bounded8He.nb 36.9 KB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     36835,        818]
NotebookOptionsPosition[     35260,        783]
NotebookOutlinePosition[     35658,        799]
CellTagsIndexPosition[     35615,        796]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"Mp", "=", "938.272"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mn", "=", "939.565"}], ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Ebind", "=", "3.925"}], " ", ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"binding", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Esep", "=", "24.81432"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range", "=", "2.5"}], ";"}]}], "Input",
 CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
   3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 
   3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 
   3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
   3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 
   3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
   3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 
   3.879568728576707*^9}},
 CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"fIn", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"q", " ", "r", " ", 
   RowBox[{"SphericalBesselJ", "[", 
    RowBox[{"ang", ",", 
     RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"fOut", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{
      FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
    FractionBox["1", "2"]], " ", 
   RowBox[{"BesselK", "[", 
    RowBox[{
     RowBox[{"ang", "+", 
      FractionBox["1", "2"]}], ",", 
     RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfInR", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{"fIn", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfIn", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfInR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOutR", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
      FractionBox["1", "2"]], " ", 
     RowBox[{"BesselK", "[", 
      RowBox[{
       RowBox[{"ang", "+", 
        FractionBox["1", "2"]}], ",", 
       RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOut", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfOutR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
 CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
   3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 
   3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
   3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 
   3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 
   3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 
   3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
   3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 
   3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
   3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 
   3.8782888301901093`*^9}},
 CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
       ",", "0"}], "]"}], 
     RowBox[{"dfIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
      "]"}]], "-", 
    FractionBox[
     RowBox[{"fOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
       "0"}], "]"}], 
     RowBox[{"dfOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
    ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQDQD6hcRW
  "],
