Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mathematica
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ivan
mathematica
Commits
1d727bf3
Commit
1d727bf3
authored
Dec 09, 2022
by
himyss
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
wf in systems
parent
dea397f5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1565 additions
and
0 deletions
+1565
-0
bounded3He.nb
bounded3He.nb
+739
-0
bounded8He.nb
bounded8He.nb
+826
-0
No files found.
bounded3He.nb
0 → 100644
View file @
1d727bf3
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 31511, 731]
NotebookOptionsPosition[ 29937, 696]
NotebookOutlinePosition[ 30335, 712]
CellTagsIndexPosition[ 30292, 709]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Mp", "=", "938.272"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Mn", "=", "939.565"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ebind", "=", "7.718"}], " ", ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"binding", " ", "energy", " ",
SuperscriptBox[
RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Esep", "=", "5.49351"}], ";", " ",
RowBox[{"(*",
RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[
RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9,
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, {
3.87957152299862*^9, 3.8795715245943327`*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"q", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"ang", ",",
RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fOut", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfIn", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOut", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9,
3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9,
3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9,
3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9,
3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9,
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQB2IQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQ/SJDj2UTkGboNwXTYsrMXCDaRKYDTAMAeD3S4g==
"],
CellLabel->"In[30]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{1.020408163265306*^-6, 4.241741718763919}, {
0.0002625153897959781, 4.241762892770343}}],
LineBox[{{0.032150270491836795`, 4.244349502137258}, {
0.061340522887435564`, 4.246725267883429}, {0.12268002536670786`,
4.251742615733744}, {0.24535903032525244`, 4.261880121628202}, {
0.49071704024234164`, 4.282576552952344}, {0.98143306007652,
4.325740981044393}, {1.7571434715124448`, 4.399245471999349}}],
LineBox[{{1.7890312266144854`, 4.402416451480064}, {2.527954346461434,
4.479534064972313}}],
LineBox[{{2.5598421015634747`, 4.483027265533171}, {4.012882440943803,
4.659045426871684}, {4.6008376977796654`, 4.741106043528902}}],
LineBox[{{4.632725452881706, 4.7457631820549615`}, {5.073489574391078,
4.812494616133865}}], LineBox[CompressedData["
1:eJwVk2s41IkChycx2VKJMTPGDHOf//znIvW0tSG/ckluW2pbpFi5zMYiodyO
WmrlFJJkCyWtW6wutC0dD8oqxy2XbKkMlegmQhHOsR9+z+/L+7zfXp5PiKuf
BoVCiZnfP3+loE97KJAGu7rVZca2+ig66uszsIWJtAftz06/00fu147ffvFg
4qfvAuKqPugjOYspVcQxcel3x9PLPuljr+eNJ2l1TFDbjqs6FtJAezFk7eZg
CBDjU00cGiI/btd7tYuFZ6k9qenbaTDXI8s149m4OVMTxG2koXWBx/2WVDbs
byyNeNxEg/fo8eeZF9lYEkwGnG2lIbF9mCGtZ2O9xmU66+E8n1J82FmLA95E
gab1y3l+idQ1898c2OV/tBJrGiBRk5iQZBkjTOvXBCcbAwR8Sc/5zY0Lo4HN
WyhtBshweXsnypuLkcqcxbadBqjNs33trOIi/pzXxpM9BmDaf/568iAXRWYE
l1Ab4F7G7na7s1ykF7kbJY0aQKokFg51c2GzyubFOI2ON97/UZHbeUizfK+4
tIcOZgU9dc6DB3Vcs++evXTYLAqt7PDhwfhWUqGxio7sMr5GTBgPcw3pflf2
0+E0/cv5/57i4cmta26TiXSUnXZtDWrnIWV2rm9nKR0hf71aXe7Mx1jxwrx9
c3TUojRQvpOP24UJCSJNBnSrQ/OL9/DhG79Uc/ArBq6WT+ldDuHDkrhEOWTA
wFjWkrGsU3xsNVJ0q+UMRAaaXv25m4+hTWRqiycDsboH5Tt3C8B+ac3fUcdA
c7K5b6efAOOx5KauRgY4WpTsrcECqN/oK3e1MlAzlbTEMV6AirAFZ+J6GaA8
P/faKm+eH256YDDJQEJlTZH0pQCaKxYP58iZSPagimaDhKhvvNjmfYGJDSt1
JofDhciZPOvqWsDEqJZe48NYIXQiMhiOZUy4XeP8ePWEEDastDOu1UyItNeU
7S0V4tjWlKKqHiZqK/euaXoz78uNqpxaYYhJ3Trbs/tEyFpf4XDyhCFKBv+i
J4aJcNO7bkN8hiF2325+FRotwqPOXkZ0tiHuBvx93CFZhA/rEiqTSw1xqmak
ZbZYBKKNdDJsMYQ8yHin77AISaMr700tZ2FvY4y/mUqMOeFQ74YcFnwtxC6T
IWKYP5NoWxWw4H+tfU31QTEaJW+6t5SzoDov0rL9RQx+2kxefB0LwSFt+W4F
YuQUOLKCB1mIZgj641+Ica/Xm6FaZYT0gKZdrd4SeFn0cAI6jZDxJNz6tEoC
+mjYh+dPjXBmm4nMLVSC7h+Xi4OHjJBlHj7dHy9Bl/sN3pVZI+QuN/51IleC
kaD1lk0EGyV/7H/IfirBq9ib/6s4wkbdIsNtge4EWOxuho4VB4P5SodHPxDI
J568i3biQAc21pv3ESjYYa4x586B26GQNYIYAmaPK3I3RnAwMtRg2JtNoFE3
reNOKQecprABBzWBLJkwpM/EGFEnmg+QAVKkjpoGjzBMkEsMBGWFSJEsvsJ1
JExw9+4nP+ohKWx/8NGtX2cC3Vm+20CSFPrTRJWGhwkKf4qyOFciReSC6rcP
c0zQ7SLWWvxeCmmOsuOoARdmKw5nDoeTmKatLRr7nYsq7R6iMZYEddGH5P23
uNhEUVZfTiTxc0PdIKWeix0jvX1eGSRiR8tvbpvvNLJlrfThDRI2S1wyame4
uH18pLp+jMTKtFqrGRcebI/YuVycJvE5r8s2y52H1kM56jgNGUhJ+J3Nvjz0
BThqfaMng1dS9mx/FA8adoUu5WYyZComE74q4MFew6v/fKgMFrUTLm4afDyY
qjwQdUgGw62uz+yW8eExqkP9/rAMdydsip1YfASqq0i9NBkSQ18uvLCKj5Qa
enhSuQzXH18/6u/LR1d0KzXivQzCw0et65v58P5oKXcJkoNMtUqZuS7AUj1K
e1e4HB4uNn9X3xGgamX9gV1xcrzl9wTndwlAC7arVqXIkcZtaXk3KcC9IReH
hKtyUIKTFh22FGLlMy/VrXE5koc2EmSnEE9neDpWs3LY/fFt4J+DQiQbvShv
