duetron1.nb 31.8 KB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 13.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     32406,        751]
NotebookOptionsPosition[     29673,        698]
NotebookOutlinePosition[     30101,        715]
CellTagsIndexPosition[     30058,        712]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{
    "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
     "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\
\:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}], ",", " ", 
    RowBox[{
    "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", 
     "\:0441\:0432\:044f\:0437\:0438", " ", "\:0438", " ", 
     "\:043c\:0430\:0441\:0441", " ", 
     "\:0447\:0430\:0441\:0442\:0438\:0446"}]}], "*)"}], " ", 
  "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"m1", "=", "938.2723"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"m2", "=", "939.5656"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"eeD", "=", "2.225"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{"(*", 
    RowBox[{
     RowBox[{"Eb2", "=", "1.296"}], ";", "\[IndentingNewLine]", 
     RowBox[{"Eb3", "=", "7.77"}], ";"}], "*)"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"kProton", "=", 
     SqrtBox[
      RowBox[{"2", "*", "eeD", "*", 
       FractionBox[
        RowBox[{"m2", "*", "m1"}], 
        RowBox[{"m2", "+", "m1"}]]}]]}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"j", "=", "197.327"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"radCh", " ", "=", " ", "2.1421"}], ";"}]}]}]], "Input",
 CellChangeTimes->{{3.8418280761221857`*^9, 3.8418280761422033`*^9}, 
   3.841862171517088*^9, {3.8419262080807543`*^9, 3.841926219260518*^9}, {
   3.841928038092181*^9, 3.8419280541030884`*^9}, {3.841928487899782*^9, 
   3.841928488076267*^9}, {3.8420066140269156`*^9, 3.8420066793455715`*^9}, {
   3.8420171976184487`*^9, 3.8420172488882537`*^9}, {3.8424381617095547`*^9, 
   3.842438201338784*^9}, {3.8424382660884786`*^9, 3.8424382663017025`*^9}, {
   3.842439900950303*^9, 3.842439905584711*^9}, {3.842440130144476*^9, 
   3.8424401408080816`*^9}, {3.8431287176062517`*^9, 3.8431287369491*^9}, {
   3.868506577438991*^9, 3.868506607725766*^9}, {3.8685082343880377`*^9, 
   3.868508264626708*^9}, 3.868508295057948*^9, {3.8685088480586357`*^9, 
   3.8685088658482113`*^9}, 3.868510178130962*^9, {3.868511111974544*^9, 
   3.868511122212982*^9}},
 CellLabel->"In[37]:=",ExpressionUUID->"2526f2fe-15aa-4579-b9ea-decc3aa58e9d"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox["radii", "2"], "/", "4"}], " ", "+", " ", "0.64", " ", 
     "-", "0.125"}], "==", 
    SuperscriptBox["radCh", "2"]}], ",", "radii", ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"radii", ">", "0"}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{3.868508853568275*^9},
 CellLabel->"In[43]:=",ExpressionUUID->"220ec690-b6e8-4041-b6db-85117c0aebe8"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{"radii", "\[Rule]", "4.036628499131423`"}], "}"}], "}"}]], "Output",\

 CellChangeTimes->{3.86850888104244*^9, 3.868510185941433*^9, 
  3.868510993241634*^9, 3.8685111274856873`*^9, 3.868512725087854*^9, 
  3.86859260104237*^9},
 CellLabel->"Out[43]=",ExpressionUUID->"813107a7-fdc0-40c0-9f52-d9967b7b2e97"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Psi", "[", 
   RowBox[{"r_", ",", " ", "q_", ",", " ", "k_"}], "]"}], ":=", 
  RowBox[{"(", 
   RowBox[{
    SuperscriptBox["\[ExponentialE]", 
     RowBox[{
      RowBox[{"-", "k"}], " ", "r"}]], "-", 
    SuperscriptBox["\[ExponentialE]", 
     RowBox[{
      RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}]], "Input",
 CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, {
  3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 
  3.8415122060456753`*^9}, {3.841926409979779*^9, 3.8419264177339487`*^9}, {
  3.8419276456625643`*^9, 3.8419276518377705`*^9}, {3.841928494442438*^9, 
  3.841928503957432*^9}, {3.841928615751482*^9, 3.841928632201804*^9}, {
  3.842033422958788*^9, 3.842033423943757*^9}, {3.842437713760228*^9, 
  3.842437735679245*^9}, {3.842438434224802*^9, 3.8424384347359476`*^9}, {
  3.868510987173293*^9, 3.868510987328767*^9}},
 CellLabel->"In[44]:=",ExpressionUUID->"86929842-b770-4ba7-b6e9-2ee5c585020a"],

Cell[BoxData[
 RowBox[{"(*", "\:041d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0430",
   "*)"}]], "Input",
 CellChangeTimes->{{3.86850598593543*^9, 3.868506006899047*^9}, {
   3.86850635238809*^9, 3.8685063560504923`*^9}, 3.868506790939067*^9, {
   3.868506872690419*^9, 3.868506873123567*^9}, {3.868507564336475*^9, 
   3.868507564837818*^9}, {3.868507601149354*^9, 
   3.8685076023106337`*^9}},ExpressionUUID->"3cba0c7d-b74d-44b7-be23-\
de4c6f445cac"],

Cell[BoxData[
 RowBox[{
  RowBox[{"Norm1", "[", 
   RowBox[{"q_", ",", "k_"}], "]"}], " ", ":=", " ", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    SuperscriptBox[
     RowBox[{"Psi", "[", 
      RowBox[{"r", ",", "q", ",", "k"}], "]"}], "2"], ",", 
    RowBox[{"{", 
     RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"k", ">", "0"}], ",", 
       RowBox[{"q", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8685067964058933`*^9, 3.868506817218575*^9}, {
   3.868506878481089*^9, 3.868506881688241*^9}, {3.868506953305505*^9, 
   3.8685069547697687`*^9}, 3.868507608707961*^9, {3.8685096633820333`*^9, 
   3.868509668624763*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"4f4d5d61-fdf8-4144-922d-24a1a9bcf65e"],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiNorm", "[", 
   RowBox[{"r_", ",", "q_", ",", "k_"}], "]"}], " ", ":=", " ", 
  FractionBox[
   RowBox[{"Psi", "[", 
    RowBox[{"r", ",", "q", ",", "k"}], "]"}], 
   SqrtBox[
    RowBox[{"Norm1", "[", 
     RowBox[{"q", ",", "k"}], "]"}]]]}]], "Input",
 CellChangeTimes->{{3.868506842713272*^9, 3.868506890403079*^9}, {
  3.8685096583025627`*^9, 3.86850965965059*^9}},
 CellLabel->"In[46]:=",ExpressionUUID->"cfe62748-465f-49a4-8692-622aef7132ec"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"PsiNorm", "[", 
     RowBox[{"r", ",", "q", ",", "k"}], "]"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"k", ">", "0"}], ",", 
      RowBox[{"q", ">", "0"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.86850691051902*^9, 3.868506919730239*^9}, {
  3.868510573098914*^9, 3.868510576657299*^9}},
 CellLabel->"In[47]:=",ExpressionUUID->"dcf5ac81-7b56-4e36-9ec0-4771a2422a75"],

Cell[BoxData["1"], "Output",
 CellChangeTimes->{3.868509676339554*^9, 3.868510199738626*^9, 
  3.8685110058216476`*^9, 3.8685111481268797`*^9, 3.868512732307797*^9, 
  3.868592609613551*^9},
 CellLabel->"Out[47]=",ExpressionUUID->"16cf9198-eff9-447b-9532-0738cceb8c19"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{
     RowBox[{
     "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
      "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", 
      "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", 
      "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ",
       "\:0434\:043b\:044f", " ", "Eb"}], "=", 
     RowBox[{"2.224", " ", 
      RowBox[{
      "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ",
       "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", 
    RowBox[{
    "\:0432", " ", 
     "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", 
     " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", 
     "\:0431\:0443\:0434\:0435\:043c", " ", 
     "\:0438\:0441\:043a\:0430\:0442\:044c", " ", 
     "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", 
     "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", 
     "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\
", " ", "q"}]}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"PsiNorm", "[", 
          RowBox[{"r", ",", 
           FractionBox["q", "j"], ",", 
           FractionBox["kProton", "j"]}], "]"}], "2"], "*", 
        SuperscriptBox["r", "2"]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", 
     SuperscriptBox["4.04", "2"]}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "225", ",", "230"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8685069805632257`*^9, 3.8685069818154287`*^9}, {
  3.868507500761157*^9, 3.8685075067124577`*^9}, {3.868508302006258*^9, 
  3.868508321256205*^9}, {3.868508565660277*^9, 3.868508568900975*^9}, {
  3.868508628382997*^9, 3.8685086311346188`*^9}, {3.868508909149338*^9, 
  3.868508951272414*^9}, {3.868509027462365*^9, 3.8685090293204203`*^9}, {
  3.868509127679667*^9, 3.86850912963724*^9}},
 CellLabel->
  "In[185]:=",ExpressionUUID->"eb7f236f-52d0-4b04-a063-b8cb0b97aab5"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV0ns022cYB/Cstm5unXFGrS5xP0spEUutzJtx5rBGOW3IKFamrRbR4qCl
yKGkHFLarFGXZnFL/IhLxT3e9tRKXaraRFuj5lZmrdVl7VC19/3jOc/5/Pc8
5/s1C489enIXiUTyQYN3eD+dRCJHM0jl9w9OPYNAp3r/VS3sVYspmgoCmEkm
G2LTjXJ5oxAYAQ2GI3bc5BJ1AAKVfDI9AttR/DSrCwKviqydfmxnh9D95RAc
SHv8odAM2e+QacovEGzQONsWFsid87FWyz0geoZekmeN7MX0Wf5HAUSLzMSO
r5H1BdNDuxRg7fr5oKe2yP2KiLyvuoF5ls2UswMy653vuEkX0B2k/HaChnzj
j8+pTp1gkgXVhujITvezLegdoC8rPNbmELJ78dqGazuI0zq21/s75Ndr2gOs
NrAxpgyTMZArH495BLaC7zcqFp97IKcb6DVy5EByl5v8rydyneLRCq8FLA29
kbB+RPaYGF7i3wbL9vX6F32QW2v4/TXNYFi1aTnrh9y23RpZ1wQGzdiurixk
m4mfZuSNIPd3UuFxNvK4UnhS1ACs6lyye4KQF8tU1bJ6wF26174Qgrzno6Sc
FwRoj5rMY4UhX1+QmixKwZ5rn0Q2RSAnbPmGbNUAa90UrvI0csZIjqlDNTBU
cl1copAvftZ3260SDL9WOUZycH6ycAVHDET1zrTL57H9dx+ViIBvo61yPgH5
nHl3dVIZgBqcZq1kZEsKO3S6GGhIGNSkFJyfirpvRwAS/jbrGE1DZhoqtu2L
gCjbL22Vi9yuKe/2zAc1ETpzAZeRHQIV64LLIPamcQ6Xh9wYNzT9JBUEJH5L
K81D/lOjxIwfAwwFL9M3C5BJwjnNO0awTHNa3bQI+Y6abqd3DHzfG+2UI8Bu
fMf8OA0ajf1QKhfivrDcu+2yYXC+nbayBN+nLRPT8mFSTrUJ/RbO/+zE+uki
eOx5dEyoGPmZuoPrugC91xs8UIXznm3lDRbDaQnF31qKLFFSl/ll8ILLi1yv
OuShSy0BV0TwlY5FmKwB2VPubXJODMlu8oTxZuQjq1wyvRImfBFQ+FaOvM7v
GVitghU2vCMBHchLowb3lDXwmuBT79Ru3PcL1jq/SqFR6Qw7F1t8K3K+TAor
xYpTQuxNtrizSgpbGuKzWrC9Mt5HyKVQ+WAKvsKWNR7uUEqh/oc2eogC97nU
/4ReLRSeirR060E+sGUguVoLyTEeNCZ23BVmqrAWSuJN3IOwlUSyn6gWdmQo
f07ENq9v+6+hFo7fZJTIsIMrHnmN1MJ9I3t1TSHu4xnOgjYBK1VrZDtsCsOo
60sC2k48tHfBDiXuFhgT0PWvLB829kPG2jd2BAxWW+HxselnVjKZBJxTH7pR
hs1ZPM5mETBap6aawCZtKyjBBLxkHNLbh332ZeRoFAF3Wzo/UWEHdzVVxhOw
gKI3M4s9brWalEJAferymxXst1aUw5kELD/4YGcHu7Mr0CSPgP8Dp706uA==

       "]]},
     Annotation[#, "Charting`Private`Tag$3359577#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{225.0000000000005, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{225, 230}, {-0.05379576535584718, 0.12440295325961159`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.8685075058507223`*^9, 3.868507544875833*^9, 
  3.8685083720129213`*^9, 3.8685086160246487`*^9, 3.868508678634019*^9, 
  3.868508950160479*^9, 3.868509001639771*^9, 3.868509076619823*^9, 
  3.868509178998495*^9, 3.868510237029114*^9, 3.8685110516609907`*^9, 
  3.868511192825335*^9},
 CellLabel->
  "Out[185]=",ExpressionUUID->"55793edb-d5b8-4858-95ca-e7c9b007d219"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox[
        RowBox[{"PsiNorm", "[", 
         RowBox[{"r", ",", 
          FractionBox["q", "j"], ",", 
          FractionBox["kProton", "j"]}], "]"}], "2"], "*", 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
      RowBox[{"Assumptions", "\[Rule]", 
       RowBox[{
        RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", 
    SuperscriptBox["4.04", "2"]}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "228", ",", "229"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8424411355629845`*^9, 3.842441156587248*^9}, {
   3.842441619365672*^9, 3.842441624049182*^9}, {3.868509077312571*^9, 
   3.8685090989579687`*^9}, {3.868509241184043*^9, 3.868509246764495*^9}, 
   3.868509283474368*^9},
 CellLabel->"In[48]:=",ExpressionUUID->"d3c2ecc0-a8e6-4792-81ca-5b40050838c2"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"q", "\[Rule]", "228.4649720223125`"}], "}"}]], "Output",
 CellChangeTimes->{3.868510327526165*^9, 3.868511062385458*^9, 
  3.868512738222055*^9, 3.868592614917831*^9},
 CellLabel->"Out[48]=",ExpressionUUID->"1a6fdb34-67f5-4729-a6c5-ec30d105838b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"PsiNorm", "[", 
  RowBox[{"r", ",", 
   FractionBox["228.4649720223125`", "j"], ",", 
   FractionBox["kProton", "j"]}], "]"}]], "Input",
 CellChangeTimes->{{3.868511613342454*^9, 3.8685116202709827`*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"e7ab3299-968d-4d29-b2cd-447d8d1ff1e6"],

Cell[BoxData[
 RowBox[{"0.9320838334751147`", " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"-", 
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "1.1577988416299467`"}], " ", "r"}]]}], "+", 
    SuperscriptBox["\[ExponentialE]", 
     RowBox[{
      RowBox[{"-", "0.23162873939354178`"}], " ", "r"}]]}], ")"}]}]], "Output",\

 CellChangeTimes->{3.868511621518509*^9, 3.8685127401428013`*^9, 
  3.868592617205583*^9},
 CellLabel->"Out[49]=",ExpressionUUID->"528622d6-520d-4dfb-95cb-02eedf8f9d0f"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiD", "[", "r_", "]"}], ":=", 
  RowBox[{"PsiNorm", "[", 
   RowBox[{"r", ",", 
    FractionBox["228.4649720223125`", "j"], ",", 
    FractionBox["kProton", "j"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.868509307138521*^9, 3.868509435603945*^9}, 
   3.868509486682172*^9, {3.8685095247898083`*^9, 3.868509546146194*^9}, 
   3.8685098213255653`*^9, {3.868510083158072*^9, 3.868510085697418*^9}, 
   3.8685103325546827`*^9, {3.868510647018784*^9, 3.8685106476883497`*^9}, 
   3.8685110704035378`*^9, {3.868511671930978*^9, 3.86851168516597*^9}, {
   3.8685118943199244`*^9, 3.8685118972365713`*^9}, {3.868512143956333*^9, 
   3.8685121468388042`*^9}, {3.868512197211124*^9, 3.868512199341248*^9}},
 CellLabel->"In[50]:=",ExpressionUUID->"baaeb7e8-47ee-48ec-a1d3-3cd762829736"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiD", "[", "rad", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"rad", ",", "0", ",", "20"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.86851220377577*^9, 3.868512215990354*^9}, {
  3.868592491966135*^9, 3.868592493035427*^9}},
 CellLabel->"In[51]:=",ExpressionUUID->"e5d127d6-d370-4347-8f24-faa40e61a8b6"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlXk81Nv/xzGukiVL9aVFdIsIYVLavE4JKakst5IoZcl6uVGRFoQUUcoS
FZUlFYqKkLTYjYSs86mQPcsYZhj85vfHeZzH87/3eb+Wo2Tvae4gJCAg0MU/
/38nXbQX0T51Tz9m8TFXxyex+p++KZoeUjyPoQViD7fE+2DuS3GQouI1pFxv
doy8chVJJREr/1KMR5rElZwG8ztw2+7jPrkyA/v23Y6lJh7j27RzzMjKfDjf
yXU6sCsXvmUKWsM5BfCwsA2398rD0tsNVUMGhVB9p3mu+d5r2KsR2oDTe+zr
ppnQ+t7i3DOx/LHvpaj/aNHcdqoI89p+qQytrEBH8oSfNasUzSVFPoO9FWCc
+h6k4PsRT1PjPg7kVMLkuMnj/MmPMPM2s+s3qEbMspzfAZOfcFe04G6PEwP6
lEmWX98XyCSWC41+r8emlJSQpfGVSK584DWwsgUHDVOU3RPqMB6Xp0bdaEFp
wqWY/Yw6GDlVddZzW1AnTwWk075ikDZpVfCtFfa3pTRLXb5Cb7vZlmuh7Xg6
99X3lU496rJ4QirDFFqvFRn5Pf0GGYjaSmj+gKmzetiu79+wVTlmS+ipH9i+
I3H6Dq0BkeMZLL+vP5A1oWBXb92ADdGNDvaZP7HN/vB0Fa0RlyrV92jbdUJu
pZHPbdKE9Jw3ypl3OjGcVza+w7EJ9XE7aWuqOyF1QsY55HoTVjsdLpTb3IVh
udx7DQ1NqKQFawrIdqN0UxUryf47lmxvk2F8+Q0v/5+tia7NIKsdh3fP/EaW
i46P5PVmnBYbrSql98AyLnjB30+bUdgicvX1wx5saA7S0utphr2vzmSSXy/s
Y1VtVY614EXWtTY3zX4EZB+WKdRrRb9M/409J/qhUf7Hce5AK1R89+ivjelH
TQHz/rRzKx5uE0vu5PYjyeVWr2JcK25V3HC0/jyAqLHFXA1WK3w7b44a2wxh
2Ih9sSyxDS+NRlLW3BzC1T0lt5uz2zCcccCSVjqEgc8dzU8/tcH5X+k3xSp/
sC5u3e+YgTZYz9y6oMv6A9dgu/M3NrbjgVhVkLThCEql5wS8P7RDf7u/zWXb
EYSG9Tyu/dqOdo91usNnRyDqQ7WxfrZDrv767+qnI9h3T7k4XrAD0XGmJmFS
o2DUbTO00+9A0Jpaybm2URgb9llovujAqkMXe9zZo8geOetj9K4DJWGaJe2S
Y3hpqlCoUd4B3kCkV8GOMaTldO90/dkBn5f7G3zSxnBG913jM2kmnPA1ftCb
hQURBiWJp5kQSJkoaLvOQm+WkWTyf0zECS9vr3zMwon/hdMuBDBRXuGokNHE
wkrlHZpvophYa8lLcdgyDjy74rY3j4mS10qfLC3GocSq+SFRzMRheeNuA7dx
cCAamPGFiTBmtMqq++MYciFB7t+Z6HVWecYUZINxdX2f1iQTl6tMa2qWsuFZ
6qb9eZYJOU3vP4V0Ns71rJmvK0JhN6tQ654DG5yx0ND0RRQyAszzDlWwoR/C
K/q9nsLOH2ebjH6x4Zpb7W63kZ+DnUmTutNsyMy7MpC3jcKC+b2bF2lMwKYt
ynFmNwWXWwHFdVET2Nhj2TJjR0GInUK9z5jAmhVt590cKCQcKhfIKp1Am6XL
vHcuFCqXyxpEjPN57K8RzhkK69LSy0wOT8K/6I7oXCiFT6K1vXpek5iZW7X2
zA0KNm4s0bXhkyhKPrGhKorCDW19U5HCSTgFxEkoxlMYfPetrnQlB++8Ezxd
0ykEK3BHc/Q44NjfyJzIpLD8ioJs8kEOhs6J5jtkUTA1Om11KYiD0fxjOiN5
FLrSI309Ejko+kyTEc+ncEEsN/ZYHgci+g1PxQspPK+bbdnaw8G8eYIDhR8o
GNFXT6sJcHHlTYeQ+ycKzDsmy5fKcxEm2ZMrVEZB8miMLWcPF+1DCz9RVRRS
i/Iv9ZzkAjPnIlVqKegrUg+bLnBhrP2oxqqOgke3amfuCy78DwVcdmyg8MO2
Zf6HCi6s7o2peDVRsGgO06zp4mKDQfF722YKXw7qWbbMcXGDeyR8fSsFvaqe
891Lp5DCzq/obKOQuSv2wajuFHQEzd77d1BQKDb6PHNgCroXhJ5NMinQcp5I
LQmdwrNNLNfEnxR81aw2rkqZwiv1y8Wff1HofSRso1k0BQ6rTqShk8LRFblX
tjRP4W/G/qCyLgq1d0+mGbGmgKA+r4fdFIiUbI255DSqzSSl7H5TeHWtdMxW
dRpLmC8TaD0UlGnecq67phG7/aBZJJ/jLijpn7WbxvXKPsc5Pi+YqDsZ5DeN
VCVhxUO9FAI8L1+7eWcaIuLZuXf4PNK7Pute9jQMXELs3vHZ3p5qSKuaxpcV
T63L+dzQFjn16vc09oyUU4V8NrbSVywR5OHZ+eVr4/lcUDtkWL2ch2aaq9sx
PqvvTnJt3sTDevf53aJ8vv/BNLrLnAfO/O8V9/nzSG/lvR5x54Fc3G2+nM/B
uZntvDAeBJ/Y5gXy3zehcVRI9DEP0Seeqdbz3386bcHaxe95OHnxn+4FfG5X
LNin1MrD5uBFChr8fZklnP5Pg83DpSht0c38fX6QlY/fLDUDPbWINk3+vjdE
lBcbrpuB6uLECkm+Hqki57oOGs3A6+/T81oovt+5TetdLszgs5wN0eDrOesd
YuUbO4MJekTyG77eXoO6/oEvZ9DlHaOgwffDP1TMl4TeGVi2N9Bb+f4pP7xr
MJU2i+zUPk2ZRgpb61nSrxRm+f9thNjGbxQUP5sfq7KcxQuVcbWdDAr9T6XG
p0tmkRq6eJPXF37+VpfIz2+fxe+D2r4SfL8zkjyxaHIW873HF8by85AbVRuu
rjEHMVXu/P/4ebnke0PpWPwcWoxfssxzKIwNbzU+nTsHefa+IdsXFE6dHnDz
YczBR9P10RF+Ptdormn/IiRAAqcvDi97wveDUrAKpSdA5BaGJzbH8uffFr3+
oqEA2Tc79CchhkLI4fubVpgLkJnG5n/2R/P7Juqt8VFXAbJj2qgvMpzC1Oyg
0/ckAcJmqce7XaAw0G6VzhASJMUh+g5Fxyg85dhneywUJDmD7oysIxScF/37
VmK5IDlqJrftrhW/D/aGl+/VFSQFxtuisI+vZ0Fxb5mTIFm06gjm8fuvOk5F
taRakDDKproD/0chPHeDtl2LIAnt9ogoleH3a92OzbPdgkTcLGtwUoLfZ/Ns
TLbNCRLmr269XcIUCn2jTr/VFiIP7r+scBhh4rklNyP7rhDpcgje9ovf75FS
VWrJx2nEUrIxzN6difxNK/LMPGiEnS7pJurERJetJ3j+NFJ6831c2nEmtj6X
tTwUSyMt0qkbKi34/4GJTYBELY3YfM3RzdzMhEHQEOP8VmFiLHcyc5TGBIe9
0Md8yV9k2eMzL7Rud8C+zfI9rVqEPHuo4t39sB1en4PtPVUWkHT5eIEP91uR
86+4hZyJBHn/tsXFJrsZyf6u/VqHpEjkkw1iZ5ObEPiAd3B8UJpMGq9R0Khq
gMC3H6TQT5YceL9RJ13uG5TPOJ6zVFtMkkTvpv088RVd7Nh/xIqWkLCv5lvP
MxjY0+0ScMtLjvjb+C4yZVbDrCtqnYLCUmK4aWuG1NZK9H+0v1z+fBmpfXTE
TXS6DJrSTSsM7FYQ22Ix55SSz1gA9ol2lgJ5aVhDrNs+wnjIenKVlSIRzz8Z
H8f7gObSU4LW6kpkic3m48vNS5AX9slWka1EQjm+egGMIjj+5fOjtnYV0RER
Njwo/A4nvf3zxBP+JkM8zkrpJ2+x3mldremJ1Xy91F79e/U1GDLqYj6b1xDZ
m32rz7rl4t2LwHvqNGXyX8O5lrDHL+EvqHagukOZpPQFeCp3ZmNBu99uj1wV
QhcL19+d+gLdqUoxDy6sJUe0hMSGZzMRs1ZeON9KlXCCFRSDj2cgKsGx7ISi
Gkm3jld2VEmDdcyxWvEeNRLX6unTq/oEnF1PuA+K15Ebynlp53UeobN757nS
UHWySKbWXDQ0GSnbtZfVnNAgbokHGld8fIDnV32knTQ0ySLD3o0PJxMRanVy
L42tSQrL0poOnE2AbntyRmjNerI2UtJPcS4Wcar3ntfs1SLOMYU+Hr/v4FJJ
RNzefC2itZDh86jxNvYts3pSuVqbLE7oXzR/Lho7PMqOSl/TJqUW/Uv+9YzC
g+X2q6vZ2qTaIc/6v8oIrP6YdtfsqA6R5cre1tG4jiiNUrX6Yh1ibMHoXt0U
BkeW8NcKNTqxMzjEdQgJgX3OmOK1m3RSW1dwViAqGG6BFrw90XSidDP95qPQ
YPhY5H4Xv00nh4T3S+65FIwwtk9k1F06UVfU35LsEYwXm7nTsUl0QhsUVz63
LxjcD3NNqZl0op9/eWmZWDCi6sUjPpXRiWSjO48KD0LCI3fnkAo6eR0iv3so
MAiPztQa7K6iE+/LpowZvyC8XhI1VVVLJ3p3Ra6vdQ1Cu7Ws87dGOpm3acXt
x3uDoNIpb/Crk076GpVKdSWCoJXrp/C4m05ko9NVff8KwparbVyHHjppMRl6
kz8TCFOVpOy+fjphVEUZ7PkTCG9XRYXRUTqxbA1gRTECcWHbFe5LFp08T9F0
7y8LxFWJXw1n2HRiKu9KMy4JRFzWo+scDp1cKjp7WTQnECmXhZ0KpujEPfzD
Kc+MQGQedNh5gUcnjQbhx5uTA5G76ssK/Vk6SRKM8t6VEIhiljJ3bo5O4myj
41/dCsT/Aat1JA8=
       "]]},
     Annotation[#, "Charting`Private`Tag$1732599#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 20}, {0., 0.49858292440373153`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.868512420171845*^9, 3.868512754293762*^9, 
  3.868592575576458*^9, 3.868592693087129*^9},
 CellLabel->"Out[51]=",ExpressionUUID->"63f8f5c6-4182-4b3d-b68c-44d53c19d555"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Psi2P", "[", "p_", "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{
     FractionBox[
      SqrtBox[
       RowBox[{"4", " ", "\[Pi]"}]], "p"], 
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiD", "[", "r", "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{"p", " ", "r"}], "]"}]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"p", ">", "0"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, {
   3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 
   3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, {
   3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, {
   3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 
   3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, {
   3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 
   3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, {
   3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 
   3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, {
   3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 
   3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 
   3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, {
   3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 
   3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, {
   3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 
   3.8429761802928667`*^9}, {3.868512449403376*^9, 3.86851247419938*^9}, {
   3.868512560862237*^9, 3.868512586709832*^9}},
 CellLabel->"In[27]:=",ExpressionUUID->"a3525874-ec58-484d-b703-72e51a5213c4"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Print", "[", 
  RowBox[{"Psi2P", "[", "p", "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, {
   3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 
   3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, {
   3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, {
   3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 
   3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, {
   3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 
   3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, {
   3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 
   3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, {
   3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 
   3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 
   3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, {
   3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 
   3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, {
   3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 
   3.8429761802928667`*^9}, {3.868512492672875*^9, 3.868512495395587*^9}, 
   3.8685125460867157`*^9},
 CellLabel->"In[28]:=",ExpressionUUID->"cc59ea2d-418c-4b8c-ac8e-a4ae6081cd77"],

Cell[BoxData[
 TemplateBox[{
   FractionBox[
    RowBox[{"3.5449077018110318`", " ", 
      SuperscriptBox["\[ExponentialE]", 
       RowBox[{"0``15.954589770191003", " ", "\[ImaginaryI]", " ", "p"}]], 
      " ", 
      RowBox[{"(", 
        RowBox[{
          RowBox[{"(", 
            RowBox[{"0.`", "\[VeryThinSpace]", "+", 
              RowBox[{"3.469446951953614`*^-18", " ", "\[ImaginaryI]"}]}], 
            ")"}], "+", 
          RowBox[{"1.1832672`", " ", "p"}], "-", 
          RowBox[{
            RowBox[{"(", 
              RowBox[{"0.`", "\[VeryThinSpace]", "+", 
                RowBox[{"1.1102230246251565`*^-16", " ", "\[ImaginaryI]"}]}], 
              ")"}], " ", 
            SuperscriptBox["p", "2"]}]}], ")"}]}], 
    RowBox[{"p", " ", 
      RowBox[{"(", 
        RowBox[{"0.06996024999999997`", "\[VeryThinSpace]", "+", 
          RowBox[{"1.3753999999999997`", " ", 
            SuperscriptBox["p", "2"]}], "+", 
          SuperscriptBox["p", "4"]}], ")"}]}]], 
   RowBox[{
     RowBox[{"-", "0.23`"}], "<", 
     RowBox[{"Im", "[", "p", "]"}], "<", "0.23`"}]},
  "ConditionalExpression"]], "Print",
 CellChangeTimes->{{3.868512542207122*^9, 3.868512616831279*^9}, 
   3.868512815778482*^9},
 CellLabel->
  "During evaluation of \
In[28]:=",ExpressionUUID->"9a4bd1ce-ec2f-4298-a2b7-7b0fe899b662"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
   "\:041f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", 
    "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", 
    "\:043f\:043e\:043b\:0443\:0447\:0438\:0432\:0448\:0435\:0439\:0441\:044f\
", " ", "\:0412\:0424"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Simplify", "[", 
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{"4", " ", "\[Pi]", " ", 
      SuperscriptBox["p", "2"], " ", 
      SuperscriptBox[
       RowBox[{"Psi2P", "[", "p", "]"}], "2"], " ", 
      FractionBox["1", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]]}], ",", 
     RowBox[{"{", 
      RowBox[{"p", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.843130807463869*^9, 3.8431308540633965`*^9}, {
  3.868512639539876*^9, 3.868512664514215*^9}},
 CellLabel->"In[10]:=",ExpressionUUID->"6673e5ab-f6af-4ce5-8409-31c716b83d8a"],

Cell[BoxData[
 RowBox[{
  SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], 
  RowBox[{
   FractionBox[
    RowBox[{"2", " ", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], 
        RowBox[{
         RowBox[{
          RowBox[{"PsiD", "[", "r", "]"}], " ", 
          RowBox[{"Sin", "[", 
           RowBox[{"p", " ", "r"}], "]"}]}], 
         RowBox[{"\[DifferentialD]", "r"}]}]}], ")"}], "2"]}], "\[Pi]"], 
   RowBox[{"\[DifferentialD]", "p"}]}]}]], "Output",
 CellChangeTimes->{3.868512666516981*^9},
 CellLabel->"Out[10]=",ExpressionUUID->"b0e48659-f42d-4f96-84a1-34f3c8bb4a45"]
}, Open  ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"fbe802a9-0dee-4109-84a1-e1844fd98e1b"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2258, 48, 248, "Input",ExpressionUUID->"2526f2fe-15aa-4579-b9ea-decc3aa58e9d"],
Cell[CellGroupData[{
Cell[2841, 72, 487, 13, 35, "Input",ExpressionUUID->"220ec690-b6e8-4041-b6db-85117c0aebe8"],
Cell[3331, 87, 363, 8, 37, "Output",ExpressionUUID->"813107a7-fdc0-40c0-9f52-d9967b7b2e97"]
}, Open  ]],
Cell[3709, 98, 992, 20, 35, "Input",ExpressionUUID->"86929842-b770-4ba7-b6e9-2ee5c585020a"],
Cell[4704, 120, 460, 8, 33, "Input",ExpressionUUID->"3cba0c7d-b74d-44b7-be23-de4c6f445cac"],
Cell[5167, 130, 825, 20, 35, "Input",ExpressionUUID->"4f4d5d61-fdf8-4144-922d-24a1a9bcf65e"],
Cell[5995, 152, 486, 12, 59, "Input",ExpressionUUID->"cfe62748-465f-49a4-8692-622aef7132ec"],
Cell[CellGroupData[{
Cell[6506, 168, 596, 15, 35, "Input",ExpressionUUID->"dcf5ac81-7b56-4e36-9ec0-4771a2422a75"],
Cell[7105, 185, 269, 4, 37, "Output",ExpressionUUID->"16cf9198-eff9-447b-9532-0738cceb8c19"]
}, Open  ]],
Cell[CellGroupData[{
Cell[7411, 194, 2165, 49, 77, "Input",ExpressionUUID->"eb7f236f-52d0-4b04-a063-b8cb0b97aab5"],
Cell[9579, 245, 3574, 78, 249, "Output",ExpressionUUID->"55793edb-d5b8-4858-95ca-e7c9b007d219"]
}, Open  ]],
Cell[CellGroupData[{
Cell[13190, 328, 1009, 25, 52, "Input",ExpressionUUID->"d3c2ecc0-a8e6-4792-81ca-5b40050838c2"],
Cell[14202, 355, 286, 5, 37, "Output",ExpressionUUID->"1a6fdb34-67f5-4729-a6c5-ec30d105838b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[14525, 365, 307, 6, 53, "Input",ExpressionUUID->"e7ab3299-968d-4d29-b2cd-447d8d1ff1e6"],
Cell[14835, 373, 523, 14, 39, "Output",ExpressionUUID->"528622d6-520d-4dfb-95cb-02eedf8f9d0f"]
}, Open  ]],
Cell[15373, 390, 813, 14, 53, "Input",ExpressionUUID->"baaeb7e8-47ee-48ec-a1d3-3cd762829736"],
Cell[CellGroupData[{
Cell[16211, 408, 369, 8, 33, "Input",ExpressionUUID->"e5d127d6-d370-4347-8f24-faa40e61a8b6"],
Cell[16583, 418, 6589, 127, 260, "Output",ExpressionUUID->"63f8f5c6-4182-4b3d-b68c-44d53c19d555"]
}, Open  ]],
Cell[23187, 548, 1973, 37, 57, "Input",ExpressionUUID->"a3525874-ec58-484d-b703-72e51a5213c4"],
Cell[CellGroupData[{
Cell[25185, 589, 1470, 21, 33, "Input",ExpressionUUID->"cc59ea2d-418c-4b8c-ac8e-a4ae6081cd77"],
Cell[26658, 612, 1323, 34, 66, "Print",ExpressionUUID->"9a4bd1ce-ec2f-4298-a2b7-7b0fe899b662"]
}, Open  ]],
Cell[CellGroupData[{
Cell[28018, 651, 977, 24, 77, "Input",ExpressionUUID->"6673e5ab-f6af-4ce5-8409-31c716b83d8a"],
Cell[28998, 677, 659, 18, 59, "Output",ExpressionUUID->"b0e48659-f42d-4f96-84a1-34f3c8bb4a45"]
}, Open  ]]
}
]
*)