From 1d727bf341a3c7bce2cd2f12e4076ee12e4cd6fa Mon Sep 17 00:00:00 2001 From: himyss Date: Fri, 9 Dec 2022 13:47:11 +0300 Subject: [PATCH] wf in systems --- bounded3He.nb | 739 ++++++++++++++++++++++++++++++++++++++++++++ bounded8He.nb | 826 ++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1565 insertions(+) create mode 100644 bounded3He.nb create mode 100644 bounded8He.nb diff --git a/bounded3He.nb b/bounded3He.nb new file mode 100644 index 0000000..d4f5ad4 --- /dev/null +++ b/bounded3He.nb @@ -0,0 +1,739 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 31511, 731] +NotebookOptionsPosition[ 29937, 696] +NotebookOutlinePosition[ 30335, 712] +CellTagsIndexPosition[ 30292, 709] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Mp", "=", "938.272"}], ";"}], " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Mn", "=", "939.565"}], ";"}], + RowBox[{"(*", + RowBox[{ + RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], + RowBox[{"(*", + RowBox[{ + RowBox[{"binding", " ", "energy", " ", + SuperscriptBox[ + RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Esep", "=", "5.49351"}], ";", " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"1", "p", " ", "separation", " ", "energy", " ", + SuperscriptBox[ + RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"range", "=", "2.5"}], ";"}]}], "Input", + CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { + 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, + 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, + 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { + 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, + 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { + 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, + 3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, { + 3.87957152299862*^9, 3.8795715245943327`*^9}}, + CellLabel->"In[16]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"q", " ", "r", " ", + RowBox[{"SphericalBesselJ", "[", + RowBox[{"ang", ",", + RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"fOut", "[", + RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], + FractionBox["1", "2"]], " ", + RowBox[{"BesselK", "[", + RowBox[{ + RowBox[{"ang", "+", + FractionBox["1", "2"]}], ",", + RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfInR", "[", + RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfIn", "[", + RowBox[{"q_", ",", "ang_"}], "]"}], ":=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"dfInR", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", + RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfOutR", "[", + RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], + FractionBox["1", "2"]], " ", + RowBox[{"BesselK", "[", + RowBox[{ + RowBox[{"ang", "+", + FractionBox["1", "2"]}], ",", + RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfOut", "[", + RowBox[{"q_", ",", "ang_"}], "]"}], ":=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"dfOutR", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", + RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { + 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, + 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { + 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, + 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, + 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, + 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { + 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, + 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { + 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, + 3.8782888301901093`*^9}}, + CellLabel->"In[22]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", + ",", "0"}], "]"}], + RowBox[{"dfIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], + "]"}]], "-", + FractionBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}], + RowBox[{"dfOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], + ",", + RowBox[{"{", + RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->CompressedData[" +1:eJxTTMoPSmViYGAQB2IQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd +LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv +7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo +Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp +dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A +0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg +Ou25wmUQ/SJDj2UTkGboNwXTYsrMXCDaRKYDTAMAeD3S4g== + "], + CellLabel->"In[30]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[{{1.020408163265306*^-6, 4.241741718763919}, { + 0.0002625153897959781, 4.241762892770343}}], + LineBox[{{0.032150270491836795`, 4.244349502137258}, { + 0.061340522887435564`, 4.246725267883429}, {0.12268002536670786`, + 4.251742615733744}, {0.24535903032525244`, 4.261880121628202}, { + 0.49071704024234164`, 4.282576552952344}, {0.98143306007652, + 4.325740981044393}, {1.7571434715124448`, 4.399245471999349}}], + LineBox[{{1.7890312266144854`, 4.402416451480064}, {2.527954346461434, + 4.479534064972313}}], + LineBox[{{2.5598421015634747`, 4.483027265533171}, {4.012882440943803, + 4.659045426871684}, {4.6008376977796654`, 4.741106043528902}}], + LineBox[{{4.632725452881706, 4.7457631820549615`}, {5.073489574391078, + 4.812494616133865}}], LineBox[CompressedData[" +1:eJwVk2s41IkChycx2VKJMTPGDHOf//znIvW0tSG/ckluW2pbpFi5zMYiodyO +WmrlFJJkCyWtW6wutC0dD8oqxy2XbKkMlegmQhHOsR9+z+/L+7zfXp5PiKuf +BoVCiZnfP3+loE97KJAGu7rVZca2+ig66uszsIWJtAftz06/00fu147ffvFg +4qfvAuKqPugjOYspVcQxcel3x9PLPuljr+eNJ2l1TFDbjqs6FtJAezFk7eZg +CBDjU00cGiI/btd7tYuFZ6k9qenbaTDXI8s149m4OVMTxG2koXWBx/2WVDbs +byyNeNxEg/fo8eeZF9lYEkwGnG2lIbF9mCGtZ2O9xmU66+E8n1J82FmLA95E +gab1y3l+idQ1898c2OV/tBJrGiBRk5iQZBkjTOvXBCcbAwR8Sc/5zY0Lo4HN +WyhtBshweXsnypuLkcqcxbadBqjNs33trOIi/pzXxpM9BmDaf/568iAXRWYE +l1Ab4F7G7na7s1ykF7kbJY0aQKokFg51c2GzyubFOI2ON97/UZHbeUizfK+4 +tIcOZgU9dc6DB3Vcs++evXTYLAqt7PDhwfhWUqGxio7sMr5GTBgPcw3pflf2 +0+E0/cv5/57i4cmta26TiXSUnXZtDWrnIWV2rm9nKR0hf71aXe7Mx1jxwrx9 +c3TUojRQvpOP24UJCSJNBnSrQ/OL9/DhG79Uc/ArBq6WT+ldDuHDkrhEOWTA +wFjWkrGsU3xsNVJ0q+UMRAaaXv25m4+hTWRqiycDsboH5Tt3C8B+ac3fUcdA +c7K5b6efAOOx5KauRgY4WpTsrcECqN/oK3e1MlAzlbTEMV6AirAFZ+J6GaA8 +P/faKm+eH256YDDJQEJlTZH0pQCaKxYP58iZSPagimaDhKhvvNjmfYGJDSt1 +JofDhciZPOvqWsDEqJZe48NYIXQiMhiOZUy4XeP8ePWEEDastDOu1UyItNeU +7S0V4tjWlKKqHiZqK/euaXoz78uNqpxaYYhJ3Trbs/tEyFpf4XDyhCFKBv+i +J4aJcNO7bkN8hiF2325+FRotwqPOXkZ0tiHuBvx93CFZhA/rEiqTSw1xqmak +ZbZYBKKNdDJsMYQ8yHin77AISaMr700tZ2FvY4y/mUqMOeFQ74YcFnwtxC6T +IWKYP5NoWxWw4H+tfU31QTEaJW+6t5SzoDov0rL9RQx+2kxefB0LwSFt+W4F +YuQUOLKCB1mIZgj641+Ica/Xm6FaZYT0gKZdrd4SeFn0cAI6jZDxJNz6tEoC ++mjYh+dPjXBmm4nMLVSC7h+Xi4OHjJBlHj7dHy9Bl/sN3pVZI+QuN/51IleC +kaD1lk0EGyV/7H/IfirBq9ib/6s4wkbdIsNtge4EWOxuho4VB4P5SodHPxDI +J568i3biQAc21pv3ESjYYa4x586B26GQNYIYAmaPK3I3RnAwMtRg2JtNoFE3 +reNOKQecprABBzWBLJkwpM/EGFEnmg+QAVKkjpoGjzBMkEsMBGWFSJEsvsJ1 +JExw9+4nP+ohKWx/8NGtX2cC3Vm+20CSFPrTRJWGhwkKf4qyOFciReSC6rcP +c0zQ7SLWWvxeCmmOsuOoARdmKw5nDoeTmKatLRr7nYsq7R6iMZYEddGH5P23 +uNhEUVZfTiTxc0PdIKWeix0jvX1eGSRiR8tvbpvvNLJlrfThDRI2S1wyame4 +uH18pLp+jMTKtFqrGRcebI/YuVycJvE5r8s2y52H1kM56jgNGUhJ+J3Nvjz0 +BThqfaMng1dS9mx/FA8adoUu5WYyZComE74q4MFew6v/fKgMFrUTLm4afDyY +qjwQdUgGw62uz+yW8eExqkP9/rAMdydsip1YfASqq0i9NBkSQ18uvLCKj5Qa +enhSuQzXH18/6u/LR1d0KzXivQzCw0et65v58P5oKXcJkoNMtUqZuS7AUj1K +e1e4HB4uNn9X3xGgamX9gV1xcrzl9wTndwlAC7arVqXIkcZtaXk3KcC9IReH +hKtyUIKTFh22FGLlMy/VrXE5koc2EmSnEE9neDpWs3LY/fFt4J+DQiQbvShv +0FLgc6v+2ZhpIV64qT510BXwj1Q3n+fPd9YZeuzdOgWChvvO+USIQLl/5DI/ +TgGqtZLdLhKj7JW1ffFRBcjXDTETFmJ4UKlvTVMUcHJ8c8BzhxgV1smrLS8o +oFnSn/kxQQxVTXr993UKZNNef/AfFKP9Rr76hJYSwZtzjsX8KUFch1+i/jIl +tM1X8527JSBHJcQ5uhJXqUHWEaMSJCpLQwolSuhuy45uIwmsK66Yq9uiBP9x +763HeQTychvYn04q4eAd0DV8SYpsT3nPd5lKbHoyZORxV4os1ulTFblKROcn +RZsPSpGS6U0NK1diladrhoeMRHTKl5G37UqErfPe7VxNIsLJp8TxkRLqVWXs +42oSoYvv+5b0K2GT39exhSqD/7HMRwFjSmT6LQ3x2y6D67/M7gzom8JCcWK5 ++7gMzhZZcRvZpsiu67yy3FgO++m5tReFpriZu0PX116ODZHNpbvXmEJ7faH/ +eK4cv6nZgSkOprCH5zc5KxT4PxetQL8= + "]], LineBox[CompressedData[" +1:eJwVlns0VIsfxeeMPIrcpITQ0MP0kseZF8P5kseJHrgllfoVkSipkGcNSR5z +M5WUVChJ6haFuF3OicJPSh5JlMb7kYSG0WDm5/fHXnvt9Vlrr7X/2/qeJ1y9 +qRQKRTCn/3up1vBqhV4ziP18/Ir5O33y4p6lr57NZRzFXua80SdVLCZqJINm +UNs0uMkxVZ9cKi1sTRw3A0eHoP4Kjj5Jj0Wn8uRQMI3NzpFPoJE7BGas76tR ++JWwZN+CJD2y+aQ6ZrYOBYecqDd2mB7p/ucv+wgjFJ6mbY9KFumSnhrP3ZRZ +KKT9Nz+O5alLhtwyDVmPo/D20RmW/RYd8lauSZG/HwpjdNFJYxttsuazV01G +AAqGPIqBpoI2KVqQ2t50CoX+ukvGZbVapNNxCcKNQCErR+uaiZsWKTGp3K7C +n+P+IvxIsCa55+XOgcd/o0AEpMd4NWqQscNx08KCuX4avSUvU4PM1y1VXVqM +QoOlUgXvhAapxNNlRJWjcMxV0PteVYMsse2L3laPQkv13obCP5eSGu/PLB8Z +RcEp9q+/GkXqpI3soZHBBAqMXRRnylt1MsD4i7XbbxS4zmk6t7LUyaor4FuO +MEDW7629zFmdDN49v+jSYgYkVDYG/ShYTDYLb27fhDIgfzhKre6iGnn5V1l0 +4BkG3H0jdzekT5UMaBQc8ohggIZG/BL5v1XJrQVe1vg5BqCVh9JVglRJhRPz +EdpFBvgqnxXx5FTJyKGdvPpUBnRp0QUthgtJn87vZ42KGaBEazZQuKBMcuu1 +IodFDLCK3RavmKBEaj0Z3tc6xQDzy5Mtlh5K5CSfsHg9w4AY8dNz1ZuUyAJH +7+n0eUzQXq1m3fBJkVxTlR/utIQJ5LVHA/fXK5JqZQ5heWZM0OCGGad1ypN9 +ecEhvqeY0MwWdntHy5FuutKO3BAmlAd/PBexV458kxznMBjOhJvMHXs+mcmR +2UHXNf3OM8FoXLf+QD+V9LQq/cc/hQmTK0yybrhQyY6GGWlAMRN66l2/6Jki +5Mep8xeDJUygS++J7aykhK2/ymiRlAlBvw0fR8hmicKvKe6TVBYEtV7XWfZq +lrhScX/tGWUW8OfdcIuwmyWc+dVvQ3VYMGDdLuxwnSHqVigvirRiwb/e80O2 +nJMQr+2v3IiJYYGtVC5vTFNM9Pq8fBcex4IhdP73rIFJQuFiD/V0Igs8nHPD +U0omCbyaedzrCgvYRT+8rPZMEnUO7da2d1lQW2ZYmXp7gmjCV32Xr2BBwI0w +70ETEdHlWGyZgLDhsERruOXCGCHn/+1UtDwbqF169Z0eY8SqJKXcsPlsoPuN ++dDQMcLn7d7FfmpsaDkxtYHVPUoMOcn6HPXZENItSyY3jxLjW3GBijUbeOHb +7buXjxDIjrauZB4bSmSxrV3xg0RN+a6VQbFsOBj09Mjw5kFCYNTg5R7PhiUT +ErGtbICgqdb00ARsqGtJnBaGDBDwrqivIIMNFIH3z6Kj/QTP6fJQUzkb3OVC +vT339xIUHB9fNsuGf5NfPA0O6yRqXlSazlA4MPXegHrcspMQGGKnhfM4kPKV +fzQb6SRoikxRrgoHKO5O7Q2JQgKqVk5ydDiQWXPfnw3fCJ6t7Pc+Cw6E/ggt +MHncTlCsi5HMMA4sGpJscWtrJvba9te2RnGApx74dOhIM1HooJmiFsOBgTie +8vREE+G7PXzN+UQOQNh/ovjqTUTDPisnn3QO4Mb0aI+dDcTdkKqUDWUcMFa2 +Dl3U+pawfdxiWEoxB+EhA573P2VE/DLxtsaL5pDZfq+VnliApdTUdFckzXEk +N9X34zMsI+xm2PNkcyBlbeExKwqx4nbL+ynXzYHinSx0zC/GejNiZ9wezPEg +2nP31y8xG/riR+1V5pAfc3hlW3sFNsPeqNQrbwGZ30KS7vrVYYF7vSrE5y2g +ZDNeVKPyCVPNGBJy4+c4HU0/t+sT9rj7pCyabwHC3Ftfxbc/Yf3HeFyVaxaQ +v3qE2GjUih04d7uYlmMBPTYfml44fca2Zn/K21JjAdlSPcvEiHaMPuJ0NV2F +C77HJl0Y+d+wzmj0MHaNC22WXnzb8m5sjYbqpcA0Lmi77ojwaO/G/PL6X2Td +5oLoR5/rgaluTNR4U3leDhfG16UZ0Ex7MKVVyPOaYi7kzv5SysjuwYyq3iGu +rVzgpv28mXGhFwtfcCTj8HJLMN3onu7C7seWXE1rS8iyBOrV5W4c7yEsZ9G6 +sOp0K9BcX3hLN/sn9urUCjvDRxi4LAysXGMzjt2hZepY7gSoHQx1mzUXYWWR +EorvBwBPNZZYMjKB6TspzqzcbQ2vtSacxi6LscL6tUmfm62hXLmUmzMyhfGr +pMa0/TaQ0mEQbGcjwa6eHvQ7+MUGBuiOZ4cOTmORS/X+MNizGRhdHSdSDs1g +D9fK1wYJN0N974lK/sFZTEGEaL06YAsLdA97RVpIsQfGBWfv9NtCnSb38RsN +GbbWM2/77HE7KNcbVuB0yLD2LaXPdn23g6lwvtu4HQUa74VvxE7bQ+yBnLq1 +dygw9dyFazBuD2mUjSWp3ykgKzlVFBfgAKQP86GXGQJOxvZ2kRMOsBGaT5tF +IVC9f9NR/9M45Dv/znpQjsBiL9+Xt4Nx0Jkxm3hNIHDAN2vhhzM4hC1tWthF +IjB5Sv0ZGonD1GhB8vJKBFbFiyWzsTjkXNH4nFSNAO8ZwRek4lASeCz90AcE +zBWd84tKcQieqb3b1YlAnEoCdeAlDhJdj89TXQg0qFXs1C7HYXP4h1bVHgR8 +ddDfZytw0J15b2reh8B1E00b/C0OmnVL3C4NISDaJ2xq+4LDtdqVJzf8QgAO +aa1Z+A0H6fwzNpgIgSQf11CsE4ddz3Z3uEwgYHDytU52Lw5No2tDQsQIuMTl +eh8fwcF81TC9bBqBW0mdLzJGcWhQvODyfgaBAYH2gsZxHBZ6Rdh9m53bk85/ +whTjUHepP3nuwUBd5hvK0d84/FEl6FuEUGFZjtQ1fRqHGBupkj6VCp6PWPff +zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg= + "]]}, + Annotation[#, "Charting`Private`Tag$5733#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 50}, {-8.900837493810066, 14.534402649413224`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, + 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, + 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, + 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, + 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, + 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, + 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, + 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, + 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { + 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, + 3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}}, + CellLabel->"Out[30]=",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", + ",", "0"}], "]"}], + RowBox[{"dfIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], + "]"}]], "-", + FractionBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}], + RowBox[{"dfOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], + "]"}]]}], "\[Equal]", "0"}], ",", + RowBox[{"{", + RowBox[{"U", ",", "30"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { + 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, + 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { + 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, + 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { + 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, + 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, + 3.87957154916846*^9}, + CellLabel->"In[31]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"U", "\[Rule]", "26.327091087132676`"}], "}"}]], "Output", + CellChangeTimes->{ + 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, + 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { + 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { + 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, + 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { + 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, + 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, + 3.879571550250393*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], + "p"], ",", "range", ",", "0"}], "]"}], "-", + RowBox[{"coeff", " ", "*", + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", + RowBox[{"{", + RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { + 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { + 3.879571556146941*^9, 3.87957155754856*^9}}, + CellLabel->"In[32]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"coeff", "\[Rule]", "2.5426173021971623`"}], "}"}]], "Output", + CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9, + 3.8795715629434137`*^9}, + CellLabel->"Out[32]=",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["A", "2"], " ", + RowBox[{"Integrate", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], + "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"2.5426173021971623", "*", "A"}], ")"}], "2"], " ", + RowBox[{"Integrate", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", + "0"}], "]"}], "2"], ",", " ", + RowBox[{"{", + RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], + "\[Equal]", "1"}], ",", " ", + RowBox[{"{", + RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, + 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { + 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, + 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, + 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, + 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { + 3.879571567743319*^9, 3.879571576536313*^9}}, + CellLabel->"In[33]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"A", "\[Rule]", "0.6401531831830206`"}], "}"}]], "Output", + CellChangeTimes->{ + 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { + 3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9}, + CellLabel->"Out[33]=",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"0.6401531831830206", + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]], + "p"], ",", "r", ",", "0"}], "]"}]}], ",", + RowBox[{"r", "<", "range"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", + "0"}], "]"}]}], ",", + RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { + 3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, + 3.87957160585564*^9}}, + CellLabel->"In[34]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVl3k4VG0fxwdRIXtIWacoZa0eicfvRqWyj6VCKS12UumxRaSo3ilZYsaD +bJWyVSpLJEspshPyWuYcChExDGZ5z/vHuc71+edc931+n+/3PkfVI5Bynp9E +Ik0T1//vGZEeQnrn7posxPylGlYaYdLQpWJ1TMUbtEgZXlvtXYD3seaGikoo +6Fr9oo3Z+UBGLVVZUOU2DF15o//KLgz8/g72X1KmQViVI8nG7g50rXolzyoX +QGGb/OUpGzqs/c7QmFauAFWX+MawI88g+0tW0JTyZ5hu4jk1766E4pLb3/20 +B8CIc6u8YuILeEIH7dclDCRrN2zPudMFAWM7sLLiCXC1fWovzt8PI6f61334 +PAHu7hZfQuX7waEvXvsrPgFrHQzM+7T7YV/zj9AxhUmY6rUQCXLtB4EX+RKy +cZOQ4qfyRaKsH9IiVE3+cZ+CL34xjTyPAfggvYlmKDENjgbp/A5vv4OwaqzG +8L5Z0Jd/5p1hMARNxg90Ig/Ogv357tKgI0Nw63imgSJlFhTqtVwNXYeAP6Hc +wtV3FtrW91TlRA7BCveX57eMWagqmh0abBiCqUGnp238cyDakWv902YYWtI0 +dtS2zMHHUMHl5F0jcKdsj557/xzkiKseK94zAofbTQ25Y3NwzzSJWWs8Ag1r +3Y4Y8+bgbLfIeIfVCLy7muBdrvcH6nWGDHL8RqDIcbmg9OEfuLL0/d3ysxG4 +J9GsmX16Ho4FZ3b4q41ChYHia5uAebgqt/mhueYo4KcCgR0+D/Mn/JgS+qNg +VCTteCx1HlIo1sGJpqPw84jbtQ2t85DctVtC9/QomN+Ybgs1WgCd7OigzvRR +YDHFgymyTAizOP+aLsoAsqIHj0dmwp3LgbVu0gywOVB2u0iPCZs5VgsbFRiQ +n3g8c501EySM3D/7azCAopP9qeYGE368Gfr60pQBRV76CjvnmBB4Ou7q/SsM +8Pju+F6gZRG8xiWGr3UxQDh91D+ofxHIrfs/relnwEuXgC3D44tg4dnbEjPE +AIGBuNBKviUYfiSifm6CAXl9lbuDDJZA/NdSUxWXAeM9Kk+HcpaAF8vKeaeB +wb2UImer0iWwx2v3lO3C4C+n/YKV1Utg3BD3LkcPg7huB4+UviX4mdGUd84I +g+1dt7ZYibEgYkU4LdwGA5/2XwkVoSyIkjWTWyA8lUoIBY04FqwmUlZP/INB +pa3QTHIyC/aJ6r18E46BSJuy5cUSFpgnqiU4xmJQ+JUiqDHGAtUxx27VFAxm +vpSHJtstg7S7ShPpNQZBjbEegRorkPEOS6qfxkAJPyS0uHsF0gvcGptmMWjm +X/8sAq3A4wlOU+M8BtsQde72iRWISe0xfbKMQX9lyvW8uytgqOfat1YQB9PS +x5n9v1dgeaUn1UQBh5lWL7PT7BWIbpU/XbsFh/RpzfHxdauQahD+01AZB6Zm +idaC6ip8qkncK7MVh4L8t+/EHFfh3kpw/nktHCTTmwbMy1dhcluocLgJDjUV +dyK/NKxC8Bp7jxCEg2+flZp9xyqE9Gf7+pvh0Lixw/vU5CpU1IffNzmEQ2hC +PytkCxvqNvoLXbPGQb0k/V/edjZUW9l3G9ji0PX1JLq1lw1ZeLb1pB0OWiKM +uCQbNgw318FfjjiM3pyULb7OBje+k+I+Ljjcyyus3ENlQ+jw2DaGKw5G9QGn +qmhsiNlbwLA/iUMKaT6/6SUbqKfirORP43AkfHUPhrNhkbzSgc7jsEir7vOe +Y4PO4VThqxdwyC2PipjlsEFXV34sxxMHDlOggSPLgZ9K369h3ji8uCjqIH+E +AxVxNXqkABxa6NKhRc4cYHc2hQoF4jDeoJBldo4Dbf7T4/wXcVDYtGPKL4oD +hidytYeCcNhjrivJT+WA3kXbddWXcLD1NzBIpXOg9aylYOJlHGI/HLzx4TUH +3Gr+9VQKxiFzyqrAuZ4D1Sz9lh6Cyzc6tk21c0DoLZ1y4yoOneDKvD7EgdjD +11fU/8Fh2ttjs+wvDoi+T66vJXhdsrfp82UOyP2mFtmF4KBWc9ETreUCM1C9 +vJdg45//UHtkuDCSrohRQnFwlop65aPGhZ0JBtqNBF80vtXP0+GCvdbfNK0w +HO5coPKS/+aCjByb/B+C8xKSt2lacuFh2aHWEYLfV6Zbvj/OhQDdhdSd4TgM +4DlBjhe48Dlk5LofwQtiz1InLnPhBPyKzyVYzPBFdWQ0F6jL7JJ2grefLcek +73MheoTNnCfYjPp+fcG/XJCbG3DZEIGD29uPOibPuLA0dWdoC8FXR786db3l +QpaTYLQawQ9EesK9GrngdNXCTIngwr2D2ZxOLpi6OKhJEPzRHfuUOMIFSoeO +Kot4/sjtyWmNGWJ/gT9NegleeTUnXb3KhZa71PBnBMsMsQwp63mwyWzPtysE +a68jnf4hywOjoEX7vQQf1l97K2IrD2ar/kxNEfs/6yZWKKnPgzvxVvlpBEfe +2tj5GHgwRdoVaURwWukWlpE1D3ykaq52E+/35QBZqcOFBw3+e+6fJbhlzc4D +F7x4IBDX+OknMZ9xbX2f1WAenE0pVDlHMOmEYULCDR7sSNpB7yHmu7fIYrAy +kwd9MpzfdMIHu282/HaFPKC7TrXMEL748DlvH6vgAZLLat73f5+czl0R7+GB +WWulTgnhW3mULz2PwYObWSMp3wkfuwou1RrO8kD9gYUyl/B1TRQSeilIQoI9 +8RnbCJ8lZQ7QIkRJKFrYIkmT8F2pwGKXhTQJeaqLFW8j8rCvy4YyqEJCgWqv +HLm+OBz0oow91iAh81/00e8+OFA4TiFB2iR0PjArpYTIk5/GyUwhYxJ6WXYo +2JDIW3a476TuMRJKTZXY+u0MDrq161lxJ0loqv1geySR39o1TwWHz5LQzGLn +lKI7MT8qrkK9SELbF49cNnMj1vPo5LGJ2yS0qfpj91ZnHIrx1XMogYRc1WpE +44n++HsH/VLqQxKK6JapYFAIn172Ug/mktCbTU+DIon+oTfYNmS/I6EywSdX +bQ/joLl+poNVR0Jn4mvPBxD9VWH9n2Hbz8R6UtXbYg/g0NfbtMLpIaE4BWmZ +NKL/ZCdM9Vx+k5CtVce14/twSNywJ1NKjQ/dPFaZaqpO5I/S+dx7Ox9ibB5P +6iMTffLwYkWtNh8aXPwh76mKQ7tyUXeAER+aVaV+8CH6WUxfXaTZkQ/pVXCf +iUoR+XOWD7kRx4dOFup8q1rFQCH9zc0BKh+KDqzBmlkYFAw7Jukl86HwR0Z3 +u5gYNHk9KB5+xId2/iVQ+vk3BkLhwmNGlXxo3xLtij2GQUwW237hFx+q6xWS +aW/CwE63PGjnPB+itNVP+zYS58+Hyw88lvmQqtDEF94H4nxjTLa3C/KjV7JL +yeJVGPzZ1m9bpMSPLG7n3G8rxMCj8LX1BTt+tLj78/nOexiYVgQc6XvFj0w2 +TwbNWGEgdlTTW7ySH3UN3M2jHsZgcGAs/lAtPyrqEtqw7QAGIWy3prIWfuSu +9/yWMXH+loKlxYMxfsSot7MV24GBykeNg0flBJCNQWCPiQAGpK4R9C5MAFm1 ++jqMvmBA7ERNdli0AFqduxQkW8iA9aQMfsN4AeT5xLLY7DEDpLRONLxOEUBz +uXfvX6czYFtch0VJqQAqbhs3SYxhwFGjOpuccQHUltTTJW7PgKTcXLd4yhoU +8f2iYfnkKKhfuRDiqCmIhMus65W2Et9TzFRnkWohpCKvpumbMAxHx3yuJQat +QxOFha+ODQ6CDZ6wU0lJGPE2Vjz5N2AAJus9rjcViSBLvk8HBF36QFuyV9Hc +fQNKta0afGzRC8LAPDM4L4bMBlKZXtHdYDHtsqTmJIHSg+V856s7oa/uHJ/L +LknUWVe3IXp7B7yObzilwpRE/dlVEX70NrggGDzS2iqF2q12yZn9aIGzl8Jf +i9Kl0SH7F1HHU7+AjufOVqszMogzs/BLJLoJ2qR2iQQbbkSDT3STKv0+QlVx +TPouAVmUJ8vFm/MaIJxP067lv7LoUmDPi0vDdSA8GHY4oEwOaRu37d1/+AOM +PVZNzoqQR9dIY7yW3veQvH3TmgqnTcinmyZtplINCfQLn86oKCD9Yb53fl8r +wSX5ZKvoDwW0/9Os2bmycmAdyF/OqtmMTk9QIjdlvAFszCykLm4LeuoK1rTO +Msj5W2/z1zOK6A0F2UUIv4Kim8GSnlpKKHasWolx4wXEOZ21FGAqIY4hPulM +LgWi7gviviqjDHJ+oVd8EaTtSC/6aqmCTF1Uv05rP4eoWmqaZYUK2uAvB2v7 +n4L1Zqf8L1tV0bGSCw1CtY/BNOCTq+RtVXQ97bO38EIeZG3x2NrCVEWF45dx +Y81c2Fr/5KGNqxqKk8s/uTMnGxK06jQ7a9RQYGbSvDF6BBfm13R81iQjo2T3 +ji3vM8DjxR+V2/fJSJsqfHPBIx38YhzYRx+QkeadnQUDx9Mh2KHsm2gSGSUd +F4lrsEmHeGbwvYSHZJTbE++Tuz8dig2XV1MzyKgkQ/UZVSodlj/weh8/J6Pp +udwBqXo6JHSKUhs+kVHmuZkHvep0oOf6e936TEZa/5Wy0VOkQ+6VVvPDzWTk +cIiZdl+aDm9kE1aaW8nIvq6sx5lEh0EXaa+uHjKKORH1UXyABhrYJnMGRkZ9 +/UNnNO/RQLcsTClvjIxcfob5V8fSYP/N78vnf5DRh7US8w7hNLDSyCidmCQj +6p81nne9aHDJV0Vpbo6MzI3sWsnmNIgwjl5+OU9Ge81+3uw0pMHNDYzuK0wy +qrl3oChWlwZpJbl3WSwykojad2hekQY519d4Vq6Q0b4Hh1+XyNDguf15swg2 +Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC + + "]]}, + Annotation[#, "Charting`Private`Tag$7735#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 10}, {0., 0.6401531715334164}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, + 3.879571608345409*^9}, + CellLabel->"Out[34]=",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"] +}, Open ]] +}, +WindowSize->{1389.75, 768.75}, +WindowMargins->{{0, Automatic}, {0, Automatic}}, +FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"ef468bfc-a077-454d-b697-d1f9ba5b95f7" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 1864, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], +Cell[2425, 68, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], +Cell[CellGroupData[{ +Cell[5252, 146, 1588, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], +Cell[6843, 195, 9076, 164, 235, "Output",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[15956, 364, 1731, 47, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], +Cell[17690, 413, 743, 12, 33, "Output",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[18470, 430, 955, 26, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], +Cell[19428, 458, 270, 5, 33, "Output",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"] +}, Open ]], +Cell[CellGroupData[{ +Cell[19735, 468, 1805, 46, 111, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], +Cell[21543, 516, 339, 6, 33, "Output",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"] +}, Open ]], +Cell[CellGroupData[{ +Cell[21919, 527, 1267, 34, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], +Cell[23189, 563, 6732, 130, 237, "Output",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"] +}, Open ]] +} +] +*) + diff --git a/bounded8He.nb b/bounded8He.nb new file mode 100644 index 0000000..bec88b4 --- /dev/null +++ b/bounded8He.nb @@ -0,0 +1,826 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 36835, 818] +NotebookOptionsPosition[ 35260, 783] +NotebookOutlinePosition[ 35658, 799] +CellTagsIndexPosition[ 35615, 796] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Mp", "=", "938.272"}], ";"}], " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Mn", "=", "939.565"}], ";"}], + RowBox[{"(*", + RowBox[{ + RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Ebind", "=", "3.925"}], " ", ";"}], + RowBox[{"(*", + RowBox[{ + RowBox[{"binding", " ", "energy", " ", + SuperscriptBox[ + RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Esep", "=", "24.81432"}], ";"}], " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"1", "p", " ", "separation", " ", "energy", " ", + SuperscriptBox[ + RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"range", "=", "2.5"}], ";"}]}], "Input", + CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { + 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, + 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, + 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { + 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, + 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { + 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, + 3.879568728576707*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"q", " ", "r", " ", + RowBox[{"SphericalBesselJ", "[", + RowBox[{"ang", ",", + RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"fOut", "[", + RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], + FractionBox["1", "2"]], " ", + RowBox[{"BesselK", "[", + RowBox[{ + RowBox[{"ang", "+", + FractionBox["1", "2"]}], ",", + RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfInR", "[", + RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfIn", "[", + RowBox[{"q_", ",", "ang_"}], "]"}], ":=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"dfInR", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", + RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfOutR", "[", + RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], + FractionBox["1", "2"]], " ", + RowBox[{"BesselK", "[", + RowBox[{ + RowBox[{"ang", "+", + FractionBox["1", "2"]}], ",", + RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dfOut", "[", + RowBox[{"q_", ",", "ang_"}], "]"}], ":=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"dfOutR", "[", + RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", + RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { + 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, + 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { + 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, + 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, + 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, + 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { + 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, + 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { + 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, + 3.8782888301901093`*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", + ",", "0"}], "]"}], + RowBox[{"dfIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], + "]"}]], "-", + FractionBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}], + RowBox[{"dfOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], + ",", + RowBox[{"{", + RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->CompressedData[" +1:eJxTTMoPSmViYGAQBWIQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd +LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv +7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo +Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp +dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A +0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg +Ou25wmUQDQD6hcRW + "], + CellLabel->"In[17]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[{{1.020408163265306*^-6, 1.9434682115973003`}, { + 0.01533589602798134, 1.943748439521205}, {0.030670771647799414`, + 1.9440288987650578`}, {0.061340522887435564`, 1.9445905124319236`}, { + 0.12268002536670786`, 1.9457165290480463`}, {0.24535903032525244`, + 1.9479797883972108`}, {0.49071704024234164`, 1.9525517709481117`}, { + 0.98143306007652, 1.9618821897394834`}, {2.0454178542729324`, + 1.9830133301383182`}, {2.958029656364833, 2.002196235245252}}], + LineBox[{{2.9899174114668736`, 2.002885289545698}, {3.0500121108208624`, + 2.004187416350027}}], + LineBox[{{3.081899865922903, 2.004880251719722}, {4.298771468715699, + 2.032343111696474}}], + LineBox[{{4.330659223817739, 2.033090717404738}, {5.230370406745517, + 2.054815538265406}}], + LineBox[{{5.262258161847558, 2.0556086163065914`}, {7.124041306441138, + 2.104932858194773}, {8.173138546173233, 2.1356335947117246`}, { + 9.151727315943587, 2.1664489328692977`}, {10.112311928229225`, + 2.1989922535225253`}}], + LineBox[{{10.144199683331266`, 2.2001147155868095`}, { + 10.439885863942887`, 2.2106589009365796`}}], + LineBox[{{10.471773619044928`, 2.2118108967365178`}, { + 11.793784171133385`, 2.2623054642685347`}}], + LineBox[{{11.825671926235426`, 2.263593437218421}, {13.228344634183118`, + 2.3239364957656083`}, {14.211533911287631`, 2.371048144684206}, { + 15.2772759429202, 2.427408695591982}, {15.997201695816472`, + 2.469068213762979}}], + LineBox[{{16.029089450918512`, 2.47098698944541}, {17.299275412626642`, + 2.553095173962763}, {18.35757366702705, 2.631220222064354}, { + 18.575031439058826`, 2.648544318091664}}], + LineBox[{{18.606919194160866`, 2.6511241773082332`}, { + 20.415705990432443`, 2.8164527768403436`}, {20.583264093501196`, + 2.83393478503636}}], + LineBox[{{20.615151848603237`, 2.8373095136538247`}, {21.76163442231778, + 2.9698829793498738`}}], + LineBox[{{21.79352217741982, 2.9739133900641055`}, {22.463514267959305`, + 3.0635652845752426`}, {22.476388432909584`, 3.065386539629232}}], + LineBox[{{22.508276188011624`, 3.0699145486974073`}, {22.57976882002402, + 3.0801551872074895`}, {22.712631165240843`, 3.0995193790226563`}, { + 22.978355855674483`, 3.1396008842680088`}, {23.509805236541766`, + 3.225647302026706}, {23.525311334850716`, 3.2282846262936955`}, { + 23.540817433159667`, 3.230929516488219}, {23.571829629777568`, + 3.236242127181056}, {23.63385402301337, 3.2469596083432255`}, { + 23.745330149653963`, 3.2665373628853254`}}], LineBox[CompressedData[" +1:eJwVzns4lIkCx/GZ1kYxNzNjJoNhLBMHW6vtmMv7vr+1o7KqTRutGemm+w1d +XHbbcmlLtehZk2IzLpMkZzsuzzhswlRjEpWktBK2cLJLORJFOe0f3+f778dl +w56Vm2bQaLT1H/r7s26/TJx7zQ/JnPljd2qskSGl9vZYyLD4P/6aefNs4Gy5 +8FWxjQw3+xdmHiFtAJPra5mDDE6aK0NxGhscVk2/0ShkSNZHeR8/bQPaFwZ6 +XrwMZ9zf+53iMKBWDTR1HJRh7WZps9SegcrFwkxOkgz7jav0JgkDW5cnuCcf +l2G+2HeV4wIGWjVk0OYcGYILEmbPW81AwQFTpletDDJ1b99YLgOq0gfSapoc +w11v1Os/ZyL3suXIiIUcV0Ndns+hmJgo96vxnCXHZdbT6MdLmCitzl76C0eO +sEVJZYfCmeA3RkQfksixb3eMHilM9Pf21wSo5NiwhVdQ087EMcH4sntH5Ujq +nn/RKpGFTLP5qfGEHNXp4rkbT7Cgi8+Or0iXw9J2r8qsZcHQSZzPzJKDlbQ9 +q7yEhT5dylToBTn4z2cenNXOgv9c20udJjm0fV1VA3w2pvy8rfo+VmB/7uEf +naLZsBp8f659lgKpTx69mxnLBjfnrq+JoYDj8/qXY9+z4flu79oLfAUipNv2 +DRxjI6yhxrDNTYG4z6+52+ezYQhcsmlYpYATp8/dfI+NKPVG43iyAtYH1p7K +UXDA1A32KI8pwOKE1U/5c1D6NHo68aQCe7ZK1235ioOBnYeVNtoPHm+tIiyM +g4hD5wzORQqYAmN3lcVysFT/sCTQrMAjVXidysDB3OGgn3NslEgrObHkuMIW +ps/aynrYSvTQHEagskVkrPquG1+JZo+oKx8ts4WOto3xb0clZoaNufwaYQs7 +7o9Hr/soMfRm68yzSbaw8Kv/bmiFEp4bvhF3N9uiN3FBJKVVIvXhMP3dDi7c +7ZhpUWeVCOtO0ZMHuNheMlCVf06JXSu9LqYf5uLVvWxriyIlfGMKItdpubD6 +hF5hNigRy/w6vb6OCx9TC31lhxINxck//CLgIWH2Fl2kiEDL7YSjf9znoS4X +N7ViAhN017fhvTxY+NqPmlwJxDwUiv4a4uEnTcsiDy8CIeJb/wy05COv1Hd4 +SEmg3ThaZqHgo3E5jYiNIMCon19dVsQH7+ezv6fmE+Ayg96fzrDD7HZua8x5 +Ar9dY2xk6uxAE6Q1ai4S6OIn1eX+yw5D2UmV3mUEJqcqI61v2cFUsCOttZ7A +X9ZElchSgLhywn9ODwFR9ZqQ0BQBdr+q8pvxjAAnKPr6wUwBIhd+9umfAwTM +du8vG/UCBNe4O9S+IMAT3vQvuiGAp5H1et00AVVL+5EuKyG6WnsvFjuRkOuj +HdVaIe5zw/NOSUhMmgrdki4I0RTy4HSCO4ksNf3blmohDI+akpf6kLga7dFx ++4kQGb0Va14SJELvhA+mes6B/8gRjt8aEsH6S+wvb85BEdszvjGHROeqTcVK +qQg+/WETFnkkvhv9YnE5RKj6LTXWX0/ibh6jI1Itgnnz8/21pSTadloFpKSJ +MHilOKailkRce2PMjTcieG+T7tR1k0hu+yjGo8sBBnL1n4+fkuj+tVPd/dYB +JO/odvv/kpg+b/T6Q+iI5XX9W7UvSRCBnaq2EEdE8Ys2naBT0Kqaq460OaKy +4ZO1sa4UdLMnr4Z0O0GZtepJpZSCjL+9Z/8MMW7sTFnzv39QGFhBm5pwE+OB +4Jlm1wIKjMdx9T67xRjfVfjtxgAKvYqW+Ot0Z8jtJSu/3kLBbdToeyffGcYX +wa0nd1BwuaWT9BmcEXQjcUXTHgpnqjooZbMzwqN6lwfEUaiQ3r1dPu6MH0x5 +QYpUCuOr4/c8C3ZBQ4w4QHqJQldogls6T4K3Yy8yHC5TYLOzJnO9JFgQX/+Y +U0GhxLK/cFIlQfGh9fumaj747k+T+QckyDhZWNjaRGGRZvExc5cE64qkM74f +pPC6wWGQXuuKbI+JZdHDFE7eqt5X+LsrLM+cYtWMUPB9bdRmjLri/3eklrw= + + "]], LineBox[CompressedData[" +1:eJwVjnk0VXsfxpGxzENHx/BKabqFyqs30v7ae59jkySHUo4KyVAyXSVTiuhe +Y64bqyshRZOLRCr9fpGrASFTqCjz7GQW3d4/nvWsz3rW+qxntbO3jauIkJBQ +yM/8v6uNaIX320loVPIt/8JWx82Xf4uWNSYhZuSI2DljNVzYoZWlZ0KCnG7n +htlFNo7Tf/zMmiBh29dnM/Yv2Jhu7Z1Iokho6rnnfd+CjQvW03yWJQm+446K +6m6rcOw/S/pajiRo8AOuxlSwMPj2btU4SoJ18ocLbn+y8KRa7Ta2EwnsXc7W +9W4szPe9bqDsSkJK5upAWpaFt6jv+p+kFwkekU6urk4rca3vOWI8hAQr1j2z +LE0VfFHdCUbCSHBGVh/NZ5WxYRVjOhhOwtgJl3l+gzJOV1eluiNJmDoreP08 +Whl7VxVzW2NJ+FocUWM6o4TlNSb34jQShAPNrwz2KeKXVe1WZekk5PPeicVU +KeJAv4p9TzJI2Dht3ReWo4g7q5L2F2WTYP7SccLBXREX+G21y71PgmKX9oXX +IwrY5tVpfuIzEjpmfOIDxRXwH/4Dnsc6SBjHC6ef1MliNjfIl/eJhDa3+fNP +MmVxluqKQG4nCSfkP5Zp+cviwrLNlzZ3k6CdVZjEZsniOgmfG7NDJFikpv+Z +4SKDZdOm3ycukMAdFUkYlZHGl18uM3nBpmB+kneJkyGF5VOSqSJ1CnZv2lne +HSyFUzx0LHI0f+6ry6NfH5TCt2XNDsZpU3BqcOrKMXkpXGn/u++hTRT0ikb/ +/nekJBYZkb89sZMCVVJh79ZzEjhERVNO+xAFxv0JjFmcGK4pkDpMOFAA+T4H +mrzEsKbVVDbfkQKLCP7F61ZiGEVVG6U4UVAtxyr4IC+GRWaDTkh7UuA8aM4b +TxHF0W0tZdNBFCwKFUmq5C/DSTeunHqbRsHNEE9BsqgI/mocWtKfTsGONRld +dkPC2KDVXUQ8k4KzuZ8ToUEYN8lDKtyiIO2d6pUrGcJY9eJoxaMHFHzLLJFh +EcI4/fgetYznFBipHsUOEUL4zkaxN792/vwzdu1wteUSalA3XfD6QoGoe88z +tXVL6Ltc6Ga3bgq0eKU6mT8WkdX0ZPyhfgpE1szRlg8X0WR5N2/3OAW2d4KT +WRqLCPgvP0oI0VAuZ7VBZ34BtcZHTFz7Dw0Z2qXRni1zSOQi0k5eTYMRH3SK +iufQLwELvLg1NEiKujxYf3UOhTn4F59fT8N39fCdMXZzaO0Gl+DjejRkB7ol +GTfPIu8XpJguQUPr8E7+0qcZJD4pvOrFERp281iFbOlpNJufGt99jAaLLt7E +05EpNOSlJyrpQoP9sguake+mUF0ff8zKjYb7YTIql/+YQtfaSyo7vGmwznvo +eEBjCulWePnNhtOwqzhWsXbHJDqQ9OGt3k0avuy98/VwlAAx+3xMebdo6LTz +GLU9JUDG0hIlZ3JosHJWq/CyESCtKIOssns0rLwdMTKvKUCD5xIC9xTRUBu4 +41Bo6QQKc+LouFXSEMTKQpPfxlGOfkFYeh8N57tXdOfNj6LTKhNzJQM0nLSv +jHKpHUUG8/oB9UM0tE9aDphljSJckX9SdJwGjfmnRekWo6j1QL695ywNLJGm ++eDrI0gy9O9thlIceJ9ctrxozzByf/2gt2YTByYeS/fpvRpAG53vWi16cWDv +cGgI3t6DXl03yhd4c+CjwCwoR6kHnfjwRqHflwNK4qxHd791o2zrocaGAA5c +OpRkLlbUjbSIzQ65oRx4O+b1XtywG61Uz3PjxXHAoeW/p9WIr0ikuSD8zn0O +LDMfy0053oXazUsL7YY4MPqUw58dakfkvmz7gBEOzDfYqp552I7u2iYsJY9x +oOFG+tya4HYUdNTVovEbB6Ju5unKrWhH7ACFLzbfOfAP62C8+pY2ZJ/hoWAt +w4W75YOfPp5rRc3Tq3ws9LggGBzwcDVoQg03g7YQ/lyIFF0wUaZrkaJQcalR +ABeGO4OmW0ZqEI8/wTE8ywXpx+YSH1JqUKOy+5EtwVw4nvtgddJwNWq5ZJeg +FvGTTUw+taa+RR1u+hMzSVywTXnQFvb9Fer5pbcov5ALp3YOKvmPVqDZh/t3 +aQu4EHjvh2dsZxH68djvUdRpM8hfcrY46pdL7NHnckKmzKAx+fPEp9hKospR +z+OkPwNra9oFvsvrCUUX96fXAxgYH6k/kLu2njjinilTd5aBN7tMeHW764lp +P6VCgxAG8mdfmE/51RNrL8/ML0YyUM2yTE1uqyfCC1Fs4lUGijQUOrfnNBBG +Etb5j0oZOJ5MkXsMG4ko6d9E+p8ycDU9W1Bt1UjUK5Tbsp8zwBdTKTd1ayTc +1Q3mwsoZaJM9MiSa2kikbFUlmbc//WsPZwpmG4lJh873bR0MxN8fIwIeNxHg +tGqdzGcG5Id7lXTrmoiYEzaBRBcDu5XWFbf1NRHavi/Vs3sYCCm/kSDHaib2 +R+W6eo0ysMll4En/r81EWkxXyY1xBoqVO3RMY5uJ/kT28gYBA2fGdQvjbjYT +4X/F5hnOMJAmnXNwWUMzUZ1RKeQxx0AiS+rS5oFmgnV7yeavBQbEhTnfzYVa +COd7O27VLDLgbulY5cBqIfLyfWZ+/GDA09d83Em3hfgXBlLKRQ== + "]], + LineBox[{{23.777217904756004`, 3.272213571286108}, {24.500912064223318`, + 3.4109378348607606`}}], + LineBox[{{24.61034969639067, 3.4337160525576738`}, {24.730449091526378`, + 3.4593125448441233`}}], + LineBox[{{24.53279981932536, 3.417522268161458}, {24.563001917687984`, + 3.423798359927806}, {24.57846194128863, 3.4270260774198293`}}]}, + Annotation[#, "Charting`Private`Tag$5933#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 50}, {-7.026255643989277, 9.975712471055067}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, + 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, + 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, + 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, + 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, + 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, + 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, + 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, + 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { + 3.879569032952899*^9, 3.8795690542179728`*^9}}, + CellLabel->"Out[17]=",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", + ",", "0"}], "]"}], + RowBox[{"dfIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], + "]"}]], "-", + FractionBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}], + RowBox[{"dfOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], + "]"}]]}], "\[Equal]", "0"}], ",", + RowBox[{"{", + RowBox[{"U", ",", "50"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { + 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, + 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { + 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, + 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { + 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, + 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}}, + CellLabel->"In[38]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"U", "\[Rule]", "46.48728734369617`"}], "}"}]], "Output", + CellChangeTimes->{ + 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, + 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { + 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { + 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, + 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { + 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, + 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9}, + CellLabel->"Out[38]=",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "46.48728734369617`"}], ")"}]}]], + "p"], ",", "range", ",", "0"}], "]"}], "-", + RowBox[{"coeff", " ", "*", + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", + "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", + RowBox[{"{", + RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { + 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9}, + CellLabel->"In[39]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"coeff", "\[Rule]", "8.80922839269386`"}], "}"}]], "Output", + CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9}, + CellLabel->"Out[39]=",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["A", "2"], " ", + RowBox[{"Integrate", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]], + "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"8.80922839269386", "*", "A"}], ")"}], "2"], " ", + RowBox[{"Integrate", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", + "0"}], "]"}], "2"], ",", " ", + RowBox[{"{", + RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], + "\[Equal]", "1"}], ",", " ", + RowBox[{"{", + RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, + 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { + 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, + 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, + 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, + 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}}, + CellLabel->"In[40]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"A", "\[Rule]", "0.7583626465084375`"}], "}"}]], "Output", + CellChangeTimes->{ + 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { + 3.879570637910142*^9, 3.879570646893675*^9}}, + CellLabel->"Out[40]=",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"0.7583626465084375", + RowBox[{"fIn", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]], + "p"], ",", "r", ",", "0"}], "]"}]}], ",", + RowBox[{"r", "<", "range"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"0.7583626465084375", " ", "8.80922839269386", " ", + RowBox[{"fOut", "[", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", + "0"}], "]"}]}], ",", + RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { + 3.879570725415313*^9, 3.87957082556467*^9}}, + CellLabel->"In[49]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV13c8ld8fAHA72XuP616bzGz1OdkyspPsrDKSFhF9zVRmipIZJRUVFdkk +WxkZGZn33oTIvIjf/f31vN6v53WeMz6fc87nEfO8aONNRUFB0UpJQfH/Z06k +J52y193jElFVJn1jMcc/D2DMT2POQ8XCm1Z/DU84+FIfg8GEQXagy+JxjRDI +aUwSpcUkQsbsv0QejWgIOHY1cEv0EUTeaoz+pJ4OA7t+GSuiL0DBeUQxUK0Q +Do3NSC2JVgNVRfk3U6V3UNCZd+m3aAeIC/540yPYDGXliWMBCj+gNK/J1OpW +P/hC36PFkFmgFOTU23/6AygKNz+N3Z0FbGrrNcXmH5BFIzTeWTQL1pc9+q2n +fkB7h4/Ii6FZ0HYOrzkvNAbSdnuF3tpzcIWTI2bu/hgQ/aReTVLOg6K6QchW +1DhcSL9Z/y0VDxLsUQsY80kImpeZrSz7Bc02ZwNvj0zBlOsofVPHLzjEFOmS +j58C25HbCj1z5PddOQav16dAs4sQNi+wAJ6+MgPFbNNA/baYjSdhAWzOO/1l +M5mGrAix49fdfkP48VDHtsppaOLkf6TFtgR6H8yNrsfNwNGk9npDuSVgvkn3 +Uyh9Bp7Rhc5ZGy3Bjkbu6Q+5M3CPNKR4IWIJQlwT2j5/nAGHnxlfHhOX4PzK +eJ3lrxlYKGVb321cBsmQ3l3Wk7PAIBYr9VNzBVz+3MKyU81Bu26aYqThCuwe +vfvMh2kO4h1zNYRtVmCdorflDc8cUKVWGZ/1X4Gt3Ox3WLk52Nlf9B3OWYH9 +Yr6GCNs5+D1uX/KVahVUZSQzaQrnoDtLSqaxexUe7CzW6KrPw53Ko8puo6vw +kN80VQDmweTbCa39+VWIpQo5tWg8D58POZvqHqxCp6LYDf8z81B7LfV8lfJf +SP2rsTkcPg+v7Ugv3jz8CwXrAie96+chma1LtsB9DUIvJw4paeOhWkP4vWXQ +GkjuvZIQ1cPDnOtF2Atfg3/P9x/um+JB5zWn3enMNXj+/UhX6hk8EE2dbzL3 +roEE1xqRMhQP+jFLX8N01mHmX1EGxzs8BJWCk5TpOpg+jylmq8bD4760uUGH +dWjYF0k8aMDDiqg6STFkHR7QsH0o78FDbm0kFl+yDtFx76TOEPGwvcF61YZn +AySfSKd3CxAAJ+x5cIDbAH0n/+rvGAJYGlQmvlbegM5GwaCvkgQoTnfMpbfY +gDbG0YsZKgSwUSxoq4/ZgK+yab5epgR47aciILe6AW/Fzk7xXSHASEps0cj+ +BsSxqvPIhBGA5uOQQjzTJlSevpUrE0kAJ9pw/WmpTVi3Z3u0m0AA+sKWgEzX +TbA7kBybeUwAzzG7BuruTWDI2pqoqSMAQ/Z04KXRTSgmZozVNhHgnVOQ0E/8 +Jjyy2EoqayUA9Y+EsE+UWxCHW6Lz6iFA0cgn1UsaW/C9epWGd5wA5lnGM5MG +W+AY33Yu5ycB1k8PpprbbIFinKQX1ywBDIeXlqQCt0CPmIMGfxEA/x1TMlm4 +BfZZgfLZmwRIfvDawfzNFsxz6J99RiKAur027ae6Ldhn/ilQuEeAhEFbzwcj +WxDa1GrgT0UE6YF4IXOWbbhXSWI1YCbCt3TOrmrBbUgzOJ82wEqEUJv8MCmZ +beCMd3xgy0GEjr7qISqDbZCjtBKR4CXChW+LqdVh2xC0TsfAgiECR2oYSCVs +w5hX+hUxLBE+naJbzsjYhhj8oL2EOBEYv4qaBZdvA8tbx+v7UkSoTH5Fmqjd +hoY20fcDMkRwttQqMevchql7L7weyRHhVY8NrdT8NhRMRXJtKhDBLulnRcbf +bWBwyudIUiLCnnmAJxUFCbodlSK5VIhg0R3XMCFAgj//3j9aP0qEzbscQWbS +JDjV3GdsoU6EXLM8oWo1sk1L3B5qEGG5syosw4oEvJqog6RFhId3DKWpXEmg +SRPKz6VDhOMn+4cu+pOg1Pn0NxFdIuAPu8VNhJIgN0llif8YEVI6fquaxZMg +Zdn3Iu1xImgmhs5U3SfB7Rk3h2myp0xo0yQLSFAwcq/gNRDhNn06ZJSRwNzc +3+oCIoJSu8gyZS0Jylv/8+Q9QYSRhJdPLnaQYGnUfbiS7FvGmmYTQyS4Ive0 +TE+PHK9DraSTcyTQvrBEaCT72xfrkqpVEmzbLkcr6pPjFT/pIHlAAq9K16hk +sjFG/rQZTDtg7U05MUF2O+12BaXADixYPs0WNiDCpdZYz4tSO9DiK1hjQbbI +nBHdpuoOuB+7nhhAdhfV4dIItAM4id2Gm2SHinVZUFvsQMONHNf/yJZASauJ +Z3ZASsPZ+zrZ/a6nHrD57EDSiu6gG9lRN9m1MkN24OwP85faZMs/GRgXjtoB +ydb8hUNkj356cKvo7g58ELFPbyOPL370tLhc1g58X00qDCNbdZu//W3RDnjh +rwmKkD3FM+6v+Zbc/oT+v0ry/JPUclkb6nbgyewRk+Nka9u5Vxh27sBh87C9 +avL6EUKwp7uHdkDiwUUBabIz0uZ2bGZ3gPOaZ+Ft8vqfePMsd/TPDvDovcwg +31aw3Oun5763A+HE0lUM2dlLsng8/S6cWu+odiTHc0O2/Mi62C6sX1JIyiPn +Q6Hppb4bCruQR+X/qIycL6f8VK9S6uzCnNp7jjfaRHhR/LGWxW4XKH0rLe9o +EsHhc5j7A/ddcDydw3GOnH/Uszo0QoG7kNC7a6hAzk8XTKOZTPwuoJ7Bf9mq +RGDPbv+hX7ULM42NXwaPEKG++k5k5+ddwJ9fEDghTwT/EXOsdd8uKP5rncuT +JUIrd99514Vd8NQ7MXGUvL/CUke3Q4X2AHzeR9SKEkGyPPvJgfQefPZ69qhW +mAgDPS4oXm0PfDn9j5YLEuEI40zCfcs9WENsRH/y/p6OW+Apu7UHB8lD5/VZ +iJBc9OrT0aQ9yG3RzRxmJIJOS5BrzaM9EHodYe56mAgPKNaK29/twTqfkJ0+ +DRFMw3ePzs7tAWHgFkUA+Tx6G8xky2f6D4TD+uS0pgnQ/Zgz7LXDP+DNeXO7 +fIJ8nn0WyNPz+gehvtFHeH4QQIBf5ndA1D94UhDjWNlPgNgmw5im9//ANY8Q +erSFAA4cURUXsPtAJXFB3qiAAMG68aMHivvQ+iFSp/kJAe74JB1kHNuHixam +dQpZBGj4lG3W4LgP3cL8EqPJBJA+VzXLmbIPpdz3xi+HE2CnYpWzbncftkcj +W1qsCcA1ua1lc/gAtDi2bpqYE0CBnsKdwHMATfaSU3VGBDjnzPKKXeUAjkZa +lN7QIc+HRs7Ax+8A3tb41+uKEyDX3usK6/cDeJphY47/i4eCcP8FpdMUKE22 +9vhiLB6UGg9vJ7hQoJuZcfcZI/HQSFNC+/McBZIp4j8Qvo6HqaQ5TFIwBVrS +T5MVOo8HkXyX078SKdAz1QX9SHPyffr51OeCWgpkptghNsGGh3Tmo7kcWEpk +krHKLZ46D1ib/pfnpSmR70pJfFnCPLx9GFzdqECJ3t97kC0fNQ/fRF8PBulQ +Is3jua3UQfPAoiLJ2GVHiQyyCEUiZuR6w4EvNCaBEtWrn9hloJ6H6Lw96/VF +SpR8ZLVr5vwcWClVXZJbo0S7d92YRdznQKTpcponiRIJVVmxWzrMwaeZhW/f +aKlQbZHftXt6c/BXYvTUaxEqpPk71jJGYA48X7238LGiQmr8hpyu7bNwojrI +dKSCCpVErHKuCM4CxcAUqr1BjVKCgiJ+PJ2G2F/1BTf+o0bvKvIe+DychsMU +OVRat6mRs8SQHuH2NHAcOfP5/QNqVD15PuJL4DRIJPQZl7+hRh6NAef+qU/D +SZ1my0I8NWLu/95v1zYF958+db5tQ4P6O0kg2fMTJK/4hNrJ0qI3J4WjjZLG +4Yj2T9s8JVpE+e9klcO1cThK4ai4oE6LXp26cTbMbRz07pnio/Rpkbtv5esN +5XFwLZK3e+lMi25KM+Hbh8fg4eBfRaoUWkQ/F7bSLTkGtGpRhPI1WuQfxCZA +7BuFuY1MB8Y6OrRpmhpz5cwwFJ5QvTzRQofebW+JYAyHwS2pN6W8kw41yJcH +TigNww9x2g7bETpkffkK4R79MPTZhug8WaNDWjfF8uuqhqD+rTnmiOwh1LhX +9MdRaAgyAykXLDMPoYuVlnusK4Nwcv7CzfRL9AhJl6sFf+kHo5u4Vwah9Oj1 +SWz7uQ/9oMc9/mMzkh5xRrlyeD/rB21DC82z9+jR7x27vNT4fpAtVlzDPadH +4xUu9neM+4HRe93v/Tg92uvzxe139UH33E27EePD6EL+ytesyW9gOZcqJyLC +gMZ7207fseqFbrm5QWdxBsQuoiDrptkLZpc1IrNlGVD1PfcTxpheMKGa/Man +wYCOiLRQWK/0gB5G7hqnFQPalnTmM03rATXn1kb6aAZ0aTo4rH6oG4QGSfZr +8wwoP9MY73CxCxZaPG+1v2ZE8gSdDdnBdhBNG7mQXMmI1Jxc/Cvq28HO1dLe +roYR3VD9E2z5oh3qt7Vkp9oZkUH2iYWayHZIP8I+uDXLiKpkPwyHyLaDTmaD +lJQAE6qi9RvTi2uDexeEvsbFM6FRiTvKFCZfQIF9SFjfjRklVo/kNey3AD4J +H/3Amxk92ko882S5BXIYtggEf2ZEdErgj59sASYavnf3QpnRRJtn9K36FljY +PGM0lMaMSA5nB1ijWqB4fCLo/GdmhGVp9U+hagGhkvmGFBkW9JFWYLWLoxkY +YMNjfI0FWS2tMmEcGiH0hDT9hx0WdKrMXnDYuBHw+mfLUihZkQFH8PPHWo3Q +bNK0o8fKis5WijEbCzfCDZuk+y9kWdHmwVadb2cD/PaWaL3mwYpwBkJRJcv1 +0H3PXpr9KysSOWY+1WNSB8ZLTltYezbUfOHYpDV8glyumIEoRzZk5x4p3iH9 +CdZ1XpaPn2VDE/7OLbYcnyD/zq7vQ082VKSc3F44Xw07Uk9GDgezoT0LLZxk +UjW88pyoXrnDhuRWHMYqflYB24hbRH0jG5Kd3laPSP8II81elE7y7GjVapQU +IvceVk78ELipyI5o+L1/3xR4D4eaTh3NV2FHrDeVQh4efg/qDdq+eE12dDr6 +MNcKoRIyath6QgzZ0e4vvRsGxZVwqrI2664rOxrLPQj1w1bCl2IupbpUdnRs +bVnHTrIC3t/+7IrZYEdX5Yuck2zeQsnJLr6EbXb0QaD8SbT+W3jM1N+/tMuO +PH8lLMYefQu3Un8a1VBxoGc5lslveN6S6/UdBQc2DlRiTJdXOPYGZp4rHdyV +40Av1l7oEH3fAEvbk7wtDw6kdSmD4yxnOfjQXp3q7eVAv7WldRt+vgQB0Y7h +3T4O1FyYZCrR8RJ6NYW/Sn/nQNxsgaU5716CekBrXfQYB6qYUZNrjXsJdAPc +2epEDoS1H7i7JP8SivM/2OdScqKn1O6HMiNLYU5nuzPwKCcS8P6t+0vhBZwL +CX/P9JgTXVJL4k5vfAbqKpPvZXI4kb3a3Gx42TNg+Is+GOVzov9ktjiuPHkG +by7Rfbz1jBNdFS/0Tgl9BnvBaVXr7ziRIC/KC1Z+Bg8vPq8Z7+JEHPXP0geK +i6EjYKDp1T9OVNtu29ibVQSKvnK95h5cSPaigrJVcSFMnhe9+NqLC6lObJ7Q +fVAI9wI42Vj8uBC39pCielwh/Lq0a/01iAu59XFctvUuhKcRXd+tI7hQk46N +mYpkIfCm+084ZHKhFqNqquulBXBQ+3LRvYcLGb5Rfdhdmw9fOeQZr2pxo86o +rh8pTLlwPDDwV7YuN+LcqhXzWM+BsraytmbgRg3LrZOG4zmQHKEcy2bEjbaM +4iJMX+WAOV7930sbbrR9z/S+hkUOdFaf+DPjz41kn2jWFKQ/gVb30wNWudxI +RaHkp4FcNtSURWfLU/MgmZMBdkWpWUBnbi+QSceDzAzf7mqEZ4H1L6lHlAw8 +qEZz2nrSOwsIuJ6HQ2w8SCpktsNTJws4H/Gm3xLhQc7ClThTQib4x7y6PajF +gwaiMuJv6mWCoOPQ1YhgHnRscoSfj+4hhFPKWnVP8CBPgSjsSP19wBswjkhO +86BX14PEVl7fB6vbi27/zZH7wzI+5sm5D+Ks5RfVf/OgvectX5LD70O30NGU +/G3y+HI/v5fVug8imsd7r3Dyol39DRO6j+nQHGRjLmzKi8SUn9qTatOAYfyG +SVAlL5JKjHhfPpkC6tdfMKd85EVGbPf9dFpTwINjpL/8Ey+6X6gSPPYyBapM +1FxWG3mRbqKkrmNYCrnM/HPpSg8vSm/2o9bnToGmZK/sG3heZC+U7vLVKpl8 +Xlkux/PxoZVD4YYOQ/dg/plYRl4EH8pQ9HgzznsHFmOnSdS3+NCuP9MHfco7 +8NezwM0vhg+Zmr6zqF9IBApRMTnlO3xo/azyn6W6RBDIxDQ3Z/KhL8b04mre +iWCVILoy/44Pta786bb7eBtqfYXN5X/xIVz8mWbf8wmQIc1PU23PjwzcmRgj +KePA2VXy+awjP9J7K6sTvRIL4hmqJ1mc+ZHU+QzJjJ+xUHlgkXrOkx/9NV6g +mq6LhcGhaCGWi/yo99LmE+HwWOCMWzx67jY/Sh906OXbjoH06QZv5hp+dIYi +7FX3bjSkPvZp88AIoFvND/6uSv0H169FX47ACSB17oguR4H/wNUmVzRTUgCZ +hOf5dzL9B/IMQ9e75QXQR/HQnz2rt6AjzFBaQ0sA9V+Yf25XewuozognMtkI +IMPjet5OtrfgKu/MyY8xAuiV4btAAY4ocMpw6WUiCCAZq0+4SmwECFUwCPov +CKB1jTzeaIYI+Nn30bdjSQD985H+4fU3HLxYOSjj1wVQm2xRjF9zOATd+aJ6 +QCmIbh6mue5zLhyibyk+WhUSRIIV+glHXtyAFwGUXkM2gmi3ajIrWD8Mtg2K +SXn1gsg5sqlAp/waRNTkxXxuEkRqBMuCQznXgELlMfOvz4LozpyB7syda3BI +NEVMpUsQNZilcbf4XAMeUqjp52FBxFXaxqoieg1UX5s/Iq6QLXnAXpN+FYK4 +1zWVcULI54j2M9nYKzA7rxfanCCEaDInUqWSQ0Avr7dQ9q4QGlNzWaeODIF8 +R6ee9GQhxBkZ5rEcGAKuXZew5x4Iob69GqklixD48Sa/m/qpEPpILcGexhIC +/eH7GMN6IYT+tvz0Tb8EzeyfOtrWhZBOqVX7wdNgKDymLNjjIYwusxQODI8E +QrMlQ8yulzDaomhwe9QYCDNuswsyfsLo6qxyTlBJIOCiH3yKDxJGr97KLtqG +BkLRF9IZFC6MNG0+CNPzB0LxqeasigxhxGPygfOwawCUeNjyPG4TRvUvzlFT +bV6A13FX2X2PiKAKbgGXHCc/WNR1iY5TEkHfgmwNNY39QH7dYO2pqgjCxeXn +zaj6Qakn1/cpLRFU9c8szJvZD0qgIsvJSAT9uT1/AdvkC0WkFVFLNxFkyNz+ +IUjOFx4HBiiopYkgPkEP930GH0iwP2dGvSGCLpfU+cSsnYPCU+PO3tsiKF2J +imQ8cw5qTe2D2nZFUEJlRKBg3zn4e8w47S6VKKJgr+hYLjsHzpJyw5xsokjk +yuIvQ/9zoLL111NcThR9F6pqKcV7wmRW9A1DD1HUz1A/tU3wALXxghcJPaIo +xbw5j4/DHdgU/LbLv5G/F003hKN1h8UoBeORAVFUi83YC1lxgyJczZz0D1GE +GbSgo69zAy7/QdFOvCgK8Fciypx2g50IajM6CgyasHh/8XiKK4wyqjeZ8GPI +f691KVosLpAlk/26xwyDYpPZc/kNnGB9zag4xgKDMh8WTUodcYJT9X+faJ3C +IIo3krIneZyAzvbkvWIbDCJJHGR3Es/A1QjShZtnMIiW8zZNdfIZsPl6WvqI +LwZFvn+B1510BKarXE/vRZP79yma9b97GqIak7LMqjGIrtP7+6KAPSxMNGaQ +PmGQTLsRywC9PTjsrqU+r8UgoULjnvZNO5BXd0qkbsSQ6+eQkpl+Oxh5KXmj +5gsG7XZc8ui9awcqmQ1n5QYx6Ngh/ss3KOwAH7gqwvgHg2b5gaJ73QYsBO2L +O8XFUBZL6mAZnTVkzSk0npUUQ6xuHLasJCuYe00/tiglhlxv0Ffd+G0FEaiW +jVVODA3IXuEI+WYFr7xxEbbKYuhJZRfPzGMrYHizajN+TAzl/ZScalC2gjaD +ZIplBzG01SgxdrHXEk4EtZ1lTxRDh2hEWD9MmsHOyC+jz3fEkEsh/+rtL2ZQ +qc+kcv2eGFLnXO4KLjMDSX5r+okUMYRjDMBFRZoB0+cflSUPxVBloIZ7hqgZ +jPAvM6MiMaQ9t3o9zfskBLdyNQY1iCEWXtrrzhSmkCfkKd69IYaWJ4ddswKN +QFtVTsFzSwwFLd9cDTxrBIOm6xrb22JoKb9V28bUCOivx5uJ74kholdWk5GE +EQT3lYZEUGHRzPVdu8kJQ0Dxa43yrFg0qh12us7aEGb+xLokSWORNVfd2IK+ +AYi3PH9oeRaLpt/GTRac0oNe+e2icWcsign4ms97Qg9CH5pUXHDFoid9LctZ +KnrQdf7X13gPLFo8RH+4nlsPQtjkDjf4YpFtLJdm2vgJaHApC1e8gkXOmbH5 +tgEnwGm70p0tCYss3RlYGTMQpB5plu2vx6KGQ5sp4zTHoUTz7OHoRiwa55Oc +oPh9DBr01wnKzViU4hEdrNN3DJbPSBantWIR4wib8FrOMTCLvyNq3Y1F/OGO +oRc0jwHdTxuub6NYlDb9tMXvki6Ep87+61nHIjaOx7a4NW3wWaPp65DFIR9x +u84GZU1wLTXodZbHoeAcbKO5iCY4eMR2/TmCQ2/7ohx/MWiC0VfqL9zKOPRd +pfS49ZwGSL6kqvHQwKFsa4uYH5kaMO9JUUzSxyHalm1sO6UGePXvhsq44NCS +b7lPzZQaeL79i0lMwSHH5PGjke2qEBBtu3cyDYdOH/cwr/+gCldtK4eZ7uNQ +WkGNFUuxKtzeuJqc+hCHfHWH8RP/qUKZFmk3MweHNlFdjZauKpCaDoaevcQh +FGrbOVyhAqn9TEmf23DIzomPy7JMGR4/DfSL78Ah5tiMw5dyleHplV59ky4c +Mhks1S5MVoYPPKk7Xb04JMuZI6R4URnGnTj9Br7jEEvGaMSqkjJIzfLrz8zi +kMfZzjrmj0qgVHlDpGgeh5i+nUpkKVEC7bgxkjcBh8rmfDqEHimBuVTOm18L +5PatDNc9wpUgxB8jsrqKQ6rvujTvICWI0P2P9G4Nh46LHD2zoawEccwzg1c2 +cIjKsS05EKcEWeVP725v45AzJo4hjk4JCm/R+H7awaGtydIQkxVFeGntrRex +h0Nr6xo5+QOKUIn9Inx8H4fuxty9yfFREerXJEkHBziUYZWxl/NYEf4HOcku +zw== + "]]}, + Annotation[#, "Charting`Private`Tag$14210#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 10}, {0., 0.7583624694778662}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}}, + CellLabel->"Out[49]=",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"] +}, Open ]] +}, +WindowSize->{1389.75, 768.75}, +WindowMargins->{{0, Automatic}, {0, Automatic}}, +FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 1791, 47, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], +Cell[2352, 69, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], +Cell[CellGroupData[{ +Cell[5178, 147, 1556, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], +Cell[6737, 196, 10268, 183, 235, "Output",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"] +}, Open ]], +Cell[CellGroupData[{ +Cell[17042, 384, 1706, 46, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], +Cell[18751, 432, 716, 11, 33, "Output",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[19504, 448, 906, 25, 54, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], +Cell[20413, 475, 241, 4, 33, "Output",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[20691, 484, 1752, 45, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], +Cell[22446, 531, 317, 6, 33, "Output",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"] +}, Open ]], +Cell[CellGroupData[{ +Cell[22800, 542, 1216, 33, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], +Cell[24019, 577, 11225, 203, 242, "Output",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"] +}, Open ]] +} +] +*) + -- 2.18.1