0FLgc6v+2ZhpIV64qT510BXwj1Q3n+fPd9YZeuzdOgWChvvO+USIQLl/5DI/
TgGqtZLdLhKj7JW1ffFRBcjXDTETFmJ4UKlvTVMUcHJ8c8BzhxgV1smrLS8o
oFnSn/kxQQxVTXr993UKZNNef/AfFKP9Rr76hJYSwZtzjsX8KUFch1+i/jIl
tM1X8527JSBHJcQ5uhJXqUHWEaMSJCpLQwolSuhuy45uIwmsK66Yq9uiBP9x
763HeQTychvYn04q4eAd0DV8SYpsT3nPd5lKbHoyZORxV4os1ulTFblKROcn
RZsPSpGS6U0NK1diladrhoeMRHTKl5G37UqErfPe7VxNIsLJp8TxkRLqVWXs
42oSoYvv+5b0K2GT39exhSqD/7HMRwFjSmT6LQ3x2y6D67/M7gzom8JCcWK5
+7gMzhZZcRvZpsiu67yy3FgO++m5tReFpriZu0PX116ODZHNpbvXmEJ7faH/
eK4cv6nZgSkOprCH5zc5KxT4PxetQL8=
"]], LineBox[CompressedData["
1:eJwVlns0VIsfxeeMPIrcpITQ0MP0kseZF8P5kseJHrgllfoVkSipkGcNSR5z
M5WUVChJ6haFuF3OicJPSh5JlMb7kYSG0WDm5/fHXnvt9Vlrr7X/2/qeJ1y9
qRQKRTCn/3up1vBqhV4ziP18/Ir5O33y4p6lr57NZRzFXua80SdVLCZqJINm
UNs0uMkxVZ9cKi1sTRw3A0eHoP4Kjj5Jj0Wn8uRQMI3NzpFPoJE7BGas76tR
+JWwZN+CJD2y+aQ6ZrYOBYecqDd2mB7p/ucv+wgjFJ6mbY9KFumSnhrP3ZRZ
KKT9Nz+O5alLhtwyDVmPo/D20RmW/RYd8lauSZG/HwpjdNFJYxttsuazV01G
AAqGPIqBpoI2KVqQ2t50CoX+ukvGZbVapNNxCcKNQCErR+uaiZsWKTGp3K7C
n+P+IvxIsCa55+XOgcd/o0AEpMd4NWqQscNx08KCuX4avSUvU4PM1y1VXVqM
QoOlUgXvhAapxNNlRJWjcMxV0PteVYMsse2L3laPQkv13obCP5eSGu/PLB8Z
RcEp9q+/GkXqpI3soZHBBAqMXRRnylt1MsD4i7XbbxS4zmk6t7LUyaor4FuO
MEDW7629zFmdDN49v+jSYgYkVDYG/ShYTDYLb27fhDIgfzhKre6iGnn5V1l0
4BkG3H0jdzekT5UMaBQc8ohggIZG/BL5v1XJrQVe1vg5BqCVh9JVglRJhRPz
EdpFBvgqnxXx5FTJyKGdvPpUBnRp0QUthgtJn87vZ42KGaBEazZQuKBMcuu1
IodFDLCK3RavmKBEaj0Z3tc6xQDzy5Mtlh5K5CSfsHg9w4AY8dNz1ZuUyAJH
7+n0eUzQXq1m3fBJkVxTlR/utIQJ5LVHA/fXK5JqZQ5heWZM0OCGGad1ypN9
ecEhvqeY0MwWdntHy5FuutKO3BAmlAd/PBexV458kxznMBjOhJvMHXs+mcmR
2UHXNf3OM8FoXLf+QD+V9LQq/cc/hQmTK0yybrhQyY6GGWlAMRN66l2/6Jki
5Mep8xeDJUygS++J7aykhK2/ymiRlAlBvw0fR8hmicKvKe6TVBYEtV7XWfZq
lrhScX/tGWUW8OfdcIuwmyWc+dVvQ3VYMGDdLuxwnSHqVigvirRiwb/e80O2
nJMQr+2v3IiJYYGtVC5vTFNM9Pq8fBcex4IhdP73rIFJQuFiD/V0Igs8nHPD
U0omCbyaedzrCgvYRT+8rPZMEnUO7da2d1lQW2ZYmXp7gmjCV32Xr2BBwI0w
70ETEdHlWGyZgLDhsERruOXCGCHn/+1UtDwbqF169Z0eY8SqJKXcsPlsoPuN
+dDQMcLn7d7FfmpsaDkxtYHVPUoMOcn6HPXZENItSyY3jxLjW3GBijUbeOHb
7buXjxDIjrauZB4bSmSxrV3xg0RN+a6VQbFsOBj09Mjw5kFCYNTg5R7PhiUT
ErGtbICgqdb00ARsqGtJnBaGDBDwrqivIIMNFIH3z6Kj/QTP6fJQUzkb3OVC
vT339xIUHB9fNsuGf5NfPA0O6yRqXlSazlA4MPXegHrcspMQGGKnhfM4kPKV
fzQb6SRoikxRrgoHKO5O7Q2JQgKqVk5ydDiQWXPfnw3fCJ6t7Pc+Cw6E/ggt
MHncTlCsi5HMMA4sGpJscWtrJvba9te2RnGApx74dOhIM1HooJmiFsOBgTie
8vREE+G7PXzN+UQOQNh/ovjqTUTDPisnn3QO4Mb0aI+dDcTdkKqUDWUcMFa2
Dl3U+pawfdxiWEoxB+EhA573P2VE/DLxtsaL5pDZfq+VnliApdTUdFckzXEk
N9X34zMsI+xm2PNkcyBlbeExKwqx4nbL+ynXzYHinSx0zC/GejNiZ9wezPEg
2nP31y8xG/riR+1V5pAfc3hlW3sFNsPeqNQrbwGZ30KS7vrVYYF7vSrE5y2g
ZDNeVKPyCVPNGBJy4+c4HU0/t+sT9rj7pCyabwHC3Ftfxbc/Yf3HeFyVaxaQ
v3qE2GjUih04d7uYlmMBPTYfml44fca2Zn/K21JjAdlSPcvEiHaMPuJ0NV2F
C77HJl0Y+d+wzmj0MHaNC22WXnzb8m5sjYbqpcA0Lmi77ojwaO/G/PL6X2Td
5oLoR5/rgaluTNR4U3leDhfG16UZ0Ex7MKVVyPOaYi7kzv5SysjuwYyq3iGu
rVzgpv28mXGhFwtfcCTj8HJLMN3onu7C7seWXE1rS8iyBOrV5W4c7yEsZ9G6
sOp0K9BcX3hLN/sn9urUCjvDRxi4LAysXGMzjt2hZepY7gSoHQx1mzUXYWWR
EorvBwBPNZZYMjKB6TspzqzcbQ2vtSacxi6LscL6tUmfm62hXLmUmzMyhfGr
pMa0/TaQ0mEQbGcjwa6eHvQ7+MUGBuiOZ4cOTmORS/X+MNizGRhdHSdSDs1g
D9fK1wYJN0N974lK/sFZTEGEaL06YAsLdA97RVpIsQfGBWfv9NtCnSb38RsN
GbbWM2/77HE7KNcbVuB0yLD2LaXPdn23g6lwvtu4HQUa74VvxE7bQ+yBnLq1
dygw9dyFazBuD2mUjSWp3ykgKzlVFBfgAKQP86GXGQJOxvZ2kRMOsBGaT5tF
IVC9f9NR/9M45Dv/znpQjsBiL9+Xt4Nx0Jkxm3hNIHDAN2vhhzM4hC1tWthF
IjB5Sv0ZGonD1GhB8vJKBFbFiyWzsTjkXNH4nFSNAO8ZwRek4lASeCz90AcE
zBWd84tKcQieqb3b1YlAnEoCdeAlDhJdj89TXQg0qFXs1C7HYXP4h1bVHgR8
ddDfZytw0J15b2reh8B1E00b/C0OmnVL3C4NISDaJ2xq+4LDtdqVJzf8QgAO
aa1Z+A0H6fwzNpgIgSQf11CsE4ddz3Z3uEwgYHDytU52Lw5No2tDQsQIuMTl
eh8fwcF81TC9bBqBW0mdLzJGcWhQvODyfgaBAYH2gsZxHBZ6Rdh9m53bk85/
whTjUHepP3nuwUBd5hvK0d84/FEl6FuEUGFZjtQ1fRqHGBupkj6VCp6PWPff
zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg=
"]]},
Annotation[#, "Charting`Private`Tag$5733#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {-8.900837493810066, 14.534402649413224`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9},
3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9,
3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9,
3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9,
3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9,
3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9,
3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9,
3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9,
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9,
3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}},
CellLabel->"Out[30]=",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "30"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9,
3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9},
3.87957154916846*^9},
CellLabel->"In[31]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"U", "\[Rule]", "26.327091087132676`"}], "}"}]], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9,
3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9,
3.879571550250393*^9},
CellLabel->"Out[31]=",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]],
"p"], ",", "range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.879571556146941*^9, 3.87957155754856*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"coeff", "\[Rule]", "2.5426173021971623`"}], "}"}]], "Output",
CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9,
3.8795715629434137`*^9},
CellLabel->"Out[32]=",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"2.5426173021971623", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9},
3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9,
3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9,
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.879571567743319*^9, 3.879571576536313*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"A", "\[Rule]", "0.6401531831830206`"}], "}"}]], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9},
CellLabel->"Out[33]=",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"0.6401531831830206",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9,
3.87957160585564*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k4VG0fxwdRIXtIWacoZa0eicfvRqWyj6VCKS12UumxRaSo3ilZYsaD
bJWyVSpLJEspshPyWuYcChExDGZ5z/vHuc71+edc931+n+/3PkfVI5Bynp9E
Ik0T1//vGZEeQnrn7posxPylGlYaYdLQpWJ1TMUbtEgZXlvtXYD3seaGikoo
6Fr9oo3Z+UBGLVVZUOU2DF15o//KLgz8/g72X1KmQViVI8nG7g50rXolzyoX
QGGb/OUpGzqs/c7QmFauAFWX+MawI88g+0tW0JTyZ5hu4jk1766E4pLb3/20
B8CIc6u8YuILeEIH7dclDCRrN2zPudMFAWM7sLLiCXC1fWovzt8PI6f61334
PAHu7hZfQuX7waEvXvsrPgFrHQzM+7T7YV/zj9AxhUmY6rUQCXLtB4EX+RKy
cZOQ4qfyRaKsH9IiVE3+cZ+CL34xjTyPAfggvYlmKDENjgbp/A5vv4OwaqzG
8L5Z0Jd/5p1hMARNxg90Ig/Ogv357tKgI0Nw63imgSJlFhTqtVwNXYeAP6Hc
wtV3FtrW91TlRA7BCveX57eMWagqmh0abBiCqUGnp238cyDakWv902YYWtI0
dtS2zMHHUMHl5F0jcKdsj557/xzkiKseK94zAofbTQ25Y3NwzzSJWWs8Ag1r
3Y4Y8+bgbLfIeIfVCLy7muBdrvcH6nWGDHL8RqDIcbmg9OEfuLL0/d3ysxG4
J9GsmX16Ho4FZ3b4q41ChYHia5uAebgqt/mhueYo4KcCgR0+D/Mn/JgS+qNg
VCTteCx1HlIo1sGJpqPw84jbtQ2t85DctVtC9/QomN+Ybgs1WgCd7OigzvRR
YDHFgymyTAizOP+aLsoAsqIHj0dmwp3LgbVu0gywOVB2u0iPCZs5VgsbFRiQ
n3g8c501EySM3D/7azCAopP9qeYGE368Gfr60pQBRV76CjvnmBB4Ou7q/SsM
8Pju+F6gZRG8xiWGr3UxQDh91D+ofxHIrfs/relnwEuXgC3D44tg4dnbEjPE
AIGBuNBKviUYfiSifm6CAXl9lbuDDJZA/NdSUxWXAeM9Kk+HcpaAF8vKeaeB
wb2UImer0iWwx2v3lO3C4C+n/YKV1Utg3BD3LkcPg7huB4+UviX4mdGUd84I
g+1dt7ZYibEgYkU4LdwGA5/2XwkVoSyIkjWTWyA8lUoIBY04FqwmUlZP/INB
pa3QTHIyC/aJ6r18E46BSJuy5cUSFpgnqiU4xmJQ+JUiqDHGAtUxx27VFAxm
vpSHJtstg7S7ShPpNQZBjbEegRorkPEOS6qfxkAJPyS0uHsF0gvcGptmMWjm
X/8sAq3A4wlOU+M8BtsQde72iRWISe0xfbKMQX9lyvW8uytgqOfat1YQB9PS
x5n9v1dgeaUn1UQBh5lWL7PT7BWIbpU/XbsFh/RpzfHxdauQahD+01AZB6Zm
idaC6ip8qkncK7MVh4L8t+/EHFfh3kpw/nktHCTTmwbMy1dhcluocLgJDjUV
dyK/NKxC8Bp7jxCEg2+flZp9xyqE9Gf7+pvh0Lixw/vU5CpU1IffNzmEQ2hC
PytkCxvqNvoLXbPGQb0k/V/edjZUW9l3G9ji0PX1JLq1lw1ZeLb1pB0OWiKM
uCQbNgw318FfjjiM3pyULb7OBje+k+I+Ljjcyyus3ENlQ+jw2DaGKw5G9QGn
qmhsiNlbwLA/iUMKaT6/6SUbqKfirORP43AkfHUPhrNhkbzSgc7jsEir7vOe
Y4PO4VThqxdwyC2PipjlsEFXV34sxxMHDlOggSPLgZ9K369h3ji8uCjqIH+E
AxVxNXqkABxa6NKhRc4cYHc2hQoF4jDeoJBldo4Dbf7T4/wXcVDYtGPKL4oD
hidytYeCcNhjrivJT+WA3kXbddWXcLD1NzBIpXOg9aylYOJlHGI/HLzx4TUH
3Gr+9VQKxiFzyqrAuZ4D1Sz9lh6Cyzc6tk21c0DoLZ1y4yoOneDKvD7EgdjD
11fU/8Fh2ttjs+wvDoi+T66vJXhdsrfp82UOyP2mFtmF4KBWc9ETreUCM1C9
vJdg45//UHtkuDCSrohRQnFwlop65aPGhZ0JBtqNBF80vtXP0+GCvdbfNK0w
HO5coPKS/+aCjByb/B+C8xKSt2lacuFh2aHWEYLfV6Zbvj/OhQDdhdSd4TgM
4DlBjhe48Dlk5LofwQtiz1InLnPhBPyKzyVYzPBFdWQ0F6jL7JJ2grefLcek
73MheoTNnCfYjPp+fcG/XJCbG3DZEIGD29uPOibPuLA0dWdoC8FXR786db3l
QpaTYLQawQ9EesK9GrngdNXCTIngwr2D2ZxOLpi6OKhJEPzRHfuUOMIFSoeO
Kot4/sjtyWmNGWJ/gT9NegleeTUnXb3KhZa71PBnBMsMsQwp63mwyWzPtysE
a68jnf4hywOjoEX7vQQf1l97K2IrD2ar/kxNEfs/6yZWKKnPgzvxVvlpBEfe
2tj5GHgwRdoVaURwWukWlpE1D3ykaq52E+/35QBZqcOFBw3+e+6fJbhlzc4D
F7x4IBDX+OknMZ9xbX2f1WAenE0pVDlHMOmEYULCDR7sSNpB7yHmu7fIYrAy
kwd9MpzfdMIHu282/HaFPKC7TrXMEL748DlvH6vgAZLLat73f5+czl0R7+GB
WWulTgnhW3mULz2PwYObWSMp3wkfuwou1RrO8kD9gYUyl/B1TRQSeilIQoI9
8RnbCJ8lZQ7QIkRJKFrYIkmT8F2pwGKXhTQJeaqLFW8j8rCvy4YyqEJCgWqv
HLm+OBz0oow91iAh81/00e8+OFA4TiFB2iR0PjArpYTIk5/GyUwhYxJ6WXYo
2JDIW3a476TuMRJKTZXY+u0MDrq161lxJ0loqv1geySR39o1TwWHz5LQzGLn
lKI7MT8qrkK9SELbF49cNnMj1vPo5LGJ2yS0qfpj91ZnHIrx1XMogYRc1WpE
44n++HsH/VLqQxKK6JapYFAIn172Ug/mktCbTU+DIon+oTfYNmS/I6EywSdX
bQ/joLl+poNVR0Jn4mvPBxD9VWH9n2Hbz8R6UtXbYg/g0NfbtMLpIaE4BWmZ
NKL/ZCdM9Vx+k5CtVce14/twSNywJ1NKjQ/dPFaZaqpO5I/S+dx7Ox9ibB5P
6iMTffLwYkWtNh8aXPwh76mKQ7tyUXeAER+aVaV+8CH6WUxfXaTZkQ/pVXCf
iUoR+XOWD7kRx4dOFup8q1rFQCH9zc0BKh+KDqzBmlkYFAw7Jukl86HwR0Z3
u5gYNHk9KB5+xId2/iVQ+vk3BkLhwmNGlXxo3xLtij2GQUwW237hFx+q6xWS
aW/CwE63PGjnPB+itNVP+zYS58+Hyw88lvmQqtDEF94H4nxjTLa3C/KjV7JL
yeJVGPzZ1m9bpMSPLG7n3G8rxMCj8LX1BTt+tLj78/nOexiYVgQc6XvFj0w2
TwbNWGEgdlTTW7ySH3UN3M2jHsZgcGAs/lAtPyrqEtqw7QAGIWy3prIWfuSu
9/yWMXH+loKlxYMxfsSot7MV24GBykeNg0flBJCNQWCPiQAGpK4R9C5MAFm1
+jqMvmBA7ERNdli0AFqduxQkW8iA9aQMfsN4AeT5xLLY7DEDpLRONLxOEUBz
uXfvX6czYFtch0VJqQAqbhs3SYxhwFGjOpuccQHUltTTJW7PgKTcXLd4yhoU
8f2iYfnkKKhfuRDiqCmIhMus65W2Et9TzFRnkWohpCKvpumbMAxHx3yuJQat
QxOFha+ODQ6CDZ6wU0lJGPE2Vjz5N2AAJus9rjcViSBLvk8HBF36QFuyV9Hc
fQNKta0afGzRC8LAPDM4L4bMBlKZXtHdYDHtsqTmJIHSg+V856s7oa/uHJ/L
LknUWVe3IXp7B7yObzilwpRE/dlVEX70NrggGDzS2iqF2q12yZn9aIGzl8Jf
i9Kl0SH7F1HHU7+AjufOVqszMogzs/BLJLoJ2qR2iQQbbkSDT3STKv0+QlVx
TPouAVmUJ8vFm/MaIJxP067lv7LoUmDPi0vDdSA8GHY4oEwOaRu37d1/+AOM
PVZNzoqQR9dIY7yW3veQvH3TmgqnTcinmyZtplINCfQLn86oKCD9Yb53fl8r
wSX5ZKvoDwW0/9Os2bmycmAdyF/OqtmMTk9QIjdlvAFszCykLm4LeuoK1rTO
Msj5W2/z1zOK6A0F2UUIv4Kim8GSnlpKKHasWolx4wXEOZ21FGAqIY4hPulM
LgWi7gviviqjDHJ+oVd8EaTtSC/6aqmCTF1Uv05rP4eoWmqaZYUK2uAvB2v7
n4L1Zqf8L1tV0bGSCw1CtY/BNOCTq+RtVXQ97bO38EIeZG3x2NrCVEWF45dx
Y81c2Fr/5KGNqxqKk8s/uTMnGxK06jQ7a9RQYGbSvDF6BBfm13R81iQjo2T3
ji3vM8DjxR+V2/fJSJsqfHPBIx38YhzYRx+QkeadnQUDx9Mh2KHsm2gSGSUd
F4lrsEmHeGbwvYSHZJTbE++Tuz8dig2XV1MzyKgkQ/UZVSodlj/weh8/J6Pp
udwBqXo6JHSKUhs+kVHmuZkHvep0oOf6e936TEZa/5Wy0VOkQ+6VVvPDzWTk
cIiZdl+aDm9kE1aaW8nIvq6sx5lEh0EXaa+uHjKKORH1UXyABhrYJnMGRkZ9
/UNnNO/RQLcsTClvjIxcfob5V8fSYP/N78vnf5DRh7US8w7hNLDSyCidmCQj
6p81nne9aHDJV0Vpbo6MzI3sWsnmNIgwjl5+OU9Ge81+3uw0pMHNDYzuK0wy
qrl3oChWlwZpJbl3WSwykojad2hekQY519d4Vq6Q0b4Hh1+XyNDguf15swg2
Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC
"]]},
Annotation[#, "Charting`Private`Tag$7735#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.6401531715334164}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9},
3.879571608345409*^9},
CellLabel->"Out[34]=",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1864, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2425, 68, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5252, 146, 1588, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6843, 195, 9076, 164, 235, "Output",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"]
}, Open ]],
Cell[CellGroupData[{
Cell[15956, 364, 1731, 47, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[17690, 413, 743, 12, 33, "Output",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"]
}, Open ]],
Cell[CellGroupData[{
Cell[18470, 430, 955, 26, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[19428, 458, 270, 5, 33, "Output",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"]
}, Open ]],
Cell[CellGroupData[{
Cell[19735, 468, 1805, 46, 111, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[21543, 516, 339, 6, 33, "Output",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"]
}, Open ]],
Cell[CellGroupData[{
Cell[21919, 527, 1267, 34, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[23189, 563, 6732, 130, 237, "Output",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"]
}, Open ]]
}
]
*)
bounded8He.nb
0 → 100644
View file @
1d727bf3
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 36835, 818]
NotebookOptionsPosition[ 35260, 783]
NotebookOutlinePosition[ 35658, 799]
CellTagsIndexPosition[ 35615, 796]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Mp", "=", "938.272"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Mn", "=", "939.565"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ebind", "=", "3.925"}], " ", ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"binding", " ", "energy", " ",
SuperscriptBox[
RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Esep", "=", "24.81432"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[
RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9,
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"q", " ", "r", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"ang", ",",
RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fOut", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"fIn", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfIn", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfInR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=",
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["2", "Pi"], "k", " ", "r"}], ")"}],
FractionBox["1", "2"]], " ",
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"ang", "+",
FractionBox["1", "2"]}], ",",
RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfOut", "[",
RowBox[{"q_", ",", "ang_"}], "]"}], ":=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"dfOutR", "[",
RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.",
RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9,
3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9,
3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9,
3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9,
3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9,
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQDQD6hcRW
"],
CellLabel->"In[17]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{1.020408163265306*^-6, 1.9434682115973003`}, {
0.01533589602798134, 1.943748439521205}, {0.030670771647799414`,
1.9440288987650578`}, {0.061340522887435564`, 1.9445905124319236`}, {
0.12268002536670786`, 1.9457165290480463`}, {0.24535903032525244`,
1.9479797883972108`}, {0.49071704024234164`, 1.9525517709481117`}, {
0.98143306007652, 1.9618821897394834`}, {2.0454178542729324`,
1.9830133301383182`}, {2.958029656364833, 2.002196235245252}}],
LineBox[{{2.9899174114668736`, 2.002885289545698}, {3.0500121108208624`,
2.004187416350027}}],
LineBox[{{3.081899865922903, 2.004880251719722}, {4.298771468715699,
2.032343111696474}}],
LineBox[{{4.330659223817739, 2.033090717404738}, {5.230370406745517,
2.054815538265406}}],
LineBox[{{5.262258161847558, 2.0556086163065914`}, {7.124041306441138,
2.104932858194773}, {8.173138546173233, 2.1356335947117246`}, {
9.151727315943587, 2.1664489328692977`}, {10.112311928229225`,
2.1989922535225253`}}],
LineBox[{{10.144199683331266`, 2.2001147155868095`}, {
10.439885863942887`, 2.2106589009365796`}}],
LineBox[{{10.471773619044928`, 2.2118108967365178`}, {
11.793784171133385`, 2.2623054642685347`}}],
LineBox[{{11.825671926235426`, 2.263593437218421}, {13.228344634183118`,
2.3239364957656083`}, {14.211533911287631`, 2.371048144684206}, {
15.2772759429202, 2.427408695591982}, {15.997201695816472`,
2.469068213762979}}],
LineBox[{{16.029089450918512`, 2.47098698944541}, {17.299275412626642`,
2.553095173962763}, {18.35757366702705, 2.631220222064354}, {
18.575031439058826`, 2.648544318091664}}],
LineBox[{{18.606919194160866`, 2.6511241773082332`}, {
20.415705990432443`, 2.8164527768403436`}, {20.583264093501196`,
2.83393478503636}}],
LineBox[{{20.615151848603237`, 2.8373095136538247`}, {21.76163442231778,
2.9698829793498738`}}],
LineBox[{{21.79352217741982, 2.9739133900641055`}, {22.463514267959305`,
3.0635652845752426`}, {22.476388432909584`, 3.065386539629232}}],
LineBox[{{22.508276188011624`, 3.0699145486974073`}, {22.57976882002402,
3.0801551872074895`}, {22.712631165240843`, 3.0995193790226563`}, {
22.978355855674483`, 3.1396008842680088`}, {23.509805236541766`,
3.225647302026706}, {23.525311334850716`, 3.2282846262936955`}, {
23.540817433159667`, 3.230929516488219}, {23.571829629777568`,
3.236242127181056}, {23.63385402301337, 3.2469596083432255`}, {
23.745330149653963`, 3.2665373628853254`}}], LineBox[CompressedData["
1:eJwVzns4lIkCx/GZ1kYxNzNjJoNhLBMHW6vtmMv7vr+1o7KqTRutGemm+w1d
XHbbcmlLtehZk2IzLpMkZzsuzzhswlRjEpWktBK2cLJLORJFOe0f3+f778dl
w56Vm2bQaLT1H/r7s26/TJx7zQ/JnPljd2qskSGl9vZYyLD4P/6aefNs4Gy5
8FWxjQw3+xdmHiFtAJPra5mDDE6aK0NxGhscVk2/0ShkSNZHeR8/bQPaFwZ6
XrwMZ9zf+53iMKBWDTR1HJRh7WZps9SegcrFwkxOkgz7jav0JgkDW5cnuCcf
l2G+2HeV4wIGWjVk0OYcGYILEmbPW81AwQFTpletDDJ1b99YLgOq0gfSapoc
w11v1Os/ZyL3suXIiIUcV0Ndns+hmJgo96vxnCXHZdbT6MdLmCitzl76C0eO
sEVJZYfCmeA3RkQfksixb3eMHilM9Pf21wSo5NiwhVdQ087EMcH4sntH5Ujq
nn/RKpGFTLP5qfGEHNXp4rkbT7Cgi8+Or0iXw9J2r8qsZcHQSZzPzJKDlbQ9
q7yEhT5dylToBTn4z2cenNXOgv9c20udJjm0fV1VA3w2pvy8rfo+VmB/7uEf
naLZsBp8f659lgKpTx69mxnLBjfnrq+JoYDj8/qXY9+z4flu79oLfAUipNv2
DRxjI6yhxrDNTYG4z6+52+ezYQhcsmlYpYATp8/dfI+NKPVG43iyAtYH1p7K
UXDA1A32KI8pwOKE1U/5c1D6NHo68aQCe7ZK1235ioOBnYeVNtoPHm+tIiyM
g4hD5wzORQqYAmN3lcVysFT/sCTQrMAjVXidysDB3OGgn3NslEgrObHkuMIW
ps/aynrYSvTQHEagskVkrPquG1+JZo+oKx8ts4WOto3xb0clZoaNufwaYQs7
7o9Hr/soMfRm68yzSbaw8Kv/bmiFEp4bvhF3N9uiN3FBJKVVIvXhMP3dDi7c
7ZhpUWeVCOtO0ZMHuNheMlCVf06JXSu9LqYf5uLVvWxriyIlfGMKItdpubD6
hF5hNigRy/w6vb6OCx9TC31lhxINxck//CLgIWH2Fl2kiEDL7YSjf9znoS4X
N7ViAhN017fhvTxY+NqPmlwJxDwUiv4a4uEnTcsiDy8CIeJb/wy05COv1Hd4
SEmg3ThaZqHgo3E5jYiNIMCon19dVsQH7+ezv6fmE+Ayg96fzrDD7HZua8x5
Ar9dY2xk6uxAE6Q1ai4S6OIn1eX+yw5D2UmV3mUEJqcqI61v2cFUsCOttZ7A
X9ZElchSgLhywn9ODwFR9ZqQ0BQBdr+q8pvxjAAnKPr6wUwBIhd+9umfAwTM
du8vG/UCBNe4O9S+IMAT3vQvuiGAp5H1et00AVVL+5EuKyG6WnsvFjuRkOuj
HdVaIe5zw/NOSUhMmgrdki4I0RTy4HSCO4ksNf3blmohDI+akpf6kLga7dFx
+4kQGb0Va14SJELvhA+mes6B/8gRjt8aEsH6S+wvb85BEdszvjGHROeqTcVK
qQg+/WETFnkkvhv9YnE5RKj6LTXWX0/ibh6jI1Itgnnz8/21pSTadloFpKSJ
MHilOKailkRce2PMjTcieG+T7tR1k0hu+yjGo8sBBnL1n4+fkuj+tVPd/dYB
JO/odvv/kpg+b/T6Q+iI5XX9W7UvSRCBnaq2EEdE8Ys2naBT0Kqaq460OaKy
4ZO1sa4UdLMnr4Z0O0GZtepJpZSCjL+9Z/8MMW7sTFnzv39QGFhBm5pwE+OB
4Jlm1wIKjMdx9T67xRjfVfjtxgAKvYqW+Ot0Z8jtJSu/3kLBbdToeyffGcYX
wa0nd1BwuaWT9BmcEXQjcUXTHgpnqjooZbMzwqN6lwfEUaiQ3r1dPu6MH0x5
QYpUCuOr4/c8C3ZBQ4w4QHqJQldogls6T4K3Yy8yHC5TYLOzJnO9JFgQX/+Y
U0GhxLK/cFIlQfGh9fumaj747k+T+QckyDhZWNjaRGGRZvExc5cE64qkM74f
pPC6wWGQXuuKbI+JZdHDFE7eqt5X+LsrLM+cYtWMUPB9bdRmjLri/3eklrw=
"]], LineBox[CompressedData["
1:eJwVjnk0VXsfxpGxzENHx/BKabqFyqs30v7ae59jkySHUo4KyVAyXSVTiuhe
Y64bqyshRZOLRCr9fpGrASFTqCjz7GQW3d4/nvWsz3rW+qxntbO3jauIkJBQ
yM/8v6uNaIX320loVPIt/8JWx82Xf4uWNSYhZuSI2DljNVzYoZWlZ0KCnG7n
htlFNo7Tf/zMmiBh29dnM/Yv2Jhu7Z1Iokho6rnnfd+CjQvW03yWJQm+446K
6m6rcOw/S/pajiRo8AOuxlSwMPj2btU4SoJ18ocLbn+y8KRa7Ta2EwnsXc7W
9W4szPe9bqDsSkJK5upAWpaFt6jv+p+kFwkekU6urk4rca3vOWI8hAQr1j2z
LE0VfFHdCUbCSHBGVh/NZ5WxYRVjOhhOwtgJl3l+gzJOV1eluiNJmDoreP08
Whl7VxVzW2NJ+FocUWM6o4TlNSb34jQShAPNrwz2KeKXVe1WZekk5PPeicVU
KeJAv4p9TzJI2Dht3ReWo4g7q5L2F2WTYP7SccLBXREX+G21y71PgmKX9oXX
IwrY5tVpfuIzEjpmfOIDxRXwH/4Dnsc6SBjHC6ef1MliNjfIl/eJhDa3+fNP
MmVxluqKQG4nCSfkP5Zp+cviwrLNlzZ3k6CdVZjEZsniOgmfG7NDJFikpv+Z
4SKDZdOm3ycukMAdFUkYlZHGl18uM3nBpmB+kneJkyGF5VOSqSJ1CnZv2lne
HSyFUzx0LHI0f+6ry6NfH5TCt2XNDsZpU3BqcOrKMXkpXGn/u++hTRT0ikb/
/nekJBYZkb89sZMCVVJh79ZzEjhERVNO+xAFxv0JjFmcGK4pkDpMOFAA+T4H
mrzEsKbVVDbfkQKLCP7F61ZiGEVVG6U4UVAtxyr4IC+GRWaDTkh7UuA8aM4b
TxHF0W0tZdNBFCwKFUmq5C/DSTeunHqbRsHNEE9BsqgI/mocWtKfTsGONRld
dkPC2KDVXUQ8k4KzuZ8ToUEYN8lDKtyiIO2d6pUrGcJY9eJoxaMHFHzLLJFh
EcI4/fgetYznFBipHsUOEUL4zkaxN792/vwzdu1wteUSalA3XfD6QoGoe88z
tXVL6Ltc6Ga3bgq0eKU6mT8WkdX0ZPyhfgpE1szRlg8X0WR5N2/3OAW2d4KT
WRqLCPgvP0oI0VAuZ7VBZ34BtcZHTFz7Dw0Z2qXRni1zSOQi0k5eTYMRH3SK
iufQLwELvLg1NEiKujxYf3UOhTn4F59fT8N39fCdMXZzaO0Gl+DjejRkB7ol
GTfPIu8XpJguQUPr8E7+0qcZJD4pvOrFERp281iFbOlpNJufGt99jAaLLt7E
05EpNOSlJyrpQoP9sguake+mUF0ff8zKjYb7YTIql/+YQtfaSyo7vGmwznvo
eEBjCulWePnNhtOwqzhWsXbHJDqQ9OGt3k0avuy98/VwlAAx+3xMebdo6LTz
GLU9JUDG0hIlZ3JosHJWq/CyESCtKIOssns0rLwdMTKvKUCD5xIC9xTRUBu4
41Bo6QQKc+LouFXSEMTKQpPfxlGOfkFYeh8N57tXdOfNj6LTKhNzJQM0nLSv
jHKpHUUG8/oB9UM0tE9aDphljSJckX9SdJwGjfmnRekWo6j1QL695ywNLJGm
+eDrI0gy9O9thlIceJ9ctrxozzByf/2gt2YTByYeS/fpvRpAG53vWi16cWDv
cGgI3t6DXl03yhd4c+CjwCwoR6kHnfjwRqHflwNK4qxHd791o2zrocaGAA5c
OpRkLlbUjbSIzQ65oRx4O+b1XtywG61Uz3PjxXHAoeW/p9WIr0ikuSD8zn0O
LDMfy0053oXazUsL7YY4MPqUw58dakfkvmz7gBEOzDfYqp552I7u2iYsJY9x
oOFG+tya4HYUdNTVovEbB6Ju5unKrWhH7ACFLzbfOfAP62C8+pY2ZJ/hoWAt
w4W75YOfPp5rRc3Tq3ws9LggGBzwcDVoQg03g7YQ/lyIFF0wUaZrkaJQcalR
ABeGO4OmW0ZqEI8/wTE8ywXpx+YSH1JqUKOy+5EtwVw4nvtgddJwNWq5ZJeg
FvGTTUw+taa+RR1u+hMzSVywTXnQFvb9Fer5pbcov5ALp3YOKvmPVqDZh/t3
aQu4EHjvh2dsZxH68djvUdRpM8hfcrY46pdL7NHnckKmzKAx+fPEp9hKospR
z+OkPwNra9oFvsvrCUUX96fXAxgYH6k/kLu2njjinilTd5aBN7tMeHW764lp
P6VCgxAG8mdfmE/51RNrL8/ML0YyUM2yTE1uqyfCC1Fs4lUGijQUOrfnNBBG
Etb5j0oZOJ5MkXsMG4ko6d9E+p8ycDU9W1Bt1UjUK5Tbsp8zwBdTKTd1ayTc
1Q3mwsoZaJM9MiSa2kikbFUlmbc//WsPZwpmG4lJh873bR0MxN8fIwIeNxHg
tGqdzGcG5Id7lXTrmoiYEzaBRBcDu5XWFbf1NRHavi/Vs3sYCCm/kSDHaib2
R+W6eo0ysMll4En/r81EWkxXyY1xBoqVO3RMY5uJ/kT28gYBA2fGdQvjbjYT
4X/F5hnOMJAmnXNwWUMzUZ1RKeQxx0AiS+rS5oFmgnV7yeavBQbEhTnfzYVa
COd7O27VLDLgbulY5cBqIfLyfWZ+/GDA09d83Em3hfgXBlLKRQ==
"]],
LineBox[{{23.777217904756004`, 3.272213571286108}, {24.500912064223318`,
3.4109378348607606`}}],
LineBox[{{24.61034969639067, 3.4337160525576738`}, {24.730449091526378`,
3.4593125448441233`}}],
LineBox[{{24.53279981932536, 3.417522268161458}, {24.563001917687984`,
3.423798359927806}, {24.57846194128863, 3.4270260774198293`}}]},
Annotation[#, "Charting`Private`Tag$5933#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {-7.026255643989277, 9.975712471055067}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9},
3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9,
3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9,
3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9,
3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9,
3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9,
3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9,
3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9,
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}},
CellLabel->"Out[17]=",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9,
3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"U", "\[Rule]", "46.48728734369617`"}], "}"}]], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9,
3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9},
CellLabel->"Out[38]=",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617`"}], ")"}]}]],
"p"], ",", "range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9},
CellLabel->"In[39]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"coeff", "\[Rule]", "8.80922839269386`"}], "}"}]], "Output",
CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9},
CellLabel->"Out[39]=",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"8.80922839269386", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9},
3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9,
3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9,
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"A", "\[Rule]", "0.7583626465084375`"}], "}"}]], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"0.7583626465084375", " ", "8.80922839269386", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}]}], ",",
RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8ld8fAHA72XuP616bzGz1OdkyspPsrDKSFhF9zVRmipIZJRUVFdkk
WxkZGZn33oTIvIjf/f31vN6v53WeMz6fc87nEfO8aONNRUFB0UpJQfH/Z06k
J52y193jElFVJn1jMcc/D2DMT2POQ8XCm1Z/DU84+FIfg8GEQXagy+JxjRDI
aUwSpcUkQsbsv0QejWgIOHY1cEv0EUTeaoz+pJ4OA7t+GSuiL0DBeUQxUK0Q
Do3NSC2JVgNVRfk3U6V3UNCZd+m3aAeIC/540yPYDGXliWMBCj+gNK/J1OpW
P/hC36PFkFmgFOTU23/6AygKNz+N3Z0FbGrrNcXmH5BFIzTeWTQL1pc9+q2n
fkB7h4/Ii6FZ0HYOrzkvNAbSdnuF3tpzcIWTI2bu/hgQ/aReTVLOg6K6QchW
1DhcSL9Z/y0VDxLsUQsY80kImpeZrSz7Bc02ZwNvj0zBlOsofVPHLzjEFOmS
j58C25HbCj1z5PddOQav16dAs4sQNi+wAJ6+MgPFbNNA/baYjSdhAWzOO/1l
M5mGrAix49fdfkP48VDHtsppaOLkf6TFtgR6H8yNrsfNwNGk9npDuSVgvkn3
Uyh9Bp7Rhc5ZGy3Bjkbu6Q+5M3CPNKR4IWIJQlwT2j5/nAGHnxlfHhOX4PzK
eJ3lrxlYKGVb321cBsmQ3l3Wk7PAIBYr9VNzBVz+3MKyU81Bu26aYqThCuwe
vfvMh2kO4h1zNYRtVmCdorflDc8cUKVWGZ/1X4Gt3Ox3WLk52Nlf9B3OWYH9
Yr6GCNs5+D1uX/KVahVUZSQzaQrnoDtLSqaxexUe7CzW6KrPw53Ko8puo6vw
kN80VQDmweTbCa39+VWIpQo5tWg8D58POZvqHqxCp6LYDf8z81B7LfV8lfJf
SP2rsTkcPg+v7Ugv3jz8CwXrAie96+chma1LtsB9DUIvJw4paeOhWkP4vWXQ
GkjuvZIQ1cPDnOtF2Atfg3/P9x/um+JB5zWn3enMNXj+/UhX6hk8EE2dbzL3
roEE1xqRMhQP+jFLX8N01mHmX1EGxzs8BJWCk5TpOpg+jylmq8bD4760uUGH
dWjYF0k8aMDDiqg6STFkHR7QsH0o78FDbm0kFl+yDtFx76TOEPGwvcF61YZn
AySfSKd3CxAAJ+x5cIDbAH0n/+rvGAJYGlQmvlbegM5GwaCvkgQoTnfMpbfY
gDbG0YsZKgSwUSxoq4/ZgK+yab5epgR47aciILe6AW/Fzk7xXSHASEps0cj+
BsSxqvPIhBGA5uOQQjzTJlSevpUrE0kAJ9pw/WmpTVi3Z3u0m0AA+sKWgEzX
TbA7kBybeUwAzzG7BuruTWDI2pqoqSMAQ/Z04KXRTSgmZozVNhHgnVOQ0E/8
Jjyy2EoqayUA9Y+EsE+UWxCHW6Lz6iFA0cgn1UsaW/C9epWGd5wA5lnGM5MG
W+AY33Yu5ycB1k8PpprbbIFinKQX1ywBDIeXlqQCt0CPmIMGfxEA/x1TMlm4
BfZZgfLZmwRIfvDawfzNFsxz6J99RiKAur027ae6Ldhn/ilQuEeAhEFbzwcj
WxDa1GrgT0UE6YF4IXOWbbhXSWI1YCbCt3TOrmrBbUgzOJ82wEqEUJv8MCmZ
beCMd3xgy0GEjr7qISqDbZCjtBKR4CXChW+LqdVh2xC0TsfAgiECR2oYSCVs
w5hX+hUxLBE+naJbzsjYhhj8oL2EOBEYv4qaBZdvA8tbx+v7UkSoTH5Fmqjd
hoY20fcDMkRwttQqMevchql7L7weyRHhVY8NrdT8NhRMRXJtKhDBLulnRcbf
bWBwyudIUiLCnnmAJxUFCbodlSK5VIhg0R3XMCFAgj//3j9aP0qEzbscQWbS
JDjV3GdsoU6EXLM8oWo1sk1L3B5qEGG5syosw4oEvJqog6RFhId3DKWpXEmg
SRPKz6VDhOMn+4cu+pOg1Pn0NxFdIuAPu8VNhJIgN0llif8YEVI6fquaxZMg
Zdn3Iu1xImgmhs5U3SfB7Rk3h2myp0xo0yQLSFAwcq/gNRDhNn06ZJSRwNzc
3+oCIoJSu8gyZS0Jylv/8+Q9QYSRhJdPLnaQYGnUfbiS7FvGmmYTQyS4Ive0
TE+PHK9DraSTcyTQvrBEaCT72xfrkqpVEmzbLkcr6pPjFT/pIHlAAq9K16hk
sjFG/rQZTDtg7U05MUF2O+12BaXADixYPs0WNiDCpdZYz4tSO9DiK1hjQbbI
nBHdpuoOuB+7nhhAdhfV4dIItAM4id2Gm2SHinVZUFvsQMONHNf/yJZASauJ
Z3ZASsPZ+zrZ/a6nHrD57EDSiu6gG9lRN9m1MkN24OwP85faZMs/GRgXjtoB
ydb8hUNkj356cKvo7g58ELFPbyOPL370tLhc1g58X00qDCNbdZu//W3RDnjh
rwmKkD3FM+6v+Zbc/oT+v0ry/JPUclkb6nbgyewRk+Nka9u5Vxh27sBh87C9
avL6EUKwp7uHdkDiwUUBabIz0uZ2bGZ3gPOaZ+Ft8vqfePMsd/TPDvDovcwg
31aw3Oun5763A+HE0lUM2dlLsng8/S6cWu+odiTHc0O2/Mi62C6sX1JIyiPn
Q6Hppb4bCruQR+X/qIycL6f8VK9S6uzCnNp7jjfaRHhR/LGWxW4XKH0rLe9o
EsHhc5j7A/ddcDydw3GOnH/Uszo0QoG7kNC7a6hAzk8XTKOZTPwuoJ7Bf9mq
RGDPbv+hX7ULM42NXwaPEKG++k5k5+ddwJ9fEDghTwT/EXOsdd8uKP5rncuT
JUIrd99514Vd8NQ7MXGUvL/CUke3Q4X2AHzeR9SKEkGyPPvJgfQefPZ69qhW
mAgDPS4oXm0PfDn9j5YLEuEI40zCfcs9WENsRH/y/p6OW+Apu7UHB8lD5/VZ
iJBc9OrT0aQ9yG3RzRxmJIJOS5BrzaM9EHodYe56mAgPKNaK29/twTqfkJ0+
DRFMw3ePzs7tAWHgFkUA+Tx6G8xky2f6D4TD+uS0pgnQ/Zgz7LXDP+DNeXO7
fIJ8nn0WyNPz+gehvtFHeH4QQIBf5ndA1D94UhDjWNlPgNgmw5im9//ANY8Q
erSFAA4cURUXsPtAJXFB3qiAAMG68aMHivvQ+iFSp/kJAe74JB1kHNuHixam
dQpZBGj4lG3W4LgP3cL8EqPJBJA+VzXLmbIPpdz3xi+HE2CnYpWzbncftkcj
W1qsCcA1ua1lc/gAtDi2bpqYE0CBnsKdwHMATfaSU3VGBDjnzPKKXeUAjkZa
lN7QIc+HRs7Ax+8A3tb41+uKEyDX3usK6/cDeJphY47/i4eCcP8FpdMUKE22
9vhiLB6UGg9vJ7hQoJuZcfcZI/HQSFNC+/McBZIp4j8Qvo6HqaQ5TFIwBVrS
T5MVOo8HkXyX078SKdAz1QX9SHPyffr51OeCWgpkptghNsGGh3Tmo7kcWEpk
krHKLZ46D1ib/pfnpSmR70pJfFnCPLx9GFzdqECJ3t97kC0fNQ/fRF8PBulQ
Is3jua3UQfPAoiLJ2GVHiQyyCEUiZuR6w4EvNCaBEtWrn9hloJ6H6Lw96/VF
SpR8ZLVr5vwcWClVXZJbo0S7d92YRdznQKTpcponiRIJVVmxWzrMwaeZhW/f
aKlQbZHftXt6c/BXYvTUaxEqpPk71jJGYA48X7238LGiQmr8hpyu7bNwojrI
dKSCCpVErHKuCM4CxcAUqr1BjVKCgiJ+PJ2G2F/1BTf+o0bvKvIe+DychsMU
OVRat6mRs8SQHuH2NHAcOfP5/QNqVD15PuJL4DRIJPQZl7+hRh6NAef+qU/D
SZ1my0I8NWLu/95v1zYF958+db5tQ4P6O0kg2fMTJK/4hNrJ0qI3J4WjjZLG
4Yj2T9s8JVpE+e9klcO1cThK4ai4oE6LXp26cTbMbRz07pnio/Rpkbtv5esN
5XFwLZK3e+lMi25KM+Hbh8fg4eBfRaoUWkQ/F7bSLTkGtGpRhPI1WuQfxCZA
7BuFuY1MB8Y6OrRpmhpz5cwwFJ5QvTzRQofebW+JYAyHwS2pN6W8kw41yJcH
TigNww9x2g7bETpkffkK4R79MPTZhug8WaNDWjfF8uuqhqD+rTnmiOwh1LhX
9MdRaAgyAykXLDMPoYuVlnusK4Nwcv7CzfRL9AhJl6sFf+kHo5u4Vwah9Oj1
SWz7uQ/9oMc9/mMzkh5xRrlyeD/rB21DC82z9+jR7x27vNT4fpAtVlzDPadH
4xUu9neM+4HRe93v/Tg92uvzxe139UH33E27EePD6EL+ytesyW9gOZcqJyLC
gMZ7207fseqFbrm5QWdxBsQuoiDrptkLZpc1IrNlGVD1PfcTxpheMKGa/Man
wYCOiLRQWK/0gB5G7hqnFQPalnTmM03rATXn1kb6aAZ0aTo4rH6oG4QGSfZr
8wwoP9MY73CxCxZaPG+1v2ZE8gSdDdnBdhBNG7mQXMmI1Jxc/Cvq28HO1dLe
roYR3VD9E2z5oh3qt7Vkp9oZkUH2iYWayHZIP8I+uDXLiKpkPwyHyLaDTmaD
lJQAE6qi9RvTi2uDexeEvsbFM6FRiTvKFCZfQIF9SFjfjRklVo/kNey3AD4J
H/3Amxk92ko882S5BXIYtggEf2ZEdErgj59sASYavnf3QpnRRJtn9K36FljY
PGM0lMaMSA5nB1ijWqB4fCLo/GdmhGVp9U+hagGhkvmGFBkW9JFWYLWLoxkY
YMNjfI0FWS2tMmEcGiH0hDT9hx0WdKrMXnDYuBHw+mfLUihZkQFH8PPHWo3Q
bNK0o8fKis5WijEbCzfCDZuk+y9kWdHmwVadb2cD/PaWaL3mwYpwBkJRJcv1
0H3PXpr9KysSOWY+1WNSB8ZLTltYezbUfOHYpDV8glyumIEoRzZk5x4p3iH9
CdZ1XpaPn2VDE/7OLbYcnyD/zq7vQ082VKSc3F44Xw07Uk9GDgezoT0LLZxk
UjW88pyoXrnDhuRWHMYqflYB24hbRH0jG5Kd3laPSP8II81elE7y7GjVapQU
IvceVk78ELipyI5o+L1/3xR4D4eaTh3NV2FHrDeVQh4efg/qDdq+eE12dDr6
MNcKoRIyath6QgzZ0e4vvRsGxZVwqrI2664rOxrLPQj1w1bCl2IupbpUdnRs
bVnHTrIC3t/+7IrZYEdX5Yuck2zeQsnJLr6EbXb0QaD8SbT+W3jM1N+/tMuO
PH8lLMYefQu3Un8a1VBxoGc5lslveN6S6/UdBQc2DlRiTJdXOPYGZp4rHdyV
40Av1l7oEH3fAEvbk7wtDw6kdSmD4yxnOfjQXp3q7eVAv7WldRt+vgQB0Y7h
3T4O1FyYZCrR8RJ6NYW/Sn/nQNxsgaU5716CekBrXfQYB6qYUZNrjXsJdAPc
2epEDoS1H7i7JP8SivM/2OdScqKn1O6HMiNLYU5nuzPwKCcS8P6t+0vhBZwL
CX/P9JgTXVJL4k5vfAbqKpPvZXI4kb3a3Gx42TNg+Is+GOVzov9ktjiuPHkG
by7Rfbz1jBNdFS/0Tgl9BnvBaVXr7ziRIC/KC1Z+Bg8vPq8Z7+JEHPXP0geK
i6EjYKDp1T9OVNtu29ibVQSKvnK95h5cSPaigrJVcSFMnhe9+NqLC6lObJ7Q
fVAI9wI42Vj8uBC39pCielwh/Lq0a/01iAu59XFctvUuhKcRXd+tI7hQk46N
mYpkIfCm+084ZHKhFqNqquulBXBQ+3LRvYcLGb5Rfdhdmw9fOeQZr2pxo86o
rh8pTLlwPDDwV7YuN+LcqhXzWM+BsraytmbgRg3LrZOG4zmQHKEcy2bEjbaM
4iJMX+WAOV7930sbbrR9z/S+hkUOdFaf+DPjz41kn2jWFKQ/gVb30wNWudxI
RaHkp4FcNtSURWfLU/MgmZMBdkWpWUBnbi+QSceDzAzf7mqEZ4H1L6lHlAw8
qEZz2nrSOwsIuJ6HQ2w8SCpktsNTJws4H/Gm3xLhQc7ClThTQib4x7y6PajF
gwaiMuJv6mWCoOPQ1YhgHnRscoSfj+4hhFPKWnVP8CBPgSjsSP19wBswjkhO
86BX14PEVl7fB6vbi27/zZH7wzI+5sm5D+Ks5RfVf/OgvectX5LD70O30NGU
/G3y+HI/v5fVug8imsd7r3Dyol39DRO6j+nQHGRjLmzKi8SUn9qTatOAYfyG
SVAlL5JKjHhfPpkC6tdfMKd85EVGbPf9dFpTwINjpL/8Ey+6X6gSPPYyBapM
1FxWG3mRbqKkrmNYCrnM/HPpSg8vSm/2o9bnToGmZK/sG3heZC+U7vLVKpl8
Xlkux/PxoZVD4YYOQ/dg/plYRl4EH8pQ9HgzznsHFmOnSdS3+NCuP9MHfco7
8NezwM0vhg+Zmr6zqF9IBApRMTnlO3xo/azyn6W6RBDIxDQ3Z/KhL8b04mre
iWCVILoy/44Pta786bb7eBtqfYXN5X/xIVz8mWbf8wmQIc1PU23PjwzcmRgj
KePA2VXy+awjP9J7K6sTvRIL4hmqJ1mc+ZHU+QzJjJ+xUHlgkXrOkx/9NV6g
mq6LhcGhaCGWi/yo99LmE+HwWOCMWzx67jY/Sh906OXbjoH06QZv5hp+dIYi
7FX3bjSkPvZp88AIoFvND/6uSv0H169FX47ACSB17oguR4H/wNUmVzRTUgCZ
hOf5dzL9B/IMQ9e75QXQR/HQnz2rt6AjzFBaQ0sA9V+Yf25XewuozognMtkI
IMPjet5OtrfgKu/MyY8xAuiV4btAAY4ocMpw6WUiCCAZq0+4SmwECFUwCPov
CKB1jTzeaIYI+Nn30bdjSQD985H+4fU3HLxYOSjj1wVQm2xRjF9zOATd+aJ6
QCmIbh6mue5zLhyibyk+WhUSRIIV+glHXtyAFwGUXkM2gmi3ajIrWD8Mtg2K
SXn1gsg5sqlAp/waRNTkxXxuEkRqBMuCQznXgELlMfOvz4LozpyB7syda3BI
NEVMpUsQNZilcbf4XAMeUqjp52FBxFXaxqoieg1UX5s/Iq6QLXnAXpN+FYK4
1zWVcULI54j2M9nYKzA7rxfanCCEaDInUqWSQ0Avr7dQ9q4QGlNzWaeODIF8
R6ee9GQhxBkZ5rEcGAKuXZew5x4Iob69GqklixD48Sa/m/qpEPpILcGexhIC
/eH7GMN6IYT+tvz0Tb8EzeyfOtrWhZBOqVX7wdNgKDymLNjjIYwusxQODI8E
QrMlQ8yulzDaomhwe9QYCDNuswsyfsLo6qxyTlBJIOCiH3yKDxJGr97KLtqG
BkLRF9IZFC6MNG0+CNPzB0LxqeasigxhxGPygfOwawCUeNjyPG4TRvUvzlFT
bV6A13FX2X2PiKAKbgGXHCc/WNR1iY5TEkHfgmwNNY39QH7dYO2pqgjCxeXn
zaj6Qakn1/cpLRFU9c8szJvZD0qgIsvJSAT9uT1/AdvkC0WkFVFLNxFkyNz+
IUjOFx4HBiiopYkgPkEP930GH0iwP2dGvSGCLpfU+cSsnYPCU+PO3tsiKF2J
imQ8cw5qTe2D2nZFUEJlRKBg3zn4e8w47S6VKKJgr+hYLjsHzpJyw5xsokjk
yuIvQ/9zoLL111NcThR9F6pqKcV7wmRW9A1DD1HUz1A/tU3wALXxghcJPaIo
xbw5j4/DHdgU/LbLv5G/F003hKN1h8UoBeORAVFUi83YC1lxgyJczZz0D1GE
GbSgo69zAy7/QdFOvCgK8Fciypx2g50IajM6CgyasHh/8XiKK4wyqjeZ8GPI
f691KVosLpAlk/26xwyDYpPZc/kNnGB9zag4xgKDMh8WTUodcYJT9X+faJ3C
IIo3krIneZyAzvbkvWIbDCJJHGR3Es/A1QjShZtnMIiW8zZNdfIZsPl6WvqI
LwZFvn+B1510BKarXE/vRZP79yma9b97GqIak7LMqjGIrtP7+6KAPSxMNGaQ
PmGQTLsRywC9PTjsrqU+r8UgoULjnvZNO5BXd0qkbsSQ6+eQkpl+Oxh5KXmj
5gsG7XZc8ui9awcqmQ1n5QYx6Ngh/ss3KOwAH7gqwvgHg2b5gaJ73QYsBO2L
O8XFUBZL6mAZnTVkzSk0npUUQ6xuHLasJCuYe00/tiglhlxv0Ffd+G0FEaiW
jVVODA3IXuEI+WYFr7xxEbbKYuhJZRfPzGMrYHizajN+TAzl/ZScalC2gjaD
ZIplBzG01SgxdrHXEk4EtZ1lTxRDh2hEWD9MmsHOyC+jz3fEkEsh/+rtL2ZQ
qc+kcv2eGFLnXO4KLjMDSX5r+okUMYRjDMBFRZoB0+cflSUPxVBloIZ7hqgZ
jPAvM6MiMaQ9t3o9zfskBLdyNQY1iCEWXtrrzhSmkCfkKd69IYaWJ4ddswKN
QFtVTsFzSwwFLd9cDTxrBIOm6xrb22JoKb9V28bUCOivx5uJ74kholdWk5GE
EQT3lYZEUGHRzPVdu8kJQ0Dxa43yrFg0qh12us7aEGb+xLokSWORNVfd2IK+
AYi3PH9oeRaLpt/GTRac0oNe+e2icWcsign4ms97Qg9CH5pUXHDFoid9LctZ
KnrQdf7X13gPLFo8RH+4nlsPQtjkDjf4YpFtLJdm2vgJaHApC1e8gkXOmbH5
tgEnwGm70p0tCYss3RlYGTMQpB5plu2vx6KGQ5sp4zTHoUTz7OHoRiwa55Oc
oPh9DBr01wnKzViU4hEdrNN3DJbPSBantWIR4wib8FrOMTCLvyNq3Y1F/OGO
oRc0jwHdTxuub6NYlDb9tMXvki6Ep87+61nHIjaOx7a4NW3wWaPp65DFIR9x
u84GZU1wLTXodZbHoeAcbKO5iCY4eMR2/TmCQ2/7ohx/MWiC0VfqL9zKOPRd
pfS49ZwGSL6kqvHQwKFsa4uYH5kaMO9JUUzSxyHalm1sO6UGePXvhsq44NCS
b7lPzZQaeL79i0lMwSHH5PGjke2qEBBtu3cyDYdOH/cwr/+gCldtK4eZ7uNQ
WkGNFUuxKtzeuJqc+hCHfHWH8RP/qUKZFmk3MweHNlFdjZauKpCaDoaevcQh
FGrbOVyhAqn9TEmf23DIzomPy7JMGR4/DfSL78Ah5tiMw5dyleHplV59ky4c
Mhks1S5MVoYPPKk7Xb04JMuZI6R4URnGnTj9Br7jEEvGaMSqkjJIzfLrz8zi
kMfZzjrmj0qgVHlDpGgeh5i+nUpkKVEC7bgxkjcBh8rmfDqEHimBuVTOm18L
5PatDNc9wpUgxB8jsrqKQ6rvujTvICWI0P2P9G4Nh46LHD2zoawEccwzg1c2
cIjKsS05EKcEWeVP725v45AzJo4hjk4JCm/R+H7awaGtydIQkxVFeGntrRex
h0Nr6xo5+QOKUIn9Inx8H4fuxty9yfFREerXJEkHBziUYZWxl/NYEf4HOcku
zw==
"]]},
Annotation[#, "Charting`Private`Tag$14210#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.7583624694778662}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}},
CellLabel->"Out[49]=",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1791, 47, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2352, 69, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5178, 147, 1556, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6737, 196, 10268, 183, 235, "Output",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open ]],
Cell[CellGroupData[{
Cell[17042, 384, 1706, 46, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[18751, 432, 716, 11, 33, "Output",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open ]],
Cell[CellGroupData[{
Cell[19504, 448, 906, 25, 54, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[20413, 475, 241, 4, 33, "Output",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open ]],
Cell[CellGroupData[{
Cell[20691, 484, 1752, 45, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22446, 531, 317, 6, 33, "Output",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open ]],
Cell[CellGroupData[{
Cell[22800, 542, 1216, 33, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[24019, 577, 11225, 203, 242, "Output",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open ]]
}
]
*)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment