624694778662}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}},
CellLabel->"Out[49]=",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"84ca56fb-4ca2-40f0-a192-c9d705a4a16d"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1791, 47, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2352, 69, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5178, 147, 1556, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6737, 196, 10268, 183, 235, "Output",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[17042, 384, 1706, 46, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[18751, 432, 716, 11, 33, "Output",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[19504, 448, 906, 25, 54, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[20413, 475, 241, 4, 33, "Output",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[20691, 484, 1752, 45, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22446, 531, 317, 6, 33, "Output",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[22800, 542, 1216, 33, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[24019, 577, 11225, 203, 242, "Output",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
}
]
*)
bounded8He.nb
View file @
3332c0f4
...
...
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[
46895, 1013
]
NotebookOptionsPosition[ 4
5096, 974
]
NotebookOutlinePosition[ 4
5494, 990
]
CellTagsIndexPosition[ 4
5451, 987
]
NotebookDataLength[
51615, 1230
]
NotebookOptionsPosition[ 4
8723, 1173
]
NotebookOutlinePosition[ 4
9121, 1189
]
CellTagsIndexPosition[ 4
9078, 1186
]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
...
...
@@ -56,7 +56,7 @@ Cell[BoxData[{
RowBox[{
RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "
2.399
"}], ";"}]}], "Input",
RowBox[{"range", "=", "
3.735
"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
...
...
@@ -65,9 +65,9 @@ Cell[BoxData[{
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}, {3.880087700774041*^9, 3.880087701627767*^9}, {
3.8800877975749063`*^9, 3.880087987460205*^9}
},
CellLabel->
"In[218
]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
3.8800877975749063`*^9, 3.880087987460205*^9}
, 3.880694076159418*^9, {
3.880694106655357*^9, 3.88069421626336*^9}},
CellLabel->"In[2
]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
...
...
@@ -143,8 +143,7 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->
"In[225]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
CellLabel->"In[9]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
...
...
@@ -185,7 +184,7 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "
1
50"}], "}"}]}], "]"}]], "Input",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9,
3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
...
...
@@ -200,250 +199,107 @@ Cell[BoxData[
3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9,
3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, {
3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9,
3.879569049028247*^9}, 3.880087707720909*^9},
CellLabel->
"In[231]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9},
CellLabel->"In[15]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{3.061224489795918*^-6, 1.940807922738254}, {
3.061224489795918*^-6, 1.940807922738254}}],
LineBox[{{2.282297965209684, 1.9845387764422011`}, {2.9941734674575162`,
1.9993610965838908`}, {2.99539175357331, 1.9993869892252918`}}],
LineBox[{{3.8625306041212233`, 2.018295309200041}, {6.136253562818797,
2.0729010424770893`}, {6.182822765517297, 2.0741037793717307`}, {
6.229391968215797, 2.075310175845261}, {6.322530373612798,
2.0777340178746426`}, {6.508807184406798, 2.0826263971026}, {
6.881360805994801, 2.0925940258106626`}, {7.626468049170805,
2.113295145936034}, {8.843893520444967, 2.14950944837228}}],
LineBox[{{10.791098607617133`, 2.2145823816793007`}, {
11.308156126004256`, 2.2335674387661397`}, {12.038647322831405`,
2.261777314434328}, {12.088172683001606`, 2.2637520106504767`}, {
12.137698043171804`, 2.265734881901272}, {12.236748763512203`,
2.2697253612238386`}, {12.434850204193001`, 2.2778067751671274`}, {
12.831053085554595`, 2.2943838922288315`}, {13.623458848277785`,
2.3293019531410413`}, {13.672984208447986`, 2.3315669181473053`}, {
13.722509568618184`, 2.3338420034147838`}, {13.821560288958583`,
2.338422816820904}, {13.979240340272746`, 2.3458005797934325`}}],
LineBox[{{17.861058649914543`, 2.568496428309608}, {18.182932399399863`,
2.5914197321642227`}}],
LineBox[{{20.612359074679755`, 2.7965701464575736`}, {
21.384177652356154`, 2.8766877426854762`}}],
LineBox[{{23.74486483122288, 3.188517520757271}, {24.5194156385197,
3.320930813286054}, {24.545732075444665`, 3.3257699818548376`}}],
LineBox[CompressedData["
1:eJwVy31QkwUAx/Gx22xsbD4Pe2luS4FDwESyJZO9PM9+jgWdoCODAaHkuNuJ
gAdYm8hUVIidIA0QbQiIZrwYJBfd5RRFC08pIenAViBnIy44okA5a3qW2R/f
+/z1Dc0p3GZlMhgM1Yv+Nz1pJDf+Rhy6pTEfbpzjgn7zKus+1Khks6sOXeaB
YTDQp5PVyDs7FeAY5uEbenBfRoYamzlPGzt8PCTGjc2NFaoh8ny8eIIbhJS1
8yPDZ9QwpzfmDGcHwUIqWq4/U6PC9FVgMclHuOCTHw9yNKisj8/8LoqP37hR
hE6kgafV1rwTfOSxNpR71mqgUQ7eSSziY+/fSbu/eFeDo8w19YpRPiomHbHn
PRqEFx/OHmkTIGE8oNByUwP7zv4j9q8F4HidnatGNPCfCizInxSgZuSEvHlG
g72Dm5cSJMtxaqAr4KREi4Z2nmy+ejk6LkwMV36ghc/35EmYkUCI5eg5wxEt
kmJKDa+ZCbila2z/1mixyrzscUkugSqnXWHv0GKlzez+toZAgZXMt45rkRzZ
NFQxQWBa4aFDZ7RgTJnCzi0Q2DGWHTy5pEXIRe4Ym0Via3z35VS+DqwdzsqL
60isD03kGKGD/N6ejK4KEp0//THxPFmHp5leW1wTidDahp6+TB26+4Vt8l4S
wc995jfe14GtmhPP/0Li8f0DbWHtOvz68q0bC4ZgXHH3GgKCKLBcIUSdTAhl
SqbkmpSCkT1vdm0UouslxlzJagqnfQ4nL02IZvuWukWawqafP7teVSdEWers
gwfFL36H37uMFMHPc33ZdIjCYsF2plkpQtFArDO9mgL5T3o5UkXIUZbH3P2U
gvWeacbfKIKRWHmw30shyhQRW7pOjKu3b6aUTlNQNQrIiFQxYsvyw1UPKWyr
7mltcIgR8afnzudcGotT0Vk/DIkROPSOrIWi0SVRDjr2S/C989glx3kaU/sY
fa8wpch6K/hhdg8N9y5lS+cGKWY5Ta8a+mj4rSjZkisFs6q7hTNKw8i/MM0d
lUJ1/G75SaYedNyzWdulFRhIzrhWItDDcng2Y2FpBVL4vr+yZHqobrvaxl+X
Ie+jR7vDlHq4hN0JVK8MrbXilB6LHu8dOCv13pIj+u0zx+r36NGexvy9jFDg
Chk5YNuvhxv8aPl2BdLa6xiRtXqs37SryPRIgf8APFhbCQ==
"]], LineBox[CompressedData["
1:eJwVjHc41f0fxu2shKzsRFl5tJD1eeucYxyjiLPzIFJCRSGrEk0rRROJjBPy
EBXqe5KQpCOEyMpWOlkd+9fvj/u6r9f1uq97s9cJFx8+Hh6eyb/5fw90BQ9G
SuGgMndeZrvORlZIRoFz6UYcmI+ZF/cIbmSltJ5tElDEQWCwXlxftjTrg4Vi
TcFWHITgwg0zx6RY5tL0ohmEA09fL8adG5Isio2etrU1DkhmV5/WWEmyzkQu
PbrjgAPXWsvwXWMbWMUj9+9YUHEw1DAcPPFKgqVW1XPxchAOvF9KV/qkibPM
OYWrXWE4uCN5sUhWVpxF0Yo6q38OByM3+WWn08RYyUkqJ1qu46CTE6RUlS3K
4vN2pyk9xsH5J0NGj3uFWap3DdoDnuBAffHQcm2wMMu0eXU/6z8cCJU5p9uI
CbOCTTIJPq9x8NBXSE7Lah1rSLzf8GkHDnKb1bMs6gRZ16yz3FO/4SDsvbKk
e5Aga8d5r/iI7ziYjbhnuUldkBU9MzRq8wsHR/ZWuu84L8BS+Dqe0S+Eh2jd
778rnflZrzc+aaoTx0PaH2fb8yL8LB9H/8VCaTzcwR9rTajhY5WyptzOquJh
a1L2irsJH8sxb0Zc2ggP/tRjltwdvKzZ/memXDM8HPDjuaI0w8O6pxhytNcK
D9LlS4Z25TyssQTuW6YjHiQ6KgILzHlYMadXwnE+eGgReFiRXbSKVVitGz99
Cw9vaWYXln2XMEZEgxz9Hh6W3JPGdwktYfzlV/FWD/Hghqfv7ny8iB3QFn+4
vhAPItXx5TbjC9iEhBQ59y0efHa9fsc5x8VUexTfdUzjIdvFpCJuZA6rle2Z
fsXFw/3xMAu4M4cd35+unrOKh/3rn0atEeewFzVqkSdFCeC7P6k9tGwWcynQ
3CWiQYDUW6eaG5JmsMshBlmmzgQYHn3VKRP0G7uynudBJpkAP20O6WTq/8au
5bSkCbgToL7NKF5sjIMlfj4d3+xHALWVDVZnPTlYqkFVqFcsATgq20b8qqew
7BEbp2vPCfBiGFfW/mcCy4naZPfrFQG0DZv9r8ZNYLkykzjXWgI4mBHNE2Qm
MOa+xL2qLQSARLP3AUbj2H8ZbZqlEwQIVP5UPH9lFMNInktdKtbQb2JgW+Q9
hLF+7py31LQGQ7Jn06jAEFYTK/A7W9camoJRp0bud6yuNG8kwNgabO0PG1+b
HMQ+Sky18Dpbg6b9SmbJhQGsuy48XyfWGjx0bsccLvmG/TG65XZ2whrgRKnU
YcM27DTB05PFsYZaX4gNyW3FOAcNAtb9sYZ8bgq7WqUVGzvZEJvKbwMeMyrX
WzZ8xr4yl8v+U7YBirPIvUJeNlat6iM94WQDB3wfx7buaMAuCBl9opXZgPoz
D7LXYhm2KsPfnfXSBkqKRIdFnEux8C3skTHsL/fqHvnOLMGCwG81pOnv3swn
X4zNxLzDM7bfHLYBnjw7RwnlB5j1lFD8B3lbUK8TfG2J3UJiXzpszSP/8q93
bk15VUh6PHWdfIwtKGyd2Gg1VI0Ulg/W/b5sC5zZUzdrVV+jrRpsXN5NWzCc
3ZMvaMNCENhgKf3EFqqTvfdLPKlBp4Ve7h7rsoU7b0IFNGzrUY/RPfVbxnag
+fzf32+GPqFBO0pfoIUdrFKGFMR3s9E4Qy7DDmcH8Ymv7Ohn2Gg+JkVpzckO
DE5StMbn2Ujy0zU5vyN2wGpN2N0114IIvhHikGoHpNTSrIrvraj4NoM7OW0H
Q9NScuTYDiQprBdLWLADduyNoEesDhQUtrAhc80OHtEes+8vd6A91LRtLuJE
YK5C1P3gTlStyCa90CKCdveGm4OHulBjOq48lkIETSWtbm3NbjSSrRuk8poI
t17o7F+J6EW2MgsrIbVEsDlKtnB62ouYsfVX2Y1EaDFxm/cY7EUBPt5ZFzuI
8KUruP2jTR+a3ZrBHucQofb4Yeb4un7Ex5T6p2KLPTCFJV9GNvYj1RLupNNV
e0g1N2YfMxtEolovdM2T7KEiWntq24FBNH839JhOqj18DiyQbvEeRM0X50f4
s+wh4VmfyHDCIIomzw68eGEPDYeiOuT7BlHv6q8OjTF7GJksF3sf9R1lOI6+
nbd2gGV+tTBi0RBSmWy/nyHgCJapgd/8ukeQ96vHeaJijtDYfeKj/c8RVJh0
pixEyhH8Q58MK6+NINPdsh+cVB0h5Esjb7LGKCJFuS6uGjuCk7YBz6ujoyh5
Qyvl3+OOcCBmTZI4PYoEdrNl1T87gqjxpU3Di2NoIrIxKSvTCYhmEcOaoxOo
KMTJ89amAzCXkVoVbTGFtkMnpbn9AFhJhNm+ieKgjeUB0wNZzmBq2sB16/qN
rKq2TBz3cIGcXyM6K2Iz6E2JLa+J0kFIlv/ng/TOWZTnfLby2/BB2H487ILD
6TnUfrGxZeGRKzyc3TOgXTyP/Dy3Xf91wg3GXEynv6lwkbPBzOFte0lgWFfT
975sATX2NSvLmZNA2e0eSbNyAe27wWwXQCRY/My4EMNaQLtnPW0G8STg2c8v
Svy4gOQq2brpB0iQvTk6QWh0AfUQin9LHyXBTv4zBaZKi+jooWPnVtNIED3W
n1N1aRGdi++71z5LAj52Oif/+BLK9cdV8nNJ8Mhss3x98BJqcsjr2rFEAm6o
8vPJiCWksP6EQiIvGYJN1t+wjV9CpQmrqdYSZAjz6+c4Fy2hoUSVG8+3kaHx
nX9zEWcJEW/QL9+lkeFnzNbHg5HL6OQpLLf+EBluRZ7oHY1bRmnOW+rmPMgg
57/JYC5xGX2XmhRw8SWDdEm6vXbWMopMCY8RPU0GDdOuLdPvltHTm3ejIhLI
4LAt8+tmqRUkk9YRfIhFBsuZO44+xSvoPLfM3+0tGfh6ch36nq+gSVqyj2Md
GUJAycDrzQqqUbMjWzSRIUasuSOmbQWdLKg0VekkA0Fz1/UdSyvoQ3U677df
ZHD71iR5kLiKYr4fTmKoUYArd+b+Fs4qmiLAFVcNCginPY3pXlxF1HzlCw5a
FCBYDNzMEFxDhgHtQeZ6FEhxfnHFWmkN9c5bk5SNKZAkaC6vbrOG9orqqvQ4
UUDOguS4PmsNcQw5THo0BfBCJ9fM/uGBTfuJhfgLFJDQ0hXZt4cH9gXkFG2P
pcBgi/64kxkP3CyglKxdpUCYga1XlA0PGGm8Kc9OpYA6WbHawIMHIjemsCYL
KaCbvTvzVwoPrJvf9SWimwJtYckvSas8YCiT2OHdSwG9SY10V0FeoOwc63Qc
+Pvn9P4gXZwXmIEPutVGKbAevYq7qMgLDqMCA2+nKXClGJO3MuaFlM72STFR
Kng128bFBPGCalUo7wMTKlw3lTv+nMMLs+tox2rNqHBqF6e7cIEXGl3NW35Y
UqE42pi3hI8PQqd4siwIVBgzip7pk+ED9uZr0OdMhafvSNSJvXxw8cqDcxrH
qRBSat/8/hIfjLm9WclPp0JT1XunNn1+eP0o26flIRVcz90cbzLmh9RfcR8X
sqnQw/BK6tzHD/uuEtOJTCq0vY1v0aHyw/3qVvMfFVSIb4GdlZf4wWnLSMQ/
bCoYFR41eDfMD2Uc0cVyPhpIkH8Q7MsFoBnzMcsXpEGxydylf2oEYCKRFXlP
mAaq/HdL9T4JgPr2kLVoCRoMLZh99x8XgMRjAwK2ijT44ZJ1V1FNEPwGn2/4
uoMGpLPuOUeSBOHSf9LOTbtp4FgoN/EjXRCyzgekvDamQYlwsXByoSB0qm6R
zbaggVLjo70GjYJgTU9U9LejgfYeiYw2ISHY3OattepBA9cBEZz6JSEwz8aO
cA7TILnSJS8rTQgoQYr5g0doMNFlirfOE4JESbZuvT8NxHr+rC42CMGyg5lh
chgNFCTHPqpJrIPOd1JmGsk0GCN+ZDdkroOk568PWGM0oO2u//fpkDBQyrO4
oTU0OMoXoxK3LAwaZbEPC97R4I754PH7MiLwrJjIEW+iQX969kICQQQ6H39J
au2kQc7hryMFTBFQvzXV7DFNA6EKPtyHGFEYv9ESkjJHg6/9D34YZYpCadIz
1VouDby4l43+VIkC/np44LY1GkhTPr2NmBeFozFCElNidBDiiFx5c0IMSk6q
OkZo0YFHLDi24bQ4nA3knSvUpoNo1EIU8bY47PMfetCrRwePR6c8LSvFoc2X
+cNqJx2MbgVyY3nXA9fdKF4Y0eHSlzN0dup6sHJ0+pBKoUOORHnIfx0SIGq/
I7ieTofpivzuOL4N0GYro7TgToe0tup87vYNcAT/1Y/hQwcNFce0+ksb4JrZ
EdEtQXSI6smv2asuCZ91ou1KrtPh/ZUnSp2TktBf0NX4JJEOVXXja26CUjCl
s8ch7wYdFKpKXxmrSYGo7g+njNt0ML/vo2foKgU4XZprfDYdbjqzO0zfSoEL
s7z9ci4dHq132aTSLwUeulLkiwV0sJt8KRW2IgWRug3U8Kd0OMnMJuTslYZn
ukb/Hq2iw05mQ4DhC2moYd7oP/yaDk95lUJ3dkkDW/en579v6OCe1ufcsCgN
P3VzvEn1dDiv+MYLQxthq560H76VDrXFS1ddWjbCbb2p0+qTdGieLvlAlZeF
3Cd280pTdFD8qLOnGScLz/Qeh8r//uvF99bonpIFth4jXOIPHcAsNeBlsywI
6zeeW+ZjwHVq4bhomhzIFWrxcgUZcCHV5fSDRjnQ1L8QMyPMgBa/h0DlkQcr
fZO4CQkGyKRHPIw6IQ/h+rnXOhUZoBmzJFR4SAGuFPKKt6kwoD9lC/XTAwVI
0z+U8EmdAcZfpDKivilAqb5Mct1WBgzovUiqOLwJJvVjUp/tZMARLFrNN04R
Fgu/yZXsYUBgtlgR87MiCG/fe+eJCQPitV39hTSUQHM7594jSwaoMq19POqV
YOR4cc41WwYYWvme3D+tDP8DgMXNgg==
1.], LineBox[CompressedData["
1:eJwVkmk4FAoDhWcsY4axjZ2yJVESZh/VHEVETRJRSrfsEY0oQ6K4Ksl+dXOj
vaRFsoWoSZZEm+pWSqlQuEQSwny+H+d5/5z3ec6PY7Qj3M1fikAgpMzm/zRO
nz5foF+yfGq18vxd9hJ+JdncYFdQOr/t9Bn/yw4Svjj6xgWzoNN87xXCoa5V
En6jlTCQFFTM96nAB8/VEn5z6nOnn4F3+c9PXLdxFEj4D3mJVQOBT/il2/LE
dC8JvyWzQ/g18AP/nUrVaodQCd+5Vk7QEzjEf1t3MNn1Lwm/TZFFkdlKwLmP
tg9uj0j4K9Id7l1eR0azOE75xwIC/JdMKlorqoA9sX70jhcBa839hzUd1THW
bng3I5OAWy/ioh5ytKH4I2jidgsBtrSFxTLxc2AvKt/9QJGIwN9Z+Re9DDHe
+UO834OI8MZeevFaY6yKE5kKC4hI2UyaPx1qAqLgVa/NTyJ8m2IDrINMkea+
SfO4QApiOZ31IZvMwIxJzfYsloK1akLut8iFsGjZ55NpIo0/fiyzEIRaoGys
n3zttDTOFjTM+XXcEr0eb0y2sWVQmsbreO5mhet3LMSWn2UQWb3MNX+NNQxX
fXxllC+L8s1NUm9crXHynmv5kTOyGJt0LVf3sIZHU0H38HlZiGz9dFO3WsOo
/rHDoyJZHLiT8iUmzBqlZuYuebdlcbju32ivDGuYO2+4evWFLPLuC8+qvbAG
8ZZF3g0lEu62XBw56m0DKZH8rzcpJNzSfiqM22YDkkG21KU0Ei4ETH7f7WuD
qotmNZFZJKRIrRvyDLGBcb0bXzePBHfeeP/8WBvEpyf3/nmFhL4rzt3iPBvM
JYT6f2omQf3o0L8Tb2xg61ia0EiRQ7AjtzbYi46EebIXJTlyGDTTaSjZQkeT
rpPgx0k5RMhPtE78QYeJ++qF/QVy2N92+93RYDoGFR9l9BbKIWMDZ+pKDB1F
9m/L1WrlULGNbdt3io72MkHE8h45SEUzq3Z20WEVfyCevJSMw5s0xLe66Yju
zlZNsyODavuzefIbHaRfnHxtRzI0Zspep4zQce7VotqlbmSYJTHGi6QZ6Jor
7BEHkbEug87un8/AynaBXWMuGacKrctDdjJw0m+H+X9jsz9849t8OoyBS1oK
mdLTZIzK53a0RzBQ7Z9WYSBNgcuuSeLSWAaudL7bEqxMwaR1vYCaykCyizNp
pRkFm2rcv167zgBvKvWQljcFmo/36Q1+Z8CW8SEnuYGCFZIrlsY/GbjeMLw1
oJWCMKt3dhsnGFhnnKOxtp2CxiwE1RGZ0C8YjV3SRUGUJ6U8jcbEf2Kjzaun
KXjxMU+whMFEcQDBrYMlj8wftQd372Oi/gZDta1YHmHPM7ZviWVigXC4XrdS
HmtKfO2c4pnQdr78KrxOHqRwCtHwMBPRscbOVm3y2N/nnvAkl4nfHwtLFPrl
EdDVf8Cygglqh6k220wBS5/o7B8YnfWVEsOrCxWgc2PA+/U4E96KrYHUEgWM
pd61fTDFhJv3Tr/AKgWUOPv//keGhb8eqV7mtCjAtPFmjIs6C9+yhATnAQWo
1jqKiugsnDJs6GPaUNFTFLU3KIKFrx7fz1xpoGLj3JnOwr0s5DP9J+WfUtGQ
nuz4LYaFJvXk/aK3VFyIPKG9M5EF2Qjx9gNDVOxYXlUdksPCvNbb6Qt1FdH5
bGomrIKF1iKrbSYRing5nng4apKFPeE3xKGLlWAfQv1ePsMCrVDmaBFXCWXv
c7zGpNiIy/hz5YSDErLuXzTfp8DG6KYs4xYfJbimNj2KnsNGxnho9rJMJbQa
KKjsX87GA6b7ZOqEEh6syvr70CE2Bkss9EdfK6M7oKYtJpkNZZvimQs9yiAd
/iK1J4UNEWvaK3hUGU5NrF2+WWz4Ov2dpUlWQatjh539OTYYacIhNxMVtDuZ
9Mven+1f9Xki9lHBJ+eKZUeJHFRV3lQ2facC6ZAPEQdlOSi+piv0+6ICk2Pk
QhGFg6yRLnHxgAoCHm2m7VTloFBDcn3XtAr6XCQ9zkYc7NF6vTjFQBUja5wy
qHYcvH9Wru4boAriuref0hM40OWqjeRKVNFc5zEvMokDAxPT+iQKDRmWz3y9
jnBQdtblRKIaDYZKzV8MMzjgLF36u2wBDWgr7yk5zcHTz57l/a40JLhk9rXX
cfC8rp7RfokGpxrqotv3ObDsUNrbW0KDyqIjIacaOWhL6n+qXEvDGfn4Ab/H
HNTUBt/Kb6fh3sPQwZ/vORgPqA8pI6qB4OQ0ojXNwbrzMY+kdqihubLeZorA
hVz4m/TIMDVkLODv+SjDhRpZw3UmRg2GcqzRQioXcwfKOjfnqAGN88a4c7jQ
X+NsgWY1JNhLJrxtucjOjzKQMNRBsKsgnhFxoWzk+emmiQY22/e2vI7jwvLD
qWgjlgbKHLVzVA9xEZu0r7LGUQNBghjTxJRZ/4lKeniIBp55L3cJ+IeLvvzh
/u4yDZzb25hjUcuFSXwJ8ZyrJqZEv7b6i7k4bnWia9JPExvjzBYUNMzu8/m9
44hIE/JJKVXKj7lQ3TZ51P68JvZkCjpHOrnYF1ajt2lCE/bXXi2oIvCwmF4d
f++mFgqK5YaHZXh4OXrs5ONmLYzf4lQvpPCwYe+uZMMuLVyryltzSpWHqC1Z
wTk0bWg0+QjjjXnwfGJe9z5aGz1dPdUO9jwYFUVJ67rrAN1aSQeceJAe/Dx3
ercO8r46ra1cw4O6fm4pN00HgqGiD2YePJRKmQ82PNRB5VSYDDWABxO/r/be
Dro4ovVr7fPDPCiu3x4931UPOc3Nn+8f4yFy0WCIvlAPp0V5otJ0HhbOZE8l
ZOmhomPZxZwTPBhubyEde6UH/ZemiT/zeLjn5hb0dlQP/wPemLhN
"]], LineBox[CompressedData["
1:eJwVkHtYzPkXxytNpTTd1Q+lhCQVbaVEn0MtRbGrtG30vUkSEhKtVLpoRYmS
SqjtvopQKKPPd+lidHEZoptmrDJDRjS6SPxm/zjPeV7Peb+f8z7HjNmzcZuS
goLCSXn917dYqSdNDAZCXcmIvrWlHiueTNHxlAaCZM7/Audy9NhtL1yL7WWB
sGlT2D+vt+uyREpJq4YCAQ8aZEU/3HXYWQfjshSnEFDdnpDTqKDDdm0NoEY5
BHyLndRwrNdm/VZwZa81CPiUEbO6c4U2u2HowMw6QwL2zbq0wuMCl+X2bui/
OoOAQ8vDbwYv4rKtfMurxcYERJiGnFKt12Q9CntXnTaX7zsp8IkWT2PB7+fQ
EFsC1n+1lE3312C/r5ptT9gRYNRyzWz+uDrLsx2f9HEgIN9nqcG8PHXWaWrl
aeRCgNBrovDm26nsEp5+7fQ1BHDHpUMlGWrsUJk0ftpaApSnW7tfWaXGXjn7
wEvJm4A/kl0XLx9WZRfuiRZ+2EiA1Gz+BtZflZ0z541qI0GAQnD7q/X2KqyQ
W/+kjiZA23aX0W4ph704ce58VRABWVG74xvKOezM5+ts80IJGLMO2v3dnMPq
/3nDb38kAa993aMezlNmOdL4YrM0AmziNTMl/kps+NT+536nCXiouWZXj4kS
2zN3jcrJTPk9TwsaGvsV2erNGttHcgkQt86p2hqpyAbxMxa0lBLwstDa3/ov
BfZeUdHliH8IMMu+HzcTfcc2rEpPeQMB+93CrbvfTOLc7pBpfc0EJP3yy9bB
E5N4r671bs92Ajx1LqgP9H7DpnE1NibdBAi8xSgifQLHbG661iwjYPNhlZ3J
C8fxu8gFr7+NErDdfEa4z+sx7HcmRddugoAWh3W52ufHsDV//f48RRJcou6n
r9Mawz2OL+z3ckm4Kxbor1Eaxct0xbdmLCDBNvg3v2buF1xivVa8wYoEi5VZ
9hUCGdb1rDBKsiFhdnbeerccGZbEhkd9tCdhr+HkpcPzZTj7w9iyhpUk7KAf
X2Y9hvHIg6n1uzeT8CQ++/BPf3/Cs/MlIxkECc78fsuWqE/Y4yDfto4mwfpz
eli/5yecO+94gUoICVt/9YvIeT+EXePVki5FkHB84Udxs/0QPuai6vUklQRq
b13e6toP+Kru28TRdBKy4+4PKG3/gF9Kmu4aZ5KglGVie8LgA16Yfcw2NJeE
ptzyR8MRg7hdxtGbUkrCxbpa3efL32PDK8pd9iwJJglWavFSMYakN7qb78v9
WndtakrFOHRLw7qjTSRcb3hwPYUWY5564t22VhIyfR6r6L94i6ntUwqCO0lI
T5t7MIg/gMtMlUKyP5Nwe05gK+K/wXn8H1+P6FLQ0LxVrdRShH1GrJRH9CjQ
ndZpbjEqxOrm/pphBhTUJ5IGnEYhPhRdNZswkvObUd8OWoh9bWl3VxMKWj2j
rINQH9Y8ey/1uyUFvEByyWe/HhxDJZnGrqTgpbTtc/LXDuyQes1ydBUFiaJ1
Zw+Xd+DB2l67Pe5yTvCe+cW/AwfoOf5MrqEg7mhwckTtc7y0aWAH8qbAXy+1
LS7uGR6y8rjxw5+CBROKzrx5TzE9qr46LpyCMqUjvN7jLTjM5bCS0T4Kwv9y
uJ4w/hBHx76vv7qfAlZ8RKoT+hBnq7Yu7YukID/VZcUrbz5+bJhq6XqEgpB1
gr6x2c0YOWlpfjtOQdUm5xhm8B42jtJ7drBQrp9689DOJTfxwrsJ6VrFFJia
3b/HdavBTooyr9ISCoaOJc3S8KvGvsefNXaUy/P/XtCvFHcdn8w5e8uhigLh
CDHHqbkST9Qanh/mUaCwc1fX+/OXcOfXmcyeDgpA5d9gs0eZSD3OQ2Pwhdxv
ylMdvnMOLeMcqA7plOsnF8+3Kc5FuVrtKkyPPE9rjE2MYz7aMjfusu9rOb/j
1ARIipHQ+43MWUrB4j832uvGVqG3+RXJyio0vJy8rHDqWx0ymt+5+KgqDVV3
FFsML95BHpc5XZNqch4fT3znykNlNcSiUQ25fluTYF/MXRT6UPuJRIcG4R81
KUu+YCQdjpjxyJgGNm/KbWf6HvqyekVljgMNXg59Y9JPTUj577Iu7lIaBvNn
6GgtbUb6mvpqiU40lJUGXBAfbkZ2gndMmAsNrYs6u/jKD1AYmW3ktpKGQ9JO
u1/1+Gjg4HDCoBcNFZVZWU/NW9DLsvIAFERDw1SDgl0Gj1Cd+nS1/jM0ZDpd
aAqzECDTpEZxVCYNTm63b0y4C9CxHxF8bhYNPZ8KvHcxArRRJkhxyqHB5pT5
0vE8AZL0ntY8eYkG+2jD7CbtZ8jomqbeTxU0RLYKbHyHn6HI3zgmRxv/my/r
Xl/cgeyKZD8Zj8n/8ehi4YGGTlRHUornxuVzb+Puo12dyG1ma7v2BA1FvbYj
0UOdyPdM4Q7l7zR8Naq2gVldKDJu46X3UxgIdsxUmdzXhWq3VKnXaTGwSOLe
xBh3IzDYJfKzYEDbRtF8Z3APWn/s37R0PwaMVqUxYW2v0Jq1aV6O/gxsNj6w
6IPoFQKus3rP7wwkMdHuW0ZeoSVZaUkWgQzwJGZVGrP7kH6Jc3T9VgbcempK
ru3pQ92Np3YMhjMwfdz4rIGqEIVwlrt7nGDA4taDIKt8IaL5A4rSkww0zas2
iy8XooDU0zgjjYHYiimLnl4XIi+Dt8v6TjPwY/yeJ9EoRLbzziyJzGZgBi85
1eKdEI24i02Kihl42TZgmWQnQh/VMno8SxngVt6JiXARIXHrityPZQyENHy8
GOguQp2+GQYuFQw4ZruTxn4ixAtynfb0OgNjy+9U+kSJUM0CCf9gNQNPv45a
6caL0JXBjGTjm3I/T7nqYYoI5UdIlHbUMtBu9rHfMk+EcpwyWe4dBkJzRcWP
i0TozDfXmGoeA3vftyXvrRShFFbiElDPQKJn4ZlpN0UoITFz/AdmYK716raC
ehH6P9mIOYE=
1:eJwVjnk8lPsegMcSXdINhZgilBRZb7mlz+/7DsYrcSOpDrKco4bIljXLpI6L
xCSnxVI6Rc5VtiIV/V6uZC2JMORaO8rOIDOvnO4fz+f54/nn2eYV4OgtzmAw
An7wf597MSWc9kWgURC1uWDNOqp22uF9ylkEjHh+6VuhLGX7+uKRpgAEvJ3R
JlUlspRr4KC9VQSCiacaVmnqslRsfa7tgSQEQxl+yslrZaiaYHUrnUIEAdwP
Z/ol1lLChWkesxiBz7Te5FCTNGUaSfXJP0Ew86+R1Kvp0lRBnOd5+gWCZElu
e6OWNMVLuX//fROCHSf2pabbSVEe+Tri0V8R/LPhUsfeKkkqU/ebXdAUgks+
ZWc4KZJUx6OG26fnEHRnyPy02U2SIp/4GDkIEdRcuv/L7KoEpTJwzFBxDUAj
czXd0laCWp246T62EWAwZqnz66IYlb2Hu2ZYCcCpT/vOvrdilFkgp/CTCkB+
Jm04lidGBc+bLbUzAYCtO3/OWYz6vNyTWq0N0HX4qtLESwb1Vor5Kt0UIGxL
cq+UwSq+o5HLPOgEoF16LDJeQYTXJxs16DsDSNIKR3kfhThuvjZk6wkAvZRR
pJolxB71o02rLgB7hw7vz94uxJp+uyNrfwZgWg55G8Ayzn9W0WkdAmB5Peai
S/ISLrJvTXVMBxAvqSvX8hXgrZWn9ltkAIwdNx3deUCA07bNjJrcAGiz2RVy
aZ0ABwoUDm7KBIh3Wpk3LZnHxpknxrvuAWRsUCQDRXO4YnTY2q0UQPCo73Fi
7iyujhYyOG0A78TH75WjKbxY/Hkmvh3g+g6p45cnJ7HhcPtATgeAYutDqeGs
SfzAppD60A1w9pDxwUPCCZys5MpFgwBnPiZduVE9jp1LqleV5gDC47LSxl2/
4Olh7vfXigQc56g13V0YwTuV/acGNhFQvL65srNsBHsdOtkvUiZA0bXhRUjg
CP5YYvTKiElA52k2Y2RiGFfFDMXkaBOgplASHvV1CCcqW66c/wcBV+/t2l2y
NIC32UrTWscJiHWOlisq4GPTTot21ZME1MdNTTIJPma7cwvkXQgIlsmaV+D3
YN+QZafVUwRUFJbK8uR68NOs8cf80wR4KXl7lER1YfbEO/drYT/6b6Exv/t1
YN+rt/77/TcC/L5pVO53aMXRyp23F24SUHVW3uhvuS049Z584MRtAvS+13T9
Md2Mn5QnM/k5BNCeP7m7XGvC9Kfo0PI8ArIZB2Sc+t/gtD2eOn7lBKzz5Dfb
5dTip+90r/R0ELB2u7q5s20p5mnV5Ak/EjBj4u9uTRfjs+EnKLUeAjboRBnM
/PIYa6r/e8HtEwG8vCL+UVSA086NuA+NEuDBjsm8aJCNfeXumo4vEgBbm7vb
KxKQhu3GflqFBSC1eGd3VjlKqf9uqOHGgrrLOxKN3jUjCPpstMWdBQ/6R9oN
2C1IoPbWWNWTBZWhcYq1VS3INSjHdKM3CxI7DbfnFbQifaa52Vp/FjAKwqUj
LrxDb4Mi0Uw0C5y9Z01mEt6jDVsEdlQ2C3wX9irRgg50PeSLr0cfC6S6zOYa
7XuRKjsq6Gg/C7gx626pxfai31VkI9gDLOAlxlfbPO5FZdV6v+qNsIDDjzti
LtuH2qQD734bZ8HnsEEJ7us+tD578QNPxIJuo8H5QpN+lFgncbBG1QLMW8wU
Ji4MoOhNW/+uedICqjw7Fhw3DqM/dNc0nR+wACHDcN5LfgxJCcQ215yyhIq2
61ui1CfQQ8PS2Dt/WsIN9zfPMqVmkK7Xf+xX/K3A+E6pbFfjLOq1eV52bNwK
zPXtsNaxedR+P0ofhbDBcZPN4osZAfr2xMFcc44N+fImt9/4LKLVyuDyhHPW
QC9+8HTpW0K2hmyr6AVrKPpKl2lELKM3bgY+Z0NIeJRk8ivIiJDCz5yXOaEk
bKzltEXKi9Apzj25tnASGth/7itXEaHFYMUy02gSpORdfY11REg7cUm4cpmE
MPttdWxLEeKW4RTeDRJSK3VT+bEitF/6SEn5cxJIKulI44IIJaxLEh97SYJz
YkCU3YoIvZevdVJ9RUK9rL15hySNOEzT5dhaEvzWBN76okijm0YqLLKZhKFr