 CellLabel->"In[17]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[{{1.020408163265306*^-6, 1.9434682115973003`}, {
       0.01533589602798134, 1.943748439521205}, {0.030670771647799414`, 
       1.9440288987650578`}, {0.061340522887435564`, 1.9445905124319236`}, {
       0.12268002536670786`, 1.9457165290480463`}, {0.24535903032525244`, 
       1.9479797883972108`}, {0.49071704024234164`, 1.9525517709481117`}, {
       0.98143306007652, 1.9618821897394834`}, {2.0454178542729324`, 
       1.9830133301383182`}, {2.958029656364833, 2.002196235245252}}], 
      LineBox[{{2.9899174114668736`, 2.002885289545698}, {3.0500121108208624`,
        2.004187416350027}}], 
      LineBox[{{3.081899865922903, 2.004880251719722}, {4.298771468715699, 
       2.032343111696474}}], 
      LineBox[{{4.330659223817739, 2.033090717404738}, {5.230370406745517, 
       2.054815538265406}}], 
      LineBox[{{5.262258161847558, 2.0556086163065914`}, {7.124041306441138, 
       2.104932858194773}, {8.173138546173233, 2.1356335947117246`}, {
       9.151727315943587, 2.1664489328692977`}, {10.112311928229225`, 
       2.1989922535225253`}}], 
      LineBox[{{10.144199683331266`, 2.2001147155868095`}, {
       10.439885863942887`, 2.2106589009365796`}}], 
      LineBox[{{10.471773619044928`, 2.2118108967365178`}, {
       11.793784171133385`, 2.2623054642685347`}}], 
      LineBox[{{11.825671926235426`, 2.263593437218421}, {13.228344634183118`,
        2.3239364957656083`}, {14.211533911287631`, 2.371048144684206}, {
       15.2772759429202, 2.427408695591982}, {15.997201695816472`, 
       2.469068213762979}}], 
      LineBox[{{16.029089450918512`, 2.47098698944541}, {17.299275412626642`, 
       2.553095173962763}, {18.35757366702705, 2.631220222064354}, {
       18.575031439058826`, 2.648544318091664}}], 
      LineBox[{{18.606919194160866`, 2.6511241773082332`}, {
       20.415705990432443`, 2.8164527768403436`}, {20.583264093501196`, 
       2.83393478503636}}], 
      LineBox[{{20.615151848603237`, 2.8373095136538247`}, {21.76163442231778,
        2.9698829793498738`}}], 
      LineBox[{{21.79352217741982, 2.9739133900641055`}, {22.463514267959305`,
        3.0635652845752426`}, {22.476388432909584`, 3.065386539629232}}], 
      LineBox[{{22.508276188011624`, 3.0699145486974073`}, {22.57976882002402,
        3.0801551872074895`}, {22.712631165240843`, 3.0995193790226563`}, {
       22.978355855674483`, 3.1396008842680088`}, {23.509805236541766`, 
       3.225647302026706}, {23.525311334850716`, 3.2282846262936955`}, {
       23.540817433159667`, 3.230929516488219}, {23.571829629777568`, 
       3.236242127181056}, {23.63385402301337, 3.2469596083432255`}, {
       23.745330149653963`, 3.2665373628853254`}}], LineBox[CompressedData["
1:eJwVzns4lIkCx/GZ1kYxNzNjJoNhLBMHW6vtmMv7vr+1o7KqTRutGemm+w1d
XHbbcmlLtehZk2IzLpMkZzsuzzhswlRjEpWktBK2cLJLORJFOe0f3+f778dl
w56Vm2bQaLT1H/r7s26/TJx7zQ/JnPljd2qskSGl9vZYyLD4P/6aefNs4Gy5
8FWxjQw3+xdmHiFtAJPra5mDDE6aK0NxGhscVk2/0ShkSNZHeR8/bQPaFwZ6
XrwMZ9zf+53iMKBWDTR1HJRh7WZps9SegcrFwkxOkgz7jav0JgkDW5cnuCcf
l2G+2HeV4wIGWjVk0OYcGYILEmbPW81AwQFTpletDDJ1b99YLgOq0gfSapoc
w11v1Os/ZyL3suXIiIUcV0Ndns+hmJgo96vxnCXHZdbT6MdLmCitzl76C0eO
sEVJZYfCmeA3RkQfksixb3eMHilM9Pf21wSo5NiwhVdQ087EMcH4sntH5Ujq
nn/RKpGFTLP5qfGEHNXp4rkbT7Cgi8+Or0iXw9J2r8qsZcHQSZzPzJKDlbQ9
q7yEhT5dylToBTn4z2cenNXOgv9c20udJjm0fV1VA3w2pvy8rfo+VmB/7uEf
naLZsBp8f659lgKpTx69mxnLBjfnrq+JoYDj8/qXY9+z4flu79oLfAUipNv2
DRxjI6yhxrDNTYG4z6+52+ezYQhcsmlYpYATp8/dfI+NKPVG43iyAtYH1p7K
UXDA1A32KI8pwOKE1U/5c1D6NHo68aQCe7ZK1235ioOBnYeVNtoPHm+tIiyM
g4hD5wzORQqYAmN3lcVysFT/sCTQrMAjVXidysDB3OGgn3NslEgrObHkuMIW
ps/aynrYSvTQHEagskVkrPquG1+JZo+oKx8ts4WOto3xb0clZoaNufwaYQs7
7o9Hr/soMfRm68yzSbaw8Kv/bmiFEp4bvhF3N9uiN3FBJKVVIvXhMP3dDi7c
7ZhpUWeVCOtO0ZMHuNheMlCVf06JXSu9LqYf5uLVvWxriyIlfGMKItdpubD6
hF5hNigRy/w6vb6OCx9TC31lhxINxck//CLgIWH2Fl2kiEDL7YSjf9znoS4X
N7ViAhN017fhvTxY+NqPmlwJxDwUiv4a4uEnTcsiDy8CIeJb/wy05COv1Hd4
SEmg3ThaZqHgo3E5jYiNIMCon19dVsQH7+ezv6fmE+Ayg96fzrDD7HZua8x5
Ar9dY2xk6uxAE6Q1ai4S6OIn1eX+yw5D2UmV3mUEJqcqI61v2cFUsCOttZ7A
X9ZElchSgLhywn9ODwFR9ZqQ0BQBdr+q8pvxjAAnKPr6wUwBIhd+9umfAwTM
du8vG/UCBNe4O9S+IMAT3vQvuiGAp5H1et00AVVL+5EuKyG6WnsvFjuRkOuj
HdVaIe5zw/NOSUhMmgrdki4I0RTy4HSCO4ksNf3blmohDI+akpf6kLga7dFx
+4kQGb0Va14SJELvhA+mes6B/8gRjt8aEsH6S+wvb85BEdszvjGHROeqTcVK
qQg+/WETFnkkvhv9YnE5RKj6LTXWX0/ibh6jI1Itgnnz8/21pSTadloFpKSJ
MHilOKailkRce2PMjTcieG+T7tR1k0hu+yjGo8sBBnL1n4+fkuj+tVPd/dYB
JO/odvv/kpg+b/T6Q+iI5XX9W7UvSRCBnaq2EEdE8Ys2naBT0Kqaq460OaKy
4ZO1sa4UdLMnr4Z0O0GZtepJpZSCjL+9Z/8MMW7sTFnzv39QGFhBm5pwE+OB
4Jlm1wIKjMdx9T67xRjfVfjtxgAKvYqW+Ot0Z8jtJSu/3kLBbdToeyffGcYX
wa0nd1BwuaWT9BmcEXQjcUXTHgpnqjooZbMzwqN6lwfEUaiQ3r1dPu6MH0x5
QYpUCuOr4/c8C3ZBQ4w4QHqJQldogls6T4K3Yy8yHC5TYLOzJnO9JFgQX/+Y
U0GhxLK/cFIlQfGh9fumaj747k+T+QckyDhZWNjaRGGRZvExc5cE64qkM74f
pPC6wWGQXuuKbI+JZdHDFE7eqt5X+LsrLM+cYtWMUPB9bdRmjLri/3eklrw=

       "]], LineBox[CompressedData["
1:eJwVjnk0VXsfxpGxzENHx/BKabqFyqs30v7ae59jkySHUo4KyVAyXSVTiuhe
Y64bqyshRZOLRCr9fpGrASFTqCjz7GQW3d4/nvWsz3rW+qxntbO3jauIkJBQ
yM/8v6uNaIX320loVPIt/8JWx82Xf4uWNSYhZuSI2DljNVzYoZWlZ0KCnG7n
htlFNo7Tf/zMmiBh29dnM/Yv2Jhu7Z1Iokho6rnnfd+CjQvW03yWJQm+446K
6m6rcOw/S/pajiRo8AOuxlSwMPj2btU4SoJ18ocLbn+y8KRa7Ta2EwnsXc7W
9W4szPe9bqDsSkJK5upAWpaFt6jv+p+kFwkekU6urk4rca3vOWI8hAQr1j2z
LE0VfFHdCUbCSHBGVh/NZ5WxYRVjOhhOwtgJl3l+gzJOV1eluiNJmDoreP08
Whl7VxVzW2NJ+FocUWM6o4TlNSb34jQShAPNrwz2KeKXVe1WZekk5PPeicVU
KeJAv4p9TzJI2Dht3ReWo4g7q5L2F2WTYP7SccLBXREX+G21y71PgmKX9oXX
IwrY5tVpfuIzEjpmfOIDxRXwH/4Dnsc6SBjHC6ef1MliNjfIl/eJhDa3+fNP
MmVxluqKQG4nCSfkP5Zp+cviwrLNlzZ3k6CdVZjEZsniOgmfG7NDJFikpv+Z
4SKDZdOm3ycukMAdFUkYlZHGl18uM3nBpmB+kneJkyGF5VOSqSJ1CnZv2lne
HSyFUzx0LHI0f+6ry6NfH5TCt2XNDsZpU3BqcOrKMXkpXGn/u++hTRT0ikb/
/nekJBYZkb89sZMCVVJh79ZzEjhERVNO+xAFxv0JjFmcGK4pkDpMOFAA+T4H
mrzEsKbVVDbfkQKLCP7F61ZiGEVVG6U4UVAtxyr4IC+GRWaDTkh7UuA8aM4b
TxHF0W0tZdNBFCwKFUmq5C/DSTeunHqbRsHNEE9BsqgI/mocWtKfTsGONRld
dkPC2KDVXUQ8k4KzuZ8ToUEYN8lDKtyiIO2d6pUrGcJY9eJoxaMHFHzLLJFh
EcI4/fgetYznFBipHsUOEUL4zkaxN792/vwzdu1wteUSalA3XfD6QoGoe88z
tXVL6Ltc6Ga3bgq0eKU6mT8WkdX0ZPyhfgpE1szRlg8X0WR5N2/3OAW2d4KT
WRqLCPgvP0oI0VAuZ7VBZ34BtcZHTFz7Dw0Z2qXRni1zSOQi0k5eTYMRH3SK
iufQLwELvLg1NEiKujxYf3UOhTn4F59fT8N39fCdMXZzaO0Gl+DjejRkB7ol
GTfPIu8XpJguQUPr8E7+0qcZJD4pvOrFERp281iFbOlpNJufGt99jAaLLt7E
05EpNOSlJyrpQoP9sguake+mUF0ff8zKjYb7YTIql/+YQtfaSyo7vGmwznvo
eEBjCulWePnNhtOwqzhWsXbHJDqQ9OGt3k0avuy98/VwlAAx+3xMebdo6LTz
GLU9JUDG0hIlZ3JosHJWq/CyESCtKIOssns0rLwdMTKvKUCD5xIC9xTRUBu4
41Bo6QQKc+LouFXSEMTKQpPfxlGOfkFYeh8N57tXdOfNj6LTKhNzJQM0nLSv
jHKpHUUG8/oB9UM0tE9aDphljSJckX9SdJwGjfmnRekWo6j1QL695ywNLJGm
+eDrI0gy9O9thlIceJ9ctrxozzByf/2gt2YTByYeS/fpvRpAG53vWi16cWDv
cGgI3t6DXl03yhd4c+CjwCwoR6kHnfjwRqHflwNK4qxHd791o2zrocaGAA5c
OpRkLlbUjbSIzQ65oRx4O+b1XtywG61Uz3PjxXHAoeW/p9WIr0ikuSD8zn0O
LDMfy0053oXazUsL7YY4MPqUw58dakfkvmz7gBEOzDfYqp552I7u2iYsJY9x
oOFG+tya4HYUdNTVovEbB6Ju5unKrWhH7ACFLzbfOfAP62C8+pY2ZJ/hoWAt
w4W75YOfPp5rRc3Tq3ws9LggGBzwcDVoQg03g7YQ/lyIFF0wUaZrkaJQcalR
ABeGO4OmW0ZqEI8/wTE8ywXpx+YSH1JqUKOy+5EtwVw4nvtgddJwNWq5ZJeg
FvGTTUw+taa+RR1u+hMzSVywTXnQFvb9Fer5pbcov5ALp3YOKvmPVqDZh/t3
aQu4EHjvh2dsZxH68djvUdRpM8hfcrY46pdL7NHnckKmzKAx+fPEp9hKospR
z+OkPwNra9oFvsvrCUUX96fXAxgYH6k/kLu2njjinilTd5aBN7tMeHW764lp
P6VCgxAG8mdfmE/51RNrL8/ML0YyUM2yTE1uqyfCC1Fs4lUGijQUOrfnNBBG
Etb5j0oZOJ5MkXsMG4ko6d9E+p8ycDU9W1Bt1UjUK5Tbsp8zwBdTKTd1ayTc
1Q3mwsoZaJM9MiSa2kikbFUlmbc//WsPZwpmG4lJh873bR0MxN8fIwIeNxHg
tGqdzGcG5Id7lXTrmoiYEzaBRBcDu5XWFbf1NRHavi/Vs3sYCCm/kSDHaib2
R+W6eo0ysMll4En/r81EWkxXyY1xBoqVO3RMY5uJ/kT28gYBA2fGdQvjbjYT
4X/F5hnOMJAmnXNwWUMzUZ1RKeQxx0AiS+rS5oFmgnV7yeavBQbEhTnfzYVa
COd7O27VLDLgbulY5cBqIfLyfWZ+/GDA09d83Em3hfgXBlLKRQ==
       "]], 
      LineBox[{{23.777217904756004`, 3.272213571286108}, {24.500912064223318`,
        3.4109378348607606`}}], 
      LineBox[{{24.61034969639067, 3.4337160525576738`}, {24.730449091526378`,
        3.4593125448441233`}}], 
      LineBox[{{24.53279981932536, 3.417522268161458}, {24.563001917687984`, 
       3.423798359927806}, {24.57846194128863, 3.4270260774198293`}}]},
     Annotation[#, "Charting`Private`Tag$5933#1"]& ], {}}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 50}, {-7.026255643989277, 9.975712471055067}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 
   3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 
   3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 
   3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 
   3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 
   3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 
   3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 
   3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 
   3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
   3.879569032952899*^9, 3.8795690542179728`*^9}},
 CellLabel->"Out[17]=",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     FractionBox[
      RowBox[{"fIn", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
        ",", "0"}], "]"}], 
      RowBox[{"dfIn", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
       "]"}]], "-", 
     FractionBox[
      RowBox[{"fOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
        "0"}], "]"}], 
      RowBox[{"dfOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], 
       "]"}]]}], "\[Equal]", "0"}], ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "50"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
   3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 
   3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
   3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 
   3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
   3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 
   3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}},
 CellLabel->"In[38]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"U", "\[Rule]", "46.48728734369617`"}], "}"}]], "Output",
 CellChangeTimes->{
  3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 
   3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
   3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
   3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 
   3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
   3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 
   3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9},
 CellLabel->"Out[38]=",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "46.48728734369617`"}], ")"}]}]], 
        "p"], ",", "range", ",", "0"}], "]"}], "-", 
     RowBox[{"coeff", " ", "*", 
      RowBox[{"fOut", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
        "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", 
   RowBox[{"{", 
    RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
   3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9},
 CellLabel->"In[39]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"coeff", "\[Rule]", "8.80922839269386`"}], "}"}]], "Output",
 CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9},
 CellLabel->"Out[39]=",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FindRoot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox["A", "2"], " ", 
      RowBox[{"Integrate", "[", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]], 
            "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", 
        RowBox[{"{", 
         RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"8.80922839269386", "*", "A"}], ")"}], "2"], " ", 
      RowBox[{"Integrate", "[", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}], "2"], ",", " ", 
        RowBox[{"{", 
         RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], 
    "\[Equal]", "1"}], ",", " ", 
   RowBox[{"{", 
    RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 
   3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
   3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 
   3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 
   3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 
   3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}},
 CellLabel->"In[40]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"A", "\[Rule]", "0.7583626465084375`"}], "}"}]], "Output",
 CellChangeTimes->{
  3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
   3.879570637910142*^9, 3.879570646893675*^9}},
 CellLabel->"Out[40]=",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Piecewise", "[", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"0.7583626465084375", 
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "46.48728734369617"}], ")"}]}]], 
            "p"], ",", "r", ",", "0"}], "]"}]}], ",", 
        RowBox[{"r", "<", "range"}]}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"0.7583626465084375", " ", "8.80922839269386", " ", 
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}]}], ",", 
        RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
  3.879570725415313*^9, 3.87957082556467*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV13c8ld8fAHA72XuP616bzGz1OdkyspPsrDKSFhF9zVRmipIZJRUVFdkk
WxkZGZn33oTIvIjf/f31vN6v53WeMz6fc87nEfO8aONNRUFB0UpJQfH/Z06k
J52y193jElFVJn1jMcc/D2DMT2POQ8XCm1Z/DU84+FIfg8GEQXagy+JxjRDI
aUwSpcUkQsbsv0QejWgIOHY1cEv0EUTeaoz+pJ4OA7t+GSuiL0DBeUQxUK0Q
Do3NSC2JVgNVRfk3U6V3UNCZd+m3aAeIC/540yPYDGXliWMBCj+gNK/J1OpW
P/hC36PFkFmgFOTU23/6AygKNz+N3Z0FbGrrNcXmH5BFIzTeWTQL1pc9+q2n
fkB7h4/Ii6FZ0HYOrzkvNAbSdnuF3tpzcIWTI2bu/hgQ/aReTVLOg6K6QchW
1DhcSL9Z/y0VDxLsUQsY80kImpeZrSz7Bc02ZwNvj0zBlOsofVPHLzjEFOmS
j58C25HbCj1z5PddOQav16dAs4sQNi+wAJ6+MgPFbNNA/baYjSdhAWzOO/1l
M5mGrAix49fdfkP48VDHtsppaOLkf6TFtgR6H8yNrsfNwNGk9npDuSVgvkn3
Uyh9Bp7Rhc5ZGy3Bjkbu6Q+5M3CPNKR4IWIJQlwT2j5/nAGHnxlfHhOX4PzK
eJ3lrxlYKGVb321cBsmQ3l3Wk7PAIBYr9VNzBVz+3MKyU81Bu26aYqThCuwe
vfvMh2kO4h1zNYRtVmCdorflDc8cUKVWGZ/1X4Gt3Ox3WLk52Nlf9B3OWYH9
Yr6GCNs5+D1uX/KVahVUZSQzaQrnoDtLSqaxexUe7CzW6KrPw53Ko8puo6vw
kN80VQDmweTbCa39+VWIpQo5tWg8D58POZvqHqxCp6LYDf8z81B7LfV8lfJf
SP2rsTkcPg+v7Ugv3jz8CwXrAie96+chma1LtsB9DUIvJw4paeOhWkP4vWXQ
GkjuvZIQ1cPDnOtF2Atfg3/P9x/um+JB5zWn3enMNXj+/UhX6hk8EE2dbzL3
roEE1xqRMhQP+jFLX8N01mHmX1EGxzs8BJWCk5TpOpg+jylmq8bD4760uUGH
dWjYF0k8aMDDiqg6STFkHR7QsH0o78FDbm0kFl+yDtFx76TOEPGwvcF61YZn
AySfSKd3CxAAJ+x5cIDbAH0n/+rvGAJYGlQmvlbegM5GwaCvkgQoTnfMpbfY
gDbG0YsZKgSwUSxoq4/ZgK+yab5epgR47aciILe6AW/Fzk7xXSHASEps0cj+
BsSxqvPIhBGA5uOQQjzTJlSevpUrE0kAJ9pw/WmpTVi3Z3u0m0AA+sKWgEzX
TbA7kBybeUwAzzG7BuruTWDI2pqoqSMAQ/Z04KXRTSgmZozVNhHgnVOQ0E/8
Jjyy2EoqayUA9Y+EsE+UWxCHW6Lz6iFA0cgn1UsaW/C9epWGd5wA5lnGM5MG
W+AY33Yu5ycB1k8PpprbbIFinKQX1ywBDIeXlqQCt0CPmIMGfxEA/x1TMlm4
BfZZgfLZmwRIfvDawfzNFsxz6J99RiKAur027ae6Ldhn/ilQuEeAhEFbzwcj
WxDa1GrgT0UE6YF4IXOWbbhXSWI1YCbCt3TOrmrBbUgzOJ82wEqEUJv8MCmZ
beCMd3xgy0GEjr7qISqDbZCjtBKR4CXChW+LqdVh2xC0TsfAgiECR2oYSCVs
w5hX+hUxLBE+naJbzsjYhhj8oL2EOBEYv4qaBZdvA8tbx+v7UkSoTH5Fmqjd
hoY20fcDMkRwttQqMevchql7L7weyRHhVY8NrdT8NhRMRXJtKhDBLulnRcbf
bWBwyudIUiLCnnmAJxUFCbodlSK5VIhg0R3XMCFAgj//3j9aP0qEzbscQWbS
JDjV3GdsoU6EXLM8oWo1sk1L3B5qEGG5syosw4oEvJqog6RFhId3DKWpXEmg
SRPKz6VDhOMn+4cu+pOg1Pn0NxFdIuAPu8VNhJIgN0llif8YEVI6fquaxZMg
Zdn3Iu1xImgmhs5U3SfB7Rk3h2myp0xo0yQLSFAwcq/gNRDhNn06ZJSRwNzc
3+oCIoJSu8gyZS0Jylv/8+Q9QYSRhJdPLnaQYGnUfbiS7FvGmmYTQyS4Ive0
TE+PHK9DraSTcyTQvrBEaCT72xfrkqpVEmzbLkcr6pPjFT/pIHlAAq9K16hk
sjFG/rQZTDtg7U05MUF2O+12BaXADixYPs0WNiDCpdZYz4tSO9DiK1hjQbbI
nBHdpuoOuB+7nhhAdhfV4dIItAM4id2Gm2SHinVZUFvsQMONHNf/yJZASauJ
Z3ZASsPZ+zrZ/a6nHrD57EDSiu6gG9lRN9m1MkN24OwP85faZMs/GRgXjtoB
ydb8hUNkj356cKvo7g58ELFPbyOPL370tLhc1g58X00qDCNbdZu//W3RDnjh
rwmKkD3FM+6v+Zbc/oT+v0ry/JPUclkb6nbgyewRk+Nka9u5Vxh27sBh87C9
avL6EUKwp7uHdkDiwUUBabIz0uZ2bGZ3gPOaZ+Ft8vqfePMsd/TPDvDovcwg
31aw3Oun5763A+HE0lUM2dlLsng8/S6cWu+odiTHc0O2/Mi62C6sX1JIyiPn
Q6Hppb4bCruQR+X/qIycL6f8VK9S6uzCnNp7jjfaRHhR/LGWxW4XKH0rLe9o
EsHhc5j7A/ddcDydw3GOnH/Uszo0QoG7kNC7a6hAzk8XTKOZTPwuoJ7Bf9mq
RGDPbv+hX7ULM42NXwaPEKG++k5k5+ddwJ9fEDghTwT/EXOsdd8uKP5rncuT
JUIrd99514Vd8NQ7MXGUvL/CUke3Q4X2AHzeR9SKEkGyPPvJgfQefPZ69qhW
mAgDPS4oXm0PfDn9j5YLEuEI40zCfcs9WENsRH/y/p6OW+Apu7UHB8lD5/VZ
iJBc9OrT0aQ9yG3RzRxmJIJOS5BrzaM9EHodYe56mAgPKNaK29/twTqfkJ0+
DRFMw3ePzs7tAWHgFkUA+Tx6G8xky2f6D4TD+uS0pgnQ/Zgz7LXDP+DNeXO7
fIJ8nn0WyNPz+gehvtFHeH4QQIBf5ndA1D94UhDjWNlPgNgmw5im9//ANY8Q
erSFAA4cURUXsPtAJXFB3qiAAMG68aMHivvQ+iFSp/kJAe74JB1kHNuHixam
dQpZBGj4lG3W4LgP3cL8EqPJBJA+VzXLmbIPpdz3xi+HE2CnYpWzbncftkcj
W1qsCcA1ua1lc/gAtDi2bpqYE0CBnsKdwHMATfaSU3VGBDjnzPKKXeUAjkZa
lN7QIc+HRs7Ax+8A3tb41+uKEyDX3usK6/cDeJphY47/i4eCcP8FpdMUKE22
9vhiLB6UGg9vJ7hQoJuZcfcZI/HQSFNC+/McBZIp4j8Qvo6HqaQ5TFIwBVrS
T5MVOo8HkXyX078SKdAz1QX9SHPyffr51OeCWgpkptghNsGGh3Tmo7kcWEpk
krHKLZ46D1ib/pfnpSmR70pJfFnCPLx9GFzdqECJ3t97kC0fNQ/fRF8PBulQ
Is3jua3UQfPAoiLJ2GVHiQyyCEUiZuR6w4EvNCaBEtWrn9hloJ6H6Lw96/VF
SpR8ZLVr5vwcWClVXZJbo0S7d92YRdznQKTpcponiRIJVVmxWzrMwaeZhW/f
aKlQbZHftXt6c/BXYvTUaxEqpPk71jJGYA48X7238LGiQmr8hpyu7bNwojrI
dKSCCpVErHKuCM4CxcAUqr1BjVKCgiJ+PJ2G2F/1BTf+o0bvKvIe+DychsMU
OVRat6mRs8SQHuH2NHAcOfP5/QNqVD15PuJL4DRIJPQZl7+hRh6NAef+qU/D
SZ1my0I8NWLu/95v1zYF958+db5tQ4P6O0kg2fMTJK/4hNrJ0qI3J4WjjZLG
4Yj2T9s8JVpE+e9klcO1cThK4ai4oE6LXp26cTbMbRz07pnio/Rpkbtv5esN
5XFwLZK3e+lMi25KM+Hbh8fg4eBfRaoUWkQ/F7bSLTkGtGpRhPI1WuQfxCZA
7BuFuY1MB8Y6OrRpmhpz5cwwFJ5QvTzRQofebW+JYAyHwS2pN6W8kw41yJcH
TigNww9x2g7bETpkffkK4R79MPTZhug8WaNDWjfF8uuqhqD+rTnmiOwh1LhX
9MdRaAgyAykXLDMPoYuVlnusK4Nwcv7CzfRL9AhJl6sFf+kHo5u4Vwah9Oj1
SWz7uQ/9oMc9/mMzkh5xRrlyeD/rB21DC82z9+jR7x27vNT4fpAtVlzDPadH
4xUu9neM+4HRe93v/Tg92uvzxe139UH33E27EePD6EL+ytesyW9gOZcqJyLC
gMZ7207fseqFbrm5QWdxBsQuoiDrptkLZpc1IrNlGVD1PfcTxpheMKGa/Man
wYCOiLRQWK/0gB5G7hqnFQPalnTmM03rATXn1kb6aAZ0aTo4rH6oG4QGSfZr
8wwoP9MY73CxCxZaPG+1v2ZE8gSdDdnBdhBNG7mQXMmI1Jxc/Cvq28HO1dLe
roYR3VD9E2z5oh3qt7Vkp9oZkUH2iYWayHZIP8I+uDXLiKpkPwyHyLaDTmaD
lJQAE6qi9RvTi2uDexeEvsbFM6FRiTvKFCZfQIF9SFjfjRklVo/kNey3AD4J
H/3Amxk92ko882S5BXIYtggEf2ZEdErgj59sASYavnf3QpnRRJtn9K36FljY
PGM0lMaMSA5nB1ijWqB4fCLo/GdmhGVp9U+hagGhkvmGFBkW9JFWYLWLoxkY
YMNjfI0FWS2tMmEcGiH0hDT9hx0WdKrMXnDYuBHw+mfLUihZkQFH8PPHWo3Q
bNK0o8fKis5WijEbCzfCDZuk+y9kWdHmwVadb2cD/PaWaL3mwYpwBkJRJcv1
0H3PXpr9KysSOWY+1WNSB8ZLTltYezbUfOHYpDV8glyumIEoRzZk5x4p3iH9
CdZ1XpaPn2VDE/7OLbYcnyD/zq7vQ082VKSc3F44Xw07Uk9GDgezoT0LLZxk
UjW88pyoXrnDhuRWHMYqflYB24hbRH0jG5Kd3laPSP8II81elE7y7GjVapQU
IvceVk78ELipyI5o+L1/3xR4D4eaTh3NV2FHrDeVQh4efg/qDdq+eE12dDr6
MNcKoRIyath6QgzZ0e4vvRsGxZVwqrI2664rOxrLPQj1w1bCl2IupbpUdnRs
bVnHTrIC3t/+7IrZYEdX5Yuck2zeQsnJLr6EbXb0QaD8SbT+W3jM1N+/tMuO
PH8lLMYefQu3Un8a1VBxoGc5lslveN6S6/UdBQc2DlRiTJdXOPYGZp4rHdyV
40Av1l7oEH3fAEvbk7wtDw6kdSmD4yxnOfjQXp3q7eVAv7WldRt+vgQB0Y7h
3T4O1FyYZCrR8RJ6NYW/Sn/nQNxsgaU5716CekBrXfQYB6qYUZNrjXsJdAPc
2epEDoS1H7i7JP8SivM/2OdScqKn1O6HMiNLYU5nuzPwKCcS8P6t+0vhBZwL
CX/P9JgTXVJL4k5vfAbqKpPvZXI4kb3a3Gx42TNg+Is+GOVzov9ktjiuPHkG
by7Rfbz1jBNdFS/0Tgl9BnvBaVXr7ziRIC/KC1Z+Bg8vPq8Z7+JEHPXP0geK
i6EjYKDp1T9OVNtu29ibVQSKvnK95h5cSPaigrJVcSFMnhe9+NqLC6lObJ7Q
fVAI9wI42Vj8uBC39pCielwh/Lq0a/01iAu59XFctvUuhKcRXd+tI7hQk46N
mYpkIfCm+084ZHKhFqNqquulBXBQ+3LRvYcLGb5Rfdhdmw9fOeQZr2pxo86o
rh8pTLlwPDDwV7YuN+LcqhXzWM+BsraytmbgRg3LrZOG4zmQHKEcy2bEjbaM
4iJMX+WAOV7930sbbrR9z/S+hkUOdFaf+DPjz41kn2jWFKQ/gVb30wNWudxI
RaHkp4FcNtSURWfLU/MgmZMBdkWpWUBnbi+QSceDzAzf7mqEZ4H1L6lHlAw8
qEZz2nrSOwsIuJ6HQ2w8SCpktsNTJws4H/Gm3xLhQc7ClThTQib4x7y6PajF
gwaiMuJv6mWCoOPQ1YhgHnRscoSfj+4hhFPKWnVP8CBPgSjsSP19wBswjkhO
86BX14PEVl7fB6vbi27/zZH7wzI+5sm5D+Ks5RfVf/OgvectX5LD70O30NGU
/G3y+HI/v5fVug8imsd7r3Dyol39DRO6j+nQHGRjLmzKi8SUn9qTatOAYfyG
SVAlL5JKjHhfPpkC6tdfMKd85EVGbPf9dFpTwINjpL/8Ey+6X6gSPPYyBapM
1FxWG3mRbqKkrmNYCrnM/HPpSg8vSm/2o9bnToGmZK/sG3heZC+U7vLVKpl8
Xlkux/PxoZVD4YYOQ/dg/plYRl4EH8pQ9HgzznsHFmOnSdS3+NCuP9MHfco7
8NezwM0vhg+Zmr6zqF9IBApRMTnlO3xo/azyn6W6RBDIxDQ3Z/KhL8b04mre
iWCVILoy/44Pta786bb7eBtqfYXN5X/xIVz8mWbf8wmQIc1PU23PjwzcmRgj
KePA2VXy+awjP9J7K6sTvRIL4hmqJ1mc+ZHU+QzJjJ+xUHlgkXrOkx/9NV6g
mq6LhcGhaCGWi/yo99LmE+HwWOCMWzx67jY/Sh906OXbjoH06QZv5hp+dIYi
7FX3bjSkPvZp88AIoFvND/6uSv0H169FX47ACSB17oguR4H/wNUmVzRTUgCZ
hOf5dzL9B/IMQ9e75QXQR/HQnz2rt6AjzFBaQ0sA9V+Yf25XewuozognMtkI
IMPjet5OtrfgKu/MyY8xAuiV4btAAY4ocMpw6WUiCCAZq0+4SmwECFUwCPov
CKB1jTzeaIYI+Nn30bdjSQD985H+4fU3HLxYOSjj1wVQm2xRjF9zOATd+aJ6
QCmIbh6mue5zLhyibyk+WhUSRIIV+glHXtyAFwGUXkM2gmi3ajIrWD8Mtg2K
SXn1gsg5sqlAp/waRNTkxXxuEkRqBMuCQznXgELlMfOvz4LozpyB7syda3BI
NEVMpUsQNZilcbf4XAMeUqjp52FBxFXaxqoieg1UX5s/Iq6QLXnAXpN+FYK4
1zWVcULI54j2M9nYKzA7rxfanCCEaDInUqWSQ0Avr7dQ9q4QGlNzWaeODIF8
R6ee9GQhxBkZ5rEcGAKuXZew5x4Iob69GqklixD48Sa/m/qpEPpILcGexhIC
/eH7GMN6IYT+tvz0Tb8EzeyfOtrWhZBOqVX7wdNgKDymLNjjIYwusxQODI8E
QrMlQ8yulzDaomhwe9QYCDNuswsyfsLo6qxyTlBJIOCiH3yKDxJGr97KLtqG
BkLRF9IZFC6MNG0+CNPzB0LxqeasigxhxGPygfOwawCUeNjyPG4TRvUvzlFT
bV6A13FX2X2PiKAKbgGXHCc/WNR1iY5TEkHfgmwNNY39QH7dYO2pqgjCxeXn
zaj6Qakn1/cpLRFU9c8szJvZD0qgIsvJSAT9uT1/AdvkC0WkFVFLNxFkyNz+
IUjOFx4HBiiopYkgPkEP930GH0iwP2dGvSGCLpfU+cSsnYPCU+PO3tsiKF2J
imQ8cw5qTe2D2nZFUEJlRKBg3zn4e8w47S6VKKJgr+hYLjsHzpJyw5xsokjk
yuIvQ/9zoLL111NcThR9F6pqKcV7wmRW9A1DD1HUz1A/tU3wALXxghcJPaIo
xbw5j4/DHdgU/LbLv5G/F003hKN1h8UoBeORAVFUi83YC1lxgyJczZz0D1GE
GbSgo69zAy7/QdFOvCgK8Fciypx2g50IajM6CgyasHh/8XiKK4wyqjeZ8GPI
f691KVosLpAlk/26xwyDYpPZc/kNnGB9zag4xgKDMh8WTUodcYJT9X+faJ3C
IIo3krIneZyAzvbkvWIbDCJJHGR3Es/A1QjShZtnMIiW8zZNdfIZsPl6WvqI
LwZFvn+B1510BKarXE/vRZP79yma9b97GqIak7LMqjGIrtP7+6KAPSxMNGaQ
PmGQTLsRywC9PTjsrqU+r8UgoULjnvZNO5BXd0qkbsSQ6+eQkpl+Oxh5KXmj
5gsG7XZc8ui9awcqmQ1n5QYx6Ngh/ss3KOwAH7gqwvgHg2b5gaJ73QYsBO2L
O8XFUBZL6mAZnTVkzSk0npUUQ6xuHLasJCuYe00/tiglhlxv0Ffd+G0FEaiW
jVVODA3IXuEI+WYFr7xxEbbKYuhJZRfPzGMrYHizajN+TAzl/ZScalC2gjaD
ZIplBzG01SgxdrHXEk4EtZ1lTxRDh2hEWD9MmsHOyC+jz3fEkEsh/+rtL2ZQ
qc+kcv2eGFLnXO4KLjMDSX5r+okUMYRjDMBFRZoB0+cflSUPxVBloIZ7hqgZ
jPAvM6MiMaQ9t3o9zfskBLdyNQY1iCEWXtrrzhSmkCfkKd69IYaWJ4ddswKN
QFtVTsFzSwwFLd9cDTxrBIOm6xrb22JoKb9V28bUCOivx5uJ74kholdWk5GE
EQT3lYZEUGHRzPVdu8kJQ0Dxa43yrFg0qh12us7aEGb+xLokSWORNVfd2IK+
AYi3PH9oeRaLpt/GTRac0oNe+e2icWcsign4ms97Qg9CH5pUXHDFoid9LctZ
KnrQdf7X13gPLFo8RH+4nlsPQtjkDjf4YpFtLJdm2vgJaHApC1e8gkXOmbH5
tgEnwGm70p0tCYss3RlYGTMQpB5plu2vx6KGQ5sp4zTHoUTz7OHoRiwa55Oc
oPh9DBr01wnKzViU4hEdrNN3DJbPSBantWIR4wib8FrOMTCLvyNq3Y1F/OGO
oRc0jwHdTxuub6NYlDb9tMXvki6Ep87+61nHIjaOx7a4NW3wWaPp65DFIR9x
u84GZU1wLTXodZbHoeAcbKO5iCY4eMR2/TmCQ2/7ohx/MWiC0VfqL9zKOPRd
pfS49ZwGSL6kqvHQwKFsa4uYH5kaMO9JUUzSxyHalm1sO6UGePXvhsq44NCS
b7lPzZQaeL79i0lMwSHH5PGjke2qEBBtu3cyDYdOH/cwr/+gCldtK4eZ7uNQ
WkGNFUuxKtzeuJqc+hCHfHWH8RP/qUKZFmk3MweHNlFdjZauKpCaDoaevcQh
FGrbOVyhAqn9TEmf23DIzomPy7JMGR4/DfSL78Ah5tiMw5dyleHplV59ky4c
Mhks1S5MVoYPPKk7Xb04JMuZI6R4URnGnTj9Br7jEEvGaMSqkjJIzfLrz8zi
kMfZzjrmj0qgVHlDpGgeh5i+nUpkKVEC7bgxkjcBh8rmfDqEHimBuVTOm18L
5PatDNc9wpUgxB8jsrqKQ6rvujTvICWI0P2P9G4Nh46LHD2zoawEccwzg1c2
cIjKsS05EKcEWeVP725v45AzJo4hjk4JCm/R+H7awaGtydIQkxVFeGntrRex
h0Nr6xo5+QOKUIn9Inx8H4fuxty9yfFREerXJEkHBziUYZWxl/NYEf4HOcku
zw==
       "]]},
     Annotation[#, "Charting`Private`Tag$14210#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.7583624694778662}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}},
 CellLabel->"Out[49]=",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open  ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1791, 47, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2352, 69, 2801, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5178, 147, 1556, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[6737, 196, 10268, 183, 235, "Output",ExpressionUUID->"7ddecd95-d077-4b74-bbf8-e6285ce1c409"]
}, Open  ]],
Cell[CellGroupData[{
Cell[17042, 384, 1706, 46, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[18751, 432, 716, 11, 33, "Output",ExpressionUUID->"5e4e737a-a194-482f-a372-1fbe2ace2da3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[19504, 448, 906, 25, 54, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[20413, 475, 241, 4, 33, "Output",ExpressionUUID->"3eb7226b-93be-43d1-8fd7-dced997b260b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[20691, 484, 1752, 45, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22446, 531, 317, 6, 33, "Output",ExpressionUUID->"04ad714b-04df-47df-ab06-0b100aeae348"]
}, Open  ]],
Cell[CellGroupData[{
Cell[22800, 542, 1216, 33, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[24019, 577, 11225, 203, 242, "Output",ExpressionUUID->"a2b7c079-b84d-4e78-b408-da71e768420f"]
}, Open  ]]
}
]
*)