6TtMjWkkcBn4wO8jwXqDnO3hABqB5+Ydcv/78UuMjYvCaHTltGMEGiTBODef
UxRLI82gOuaDURIe+HKkmak0ckgo8PafIkFJ4Yiz6mMaZV8ZfHZ3hoSR8BDH
wac0GuOpyrTPkaC/x9C+sIpG3KyUor1LJOyKLHYmW2jUkvua4bNMQkp3lp9a
B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O
0+gvaaJrhg==
"]],
LineBox[{{0.580471590483438, 1.9514200875838648`}, {1.4721511207270248`,
1.9683836516713138`}, {2.186634699903562, 1.9825925710320407`}}],
LineBox[{{8.939556785751089, 2.152490616868101}, {9.207993935126206,
2.160967792009999}, {9.299305334729599, 2.163889625808596}, {
9.481928133936387, 2.16979276003634}, {9.847173732349962,
2.181842875836804}, {10.577664929177109`, 2.2069690219426485`}, {
10.59036934281167, 2.2074186517273064`}}],
LineBox[{{15.835754719747317`, 2.4414299437024716`}, {
16.687319194227936`, 2.4915397677971853`}, {16.73197212591572,
2.4942919725966415`}}],
LineBox[{{22.763523401115037`, 3.0445179991141096`}, {
22.947972382630205`, 3.069820622958715}}],
LineBox[{{3.091055018879432, 2.0014259047659824`}, {3.343293478053214,
2.006857035698921}, {3.7422877758768687`, 2.015614922736117}, {
3.7668673388151013`, 2.016161269426587}}],
LineBox[{{18.917112571488154`, 2.6470421147113985`}, {
19.747774596335077`, 2.7162552749872737`}}],
LineBox[{{21.479840917662276`, 2.887241944107288}, {21.568829651773182`,
2.8971921120413873`}, {21.76553538422295, 2.9196521759320224`}, {
22.158946849122486`, 2.96659757335866}, {22.200608173424442`,
2.9717348968934307`}}],
LineBox[{{14.074903605578868`, 2.35032866174145}, {15.180775289873466`,
2.405721642181061}}],
LineBox[{{17.05545921690165, 2.5146262200643115`}, {17.42684360447982,
2.5388652813832806`}, {17.76539538460842, 2.561843832651462}}],
LineBox[{{0.09344920708285748, 1.9424942553287703`}, {
0.18402156866230668`, 1.9441367148350859`}, {0.36804007610012357`,
1.947498215336329}, {0.48480832517731554`, 1.949648438817852}}],
LineBox[{{15.52807047584685, 2.4243668761537593`}, {15.740091454441195`,
2.4360684247050886`}}],
LineBox[{{18.492341839908118`, 2.6142740417093675`}, {
18.821449306182032`, 2.6395162373133374`}}],
LineBox[{{19.94153124592807, 2.733470483245029}, {20.169965455101522`,
2.754330941876069}, {20.516695809373633`, 2.7872225167896643`}}],
LineBox[{{23.226047178497186`, 3.1094414545487137`}, {23.64920156591676,
3.17340116189556}}],
LineBox[{{22.30769504889355, 2.985091982002679}, {22.552358314022023`,
3.0164564905150737`}, {22.667860135808915`, 3.031688294707287}}],
LineBox[{{15.343333012503038`, 2.4143697715089045`}, {
15.432407210540728`, 2.419167306163315}}],
LineBox[{{18.278595664705986`, 2.5983979935088914`}, {18.36672775876869,
2.6048959453198033`}, {18.396678574601996`, 2.607119481454969}}],
LineBox[{{16.827635391221843`, 2.500232297983178}, {16.959795951595527`,
2.5085393163924277`}}],
LineBox[{{24.641395340750787`, 3.343565604471415}, {24.655365320941417`,
3.3461915693103883`}}],
LineBox[{{10.686032608117792`, 2.210818688735391}, {10.695435342311011`,
2.2111542530000747`}}],
LineBox[{{23.043635647936327`, 3.083246216359192}, {23.05083928655206,
3.084265758591256}}],
LineBox[{{15.25449064936491, 2.409626312171736}, {15.25449064936491,
2.409626312171736}}],
LineBox[{{19.8193359030368, 2.7225634976773403`}, {19.845867980621946`,
2.7249171149694478`}}]},
Annotation[#, "Charting`Private`Tag$48818#1"]& ], {}}, {}},
LineBox[{{28.992520401116344`, 6.989114408516514}, {
28.992522325141426`, -3.5027620306546083`}}]},
Annotation[#, "Charting`Private`Tag$12001#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -475,7 +331,7 @@ ehH6P9mIOYE=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0,
150}, {-4.790211036257171, 7.236631161024249
}},
PlotRange->{{0,
50}, {-3.5027620306546083`, 6.989114408516514
}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -494,9 +350,9 @@ ehH6P9mIOYE=
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}, {3.88008674094413*^9,
3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9,
3.880087992161138*^9}
},
CellLabel->
"Out[231]=",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf7
"]
3.880087992161138*^9}
, 3.88069400745238*^9, {3.88086082362481*^9,
3.880860840824017*^9}, 3.880869126504476*^9},
CellLabel->"Out[15]=",ExpressionUUID->"fc3a6f0e-96cd-440d-9384-66ff4e3f2956
"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -550,10 +406,9 @@ Cell[BoxData[
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9},
3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9},
CellLabel->
"In[232]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
CellLabel->"In[16]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData["
48.01652525001887
`"], "Output",
Cell[BoxData["
35.89034438287419
`"], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
...
...
@@ -563,9 +418,10 @@ Cell[BoxData["48.01652525001887`"], "Output",
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, {
3.880086743953726*^9, 3.8800867473357487`*^9}, 3.880087715279483*^9, {
3.880087808333634*^9, 3.880087992954145*^9}},
CellLabel->
"Out[232]=",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844"]
3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9,
3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9},
3.880860843173624*^9, 3.8808691277708607`*^9},
CellLabel->"Out[16]=",ExpressionUUID->"43c6b393-af8b-4903-9f47-817769bc3c06"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -598,15 +454,15 @@ Cell[BoxData[
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.8800866773952007`*^9, 3.880086704667201*^9}},
CellLabel->
"In[233]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
CellLabel->"In[17]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData["
8.088071130275875
`"], "Output",
Cell[BoxData["
25.351749791847226
`"], "Output",
CellChangeTimes->{
3.879570442808729*^9, 3.87957064413636*^9, 3.8800867486475277`*^9,
3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}},
CellLabel->
"Out[233]=",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127"]
3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9},
3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9,
3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9},
CellLabel->"Out[17]=",ExpressionUUID->"c1ef58b4-3b2f-4db8-b274-f079d4bf1a4d"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -659,16 +515,16 @@ Cell[BoxData[
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.8800866795052*^9, 3.880086723648281*^9}},
CellLabel->
"In[234]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
CellLabel->"In[18]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData["0.
7696211451653487
`"], "Output",
Cell[BoxData["0.
6514573663189586
`"], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.8800867527823553`*^9,
3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}},
CellLabel->
"Out[234]=",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414"]
3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9},
3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9,
3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"948665ac-1376-42e6-910e-4a23a2bb0b60"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -707,171 +563,166 @@ Cell[BoxData[
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9,
3.88008672825279*^9}, 3.880086759707464*^9},
CellLabel->
"In[235]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
CellLabel->"In[19]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnc4Fd4fx+3M7L0uV8gOyag+x6qkbCozI3tHIdIXWaWQrWyVsgpllJXs
mRGi7HuJIuRexO/+/jrP6znPc57zeb8+5/McEQcfkxsUZGRkreRkZP9fn911
oDnh9ODstOZbkZOTUWfbhjGXrmDcoIIpRakd4wiH7Y2RGEwwjEa71KdhbsKz
5gRhakwchHI597ljIsHzTKDXjnAmyC0f46LCPIHhPdeUdeES2NPQaE0QKoQj
3+Yk1oTrwH6QyrKDpwryu3P9fgp3waFlzoUW8k9QXhH3zVNuEiY1pqQuOA2D
CwxlrvrPg9P27WqlqW9AVvC3/tuDeWheLT0SsvcNMqgEprqL5mEv705DBd8U
dHY5C5WMzcNNk45d/NUpkDTbL7ihvgAdol7DiSNTgHeVKP1OvggpFxvxxZ3T
4J4c1jiYuATFZSX5LoU/wHvx+Hx1+TJkZWkGND6ehRnbCdqWrmUYrJabkciZ
BdPxWLm+hWXw4wzZiyqdBdUeXPAi3wpkkTHw8HXNAuWbYhaumBWY3+f8Uk4+
BxmhImdv2/0EcYn48mDfOWhh581UY1kDvb5aChOdeVBO6GzUlV4DG8+IJCHj
eXhOE7RgfG4Nxuxyc6dt5uEhcUzePXQN4kTUuJRuz4PFj5T2LPwa9Dl2BqqX
zMPKK5atveZf4LOe6VRFvwD0IlESP1TXQXb/uwL7pwXoPJ0kf1d3HTzy1acc
+hYg+mrOKUGTdcC9tJku/roAFIm156081uEzC1Un9eoC7B6sunx9tg713D1J
MhyL8HPK/OUAxQYo16a+ZHFYhN4MiePNvRugoCrDQL+1CPHVyifsJjbAydJy
tXZ/ES4MaqodLG6AxJkCd0vqJWg7Yq13+nAD7pdEHA/kWoIPtxLdak/8gbTX
LsJ0qktQZkYsqUz7A2o+rWHPg5bgEUuPVP71TWAP7T+f+nsJ6k4J1hh4b5I8
AiN2ZwkWbH1g/84mDAgvOeUdLIFGGbvZlfRN0PEP/OjGhAO8nnUYU/8mRF9L
CFKRwoF25NpAsMYWDDTuFVVdx4H3K7CU0NuCE/FEbVUXHGQNJS2MWGzBxzxa
iVIvHKwLqxDl/bdgkPbPc/sQHOR8uCu69HIL4t9XM1M+wQFhmznQhGsb/Inx
9fwtOMAKOhweYrfhs+iZB8ntODDQqY4rO7ENDx2+WBF6cFCcfDWH9vI2EDBa
a4ljODCRz+9ojNwGjIuY6/YKDu5abBp7Jm1DIGNs//xvHJSE6U7x5m4D+Wtt
7pYtHJD1Lq8H1G/DecdFzQsHOChzVeST3tiGs/w3n8Wy4GH8cVTR+ME25OvN
vl/jwAPV+zG5aMa/sBkvnaXJiwdL6jvasxJ/wW3hsKRGBA+0BZ88023/wtNa
hsL+E3hw+GbWRNn7F7Rar0a3GOCBPnvWy2/iLyi87gukMMHDW0tvgR9LfyE4
8EqBojkeKCdjguvJd4Ds9M+S61Z4KBqvV/I7tQNrhzdUN53xcCnj/Nx3nR1Q
eRw5WuaGh60rI4mXTHZgcvVG7hVPPOh+XVuT8NoBrJjs2yA/PCyNYl5+L9iB
wVmNwvUQPDxKLbO4VLkDtULFgWJheFAxV6eu/7gDPLJuLufD8RAzYuqQOr4D
ASnHCy0j8aCQMsNCubQDVusWKxfvk/Iw9Wry3dyBxGOa+lIxeJAcjha4dJQA
cmpy5u/i8TCYzN5Tx0+AK+eb9hwe4iHIJC9Y4jgBmBKPvz9IwEPXUN0YhQ4B
pr3EXSmT8OCfdO6+rzEBHoUUWXkm44HPeFjpuy0BjN5+sWt7ggf3wdXEumAC
TP5OS9NMwwNbYjBIxBBgpSewwzkdD/WGNL9SUgjQeS+N+k4GKW/mJ08pCghw
tFTd6G4mHhgGhPV9KwjAllXx3DcLD9WPSonTHwjges6A1iQbD9YGai/1uwlw
2fpOgOhTkt+j7RZ1XwnAeerFyiyJS/tMqCUWCZA4d9k98RkezBJ+VKX8IYA1
/84f2Rw87F/ydKAgI4K+oUpUPYmLGIksvkxEyHj2SlAlFw+Xe+83TfMR4dTX
g8Y8Ev99wOatL0kExvBll10S5+jnCtSdJAJvtwyPdh4ezjHI9IhrE6EmN20g
hMS/umuDU4yIUJxJ9iifxGnxupIUtkRQpjIyfU/isxe/jPl4EMHwe6DwBxIv
0dndnw4iQsKE958KEj/u+qmkH00EAUvt3mQSq8YFzdU+IcL8rSNlTiSeuUCd
JJ5PhKvEyZRjJI6lTYaUciJ42CxHjpLup9Ap9Iv8AxEChtxCAkg8HvP6qU8X
EWhVcoMoSHzvvKr+9BgRWgXH74aT6pc88pl4cYEIIn3eCT9JeQ22G7+s3SCC
onpX0TkSB0V/txA/JIIV47XPiaR8Mec8qFMYd+EwO/t3F8mH3+coBx+JXQju
dHWkI/kSWjhH81dpF06GxB1gSD57KOhehaJdkLodNnGc5PsYStiIu7YLjPuq
xsyk/vhia5jK4rwLYQHav3+m4CE8jFUt3X8XbvK8GKgj9dNEfeq9oge7QENp
b3mc1H/RE1fEpDN2IXAD0fQ8xoMSgbfzTdEuqFgm7Ng8wkPCyRzmpo+7kMk5
U3blAR40K5/nTPzeBdyf+MisKJKfflet6/u7EJtVHtAegYfsNamlJdo9EJZi
qpq/h4dtqQrZLZE9sOqiE/gTioeS4vcfjprtgVb3aLNtAB4s2oKvp17fA8sG
lzOc/qT3P69BJeC1Bxycp1g/+uDBBtOsfzx6D2ZdVdpm3PHAmt05qV27B3s6
Z/8Luo6Hxrr4u91te/Ath2q2zgYPHuOXRI2H9mAl4EzRqiUePnMOudmu7IFg
S4eVOGm+BCdOEIIE9iFMx6955QIexCuynx5K7gN5QrPne108DPfZoOiT+/AS
i48P1MKDLMNczBODfRiUzBRr18DD7P0VrvJ7+6Bjdo2mTpY0T4pK65UT9iGv
jCqEVQoPGp+8bRsy9+HvBwFfK3E8pJJtFne+3Yek8IjVT0J40Luzpzy/sA/3
JNOdcUfx8MaX0ZRH7x/QSS+Gh6zioDeLPbjM4h98YMuVjcPhYKmNL1fL6R8k
s7uTxczhgI/3+E/P8H9w+oEd1mgcB1EtupEtNf/g4FdqG88nHFiwhVe5ix7A
xBvfruhUHPiejp44lD8AXu/VuLjHOIh3TjhMOXMAWuX3y+7E4aCpPlu/6eoB
/KiWl5cLw4GkY+08++MD8LbqSut1xMFu1Qb7x70DiFmLW/8jiwOO7wQ1E7pD
wCsV7q+J40COluw6jusQkm8/rRkXxoGj9dFSVsVDyK1Q1gpjJdVDJa3j7HoI
RfvPzSi3liDH3CmAefQQhm1uEo+8W4L8Ox4rClfIkEaqoRef3BIoNNMRYmzI
kKfpraiKY0vQTPWS+ocjGQrXDjtUEVyCmYQFTIIvGRq+SaMiyLgEQnk2V5bj
SCwyonp+eRGy2gzb8j+Qoc5/NIZc+YuQzKScwyZKjm5891HvpFmEiNx9461V
chT1YMp86PU8GCnU+klvkiOvCpHLrnnzINRyM8mBSI4sKXjLNlPmoX5uZXCQ
mgItDii34sLm4c+xCcMyIQpk+e002TnDeXAorbnsbESBHONyJmd+z4Fmnbfe
eBUFumtD/N4iOQdkwzPoQwgl4jxm7hF2bwailhvzQ/6jRLX/3Dsu+M8AHdkz
CrVYSvTpAo8txmkG2GSvtdWkUiIqb3HWrfMzcCxm6HxFJSUK0I1xk2GZgYsa
rQYFS5SoPaaxtkL3BzwpLLSONaFClp3bDc/zp0E8wDnITIoa+aTf2IrLmgRZ
9R+muQrUiJc8eEjq/iQok12VX1GhJuX9dmLKZxK0HuothWtTowb1IOUA3Umw
LZIxe21NjYJ/f33ivTEBaSN/5CkeUyO694Ki0ZcmgPpkOK5ikxp9JPfdmD86
Dgvb6RYMH2nQVVvdb+kto1CgqXRz+hMNsjAof/K8fBTsEvofV3TTIPV/Kt2f
s0dhUoy6y3ScBml1agedvDUKQ6b+Gk83aVCQ9EW9celRaHxzCSMrdQQFCwX4
CGeNQLoX+YpB+hFkliLRZRoxDBcX3cOS/WhRFA3bk5C7Q3AuDFuqE0SLxujC
QqJ9hkCLc2ry711atCDOJpV7fQjUdS+rWj2kRRriLO/+ag2BVLH8JvYFLcpv
qjc+QzsEDDe2XGumaNE/lgNV4dRB6F0IMxs/T4eyL8+ZTfgMgMFCorSQED3i
d9M5SQm90Cu9MGItRo/ozr5TuivZC/o3T93NlqJH9ZZ24gxsvXCB4vsgzyl6
1H9RpMJysQe0MNK32I3oEdMp5+b+hz1w0vpzM20EPYo12Us7+N4NAiNE881F
evR1NotMMLELVj453OssY0BK3+wZbot2gHDSuPujagbU1CATeutoB5jZGpib
NTAgHy4l1ZjddmgkqEnNdDKgLhoFi6kv7ZAsyzqyM8+A6H55xptGtYNGepOE
BB8j0qYfI3db+QwP3QUG7kczoh8PB6R6W9tAjnVMUNuOCZm12BaE5LfCUsJS
ROoNJuQeLID8klvhGf0ODufBhLgqCskCIluBkYrn7cMgJiT8Bt/67EYrrPy9
dm4siQkJyP3T+E+qFYqnpr3d2pjQC3L39PB3LSDwcrHp8fGjiI2s+wzP12ag
h237qc2jqK68PjLGrxGCNCVp3+0eRcYX88rwFo2wpG1V/picGb0ISxKyP90I
rRdadrWYmZFSypmo9CONEGKS8KREihk9lJY7zpP7EX7eOPb5lj0zUqRLdL7y
5QP0PjSXZB1gRhe4JHN09Rrg/Jrljqg5CzL6JRsxFlALORyRw+FXWRCj2VGX
r3a1sKXxumLKigWNfnlqsnKxFvLi91zSHFjQEPPKoa5ILexKPB2n82VBfp+U
qYf730Opw3TdejwLIsSRB6rIvgeWcbvQxmYWdJviq23D3xoYb3Uit5RhRV8S
mzxL6qpgXXOSL0yeFdUItiZPlVTBkRZD5TxFVlSd1nxdIKsKVJrUXZZUWVGU
qUxvS0gVpDSw9PnrsqJXIbPtBaerwLD6Q8YDW1Yk2SyaXt36FtqLORQ+JrKi
46dqsoa/voGa2DZbzDYrilyl/riDrYSXF3t4YgisKDdv98MmZyVkMX75srbH
iqrCUvB7RyrhXuKPcw0UbEhoc1vBfryC9J/elbNgYUNekiPuZu4VMPdC4fCB
NBtSL/F/+Sq5HI52PM3dsWdD0oe7m7FbpeBMHTjT38+G5rMGRyYIJcAn3PV1
b4gN0cKrsu75EuhXFRyQHGVDjDdmMnv7S0DF8/PHiG9s6PYDhkDK4hKgGebM
VsGzIeXzfjUaJiVQnPfOPIecHYlZBtzprngJCxqEbi9lduRnE3KW6vYLcPS/
U8OYxY4Mei2IWKViUFH8XnP8GTtqw9S90xMtBvo/6N25PHY0r/dmIpS1GCr9
aN7fe86OwvS+HGNYL4J936Tarbfs6B6urry9rAjSfF40TPWwo2KRAptK6SLo
8hxuKf3Hjuz5dN/SnCgEeRfp/kv2HEjr4VXZZ3b58N1N2KfMiQM506tyFRjl
w0NPdpajrhwobYZypUozH5b99owHvDkQXnnq2AE2HwpDe0aNQzlQwDJtnfRy
HnAne0xbpHOgp0EKzbOBeXD44fXq9T4ONCYmmjutkAsDbDIMgWqciPztXfHS
w2w46+W1nH2aEwUtOX/FLmdDeUd5RytwosdVAa/KvmTDo9ATUSznOFGSX1no
TnE2XFpS+ffahBNZPJzQcLicDd11mr/nPDhRn4PZs5jcLPh8/cqwUQ4nEra8
SllplAkN5RHZMpRc6ORdwvqD+TSguWTOl07DhaYdXQZSB9LAeFkik5yeC1UG
OXO9aUgDHLYvbYyFCx3hds3nT0kD9kzu5HtCXGjWOY+6STcNPCJLY0fUuNAb
2U0KxdJU4L86Fhjqy4XkdyKNHO+nwB1yKaPeaS70vMjZ9feNZFjSYRgXn+VC
d6H/vZxFMhjFrtr9t8CFxizoou6cSwYx5goflZ9cKP7eF6czEsnQK6D8OI/A
hYK122jsl5NASPVsfwA7N9oJaFoQ9E2CVm+TS4J63Oj9oe4nTEwi0E+FXPCu
5ka7b5qm/r1JAJXbJUyP33OjV7s4hXNZCWDPNv6lop4bZQ4G38qPSIDaCydt
Npq50TVP+8xE0wRwrvntF9DHjYa3UzMN/z6ElkdO2SFL3EjWwvG+NjwkzSuD
X9E8PEjTVCX82fd4WHwukpIbyoMWDkSS2IxiYTVqlkh5jweVVhkZU2nEwh+H
fDvXSB4kTp5/mVY8FsiERaRPxJP2meMazu3HAF86prU1nQd9xxfVZJfEgFGM
8PriWx6UzFWXkXEkBj64CF6SWeZBxySIoQGD9yFFkpeqzpwXreQO2iclR4K1
rfiL+au86Dne+XRjRCSIpShdPGrNi1TNPOd2/COh+vByoqMDL2r+6eGSZBoJ
I2MRAkd9eNGoe9FJa85IYL+/quwYy4vuaWqRX8iOgOTZphtMDbwoicF2XbHy
P0jMcu6wx/AhsbiOY3GEcLh9K+JmKJYPlT69hjvxIxxsTXKE08X5EDFssvHX
53CQoR+73SvDh7jGaXyLnoRDV7Cu5Ck1PnTmuQ3mQD4cKK6JxTGa8KEpt3uM
Np53IZB77uL7SD4U/YRGwXYzFCxTbPoZcXyoZtRf4sypEBCoouf3WCGd73C9
6Q0mBH4MvXfpWuNDp/vC6tXoQ8CJmY08eosP2f0tTo+cDgbv+HalQ3J+pEdu
LfQvKhgi7slnbgjwI2YhXdbgr0FQ4knuNGbCj/KTJCmPxd8Ggk4xMbeRH9Vy
6dvtiwZCaENuZFsLP8IHJVrQsAUCmWIW03IbP4p04V4RJA+EI8KPRRR7+NHp
Da36wB8BwEUM0mv7yo86j7sNtD8NAKWyS5n4dX7kq8/tucgbAN6cW6onsALo
+0LEsR7BmzC/qBXUGiOAHjS0cNBd9AOt3P4CqQcCiMlP3uFQ3Q/yrlr2JT8S
QDFR1G0UMn5g2+Mn6pgqgB5x30xXOOoHk5V5vZSFAkjRS0VTYtgXvtw5wOg2
CqB/uzd/3LLzhVbW+q6OLQF09edvt+cUPlBw5gR/n70gcrdsib0z4AGtBvSR
e06CqKEsI2mh1gPm7OZXjrsKohHZrk27Ag/ARqTWR3sLIqvKwtiEQA8oaide
Q3cEEcfNBfNWAQ8oNmzNqEoRRBjH7bf3vd3hpb0pV1aHILq8Y/Yfs7AblN0P
ZHWRFULmUV41ym+cYfW0TcR9BSHk2JfrLJrrDDJbOpuFSkJojYo3VCjBGV45
cIzOqAkhe37W55puzvASqjIszwkhtUCP94qizlBEXBc2sBNCRj+2dmrSbkCW
l6fcySQh1EhfQb4V5wQx5o76lNtCiPGN0yuKdAcoMJyyvkEQQjw6tme3oh3g
g565d8eeEDqkTa7cvOUAf86cT3pAIYxo9jsP+a84gLW49Fd2FmFUWJu9z8Lj
AIo7fxzEpIVRJjZaKuKpPXzPiAjRtRdG7Ee91E5UXIeTU/klMX3CKGSrS6/l
jw2wyLkSKgaFkZ7frytPJ21gNVzu/PiwMMpQk5yOb7WBImzDguSkMKqaEj1a
kGwDHB4jwt1LwqjzAG/+XskGdkMp9WnIMKiUYEbpG2wNEwwqLRd4MUiwxTGh
ks0KMo5nl/XpY1CT+PeWi8FXYWvzXHHkZQwa7k7sWXa8CoaNf56qGWKQcAlP
RLbBVaAxvfiw2ASDFJ0Dq1XErkJgKNE97BoGkXnyu10cvAImA1ckZV0wKPjv
NueE9BVgDOQofBiBQf9lzniLr5tDeHNChn4dBt3Mv/JT+5UprEw3pxDrMchm
bdrYOdMULPY2E198wKBB7mvy6bGmIKNiGUfZjEF0npmCYi6mMP5aPKShHYPC
n0Z6L4uZgmJ6k5X0CAad7Lx1lrvQBJa8NoQYfmPQ8jHutNISY7jMb17cLSaC
RkWiNh7WG0LGglyzlbgIcttAU8fzDWGhjPbbqoQIEonm5v4WYwih6AMLs7QI
CqMQOB1ibgilN7ChpidEkLxFTnjJhgHQV26YTJ0RQUvy0TsfZQ2gQ+cR2S8L
ERSz/DHduPoSaHp3WLHGiaBEXG/T3I4e7I4vn2uLF0GPTat+W83qQbU2o+Lt
hyJocFXgFb5bD8R5jWmnH4ugONP6kNM5esDYNln9Mk0EcZpyV/fo6sE47y8m
VCSC5kPfHQRnXADfzxzN3k0i6OVQbXqR/nnIFXAQ690m1TN388Xwog6oK0nL
OeyIoA89yfFLIzoword1ikAQQRe6jbBH2nSA9na0vti+CCq/e0HPr0AHfIde
+YdSiKJffP6KeDsdQNGbzTLMoih9SmLDYlob5n5H2SRIiqJSzpGitVktEPv0
Is3AShS9kxr5r4NZE/plCEVT1qKoOVYXNCg0ISjtQpW7rSja+lDdWLeFoMdt
eSDaXhQdFXedHZtA4M8iTdfkIopWeXM6E4sQNNmU35EPEEWvork79zQQWBKq
r7MkiCKXVeUbKwtnIVG2VepLoyjqXqm0CSdowEtVK7qIZlG0Js9h6TKjAU3a
W7gTraLII+Uxt1OnBvy6Jl6c9FkU9ftbPcrO0AD96Hhh415RdIs6NIRMXQNo
fphwDE6Iov0mC0LyPXW4kzj/r29LFM0fTP1xEFAD502qoS4pLDJd+vgX80AF
bF/p9FvLYNGev1gJebAKWNhH9fyWxSIujoPVdWcVODdA2c55AouqJzR2d7VU
QPw1RYP9KSwqWT6/2LB3EhYdyIqJ2liUo2Xye8nnJDh92Qs6boNFdg844YmD
Mji8+YOJe4xFBB359VVvRfCMMN2/mIRFC1Ix7I62ihBoWv2V8QkWvXoZw4S/
rAix24GPEtNI52ddNhKSVYRyNeJe+jMsklLiylVfPQHElsOx56+x6AvjPaK4
1wlI/MKY0NaBRbdPpn4MDFaArEIv1+guLBr10u8tc1eAwoB+7Qs9WMRw8UBw
00oB3nEl7vb0YxHNo17L4rMKMGXJ7jo8ikWh9v/9fk6lABLzvNpz81g08Jvi
haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
7Nt6Jwf+HhihjQ0s+liw9eeynhyEnv6P+HYTi57vRD8TkZOD+0xzIwHbWKQu
6FDCxC4HGRWFDwgELGqMjUmQm5aFgntULvW7WPRJ7LK6Y6ssvDa+oRW6j0VX
+Ew2Kl7IQrVou+DZAyw61kb1jCNBFho3xYmHh1hE8XVJIslfFv4HFzk/YQ==
1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI
0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/
P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD
3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0
za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3
nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv
LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty
Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz
cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w
q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u
8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj
oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902
nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI
E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz
+mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9
LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp
r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd
l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC
2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C
zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ
WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW
AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3
IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP
E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb
RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i
oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg
UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A
8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE
MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB
AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA
3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C
bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg
/ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj
B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k
GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj
6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z
wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ
MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF
TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU
7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3
ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P
B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK
3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7
109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi
R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ
Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT
GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT
/PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW
12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h
SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G
cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2
naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ
/yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T
ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm
/jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO
PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx
3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB
kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI
UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E
bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ
wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC
ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ
AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe
LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB
gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps
m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv
ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta
+ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF
z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR
u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7
alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8
i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV
qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95
Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64
KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb
6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3
w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS
T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27
RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj
1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer
+3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA
2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F
zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd
MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV
QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL
N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY
04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/
D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s
3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt
FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM
1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY
46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ
OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab
SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP
VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+
u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs
CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B
NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA
XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219
CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6
EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea
F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb
zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX
7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI
WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c
Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83
cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP
LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD
tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG
FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY
LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577
YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe
YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW
dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv
XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj
MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK
3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai
QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z
Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd
jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn
2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf
zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX
z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt
WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls
nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD
2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7
nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw
w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj
6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN
sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4
VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF
XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl
KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq
+qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm
Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX
FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6
76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K
T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6
8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx
52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB
WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY
9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8
+pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU
juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t
O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w
bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj
LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry
JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8
oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP
a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ
NDieNYT/AXAvkZQ=
"]]},
Annotation[#, "Charting`Private`Tag$
51114
#1"]& ]}, {}},
Annotation[#, "Charting`Private`Tag$
14136
#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -903,7 +754,7 @@ haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.
7696209539853472
}},
PlotRange->{{0, 10}, {0., 0.
6514573659417787
}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -913,63 +764,411 @@ haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, {
3.880086754549075*^9, 3.8800867612813787`*^9}, 3.880087724555195*^9, {
3.880087813143466*^9, 3.880087997646585*^9}},
CellLabel->
"Out[235]=",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed"]
3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9,
3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9},
3.880860852002902*^9, 3.880869132289547*^9},
CellLabel->"Out[19]=",ExpressionUUID->"512149a4-22e4-4c08-9068-29ce9e398f67"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{
"R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}],
" ", "==", " ",
RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}, {
3.880694241216975*^9,
3.880694245436596*^9}},ExpressionUUID->"3894cc59-ff84-4f88-8130-\
0b3a87025770"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
FractionBox["2", "3"],
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
"R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}],
" ", "==", " ",
RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"],
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"], " ",
SuperscriptBox["myCoeff", "2"], " ",
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"],
SuperscriptBox["r", "2"]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}]], "Input",
CellLabel->"In[20]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"],
Cell[BoxData["1.6819723510511688`"], "Output",
CellChangeTimes->{
3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9},
3.88086085882454*^9, 3.880869134852079*^9},
CellLabel->"Out[20]=",ExpressionUUID->"96772995-7f2f-4004-8007-b9946c1988b9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
SuperscriptBox["myNorm", "2"],
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"r"}], "]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}], " ", "+",
" ",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ", "myCoeff", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", "r"}],
"]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"PsiP", "[", "q", "]"}], "]"}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.880694278090423*^9, 3.88069431541903*^9}, {
3.880694387538165*^9, 3.880694410158606*^9}, {3.88069522788339*^9,
3.880695238148691*^9}, {3.880695299107029*^9, 3.880695399255343*^9}, {
3.880695592119051*^9, 3.880695593735093*^9}, {3.880695831316757*^9,
3.8806958598656263`*^9}, {3.880696512328432*^9, 3.880696654085586*^9}, {
3.8806967062490797`*^9, 3.880696714868608*^9}, {3.88086092671025*^9,
3.880860943550437*^9}, {3.88086099431623*^9, 3.88086102694107*^9}, {
3.880861085731583*^9, 3.880861089817754*^9}, {3.880861136990347*^9,
3.880861156730859*^9}, 3.880861188011704*^9, {3.880861225989965*^9,
3.88086123636522*^9}, {3.88086158804482*^9,
3.880861594138795*^9}},ExpressionUUID->"16514567-4615-434d-b213-\
33ee847a7d1f"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "6.811476328478858`*^-9"}], " ", "q"}], "+",
RowBox[{"3.745279174922489`*^-13", " ",
SuperscriptBox["q", "3"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "3.3578902009161846`*^6"}], " ", "q"}], "-",
RowBox[{"1.4210854715202004`*^-14", " ",
SuperscriptBox["q", "3"]}]}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}],
"+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6.77804201786032`*^8"}], "+",
RowBox[{"1.0913936421275139`*^-11", " ",
SuperscriptBox["q", "2"]}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}]}],
RowBox[{
RowBox[{"-", "7.41024534448729`*^8"}], "+",
RowBox[{"22558.281403320576`", " ",
SuperscriptBox["q", "2"]}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "4"]}]}]]], "Print",
CellChangeTimes->{3.88086116052841*^9, 3.88086120125912*^9,
3.880861255393458*^9},
CellLabel->
"During evaluation of \
In[50]:=",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"a", " ", "x"}], "]"}], " ",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "b"}], " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "r", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], " ", "&&", " ",
RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880861385537384*^9, 3.880861404667945*^9}, {
3.880861435828167*^9, 3.880861482626848*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "b"}], " ", "r"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"a", " ",
RowBox[{"Cos", "[",
RowBox[{"a", " ", "r"}], "]"}]}], "+",
RowBox[{"b", " ",
RowBox[{"Sin", "[",
RowBox[{"a", " ", "r"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{{3.880861434068989*^9, 3.880861457611085*^9},
3.880861494055222*^9, 3.880869147295782*^9},
CellLabel->"Out[21]=",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"a", " ", "x"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"b", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "r"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], " ", "&&", " ",
RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.880861521929137*^9, 3.8808615332101803`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"b", " ",
RowBox[{"Cos", "[",
RowBox[{"b", " ", "r"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"a", " ", "r"}], "]"}]}], "-",
RowBox[{"a", " ",
RowBox[{"Cos", "[",
RowBox[{"a", " ", "r"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"b", " ", "r"}], "]"}]}]}],
RowBox[{
SuperscriptBox["a", "2"], "-",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{3.8808615368747*^9, 3.880869149783291*^9},
CellLabel->"Out[22]=",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{
SqrtBox[
FractionBox["2",
RowBox[{"\[Pi]", " ", "p"}]]], "myNorm", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "-",
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["q", "p"], ")"}], "2"], "-",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"], "r"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"], " ",
SuperscriptBox["myCoeff", "2"], " ",
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], "r"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}},
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}],
"2"]}]], "+",
RowBox[{"myCoeff",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ",
"range"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "+",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["q", "p"], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}],
"2"]}]]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9},
3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, {
3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9,
3.88087538894692*^9}},
CellLabel->
"In[
236]:=",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a8702577
0"],
"In[
100]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d40
0"],
Cell[BoxData["1.6882859930125582`"], "Output",
CellChangeTimes->{
3.88008775773094*^9, {3.880087791981393*^9, 3.8800879996867847`*^9}},
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ",
"\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ",
"\:043e\:0442\:043a\:0443\:0434\:0430", " ",
"\:0432\:0437\:044f\:043b\:0441\:044f", " ",
RowBox[{"1", "/", "p"}], "??"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"AccuracyGoal", "\[Rule]", "4"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, {
3.8808621852190742`*^9, 3.8808621872400637`*^9}, {3.8808622612561007`*^9,
3.8808622622720737`*^9}, {3.880869441370618*^9, 3.880869443208253*^9}, {
3.880869501822802*^9, 3.880869501983926*^9}, {3.880869536444581*^9,
3.8808695572733717`*^9}, 3.8808697342790833`*^9, 3.880869832570633*^9, {
3.880870060957982*^9, 3.880870064343985*^9}, {3.88087011615005*^9,
3.880870127514163*^9}, 3.8808701957015953`*^9, {3.8808705574838667`*^9,
3.88087055832367*^9}, {3.88087073089237*^9, 3.8808707380182533`*^9}, {
3.880874814478899*^9, 3.880874818483645*^9}, {3.8808752703279543`*^9,
3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, {
3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9,
3.880875587481934*^9}},
CellLabel->
"Out[236]=",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444"]
"In[101]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[BoxData["0.9999996279403691`"], "Output",
CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, {
3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9,
3.880875593014206*^9}},
CellLabel->
"Out[101]=",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
...
...
@@ -989,31 +1188,49 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1896, 49, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2457, 71, 2806, 75, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[558, 20, 1962, 49, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2523, 71, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5349, 149, 2249, 53, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[7601, 204, 8104, 150, 239, "Output",ExpressionUUID->"fc3a6f0e-96cd-440d-9384-66ff4e3f2956"]
}, Open ]],
Cell[CellGroupData[{
Cell[15742, 359, 1902, 49, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[17647, 410, 931, 13, 33, "Output",ExpressionUUID->"43c6b393-af8b-4903-9f47-817769bc3c06"]
}, Open ]],
Cell[CellGroupData[{
Cell[18615, 428, 1042, 28, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[19660, 458, 431, 6, 33, "Output",ExpressionUUID->"c1ef58b4-3b2f-4db8-b274-f079d4bf1a4d"]
}, Open ]],
Cell[CellGroupData[{
Cell[20128, 469, 1903, 48, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22034, 519, 511, 7, 33, "Output",ExpressionUUID->"948665ac-1376-42e6-910e-4a23a2bb0b60"]
}, Open ]],
Cell[CellGroupData[{
Cell[
5288, 150, 2232, 54, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0
"],
Cell[
7523, 206, 16900, 292, 235, "Output",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf
7"]
Cell[
22582, 531, 1243, 34, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427
"],
Cell[
23828, 567, 11200, 202, 237, "Output",ExpressionUUID->"512149a4-22e4-4c08-9068-29ce9e398f6
7"]
}, Open ]],
Cell[35043, 772, 392, 10, 29, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"],
Cell[CellGroupData[{
Cell[
24460, 503, 1906, 50, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba
"],
Cell[
26369, 555, 793, 12, 33, "Output",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844
"]
Cell[
35460, 786, 1239, 38, 53, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b
"],
Cell[
36702, 826, 265, 4, 33, "Output",ExpressionUUID->"96772995-7f2f-4004-8007-b9946c1988b9
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
27199, 572, 1046, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630
"],
Cell[
28248, 603, 290, 5, 33, "Output",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127
"]
Cell[
37004, 835, 2750, 70, 117, "Input",ExpressionUUID->"16514567-4615-434d-b213-33ee847a7d1f
"],
Cell[
39757, 907, 1424, 41, 46, "Print",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
28575, 613, 1907, 49, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7
"],
Cell[
30485, 664, 368, 6, 33, "Output",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414
"]
Cell[
41218, 953, 645, 17, 29, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389
"],
Cell[
41866, 972, 647, 19, 53, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
30890, 675, 1247, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427
"],
Cell[
32140, 712, 11288, 205, 239, "Output",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed
"]
Cell[
42550, 996, 569, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8
"],
Cell[
43122, 1013, 585, 17, 50, "Output",ExpressionUUID->"8b590bfb-da17-4e96-815c-5cfc0a0f84da
"]
}, Open ]],
Cell[43722, 1033, 3093, 96, 214, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{
Cell[4
3465, 922, 1391, 43, 75, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770
"],
Cell[4
4859, 967, 221, 4, 33, "Output",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444
"]
Cell[4
6840, 1133, 1567, 30, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4
"],
Cell[4
8410, 1165, 297, 5, 33, "Output",ExpressionUUID->"03549400-50ed-49fa-b63f-eb2e00cbf061
"]
}, Open ]]
}
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment