h7Project_1.nb 1.5 MB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[   1542992,      28064]
NotebookOptionsPosition[   1523296,      27791]
NotebookOutlinePosition[   1523724,      27808]
CellTagsIndexPosition[   1523681,      27805]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"Mp", "=", "938.272"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mn", "=", "939.565"}], ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"binding", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Esep", "=", "5.49351"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range", "=", "1.6"}], ";"}]}], "Input",
 CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
   3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 
   3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 
   3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
   3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 
   3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
   3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 
   3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, {
   3.87957152299862*^9, 3.8795715245943327`*^9}, 3.880085368016633*^9, {
   3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9, 
   3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9, 
   3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}, {
   3.880087577450821*^9, 3.8800876498236017`*^9}, {3.880095497014333*^9, 
   3.880095545116588*^9}, {3.880535317453936*^9, 3.8805353221622753`*^9}, {
   3.883645073234694*^9, 3.883645082508847*^9}},
 CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"fIn", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"q", " ", "r", " ", 
   RowBox[{"SphericalBesselJ", "[", 
    RowBox[{"ang", ",", 
     RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"fOut", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{
      FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
    FractionBox["1", "2"]], " ", 
   RowBox[{"BesselK", "[", 
    RowBox[{
     RowBox[{"ang", "+", 
      FractionBox["1", "2"]}], ",", 
     RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfInR", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{"fIn", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfIn", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfInR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOutR", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
      FractionBox["1", "2"]], " ", 
     RowBox[{"BesselK", "[", 
      RowBox[{
       RowBox[{"ang", "+", 
        FractionBox["1", "2"]}], ",", 
       RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOut", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfOutR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
 CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
   3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 
   3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
   3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 
   3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 
   3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 
   3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
   3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 
   3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
   3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 
   3.8782888301901093`*^9}},
 CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
       ",", "0"}], "]"}], 
     RowBox[{"dfIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
      "]"}]], "-", 
    FractionBox[
     RowBox[{"fOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
       "0"}], "]"}], 
     RowBox[{"dfOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
    ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "0", ",", "100"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
   3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 
   3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
   3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 
   3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, {
   3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 
   3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, {
   3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 
   3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, {
   3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 
   3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, {
   3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 
   3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, {
   3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 
   3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, {
   3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9, 
   3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, {
   3.880086380215939*^9, 3.8800863803996*^9}, {3.88053533924759*^9, 
   3.880535339536429*^9}},
 CellLabel->"In[14]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVymk4FIoCh/E5Ci2WMZulsY1thkkzGNss/iUlZSpJGoUKMyUZUqZljjok
qUhcTWWp0HYKnXjqUMpSosiNtKgI2VIuSctJTvfD+7xffuYbo/3C1QgEwoFf
/f+M9MmCPJNq0c7CSbdxng5uzGCZRsnyPUov5RJHXHRQrSguZMpKPC72f60d
ctPBfU6MVEN2x4P50K62V6iDB0eeeH+WPvYIGLvs2OOlgwb3xL+HpZ0eXxOn
QmYF6KAxoyNmQDri8Twz1lAjXgc+tzXFfdIpj752zcT2Sh00aTvPnL6eiJR3
Xj6ZIbpYkO5198JyAzixFJ61GkSEz/uuzdU2Q3VzWSVFRoQvK3yUttgSo9kv
ytd2E/FXm3JHgysT00VVKfYyPVw8ELaxewkTxdpNswq36CHPeenyfyRMhBB2
B8yJ0kOqyoA1V8lESku6n26sHjatu/7qWDUTyqcKqvZePVB6BzwDfVi4ZRmf
tuGYHnZ+WkXqD7LFp6d/Oigr9MAn2ZZMT2Bj44/CK79RSWj+TdLQlM5GgMs6
wQd9EkJHD/Vkn2HjZ8xcgw4jEpJaBvVZNWzcMNW7c9vsl0+7tM9XfS7qLXfp
57N/+dksv+zDcxEWHL6tbeEvP5352UZlD57P7EMm8SRI/zmeWxTIAd+rmzvQ
Q0KWeLh2VygHAd/vp83vJ+HuWa8hXxkHORrF53OHSDDw/uo8Ec/BovoflOBR
Eh5krW9ZdIKDgcfMpYQpElj2zGkDTzk4ONLDbjIi433obZntKi5U5oo95/zJ
MCijpf+UcJHIqLKXBJKxUFNe/mQjFy0zxBTqOjJyrjLU9sRy8fvEcHLWJjKW
fT94+mEGF/6GzH0VsWRczfRr3trCBSeJdvh8BhnR9/sdS3wdwPFZ3WvyhIy7
uBLJDnAAhrxX5LeTQayUF1wKdoBZLmGuZQcZpSXfSIXRDlBcFK7i95Ixppo9
pspwwNi5UN0zE2TsjJxX+sdTB1S3vgpYQqdgLzGeHbDeERGVzCJxJAWPUvlh
reGOsB5x0YqUU2CsTshZsc0Rm6d6Wo/soKDqW8rspQmOqLDzvdCVQAGh59SQ
x1lH+Eh/rmzMoiCxvOoi650jsqxbM67eoSBVomE1udUJQc0vb04YUiHiaE0M
xjmhuPVAXJQpFaPqpPr2vU5Y0H5oZNCSisBrxptLjzihdNDOe3weFVYzeFc3
XXFCXMSMlOWLqLhbvonX+N4JR0fHiphxVEwQq71ObOEheJl/35U2Ki733acl
xfIg+J9p88eXVKy/9ahfvpuHIkJ3jctbKuqkzw/5pPLQ3r9yWucHKjKqRpom
L/EgWWXunKRJA3urSUDYIA/Lwg22Owlo2FS/J4Irc0YgM0Dn8J80hAmsxRPR
zjBKVyUU/EVDxLUWXmW8M5ifMkPr/qZBdtpK3eugM+oYa4tNH9CwLfpxQeB5
Z+icO8USvaNht77F24ReZxBVL/OZ5vo4Lm0Mag51gd/7hz/szugj61WcZ6bM
Bd5Od6/FXtTHf1aa2gXKXcD4XD+zrlQfKn7c97cJLli97sbn5Gp95OmanPyc
54Lv9dGzj/Xo4/KNmHb6axdMq+hdW8MyQLWm4crIta5Q22cb4XvHAH0F9j4v
NrjC/5aZeKjBAFpY6Ll4iyv+GLDxO9FmgEBFNM9ijyuOfVi5gDFkgJGBe4Yd
Oa6YCt3fP0U1hHFjbLdPlyvqZE6ffsgNsevIo+22UjfYZ+wosucZIY/ZvVUV
7QZSGolotsAIdXVfwjUUbjDh1TjYLDcCcZIR2J3ihhZZx974zUa4ELVLcOqy
GySdb/yt843wVGytPuujG47fV7cd1ZkDrt6+7ME4d5hp2+fPVKOjYsYzZv1e
d/TOXGyqr0fHAoJ9ZWGSO97UyMdFZnT4j3R0hmS5IyL3fNkbER07m1xY7dfd
0V4+tiFCScetQyOVNWPuSHY7uef5FB1e+xeJz3x3h2qGM7GYaIxmRW6XUo0P
iTCj6Zy5MTqlS9XdSHzIGpNN33saQ23RBXEJl49HUa8+EVKN4a0W8va0nA/K
wUJFFt0E//1Wvn2Xgg/5SfdlKfNMIBnV0lizjw/L+Gvrzy4wQWRXhS3pGB/u
mvi8cLMJ0qpocSklfIwZy3YE3zRB2+5mjR0f+Yg787huYbApQj8J2eKtAgit
vt4RR5hBm0RoaYsTwPpLjUPhdjNUcGq2BykFaJC06BrtNwNl26JKWZoA4SV7
+mQ5ZngwIPZJLBWAnr3z5Jk2M3DehMhujgsQEBP0Y3ipOV7/MNfymBRgS/Ep
XnKQOVLn9JbcUxei8EDnbu9Ic/QGyr48oQmh2dF00+ewOVSt8uQPrkJIj4pL
A5vMQWjYX8hQCqHeaRMpkDBwtd/T+9IBIWLMd3VXbGVAoqExPC9NCC2+96Zt
CQyUeaY6CvOFeNH1ga4oYkBWdbxmTbUQ/ROc15xxBlquF3QdURfhWUX7fJNc
CyifhCeRdURYPueeIvy6BWxHbZinaCJY2Z/rGmuwQJL9legLNiLQiwIS332x
gOulsp/VS0Q4fIR9Y8UaS5zNu0f/clQE3ffnWZlWVshZx362OlsEA62vq6Jg
BZVRZkZZnghDMcqcgiArpGWHasSWiPBxvGsWO9MKu9P+GRluEeHLdKeuHg1r
7Fi28fLSFyJ8zXG3a7e0hnxWQ9jltyLU2inVeZ7WiEjOfiEdE2Fj8Zva+fut
4fc7t7ab7AHl5NOmV2o28BWolPPpHrjFWpKqsLRBVli3ldzUA5Ju52o51wb/
Ao9CgpE=
       "]], LineBox[CompressedData["
1:eJwVj3s4lHkbx+dBZEyOScIma0O9ZEu0m/xueuZkhhB6qq0sOaSyOUdWI0Kx
WAkhVLKS7U0YSTwPSuggM4nKbqOIVFLkbLzz/nFf9/W5Pt/7vq7vGu/f3Hzl
aDRahmz+v+fac7ZEDW4HlmZQU4i/LpW0W7vplowTfqp5UeyjSzG2fmubfb8d
jHTsFOb0dCltaXXv2a/bIfFivM5E+krKNMFqulweh1zWRiY/QYfakbHJ5sMP
ONC7jjxvuKBNPQvWQpvW4SCdiIzd5qVNETvHWScscBBY5QclmWhT3iuqPFVs
cPCW21d56PZyKqJgY8R6Dg4RdzQKZ99oUQVlP9YcDsRBPaLfwIbQpNpe+LQV
BeHgeMH/bPQ6TWqCnv1KHIJDufWwI39Bg+IdncVsT+AwZl2RkFGiQc3+2OLM
SMWh4wDz4K4ZdWp3vftwxd84bOKMOYtC1aiEj4lzkkoc7AtPhk+ZqFE3DepU
tYU4GHTVVY33qVJLBQabf2/E4bWctqsPV5W6jb+Lc+rEQcwW4tT6ZdSKJ5F6
o2Myn7J7a42WCuWweM3C6BsOe20Fxu1iOhVk2WfvOYODycTZ0/FZdKo1EwIa
MSboHaMX9uvQqfBdyjVpmkxov9R3fPEHZeqZJM95gxUTpg5kj3XsU6L+HG+I
OxbJBJ0O+TapuQIVJMr49ZcTTBjP67kxhSlQ/Eofe85JJixR6M7mP5enFH9T
xgyTmGCgWjq2RCBPxYy4CzqzmeCjOx2Z2yNH+fV/iLUQMuHhMwMukY1Rtp26
MR8nmEAP/DvmUY6U1L3xcW/vNBMcVOwKsZ1ScjKV3HpvngmNM+XdNapSstLR
dy5fgQWrVLjLspMWyLWtN6N5y1ngt2WPv/rJeVKjgR1VvokFikdnfhXFz5Lv
ysMjAkJYQFMscDjfN0l6Gkj/LYtgQYYvueF28SR5Pz2R/T5a9k9LMYblO0mW
hOWsDIxngaXrhuriz99Ib7u6O4ezWNBRXqZmrvyN/LdrXhokZEGeb+jqBudx
sns6Pil8lgW50ckrzAzGSPwwY6xGyoItWufdCl58Jqv/ySIm5diQe/Oax6mo
z2Rm81WzSBU2FPS+XKFfP0q6pD54eFyfDRBpFr2f+Yl8tFpFPcaODfqXBWMf
w0bIe6zM3FOn2HAwaiYz3GaQHPSrfxydyAbLCqPq2Y8DpGLSgFzoWTb8kjab
P3h5gOQ8sD7qk8kGRiz95Hu1AfIR+5U9fpkNpv5izrnRN6SYY/xhSTMbDEOX
x7c0SMg3jsJtZzAOuDwyS3LY9oKUP/w6JG4JB3prAy0HGntJ45SlZVHKMp/y
tNPYvpf0e7hHM1CDA2V1WQ6x7B5yhLf4znGNjGd6uoP3dpNf+ZwMhj0HcjdO
iHyKukhsx8s36QIOjG0xiIwyvE+2NXp8H5bAgWM5HuG5vHtkhkWXD5HMAa8s
9ZLyyBbSULVtwDCDA8UdquqXRU0kPK55V1nEAcraotbLpIEU8P4cETfK/AQR
LIm7SdI4nK86CxwQuMTW4hqFqK22ZeM8jQsCrUmpyegllGGCQiUKXIBOYXPO
0xJkqGQ9UcbgAhXecIibWo6g9fvJn/S5UGzgm974+RYS4Isze7dyQaIc+MPl
+QZEsxdixVFcUFfezHJPbEd78KGO3t+54KUx/F8lmw5UzV6ZpXGKC4ZDTR/m
3nWgAOfotfFnuWB5YEfNdfwR6tprx/PLl+V7Ihe4U0/Q5YjWrP80cMHF+/V2
BwMRwiuem9TRHEHSWmrDNuxByTpTTqIkR1jlncYAQwnKamt725ziCCWZCro/
gwQVReVFVaU7Qtjbhvs6XhIkfLXtalaOI8TcJXNiiyRosChh3vMvR0hQqtss
1e9HDqaa11+1OoLV1mkY1HyD5reYLx1cwgNc8b4e88NbdGyPT/NUPA8ijHk3
TD2GkGrRiMQ2mQd3R8YXfw4eQhVvgxfjUnngVXNaZ/MfQ2joiMCWcZ4Hp3j1
K/rvDaH9Jy8KDUt5kP36bYPepmHEL+kp57bxwNbuCW6t8h6ZjvLO5TP4ILcz
5I+O8hHUH2d1EJ3nQyZ7A9f8709o7QrVtGMX+JD3nFlQ3PIJBZYP1V66yAe8
56NI7uUnNCHKU1Eo5QPNbu6nLMVRtNQYq2oT8iFZ+E7j0/5RZNH6GHPr5UN2
e1phEuMziqb7Fx3Uc4INa6aVxszH0PJzF16eueQE3ZvUgg/6f0Gl6uuiHuQ7
Q6Ft6aD4yDhqClnNNLm+A66l2R6xcPqGCg2L9be5u4CpSlu/WdckaoiZpQU8
dQHzK8+XVayeRmt4SvPf73IFnwGpUbTXDKruNEt58cwVJAJRWH/gLEptlVoa
7nMDq2vJ9BtH59C50PeBXn1uwO/wjDvBnkcx2t+pGe3eCY8hARtRXkDXzJZ0
hEl2gs1dh6t+HQtIcQLTbdrvDl8iPZPUfpOivywrYwuH3KFafMbdSWsRmXmX
Oy8c9YBztuNnpH8tolfculseHzxAPGjAOLKcBqIr0eYo1BP+KQyjkjxoMF3l
amv01RPqWS3i3Wk0WLwdUpMYtAumfO8M3W2mAc+SxYz5tguiquS90TQNHuzb
cOhwKAFBpf66B0ww0PQJqL8YTkCdT1P7elMM9gdcWvY0koDnr9K50zKeDNG6
ZRUjyzPe1Gasw8A4eWp2IYGAYXTHlTTHQHCLTM3IJuBLvPIfWlYY/KzkcrOm
jgCuYKswFzBIZJyRG64n4CI9OvaAPQZdGs3uqxoJkE/tXLnWAYMAfauZ2GYC
hC3q925txyDnx5UOnIey+ydGU+0sDCb2SsQv+whYKdHp/8zHAH7VXbvsNQEJ
V6yfVTlhkOLndhz1E3ClsiIv0hkDo+B7+iWDBBznf7ok3YGBa2KZ79FRAm6f
Hsin78SgIKW/tmiMgO++9q9/LOPhjFV00VcCFrpF6enusj75qTespwhQ8egT
a3li8Kj4Pu3QDAHjsXrV3TLWKZW65c8RIN6WH5CzCwPv6zZXHy8QEEgGfSEI
DG7cPDa1uEgAx+Sa86rdGPwPGOM7RQ==
       "]], 
      LineBox[{{35.51863317699764, 11.596563375425081`}, {
       35.5187070404136, -6.351023695319389}}]},
     Annotation[#, "Charting`Private`Tag$4241#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 100}, {-6.351023695319389, 11.596563375425081`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 
   3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 
   3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 
   3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 
   3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 
   3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 
   3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 
   3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 
   3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
   3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, 
   3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}, 
   3.880084507024222*^9, 3.8800853736383677`*^9, 3.8800860259425*^9, {
   3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9, 
   3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9, 
   3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}, {
   3.880087582924012*^9, 3.8800876543745813`*^9}, 3.880094554518929*^9, {
   3.88009550172042*^9, 3.880095549656839*^9}, 3.880450030900723*^9, {
   3.8805353288921747`*^9, 3.880535341553361*^9}, 3.880612842330372*^9, 
   3.880950027979465*^9, 3.881033736935156*^9, 3.8811977022974987`*^9, 
   3.8812013937018147`*^9, 3.881204995602592*^9, 3.881205746877109*^9, 
   3.881297072559223*^9, 3.882090675664824*^9, 3.882090736401456*^9, 
   3.882329813363209*^9, 3.882420972729521*^9, 3.882867302484498*^9, 
   3.88310580593391*^9, 3.883108710657278*^9, 3.8834686984704847`*^9, 
   3.883472605286237*^9, 3.88347925568016*^9, 3.8834809731872*^9, 
   3.8836374523846283`*^9, 3.883637494948988*^9, 3.8836441585217752`*^9, 
   3.883708392503702*^9, 3.883810143515602*^9, 3.884769131612815*^9},
 CellLabel->"Out[14]=",ExpressionUUID->"f6516faf-fd08-47c3-9561-30dd53e915ef"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myU", "=", 
  RowBox[{"U", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       FractionBox[
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", 
          "range", ",", "0"}], "]"}], 
        RowBox[{"dfIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
         "]"}]], "-", 
       FractionBox[
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
           "0"}], "]"}], 
        RowBox[{"dfOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], 
         "]"}]]}], "\[Equal]", "0"}], ",", 
     RowBox[{"{", 
      RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
   3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 
   3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
   3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 
   3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
   3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 
   3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 
   3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, {
   3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9, 
   3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9, 
   3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9, {
   3.880095506086014*^9, 3.880095529013947*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],

Cell[BoxData["49.82150997759732`"], "Output",
 CellChangeTimes->{
  3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 
   3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
   3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
   3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 
   3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
   3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 
   3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, 
   3.879571550250393*^9, 3.880084507942923*^9, 3.88008537507251*^9, 
   3.880085724042804*^9, {3.880085881510993*^9, 3.880085919139512*^9}, 
   3.880086027259701*^9, {3.8800860790573597`*^9, 3.880086104048421*^9}, 
   3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, {
   3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, {
   3.880086385464319*^9, 3.8800865107303*^9}, {3.8800875839389973`*^9, 
   3.880087671218701*^9}, 3.880094555917272*^9, {3.880095507297576*^9, 
   3.88009555113643*^9}, 3.880450032982963*^9, 3.880535343801962*^9, 
   3.880612844013884*^9, 3.8809500300512943`*^9, 3.8810337399875727`*^9, 
   3.881197703701296*^9, 3.8812013954517117`*^9, 3.881204996400365*^9, 
   3.881205750095643*^9, 3.8812970735405416`*^9, 3.882090676633381*^9, 
   3.88209073737057*^9, 3.882329815144743*^9, 3.882420973479946*^9, 
   3.8828673212577467`*^9, 3.883105806840324*^9, 3.883468700460279*^9, 
   3.883472606105728*^9, 3.8834792569402533`*^9, 3.883480975539918*^9, 
   3.8836374617939367`*^9, 3.883644159544923*^9, 3.883708393705941*^9, 
   3.883810144934224*^9, 3.884769133085472*^9},
 CellLabel->"Out[15]=",ExpressionUUID->"51ffc0e8-d7b3-4a69-8b95-a2da95048c0c"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", 
   RowBox[{"fOut", "[", 
    RowBox[{
     FractionBox[
      SqrtBox[
       RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], 
    "]"}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.8800859130397387`*^9, 3.88008591646206*^9}},
 CellLabel->"In[70]:=",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myCoeff", "=", 
  RowBox[{"coeff", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"fIn", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", 
         "range", ",", "0"}], "]"}], "-", 
       RowBox[{"coeff", " ", "*", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
           "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", 
     RowBox[{"{", 
      RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
   3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
   3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9, 
   3.8800859424236307`*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],

Cell[BoxData["1.8472893558629866`"], "Output",
 CellChangeTimes->{
  3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9, 
   3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9, 
   3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9}, 
   3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9, 
   3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9, 
   3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9}, 
   3.880094557765129*^9, {3.880095510469705*^9, 3.880095552895302*^9}, 
   3.88045003501324*^9, 3.8805353471630363`*^9, 3.880612846206691*^9, 
   3.880950033016953*^9, 3.881033742237726*^9, 3.881197705328814*^9, 
   3.88120139709656*^9, 3.881204997887946*^9, 3.8812057515020113`*^9, 
   3.881297075361709*^9, {3.882090678142344*^9, 3.882090681139223*^9}, 
   3.882090738766762*^9, 3.882329817009076*^9, 3.882420975683346*^9, 
   3.8828673235243196`*^9, 3.883105808436598*^9, 3.883468702242282*^9, 
   3.883472608076454*^9, 3.883479259019322*^9, 3.8834809778288403`*^9, 
   3.883637636267747*^9, 3.88364416115516*^9, 3.8837083958289337`*^9, 
   3.883810147008175*^9, 3.884769134720018*^9},
 CellLabel->"Out[16]=",ExpressionUUID->"9f221de9-9a31-4103-ad87-9b04df8cd205"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myNorm", "=", 
  RowBox[{"A", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"Integrate", "[", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"fIn", "[", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", 
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", 
             "r", ",", "0"}], "]"}], "2"], ",", " ", 
          RowBox[{"{", 
           RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"myCoeff", "*", "A"}], ")"}], "2"], " ", 
        RowBox[{"Integrate", "[", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"fOut", "[", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
             "0"}], "]"}], "2"], ",", " ", 
          RowBox[{"{", 
           RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], 
      "\[Equal]", "1"}], ",", " ", 
     RowBox[{"{", 
      RowBox[{"A", ",", "0.5"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 
   3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
   3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 
   3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 
   3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 
   3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
   3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9, 
   3.8800859833274717`*^9}, {3.883637751241373*^9, 3.883637752391686*^9}, {
   3.883637811004653*^9, 3.883637814302787*^9}},
 CellLabel->"In[17]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],

Cell[BoxData["0.7088388229648961`"], "Output",
 CellChangeTimes->{
  3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
   3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9, 
   3.880084514207199*^9, {3.880085965594881*^9, 3.880085985349716*^9}, {
   3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9, 
   3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9}, 
   3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}, {
   3.880087588111286*^9, 3.88008767445716*^9}, 3.880094560272614*^9, {
   3.8800955121968946`*^9, 3.8800955547288637`*^9}, 3.880450039503292*^9, 
   3.880535349939876*^9, 3.880612851865893*^9, 3.880950035526105*^9, 
   3.8810337446842613`*^9, 3.881197707984967*^9, 3.8812013995845327`*^9, 
   3.881204999998212*^9, 3.881205753650358*^9, 3.881297078072654*^9, 
   3.882090683114286*^9, 3.8820907493071747`*^9, 3.882329819263648*^9, 
   3.882421007609671*^9, 3.882867325941373*^9, 3.883105810961122*^9, 
   3.883468704658401*^9, 3.883472610201914*^9, 3.883479261565939*^9, 
   3.8834809805222692`*^9, 3.8836378190031*^9, 3.8836441641011047`*^9, 
   3.88370839836441*^9, 3.883810150001431*^9, 3.884769137781955*^9},
 CellLabel->"Out[17]=",ExpressionUUID->"cd99cf10-3007-4621-9734-a1aac73ac167"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Piecewise", "[", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"myNorm", " ", 
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
            ",", "0"}], "]"}]}], ",", 
        RowBox[{"r", "<", "range"}]}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"myNorm", " ", "myCoeff", " ", 
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}]}], ",", 
        RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
   3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, 
   3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9}, 
   3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}, {
   3.883637849552927*^9, 3.883637864492828*^9}},
 CellLabel->"In[18]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$6395#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.7088375225314254}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, 
   3.879571608345409*^9, 3.880084516269706*^9, 3.880086015267064*^9, {
   3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9, 
   3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9}, 
   3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}, {
   3.880087591163252*^9, 3.880087675790471*^9}, 3.88009456141636*^9, {
   3.880095513424275*^9, 3.880095556137561*^9}, 3.88045004068221*^9, 
   3.880535351094419*^9, 3.8806128530849047`*^9, 3.880950036573413*^9, 
   3.881033746188324*^9, 3.881197709406109*^9, 3.881201401065322*^9, 
   3.881205006577002*^9, 3.8812057546359453`*^9, 3.8812970790113373`*^9, 
   3.882090684242483*^9, 3.8820907505636683`*^9, 3.882329820155367*^9, 
   3.882421008343701*^9, 3.882867333813284*^9, 3.883105812233966*^9, 
   3.883468706133246*^9, 3.883472611067889*^9, 3.8834792628799133`*^9, 
   3.883480982442588*^9, {3.883637822666875*^9, 3.8836378656838903`*^9}, 
   3.8836441657272778`*^9, 3.883708402250855*^9, 3.883810152138495*^9, 
   3.8847691387752037`*^9},
 CellLabel->"Out[18]=",ExpressionUUID->"a9008b86-55c3-4fc2-adcd-f243b8d12076"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
   "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f3"}], 
   " ", "==", " ", 
   RowBox[{"1.561", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8800865535980377`*^9, 3.8800865699855547`*^9}, {
  3.880087570285039*^9, 
  3.880087570627646*^9}},ExpressionUUID->"700162e1-a626-4c8d-a329-\
bbb787d8421f"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  FractionBox["2", "3"], 
  RowBox[{"Sqrt", "[", 
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox["myNorm", "2"], 
       SuperscriptBox[
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", 
          ",", "0"}], "]"}], "2"], 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+", 
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox["myNorm", "2"], " ", 
       SuperscriptBox["myCoeff", "2"], " ", 
       SuperscriptBox[
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
          "0"}], "]"}], "2"], 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.880095066018161*^9, 3.8800950760469503`*^9}, {
  3.880095479252779*^9, 3.880095482250162*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],

Cell[BoxData["1.5627722778696047`"], "Output",
 CellChangeTimes->{
  3.880095484411269*^9, {3.8800955177242403`*^9, 3.8800955604897947`*^9}, 
   3.880450045304723*^9, 3.880535359224338*^9, 3.880612865473521*^9, 
   3.8809500412555923`*^9, 3.88103375582927*^9, 3.881197712175845*^9, 
   3.88120140445477*^9, 3.8812050093948936`*^9, 3.881205757259108*^9, 
   3.881297081513501*^9, 3.882090687117221*^9, 3.8820907525847673`*^9, 
   3.882329822535872*^9, 3.882421010397458*^9, 3.882867336399544*^9, 
   3.8831058147939863`*^9, 3.883468708544591*^9, 3.883472613558511*^9, 
   3.883479265279602*^9, 3.88348098966891*^9, 3.8836379760830593`*^9, 
   3.883644168601171*^9, 3.88370843401479*^9, 3.8838101548530397`*^9, 
   3.884769141109425*^9},
 CellLabel->"Out[19]=",ExpressionUUID->"7d02abab-549e-4f97-9a0a-462a6f073f05"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiR", "[", "r_", "]"}], ":=", 
  RowBox[{"Piecewise", "[", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm", " ", 
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", 
          ",", "0"}], "]"}]}], ",", 
       RowBox[{"r", "<", "range"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm", " ", "myCoeff", " ", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
          "0"}], "]"}]}], ",", 
       RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.880450259849861*^9, 3.88045026245728*^9}, {
  3.880450342004263*^9, 3.880450428007826*^9}, {3.8804505083503447`*^9, 
  3.88045054654538*^9}, {3.8804509533799887`*^9, 3.880450954981093*^9}},
 CellLabel->"In[20]:=",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiR", "[", "r", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.880450434981985*^9, 3.880450437069388*^9}, {
   3.880450467622654*^9, 3.880450475414855*^9}, 3.880450957309256*^9},
 CellLabel->"In[21]:=",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$8177#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.7088375225314254}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.880450477448555*^9, {3.8804505437974977`*^9, 3.880450549561881*^9}, 
   3.880450904266193*^9, 3.880450960572151*^9, 3.8805353762901163`*^9, 
   3.880613017272277*^9, 3.8810337608134823`*^9, 3.881197746915187*^9, 
   3.881201407868651*^9, 3.882090691817799*^9, 3.8820907561724977`*^9, 
   3.882329825014078*^9, 3.882421014122815*^9, 3.882867339202798*^9, 
   3.8831058180657253`*^9, 3.883479269905888*^9, 3.883708437838564*^9, 
   3.883709942612533*^9, 3.884769144379784*^9},
 CellLabel->"Out[21]=",ExpressionUUID->"3b018eb1-1fe2-415c-8194-4907f59b8e53"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0441\:0442\:0440\:043e\:044e", " ", 
    "\:0444\:0443\:0443\:043d\:043a\:0446\:0438\:044e", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"funcFermi", "[", 
      RowBox[{"x_", ",", "par_"}], "]"}], ":=", " ", 
     FractionBox["1", 
      RowBox[{
       RowBox[{"Exp", "[", 
        FractionBox[
         RowBox[{"par", "-", "x"}], "0.03"], "]"}], "+", "1"}]]}], ";"}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"funcFermi", "[", 
      RowBox[{"x", ",", "2"}], "]"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "3"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883708607441079*^9, 3.8837086099331303`*^9}, {
   3.8837087412116117`*^9, 3.883708774272184*^9}, 3.8837088179574213`*^9, {
   3.883709003426889*^9, 3.8837090138726997`*^9}, {3.8837090905220137`*^9, 
   3.883709132535977*^9}, {3.88370917863596*^9, 3.8837091884886093`*^9}, {
   3.88370922072269*^9, 3.883709296948432*^9}, {3.883709583092265*^9, 
   3.883709583170985*^9}, {3.883709634187237*^9, 3.883709670147719*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"a7903930-b537-4744-afa4-508c0f6775c1"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwt13k8VO/bB/BZyFb2pSJJCKlEKsw51wkhCi0klCxJC0URoYQkW4okW5ZK
UkSWyNJiLbKEkC1LSRgzzBgMnjPf3/PXzPs159zL57ruw9nkeOnIGRKBQOgg
EwicT5ape4rFpcvohSupzrXYhHao8xblZiUz8NCbJPPLT2o3TY2cj1I6BdeH
vr85zD+lPf1WP/Kikjtc+dqR/22aqh0kOSNjp3QDgh93aPEI0rW/1pmMHlWK
BoUlAbqF2Jz2pTTvBnOlVIhPPzD6sYuk8zEy8v0hpVxY87I8dFhhnQ73Kk+e
v+er4NWdfArT2UTnwE2H20VWdfD1wlm51cI+OiW+Z/qetX4DGXOsW33dM51u
mws7PK99B0WvF4yF1g4dEaMol4/YD4gwG57Z95isK9x+pmCP7U9wUblIufh5
l+5muYvZtx0H4HzzMK+A8hndvX1uX/c9+AVJfi5+5e8e6H5cCDzYnjQMWeSE
V6Hhn3Vdq+rrK4NGgXyaoV1RTNN97JS1XuL0H3ha39K9YViWss36F3P5zF+g
3tmssv+zOaV/xvwbduAfjEdP/Fs66U+hD6xTl7SchH1lRu5Tv15T5Jzmdm08
OQk0A+Xu7YO5FPPf7drKZyaBvlUubOh3HuXVxD19Ha9J8G7+0OnIk09xmec+
furhJLTS/J/5ur6l9IjSA553TILA+tfsLq1Sipla/9MpiSmo1e1JfWr/gfJx
/5evu62mYM/z1J21BjWUXfbF9BvxU2C77dv58LSvlBc+GevqOqfAcsyg0ofW
SnG8vXbbP+YU+HjlWhlcaafIPIjGhKSoQOv7WvTe7AelM5XrmOYeKmg6H9nj
EtNDicm5fvb4cSo82z13PMKwn1JOerpg4UUFZ9fDcnPrflHGTjRFmcRSQfpu
3nTf4WGKeD5TziCfCl/asiIufR+lAK9cIdJMhSoH+f06L8Yo5+0PGO2ZpMJf
Xotavp//KKa22m4J3NPA/p6yR9iHSpHMJ7dJrpmGjcJHwo6UTlN+rfq2+6H4
NHAnN58Or6VRrhU4Eh5snoZFTzmBdvFZih7vtjPCW6dBILycb601g7L61FxD
tMY0NBiZjublMSk/3n7cvkZnGjy6gruGZFiUDL7I2Ih907BzY0P+6vR5ipu9
FYvvwDQUPjor+wRZpOwtkjsZZjENb3yz+DfPsinfThcp3bafhsaEyxItNgTk
cfHNCPLZadAn54ZJOhIR59Um07fcpyFlr7H8P18SssNR3JLgPQ2blWWcrDPJ
yEJJf+mNgGnwCleI9h3gQmrWZMsuhUzDARMo9tuxColxuhLsFzkNV5/97U2N
40GUhHgP+SRNw26nD6tzM/kRjbbFlYTMaVD+YfyB5L0agYfUgtKcaQjLeVSq
4yqI1HqfW/0lbxr8RJvGWW5CyEHr4TM9b6fB9tBbST1UGLGW/rF28f00JDkR
Kx/biCD9bAtPgQ/TwJvp4bRIFUGc+798la6eBqfsit+O4aKIR3rlDUrjNKjZ
fJikfRNDwrc8HwnonYazN9UJKsmSiDCfHBo9OA0fmkCx4ZQUEj/++FHqyDSc
v5mZMrtlLZL5OsqkamIaZt+XfWz5tg5RvcfztHl6GmreZXfOvVqPvLl8a2lg
dhrC3SI1Hj2QRso1vd4QlqbBmlkpree1AdGToPKJEGnQHPm6td1TFqlnujpt
4qaBoPPz/VM+G5GOUjtJvTU0kKiIK51qlkOmwMA/eAMNpAu6hV+qb0aubqrs
iN1EgxF/q+Xujs3IAmnvjqeKNHBJ6PzxKFAB4andOlS9jQZha0pVbvxRRKKz
nul27KQBwXW/vMBTJUT87saHo1o0SHp0aDPVZQsid1DMeBVKg+hC/9MJBBXk
+baodEk9GuRZFxxt+aGCqAnxLCoZ0oCrIq3PoFgV0W5beG1kRoPAwpr5/rtq
yBHrIbG7p2hwfMWp6tEBdaRL287tsSMNbg532H7tUEdOSXfWZrvQIM5LrbXI
ZSdyob/B94s7DYz63zGOPNJA6FX633s8aaAYFkmz2aOJ+KRXqP3zpkGrmdO1
6l5NJMQ5f0DgJg1WZCeY3nu1EH7DrdoywTRY3/3u0CaqFhKz5dkDtTs00Ckk
ck3n7EZSxhP2H7pHg+6PJa3Ne/cixZcDc6Kf4B4WKmt/pouEv58uPJFJAxGV
/l3vgimI/SqHSoUsGqhGNXjHuCIIb/K+1rJcGjDsh08RjAHp/Z3fc7uABlNW
xwNCN2FI/k75EYtiGvx58EqDnYEhNnWkud8VNIjiWlbQKtiHbBe9Qij4SAN5
KyxSB9NDyCeH+QJq8PrGZlS9bdNDXtE/y4g10eC+SuSj+9wGyPKG23rQSwPn
ZLKcWpYh0ubKMOUfpEGTZu/LeTsjJOvtGcuOYRpEumw2ur7WGLE4YOh64R8N
evMd1h9KP4AoxBV77KbSYPBsk+KKuwky36/kR5yhQXAujaSgb4pkXOWJfrRA
gyXfF+3xKwcR76prjxyXaVDnX6V1eOwQYso/lraNRIcjpgJ2x7vMkNkn9W8/
89Eh+ObPoMdnLZD9X+92U9fS4Qn3T9nge0eQ9ZILQ2UydJCVcEjxUTiKTJ0+
P3Fbjg6XmzfFr6s8isQzTVaklengQ7q3mrFyDDm/7z3vn610yDr5XvDGC0sE
IreKFuygQ3bhgSxzKytkbNNqReM9dOgvHIq89uk4Un7Rf7uYLh3W7OV/o3TL
GrlfMrGnH6VDvLPv1pb9JxCdQ00mVw3psBj/LPb7Lxsk0if6cpolHba1EyYp
508hpz8v+144QYdbf+o+WZ6yR7QELwXvPkmHp8+Gmvi3nUb6M83jG53psOJ+
mflhlwNSMFX15JErHahXCu/8qHRA7mirZztepMPA1rxjeoccEfVm4XLWFTok
rbXKT7vmhHCtv1Xz+Rq+X59E/j4xZ6TbmfYt2g/PL/aOwUqhMxK00PpLIZgO
+f2CbbGrXJB2xVieww/oMGL/59vjf67IgS1r97rF4/m1ld9JqD6HVCqnuN5N
pIOUUXAV6+l5JHtrVsPHDDpw64lQB/0vIrLb1Bb6ntOB3n5XdPqqGxK3PV91
4SUdAnTWaF7yckdu7HwfofGWDg6UsVFP48vIjAZWblZCh13nK0Z0Oy8jrrtq
Js6/p8Ol9syAH64eyNE9zYcyP9MhdevHkR0pnogyMiwk3k6H4X0R0jZGXkgK
6oqpd9EhzKp7bybBGxHFJi8f7KVDY8PDd9ofvJElvbnWkBE6bK14D2pHfRBP
A39S+hgd2Lt2Fywq+SJj+4maFRP49aYWN1aI15E2Y4E4xiy+P49Pu9K/+SFG
JjHVIvN0oEiThD9/8EfKTSUY25boYHbD7+Cm9wFIltlGKxfuGZAcH95V2HAT
8T+mufaHxAzIKBaIW24NQmiW74xn1s1AUENCc3hDEOJyHPEVkp0B4au3VeTd
gpHDNkY9RkozoPjT7KNGTQhSa9vI76w6A+blYZGC128jlJOHdQO3478HVmwT
0QpFlE7bJr/bPQNRgS68TpV3kCSHwcZ2nRkQy58Zl48KQ4SdzixNozMgV0OX
+Od4F1k8c+mUitEMEKLLTCIUIpCWC8Fyicdn4Kr6OtJ+nnvIfjfew8W2MxC7
atX7Uv4YpMw96lab/QxkCB0zOBcfgzzzeDTE7zoDxIarrzTK7yPrr8iIbbk4
A5ERQ/lpVg+QmKvp+vqXZ4A3mXHBnPkAuX4t56mfzwxM2xUFbjGMQ6g+6h2P
/Gfg7+/pNfnMOMT5ehF3YeAMSNgEtOi+foiYB1S5TITNwDa+jUNbtj1CFIK/
K598PAO3a5tKb99IRKwLyDtdUmZAus25e+Z0EhL5S1P7UvoMvO24LE8zSUYY
EHfgVvYMzFJyP6fsTkVUL1UfDn89A3k+q3rb9z5BTqXOnojNn4F+9W8OHZvS
kFr2sfPPSmeA3JYktl0nHVnYetszt2IG/rX17D3XlI7ssC26XvJxBiqNY7Kj
z2QgCaUSEQ0NM1B4Y+LnvmeZyDnvzpzJ7hkQSbhUQTn7HEl9tqqQ2TcD97oe
nShUykLa2neXr/zCx/v2wCJmIgvR0XzUKDI+A2kuac8OR2Yj7o517eunZsBv
+ktTtstLJPP+XO9m+gzIX8vmOmicg6yePj6ptTADGqXqw+fkXyPYxjAGujwD
q1cTPV2lc5GrZu+WjEiz4DDBIpbI5CF9r9YK2vDPwtGzTcfzk98guee6t99Y
Pwt2C6tzs2kFyFAC3547srPA97K7NSb2LSJVrw0x8rPwU+jYswGdQiRQKdE8
Q3UWTAx0X7knFiGFll+O52yfhRd/9KaFjhYjYyEL9oUaszAat7Dxp0gJcnjY
5nKtziwYFLeVfc54h4SKRvg0o7OwTH/Zae5VipTtex/YpTcLf0I0Tg2blSHy
adL3x01moX47c1F0bTkya9ebL2g7Cw9GtQ+3c31AlCNXl0nZz8JjN53091Ef
ELv3lE9yTrPA/O05v0v6I1KzLqVN48IsrGxLMvMz+IQsGDf16F6aBR4dE/vE
wU/Idp+lIYMrs2DMdaKYeuszEt95csbKbxa8tqO/pturkS/c0Yv2N2chrvW4
2UJoDbKyq5J8LngWzp/ZYcZAaxHXWFlxv4hZ2Kq8dizyYx2ibTGw60nSLKi/
OzaMSn1Fyse4Jx2fzEIU7FAiUL8i6C21Z0qZs5D+9VzxtaZGxKDAVyL35Sw8
+flP1+HJN6TWJK3JI3cWPIMQRf3YZuTAcO1trYJZQEW88k4atSBm4uLM8tJZ
uBm0sjXfrBVpeaWTG1gxC6pNo613ulqRo/sdXAw+zoKRwgPdFy5tiLV3bufX
+lkoiNXhtoj5jjh2GZf0/JiFt4cpNykbOpGRy5cupf6chU0pvadsmzqRs3zx
WxwHZuH5UOrIbNAP5KLO8KO/v/H95KU1GK10IVNtfBavx2dhji4QaVfbjXhc
UOf1mJqF99jvlozYHsQ7OcCHxcDzc0kuCd/Xi7B2PVUvn5+FA8eePI+V70P8
mr6M3VzC6z+182syfz8SuCx1goebASLVud4x0wNIxOkCbUlxBjRtcL+gv2YI
EZzvonVLMSBw4UsTT8oQEnN/JTtFmgHP1Jy37t85jMR/OrhecTMDZKYULpWd
HUHW2l5pG1NiwNPaT1MU/lEkaeZx+CtVBkS6eec25Y8iaQp/FjQ1GDAjpISU
C/9B5CvWvJ3TYgCfgKm9e/0f5JnlrgvvtRlwhrXe/8ftMeRl6K2fevsYIGic
tyFUdBwpHJMuP2zBgALbPeI5PpPI7lt6VyWOMeDoh599Dk5TSOm6c2rdxxnQ
upVv5owlFak0KU4+bc+A5o97d8u9mEaw4d5jCk4M/H3j4aF6NRry2Y+8ZsyF
AR3GHcMxRTSk/pVFwCV3BqiulRDgbacjJvuvaWl64k8ptZcei+dmkKa+lEmm
FwM8UrpEH3PNIm2C/07eCGDA1Ke/9a7GDKTv8m00KpIBJQ/cFYoEWQjhw4cN
GTEM6L3agRT1sxAFITa7OI4BhlFRRe+L5pHzrz3fDyYz4PnaqqoW30Ukmv06
kZHGAMnHeVz2Z9lIvulfX/5nDOg+RFOfsVtCWH/t9+56zYAwKiK032EFkdZO
kjqQzwCywPmDJnsJKBrWyTxZxIDXk0RaaDUBva10qOhOBQPu1eRnnPpHREWd
dDR+NuHza7x6pnmNC91d4CUy3cqA0Nd7ixWVudETxPxprk4GhKtrPhMZ4EbT
nmzJ297PAJd60fAsex7085RjtP4QA2wC32yqVOFFfyOpbta/GZBR3zuftcCL
busVVwuaYsApj9mrw/n8qMVWC4FHdAaojW9RyU8QQK9ejxjPYTLAM/a2k8md
1WjZWlJ2xzID3rwKN6T6C6LGllRFFSEmJH7Z3bLgKoJeeKrKjYoxoUJKufHW
iggaPXNm5IgUE1qe8yCySaJox/3eDP+NTDhsIv3VeEgMZQ1KBd3fzIRtxUuH
NaPFURn1ow7PtzBhzZ39uhMggTp+a9jYsoMJlGiJwtgiSTR0A/fKiCYTri39
+vbPVwrNvoj1z+9hwnXkYuCowVp0mr8keTPGhO87qiaeUtehAUZP112zYAJx
lTNT8skGNC1+gBVxjAkjU62g8UQWrR5d35VmzYTg5cD2mayNKH/I/fgvp5lQ
p5BabTouh27/3ug14MwEfS91zwj/TehheV7LWVcm7LnxJv69mDya8OGGmKwH
E2rkBu88PrwZfS9URtfwYkJWY9OGdNZmtP8Uo9XIlwlnum91HnymgCouXYjx
uMUEAc0uN0thJbRA+8Samvv4/kL9mv5pqKAK9PDkuIdMYCuz+2SWVdCHL8u3
Oj9mQrVS/KnCZlXUR1rOhJzOhHVl3pW/Q9XQ8e+Hu9ueMuHCjMOnyYvbUNvI
YNeMF0wIjLNI1LTZjqJLv0P3vWGC2oagrLeK6uiborWSIoVMUEl2bPyTpY5u
cjd5NliC53P46A+t7TtRroHXn29WMaG7O5T21EgD/frhKqHyGxMSSn+8eJO/
C6X4Pr8X1caE3uPnMqKttdDcnV2yJzuZwJ9ep5DLtRt9kKGLsPuYUFsfm2bn
tgflsnVr/PqLCRLW184ZqO5FvcSe2CaN4nlJ0i5tnNyLWoeQrutMMqF5387M
y7d10C+UXXz8NLw+3zbamNrqorqMMwnds0woOVDsN7SHgsq6NBT7sJlwRVCX
JbcKRUeMYmaKBeZg/9MB/SfLGGpF+BQUKjQHm8edIl/c2YfWvZsRsRKbA3P1
rd9JEnroS5Xj6oz1c3DvVdar3Yg+KjMUVlUtOwcX757dfqJLH41KLDOLk5+D
O0Jeqad8DNDLArJumqr4/UKf5fPr9qNDn83ZpO1zENHCqLO4Zoge9b8V0bZz
DlyO5t33UTNCd0+OZHtoz0GkWLGL+AtjdOlbzu884zngqU+UKP1rirrf6fO6
eXAOKD2pbxq/HEQHQYjb3GIOZO/3a84VHEKr33hunjo+B5WJ0uevPTZHd597
WlBhOwf0+Oor8gct0KxNnfui7OeANF1/M7LZAg1/oH1a7ewcJBgaz0wMHUbZ
Jheoi+fnwC9aUGXLlSOoGznlxlf3Odi07sKJCZ6jqMVVQsp57zko2ilgnQPH
UEmruu4Xt+dAfMwNNZ6wQg0pT7Ezd+dARvRGzaX04+g1+VtZm6LmgOl0aXy7
nTXaNaXjlRg3B3WiJA2l4RMoX4dUr1UCnv/vuJ6yPBtU5/2snljyHIwrtuql
BdmiSXdyhSMz5+D6eN5NJcpJtNEt4ppx1hxYfMVad2w+hbKPuvZz5czBKm5R
ho2IPXpKTv5VQMEc9DW609m3TqNypQ+NLn2cA6mttqnXnzqiFk88c7fWzEG/
mKnptz1O6K3b5hJj9XMwtSpkX26zEzp0mG/4dMsc2O8WHc9ccwYV2/v7wIb2
OciLc/7JVXgGNZD9/Kb7xxz+vl//LMzeBX027n/jyMAcHPyo4phcexbtbDkx
KjiM57FK1exWkCu6qmT3wa+/50C3yV5a0+Ac6ho8vc5gag6qS7fIFnefR1Vl
nIu0lvB6DWkOJhxxR21I+2ToBBbwpKbk6ehdQiPGNgTncrHgXMXDjekyl9GJ
wh8WW1azwKFoadOejR7ohqTCkmEhFvyciYkOfe6Bmt26L5smxgJjofhDZA1P
NO+Q6cRaaRbMDG5q47O6gg5qKh/tkGWBzD+ft11TV1Dh9dxl9+VZcPQAssM+
8irq+bvyDr8qC/xdVHRUOr3QXTc1NrP3suCvsjNNKNsHPXNGKPwdhQXbVktf
oV/wReNNJ6avYiwIglTx7l3X0Tmp55WTRiy4xbpv69nthyovBym+NMXXe009
PKzIH7UesY90MWfBC5fbpPMJAWjZm3U2A1YsiL2igZy9chMdj2d+SLJhwcvN
U2/ntQJR6YDvW6xPsWDTQvmwRHEg6n8gitFyhgVi/Yl1Jp9uoTBEuP/pKgsi
1IY37hIMQYVv0mVbfPD9OdywOlUWgg5Jj7zq82dBSuOaALOLt9EQy7p6VggL
ridfCTQeCkWt6O+sVt1lQfZfu9Cy53fQLfdejohFsYCX7PTvk0cY+qU+irDj
IQvOJFqOX5cJR5PP3IymPGbBjtbxk+nscNSN5CFjksKCh5d4uQ+ORKDClGN7
zzxjAersqq7xNQq1ylt/OamIBb6Cw5HuKzGo8sHVyy9K8fneb5Q5cf8+Oj+2
FFFcwYLLeT2GysoP0GT5X1mtNSxYzCH/3HAmFnWratMaaMD7oVQiMlkgDkXt
qj9PNLHA805I4JuSOPTXw6wBnk4WWK7yDzmxKR4t0HjsJtHDgjVaI2ZHB+LR
kObwRfl+FtgbeU/lZD5ClfjcpdDfLDiSGLXPCnuMXvTfZX6VyYLhvkAfYksy
iq5T6ru1wII3bVF61nUpqFCx1IV7yyzYuINqvlCbihZQF0JfrpoHittw/sbL
aWhw5IT4O/556LmowENZSkOPqfRn1AjOw0FherHYvXR0zvFj5aDkPDQv0pYS
Pmag9SsFB6fWz8Oj11dnkxwz0cTkpz2LsvNAnP4nzc33FKV03mFKbpkHJf+G
6WqXZ2jQAbPth/bMw5TvI2uPCy/QY7+h3EZ3HrTexTiJItmoYvBOE1eYh/0u
ZfNlEi/R+nJxl2CjeXj8K3ebZF8Omnhi1WyM6TwwTP+mGjW+Qi8w526lms/D
H/HQMzc+v0YF1X+mlB6fh/S7oa9Evuahg42NW+ts5+EqO8ljxe0Nmn+usrTd
Hl9vxvogvsU36LHM9A7q2XlYH1Z31XtzAfpY0nWNks880Asv8VoWFKLvZCxM
p/zm4W7qUDH9eBHaJb/3bvHNeSCFRb+sIBWja3fwchvdmYdcyv3TQa4l6F6t
aT2hiHmQpPj9bdv8Dj2u2xX4I3oenONbTiyPvEPjjV6wz8bPg8/JjpYM3zK0
+FCMjnriPFBDHrADDr1HO4/6+LBS5sHuyFMP1pZyVOK08WzYs3nQKWroTKNV
oHE+Y/+yC+dhaIT/0OLUB7TwRouK57t5GGCaK/p7f0S/h7w7q1M+D+fNC0y1
SZ9Q0fthw18+z8PYuygFmtJnVOPR5U2xdfNgfO5sp8aHz+iRFGt726/z0Pvt
+G/0VDV6P1v55782/PeRvhcW2TXomzzhdYWd87Bzn+SL51a1aEsRy8q/B8//
lELBWb46VPhTfdvqITyPh1tyu2/Wo9E9rl+20eYh4ELgqtiir2juoAUvc3Ye
6oU26pnFNqJNv/caVrLm4QZF8evctSZ09QzvJzPCArTd/mvNsGpG1eanVyS5
FqCOdLqmX7kFPYi/Mw3wLIDg9DZs+8sWNEIgu/SS0AJ45od+WVPair4UuT+3
R2wB+C71RQ4YtqFfpHy1CFIL4P0iRUmuuw3lVziQHyO7ALYqzAF/gXY0jPL3
Rf62BWDXb7nWlNOJvtBr/e27cwEu+Ct/3uPwA60zLlXQ01oA7Wr3ykMyXegq
y7tpbZQFKNrTl6v5tBtVsvXoT8QWIOz3hnxHjx7U0OGEjJPBApgfHopdNPiJ
3nZTSZgxXQB7Jn+/NqEPfXpFpPO9+QLwKF6uNRnrQ6t958VCji7AhKRbTvKP
fpQrtOGeuO0CxAnfKPR2GUSDUs/d0Tq/AElyU2VhkUOonq3LhJn7AhSuXf6S
vG0YJa91OuzquQD79nVmbmkfRkPu20knXV+AdPtzkg4ao6iB2YnAwhsL0DHv
cu3K+CjKLWA12hS0AC8IsgerX/xGQ0PM8wgRC5Birs7H3juGGu47KL7+3gJs
mqphHhP4i/IsG/tqxi6ATT85uGXkLxp2TU/fJWkBlqRFXFVy/6F3z2v9+Jqz
AFZft7/LT6eiJls0KKN5C5BqOfdU3WYa5R/Znr78dgEqUhfFd45No+EnlS/s
LF8A/bc7pZtF6ajJesUWkw8L8C+q4/PHPDoq8GOTlnM1Pp5LuQXPkRk00kJ6
Jb4Rz2e57cH+rFn04Jq1zm9aFuCOV/eNJzYMdM0X8YaG9gXILLvZJSjORKP1
BWPZvfj1/B2TpMQ5NGY3cYvj5AIEXlSX8WctoBYzSxF+tAWgGNPN8ocWUZE3
C9NxjAUYN1vW72pnow9UZsvqlhZAt5OnVKRtGT3ye3rjL+IifHNOMy7qW0FF
MydDFrgXQQGCPXb7EiBW5o/ZNsFF4H54Yt3WZCIc6x5+ayi6CMbuzzsktUgg
Hj+49rTkIjx6s99T4zsJ4oR6hh7ILkJugNJC7kYuiCc1ebO2L0JP5c8ba1ZW
gVVVw08RzUUoPfU0qrKWB6T8a7GtexbhOM+DOK2HvJDAqOI/BYuQts6nxtGI
H6wLyi9d01+EIdtDiXFbBWDdpdL2GKNFeD6hMRgstRoSxwpSP5svwnSBw/ds
HkGweZZH7ju6CPeGW1vcVguBtOMrV+bxRRD9NU7mXiMMyT+faaicXoQlFXnP
QGURSPmWUBt9eRFOD18s80sSA5lSjPzw6iIw9xtS4/TEITlzDJJ8FoHlcEwc
pYrj3/eWZgUuwrZyv6MrJyRhvdMg43XIIpRnWi1fXysFiYfCNArD8PslNTsP
9UnBY/munA8xi7Ax+Opk2/V1sHZN4Fht3CL4u8a8ZB5dDwlzWxSbEhZBmLAr
79guaXjUeC21O20RRviVx0oENsBDb6n79DeLcD5LU3B7tByIO1Q1sQoXwTqp
fFhPehPEmZ7lX3m3CNd/XfnO93oTxMqVBAt8XIRwXxdL8wF5EBWw/yBSswho
0/7pTYGb4QFj1ZJUwyL47kxqMlNSgPtfrLwVWhfBIv3QzkvBiiBctFyg2rEI
yd7xNz/pKEHMk+dU9e5FeBBzumwHSwnuXWW6Ir8WYf3blnCVUGWIko23taLh
vhmQWzq7FVbzoQl2DLzedwZ1p4fUIHJmtN1xfhEe6qxREO/eBhH1WmaXiGyw
PN2pv6t/B/C/7Qv34mZD8PlmhQFvdQhPuV3nx8cGWmFasTJ5J9z17MDCRNiQ
cFP65YiKBvCeDAiIlmCDxL7l7qxqDQgzUiyLW8eGmvCDpvedNeGOjJdm+iY2
CK0IVd0p3AW3a8WVynayoW5kZ6Na4h7gyi93/KDFhr/Ty5f0nPZCSJLzk1pt
Nuh9357Iq6kNwZcL137fh48vobk+8o8OkGztLLv3s+F07wXuj426ELSf68HA
ATYsvrT69LCUArfWHxOYOMyGbUEr5go5KBC42UZ0SzasO3LbyeUNQCA1M4R1
gg1jH7N81ewxuFk9s8TlyAbuu83N5df3QYB77PQGTzZsvQcduRP6YPJpZ1+/
Fxu49INONoYbwFrJloYnvmxAf//70bxtPxRWrM7cdIsN3xEHsmKwIQSJ5Nwb
CmFDPp04UadlBOZnDvhnhrHBWUbgwMykEYyvDrVUjGED76lNjNhLB+DdaQW9
37Fs2LEle95Z2wRCCz9tz3rEhkQu0RkvPlPYZLfCo/IEz2/TT8WNFQfBOsen
TC2XDQ9dgtZto1iA0opk1mQ+Gy4E2Royyy1g9khRbG4RGzzyR+bf7zsM9xZo
F9Ur2JD+UZdcfvwI2JnFnKB9YMPcWalje/8eAdWM7YYF1Ww4krJ2p9bNo1B7
4MLGXY1sePeGax5Kj0FcCt9qRjMbYtKe2yWctARHWhar6Ds+XrCc+SoeK1hK
GGnd85MNw80hZdXnjsOusZMhuuNs6NI9UH7zig2QKOzL7Ek2ZPNYxKvvt4WW
e4knK2hsvC91f9ttsIMLe37shnk2OEz10Bm/TsLeCK/NhCU2yAd+zW76dgpW
DYgJfyQsAVMgZpj5yR4yQi3+6vEugZOVkILYr9NwuWeqg7x6CZ5HPY1qc3EA
dHvUp2qhJdgVUu7+dtoBujsakgyllsCH4pdhJ+IEwor6ZiZKS+BvtkNfOvwM
9Pv80hFQXQJLAbWTubtc4FXjzS2N25ZgW7ZUQMiICxhdLSeYaS2BNzvgcNox
VxCvt5kU1F4Cza59nhSJczAkPd/dTFmCFN/KkPqf5+DGZ623hw2WoEeLuP6i
3wU4KNX+RNR4CUTrFeZHjl2EdRc8I7+bLkHrsFqCsJYbFIrmnbE8irtSyOEo
/yX456C89oTjEkzl8z0+dscDbC7+3HrBZQkyNnudaNrgCfXe0RBwfgkMzXv6
TUs94VnErEu65xJ8eJvznJtwFX/+Z11/670ElwulNiTmXIWgNJvomutLcPxW
YedvOy+wL/pQ9DdoCaIj/9RdaPWGb1VXGhZD8fvvbzThe3gNKF+U+tZELAH3
k/sVKvY+sG4gkksjdgncBxs9Wniuw3feE0evZy5B4g2ypmJ+AOiJrT4bmbUE
1sGMQTTvBrzZUHU9NWcJtBhs5dqimxCloZjx6S1eLzlmQfJUILApXUXtJUtA
UMm8YnfzFpw3imj4/X4JJoUjUn+LB4GRHW2av3oJaORtLQtmwVDs8pRrQ/0S
fO/yMemaCQYFj+NrdzQuwYKih/KW1BAghlbA0fYlOLDGM+4bORTe592NThpZ
gnali83ha++Cahkl4/XYEjjKXelXn7oLCdXUoqoJfP2Z7vndX8LBq9uyb3h2
Cd71f7+4PjESRoZ5aQzWEvy45SesGhUFR6bec/EuLUG+tTG3Wlg07CDLq6lx
L4NAYq/GbdMYSF3TASjfMujdjMgt7oiB1WvDjlqsWYYvJLfxs8734a/a1PWr
EsuQN9679+e9B5BpVdZQrrgMrb3VBMrmhyDq4Nb3TQW/3/KRdVLHQwi8IEcb
3LYMEq38gmVR8XAyMHQt9+5l6LY2cPonlACN4dpqUjrLYJbow2PXkwA6DydA
BV0GSSUZWeOcxyD18sjZQ4bLcJ5c2GXnkIQ/T7j97E2WoZhZNTlpmAyzle+i
PcyWwVPuquNXzRRo/S5b/NBqGfatOnDZVOEJRCyNc/W7LINwRd5617fpYOwR
V//y/DKUB12Sz6JkANcoEnnNfRmCakMGRxsy4EZjjJiI9zLQDHWutUxnwuWk
3fIGt5dB/5mFrf+V57BNaHBU+O4y1PVknfixMQvGg+5m90UuwxGdU5s2tGaB
0/le9Wtxy0D+tuPFX71ssNIOgpeZyzA2c6xH9ewrEHu9lXwtaxkIoUQjf/Q1
tMh11OrnLENTKXayXjoXDvAqm/UVLMOZ2DVlQ2N5QPnRZCf8aRnmrOpcU8by
Yd7kmlxfDb5/jS3bKO4FUFwpN5LdsAxRMSsBl+cKYMfzKxf0W/HxZhUL/ooX
grzXuuveg8vQqf2j2vJGMQyMfUL0R5bhulfXRKd8CSTbXSQKjy3DfEr7g5iv
JSBhUBWWTV0GenkUkaBaCrxiZx71Li/DjqbjpUIbyqEmVNA2m7QCY+vN6uNG
yyFooUTWe9UKkCNuv2AUVMDiL/7nQoIroPfkotNjuyqYevOmUG/DCjQLntar
9P4IOQo2PkKbVmD0UV7SdepHcE0gU3oVVkD0RELc1PlP8Oum1WcvtRUYenQx
bsP5z9Buxm59obsCUKn4+Ex4DZRNGFEFbVagc2KA+8nxL7A7Ojm8/uQK2K6b
0Hdb/AIFO2iKQQ4rUPOiT3tTxlfI9ky0Y7iugPidgMC9rEZIYE00/Ly2AsTK
a/rU2mbw5nrw9MXDFWi4k31WltEG9Ge/wfHxCuhvabpvevI7uBvp/pROWYHu
H/t7S2u/w5nwEZF7T1fAQ19xL5rSDseE99z0ersCzJtqpQLWnaAp03tCr3UF
LrTURwewuyG3Qp2x2L4C8xXawklXe0DV/nZMUReeR9vfAJvJHpDP2F6nPLgC
YTR2RfjgTxBVvrVLiLoCV+ZOFOxq7APWulge91UETC2nOn1T5yB0Ku4d0lEg
YPqHPq/vfjgCI60X9TElAvZUrXrF8fsI0APSn+5XJmCBx2YcDguPglAn/1kL
NQJ2wsO3Qz9sFIxD+/6d2UXAZuX/Df+99BusNEQPXdhNwHhLXogTXvwG537D
3Mt7CdhSUcXmowO/4dbuN5f9KPj8wpmMdNM/UPY7iBFjQMB2dQwcfbB+DOof
lFjFGxIwI4bAFuTgGHSiEyVJxgRsD1fdhHDAGMzEW15/fpCA3WLH9W7vHQM1
I+WV98cImMyKepdmzF94ktXE+8eZgO29RRjMbB6H3KOk8xMuBOynuLVa18w4
lK/s/kpzJWAq5XqyqNQ/6DqeFsW+iO/fTuZ0lu0/EOW9IirqRcCiXXo+qf/8
B3KFWVekrhEwT1rAc435f7D9dG+7jC8+X570J1/JCTB9t//RlgAC1rfmx/yQ
2QSEuK6VQW4TMJra4osrJRPwQPxQgN4dAka4Oi1Aa56AtA+3+o3uErCTWx5d
/fpnAirW/ks7EkXALmoMlmdKTAKzvkLR9SEB+2X5bIv2+Ung8qKHuj0iYDGn
lx8xAiZBdNOWMc/HBOybgk7rlvuTsMM35mVACgG7PlNYM180Ca4qTjtinxGw
UplvNlnzkyDLHzvmlYXnJ2Hha8s7Bd/HP6VbZxOwyKj0tBzJKUBfyYvLviZg
VlFda1U0pkBsxxDrRSEB+/hiq32n8xTUC4kWRBQTsLiLP56/uDwFN6b3XXB/
R8DOi/noKftPwVh+ep9mOQGjtOX77HkwBZW7HD5Vfsbne6VEaCybgqsS9/3S
awhYR+hjA6ieAhXmh10hdQRMS2CA5d40BXElclkHvhIwQ/PeB/wDU3BOZzCi
vY2A1Y1nVJ9emQJZaeH9Je0ELMI+fWV0FRXaF2H5cSfej4PYnV2CVEArnly2
78HHfxu5X1OGCuKYveX4LwImLHFfrV+LCl/k7gk2DROwP3bWJe26VLhJrKrL
GyVgsn9EDz7ZR4XxT7I6Xn8JWPsafbuig1So2t8vS6ARMBHNVhaXAxWuKgl2
DdEJGN+e2vH3Z6igyoPer5nF9386pdz8PBXi6lPIESwC1iZrNiZyhQrnTU+O
SRCIWNPOL8fXB1NBTi0qnUUkYtss/l1qC6VCx+oKm59kImY/svDIPZwK2DeZ
pjQeIsY6Ir7P6j4VmLkHQ4P5iNi/WDiQGUeFnHv+4CJAxER/9Fz68YgKkod7
87cKETGbf/xTcylUaNy5+oKgCBHjzdZ4OppGhVuiFAWaKBFze791d0UmFSa+
J8UXS+L3hxpeU8umwkcrW799skRsoCaRIvOWCrUPJOoPyhGxawY2gYlF+Hjf
msWt5YlYBF8nxvWOCl2GBrnuSkSs2of3S3I5FfqDlhd8lYmYGelgc2MlFUYq
3xndViVie+mvvox/oML07m2/krYTMc0l7r/0anw/nn+2ZakTscHNtzb311KB
nZt+vUCDiP1sPh1cWk8Fni2S4g27iVjHH8VCvUYqyEqtGDJRIvbadvOqV21U
UDhaGkvcR8QynuYUKbbj+d+7Mrhan4iFKSarxnZQQYtnzHezERHbHd5KN+mi
go5+Ru32A0Rs+dgp7vhuPN+bdmI6pkTsTLuoXWcPFQ7OtbyyMCdibS9Ndu3t
o8IRzYh528NEbMph3SmbfipYX9pvePYoEWPvaZW5MkAFpz+lAwHHiZgRSSrq
7i8qXP+RIZpjj6/vrJTckVEqBIqdtC92IGIW+cHj6r+pEGou9eqjExHDbFW8
ef9Q4X5dxP6us0RMRG9VVcYYFeLJhg+GzxExP/CeOvOXCslAGJi6QMSIGnmf
5cep8KLkqg/3ZSK29rqDevg/KuTObK8R9sTz692spjVBhcIdf0VkrhKxe3O2
8T24q7JO5mj4EDGov+smMUWFzkeG/faBRGyIu6fbfJoKvd8JWy8EEbFN5Qd4
vuMeEnp/zTuEiFWQf0weplFh8s4OkagwIiYo63ZFn04F+ue/JxPCifjfAw2r
YtyslcyXmZFEzFktzVdxhgpcPmsNymKI2B2m7jILN39hW0zNAyJmPNKceHKW
CsLTkX0tcXg+VWNTlbhlXInX/iQQMe2/21V9GFTQtB7PFk8nYklv3xTWMakw
WP/EbCmDiFVeqfkuNEeFSG3LmdGnRMxgp0mVJe7f6z9QSl4QMZfz9fATd2yE
168nL4lYDV8EYz0Lry9bNTTsFREbaz9eao07se9h84k3RIwUcyjrG24jM9Or
egVE7CLLY2rVPBX//46wbmshEVu8kRqA4DZLu+DILsHPo5t59jPcJKd9jNQq
IjaKZsU5LVAh7zvz8Z2P+PgSWQH3cNsZvEIvfyZiB5tQoTLcxYpSYfvq8PoZ
NFkKLOL9Et+optpAxFZJ18pq4BbmCWoV/UrEggbt3x3HfW5sYv3INyK2XnpP
0BPckicyqhpbiNjRKvnqj7g/NRx3LmojYn0rQgtDuGVyPr0O7SRimernHOXZ
VGhxS8BU+olYUfzgwkPcAf2HRkUGiVhJgl/hG9yq5uTwhV9E7CTMJ3/BHaLu
/v3rKBF7+pApxsa9M32zT+EfIia180Wu2BJ+nkW6ZVL+4ud1f2aMKu49M/ou
7pNE7Mjzn5gV7hGnef7jVCJ2nndg3QXcMe25eUAjYrb5ZeY3cY8XrZsXZhAx
S4Pq0We4U32oEW/ZROzlOntkArfp36fqyctE7G5McCAbN+uETUcIgYSlPDll
sHoZP3+6NbJWXCRs1iX7pCrulZzrn9FVJKzXN7RsL+5XMuquW3hJ2J3XzOeG
uLmXE/NZAiTMbdcuigPuAncLq19rSJiT0P1/brhPDXAvNgiRsJiS9D3Xcb/7
cNkgSYyERX4Yz7+P+2Kw4Q9EGh+/2vVGOW5WeOsfmQ0krEPqukYt7tsP7FiL
siRMS3x1cjPu1HTPdWXyJMx3TUzCL9yq2UsqjxVI2OWy2h3juEvehOn4KJGw
+Cu8t+m4W6pSbXerkjA2PdSDtIL3S53KRQk1EpaoGbGaH/ffb4X+s9tI2F4b
VTcR3KT+LykFO0mY2qRa6EbcmmzmwHZtEkbgE92vjfsDOWh6jS4Jo+Vv1AXc
BwXWECcpJOxb01nyftzO6zfL52Ak7InTemEL3NObcjXC9UjYYVuF45a4A1S0
9c8ZkLCE0y+8bHDH7zV33mJMwrryaIgzbnms5+oqExJGD+Abd8WdZ3Tm9qgp
CeubwjzdcNdb+T3PNCdhJcgxaW/cC1ezxjYeJ2GaJzUmbuMO9deYX7YmYa82
vXx4F7dYSAVfvw0JG9Ukb47CrRb7XTX5FAlrOVswEYv7XeIpXb/TeP6yz1Qf
4d6f8dfUxpGE7X5TYJ6I+1T+ysW1LiQsDJM4koZ7/F14wNxZEmYe+kM9E/e1
DxLRnedIWGr4vflnuGOat+bFuZGw9uxA0xzcHyeP04S98LwvFZCKcJsxhojT
3vj1p2L1SnD3sN1Em31IWBV5u0cpbrpAiGaUPwkLFHiSXIH7hpiQwcUbJGzP
mGdiFW4B6cRjpoEk7GTOYthH3Aqqb7z4QkjYA5ll7Rrcb3bqho7dJmGWmtZL
tbgR7dr4ujskbMce5bf1uK2Me0tuR+D51NbOfcUd5sK7QIwlYVatKdRW3Gca
NqTyPSRhdxM73b/j1lPT1BN5hJ+HQ0m/2nEv0k6GyyWRMOy6U+YP3F3HrmxX
TiFh8spqM124C0vC2nY8IWF2DgJ7e3C7B7xdD5kk7HOyV0YvbtPB+krDZyRM
48Lr+j7cyvr9jmZZJOxjlOVoP+4hXr6ckzkkTMFRg/wLt2XcKV3/tyTsjbpm
9whujbkrA8FFJGxdmcT7UdyCNneDI0rwvAXTH/7m9MfGwq+J7/H8nJ5qjeF+
FtRwKaOChN3PiFnkOGi0X+xlFQnLNRV8/xc3JYfPrvQzCXu35cGWf7jXCW4k
fKwhYUq7l9s5Zl7e9bS+joQJB9X5T3D6cbf9xI+vJOxT59bySU6/fir0Z34n
Yb8WlpepuFcUvsgtd+D92rg5ZBp3752Bau4uEjZOm+Wicfr9EP8aiV78PHJv
XeD4ypuN+TL9JMzners7HbeFmJalwiAJ23T67QDHfN32KZojJIyYEV08g/u3
rtc+3d8k7Ahvncws7k+p4aN6Y3i+XK9vcuzvXLTtyAQJe3SGqsvgnD8qf+Xl
WRJWmipzn4m76Yicow+ThK3RfjTA8csirVWBLBLWNBGydQ63k99ps3tsfH3f
1pRzjPV70eOXSRi/QyuBhVtmX0R8KoGMSQ5Y63Pcuaq4/zUXGet1WPrI8dtz
X4OKVpGxA1+QZY5jGgeVKnjJGNd02N553CYPBC41riZjmeKBWRxXbHBYGRcn
Y898Hl9e4MxX5LHYLEnGROtbkziuPhg0V7iWjMltLqvhuNEvk3pDhoxdv/5Z
YvG/vAr/OcmSsU30OV2O219W/zGWI2Pdl8kOHPd2jw6IKpAxovnnLI5PezB/
zimSMak/YQ0cj/DydPVuIWNVi0bjHE/sUW55vpWMLaBtymzc7IfnP+hokrH2
kD+JHAdu8yvfqEXGUjebFnHMVRPxjmsPGZtL//WN49Wzr9580yFjLcyqFY5j
IipevaWQsZsFYlJLuMU3f3uRgJKx5fUF2ziWOUJNc9QjY95NI9Ycp/1dSTYy
IGPGScFuHCvcEn6sZkjGFOSCbnGs9mbnfeYBMtaalp/Fsa7g1Vvhh8lY2dsT
kxxXPgsJuHSUjN2+473EsR7y0PeYJRlzkJFcs8zJ/2Kxh+wJMjadPqHK8Tdy
nRvZFl9/h6o2x0eSfpwbsyNjPkcXDDm2+cJyKDiN5xts48BxvwPfqUeOZGww
jebGseP8Oht/ZzLWNKh0nePzyrpHDF3x/oi9dp/j66EBej2XyJiu28p7jpc3
RKNVHmTMeaajhuOgolSdp1fI2HPC6WaOw0eqNNyv4fONPfrFsaB/y/ajvmQs
bafJOMcPxH6p7vUjY22/3tE5TtQjbSbdJGM7kr+TVnDL9ohu/BNIxobvB/Nz
nOGxWboxiIwdrp0T4fhlmoFYfCgZU9m4S47j0uVQsmo0GYta2qrDcTRtU+ye
GDImq/8K49hxpFx+/wN8fT8Yhhzzf6HvOx1PxoYEJ45w3F8e1eqWQMboMsnW
HL/NU3bwSyRj6YdlTnFs9/BUYHwqGft+IdaVY/WweaGnaWRM1TzKjWMuv7gn
+RlkLMvypCfHr09/qWx8TsZ27bvtx/Hy1t1LpDxOPdZGctwm2xopnE/Gml3+
3OM4S+SijOxbMrbxUnwsxxZz6braJWRMJDIhkWOFccpXw1Iydi99MoVjVu8P
m2PvyZhprlI6x+mf1ly/VIX3l6VxFsfeRS/4Aj7i/ZGn8ZJjkxf6j8M/k7GB
YK7XHNOjfN89qyNjbxocCjg2ODHK/NlMxoqrpMo5XnswMPRvKxnz4z1ayfEE
Ki05952MaUT4feD4ocJhLdEuMsabH1/NMcp/59i2XjJ2ZditnuPf1PIrxoNk
jBXK3cjxvQ76A6cRMnaxxKGZ473vlQtujJGxJwdD2zi+Gxo3XThNxoq+7O7i
WOPiF6GWWTLmodXQw3HPYcKOfywytlp4Zx/HwXt2m61aImN/13sMcKy24aLb
JiIX9nMs4hfHAWM/co7zcWHqRrajHH97qz8eJcKF7U99M8Zxag93V8o6Luyt
d/Q/jt2I9TWvN3FhJsKiUxxTlMPfVqhwYQohhtMcrzY/mN60kwtjRmnROc5J
bvGf3MeFTfk5M/7Ld/yY9ZojXNjgoR9zHIfdPil0yJMLW2ektshxjZxLbeQD
LuzbuMLSf/Wc6NMs+caFtZ+bXOY4pMQy/Rc/N2bSn7DC8fTE2kDZg9xYuGXv
f7aT7z1lG8WNub+c+c+vJrgR/S/cGHZx8T8vFu+Q3sqzClM7tPyfKSdXXx3U
W4V52678Z3/y38aHN1ZhlR//5wYxkUcnq1ZhZuP/s6SCtoMigQfzZP3Phg11
qgkUHkxt6X++5m41y+/Lg9GX/2dxJyHv2+U82POV/zn/eD2+bx5s6P/9f+Ak
hi0=
       "]]},
     Annotation[#, "Charting`Private`Tag$8232#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.883709244549595*^9, 3.883709297337487*^9}, 
   3.883709583707026*^9, {3.883709635758346*^9, 3.883709670568365*^9}, 
   3.8837099473258133`*^9, 3.883810158679089*^9, 3.884769146410893*^9},
 CellLabel->"Out[23]=",ExpressionUUID->"5a00c907-ef87-41d8-87c3-126bd0029635"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0440\:0435\:0436\:0443", " ", "\:0412\:0424", " ", "\:0432", " ", 
    "\:0440\:0430\:0434\:0438\:0430\:043b\:044c\:043d\:043e\:043c", " ", 
    "\:043f\:0440\:0435\:0434\:0441\:0442\:0430\:0432\:043b\:0435\:043d\:0438\
\:0438", " ", "\:0441", " ", "\:043f\:043e\:043c\:043e\:0449\:044c\:044e", 
    " ", "\:0444\:0443\:043d\:043a\:0446\:0438\:0438", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiRCut", "[", 
     RowBox[{"r_", ",", "cuval_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cuval"}], "]"}]}]}], "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"PsiR", "[", "r", "]"}], ",", 
       RowBox[{"PsiRCut", "[", 
        RowBox[{"r", ",", "7"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.88370978236176*^9, 3.8837098757304697`*^9}, {
   3.88370991928649*^9, 3.883709930485785*^9}, 3.883721878173161*^9, {
   3.8838142442419043`*^9, 3.883814263199909*^9}, {3.883814546023432*^9, 
   3.8838145631924677`*^9}},
 CellLabel->"In[24]:=",ExpressionUUID->"41107c73-e600-4079-9938-9536a9f8a8eb"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$8303#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVVXk4VV8bJYUMhcQ5517jFUIihNxz9kspGUtJJHOSocwURTJEEbkkytSk
TFc/U4kyhUSRUlJCktKAZCj57vfXft7n2Xu9e613rb3lXI9ZH1rGxcVVx83F
9f/16ilXXk33c5RP3b/0lNmT65tfyJrbyh5BvDVtJ28HOKosPa4/Iyt7HAmp
VrYWDfipXH2UJLNCNgF9vLyZu7EsRsWHDPadlbmMipxyanfK56q8+OPJ+ilz
Gz0R4A+LzmtQ4Xs7rPRN5h7KbfK6N876rZL/JNf/q0w7Oh3YG3c81Fq1tCzh
rY96P3qjanlP5ccKtcOo+/JEwAg68+8uq/fJTbWjo+tHKkrH0QtF9F+BnNEG
AbkYpUG9nyjxt5hPttbYhmSRDpV852k0vrlJOFnrtLrr270PeZ7+Rm4Kn8Vs
+hQ2+rfEuB5TWkAXXnc1uj9t3ljuJ7QH27mI5ndNZ209aaeRH+79RcOWC046
x8l8+bigEZ37d/evCW44UsUnvPAqVZPrxQd4cIIH3Mu6PJy7FTYpBnmE7VVZ
AexrRbb6X5o3fZy5tE+wjhfW37CvS/O21zId9Tp50Z8f4moHLNtq/2pZfkxR
lZYWgCAbh7LyiGztL02uUW0lgiB2Siz2W7yGjrroK6mtTsKwca8a5irdrSOA
ZlwGpleB8lShOsPUY/OOb/az8jYi0BneOXHhL7/u60Z3bns1UfDadP+N/rVC
3cqzzY6yM6JQutYq4u45Ss9jRfCHri4xOIx559tafNBzCwivFMpaA5+H3BP5
hoL1Nx5W7TJ3EYen/2UaYr0rtzwTUxMM1l8LcY5DGTpwZ0ttaXS2Go8EuOWu
jJtsAYNwbpVdT99JAKYqkUoFDRsIDJwwOVohCW74u46Rt6eZm0NvC1+oloT/
MOmhgIdnmC5ir3vK7ktC+cu5NUqvYpk1JjoHJx9JglZQ4FXt/xKZHpU//IM6
JeGy5urFiJk0ZkOye/aJT5JgGjWlZ2F5kzmxPs05e1wSDvNwXdp2p5CJtTSs
ezAhCZf2hJpKbS9iHv0jzV6ckoQ3jDK5zGI2k+75pjlqSRI+tdJ9m77VME14
+BPzl2FQ8lmp+GFKLTMwZ7NV4woMmLGHtWXD65lPetPe8AhhkDEf6xxf0MiU
E5x0MxbDYHmNdyB/+2NmmKHl9zgMgwfMPzvVBzqYz0KLwtqkMbj5pKFjH383
U7GUn0dgHQYGWWuwiBe9zN07ddtUlDGIv+/s4crXx4z4eCjJTBUDXoU1at9C
3jALI1nWPuoYDCW+sPZWHmC+IJokkzQxELiffvGV/CDzX+XkQIk2Bqu26jZM
bR5iquyWLejSxaBz08721StHmDYTlod/bMGAdu9K6nGhUWZU/Ek1EQoDL+rZ
nMf2MWaxfPGkhiEGj4Y2CF95MM7sq+uv2r0NAxmf83/CgieYy+xWRgTswOD1
Hf+LAmE/mOq/dA3TTDE4m6RutMpjkml/wYO3wgIDm3Hdp4rkNDNWJb2jdxcG
RyOH/oltn2GyW5pSZvZg4LM6d1EybpY54DxlI2GLAd+B71dX8iww+f/K0nTt
MVitIxhp1/SXqXXJ6oPtQQz0PMzuK3UtMR03nboR5ozBQnlJ0Z10bjKxs9jr
shsGHqlr7J/685BVnm833vfAQFD/uoBp1ApyiEdgpv8IBrbXK81DH/ORQrl6
9//4YNB9gPFZ11SA1NtyOJLuh0FWgJX0ajFh0u1l+jYykIPXKb4tU0yETPZr
XukYgkHs82DH9hZR8r7gdNep4xiMFU3Mcd9aQ47elGPlRmBAcOm6y9auJSdi
huZ5ojCYeta/8o8BRk655jt5nsHA5JV1ZSEvjZwHl5ancRgs5j86fYchTXLJ
yKlqJnL0fvlbheqSJXkXP6SkJ2Hg5KL28XWdPCn8Nu/3fAoGzz/lq577pECK
33N2cGRhsP1ZYNFnSyWSuCTb2HgJgyU8n3vHv/WkXPAHJaVsDLjutUr2/lUj
lffkJZ3LweAD10hc33oNUl3TefpHPgZsJRZ3NO8mUme1rN3eGxi0yy1PXEto
k8xvg/U1hRi8ujkUOOq1mTTqyFWQKsYgh/fw1aUlPXLnbafE02UYHDOOnTAc
MiB3xcv8HL2Lwfuix8YBkoi0PTRoY1qFgVL5rwK1fYak49bc2tJ7HD3vdfL5
2Wwl3eWc5NbUYWBmINqcecGY9F6Sjg99hMG+vZIVxwRNyIB37yfeNmHQ4DXU
FvvclAyrzbGGVgwsrZPFzcYsyMjLjjXXn3DqSCPEKt5FxoVKS6/swkD/QPdm
y0xrMsnm/Rnfbo4+JwadSh7sJVlaOePdvRhYiU7r6snaklmijlabX3P8hk0V
6TyxI/N/SFVmvcUgZJfU1qZGB7Kw8x2x9J7jr20fv4asdCZLi65GuQ1jEJx5
geUx7EJWJhz81DqKwffYOfPuSTfywWEpc7VxDLB+ybpF0oNsMn5XnjLB8Xtj
a/7XTk/yCeOq5MwPDE65jkgfue1NPuc+eNJuGoPdx5XjVN4cJfsG6SN1vzFI
rrzuG6DlT76vGzCRX+DkcX7hbqV6IPkx+0pp3CJH37BZG0/3YPLrcQfxr1w4
KNA7s43fhpJTtvQTVstxyO1MtniWdYKc1xkY/I8Ph6c7wzLci06SXOJXjDFB
HBZnLBo3nIsieacOFEWswsHlWc+DVYHRpPBzmuiQKA6Na1T9GWkxpHjp2xDj
tThggXdMRyfjSOJ89sBtDIfl7ecKzmckkHJeB4xW0XEQCo6pV0w4Tyqb0AoD
ZHBo9py1Le25QG5UfCvcJ4/DLTEIT6tPJTcvzw40UMShqIBV8649jWQO27/J
XY+DR8fV+WOiGeTWRwRavgEHRjbjt8GVTNI0p/+6pwYO21ZFbOQKyCZ3RWQJ
dGrhsHuyI94pO4e0tbf309TFQaf9ZNuiSD7pqEe8St+Cg8P7hkkT/mvkIYl+
gwUSh6rT+t7J+jdIn1+X8x0NOfjhqv/Ci26RAT12fE3bcNCWwrxiDt0hj7Nx
XyUTHKIMtNb+PlZCRiW/6TlnhoM0/k9NwItNxvlc1vtpicNH05hB3PIumWRq
l7PXGoeHrPDqiSMVJEsZX37PBgeRN1rKP5qqSAdHxVsj+3H4dD/80l7te6QC
S8t0lQMOjgOS+bljteREO3zTc+L0c3sh/udjPVmxZJHi5opDYZydqirRQEbo
HNBKPoTDyqNWuuSPRnKbt+erGk8cbpa/KU753UwK5QcfH/Hm9FO88C1ep5Xs
fRVNX3UMh+cpsfz43XbyilDKQ70AHCTc68+/C3hKuhtddXULxmG17Vlhhchn
pFrYnRXJYTgIS95pOn2sm/xVUl1YE44DD93Ap8biBflgpNls5BQOAhOeW1Wd
XpIxeM934Wgc1Jubztre7iPNrQZT9WJx2KcIArs39ZNrYie03c7i8O1hhnEP
1zuy//58X9I5HMpM+eSVVn0gC37yhtck49D9XlAj+vEQ6aUoLj2SioNrfKa4
YOkIuclBrkE4neMnEn/+rH2UXEhVd9fLxIGrUIn3iMxnsrHVgM8tG4fhvzyv
+Su/kImLJneScnDwXfLfdy71G2mttc+iJh+Hkz+sDmxz/EkSR9x+Dl/H4dWQ
dp22zBQ5nOOXJlyIQz2jzpkS+UXe6T25Wa8IB9M6w8izm3+TAQLn3riW4hBv
K3a79dIcuQUyI5LKcaicE/xivuUPuSzkhkxNBQ7e92KSJNb9I58U3W0crsZh
Ym6F7WQZF3Vx6OEh4VocfnvJDeUfX0bZS3by69XjELm/uPRA0HJK3qK/yLUB
B6u5x2VON3ipL9FjlknNOFy593TilNhK6m7Nr8nqVo5e10/8Xt8oSJ34zp0+
/AQHO8aZxdO1qygjhdV6wl2cPDuEDOrwiFIC9vS3ut04HK+9b9DzUozqubD+
lGsvx99kR6JPvziV1bJZLqmPw59nYNpJQpJy/bO1ubofh6Ucp9isCzilorn7
8PA7HI7O6UwVm9OpKQ9HAeEhHEKDE/693StD3b/iXaL7EYcuSYtRfL8cFd0T
tst1jHP+hc2lLi0GZcofN33+C0fvIVf2CaN1lCiVllH9DYfgA3GirAQl6nVg
nv7wTxxEz0s4K65WofJulwwI/cIBRR4SHXmjRnkO3o/UncXB6b8Uda3JjZTG
2jZ51wUcdrW1Rt4o1aTmTF+2nF/EYYbs/5ybpkU9ihr2rOYi4KhE1cqUYh3q
bNUPwWEeAjIFrizjW9Kldk38LRXiI0Dr5cFr6qlbKExewFpXgICainWtb46Q
1AdbyRkXYQKejgXpmZkAVZikkHlehIC9RZYTH3iNKL8mTYPqNQRUvFS1sprZ
SunNU++HJAj4VqdeVoVtp7g2mp8WIghgjF+bbgoxodrc7RR0pQh4Im9Y8nCt
GZWS5dHqIkvAFbVzTTl/LajQkOjACAYB9f42ovypuyhH6xyZS4oEeDJyn3Nb
WlPG6vc7ytcTYODflVKkv5dSE3gV+lSNAPrVYNuv+/dRaz5NMsY2EhA9tqxO
pXw/tdAg/JxbiwDj+o777iYHqOGr6yPomwkg9Ee+aq9zpNqPGyvr6hOw61K3
VtAtZ4pt49K7m0mAk3iARpuHK5WpeTLKBxHwPLDcQdDGnYoUvqwWb0QA7ecn
R5VQD8pjvOJ1vjEB/HsN5DN6PCmLlucxD0wI8NV3qN7t601p509o9JkRwHr1
/Ta35VGKdpL/3aQlAUbz38P+1flRy+wUEoSsCZANH3hZFhlAjWuDjpINATfN
J0cu+AVRz0Uchgz3E1Aye2sqNT2EqpkITXI4QEDpfyI71X+FUbltafqhjgRY
2lC438VwKu562WiqCwESyzy/LA89RR2N6kgtdieAWRH//GZvFGXjMEa2HiaA
jLUorMmMpph6PF+GvAho3avJo38+hmKIy2T89SUg2yRrSK4ijhL4ucVI0p+A
g5Yz36fWJlCTHfu+awYRgOJH4x9Wn6Ne3wrIMg8lIKlHSp/KS6YenknefvgE
AVHhWj98vqZQN53uTJ0+ScB/gXXbh8svUskGj3OuRBHwcSKM4i1kUcGSw6bV
ZwiIjNzO+TkyKIfpxd/dcQSs6/1gPqJ7mdr2DL82kUDAKo0n/OhdNqVapGPF
l0RAnsSLA8XtOZRY/O4/cikE1M6Fiuxalk/Nu/reYqYR8KFe+oFqRwH1gUrY
Y5tBwHjNK/ffTdepVuLGkv9lAgL7fp2snrxJlf5+VHT+CgGpj82TFu1uU+k9
A7a3cglYubVi38SyYiqidI6nsYAzr3s8MebTpZR7ojh74AYBUq0PwizxcsrM
Q8NhtpDDv23n6MWPd6lNRub8YsUEBMjz9/J+qKAIac8KtTICXG/6B9SIVFPc
C2ecd9wlIN+q5S4ZcY/6/DJXyLWSgKX0yoRG5QfUs/LamogaDj/fg3cwqYdU
VVKf+6VaAi7uMA5y12igrh6ZFrlbT4C+cdfmNf8aqRjj1XVPGwh4FOszp/m3
mfKWUz0y1kyAu/Bl1suNrZT14va1y9oIUB5fbZ+d005teePaQO8gIJev0q7a
8iklV3nKV7eLAM3HVjrLdzyj+FOzcOtuAs7MMswSd3RTP32qWnx6CYBOJ+Y1
yRdUn0mPf3wfAYItyygf7CVVr/BdqqCfAG5pg2ouqz7qBpfAkwfvOPloM1Re
0fCGOj+wLqTvAwEizZ5nK4MGqMAaQ/mpEQKGorB1M36DlD3rYJfQGMcfgr/E
2Y5DFP0/AZr3FwIWEnJN1hwYoQa7qw+3f+PU5U4yrNRRquCne4XSJOd9+pz5
4hX/Z8p9tRh33C9OnjOudRm2faEU1R9afJwlYI99d9ea19+ocXOfLKM/BIi5
qu2sz/tJFXvjY3n/CDjxlE/ZIX6KOpr4WGuJmwbBPJFKl278ojRuB0YdXEGD
a74+4e3cs9R0q2xnLT8NRnyr3vNem6eqPnXihBANxNavZGum/qXCVoR7hK2m
gasIM0Ds5RK1RUH5v1diNPjhe2hB7wE3WjR6uaQtQQPNvdJ6tCYe9Mgl2jwN
p4HX0rYZwxW8KDpq4+VJOg0+b7CU9UvgR9tyB0atZGlQsnfu6gZbQcRXn7Cp
lEEDj8F1ae9CVqEnA5sjhZRoYB9rm/F1TgSd/zPS4aVCg4kRy3QYF0OWRCrW
voEGaw6UkXpia5GoPnVISZMG5gfTpIxPSKJe26/lsdo04DITvc9SJlBGSOa/
EV0aVEhHRSusk0L7043NjAxosEUZ4n2YsohWMXUpj6JBzo+Hkx0S8uh9T+7H
f4ac8ynfuDcpKaC8SXPNg8Ycvi4VrfWBishVZOFkrQkNJIxTXIx41iOFjbee
4OY06Ip4bLPrnSr6ZLFXMsyKBgY+7yf3CmxEt3243V9Z0+CCv5jfq52ayOdc
KVt7Hw1e3/x4cdBQC6nfObB40Y4GQWcsBoUCddDPNn7TSQcaYHyVcW0juuju
WGWGlTMNiLxiNc3sLSiI122kxI0G7b3ObWr5JNJdJ6IhdJgGDga7C6hIQAtb
6yK8vGjgiU5EeDsaoQeuXu1tvjRYqdCYEBG4DZ06LSmh5E8D/zNzPO7N25Fh
XrNrbBANnD4H8lfa7kTLH/qXjYTSIOqlxuhdbXP0+J30X8NwGrw0yDzm4maF
zv7tMMk7RQNnjeANZiG7kRntePq/0zTIsHGrW+G7B63aojjsEMu5/yPxcb1s
G/R8/wv12rM0SNThzmvk3Y8uhkaF4+dpIKPQt1Wkyh7ZZGxoC71Ag+Z3FqXK
7IMIq+wXf3WRBvGfFZfsTzmj/hfxLtoZNEgWeOnHZ+2Krkxpl168TINHstdO
5dq6IyfR4YWfVzjzT0hb4mV5IHmNCzus8mjQEmjmES10BH20ZLJKrtHAT11f
tOaxN7rpO/5B8BaHD/Puj7K2o+jI+YwNXndo8C9ANMZTyB+pFW090VZCg4dr
BjZ8fx+Avrf/fKxYToNiwQrTgMEgxP58dU1sBQ1qD6tP54mGokA+M+eRahq8
0WdWwvHjaLPiXLFhLQd/fVG1EhGB5rbdmM+tp0EIfz+X+twpFFGbe6a5geOP
LS3SD39EIa5NWcLjzTSIW/X2LeN0NIopZF0SbqPBoK5aRZFmDOKTuSC3qYMG
qQ8v6OQsi0OJ6QlF+7pooDAbl4PPxKNVQjE64d2c+af1FvAJJCKJ+bCdzX2c
/P1rUmNdTUZZxwJffO6ngd2Npu6dySlI6pPvQeH3NOhtXy+6fzAVKbxw9d/3
kQYWb6yvm1SwkFaJ+eXPP2nwe+vnKNnV2aiKsYMh/IsGfdT0uFPjFbQly7BE
c5YGM4d+V5uczEFG8ZsbTizSoCq5symTKx/tcpEdFxKgg/K6F/IBkddRbx8R
qClMh5O/uK8i2xtov+XaRRsROmyYP5pau/4mcjIQEM2VoAMtvlxEqfYWGi5f
nt2E0yHIP8KeFVaIPJSXFD7T6aBlqe1XtuE2Orr2l54mgw70xDvG5ifvoKlz
3xttFDn7w6r2m0kWoeBl4+Yn1tMhemr0wI9bRWgubORVjhodHrV4NDM3FqOI
H++cmzbSwZJ/SdiqpBhxebz+MraJDoSmfK6NfAmKGegJEtpMhxqJt7kpySXo
XHvrWRsmHVyaJkdHLUrRKmgUO4HocNhv/8Z7+aXoYtWDKzlGdHiedbR2w/dS
JLGhWrHJmA5fvk69LtYqQ1nXytljJnQYvOVrmB9QhqSJ4i1C5hz+31xPBReV
ofyUm80aVnT4tMkr/eL7MqTAl29pY00H50GB8I28bFR4Mvv1cRs6LFIN3TkE
G6n9SnfN2U+HuDO+7Y/V2IjtlTLReIAO2/3ns3uZbKQ9lBgy5kiHntRr9GlT
Nqq2jeUScqVDzof4AlNbNtrSFZmocYgOF51bubhd2ah+2wlxG086nOkvS9D3
ZiOj2qCc4950CKlOI9YGstFjzWPKOUc5epO71O8eZyPTwiN3G/05eK4dv9Qi
2ahT2p05FkSHz7xzvrln2GhXuuNjwTA6tB9Rj5eLZ6NeQbtdGuF0yPr4Xr89
gY32R+/p33uKDs0/Xt65c46NBuYs3I+fpsOujoCdr8+zkfMxk+9XY+hQIb7v
u2sSG42MGoU1xtNhb4vqvB2nNsrtKlA5R4dhwr7lHmd/3n77zovJdEh70Pvw
PAdvSfTT7EIqHZh+WrFDnH6OHf7ybul0WLu427CFc5+6mEXzjkw6MC58er41
lo3oVEKo1hU66Ftf/nA4mo3CZ8ULsnPpsG13yUoDDr9+dt5Tnmt0CAuwnmgJ
ZyN9L7VZ75t0CK6q2yESxkaZjBq53tt02K2vLCIXxEb7Mp6FXGfTofv0Lr1S
jp494f9kjevpYFNkF8Vlx0aaOolmJQ106LvrJSW8l41Svq8NWdvC8V+04lYe
KzaydNnQMdpBhwYXd6pqGxs92e4QHPeGDmIlgd3HNrJRo+j99tZfdPDPGUh0
52EjuQ7jXxvn6LDmikF3/p8yFBXTLZ35hw6ZoQ6BIT/LEDX7OdBzmRQIK/i2
SfSXofsDktIrRaRAIeBp9vaSMnT3VnCAqaoUtO1PONi2pwwVkJq0ThcpYAdf
Kn5eUIpKYoNFD2+Qhhte/oq+6sUo3sbNjGdGGgZOFfVpzt5GOgP5t+M7ZUBq
IaJuS+MtlLk+u6TTTBZCR/JV7d7fQJGPkjLN7skCtexm0/7Fa8iCZnPjiYIc
HKzp3bPPogAZHm09IJogB0LOJVo73+ahXLqrwtMZOfjrJmP+52UOUmi6lWF5
QB7E1N9+UnK6glI2NKr01MtDFA9LsHxdFvKYXt7drsKAFRHq/czvl5Br+ZRs
wgUGyJw69l6LPwP5RO/5a5rKgNA4yYw1XBkoeE9Fn1AaA56FrrD4PZuOzs4E
J6dkMODSmR0VzWPpqFR//s+lqwzwFEncGduajuYbll7dLGLAux/nLrPi01FK
j1BScysDdhay9T6uTOfk29czrp0BA8uzHsgtS0fXgrq2mnQwIKJHQ8p1gYWq
JFIWOroYkKit7vf1CwsN2K/xfPGSAZU8U0j2KQspjeBbh0cYsNlx0xXRCyyk
UXFC+vooA86yZXwj4lloS+zb+UNjDMihrxD4EslC5kpX2eNfOHztM691+rFQ
gLes9OQkAy7aSuhXWbNQBPP0/N1pBijfnzXXNWOhWOHh3qAZBnwyylao3cpC
mWXXzs3NMeDygjitQ5uFCqKWH76/wAAx7WFd2w0sVLT7kFHEXwZ4FTqJf1rH
QhXyj6WofwxoeZpQFirNQvXTivNLSwzAQg7yC0my0P8AI95Dnw==
       "]]},
     Annotation[#, "Charting`Private`Tag$8303#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.7088375225314254}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.883709869951499*^9, {3.883709931548687*^9, 3.8837099535027523`*^9}, 
   3.883711640492401*^9, 3.883712120004285*^9, 3.883721879279222*^9, 
   3.883810163021236*^9, {3.8838142471447573`*^9, 3.883814264108591*^9}, 
   3.883814563883505*^9, 3.884769148895431*^9},
 CellLabel->"Out[25]=",ExpressionUUID->"faeaa83b-7331-4fe8-9c61-ce1a5bc29c5a"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", 
    "3", 
    RowBox[{"He", ".", " ", "\:0414\:043e\:043b\:0436\:043d\:043e"}], " ", 
    "\:0431\:044b\:0442\:044c", " ", 
    RowBox[{
     RowBox[{
      SuperscriptBox["\:0424\:043c", "1.5"], ".", "  ", 
      SuperscriptBox["\:0424\:043c", "0.5"]}], "/", 
     SuperscriptBox["MeV", "0.5"]}]}], " ", "*)"}], "\n", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"PsiP3He", "[", "q_", "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "q"], 
     SqrtBox[
      FractionBox["1", 
       RowBox[{"p", " "}]]], "myNorm", 
     RowBox[{"(", 
      RowBox[{
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["q", "p"], "-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["q", "p"], "-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "-", 
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["q", "p"], "+", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["q", "p"], "+", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "+", 
       RowBox[{"myCoeff", 
        FractionBox[
         RowBox[{
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{
            RowBox[{"-", 
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
            "range"}]], " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             FractionBox["q", "p"], " ", 
             RowBox[{"Cos", "[", 
              RowBox[{
               FractionBox["q", "p"], " ", "range"}], "]"}]}], "+", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", 
             RowBox[{"Sin", "[", 
              RowBox[{
               FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}], 
         RowBox[{
          SuperscriptBox[
           RowBox[{"(", 
            FractionBox["q", "p"], ")"}], "2"], "+", 
          SuperscriptBox[
           RowBox[{"(", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], 
           "2"]}]]}]}], ")"}]}]}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"PsiP3He", "[", "q_", "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "q"], " ", "myNorm", 
    RowBox[{"(", 
     RowBox[{
      FractionBox[
       RowBox[{
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
         RowBox[{"Cos", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
           "range"}], "]"}], " ", 
         RowBox[{"Sin", "[", 
          RowBox[{"q", " ", "range"}], "]"}]}], "-", 
        RowBox[{"q", " ", 
         RowBox[{"Cos", "[", 
          RowBox[{"q", " ", "range"}], "]"}], " ", 
         RowBox[{"Sin", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
           "range"}], "]"}]}]}], 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", "q", ")"}], "2"], "-", 
        SuperscriptBox[
         RowBox[{"(", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
         "2"]}]], "+", 
      RowBox[{"myCoeff", 
       FractionBox[
        RowBox[{
         SuperscriptBox["\[ExponentialE]", 
          RowBox[{
           RowBox[{"-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
           "range"}]], " ", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"q", " ", 
            RowBox[{"Cos", "[", 
             RowBox[{"q", " ", "range"}], "]"}]}], "+", 
           RowBox[{
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", 
            RowBox[{"Sin", "[", 
             RowBox[{"q", " ", "range"}], "]"}]}]}], ")"}]}], 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", "q", ")"}], "2"], "+", 
         SuperscriptBox[
          RowBox[{"(", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], 
          "2"]}]]}]}], ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.883472650234065*^9, 3.883472707765132*^9}, {
   3.883472768374175*^9, 3.8834727730285788`*^9}, {3.8834763893753567`*^9, 
   3.883476393819928*^9}, {3.883476594380974*^9, 3.8834766301142273`*^9}, 
   3.883479515801772*^9, {3.883481194077519*^9, 3.8834811948040333`*^9}, {
   3.883481372281888*^9, 3.8834813891601*^9}, {3.883481631881057*^9, 
   3.883481670046994*^9}, {3.883481795462813*^9, 3.883481798335828*^9}, {
   3.8834821201661377`*^9, 3.883482156692244*^9}, {3.883482198555661*^9, 
   3.883482201313931*^9}, 3.8835521525026007`*^9, {3.8835527323712263`*^9, 
   3.883552805972075*^9}, 3.883553233902478*^9, {3.883553370765657*^9, 
   3.88355348918934*^9}, {3.883555231506804*^9, 3.883555258874123*^9}, {
   3.8835553235529633`*^9, 3.883555356549965*^9}},
 CellLabel->"In[26]:=",ExpressionUUID->"2d742f3b-e2e0-47c6-baf7-86eb7d257d8e"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:0438\:0437", " ", 
    "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:043d\:043e\:0439", " ", 
    "\:0412\:0424"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiP3HeCut", "[", 
     RowBox[{"q_", ",", "cutVal_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["p", "q"], " ", 
     RowBox[{"NIntegrate", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiRCut", "[", 
         RowBox[{"r", ",", "cutVal"}], "]"}], 
        RowBox[{"Sin", "[", 
         FractionBox[
          RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "500"}], "}"}]}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"PsiP3HeCut", "[", 
    RowBox[{"500", ",", "7"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883712189119072*^9, 3.883712228166119*^9}, {
   3.883712362962804*^9, 3.8837123842519484`*^9}, {3.883712416510069*^9, 
   3.883712498909937*^9}, {3.883712612951358*^9, 3.883712643109139*^9}, {
   3.883714107348063*^9, 3.883714113312005*^9}, {3.88371457739816*^9, 
   3.883714579261568*^9}, {3.8837147888832903`*^9, 3.883714789001294*^9}, {
   3.883714834851016*^9, 3.883714848633318*^9}, {3.883714887754726*^9, 
   3.8837149765658712`*^9}, {3.883715546733477*^9, 3.8837155632869997`*^9}, {
   3.883715811036685*^9, 3.883715878917733*^9}, {3.883716635269021*^9, 
   3.883716635618628*^9}, {3.883717037674549*^9, 3.8837170662076807`*^9}, {
   3.8837176367784433`*^9, 3.88371763688974*^9}, {3.883717721450417*^9, 
   3.8837177217422457`*^9}, {3.8837179369425077`*^9, 3.883717956506605*^9}, {
   3.883719301080915*^9, 3.883719305227438*^9}, {3.8837194648559837`*^9, 
   3.883719490480385*^9}, 3.88371958155225*^9, {3.883812433272991*^9, 
   3.883812436322926*^9}, {3.8838125983193398`*^9, 3.883812601707273*^9}, {
   3.883812811939013*^9, 3.883812836349537*^9}, {3.883812882942279*^9, 
   3.883812903565971*^9}, {3.8838145735474977`*^9, 3.88381457724702*^9}, {
   3.883814668437303*^9, 3.883814685118195*^9}},
 CellLabel->"In[27]:=",ExpressionUUID->"c4aefd0e-3506-41fc-bf66-96c712b2ce79"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"7.1775205447856045`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.007653689117165494`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"0.000047477514441704025`\\\"}]\\) for the integral and \
error estimates.\"", 2, 28, 1, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{
  3.883721888925*^9, 3.883810169474214*^9, {3.8838124370058317`*^9, 
   3.883812439169436*^9}, 3.883812602653808*^9, 3.883812640655221*^9, {
   3.883812832071782*^9, 3.8838128381350803`*^9}, 3.8838129048860483`*^9, {
   3.8838142741990013`*^9, 3.883814288185184*^9}, 3.883814686293971*^9, 
   3.884769158604759*^9},
 CellLabel->
  "During evaluation of \
In[27]:=",ExpressionUUID->"7d8cbc52-e79c-4d26-b399-b6747dc97bf7"],

Cell[BoxData["0.003020559024845831`"], "Output",
 CellChangeTimes->{
  3.8837176480580683`*^9, {3.883717692050766*^9, 3.883717722110422*^9}, {
   3.883717949566876*^9, 3.8837179569436073`*^9}, {3.8837193022389402`*^9, 
   3.883719305670232*^9}, {3.883719468726447*^9, 3.883719490908146*^9}, 
   3.883719601662781*^9, 3.883721888939764*^9, 3.883810169483489*^9, {
   3.8838124370208*^9, 3.883812439178928*^9}, 3.883812602672359*^9, 
   3.8838126406661654`*^9, {3.883812832086575*^9, 3.883812838151223*^9}, 
   3.883812904902255*^9, {3.883814274211401*^9, 3.883814288199401*^9}, 
   3.883814686310783*^9, 3.884769158613853*^9},
 CellLabel->"Out[28]=",ExpressionUUID->"f408be96-63cb-40de-889d-967c51b2194a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"data3He5", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "5"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He8", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "8"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He10", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "10"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He14", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "14"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He18", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "18"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He20", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.883719850800653*^9, 3.883719902989337*^9}, {
  3.883720134128413*^9, 3.883720135586239*^9}, {3.883814502128789*^9, 
  3.883814504255754*^9}, {3.883814691243874*^9, 3.8838147196798973`*^9}, {
  3.884769169786854*^9, 3.884769171964299*^9}, {3.8847702801149282`*^9, 
  3.884770327360165*^9}},
 CellLabel->
  "In[101]:=",ExpressionUUID->"63a117cb-1305-4d2e-b025-0ad6c987fd15"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"5.047125058577728`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.014267398662466272`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"3.3537364682459118`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 101, 43, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"74a7a21b-4b4c-467e-a016-05d5c7f3068d"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"5.047125058577728`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.028507287644874556`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"6.705636966570456`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 101, 44, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770327986369*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"19d4c228-75a3-468a-80de-5351d06871c0"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"5.047125058577728`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \\!\\(\\*RowBox[{\\\"0.04269225068396483`\
\\\"}]\\) and \\!\\(\\*RowBox[{\\\"0.000010053863165901019`\\\"}]\\) for the \
integral and error estimates.\"", 2, 101, 45, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770328024572*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"13261410-d2c1-4de5-a57f-8aab2f5b6bae"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 101, 46, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847703280349216`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"06887e30-c058-4cdd-be4e-c95d6435f07a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 102, 47, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424854247*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"053aaa0e-b5fb-4a0c-a851-770a2f41fead"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.140405432164604`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \\!\\(\\*RowBox[{\\\"0.00568962451144076`\
\\\"}]\\) and \\!\\(\\*RowBox[{\\\"1.6183057839680119`*^-6\\\"}]\\) for the \
integral and error estimates.\"", 2, 102, 48, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424865415*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"0475986a-8b20-4171-a512-db8a4299149d"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 102, 49, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424910172*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"bdf07ebc-b9fb-45fc-9fe8-36f59febd02c"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.140405432164604`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.011360653405062555`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"3.2350009017496074`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 102, 50, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424921576*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"9c89a2fd-32bb-44ee-acec-bd252467d195"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 102, 51, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424972659*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"ba3e86a7-5a00-4e22-9b45-03303b35649c"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 102, 52, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847704249828978`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"e6a14ec5-799e-4c36-9f91-4cba4178def3"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.140405432164604`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.016994574538171187`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.848472766183235`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 102, 53, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770424996087*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"380d645b-0190-43e4-b775-c77eeeb8feec"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 102, 54, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770425007401*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"7dfb6339-8ce5-410f-84c3-fd413b05fc33"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.200325629241737`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.002933799637903277`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"0.00004463301131573382`\\\"}]\\) for the integral and \
error estimates.\"", 2, 103, 55, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770515283126*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"0ada999a-eae2-4f8e-9fbd-13b94d5e8629"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.200325629241737`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0058546252651122035`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"0.0000891528549382693`\\\"}]\\) for the integral and \
error estimates.\"", 2, 103, 56, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770515333824*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"59ba0df5-be0e-4f94-bb7a-168417efdb39"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.200325629241737`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.008749574687571557`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"0.0001334466478960341`\\\"}]\\) for the integral and \
error estimates.\"", 2, 103, 57, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847705153859787`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"26c3eec5-0794-4145-8965-9fc6fe33dfc8"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 103, 58, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770515396933*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"d50c9abb-8463-4893-8308-18f5ef10302e"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 103, 59, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770518551239*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"c8cfedd7-48b0-4622-af16-86bb4a32923b"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 103, 60, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770518612726*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"ef7d9abe-a816-424a-bf00-ca2b4b8ee236"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 103, 61, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477051867465*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"3e47e34d-6f37-4e56-b875-6afa50caa942"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 103, 62, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770518687902*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"ef1c1e13-e29d-4541-b517-eba037e13b40"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.130172814955287`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0007215577923760707`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.0137120026162372`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 104, 63, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770606151647*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"843e425c-0a27-482d-8d9b-b18a9e536093"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.130172814955287`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.001437802961004181`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.017447723490988`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 104, 64, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770606195002*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"912fd8fe-a9ea-4b5b-a972-a917f1c9cee3"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.130172814955287`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0021434671694430803`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"6.001279628066743`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 104, 65, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770606239258*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"3c681597-f4a3-4535-b88d-b74a30c46e20"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 104, 66, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847706062490377`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"7739ae3a-956c-4238-8c02-cdbb649f74ff"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 104, 67, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770608187159*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"b2035ea3-b5aa-419c-b5da-4065b3126248"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 104, 68, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847706102344313`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"2b4de791-3095-44a3-b26c-d4d02d59bc28"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 104, 69, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770610283265*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"e30890f1-534f-4ea0-bb30-0ebe1b024c38"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 104, 70, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770610292487*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"8954f63e-80ac-470a-891e-c87b3a82b38e"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.34999338447669`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00016715955992106107`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"4.64570632257474`*^-9\\\"}]\\) for the integral and error estimates.\"", 2, 
   105, 71, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770692946876*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"559d617d-eb32-49bc-aec0-c8cf57811431"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.34999338447669`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0003324596321625081`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"9.254960485792407`*^-9\\\"}]\\) for the integral and \
error estimates.\"", 2, 105, 72, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.8847706929889193`*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"22ae1696-28e4-437b-a8fd-61d19962a226"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.34999338447669`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0004940630670502912`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.3791529172801187`*^-8\\\"}]\\) for the integral and \
error estimates.\"", 2, 105, 73, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477069303325*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"7e06ff02-038c-40b8-8f15-2da7ad38118c"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 105, 74, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770693044546*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"958b0782-6886-42a3-9155-b93a24bfe606"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.04623634014134`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00007920439603206727`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"8.004755446653697`*^-9\\\"}]\\) for the integral and error estimates.\"", 2,
    106, 75, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770800654385*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"d0b5e57b-bf2e-40b2-ba67-a8376627ff94"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.04623634014134`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00015735439385189718`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.593021263953119`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    106, 76, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770800726121*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"5544a1cc-5929-4150-b347-b4205f73a6b1"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.04623634014134`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00023341053674364248`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.369780042210989`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    106, 77, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770800794304*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"6454f0be-2291-4689-a2d2-26279aae4ad1"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 106, 78, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.884770800808914*^9},
 CellLabel->
  "During evaluation of \
In[101]:=",ExpressionUUID->"68db7a41-580f-4373-82c9-c987d0e6675a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListPlot", "[", 
  RowBox[{
   RowBox[{"{", "data3He5", "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8837190138043747`*^9, 3.883719031090042*^9}, {
   3.883719077405293*^9, 3.883719083901246*^9}, {3.883719146512808*^9, 
   3.883719147083137*^9}, {3.883719324105036*^9, 3.8837193242313643`*^9}, {
   3.883719560527952*^9, 3.883719573051358*^9}, 3.8837201251772203`*^9, {
   3.8837204903826857`*^9, 3.883720492897325*^9}, {3.883720790657291*^9, 
   3.883720790924884*^9}, 3.8838145127332573`*^9, 3.8838154136877127`*^9},
 CellLabel->
  "In[107]:=",ExpressionUUID->"763b3918-bc83-44af-84f4-82b8d9fdad84"],

Cell[BoxData[
 GraphicsBox[{{}, 
   {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334], 
    AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJw03HlcjF0bB/AskT1bQimRQgiVEH6IsqS0I6Rdomnfa9r3mml2klAKIYqi
KBWiEKJQRCh7EkJ53nk/c837z/v5PrczZ859znWd69z3MN3B09x5oIyMjNxQ
GZn//7/kf12rxgytTnwYOwT0H+D69FH0WqbUcnDy+DN0UIDU8tDXPdAx0V3q
CXilOW/MuW1SKyI021cUvk5qJaxzClhYNk9qVew0MRrmNU5qNcz9oDf67HdZ
8kzkbUx+GvlA6llI1Is+0n9aak1YT3mspBMt9Ry89LgVtdRGai20Wg1zmKEp
9Xws/unNlfs5mKyN1c2P1Qdcl3ohxlQPMZiVKPUinPfc+I+9RerFOBO4JXT3
WKl1YLS5iXvqwSCyLir+bGxJT5daD089V0VrbZJ6CXxGLlyRNVhqffSfj9EY
VD6QvBR+2j8Lg7ykXob2QnakqrrUy9Gtb+mo0DSAbIDn5Slzg+OlXgHvhAm5
7npSr8Tz394hQ97IkFeh4mb/LA+W1MCCVYOfXV5OZgLlXLUXU+r/WyW5vhqT
3Q8WyqmQmauxsXyEagDjH11fg6KqqglHKvvp+hqozQ02Kx1DllmLRDUv6987
++j6Wtg+bbQSnP5L1w2haOmncLP3D103xMXxVzpK1pFl1iFIp5Z9OOM3XV8H
hbG3jU+87KXr63HJYOWx/7TIzPW4UWOS8jj4F103gt2UrvXmt3/SdSOEV3fs
ylIkyxjD6d/eU21uP+i6MdiPdhmtvNJD1zfgac60Q89GkpkbwJzEsWiy/07X
N2KawdG9lpe66fpGHBhdPZMxiiyzCXm1l1SMXL7R9U2oHjN3S09lF13fjO15
poPYymTmZuxZ59K9t/cLXTeB3N0z5z9d/kzXTfCGeSv2UcQnur4FBkWN5w03
fqTrWxB7ekma4+QPdN0UEXINmWafO+m6KQpXvzw8+2YHXTfDziDf3GE57ySG
GaIGr144LP4t/XkzTDS4vHKl5xuJK81gvtV1T7ldO7Xfijs/bZ5yTV9T+63Y
eTnp5BOjV9R+K261bD2btq6N2m/F2zfTXNPZL6i9OeSdwidOPN5C7c3xOjd0
dXnFM2pvjnJOwqz0jmZqb45D5wakcKc0UXsLrBOe+nLf9jG1t0CBJ06uPvaI
2lvgyGxNpY6fD6i9BYbOUm+8Yt1A7S2hYKFsvzf6LrW3xPqDv4ZzPe9Qe0vI
nbuW8NzrFrW3RMTEzLxJiTXU3gqj2WYXUHKd2luh7oWmpsHPq9TeCkOdCucP
P1lK7a2Qn+Eomx5XRO2tccZq7PL7SmeovTU+BMQGWjGPU3trHJmrKszdz6X2
1jB/G1/W+cOR2tugZ+zf0I5DqRWS9jY4a9Ja9i34iMRMG2z4PPhfRk2exJU2
GFHdbXM47JzEMrbo7OOmPPYtova2KCsb++fD4BJqb4sej6U1WZ5XqL0tdpz9
6BZ98Sq134akzJgO/r5Kar8NC2Usog5+uE7tt2HHf4tkJttWU/ttMNouv3Rr
cQ21347d69a9O/vfDWq/HSxrm3CvZbeo/XacYxgs6nSqpfbbofufV7ZDxG1q
vwMv/xt6TTvpDrXfgcgXryqPxdZR+x1outY4Zph3PbXfgXTdUtNI07vU3g6H
bRMX1k67R+3toHEtuaTnJZlph8SMAQY2nPvU3g7jE1V+HVFqoPY7sZMr5/Cf
Gxk78eaFWvG3s2TmTlR0WB3O+kKu3AkFB45onuYDar8LrHf7rlfsIGMXwvwG
FKQlkpm7cHmYnejseXLlLrzmWazc3Chtvxturx41pX6Ttt+NiAtcW9Gwh9R+
N/ye8OJ4SuTK3Zg+4rYpYw5Zxh4n+lLjTy4mq9rj6Yyb21frk2EP2RUxMnZS
29tjSNICPU8d6efbQ3mj8oyhWuRse/zzMf+drCLtzx7t9RftVMeQ2+xhWjgv
/t0f6fffg9Thj9fLtJNV92DrLpu+tFvS8ezBuVovUVE+2X4PPE9cLnoZK70/
ezB+YvmVOHty9h7kTD42daa+9H7twR6ZBJmmkeS2PShpH6hy7YV0/hywZPz2
kl9nyKoO2Fr7lHM0WDqfDjB/uELuqSHZ3gHyPxZ9uzJSOr8OOJX23PVWDq2P
bAfcaj0d8mKudL04AKaJct1naT21OeDjzNNy+vPJMo7QPcuOfXuS1qOqI+wd
Pgrmq5HhiJVKItf1Alq/9o5gPL8/d/cwMtMR82Kt554KpPWe7YhS3RflNm8p
HiodEXTLx0hgSm5zRMCGYWsFJdL4cUK4tsLSWGWyqhPSVE1upEZSvMEJdQYu
/JZ2ikd7Jxj87TuQaSiNTyfsTWTO+nX8JvXvhHEtuqcmDiRXOqGHvfGfym6K
7zYnFLT+WrmiTBr/zjh2qfgoR4Gs6oybh/z9jb0oX8AZq1fIzGbWVVH/zrDy
WLFmlzqZ6Yzxl0/vlY2gfJPtjKPz77sImikfVTrj/YkLarqLyG3OsH3ibtSl
XEH9u4DrdMNd6SHlM1UXCNu/6UyJL6f+XVDxKPjEzBVl1L8LmpeYjvfruUz9
u0Dz8rJZa8+UUv8uSBjk+abGlfJnpQs6Tymfnz/zEvXvgvKe6VuLXhdT/65I
7Lj8Jfo45V9VV1QN36Lc4HKB+neF0Mio9YbWeerfFfmi7JkLPlL+Zroihhfq
Wht1hvp3ReOW2fqXVE9T/+LrTzdsMb6RT/27gjF0j2Md4wT17wbPO2OXJ87I
of7dELfc73Rt61Hq3w25X4dvOrSK9hN7N3yduDTkwqOD1L8bYoxHuVkE8ql/
8fVik7898zKofzfITipZNPZDMvXvhsquGOeeQ9HU/14Yj8+xuf7Gn/rfi908
udE1jB3U/178lHd2LqzcI9nv7Pfi05+K/nDTQNof9yJRNdvgX0m0xNl7wV/4
Q81PNZn2y70YtyH63gxttsRte/FvwS5GchntpzLuePDP2nPxIqHEqu7Yvq00
8jXnEO3H7sg9ozjMqS2L+ndHyKfb/1WPOEr9u4PpHOTNzjxG/Yv/vOarx3Fq
OdS/+PrUeY8yDudS/+7w+/Zh6YlRedT/PoTci/hZ5J1P/e/Dp2PTPis2nqT+
9yHXoF77ltpp6n8fxt46Pd/SpYD634eskVu7rmRR/ZC9DxMeqHv01p2l/vfB
xr4qZMSXc9T/Prhen743OKqQ+vfASD3ToB1y56l/D2w4/Hvc6QQyPPDP5Ku+
x6AL1L8HyvnOt44FkpkeCOJP97ToJGd7oDLhaGG0OdU3lR542bC+aWkJuc0D
iaMje0IViqn//dBL+PPMkkFW3Y/9hsWqwXwy9uOIw7SRLzvI9vsxtup21s/F
F6n//YjdEqZeF0zO3o+gxDN813Jy5X4MqL6e2tRLbtuP9IN26zW0L1H/B9Ax
Ll/g6EBWPQCLyNyvonQyDuDyscgtzSVk+wOYrfJ59bznZOYB7LwR1Jb3m5x9
AO9u9tXYjC+h/sWft+LnMBNNctsBtCeyeAJ9sowndg9PqdtgSFb1xL/GR5G+
m8jwRLLZpJzZW8j2nhifdzcvYSuZ6YkP14IXmm0gZ3ui8/Ft/RcG0v49cTeg
p7tcS9q/J140p9+aryjtnwFR9xz54//R95dnYI/ZF8sF7dL7wUCNsonCuyqy
NgOTpgWMf5klvT8MGO/2+Ds/gGzGQMp4zbSPm6T3i4HJKno1c5TJDAYyHwvu
DPwonT/x5/2+8C/xIpnFQMKSTR+ehErnk4GpznGrZFaTCxl4deZvo9JA6fwy
wP9z9+jaSlofDQw4Vz24nBxCbmPgfuS1DSN1yF0MrB/jwWl5L62/vbBrkNKH
8YfJ8l7wc79/9rYJWdULX77nb57YR+tb2wsPHuzQHZ1PhhdmhOS11m0lm3lh
SGTbZeffFD/2Xlh+Im7Z9ywywwstLp21yWvITC8MVm6sXv+G4pHlhbzP1qHL
Y8jZXqjLS1wUqUYu9IJaaNPMXeEUz5VeCJUV7Sktpnhv8EI9L1Z+VSflgzYv
MJe7fFKZTO7ygo36bc8EI8ofMt6o/md8P9eH8ou8N5ru9X/POXyKxu+NyRoP
/S7coHyk7Q051Z38Px8pX8Ebjy1PLD8pTzbzxoAfNz+8X0z5zd4b0UqK1R1W
J2j83hj2Ym3QXX/Kh0xv5AsjzW/wKV+yvOF99ZvK74t0/sn2xhLNycsyGim/
Fnpj4rzQ0MvdlH8rvZEdsG21QJ7c4I2wJzE7LeZn0/i9YTKhRn+OkPJ3l/j7
WP0XMKQxk8bvA2uPnIfx8pTv5X0gc2Ja0G8TEY3fBzdOmO/LTRHQ+H3wue+x
V2M9j8bvg2gj10n3RtN+YuaDQz0njjWbZ9D4fZCeJi+/VMSi8fsgWGWvoktN
Ko3fB5lbnVvG2iXR+H1wt6rT6dfvOBq/D7Z9NP3Iy6L9rdAHB7k/X+7dyKTx
+6B58Y6qp3+DaPw+cF5m7zzXx4fG74NYud1P7H/tpfH7YNjhkCFzt22n8fti
xqCJAw//kKfx+yLtr0v8to82tB/7YkCGFpo2uEms7YuJriXzjiz1pv3ZF36L
+wfO0w+U2MwXpy2OL2pSCZfY3hd5bpN/d/+KlJjhi/e/CxsePYqRmOmL5T9W
u+kfj5eY5Qt1edkZ95yTJM72hcehlMh1U+l8W+iLQGFlpF11usSVvjh453rW
s/lsiRt84a5R+GWYH9Ufbb7gH0m/MKWYI3GXL/DGqP/TR67EMn6YvynD20GJ
6hd5P+z+yFq/a52Axu+HGyYLVtxwEdL4/dCyw+RkGFNE4/fDoxUX93lmUD1k
5odjz1u+RWceovH74eEVH50TWZk0fj/s+Hn1YpXwMI3fDzljr0bcSsqi8fsh
2kNDLceX6q1sPzizJzXPnJtN4/fDs5bhux8LyJV++PnL7NxOGarXGvxQxldj
lTqR2/zw7++U2Fc15C4/sF1O1DeqHqPx+2Pm2F270gPJ8v6IvLj+/eh6sqo/
VGKHP9w69TiN3x8jLUYvtHEhwx8ef4Ibpp0hm/njbNbCOSe/ku394R52xfnX
PKovGf7Y9KrFaoQbmemPBv2z/h2HySx/HL4p+zHtPjnbH6PdZgbL9pML/RHy
dEWq6axcGr/48144nPfcRG7wh6J/dBLDg9zmD4OzFx5bJZK7/DHETt591jGy
TADCKv2K3l8iywfAUTP17JJbZNUAFOduLZ/eSNYOwBybGxF6rWQEIMn61ugp
r8lmAQia+PWTaTvZPgCji5QPnGgjMwLQkh+Yu+gZmRmAlA91Tdb3yawAqB3j
lW68Ts4OwBtr+5/Cc+TCAOQ6zjq85aB0/AE45P5VMyhSOv4AfDsTGzXLWTr+
ALxMndnntE46/gAIUua6H2uj+ykTCH0Zvbd6JWT5QFxf1iur2Cg9DwSi4edY
G6s8snYgDkX0cxkBZATi0YPqlcGGZLNAHGmdqx49mmwfiE2m61wzH9N6YARi
yNhvB5pEZGYgng52+7xuB5kViBd+lU2/J5OzA5F51dtR9gmtx8JANB5sHRiS
Tq4MxMyLd/bsX09uCERBfNRI71/S9R8I2/3nXwSflK7/QByslXNcto0sE4S7
by+NqBlClg/C5pct3nMvUHypBkGxRNkmZgdZOwi327WFrweSEYTMmG8uxWYU
r2ZBOHF5WeQ/AcWzfRCGfbRpqXtO8c4IQnlMQJ+hkjT+gzAtWTsuYxvlB1YQ
mm3bl7RyKH9kB4G7TKPdpI7yS2EQxl5c5zJKhlwp/rxVNbmGiygfNQQhaGl/
rJID5au2IEQ/rX1zNZ3yWVcQHjzX42wto3wnE4z3x7aZyrzl0fiDsTBuxrXu
kWTVYJT/Z+28dTHlS+1gzBmemWtoS/kUwZj1dVVxTwjlW7NgPNk7jp+YRfnY
PhiHz/9SnFvJovEHY/rCRYcHVFH+ZgZj/fLYUU4D02j8wVB4+ZBTtzqFxh+M
+TncvFgm7QeFwVjQDqWX1xJo/MFo2f5BYWZ/HI0/GD5Xxg3OXh5L4w+G5vTz
qYeD6bzZFYyb8fvZLldoP5IJwbdwq6TwnxE0/hDInn4R3B0cSuMPwbyQ0DVn
BwbR+EPwsXZFxMo0Pxp/CIYkWT+fN432Q7MQ9J7d1zvMZT+NPwT3zdTecA+6
0PjF7eeLjgy/tJvGHwKLrY9MK8zMafwhuLJndPI0ZR0afwg22THv1RmD9v8Q
/DK7amqnbUX7fwjSBqzRtBtF5+OGEPT9/s+ogeFK+38IOk/qfDh2fT/t/yHw
t35UH/ifF+3/oQirWsj6Ot6P9v9QnCruvXdbmc7XqqEY2LZxS5ZSiMTaoegf
fjdjiHy4xAjF+aIZfvdDqB4xC4VJhcOy6PeREtuHombZQf5XM6pfGKFYcK6i
9935GImZochaPHHdipFU77BCUeZU1nxrd7zE2aHoffUmZWdBAo0/FBc1ZK88
+ZZI4w/FDr2oZaO06bzfEIqiZ2v3t7ik0PhDsTysb8l0PtVbXaGQiTi1t/Bq
Go0/DJfd72uEtabT+MOwf+rcS+eCqV5TDUNeaOzoYwPp+YF2GBxWpU8PjyMj
DIopi98vH0L1nlkYqvdy1t2PlNZ/YRhq3fZC6zeZEYYXm53VN3pwaPxhqNnu
tVX5OZkVhkF9MxwPr6N6MjsM5qypalWnyYVhmK81RDlmFNWflWFYPWniyRZ3
ckMYRm6weHWjmtwWBnvX37nLFPk0/jBM0VI7pOdGlglH8Eh3zUtFZPlwtNnv
C7j0h6waDvms4966K6T1bzi227rc0QohIxzqKXZtucVks3AYjfZ6dug92V78
+UmxwjFT6PkKIxzV6+4UDVxPZoaDbfQlNGA/mRWOeWZL/jBY5OxwDFWIett9
llwYjh3r554acJtcGQ5/2bMXK1rJDeGY7fJ5jN5Xcls4Uibf9N/YR+4Kx22z
sX8HyVJ9LxOB2znBFu7DyPIRSL/z/mms1KoR2JrfnLBb+ue1I7DQmt8r00+f
hwhwRQF2vl1kswiYtO+Si3pBto9A7BG97nDp92VEwPXnQxdGoXT8EagPXf7N
gSMdfwRelpvlO3pLxx+BLSuFc5km0vFHIO8g3+jOTOn4I/BDa9jKDb10vxsi
MASXvo2pJbdF4PmIQ4Pmc8ldEWhemJhSZEeWYYIvnzv5/HSyHBPf1jzNX9Iu
XQ9MrHu/Ktf2KFmRCUXbqHZ1O+n6YCKwbkHW+fFkTSbuXRnhPbqW1p82E0et
LbebBpH1mXhnMfBMvIb0/MSE+6YBk+oe0vo2ZmKIkqNwXoj0PMXEnaRUZrUq
2ZaJFSaO7kerKV7sxZ83cK9+iyPZjYktpe/kEweQGUyMYg/ZfjWT4i+QifCF
3y6m6ZKZ4u8b1flvXD3FcwITAfv2rLW3J7OYeDJWuSqlm/KBkInPa9a8OxtF
zmbiKitgbas8OZ+Ja2H9M3Yuo3xSyARUc6x8TCnflDLxaEzC0Ll7KB9VMmFv
b2hzwZPyVa34z3dcSlkSIs1nTDxYZDXufTSdD5uZ+NSWtP9HIuW/NiYOO6st
SU6l/NjJRJLt5fFP0yh/djHhbLG6YFQa5ddeJnI9007YJMfS/Eci3LXn8Ns4
ysdykXix6/vUd0zK1/KROGb+gxUfFEXzH4kLmsomvQzK76qROGitGeTiSvlf
MxJpM2qnyVyh/UE7EnKP9p98ezyU5l/8eb8jjjenBNP8RyKre5JwsR/tN8bi
/vdVh5vt9Kf5j8TIySZnE9b50vxHQl2t5L7OfG+a/0gMbHR7UDCJQfMfiTGm
ahfTB3vQ/EfCyi4irLSF9sPASLwvd28PL6X3p8xIfP985fOkhbtp/iNxrfvY
+VF/rWn+I6HYOJptnm1C8x8J+XsJV6tuLqP5F3//0a3K+d8mSvbr/Eg8r62I
+3l9jcSFkVCodjW6bL5V4tJI1N83nzF98TaJKyOx7Fr18iimvcS1kdD2mD3i
8E4niRsiMXZi8wRTbTp/N0ci0Pnv3GG9+yRui8Rx44vfVxZ7StwZiYLmOYGL
L3hJ3BWJ6+oym/ujfSTujcSsTbsXLjel+kUmCmv9/30qGB8gsVwUWrmlj8Y/
oPO8fBR4t4ofLIoPllgxSny+WO11T1daH0VB3dDxVUFLmMSaUdj9fHwfL4Tq
Ke0oWIVOPTE7kSmxfhSGyh4ZZmtG9ReiULN+VZ7B+CiJjaOgUqj04toDslkU
tofN7rqZTPWbbRTcF+8avHI1PT+wj8IO15uao7vJblFIrHa2VMui+o8h/v5G
P9xc1lF9GBiFGxWBOrc6yEzx54cWeC+KpecPCVF4Zb7pHl+Z6ktWFLh9Wq/b
C8nCKHA6DJYNX5UocXYUYg5usPx7i5wfBd+6guyTm6T1ahQaLeuj5O6QS6Ow
3rJ068i19D6kMgppO4xtTl0i10Yhh/PgQfNMqn8bovB86KfutFRycxSWDjV9
WdNFbhNfN9c857OFno90RqFK54AH7wS5KwpHGb/Gqf8m90Zh2i6f9Gnrqd6W
iUZMote18FSyXDQ2xq7Zt/Y+WT4aH+9e2bJvBNXritFYvKV+1M/VZNVowHiQ
/htvsmY0cpc1r1uSRdaOxunOD/xv0uc1+tH42jGeofCGDPGfP2P7++Q/snE0
xru9PNw8jM4LZtEImvZnrGgs2TYaqukGl0QKZPtoDJj6wfaFItktGv3T/y3d
JzUjGhW37f4aTiQHRmNnsukpxhgyMxo/U23Kvg8hJ0Rj7sJVk/N/0fdhiT//
593sBS1kYTSO3M9ySS4jZ0dD/qyL820eOT8aJWMrd/a6kwvF9+cy547GcnJp
NN5Xu7a6DpE+v4rGwxnC4Nv1dL9ro9GgGKS7K43cEI1qhtNm/U3k5mgkbL6Q
4z6I3BaN0ZpZN+VKpPMvvj8fFZ/OcpHOfzR6qxIOP5WXzn801m8O2KdXQutH
Jgbe9tpaFtvIcjGIcNhivf4XrUf5GGgpL3s/i01WjEHSv4NuIzXIqjEYpHil
afRlWt+aMbD2aC5eb0TWjsFPq6Ce+gcUH/ox8HlytO+KLRkxiDw4KntOC8WX
cQzmx2yfrGdHNotBRdzcIb3NFJ+2Mfh2Yq1DsjnZPgYjPoqiRtymeHaLgcJI
V3muAZkh/n4X5w1efYbyQWAMOCrXsudPJTNjcP+Z7oGgOMofCTFYkdins/Ir
5RtWDOQdr/WKrMjCGLStd/5+8jLlp+wYeM0cy0qeSs6PwflEeRe7EMpvhTHY
MfXZ4mVPKf+VxiDn2tBna3TJlTFI8csv0FShfFkbg9zZ+mGiBsqnDTFY/agm
YEIE5dtm8fVhF4c/mRNC8x+Dqs7Pl6Y00vm0Mwbtp/plVUIof3fFQHOCJVNF
lfJ7bwzuZicdt62W5v9Y5B8vbx7i7EvzH4tAl253F1naL+RjceLAkbCiHNpP
FGOx6abuoDlrGTT/sWCOP+I6oorOu5qxSFBtGzq4353mPxYbf5TpFS+h/Us/
FgPezBeyvZ1p/mMx/Gz1uLFnHWj+YzEwuDnE5DGdj81ioWukdTR563aa/1jI
R/xRuf7AkuY/FgGWf/9kn9lC8x+LLvZVbZ3qtTT/sSiPO63SVbeQ5j8WBxI1
YitjR9P+H4t1U0+nzt28lPb/WJxPCdRI2GpE+38s+DvvNcX2mNH+Hws3vT+W
EbpUH2THou52UOFr9x0S58dij04/r3uDvcSF4s/7V5X9sslB4tJY7Hqwe/eT
Xc4SV8Zig0app/8Lqk9qY7F4UeHiPdbuEjfEovDg1dalN6meaY7FyEqlsNx5
nhK3xeLniMYY9ZtU/3TGoml+fsn7Ljrfd8UiSeNgfY8CvQ/ojYWT49yVyvpU
T8nEQWXgb9YySzr/y8XhR3mRrfo+qr/k4+At/9agJDRAYsU4OLRF9t9JkD4f
iMPP3A0BBun0/kEzDowf3/I606m+045De6/yhTNJ9PxAPw5+idNfuUdQPYg4
uGSmF8gcCJPYOA7uVZwyM2uqH83i8CBEoXOFfoTEtnHi89wT1SfDqN60j8Mf
W40E+JLd4nAukLFv63MyIw5z+ddO9a2kejUwDicybt7QO0JmxkF26KTWnr/k
hDgUdb07r2VF9S4rDv4sx/zGU2RhHLYwRt1q7yNnx+Ewy7x06yaql/PjUFFU
dluBL31fE4fdKyd+nttKLo3Dh1P7S5NUqd6ujMO/59ou8+zJtXG4emr249GZ
5IY4NAS7JMxpJDfH4ZPLsLxQOarf2+Iw/lfv3wFLyZ1xeOsd9KPEmdwl7v/z
2ZzMNHJvHOYdlLl6tkha/8djULYb53MjWS4eO/fmK2/rJsvH49dg52/fRtD5
QTEer+7PXXt5Olk1HmpZdm8LF5M14xGjcGPT89Vk7XjMqD8RsHwzWT8eJvPe
jX1sTkY89vys31pgRTaOhyCrTuGmJdksHjbX5W9omJFt41H8fcj2JiOyfTxk
fCc5P19OdouH0ee7ssu1yIx47G/seN+vSA6MR8cd001aA8nMeGh6y36510Hj
TYiHwvRu5a+3yax4DPl4qoCfTxbGI/KA6tf70eTseDx7aVCWu4OcHw+NOwzn
GdrkwnhM/m/+NcsB5NJ4DNexHbP+vnT+45FRy588+KB0/uPhsfT02Mw90vmP
B7xPHp46Szr/8Ug3m/2Q1UHrqS0eDGuXBcNPkDvjoTLTKou/h9wVj1VnTu1f
N4XcG49hSU1bZjXQ+pVJwJzsX+YboslyCQg+e6nj2mKyfAJ4xnMaBa8oPhQT
YH3/qO7bFOn5LwF1PR6hpbpkzQREbBe5zWih+NNOgMmzvCH6TLJ+AlYMW1Yg
p0aGuP+RXu9Noym+jRMgY/w2ZOs1afwn4NoQxgaDH5QfbBNQb/F04BJNsn0C
nthq33azoXziloD+n22zfkdRvmEk4Oyd63LypykfBYqvl00teXyf8hUzAXqr
Cu55f6N8lpCA167Hl8rLk1kJiPySpdk0l/KfMAGKG4+P+GZI+TE7Acz+8cnx
Oyh/5icgU6eAWeNJ+bUwAR/LArseRFL+LU3ArFeNA56x6fxaKe5/kXvvkGzK
17UJeHVJd150AeXzhgQsnas+pvsA5fvmBByyFnxSj6LnuW3i+Zjp/uBnxj6a
/wTIbzqcfvmo9H1vAt5MefWi6iztL70JaD8va+p6hfYfmUT07oha9reGzsNy
idg1ZdLlh/foebJ8IqYUTFCPLqTzsWIi/u4e5qhXTfudaiLUSibPc35iQ/Of
iPqWjfziDxY0/4m4KKN8qlaG9k/9RMi2Fp1IWGRM858ILXXnuIy99HzbOBHv
f5c5vDRdSPOfiNT2ycpVz/tXSuZf7LLnzYcHzKX9PxHXR4iczW8b0P6fiJKq
oMcX+tbR/p+Ijp36WRbxJrT/J2LNnnjDc5H0vJ2ZiLZxvw0eL7GWOCER7TKd
ixPf0vmclYi1PLvqZUk7JRYmImnlxpYzGXRez06ETZXiBO0dVL/kJ8KU14vd
0+j8XpiIavUfD349p3qnNBG71+b5l3BcJa4U318/a82d6/ZKXJuIE81PF53s
ovqpIRHx7ktW7OR5SNyciOMXZMwNFh+QuC0RU+/t6xh+R3r+T8SX7xyfWwVU
n3Ulomjcz2e3GFS/9SZCY7m98kdtel8hkwQdh/+8FT6T5ZIw1XpIy4Jcaf2X
hBjNdzOmbaP6UDEJR37teVMrR/WjahIMroYlKBaTNZNw+bmR6c/t9Hs+7STY
a4Rt2dxP1k/CuLlD/WQPUT2KJBT6W6aO0qF61TgJLyuTVm2tlf6eIAla3+Um
XLOh+tY2CRvt9vmseU22T0LqpapTd13p+YRbEm7LPPtk2klmJCH046mtVxyp
Xg5Mwo6Ftk//PSUzk/Dbst1DfhPV1wlJ+Jo+++XrS2RWEvIVyz67K1M9LkyC
h3rc6qxwcnYSWu1cPH2ekfOTkHciqveVNv3+oTAJ5yclbXwdSS5NQkX47Yr9
d8mVSZhUNvlI+Hhp/Z+Ex7wzU+UtyQ1JwIhzltPSyc1JqP113fJEDbktCZ2q
dmNP9JA7k1B3vk8nbQydL7qSMOwojzNYjdybBB6nKvTSQrJMMsaeuF+Zs5Is
l4zUeG1egzFZPhkxN1LPLjcjKyaj+6jz/E5LsmoyPIyys5utyZrJGJ1ZNFZe
au1kFLw98JFtLn3+k4yNfY7DHTaTkQx9D72SmLVkY/Gfz3LJ/beEbJaMoUaj
uhtnk22TYWAXrzZqMtk+GV/ejZtxRpbslozLLy4n+b+k+8FIRlzBgPDQs+TA
ZGQ97DYNDiQzk7F8sFx3+ApyQjJah3waf7Cf5oeVDN/Rw1VbSsnCZLycM1jf
2pOcLR6Pl/zCKdPJ+cm43WXAWnaP1kNhMpZNOhJ3x59cmowSc+fPrVPIlckI
/N28OvEKrbfaZAyaZ3T0lRW5IRnvoh7X9H2i9dqcjHtxa/q7IqTnv2RotGbM
fzya3JkMrbun6ypFtP67khH/5/mDOlVybzL+TrWoGZ1D8SOTAsXgxLxjM8hy
KeiUFfZlH5E+/0vB7abI8hmKZMUUfOnwtFiXSvGrmoIrD18eUv2P4lszBfHh
N5827JfGfwr6/fIuej2l/KCfAua9o0tU1kjfn6ag2NOn6kce5RfjFMzj+owe
N4JsloIT22NnsvdRPrJNwZ+Vg7axblO+shd/P4uc9fPUyW4pqB5vdzs2nPId
IwWubN3fJY8pHwamQLRhrvrrOWRmCm6V/Ty0ro/yaUIK5v/pWb3wCJ1nWSlo
9bvztmYl5V9hCjyXOvitfE75OTsFpnrlii2+lL/zxffzRYZGywg67xamoLt7
sEpYNr3/LU3B+IXrBP2LaD+oTIGe/9almdWONP8puPjnQrHAnPaThhTErtpw
cX4b7TfNKWgKXXNh1dNdNP8pmN1ZvNmii34v3ZmCoCy9gROH0P7VlYLdqvPW
DphK+1uvuP8V6ydwF1jQ/KfC9sT9P8aGZjT/qZjwwvuhbtFGmv9U8M+n2Mi1
GdL8p2KAR5HVb5WVNP+p2NB8tkguYRHNfyoEO7ccDeqcSvOfitQhb++cUBlH
+38q8u9+zPHsXUD7fyqKXZKieu2X0/6fij4ndf/529fS/p8KEwurNJM/VC/Y
pkJLJmXmr/QtEtunQvlHfY36KHOJ3VLRntvUrVdvKTEjFZ2Po7WqYqg+CUxF
xaS/o+z06PdvzFSYz9K4f7DNTuKEVLTpjrNQiKZ6h5WKL8LAqcWjqR4SpmLP
B/cung2d57NTkWsxyOi/Q1Q/5afic1hYYcVzJ4kLU9EaG1qSp+AicWkqHi0/
9S5hM9VjlakQFqnf1w1zk7g2Fbu2V46Oyqf6rSEV56vkrNfco+cBzalwclM7
sPkL1Xttqag8s3dlgBzVg52p2JTS/uCg0gGJu1Lx9HOAHWsO1Y+94vFt/qsy
eTLVlzJpWNLqLXdWRJZLw/H7KSY/FKgelU8Dgz/8eyuLrJiGi+tEmTZDqX5V
TcOu4UtZ5sFkzTTY3re8VPGerJ2G4RUPD7OsqP7VT8Mos/1hJVfJSEPkL+vF
GmpULxun4ZrtcuNHUWSzNHjxZnSdeyl9/5MG3YATIy7oU71tnwbWwJ+a91PJ
bmkoL34W0/+CzEjDipNxI3S0qF4PTMOFL2bb3P3IzDRwE83LhFfICWnQwrsF
pX/JrDR8XjbCtUpfWv+nYYT/yarzXuTsNKxLv2YdeYKcn4bXzQ7vtZrIhWkY
6FbeXTiIzhOlaVg6siFzuBa5Mg1xDXrVS8zItWloVirp1mOQG9KQe+K629AU
cnMaTho/n3ryOLktDT++mAqUSsidaUhqeD7f8Sa5Kw2CUybPwx+Qe9Ows71A
z7uZLJMOTgE3D8/JculYXvWf8penZPl0/LlgsSKikayYjldeS81+35E+/0lH
6YzhRg5XyZrpqMvTuFR5mqydjma35Y1T+WT9dAQ32AWGhJKRjl/VKoqdu6Tv
/9IxNCP5hvsKslk6Miv+aI1SJNumw0DtTcbTL3R/7dPxsCz1wbPrZLd0jLp7
0lqJTWako1/wQvWUHTkwHR9Nll5lzSQz03GrJ9mwtVM6/+lIH1hme/ikdP7T
oZ3QNf2lC1koHt+16k3nVaXnv3Qcv7Jx4Iwm6fkvHc+nT/26NolcmI4hvY8V
hywjl4o/z1l54YV3tJ4r09Ho3mG5ikWuTcfLIjXZCj1yQzq6OjZor31G8dKc
joJfsgteBEt/35uO1oqqymOK5M50nMvUk8spovjrSkdCUmv8j03k3nRUe7lN
O/1K+vsfFgwNpg966ksezMJdS8MqjixZjoWAhWZLuziUH0ay8CF5E2eQKlme
BYuHskk3LSi/TGBhoVbouI2OlH8UWejya7l89QDlJyUW9u449dPEn55nqrLw
daNJsUYw5bOZLER/MdoUGEz5TpOFR/3OQfsDKB9qsTCx/NU2XS/Kl9oshLtG
7fznSvlUh4X6juI1v3ZQvtVnQU8ue5SpCZ13DVhQSdSV0TWg/AwW/piszmjW
pPxtyMK8XwF7946n/G7MQu/suK2T+uh57mYWdI+tdZt5k/YHM/H30V6hNoG9
U2JLFvLqRn3euY3Ox7YsHJnv922PyjaJ7VgQec62YrbT82N7FjZ8XDR38gna
r5xYWKmwwynFVbqfsfA5r7BiqSadnz1YcJY38h/wYBOtb/H3LfWTi5Q+r/Zl
Ybz2/QfnHq6h9c5CS3LTdN4pA4lDWZjqGj5uSvFiWv/i9s/H8m/FqUscI77f
d45sscii83YCCwMfRp+/MVVJsp+nsPDg5+K9zmULJGaxUKRhZ9OTry8xl4Uf
rf2n84ogsZAFfry5auEIOo9nsvC327agfccGibNZYOQo7Ocep/N5Dgvfwo9s
GPGN6pF8FlbIpqy0H0H1SgELlxN/uPqpWklcyELU2XDj3gX0e/ViFv5dGnJE
sJTqn1IWFlTlew9aQfVRuXg+WoOmfV5K5/lKFtp2Dd45VJveN9SwoL+3YnZ0
uvR9vHg9xe+6Zxq9R+J6Fty6Ps1e5yOtz1jY+WlT+qrdVL81slDTUzZVyYjO
/80sWOlVlZXOoXqvhYWwEx0LeoZRPdgmnq9RW8eefUN+w8JF9wVPbl6h5wOd
4vZack9UUqie/MRCyNFGk0O2VG92sTBWp9dRSZXq0R4WYt6N1Ip/Te5lYUdO
7KnKI/R7gT4WRv1Sbz5rQ/WsDBt6ZVty9YdTvTuYjd5Alf51JWQ5NmplPWor
dlF9PJIN5vS4rnQZet4gz8aQm8/2HM0kT2CD5bdwKGMy1deKbMRWfg/I3ENW
YmPUspGyd09I3x+x8Xjtcr3fneSZbAzsHTplsibV75ps9FfFr1d3ImuxsXH1
mGcKh8nabKTsqA/peEjWYePp4Q12bFk6D+izsfDOM90xumQDNkae7t5st0f6
9xfYeDfPgeGbRDZkI+8h87dFIdmYjW1hK+t/PSRvZmPitWk2O7ulv/dk42Cu
MidqNJ1PLNkYi/BBLhrS84r4fj6KujhkBdmOjVTZMXAyJduzsXaQTnX4LrIT
Gw9en+iwdie7sbFn+/QXn73JHmxcGXRm17pAMoMN5R1P83YHk33Z6DvbErYq
iBzIhr1+9uxOX3IoG5aCkoCd+8lMNo59W1ty3IEcwxav36rSCktyAhubZO7U
X1pLTmFjWcWZqrQFZBYbWcEKHSaKZC4bwd6RA//20/0RsvEl5ZzN4TZyJhv5
ZwYcM6gkZ7PxaXj1+FeZ5Bw2bjTtseT4k/PZeH6YH25nQi5gQ+t48LT108mF
bPCupC7Y3k3zX8zG5lenpxyvJJeK19PI70VzU8jlbNxOFOn/Z0muZCPT6eLm
2VPJNWwkz/7Re/EFrcdaNhgxG/PPHyHXs+GlFK8+exe5gQ2T6Z+Es6eQG9lQ
+7ltRGQexUMzG1CuS/s1kdzChpnCMJVHEdLnd2w4MSxvaL+leHsjnl+f3rnz
15M72bia1Cp8f4zi9RMbMeFDOyP/Ujx3sVEaJhOnYEbuYePl24Xut7Kl8c/G
qbq5Yy9+pnzRx4aBQYu/zBKyTAauLymRrwul/DI4A0ZODbf0Kij/yGUgObij
2/kf5aeRGWg44GYWsowsn4EJ2+xlDvpQfpuQgaLpbuFvT1L+U8zAil+xhyJb
KT8qZeBkxpDAjNFk1Qzom5mGGaygfDozA8YzT9nk7KV8q5kBW8bIri8cysda
GdgfXlQXFUj5WjsDQ9rXj426QflcJwPrz9cfnzXGjuJf/P0FaVfLrOj9sUEG
HvsceZQisqX4z8AZL+vEt8/ofGyYgQFz7x0fO4X2F+MM6NTv7bezof1ncwYM
VjkEjefQ77nMMiBz/MqXAYdMKf4zwDo6Pe31qM0U/xmo1OhYYh9hTPGfgZKb
fQPGddF52j4Dveb9wjT71RT/GZDV/W7afGw5xX8GJp5uYzLj6PfgHhlwP/do
WMSzORT/GTiUtV7zp/1kiv8MvI/Qs2r7+E6yfwdm4PONr2k3B6jQ/p+B5WZ/
vp2Lnkf7v/h+pUz57HVFl/b/DKwJC389/STVCwkZ2Jff6Olyc7XEKRlAV9DO
eYvWSczKwPx7z9R2COh8zs2AS6VjmcsPqk+EGXB9Of9O7SZTiTMzIPDb3NS/
eavE2eL5uLOi/upXqndyMuAxVHZLeyrVQ/kZKAs+4TBfg+qlggyU7zs80b6M
zvOFGfhoqBu5bCPVV8UZ0LM628R8ROf70gx8adby+GVN5/vyDAwa4VXm2Ej1
WmUGtsrZ+KZsonquJgOMvNGVSruo3qvNwNfd+rJTxtP5v148P9FZhsdrpL+3
z0DrbFWHLG+qFxszcKFE+8s3JaonmzPwIM1xdmw1uSUDKn1NQ+FC9WebOF7e
xuiMkKX69E0Gpj90nNBwhNyZgZTXwbcD9aie/SSOn903dLtqyV0ZCA7+0z/d
hurfngxc7F6Y8qdN+r4nA/abXca5ulC93JeBJrPGFKsOsgwHjtwlNcWOVF8P
5iCoqt3U9zlZjgNByBVBzBaqx0dy8Cat//GTcrI8B2pu/Yo7Z1H9PoGD6XHH
DYcnkxU5GPGyefzDD2QlDton1E4+uU5a/3Og7PK3KuYQeSYHTSbW1js+kTU5
eFX74ccMfTo/aHGweeWpI0/CydociEZ1z/OoJOtw0Hr3u82LPrI+B1s3/D6v
oUPnEQMOIkxizqx1IYODMteNovkcsiEHVedGHn17hWzMQdzNTXddWsmbOYhe
1Dzw/B+yGQc5JqsG1oyj848lB+t+T3DNVifbcpBpNSXPaDHZjgOPq6vHli8n
23MQb8Kql1lFduLgz9rWJ5NXkN04sEv0HDRSj+zBwZbLQb9bZpMZHEyQ81vE
UST7cmDttKNXdyA5kIP1Btcd776j7xvKwTiz+9scbpKZHBwcoJz0L5scw8Ew
3j6PAn9yAgdrW9asDDAip4j//G1PmX3jySwOBng4+3Kf0f3mcuD/jDl5wGGy
kIPtB7XnVGwnZ3Kwd5SMqHU8OZsD35D4UR61NN854vVmsvpVcCA5n4PAieuU
ps4kF3DQ+K/Ta1cdradCDko2b1xhc4BczIFb/NUwxVHkUvH8DNZ4dDGP1ms5
B9d9DILXriRXctCvUmj8pIHWe434/gjWn4zeTa7lgL2vSbDnA8VLPQfqdUsP
x0nPnw0c3M9Srhv2g+KtkYPc3gclA/3IzRzExP8OSvxG8drCwcPH83IuuZPb
xPEh3iOPt0njn4PJJtb1bhbS+OfgX9DcxdOrKV984mD+nZN33i0gd3Hw1/6k
SaOI8ksPBzuPpTUNHkDu5eDK7aSXHGfKT33i+8V/sPjwLcpfMlxcbavpMdAg
D+ZCpkOBlR5D+U+OC0/L2gDHCsqPI7lYvya5nem1i+KfizeGpY/Oq1A+ncDF
7oOn5y68Q+dfRS48RC1LlnlRPlbiQiv18XG5iZSvVbkYljyT0XyR8vlMLub0
rO98a0H5XpMLhTVs4f6vtB9ocVF2fYJhQYL0/TIX/E8xz16o0P6hw8XeH8oH
1lyUvm/m4quXkoVmBj0vNuACO2uT1UpofwIXix4OHvDlKe1fhlyMu6ynJvuX
9jdjLl61e6x6PYWeR2/m4ta/CL//ltL7ajPx9/nB1zlznn4PbsnFUz1Z86qv
OhT/XPinZlyx3zWf4p8La12TZw2v1Cj+ufAxeu/76Owoin8uYpb7DreVk6H9
nwvV6w8/u9dNo/2fi0Hm09zMr0r3fy7y17UcSRm0mPZ/8fwcf6p4OJvO44Fc
MPzYVT069Lw+lIsu7z8/m15SvcHk4vKHXVk/j1A9EsPFbJfZr122G0mcwMWx
7+OFV0bT+4AULgzP1n2LKaf6hsXF5P381O2OVP9wuZiUY1PtNoDqIyEXu26e
roIJvW/PFM/X580dA3hUT2VzcSf0xcmgZvo9Xw4XD5Qu2PtPonosnwv1rHlG
t7bS+b6Aiw8M2ViDeKrfCrkwP79RN6+EzvvFXKTXbdr/9DXVe6VcTLiwfu0J
OaoHy7nYdONj4ytN6fmfiwuBhSZ71tL7lBourjV3ffpjQ/VlLRfdGV9l1y6m
+rOei+Pm2ez9JeQGLhICQjr36lO92shFf8ipA+qXyM1cxPJUVNO0qb5tEd//
L8M5GXnkNi4cqnX+TJ9K9fAbsccYaGglkzvF6yX1csrRX+RPXEysWA8fe6qv
u7g4W+3Wl3GD3MNF7/Vdat9nUT3eK/6+Fx+VxcWQ+7hw8vAJXf2CLMPD+0SH
6kk6VM8P5uGmpyjzXyxZjgfd9ulVHx9J638eirYtOfxYmc4H8jyYPNpgVORI
nsCD74L2pNBcsiIPF7oOvJndTlbiQc3lTVSxEp03VHlw0LUwVjAnz+Rh0wbz
OxuiyZo8jNbYar6xkKzFw9OSutbxT6X/HgEPb7j20473k3V4OPD+dtAPZTrf
6POwe/DlYcOWkQ14qLzEPdSylQweDmdPKfR0JhvyIOC0B1dJ3+cZ8zBLr+7V
4wjyZh7aFZaHno4jm/EQ4rQtY10i2ZIHp+ipSnnxZFsezpQbVD6KJNvx4Llh
8qP7AWR78f3+t98qey/ZiYfbb/q6N9qQ3XiYNnTSgCcge/Bgd39EmPEsMoOH
cWvCh58aSvblYYdf9reBb+l+BIq//zErZbtr5FAe7i9YPrmCQ2by4KMiGqPn
TI7hYeKaZbfqFpETeFifq3U0uY/mL4WHubnu/MgqMouH5Cn7da/EkLk8OE7J
O7JmLVnIw5zKj3Ga0vNjJg9Z0dfmBF8kZ4vnW5BmtX4vOYcHpcet2zInk/PF
66fSYkzKTVqvBTysVb96X51BLhSvn5e9PsEK5GLx/d/10OzQZYqHUvH987yz
+OA2cjkPDW/u7U78SfFUycO7i68SQ1jkGvF4ZxQ+jtaQvo/lYWbslIcXyyhe
68Xrw+6Mn7qJ9PkfD0/WjJza8Vwa/zws3G4aNsZNGv88vHxtUVz0jfJFCw+v
2TIL3weS23jwOt3nnfyX8s0bHvJs6u9ckyF38hBoeXuxaADlp088PGzJG2H8
j/JZFw9Wc0XLf/+k55s9PIQ32Gk//0j5r5cHhQdrHiq1Un7s44H7RCXs8x3K
nzJ8lDfp9IZepPw6mA919ogDfzMp/8rx0TJ1g5Moks7DI/nYND6wKN6R8rU8
HyxhXfivNZTPJ/DxlNUyd4oq5XtFPoRhDtun/6XnuUp8XDz0sCQsn/YLVT64
X4fbbLCh578z+XicOqZu2KBNFP987NzkFD6jgM7PWnzUprf2/TFfT/HPh8dE
hfaeX/R7bx0+5Aq+3PU7RPubPh9pHF1uTQjtfwZ88K4Exq+oWErxz8dzhxmf
pg3UpfjnA0c9L2mv06b45+OIpzzDd5wGxT8fl1nl/w01oPfbZuLvU/Gmcf8V
2q8txd/facb+r52Daf/n4+stu8ofusq0//PR1WUyTLlbg/Z/Po67Fa+RP6JN
+z8fb2dlrKpeSedxNz7sck4X7G2i36d78BGSvtXPyG2lxAw+3l8fP39rIJ3P
ffn4rDBp5KsSqlcC+Vh674J+YDfVM6F8/L4aebZcg+odJh+rHTJTrGw2ShzD
xwDG6pkfmZslTuDj46A1QzRyqH5K4UPz8iS57fZUX7H4qN6bY6Cyj87zXD7W
zOB8XepN9ZiQjxFj5E9G+lG9lim+/wqlhfd8qZ7L5mNRYez4P57099lz+PDp
FZ5sdaH6L5+PhxufTbXcRvVhAR+Z4f7v9Y1sJS7kw3mkzn43ben5n4/tNtmv
KyZIz/98iHZO2KfcQy7nw3M6a5z9PapPK/nQVfNodD1Ozwdq+Li1vO3IRB+q
Z2v5aN66227TCqp36/mIXXLr88cBVA83iD9/hZP+80pyIx/LvjuO+8+A6udm
Pr5Mv7z1MJ/cwgejclbz8s/kNvH4hP2n7oHq7zd8GIYH2W5kkzv5iFBZ+vv4
C/InPpzmZS18oEn1fJf4805PXFzrSe7hY66x8dWIInIvH3uyFql8/S6t//nw
WqOuP3qh9N+PFWBfTEHgY3fyYAEqG3e3rzgq/T2oAKmXhaNWN5JHCtC4aazq
00F0/pAX4MUi9yYZbfIEAYKmCmOKbMmKAvSc0h/1OYysJEBr972PJ4+QVQVI
3t+xoOMqeaYAI1kzwo81kzUF6JaZJ//sK1lLgG+JrOKUQXQ+0hZg+zPmvcvj
yToCTNKPtNqjStYXwHRFb2P0bOn7PwF6b53ap7aADAHGrFapW7mQbCjAM9f3
es+l140F6Lv3IvrPHPJmAVat0JmUrUY2E+D0nJi39xXIlgJcSb/mlTaUbCvA
3/UD69t66PvbCYBV9qz6F2R78f2sTnhrc4PsJMCD6Y4hiflkNwG0etIT3RLI
HgKccnpyt8+JzBBgxMXQpC0ryb4CPNqdEuMygRwoAHfewIFbOmj+QgVQ5H64
NbpE+vdfBYiucFcsiibHCBCec6lwnQk5QYBlET03H4wnpwiQrTZazlH691lY
AhRGMXiyQjJXgPOvLw+8aUUWCmCsYGNxXp6cKQDLUL63sZbWc7YAR7Ni61eG
k3ME8A7PnNCvTc4XIMq5NWjaK4qXAgEuWFbLXUiT/v0aARZ975t3aym5WDw/
8nB9XkPxWCrAh+gjofvGkssFuMct4O7eRvFcKYDadqetTzMp3msEMJyu3fvn
OeWDWvF64j3c16FArhdgTv6qWVUmlD8aBAg2sl90jkn5pVGAx7+q1B+do3zU
LMCGvcumWDynfNUigN6EfXmWg8htAmjLbmjp16D89kaAhI44fb8NlP86Bfhv
36/cV66UHz8JYLv4tZd7NOXPLgGqNpusX5JJ+bVHgH5vgxmMC5R/e8Xxpdlh
s+Im5ec+AZTq3oXcaqL8LSPEz4NlDQfu0fPZwUL07lnk4PGe/r6znBCrqrcv
fyZD+8FIIeyWqqwbMZH2C3khWv/bVmw+i/aTCUL8viHTN0h3PcW/EHE6ZhXe
qw0p/oWwF/2u7t5E76dVhTB/bvmmyZLO0zOFMJq6aNCnUnr+rClEPG/5p9U3
9Sn+hXigZjpm20M6X2sLkXs5qqi5lfZPHSG2HeIz7z+cTfEvxIer7YbbPk6n
+Bei2aKyRmfUBIp/IQZXJCx5P/+b5Hm5oRDDWuIbrZ8Mof1fiIv3C+K/TKD9
frMQs21zeVE26rT/C+ElXP3Zd+o82v+FeGzv/jvOnX4PZyuEbsu27/Gr9SS2
E2Kp+vX3KuOWSWwvRNP8ly8vPF8hsZMQB+tOLXl0j96fuwlRvlC9q/A0/X1y
DyEqVESqGjF0XmcIMblRZdVHG6qHfMX3P3dpedEsqpcChXg5S320fhe9bw8V
Yp7XoHLtYqqvmEKIE6KbjTfVXzFCCNZ2t7rMofosQYiSnqHJow5Q/ZYiRHpO
1HHhWjrfs4TwuzrqZ9FEqve4QrD+dbquekMWCrHd+nLS1HNUH2YKoWC5+Ohs
f6ofs8X3wyn3+KalVF/mCKExd4+hUy85Xwgt50E91kVUjxYIkXVK9HaoO9Wr
hUIsjssdZ6dE9WyxeL629K1cKq1vS4VQXRrdF+tD9W+5EJdn3jo7W5Hq40oh
NmR7po0sJdcIYVWcUjDJgurpWiHmyFb80HlPrhfC+sVSXdNgqr8bhDC9kzXJ
fAg9T2gUQtb6wrw5qeRm8fooeP+lZjTV7y1CvClrKJNPlv5+U4j5h4zb+gZI
638hznw6zAvykdb/QngPCRgc+JL8SQjbxs0zfqjR+aFLfH9GGBbvsSD3iOe7
KPjiX+m/J9ArxNBQuWNXT5P7hAhxt2Qce0SWEcEjlZ2R20seLMLGKRq/qqbQ
+UVOhKl9g4b9WkoeKYLmg9ZzK63J8iI82bHDTOBJniCC84E59f9iyYoirLIb
EOUjIiuJYPEv2aTnJFlVhGt2hvHMEvJMEbaPXTJYsUr6/k8ErZCiiWW3yVoi
FL/oSHC/R9YWYTFr7wmNBrKOCAeNTy7skV7XF+FCvYXbwztkAxH+DTsy4EY1
GSJsa4qed/8y2VDcPvYNp6eAbCzCDEa2xdLD5M0iDK/mDjiWRDYTYW5BUt5i
P7KlCMu1x1d/tyPbivCszcywczXZToTgonMpk2aS7UXYoJ+8P2EQ2Ul8v4Kq
Z62R/t7XTYTTNXDefIXsIcKgQpfV59hkhghWWf4rfFzIvuL+J71ee1SfHCiC
9prU3DVy5FAR9p4fpF11SvrvT4mwslbddRTIMSLsWt3+OqSB1meCCEqVrhYz
7MgpIgxLFKpNaaf1zRLhg/d7zwBnMld8vwZPGmnRTvEhFK+n9Ju+N+zImSKs
GDWqoeMBxVO2CEnRrR2P1pBzRDC8vVs95xzFY74IQ0K1U3yk8VogwsfvSRd3
hlE8F4rgrrSrLvyFNP5FOCVjEv19uTT+RVDvOTT5KY/yRbkILO0Rm00+UT6p
FIHfcMTywCpyjQgmo+zebE+n/FMrgkFuh/KiFspX9SJ0Wc5mjZ9FbhDPz5aH
2ir7Kb81itCU3WLtd57yX7MIm736i/W+U75sEa+XESMtYxaR20SoP7IrNcKT
8usbETgBy4dzLSn/dopQWDZtw4iblJ8/ibB22UXNk4vp+WuXCHIVifsvHKbn
sz3i/sc+WusxmPJ9rwhpa58tVnKj57l9Inyr36Ygd5t+jyVzEBW7m+T8NWg/
GXwQ+13+7CmIpv1G7iCEY1/lfmv9X81mHwx1HsdxaWkXiavDRHGdlhyRRBfy
TpsKdzm3hBS5niYPSSp1uSPqiPJU5PvdriUu1erUmfKUo1QbzvWc68GoZHZC
pyKZM9ftXJ/98zWzM9/v/Pb7/nze7+8D9SMDBpczfUNmsZSnjRh0Cw65/WRO
59VTGOwKlfL6626kfwad5D31ixPo/NqCIb9JPKowp/fYVkzdf7PmiTLpPZc1
w6ffV8/99aE16Z9h0T2BT2sY3T+zZ/Cp3Ok5UWRI+mdYsKq2dJr/o8b/2YUh
x2FLQJX1BOr/DONDE6J/7jCj/s/QWNBROPwv7b+D4bBTl6VhDvkFCUOxvvMD
iT75iWUMltuHjzv40n05f/V84oMMG9JcP3IAg5HFfa2Yi5TPpQxuoXPL63rI
v4QweL/c7lOgQ/4mnOHKJ5e7TY9QXo9k6Erw6j9jRXl9HUPm2rTxxhXklzYx
iOpOMNEX5KdiGJZ8WysMPUX3/eIZjkxwy7syY/lHTmSI/mtyrGER+bMkBotn
1+580CH/todhqGyyIGIL+bsUhh+Ty/2HblO+T2c4mOBxQGJG/jCDYUN5xuu3
V4izGdpmerrExZCfzGVQ5mdeLjYmv3mY4TtZXsXq3zT5n6FusXl+yTea/M+Q
kW/V8VU/sZwhe4kk0E/jZ8sYSgdtG9NMyO9WMAxYnl7ztJxYwfBBNOK0Yg75
4yqGe6sPvaipIa5Wr98bU5/reZCfrmGYe89xubPmvkADw4ULvW8sXMl/NzH0
NYftqlUQtzAstNFxHZlO/l3JID83IrmWTdzOsNjz3X7Td8Q31eOVxZ14HKbx
/wxS1dd6wnriToZXYbXD2SaUFx4zzJMXRkfEEnczdEt1vBJ/J+5hSJx/0rjZ
gPKGiiG0vk3qEUTczzB6d6fvk6PEgwz7jPx0ZQ+IhxhmXloUt9WY8sx7hmAv
qftKH+IxhqRdb0eX7iDW4giRRul5lRALOJI398vnXycWckxWjV6doyI24Mg8
pxVsK9Cc/3EkqQLHmZsTT+FwetPqJ3IgNuPImBaU/fZLYgsOD9OV/Q8XEVtx
vAkd3tAsIbbmaOtwVZ7yJrbl+Oe+rqLIndieo32cSXKOI7ETR2Rl8bbC6cQu
HBufvSw4LySez3GsRlD5coDm78HRlfMs2KeDGBwL0hsH/zhFLFGPt9Xp+IEU
4mUciQMOvvsDif05mov7WJvmvDOA49Ey+eh6FX1/KceLQLustQriEI7TZUWz
26KJwznyXuXurhITR3JcTK+os3xC//86Du+NB/ttcog3cWBsxqVOD+IYjnDR
D/u8e2l9xXMs33196Y4s4kQORbqOYp89cRJHQ0vb2N4btF73cNQM3P48NYo4
hcO5NOmXghFa/+kcwWLb0o4M4gyO2akKpY8JcTZHQFNMuLGc9JTLcVZQYC8R
Ex9Wz0dgmTdcQXo8ymFT17PBw5ZYxrF3cKe+UxnpWc7xbo1OqMpCs//H8dR0
amlyvub+D4erVlilUIdYwWGpJz5Xmkj1o4ojd8x5xfqnVG+q1eOnGOdu9iOu
4RB7VnS1n6d61cAR1yYff9KUuEn9ey+l1ZTdVN9aOPyclCER1ZSHlRwnr77v
tIun+tjO0VPi1nPZhurnTQ65+8RZkY/oPPkuh3DC7U73LKq/ner15Th2LMeN
6vNjjt4LEflHuql+d3PoyaLmZeyn+t6j/r4V4qjSWbRfq+LwzDi9xLKV+kM/
h/TWc+mCTZSfBzmMiu54OwqonwxxPAyaPbDNw4v0z6G7cUDbIZb60RhHS3Tv
LG1O/UpLBv3VZ15HX6N+JpDBvC5V+/nf1O+EMti1HBJ1m9J7bAMZUsdZ+l5M
tif9y3C2wqtE1iom/cswKc3mRKQp5W0zGfxWHT3Ye8OE9C/Dsb6xzybd0iX9
y7DVRPingXbmwv8AKn4fsg==
     "]]}, {{}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1800.}, {-0.2846899037403577, 2.815342975868482}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837190332791157`*^9, 3.883719085713951*^9, 3.8837192435752783`*^9, 
   3.883719426358539*^9, 3.883719727998137*^9, {3.883720126901369*^9, 
   3.883720140188383*^9}, 3.8837204441223392`*^9, 3.88372049409147*^9, 
   3.883720792625421*^9, 3.883721999865437*^9, 3.883810282500098*^9, 
   3.8838125764798803`*^9, 3.883812748735682*^9, 3.883812908933188*^9, 
   3.8838143920562887`*^9, 3.883815414726983*^9, 3.884769522900024*^9, 
   3.884770970679729*^9},
 CellLabel->
  "Out[107]=",ExpressionUUID->"96f187ce-1e13-46b2-b208-80cab8fbd55b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{"Data", " ", "interpolation"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"factor3He5", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He5", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He8", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He8", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He10", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He10", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He14", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He14", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He18", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He18", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He20", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He20", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"factor3He5", "[", "q", "]"}], ",", 
       RowBox[{"PsiP3He", "[", 
        FractionBox["q", "p"], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "500"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837198033492517`*^9, 3.8837198142666893`*^9}, 
   3.8837201466788797`*^9, {3.8837202350374317`*^9, 3.8837203071630087`*^9}, {
   3.8837204509451942`*^9, 3.883720459114644*^9}, {3.883720840342484*^9, 
   3.883720845315361*^9}, {3.883720903692583*^9, 3.883720903859585*^9}, {
   3.883721122463702*^9, 3.8837212045718317`*^9}, {3.883722118084847*^9, 
   3.88372216127608*^9}, 3.883812589139306*^9, {3.883812774473237*^9, 
   3.88381277530464*^9}, 3.883814519532838*^9, {3.883815420044084*^9, 
   3.883815479915234*^9}, {3.884769528098181*^9, 3.884769534388286*^9}, {
   3.884770992856086*^9, 3.884771033872036*^9}},
 CellLabel->
  "In[110]:=",ExpressionUUID->"f395d881-914c-4fc7-9c61-ed68156165b5"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{89.90484848723561, 0.0391107626303293}, {
                   91.80730872190641, -0.011249555617963898`}, {
                   94.73132478320537, -0.037625844955462985`}}], 
                  
                  LineBox[{{295.9439946961368, 0.0391107626303293}, {
                   306.17783089361774`, 0.022693174860491435`}, {
                   335.77962559627264`, -0.0213391562568035}, {
                   358.88469390965565`, -0.037625844955462985`}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAA0SZhmYobeEBl2yLbsUOjv7/mK9SQ
xHhA9bRVGMkvor+mXhWyopp6QFyZAzgyF4u/oR9JpCyYfECMDKEalgqIP5QJ
mlZljH5ACXly6POImD85xngPdC+AQPyBOorJfpU/MqzJfXEsgUAchiXTd5F9
P6DeHfeTGIJA7KV89p9UfL+YNZd6chiDQLFYmRvYRI+/DCEfXqgThECg/vFk
H2GLv/VYqkwD/oRAW71BDCq8dL9otVpFGvyFQPvnTRt3ynQ/UV4OSVbphkDk
uxu30WyFP7ab0Kzp0YdAhfR17mwXhD+l/bcaOc6IQIRKyAkJ3G8/Cayik625
iUALGBvKM+9nv/d+shbeuIpAnjWe40rVfr9h5tD5ZbOLQNWwLN1HUH2/QJry
5xKdjECD1qqxP/hpv6lyOeB7mo1AoBLPT8+8Yj+Hl4PjCYeOQNQcfwIc9HY/
4lDcRu9uj0DAjFsD3GN3P2MXLVpINZBAPelvtnEFZj+PrG2Wq6qQQNtQnK7c
b1S/ANTA1+wpkUDqKjNS8X9xv6yhlZ7AoJFAbkSEduWVcr+WuXEVQBWSQAtf
wfdHamS/xWNgkZ2TkkDDh4O13qJLPy+00JKNCZNAM8pHoOt5aj/ellOZW4mT
QMJaFclVNm4/y8PdT9UGlED1I46M/w9gP/KW6Yvhe5RAVu8LrtLKQb9e/AfN
y/qUQMWdE6yow2W/BQiok0hxlUBWg18Q+/xov+pdTwpx5ZVAYWhA+EWlXr8U
RgmGd2OWQBU48LdooTQ/edREhxDZlkAuIPAC961gPyP1ko2HWJdAnWDbNyby
ZD8LYOhDqtWXQM8WwHPKV1k/LXG/f19KmEAnGIvbVCwiv5QUqcDyyJhAANRL
1BAMXL82XhSHGD+ZQMwZvltQvGG/HTqSUhy/mUB1jsv3JGZWv0JgF87LPJpA
4MJsWAhOJD+hLB7PDbKaQHxGmXis/FY/RYs31S0xm0DZgGPLpBhePySQ0mDg
p5tAewOMOXIJVD+VvwH4/x+cQL7pk0xoL4k+UXF0tg==
                   "]], 
                  
                  LineBox[{{194.1426164689227, -0.037625844955462985`}, {
                   213.19324352546045`, 0.0391107626303293}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422218#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.037625844955462985`, 
               0.0391107626303293}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{89.90484848723561, 0.0391107626303293}, {
                   91.80730872190641, -0.011249555617963898`}, {
                   94.73132478320537, -0.037625844955462985`}}], 
                  
                  LineBox[{{295.9439946961368, 0.0391107626303293}, {
                   306.17783089361774`, 0.022693174860491435`}, {
                   335.77962559627264`, -0.0213391562568035}, {
                   358.88469390965565`, -0.037625844955462985`}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAA0SZhmYobeEBl2yLbsUOjv7/mK9SQ
xHhA9bRVGMkvor+mXhWyopp6QFyZAzgyF4u/oR9JpCyYfECMDKEalgqIP5QJ
mlZljH5ACXly6POImD85xngPdC+AQPyBOorJfpU/MqzJfXEsgUAchiXTd5F9
P6DeHfeTGIJA7KV89p9UfL+YNZd6chiDQLFYmRvYRI+/DCEfXqgThECg/vFk
H2GLv/VYqkwD/oRAW71BDCq8dL9otVpFGvyFQPvnTRt3ynQ/UV4OSVbphkDk
uxu30WyFP7ab0Kzp0YdAhfR17mwXhD+l/bcaOc6IQIRKyAkJ3G8/Cayik625
iUALGBvKM+9nv/d+shbeuIpAnjWe40rVfr9h5tD5ZbOLQNWwLN1HUH2/QJry
5xKdjECD1qqxP/hpv6lyOeB7mo1AoBLPT8+8Yj+Hl4PjCYeOQNQcfwIc9HY/
4lDcRu9uj0DAjFsD3GN3P2MXLVpINZBAPelvtnEFZj+PrG2Wq6qQQNtQnK7c
b1S/ANTA1+wpkUDqKjNS8X9xv6yhlZ7AoJFAbkSEduWVcr+WuXEVQBWSQAtf
wfdHamS/xWNgkZ2TkkDDh4O13qJLPy+00JKNCZNAM8pHoOt5aj/ellOZW4mT
QMJaFclVNm4/y8PdT9UGlED1I46M/w9gP/KW6Yvhe5RAVu8LrtLKQb9e/AfN
y/qUQMWdE6yow2W/BQiok0hxlUBWg18Q+/xov+pdTwpx5ZVAYWhA+EWlXr8U
RgmGd2OWQBU48LdooTQ/edREhxDZlkAuIPAC961gPyP1ko2HWJdAnWDbNyby
ZD8LYOhDqtWXQM8WwHPKV1k/LXG/f19KmEAnGIvbVCwiv5QUqcDyyJhAANRL
1BAMXL82XhSHGD+ZQMwZvltQvGG/HTqSUhy/mUB1jsv3JGZWv0JgF87LPJpA
4MJsWAhOJD+hLB7PDbKaQHxGmXis/FY/RYs31S0xm0DZgGPLpBhePySQ0mDg
p5tAewOMOXIJVD+VvwH4/x+cQL7pk0xoL4k+UXF0tg==
                   "]], 
                  
                  LineBox[{{194.1426164689227, -0.037625844955462985`}, {
                   213.19324352546045`, 0.0391107626303293}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422218#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.037625844955462985`, 
               0.0391107626303293}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNV3c0EFwUNyISkUIho0RJkci+tpDsvffe2XvvvcuekWQL1RUiI7JCRkOl
kkIyir7PX/fc+8557777zvsNNgtXDWtCAgICssMEBMcO98SNR5FK2s5ORMiE
kkpaOf05TOxDKikk4LJ80oFU8j0Xz7GH+qSSgcW384LlSCXlrHz4OnlIJY1V
FMjdj5NKcn8TpKr7RSJZpZQwGzZGIhknGFG0f59EUuf0FNO1CBLJt0794cK6
JJIL2uQWZ7lIJPm3PDLJtg5JSs1McRA+OyR5rIdU7HzcIckGV6V/abcOST7w
vRVoSnNIUuHmdGbNGLEk/lGaT0khlpx1hYhLysSSnkf5xAsPEUvuN0RyEj8m
kvTi3ar3cyeSXKpPC2PlIJLcENKypJsmlJx7nMjtH0Mo6RF7osJB8CDf9Qgg
/UggiX37551SCSSvwKE37aIEko8z2RdPD/8Hpxzu1JOx/AdKjylYfdz+QVN3
94mirn1g5/ZXe3RsH+LY3XV2jfdAb3ZSO+f+X2DQ8qLr2/kDLbQdy21yf8Dv
2ou0gvRdoKMZuFH5dgdaxSRK/7u0A897VRKn/LfB6PSavMbAFgT3LJsUMmyB
1T/7mnd2vyFtwkRBomMTZsvP3H1zdBNC6TM0p81+wRmxEnut1g1woeo550a5
AVUvWlkUbNah5xj3rc2uNTCoUiVOY14DczmbDfudH0D28kHD9/ZV+BjaHzUR
8h3EmiYbZJVWIOr+9WTLU98ghOxVvtrqF6iXeltwoW8ZjP1uV5CXf4bwQ1J8
5DGf4KRYu4SE60fQULc1f2y0BINburOZqh/AuD2++rXCe+ifV69LlnsHnz6e
sU1JWwRqq+CTJ8vm4UNFoNRjfAOPM2LPpyzPwN2HhImZp6dBLrfmx6jeFNS6
SlZLlU5A0QUupuWtMTh8nmOyQ+cV0Gkym9lHvAT5O9tHMl0Hgezh09g5934I
OZlfRR/XC1Rpao2Sbc9gaJGLS2zrCRy2qr98pPoR3Eu3JEmJboIH2jSio0wP
4JtPlK92aBkUcbPmVjhngsanmM4vvy1hk+Zv4PLdJKxTWehc9y9CxdVD/9J7
q5CiZ0O3IOghftnLTJy63YSdnTR/vh1qw00n4d5C1w40rFuxi2h5gvH5kcvZ
jl3IR6AZfufbMzT87yrBKb0eVDCgFlZv7kVTObnPdf89x1Qd3WB3kX586CZ2
9YvVCxT4z73YImQA3/53+Clv/CCGLb7vKo0awumnk8fIPYYxReCRapjqSyzQ
i+N7cWYEOZ8mtG2+HcG4dEIx3YxRpI1j2S5ieoXGmWQW/9m9wo+L7M3rda8Q
l7ULCn+8QjqLjDwerjFM/ex40NQYBnkR1ibHjWE7uVFeXcMYfsjSlLg5OYZ2
7yemk9bHMKQxUy+PfBy9XmdFZzGNIxvFgKrbxXGs3EuKqeYfx9mzfQZSQuNI
Ih5JYHQQSeOvCLpeG0dmJeazhy+N4z9Pjd0ElnFcGm4xYj02jqr1PDGf/4xh
0pEpeYKlMVQ30d1L7h/Dhy/c85rujaFrZXvT26gxpD35uCPabAzLT5UynhMa
Q3OCWILpo2PYtkTE8nTxFV6nNWjbfvAK1V/MZpT4v0KNcXGyWdlXSP376nrH
0VdYkzxn218+iv0L9wMWuUdRUjWObKNuBFfO3ScTujyCAnVpUZ+qX6KZxUrO
ZfaXKMGUZyufM4xuc6PcpuTDyBOlw13jO4SPBBYf634aRL9+T4Uc1UH0USSX
yWkbwGBeOuEo5gFMZlV5nhT2AofEbLLnl/pR7O+eS75sP9rHhZ7fLuvD4/MC
NSeJ+nAzTekfi+lzrF3YlhDv7MXS1uaSDLpe7Lvr7X3DvQelxAkuhA51o7aT
uLQJRzfStt+3Jwl5hiWXR21yZrrwa2Uju8DVLtR77aCwxoyYafXcgWn8CeYu
rV87HfMYccK/8px4J85cV6X12mxHrnaR8zIPHmEssevHXts2/FLD3HD5XCs+
3mRTb/rQjHHL7T8iypqw+8gt5lc2jZiroLDw/FID3ssrPndl5SFGZgXavgh/
gJO3Lgi1st7HyFnFWzee30O3w+aWQ26V6DpIIxp3thyjRb3uv1gowYqfR5Tv
QhH+PCkc0DhxByNvUNpp+mbjz2aVv5s86UhC33aV5lsCdq1FWm/ejcAbtOW6
zz56o2kWGVWvmyFuUVtb13eZw/c/uB+s6gtxrMVi/9oiIJvvN7sXawIcV4wY
OcubBv+umLgldGbC2D8dV/6ruWCg/yjsQ8ZdqHjAQG71rhACvg/810NRAqHW
fh5p+aVQwfV+Kpq9HEIZeSbSCyrAa/2bcCVlFQSMhGw1edyD76VnVhkmq6FC
bJi3n/0+0PTfv6xlUwuFR9XXOgofwIkxDqedoTrQNesOoPjxEGyfsdn7h9fD
UUFVP0OyBlAs2D1+P7YB/qn8FHIiboTH2db9pb6N4JfN5qr5pRG6YkvqIzSa
4O0r+WnhtiaIowrbDKRrBsHYP2+03JrBWbaZ1T+7GYoszhx9u9wMNN0DhVv8
LRB1K4hjyL8F/OIeZNs+bgHCnmdJ0zstkHLHSJ6TtxWWj9/LsbRoBc2wip95
Ka3QXhp2a6atFS6wrErxzLWC8XO/d1W7rfC5b69Xl7YNNMW3yFW42mApLjUr
R6gNTI8kDinKtsG/yYmw28ptkKBGX37hVhvQVr2silVvg29P/fnUFNvgy9SA
0KJYG7z02dx4fKkNFmdS+i8ztEHexkXqsv9awVzth9aVpVboZVah+9zdCvRn
fGjfFrbCDVOnv5d9WiGRlit5RbkVTrEI9l5kboX8qZxBopUWoN9t/BfX0gKx
15W/vQ5sAUbraCCQaoH3D/5OMhG1QPaflyUyXc1g3T3WnhDQDKNhTxWPXmsG
+WNOGfNfm8CEmOkbbUETeDmM1g2oNMGPX/duntxrhLExQwGqe41wNqBqYUi9
EUjD3rVb7zaAaGW0yK/CBpi3+fIiQboBDjFP9sh/rIeqVZ1A0ch6GKqKuxrG
Xg/sgdPnTIIfQiBJnvmj5joYzoqihi8PIFTU5jvLqQegyzHgGqtQCz3/boxW
eN6H6ZH9X+UFNXCKc9yr8Xk1kLEaZ/9ZuQdTWpWi1dT3gPB337ev/FUQwcTQ
s6xdCeSLMn4vvSvgXm6YxvPscvB4ss6y21IG17lOiaRPlsJJnsDA9o0SKPbR
l8qhLoGg15HGmpeLQeVEr9DF3EKI0P7Ph3QyH3ScysdjqO8CQeUZv12VPHhe
qeFYkZgDq3tT7pPDWRChYEs/QpUJdzcrS2c00iElmZpaOC8V/FnsGWx6kyBf
3XqexigeXnZ/sdrejQb9FdWVrMIIuJO59dZeKRRm+A27Z//6gbWImTW3pydE
kZm+Ntu2B/KCAFJufQM4S3ySqOA3NST/tYnRX9FFwvRLktOKdnjSto2nSNgD
vfj3iXiEfPG+ZtnVaZZgrLI7tbuxHYZfd+tfTUxEouhvKTuhshjkoCY5O2Id
j053E8PkGJPQN7crzKgnBe8MPit8czkNHTjrf5B7pWN2UUrj6eYMlPyosP99
JRMvK6d7WDBlo+lKqryJXA4+V7ki/twmF+cNVaqDQvNwQrzF0TX9DpbOza9H
5N/F8Q7Pa5WF+Wi49aSlO7cAy2mehPTHF2KEEyd7+e0itE6jnznHXYxv5o+Y
TuUU49a22kNjghLszGZPfWRVgv/+no5631uCaTaVw5OspXiOxsQkxbcUw1rk
v1INlyJL1JFxdcYyPKpJxadrU4ZOf/xfnXlQhnWFfBerf5ahQ1CH9TZPOSq/
n9emsCvHV0J13ssF5VjQR7KSPFqOVHbn/En2yzFgVjxJ9XwFKi9aNLgqVyCD
d0S8m1MFitU1TmnHVSCpEbXD+dIKDOryavraWoGWXEl11/srsLlC/THbZAVe
1H0eIrhQgfE6/VSnP1Sg38mf31WXKpCqidml8l0Fzt/zrbj6pgITvw1N64xW
IHtp1iOlZxX4UcdsK/dhBVZYni+4dacC7zr85PILq8D1B1Hh560r8G3SuT0r
uQrMSeR2KH1XjkIEgp8E28rxmcgOCcPkwX22aHS1q8rxbsh+pptPOU6M9Uj4
y5Zj0QI3RwTVwb1V5Wzzp8qQlGbdZTqvDGcP2a3KGZbholfX9O6pMsx/4mFJ
8roUJ+8sEAWkHMy3ZdDcWb4Ua2PCj3psl6Cec8Oif3UJ3nlBZimiX4IvP7VS
9JKW4M238x7cjcXI0MasG2lYjANLvLkfiIoxP3LdplmtCCvbRcL+5RQi+Yru
/NBcAT6O9NmTZSrAMwm80en6+Tijt3R9IeMuZopwLqkM3UGaFjkbSoI7+Bh6
K2Sv5qGf8H4Uk0UuRsy++PgkJQfH5gQz1Duz8WupvirBpyzkiz77dONoFj7+
T8danT8TLx7Jr5DVy8DzP6F5MyAdX9sfz44rTMOChm0G7q5UZOO7WkDYnYLy
olGUVkTJSPd2PGNIKhEvl2dWRYXG45UlSaa3T2Nx3uAb3bn9aPTsOH6oWDQK
udgakgr8I7AvxjnNpiMM14O144O3QpDk/qL/hn8g8gQEStcR+eHKC/EQiWSv
Ax2mM8dzxgN36hx3yG2ccVSN/WPmHRtcuZxXdKTVFDXVJ1RRTQM7zKkSzjBf
Q2Wj0JGhG5KwrfZE1YhXG5IJpbmMKM1hb/c/hVdutvCl+tq30mfO4K0zMez7
nzsEdfOl/qT1gprmnZEBZl8geqd0q5ApAPaPvEwnpQ6GhqazXqMBoaCCFiIR
X8OgV+RO9k+1CLjyEHc+N0RCIf9JOfGj0dBp1TnTbxoDO+8/JhrXxkILJ0nH
6/U4MBQMF6HkTYCmNzLO8zaJIBq0d50tOwkIQmrs658kQ7vDKGfQQgo4M3K3
PvRPharAKKpSojSwgBS24Og0YEjk/ypKmg499hlyo2HpcFjn3eKl3XRYvGnN
oeSUAb0G7urMcxlAvHfWskDuQPenMrJ338+Ey5dImSMps0CK/mT1vEMWHFXU
fP+8JwvMbHcrRBiy4fQl9ruCdtngf9SBq7UpG96ZOfq0/skG6sIyDwHxHDDQ
sxm8FJADHIlG7yqac0CByv3N3a854B8flXvsdC70yA02EcnnQprCj0Af51zg
Ubv+xy01Fw7ThX/aqMsFQ3nuGsKBXPAmqWvBhVy4YLN6TPBnLiSe6vNW2suF
ATWav8QkeTBQ7q/pQJ4HKYNfZ6MOovq9mVjTgzqfTvYOwX4uZOb5GN1eywWV
JROy8MVciCoS3Ag+2Nd2a9zGrT4XhgNF1y0ycuHtY7V7lh65cEsilztUJReq
7mQrDJ7Lhd+XyCUUd3KAVLJ1/diLHJijuEt8OTMHZvjiEpuMciCbuuJUA1sO
rEvP3ru+lA1yX6FCryQbGPTClziMssF36EphA202jHRQeFC9yIISHS0DVb8s
+KxJ9CCGMwsclAnph8YzgZTJMpcnIBMG45NCe1gzQVzF0qGkJwM+E9kLzVtm
wK1Hn6njCDOAMo3U4El+OgTzrbckC6TDSPiXf8eH08DH0VzGzCwNXtMwdydu
pMKqtPTnuvBUeJLqI7NAnQpPg/bPGoukgCRrubanajJMHIs9zG2eBGZmsrqN
rokgudyaeD0gAcauah//GhEP39/FO/+Oi4MCa/brCUmxEK/XTjubHAPWmlK1
lMnRUOGaXKmbEAXBtpsFn6IjYdHkF+Pn0Ago1fidGuMXDo1czCo7bmFwR4fL
z8Y2FJLPvjhD0BEMZBPO1Z/KAqF0N6RsJtEfCjfoc/m9fGHRsSdYzdgbjp5S
qYuVuw0c7G2j1y57ANGk3VgtvRscU2VvSTnkBNpGIUGP5m3h62OHpeBHlvBr
tWOVns8Unm6UNlD+1QGGSao0jWIVoB6JfdLdJwKFVAvM99ZP4twLjN56Jo10
PbYK7RrqODyqcZaNXx9FnvaIhoeaIa/TBYoCYyukOTlzQpXXDn2t/3KT7zhi
2Y2WXxLNrlg7c9GXv9Edn3EQ3NyP8MTzyqZ8oqpeKOP973strQ8uZD6aoB3z
xaz+5rGrMf4HfCHlPiIQiByylu9r54PQdI52LysgBLUDGSsvxIXiYZIicj21
MOyVhyox2nBkqWdafDoWjgZBF9b6EiLQgd/kkIRUJBra9nFRbURiXI+1Fnth
FGYp/LazkYvG5+h7rX85Gg0Caz2uRsXgew3lkWzmWMzcu/RhqT4WM5bFRI5A
HEbeUdT62x+Ht4dqi6uV43FSazicbDAe5bUeqR+VScBkwxu6Na0JWJ4xNjZz
LhHnDn/fSE5KROHDqm971w5yDa6HnreSsPuai1NWZRKWuG0f59hNwjMmniln
5JMxMs79aXBSMipFSTvKjCbjysuOW44UKch/a5hySyoFJW8QC330SMEKkRm5
64UpeP/Lt+z1A13zc5nWje7jQf2B3m71vxSktXtbMEOein5n/tDk0aQia4pY
ax5dKhIyftNbZEjFfbZ/wo4HEQeM/sqeTEXjBNUat2OpuJWk2/mLNBW5+eDU
ve0UJNx6WXxlPgWLRgttEjpTkLrOxnogKwXbaLqMdxwO+mnPGOQUTcGvPbYL
tqQpOH42139gOBlfMfgJmCQnY4+b1U0h5WSMvdlY7kCcjFRchX1kbUnIusIw
e94mCXe6YwtmqZNQ/qaPo2BbInqY8V7S1E/EEItbOvLbCXiJWeTr+bQEjP93
x+4oZwISM3RMU7XHo47TTLO8QjxuafttDo/Foefrkr0OvTgMu0NZfHE+Fi9H
GpwSNIpFjOYm3ZmJwfVKGYsEjRikWMkLpxiIRrqjttSZYtFI3MJzSOpBFGaw
PC2+zBiFo28EXPyiI1E8bu+axM8IpLZ8upOnHYHv5K1/VbeHo/s5mtQExnBs
iKO2MQoIQ0PGN/wis6FY/vTwG2mBUEz0ulfLxRKCFReEgvJeBaHURK/PiZBA
rCBvOfL6YgB2f1ltPT3ph0s1+yQsAb7IdUIrlIXVB18Wx5fp9XjhvbLHM6TW
t9HXZsPBhsQTK12KgprK3VG5T4D4oowbhtIW2VJ0O2Ms67vDh/YdUOl3p2Dz
dTsk/Hg5N83DGo/U9RynqbNAIv+ZAJUpUxRQuFSSoG6A1CF/WJ6NaaGP1t8/
xQ9u4VraE95rPTL4OPo+y9oQH7rEcUZ1RVGBHOP9JO6bwtCQ6MsZq64A2cYj
01GbamAn+EcrREAHhgb86j84GIL5tf2sDUUzaPjXXfx22gJMxkxNX5tYgyLn
I1fvRVvgv1rPb67jAPV3niwI9znB0S6moAoeV9iimIzk6HOD6cv32r6uuUM8
553hTTpPsLLklmAWug0sRLupIlpe8Ptxkx6Hozd4UH8Sawv0AYt3YfuDsb6w
VaHoI5biB26/16u+pPjD0g5z44P4APCKY3vvEBIINvkptQQuQeDQndGpphMM
YwF0X8SFQg547jXra/JQ+KPHGSt5OxQe+ro5qs+FAnf205o9iTCoTO97LlgU
BiSH6Rc2/4ZB09rnhkva4eCdanlvsiYcbrlR9i/thUNBqsYjdeUIwKbOAbrs
CDCVOLnKvRAB32qcH8WzRsK/OV4bHrNIeFJzYYoqPxJe+dvEXpyMhO825FWB
ZFFAu73zl1A4Cj55+P1us44C09W68vzkKOC5Q/CkrikKiIvtMlYno8DY/h6z
/kYUbB+yXl+niIb3o9wy7WzRwF5o9KmePxoi6Z4rz0lFw9nhSh/Rm9GgwvOZ
ZkojGsy3htVrtaMhp3CIrk8rGnSfUT/nVIuG5l+kBtMKB174Nr31nGg0KKy+
JBG9FA3Ok8tf9xmiYXlQVfkSUTRweZD8GFmOAjq2DeafA1FAulJTm30vCsJc
WH+ORkTBm7dinRWGUcA56GZ9ljcKTv13+akWYRQcuaZ3TH40EtJfZJ86dCcS
nITv0+SbR4KkR3UB4/lISFG7MJ66HAFuOjZXjlRGAMs57cJs8wiABzXOcqcj
gDx++tb5V+FwsXhbQzEiHPzrWpef8odD1o2Lkznvw0BntETgU2IYDG06BT4S
CIMQgzy7s/MHOvBNFalQaCiIk4vUkrGHwsWj7l9VI0KA4ManAPWnwfCU1E1R
7HcQDGvOEl3nCoLXerwDdrqBsL/17vxueADUDT4jo77vD/udjG1To34gCLUj
Huu+8MG2TJia2hfCfhRyTXP7AINSGcW6rDeE7tMmxBh6Qf612tBe19uw0um7
NhbmCeffTxK+SfMAwasOO6TF7vC+VYAnotYNhLk5jm24uMJdnZzvHOHOoHPO
YWwr3RGolQtS2kvs4ePp94vddbaw1ECiatthDTuG4SJ/ey3B5DR9+/iIOZyu
PcERUW8Kf03JLQV7DIG97RSP9WtdGJ5Xym7+pgktBMw1LwjUgGShqTL26g24
xGEdnW4vCV93Oy3eqvJB0tIp5u65fYmkzrmZAkJufEaRZ60xIIZt3X5TjXty
uGwsVKgZo4LS5jGyD8M08N3xXbGp6zq4RPCFP+6TPspkGfWIxBtjvITS/IN0
M9TtZjjBa2iBqlk7kqZnrLCH4/fY9pw1mspUebdl2OJpLx0uYzl7rJyZvVq9
5oAxDtfFjbOcsKyRQEOM3wUZRxyXjwy64o9fGZ79tW7YdHzrTb+bO3KKmjGv
8HrgNYv/POhWPZBRh3T+SoUnRnJ9PntG/zYWbZt/fEHmhWJPgmIZmr2wfU5B
dcvAG804g27d3PfG49yHvUju+mC9t1YS5TVffNsVD+ovfPHSL7ITT3X9UMnI
0VP6gx8mtXbXvLT1xwGCN99Vv/hj4EqNeodlABry6c3+mw3AXa0lJ2rlQPyZ
cuHth9ZAvMfQuerAHIROHNFShcFBuGBk4+r5JgirKsN33vMGYwN9vNKHsGDE
4AF0fhmM9J2nioJpQ3Aq6wEjtVYISlI81DqTEoIvtp9pVfaG4BdWI5rKzRAc
ati7lnwsFMlLsjIOsYdiVkZ3YCtfKNJUjnaVS4RiUgxv1qsboRj5PKlOVC0U
N0qsL3/RCkUnheLiGZ1QpMpvoqE+iLWfXFbSNEJRac/yiMXNUBRyEmyLlDmo
F9pU/Lt+oIsUKDcmL4SimFEMO+WpUPzx+fjZBySh2L7YHu/9NgSjawmDA+tC
sHB8Q9XfNwRFD5FtBIuH4ALpd9o7+8F4m+oI6/yjYHx78ZCQjmswKrlT851m
C8aBNbFUkZEgFKEvih70DsI2DevVhdNB6Ls7IxXXEYjEPAol77UD8XP4VO/e
9wAciZbeXwsJQM6F9MtTVAF46eX9oa48f4z5Mzc2xOqPfxk1e6nK/ZDBP66q
9KwffiHJ3Ssu8sWB6bDHZxl88ceyq6Zckg92jL+9y/qfN8YE982+cvbGfa+q
FvdZLwwdKbnOIu2Fza6e3b+rbiNPpifVcYrbWGkQdS7N0RP/SBDrpw544IBm
uTwPhwf20BoNRAW7o22awG7blBvmKXJzfLjohv2dW3fl9lzw8p9NKb4iZ1zw
GvzUK+GErsIWXhJzDqgq+Jhh/rY9Miymc85T2OHGxiGWoGIbpOWTy9m/ao2C
3urC+T2W2PKnsTlHwwKjQLHl8jsznA6UboRZE7zwpfmm5poh+hUKEp0k1UdT
Vh4ZQkYdpBWXP5F5RRP1Kkf/3JBVwxOLHuMCTUqY3ZCoS/ZOFgmdmrR3WSRQ
caauiSz2KuYY3yrx+8KISaSfBitZjsO9lyvlrjtXoNkmPnzHTBT2rDi8LxvI
gIqmdrLKnwNcIEg8t51yC5h/D/dyUGrAUsX0huCwFnyZirjUHakLSP+X0kjQ
ADTOc47eeWcE7wSOa9JFmMKPXF/GZipzMP/msJalawEVmsQK/921hNWgoHqc
s4KFqMC2KjobmBCt+Rx70xZymzhGBYLswMSgiyr8nj00dJPpSI84gJUdu8vN
H47Q9cBewofMGZQTl8buMLnA7KqPUepFV3h38y/LqVNucH3Bg6wuzw3KRhNV
ftO5g1v2kV8Lqe7QIpeXr3vYA0yOCKdq+HuA3qhWK371gCM4XpCq7QmUas5B
bU88IWxbh5+T/TY81RO9MRF+G9yzzq49fHsbBHwqKRqFvCCVaItrNMkLHje/
idxf9ALx6miKa5e8ofGHmr6Dlzdkxml05nZ4wyXJz1ce/fWGVREK224hH6Dw
ru5ucPcBuZSnOmGVPvBhxuLrpWkfILJ7vFFP7AvCR1/lH7nkC9GvBHuuq/nC
DFPbhqCbL1RUPrM7nOgL1TfmGKvLfOH3D9UcpjZfiH81d9myzxdyalTmgsd8
wXipVtBjxhcyajOrJOd8QbT7P+Yfs77wp1FTPGTSF967C6vtDvrCo7NHFCye
+MJQFWdr1/2Dc+xEJxmzfcH/lZFvQKAvbPewMHwx8YXD6QnPHcR9IR//XKJk
8AUx9o/psz98YLwzaezNMx+gfFmtw5TmA/s5i6w1Rj6woiL8JPWcD/RvJsgu
fPGGFKJOvYJqb+CNXWN7a+MNQ097lBtYvaGsQ4no7LQXzLEx/pSJ9wLSnSkG
UhEv4LVm5mv8fBsmHZa1IPU2vG1iJ0HB27C2rMgr88YTardJriz6e8ICdneV
MnjCw3xBsvImD4iNX4j5rewBPe52Z+6/dwdZMTbi2dvu8FJLtjuDxB18+NSE
1zLc4FuCcgYxqxtojpPE92m6At+lwONKli6w5jXf/sTFGewNa7ZUvJ3gp5JK
M6e/I0T8UFD29XeAiX1rP2cfezj5+L2+gLvdgb8ON/5nawvDy83S24Y2IEhW
TKmqYg0scQIEAmJW8EdFKn2GyxJ4tn3s7WktYOdCtDr9nhkIlMrYneszhZO8
4uwn0oyhaohy1VjfEIoue62bs+hDnusF7dAlHVBcucp9qlILJOgMrRJtNWC1
qh6FudTAmlrBm3BMGXgeeZGFHehqWt7RsYfj0jCfMM2WVSMGjLbBx0838wPP
HE12fzQHTAwW3dIs3JcgGo9oeM7IhGNb/PbWnVewidNId/OeEP5e2L9f1SSJ
2TEarPUUcvh3Q692yVAR3crpnDPLVHA9uEiRYl0NxUkSJcwoNLE97retF6s2
htcF39i5oov/WkmLcoT18Ur3PQ9icUMsWvA7sypsjO9MDhkf5jVFIXu8EJFi
hsMxJiOqEeZot/b9gpynBRp/V04BU0vs3exkZFKwQm3B7s5HF60xqHL5yib5
AQ5SqtPUfbTBFocrr/s6bFH7EtlrlkQ7DCiZVLmrZ48013YsmVgdMPLz0Usx
HxzQsDyqpqvIESm3OWbqdJ1QsPNWhdARZ9zxZdmXa3PGFyROL9DEBUPZotdS
CFyRtO+NeUm+K6Z68R12O+WGUV2/fPLN3ZBS5CjJy0o3nJIRFdz94oZEO4dP
n+Jyx/3uGHkOK3dUkjr2hq7AHRMNhwOWx91xtkDRKI3EA/kG3wgcE/DAo/c3
bhqZe+BnHgu32/EeWDUeuqtZ74H6QRLD2+MeePLpGV3jDQ+8U8GcEU7liTSS
wcQ2nJ64MxHeQiruiUkkxyStVD1RhvhaT7CJJ459qFzWcfBEcwO2xVUPT+wg
fmAi5+uJzIazVab+nrhXNx8Efp5oJlR84cttT9TKafMxdvbE0nWZtjILz4P5
dj9CLU9UJhgcbpXxRBF80J18xRML/emWVRg80d8jjOjvvgf+SHyoW/DOA+89
ICwV6/LA70d6aN/ne+DzaXOtDG8PnCvIDjZS8cBLZf5n5Nk8MKsj6YrBhjve
fH//dFmXOxId/dXEneiOA3F5Qv9puWO+VcvNC4zumHDh907Lohu6RSrdayhy
Q3emGI4LJm6owvY998JpN2Tf0qcIq3JFSeah5O2TrqhGR84yEeKCVm5az3k/
OWOH5w73ZXlnfBK/kPu11Akjgw9/CfvriI+CCKLp1Bzx7Sc+h/5iB6wZ4qZp
WbVHMbF5b4Lr9vjsehv1UKAdKli96hdEW0zwX96w/meDr1zs1AJEbPCEvhnB
HU9rbGKzC/5UbYXi21F3wxYssTqd1DedyhKF1FSDxMQt8Ma5Gt1ye3PUczu6
9iPDDJ2Dm4bCfU2RdEmeJvy5Mco3DJedP2aECTnJTzq1DXDKs2giMU8PH7jr
xH16o4OE3CNlNKe18dqw/b6RriaKgYUfbYY6EpR1/CC8q4qpJWzJHyhvYhfn
8nWzkBvY1rdHeHxNFnc09nOTzaSQROCX6kypKJ68/y40NPoaOjycIA95cxHv
FspzbZmdwq8hgtrvVj5LrD7/mdxHyAKian/WH0bwgHzi6VX3DgGQDgr+wFYt
Bo73Jl1t+qRAcs3PmOeqHFweecNumHMDbLosO21+K4Pt28uDL5RVIcfr5vT+
TXWYGhQffvJTA5wOk9xaStKCTv9Ki8ucOvDYseCkWacurMgKhIko6YOgdt10
6IQB/Ji55LStYwTEFO6dlpPGoE6meztR2RTcqqi6mEzM4KepEMlpWnMgiSiU
Les1h4ULrBaFHhbQ2Mb7Y53JEsaSLS9E9VgCy970YUkbK2j6FHmNgsQa2MYt
T7wqsobED/4DvoI2UG36XGDthQ34+//ZZ9O1hZYNvsQ/72zB7KbNcVsbO5hW
m0zUXrYDy8zrvc2W9uDXvaR6e84ecgI6ciJvOcDH5P2p148dgN1un8H4vCOw
RZfJHklwBIq3M7Tj3xxh6cSLU9VyTsBs87c78q4TTKvo6Bh+d4L3L779Pivk
DDclaopeBztDHuUGj1OXMyy8/KW7uOcM6oq7DZzXXCBEJfKBjI0LdNoq5V3O
cIHuh0dLPnW4QHSf8kubBReIuDpD1PDHBcpVgKj3uCvI7Z6wLeZwhXzt01UK
/K7g9ESK5rGoK8SopA4TgCv8kVl4fUrcFYziXImPCrrCrXa/3fkLrnCCzOtq
BoMr6FgZ7ggQuYK82DPLl59d4LjaqL5FnwvcIWSO/1fsAuRZjk613i4gMy8t
4aNwUB9wJXCkdQFCJ+vbmW+cwftN6CnCAmcwuMN7EQ0O+I+SIG+B1hluB8RQ
Or1wghwVqff+vk7ge1KOifGcE0z+++JuMuQIbTeVxHVdHMEu5kkQA6UjlB/i
nGipcoBnnmL+MhIOsM9Sf+P1K3s4niNfHWFqD2mO0znm3+yAY0i4IPqAP0cL
mYfIf9tCxc5YG5GXLUTG7PrFrdvA+BRPeauDDVAwpEuWvbOGUyo6w3aa1vDP
j5ufrccKLg9WD36+YgV/zapVJvMswbg0efoQoSV0DMS/zbC2gLbsMf6CfnN4
8q53U4zTHAiW6VJTIs3AVeuFjyWagrx0wlKouwl8lH000cBiDKZ37nPzDRqC
U978dRF3A7iUNFVGdlIfyBPOuc206MLFTfkvnzR1gE46Ldf558E/eHZCtjZW
E7K/R75ZZNEA+9/MLtItavDTnUmTK/0WSBq/SGBvU4ar44cIf8zegOPtguwk
f+Xg/ZITfDgtA/3/Qrz+E5aEzt/Z1x40iMCsIIlG989r4J2U3mFmchl0BFTe
vHrPDp4KX29P1FFCpOjtI3pkBMj6bHzVYegMEmucsdN4chHvyc0XJRLzo3zZ
LENBsRC6eaV1b16TwDWPP1vTb6Ww/ZtJ4VaRLF6wufDBxkABS3/R5nZQKaFs
3dB65OObeMo5O8nAUhXpy3V77AjV0aTvfrekigZmr95cJszSxMHAxWq/GS0c
Y2o086bXQY5CHoV+dV385kYSJRajhxoNSgJVbfqYMqTsPPvBAE80ystUkhmh
8vOVyfdcxtjoW69iLmOCT2fWvv/RNcWN9J8kMvxmWKZRnObcZoaxPgFf7IXM
cT+gxoWj1RyjslhYk3ktcO3HkYz0Kgu06Ln2h43REi2OiXFeSrBEnaT2xJJt
SzyJ8pKeZlZY12O3l/7cCneembD/Om+NZS0TndGR1mjl5BkotWiNX+Mseuiv
2WCfa17+vygbFFhi616ZsMEm/esFU8y2qDKhqNBkaYu3ryzFB1bYYuOay8cL
S7bIbvMxvJnJDi0ENG/QadihsqLGoGKEHVJxqmso1dvhbNvQAu2sHX7MNDtT
tm+HLl8H/H4z26PpoXZychF77GrNvDuvbo8FxafrXa3tMSdjyb/7wOedFxx6
PxVij0t0ooH3o+0xwEo/XS7OHq0iGJmqYuzxwWOxrokwe3RVPDUx6mOPff+c
tYvt7XHg496Gkq49njlMT/ha0h6NRimCbpy3x+PSwUdqDtujoVfxOtEnOzxf
qs1s9NQOR6+InsIMO/RkyTsmaG2HJ6VF+oeu2qF8xaWShD1b5K5wyA7rPuDD
084CHZG2aHm6qkhaxhYvdq1Ecx3wY2HE04v+LTaonJOsLW9vg0xTC/r5p2yw
sUvzWGKfNcpwPBnlcLNGi7c7nv50B/M2GVe7226FZ1wH+e/oW+GrjyOmcVuW
+LnlfVxAqiXKn62fiuC0xHNRp8dbOi0wx+iBF4eKBb6WPsq4PGeOfAaqQcfs
zPHtB83mpnUz/JBGwPfV1wzd7+95JPw1xSrd4cGnBKboqzXAn0doguPzVRQ3
/hmhNnee6O6WIQa/MuKdWzFAujHpcaYFfcx8zRK0OqiHj6ev7QS26CJHGoXL
33wdnGdUtMoL00ZlWt+mGEstTM0dCt6W1sTZ1Hnu06wamBtkYcD2Vw1b7o63
Bd1TxcyfR3QVdVVwKunYEDmxMhorWwWfrb2BL1IW9v5oyKPTSbqlzW0ZJKv9
8dLrrhQmZwhk9gZIHOgi3xhxFMY5i7PfzxAJoGSJayuvHC8WuVK73T7Oie2p
j/87LMaIL/DjpHMHAU5ZnXX++eUQ/Ow36votwAxrayrkzBucUGbXLE1dxAuf
zqdDj4QAGJXfr7WfFoaAFHUvBTsJ+PqM9rK6rxSs0tEffd8mA8IjjUK+G3Kw
+ySs7jHnDZCyyE/U1lUCQjepcyuhN2GFWJqUs/wWcLXTkxmYqUGPfbkYi6M6
SJ/N+CnsoQEUx6irw7w0IYvuUf3IbS24Wh9F+8dVGzx3cqsXbHRgXOkNo5a+
LuQHe38VUtAD66PXnO149cFAt/gDnjCAPOMTjsybBuDKlnrcbMQQBNidJm3L
jKBf9F3RSU9jmFE3NVIWN4Go6/2rK4SmkCduJTTXZQoivyyP/ydmBj/Y2tUL
ss3Arev8jOiqGYzn7teMSJqDbLCfnlKaOYSwCO+WLZqDFU8h3xiXBbjdP8n/
wtUCuG/ceBLSZAHmhVdZfv6yAHdpDiEqPktwjKz1nXKwhK5J0yXxEktIas+l
lJq0hEllGtZZYitYvOowTcBrBX6MuZFNelawWSNEuRpkBQsbIyvVRVaQ4Lx8
ZfmJFRxNPRtcOmMFGwQ81G9+WsF6XGpzIrE1GLwJHWmntQZ6oTBtc1ZrUBXf
mYy4YA07/TWO7Fes4ZgUy5AEnzW8sf0qOHeQ740sRvy5aA0gfo2+mN0a7l+M
/DRKZw0dKU/dkw9bw195ouF3m1YgCWapw4tWMNkT+0n3uRWMsVkGxN2zgkub
KXF2sVZQY/X65Z6VFVC0BMbfkrCCCdPESJsTVpDJQ0R0a9kSGDK/9VO1WUIE
OjA0RVhCcHlrvZyKJYiEbPaN0VpCMTsVmeW0BdSHu2WR5FpAw4d2oj5tC7hB
p6vZQG0BqbLUO5MvzKGkMGpYItgcPILzT+zzmkO49YGxe28GjVo9ZI3JZnD1
1x5Pv7AZALWk7VyvKXyLKAp0pDGFkczaTFN9E2A3sFKfzTcGWTbenT9zRkCf
Ne64TGcEF+/B+W4VQ/BXMLv6MNQApra7OSYe6oOivchpzTk9EDzhWKVFrAe8
JIrz+5y6ELscLeSlqAP/OW5XvLfVBj3+D+4OEVrQfVNF/nq+Jux7iJ11a9SA
BK5lXfE+dWAa+hzQP60GW3c6X7mMqMKO+VULp68qAD0Gom8IboKRMIscxUkl
WPhPv1nj/A3YfU6wRywgD9HX1NBDShbM8nZ7NpSlQWNO6+O0liQoMF4l/v5I
DGKyRL9L9QnBGLvqMf3xa1DRHt40s8AL+nezQ0fHL8C3J0uy+itsMKPZ1XuN
8gQcwtjrXy+vS5DPx0zqvCbFltHamB8nGPGCXkVWuC4HuudKrd5m5MEpM4fd
aIerKDCv/ytGShCFOZ59ZTkugtOX375tnBPHO0M11ydGJPExH8da/X1pRJY8
Vs5IWTw1yQIruvK4WyH8uOn8DXx7noNKaE0RedyJH/M2K6PkTr+drocK5shs
LNhcVMW2zcMJlC5qmFIeXpYro45eTyi3mk5qYOq/L7bwUQMNdNrjGR9qIp0W
f8kFby0UtqooUxbWRk5uc1mrHW28ZE28qdOkg4U1eZ8OO+gif3TFcSMmPWy5
tSchfIC3rMIRe1Ge+th+rr/uAoMBKha7Jh99ZIDazYm19JqGeJEEf1/7aog6
i8ICqv5GqDpYSK9BaowkOo08F5OM0b32649eKhP82PmqkzrBBC/fvfFuj9AU
H3wvyPLzNEUPUp9Dvm9NUW/y5tnf7GZ4iUK22VzTDN82+bf8DTXDw4FkpU/u
m2GAg5Zb6YQZOiWlpVfsmKHSac7t7tPmyLhHTL4tbI5cYwsPJXTM8bWhoVqO
qzlau1wc/hdljmBEGO6ZZ46a/xJUNqvN8amRbExomzka0Fw/xNBtjpcCmk52
Dphj8+JyrMOIOfKn2ldyvjLHOzeq+TYP8sZhTbvxQXP8R15E+LzHHPWnI3hG
2w/Woz5mbNaa41m3Yk3hAnM80pNJWBpvjty18VX8XuYoykvb88vIHN+8U5P9
ImWO/k0PE+nPmaOiUIJzLPFBX34956XfmeH9Xknrmx1mSFxvI/UwzQy1C73F
PW3MUJT+g0yJkBnySidVSJOZoX0DMW93jSlKvOCwpZQ0RROppQ8Br0yQqctW
86yRCZLH5bKfXjLGbx5fXX2sjfHsIfqjmktGqJTSd/u5kRGKU1K+Wh4zxPiI
heUJaUOUHTDlKH9ogKSBvImeB++68iu+xThIHx2YTIaCF/WwhkAl4peoHnJs
3j01m6WLqbwUN1W+62D2qyItF9BBFUqjjwYp2ihWscx8dV4L17QupNKe18L7
t8Z5WZw1cbp4XserQQNvuu83C/5SR26Ko1qRV9VxuMgkKcRVDTN8RI9kaqli
fecZRYo+FZQRaeGq5r+JZBjn3FighNM0EzJOhxQxWeYNP5OdAq4P69ORDcgh
mk6TeXPKorPNH/PaCGnMpXlfsb4gidfur2wyOEsgaUby9RhGUbyY/aK4s/86
kgQFdsp4XMP0rvO7tYx8eAgTBMjjuPFkQDP/wzfnUGrqkPygARPKP/ARpySn
QhHD9lLmm3NPU3hc1erPHQZifQ/HwhEGeJoxkv37Hztk8i6yUKVcgDyKq9Oy
FLzA4vW7iEeJH6TctKkeRwgCNdNrAqc2Ybiuz1/R8VEMpL95yWeQSELP8e53
9FlSsOgB3++zykCceQQxzT1ZIO8ou0POLQ9ymu1k+tUKkHX4eloPuyI4ztI6
U+UoAdOHvon/SG7CZjntIVNXFQgJqri5OX4LkjzE4mUZ1MCmInb9V48aDHGI
X3NxUocX6XHdeTQaYJmfds+4SQM6ZBjTS9Q1ITaddUTluyYkyslqKB/gbOka
19MIOm1YZakxeV+hDf+Rb/Oq8unAlHHyp0ePdMB54PTSETFd4J+6oni1Uxda
Wz9vMAnqwcozA7/2Wj2Q4CQR3D6jD8UN27J9ifogI74VTb+lD87lLmXzBgag
9eXWEbJOA/hh0P47ke5ANxRnO5o6G8I7LRK4jYZwW6iK5tlRI9DvHNIS0zaC
3UkfpYVcI4iiVibNnzYCjidSLu40xqADWqK68sbg6/drV8HbGPS0LI5AiTEE
OXwvFuo3Btovu8/5vhhDXAOBDtchE/D9okHIyGgCvBuDyuQ8JhDLrJ34S9gE
xOh1v7+RMoEN/d82z2RNYGhE8EW1tAn8fU1amyNqAsOEdEEpV0zA7EGeZ/YZ
E7D98C2jkcwECh4devBt1RgWUz7oyI8Yg0jk07WX1cbw1523KD7UGG6v8ihF
axjDs7yVO0MHvnPuRvGu9Rcj+KRxMcG81ghqynMuDzkaQdqPVP/680bQFnmv
g2XBEKRtk75zphiC5B77kxkxQzAiD46S/mwAiv79Ct4JBlAbSVIbdckAHvcO
7YUP6MOj1fGzYRb6cLXUtzJjWw90znOVjsTqweWw2hfydHqg1uVkRFOsC3WH
Mi7JntcFxUMsab/v6QBnx0cbMS4dCF/zoeAt14YtExL9L0za8J7+dGlQuhYI
Ehg8ICPRApYj5xtKb2tC6t5VVev3GqAYSpPqoKwB58XvLQ43qoPLUDFxFb06
KMIL1hP+aqDM+0LPtFkVqp7vzFx0uwUfS65/7OZUgWJRygtmc8pAdnh8RjRB
CUSu7BWkXFeEz62m6VnvFOBIvoVAbLQ8qN07b1F6QQ7EY2vkWAZlQGtsSUvE
ThqocyakrxySgjfal1c9xQBIbVeJeJzFoNfx8wWiu8JAYXx/3bFPEBg7woiW
fvLDxd5k8nf0fBBGyKLUFnQJ6u5BSf7geTgWwVlmRs8Gyoa5SZ8H6KBgZY/t
2BgpuNORjR4lipP4H4RQdY0=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9},
 CellLabel->
  "Out[110]=",ExpressionUUID->"a05276b4-8dfc-4261-94de-3cc5e78804e7"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{61.37328362505876, 0.01027474008661199}, {
                   62.12055229559772, -0.005394699157448642}, {
                   63.20005886936603, -0.01079791341290312}}], 
                  
                  LineBox[{{265.63435182113216`, -0.01079791341290312}, {
                   274.4691236026248, -0.003642837196873268}, {
                   296.2839093114651, 0.01027474008661199}}], 
                  
                  LineBox[{{336.27605232154053`, 0.01027474008661199}, {
                   364.7990839817759, -0.005341977056901363}, {
                   396.0101863050263, -0.01079791341290312}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAjWp/oiLHeECwpMlnNx2Gv6ZeFbKi
mnpAHxCOzF7DYL+hH0mkLJh8QFJ9fXGJ8X0/lAmaVmWMfkCQATxMJ8N0PznG
eA90L4BAEVxp0IFgZb8yrMl9cSyBQCKovRH5WHe/oN4d95MYgkD0HCgkJIJT
v5g1l3pyGINAD/d4haW9cD8MIR9eqBOEQNAl59NrgWg/9ViqTAP+hED5WzJ2
kbdYv2i1WkUa/IVAEAdczJWEbL9RXg5JVumGQOFS5UGkE0m/tpvQrOnRh0C6
WKcDTsxjP6X9txo5zohAKHGoAgjeYT8JrKKTrbmJQHQrQJPSHEe/936yFt64
ikA4p0VZ0TNjv2Hm0Plls4tA61apZ4plRL9AmvLnEp2MQE8ob+KoFlo/qXI5
4HuajUCUPKlq8nNZP4eXg+MJh45A06eoonE0PL/iUNxG726PQAGTkAiyMVu/
YxctWkg1kEB2ttrqix1Gv4+sbZarqpBA2Z7AvN+TUD8A1MDX7CmRQHupWjH8
a1Q/rKGVnsCgkUAnFaXJaDYiv5a5cRVAFZJAenW6f6y4U7/FY2CRnZOSQGSP
pwvz/kS/L7TQko0Jk0CSXSslPJZFP96WU5lbiZNA7Xtx2aJjUD/Lw91P1QaU
QNojHo8PkQy/8pbpi+F7lEDR6auVw+JNv178B83L+pRA/Re41W9BQb8FCKiT
SHGVQPJ/R/M43T8/6l1PCnHllUBS5L2er91KPxRGCYZ3Y5ZAqdpmd9DZEz95
1ESHENmWQBQu871BQka/I/WSjYdYl0CRTFe5BUlAvwtg6EOq1ZdAiz9C8Rqd
Nj8tcb9/X0qYQDXfx+iJtkU/lBSpwPLImEB3Lb/APgIaPzZeFIcYP5lA0tBy
mXNjQb8dOpJSHL+ZQLakSWGosDu/QmAXzss8mkByQgfQnOIwP6EsHs8NsppA
lLqz52S7QT9FizfVLTGbQADt6pgGwBk/JJDSYOCnm0BmTwwKGvY7v5W/Afj/
H5xADQxWb9oGOb+43mc+
                   "]], 
                  
                  LineBox[{{130.59705077101535`, -0.01079791341290312}, {
                   137.58984283828846`, 0.01027474008661199}}], 
                  
                  LineBox[{{198.55658873635605`, 0.01027474008661199}, {
                   211.06496060032836`, -0.01079791341290312}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422279#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.01079791341290312, 
               0.01027474008661199}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{61.37328362505876, 0.01027474008661199}, {
                   62.12055229559772, -0.005394699157448642}, {
                   63.20005886936603, -0.01079791341290312}}], 
                  
                  LineBox[{{265.63435182113216`, -0.01079791341290312}, {
                   274.4691236026248, -0.003642837196873268}, {
                   296.2839093114651, 0.01027474008661199}}], 
                  
                  LineBox[{{336.27605232154053`, 0.01027474008661199}, {
                   364.7990839817759, -0.005341977056901363}, {
                   396.0101863050263, -0.01079791341290312}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAjWp/oiLHeECwpMlnNx2Gv6ZeFbKi
mnpAHxCOzF7DYL+hH0mkLJh8QFJ9fXGJ8X0/lAmaVmWMfkCQATxMJ8N0PznG
eA90L4BAEVxp0IFgZb8yrMl9cSyBQCKovRH5WHe/oN4d95MYgkD0HCgkJIJT
v5g1l3pyGINAD/d4haW9cD8MIR9eqBOEQNAl59NrgWg/9ViqTAP+hED5WzJ2
kbdYv2i1WkUa/IVAEAdczJWEbL9RXg5JVumGQOFS5UGkE0m/tpvQrOnRh0C6
WKcDTsxjP6X9txo5zohAKHGoAgjeYT8JrKKTrbmJQHQrQJPSHEe/936yFt64
ikA4p0VZ0TNjv2Hm0Plls4tA61apZ4plRL9AmvLnEp2MQE8ob+KoFlo/qXI5
4HuajUCUPKlq8nNZP4eXg+MJh45A06eoonE0PL/iUNxG726PQAGTkAiyMVu/
YxctWkg1kEB2ttrqix1Gv4+sbZarqpBA2Z7AvN+TUD8A1MDX7CmRQHupWjH8
a1Q/rKGVnsCgkUAnFaXJaDYiv5a5cRVAFZJAenW6f6y4U7/FY2CRnZOSQGSP
pwvz/kS/L7TQko0Jk0CSXSslPJZFP96WU5lbiZNA7Xtx2aJjUD/Lw91P1QaU
QNojHo8PkQy/8pbpi+F7lEDR6auVw+JNv178B83L+pRA/Re41W9BQb8FCKiT
SHGVQPJ/R/M43T8/6l1PCnHllUBS5L2er91KPxRGCYZ3Y5ZAqdpmd9DZEz95
1ESHENmWQBQu871BQka/I/WSjYdYl0CRTFe5BUlAvwtg6EOq1ZdAiz9C8Rqd
Nj8tcb9/X0qYQDXfx+iJtkU/lBSpwPLImEB3Lb/APgIaPzZeFIcYP5lA0tBy
mXNjQb8dOpJSHL+ZQLakSWGosDu/QmAXzss8mkByQgfQnOIwP6EsHs8NsppA
lLqz52S7QT9FizfVLTGbQADt6pgGwBk/JJDSYOCnm0BmTwwKGvY7v5W/Afj/
H5xADQxWb9oGOb+43mc+
                   "]], 
                  
                  LineBox[{{130.59705077101535`, -0.01079791341290312}, {
                   137.58984283828846`, 0.01027474008661199}}], 
                  
                  LineBox[{{198.55658873635605`, 0.01027474008661199}, {
                   211.06496060032836`, -0.01079791341290312}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422279#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.01079791341290312, 
               0.01027474008661199}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwVl3c4F94XxxNJyiZJ2VFW9ub42HtvsvfeRNkrlFlJ9iazFN+Kk2hIFEKD
hoRkS1b08/vrPPfc+9xznnuf8z6vw+7oZ+RCdODAAbLDBw7wVmkVVv5ZgT/n
PF+yL61A0dEYntLJFXBpGzHlH1yBGVsSwzcPV6BR46TnreIViE1qEymMXgGb
RE3XZasVSC/NfXNHeAUOkj3l/UW8Ao+LBEn6B5dBylY+N/D2Mhh5BOf9s18G
Ghkh3nyOZfj8IpR75MkSHHSVJEiIL0FVRf9MU9kiUBpOVhUeWQSSVKO1C54L
cJxv8oXhs3ko8k1RGj85DxzyywRHr18gwI/EWm1z4Jgv2LO99xNmXly0G1f6
CTc98tfN4mchX7Q7c+jJDHRL7A482JkGDUGlDE+xaSgrciwz9voBhtd3okdL
puBmR+s/05Hv4JT/+7joke/gwyJ4+7XcJPDVfCWL9v8GjII6adcrvsLGUoQM
+b0v8MBAiJKb9TN0cuZTsF8bh5sR9uY3D3wCEa+IIJawD6DaX8ChujoGXY0a
EjmBozDJxRtwZfMd/Er39ytNGAaHo903dBmH4ASdH8VW81sIeDXiT1UxAHpR
SdH1633Q4UYnEmzeC3KDzYLEr56DzKEDRLO6PdA/Pqdb/r0LPr6xYjNgRJDq
ivmvLf0hNHxutxE8+wDOHKr11Z5rAYs+4amT1XeAhdwp9v7LcuB5PCl0JDhv
/35Gqe8L8UDwyDl4jdcPD5mLP01ly0JqUr294YeF+CNimXX6QwUm/J31/JpU
h8eDjpl5TTUhyejGyeyLd1HiQ+uRqQ+t6Bhgup1H14Z3/y3k8vP8h7oS59/w
MDzCMellQ8Pfj1E48+yT+pxO7DBlDGw7/ARP5PUa87Q+wTvLgQNpel34NdXM
vfhTF1YrG/hXmjxFDuqOHWl8il32EsXOJ7vRVDrixE3XblQKeMBV1NyNZA/7
n8lOdqN4vq2bCGkPal+I7Ng51YOZMTGDtDw9aHSK5/EaVw8K15s5MjP2YF9T
i9jhvW7cIh9bEfvYjYZ3DLw46rtR6gm3rm5wN9p0U8yKiHajRwXXnv7Pp6hR
IpnNdvMplpdG/scq/xTZt9led+zn9z37D2VSUBfio9HFaZIuVKCu4TPLfIJW
D6qG1Y8/wRq3B6o2gogHpE16V7k78cS18cbzjB34kPfj8V//HqFEdPCrzW8P
sexb12Oezv/QSruSQ+l6Ozbm/aWlcG/Drzul1RqSD/DY2yPNTcT38fDCt5KN
/nvotEQd+fbGXazwe3B/yrYF5+Jo+T5wN+NeTSh1/ucG5BWnjr4XcAd1FEV2
zpDV4gD3KwJFeRVejHF3u6hcgbNVP976zpXiyylKh9fCxcgYskl5qzgf6U8c
MCdlu4Ht/cSl2JqFbZ07Ww87U3FYVPtdjVIcFhVkNsstB+F775/qjcx6yK/x
0lhu0w18D7SeW9OMBHqHzitz1ImgTOMDa5AOyavr33jysmDX0+GCyHIu2IRO
+Tny5AEDqwkXvfxtMH0vJfpAqAjERWRTpmNKwOmO5dDGWCnwDCz2O50uh/iv
ZyLJDCtAjNy573VgJWzlf3EtiauCQNkf/pEx1eDWPK1l610DJ3iZqZ3UasHk
J1FHEGUdlC9cdX7cUwct1r2/rD3uAL2HkVLA3zugIZCfKR1VDy+UJcw/L9aD
loHhTJ5eA/yb146qKWyATcoJDqPxBpALUBf4St4IyeWyZ8vONYJjsHX8vFQj
WPnE6J+QboRmJf6dON5GeF4lQXWNohGM/fp+FU02wEJ4XyJLXQN8Finjuujc
ABEypWwstA2w/nO1NPpePfTLiNnTatbDlbFnjrrDdyDr3veuWqM7ULyd5V72
og6wzGfsnkgdCLj6zlrn1oKLY3UO00INDNHS3feWr4GikdDhkcRq0C/xmB15
XgUHDl45t3igChQPzwwVi1WCwtFHq16OFXBq01ZiOLUcpJdK200by8DrZfhg
YH8pxOrRz9TMlsDwdWfFkAMl0B7Ddreatwh2/vT5ROkXwNLa7Vh7/3zQ1okV
lLuWB86x18Z3am8AhTjDUGJPLiRwzSw8+pwNrL+fOEduZYIL40tiab5r0BH/
YmTKLRWKknb0btYlwTvvh68nfsfBseKPZpczoyD1C8cdF50wCHk9+k2XzR++
y4jfmj7tCFsMU8FU7xUhm+kc7e/vRrjbE5wjNOKKNqWT7y9uBOA9x78abhfC
8bpQAY9SfhTubp7kIDGLw6iW2xseGokoo59x3JczBVlGPvrKTKfiT5mh1eTM
qygT1KegTZ2JBWqp62zaWXiEpPlkWHg2UvPrzJLm5aC/V/hAZm0uluo/9Riv
v473BI+EtZfeQCX3rz3byTextCmJI8YuD/ky4nX4z97CkMG/oz+/3cKPyyMM
den5KH+y/qDL2dv4uq2Ljen+bVQZnbftEynAl1QFG0mlBfjxqLe1GVEhCiwL
GzkaFWJsr19bR24hdm2rXk57WYj6bd72vxcK0dyET4v7UBHannQLMaEswonZ
VIG2I0U4qLpRkrZRiOMOVnfp3hciccOh3ut3CtH4llmJTWAhrnNpHG/j3/c/
VNra+FiAWV9hJORyAf7iNn+SSl+AjxJ6uXNLbmO8RcmNVfbbuLP6O/XIrXws
DViXANJ8HAl4ZPDX4xYGzZCN3+nJwwqWf78fHs9Dpcrv+Xn2NzF8Z2LxftkN
vJvIJJowcR35/V4rhdFcx/zHYreIIRf7GLevFrnmYNTGIHtnSjYW0N3te1+Z
hafSS9VcOjPx9VjIk9bKDGRheJdx4cVVpJ7709EymYYdTynpCjevYHd75gFy
8hS0UBhV+8aYhPPRvQVHOBOw6k2bpRt/HGaoObKPi8XgI/MXXFcjLmHQEeJF
4qvh+Jhie7mvLBiplhZr0zv8MUpyxe5VhweGb5CZj1E7osz9PM17iyaYKn3m
1oMySXSpIrlNNEKAg+5edByJ5kCk+6V6dNkR7g4TiTjvesC7bU2boUB/YFVQ
or42HARcBX0/7rGGgdwSRz6rWQQwHkpTeBhyGTTyRuU6FGLgtaOZg8iDWLDJ
//PqGVs8/HZ6Png4KgGizr7eyehPhCe8/yh2KZPhmOKZk+uEFLChyL9yxvUK
PJ4iPaMcmQqlbPRM5LFpILpLsSkflg52FE3ttReuQurAZAur2DVQ732Qc3H7
GugZhlzIa86ACobLZ0X4MuFidXXAdEgmPHI3MHVuzwS52b6KutVMEIw6Xv+I
KwumKA+eKdTLghtGwucs/LOg/sAcx9aVLCi/+uJxxu0s8A+3eCtYmQXTJs3G
81VZcJN6W/VbSRb8SKe5fS4nCw7PSnBPXc4CMr3P8SIOWdCi1XBQWj4LNMWb
0lhos0Cj+/WVY18zwbMi+61gdSYc5jWOu+eWCUt0Teuv2DNh0JVTXP9OBqyp
W3bskGYA3es9DjLza1BqvZgxdfsqXAt1jSYZTYed/LX4z4fSIWxv9Ng8XxqI
0e7w1mqkgpJMnmmuzRWg9M8XFHRPgfmxSbUtr2RguHVp8qJ7ElQkjz8Wt02E
niml/nu6CfDwnNnRS5Lx0BVOIcZ4Kg5yFg9kUP6NgVcGXu5jTdFg/3y9wt/+
MpxX+zi/Qx4JHM1uFWnN4cD35eQxYaNQiIiMGN5ZDoK28+MNW1cDYLXEb8jL
xBecq8wpA696gK5rXTN1rzPsKkuKaR+xh3gZNRuZEjP42y1sMH1ZC16uvLtU
knseinz8266RiCO8YNWhb9FBLQohsmMG5viamXfuOK09hpb9jHvu7oy3ymny
/OvcUfPA36SoEW8kmb/xVTTYH1dIvnF88A/EoPlXV7bsgvGfN5XWjGIokol7
Rv+lDcfDh65a3R65iBWputqCKZFIfO8Qz1ney9hYwK5N8igKq2PmL3CejkGV
5FTWzuEYJAq/J306NhZfczeuUJ2Jw7ZdF3JPjMP6y5KviA3iMaJqZO+/0Xh0
y9b752OcgFFXResPPU9A3uKfPl6Cifgfz1nha+mJGP3xjoPD10S0PnDm+/i5
JLS76k62656EYoLzKU8Lk1CF7EawyMskpAj/ecZsNgldKvNFZPeSsFY7x2rt
SDJK3AgKyT2ajFPe+bZSxMm4erDry9/lJKQulMgnHknCR/LPFgOaknDth+mU
f0wSOuaYUghoJOF6/orXKGkSVrNImJY8TsTa7NPGXR6J+IS45FAQZSJmUg0e
XK1LQPOHzA8uQwKORN9RsHgdjy68tLrPDeOxmV3mANXbODTIbO2KVI9D8dUQ
dov2WAz3JG9Z4YjFvw+tPt9MjsH4uuMFkv3ROOhL7VUSE4VxdvketPvvepR8
3U7qVST2j6cZokMEplxoOm+2Eo4p1OrpDRfD8Jxgvk7YTgh+/qNr4xoWjGs0
7faCi4HItFXmHW8fgO+IVTxEi/yQkZMrRSvEGwNIXrjcU/fAK2bZ7cPHXdGi
6w0/1ZQjErsn1F91sMOZLS2Nlr8WaBhxvUm+wAgjjx/d7EjUwJ1ZQZsvryVx
hjTv8bfDvxUCxeiVPWhlIGFF5Ly/viZse/U9ONRmBDxE9FIszRZAY9HXdCfT
FuyvRpKJ8TmCyouAv9f+OUOwL8l/Jj1u8I6DyPxSuCdIJwpZkzL7gFMIPflu
nR88Zwi0fkgXAI9L3pM+Vw+ED8aG/BIBQXDKiflrRUYwVGcSulvKQkAhII/l
YF0o0OKFHcXKMFBcoJFmzQ0HEH9XYhx6EfZG2P7ka0dAzON1kna6SLDovtAQ
NBAJsZ1O8wWRl8Ao02+SjPkyOCdTj2XXX4ZDatIyp4SigNFvtSy9Mgp+6aT2
DR6LBvl8jbQvLtHQHd/Y39QcDfqT2slKC9HQahnwa4AiBuaHjiVNn44BNgM6
sRXuGLC4p357+2wMNFzf1qfhioHpXdMWtRMxELa1+qnxUAyodE9IdL2PhkEh
0gdzedGgsWvPS6sTDdWXNhOCV6PA7knhNeP0KDB5vNG1zhQFVz02OKtuXwZy
r56TrTSXweS8hHLQpUugtbKgIjseCe123JVuwpFQRK6XZ34pAtKI44Z8Oi6C
iMeeGfV6OIzv3VKr4QyH96NuDaWaYUApdUXfyy0UONzNQkIvh8AVnH0gkR4M
snHsL9hzg6BbR1mh6Xog1LeJOVtkBYBMT9z2zWR/mOQOOvZuxRcErxqL3uzz
BsksB7mQQk/opROT83J3Bxdq29NhAq6Q5cUofnPBCeTO3HrfW+sAyQMN00zP
bSErN0rukZgVzNw12x8oTeG+jtY/XkpDuGjZ0v54SwPyjdZr3nUApOTTUBP/
4APL4sBxQhA15miHmEiQSmBGFF+vyDdlrKns7zhZqYNyveahNZVG6LNA5SI6
a4YfX5EbxJ6wRoy96LwsZof0pxol1wsdEIsy21avOyGV6FWqu7EueHNRVyHS
3g1jLfs5CoU98C6LUbvPb0/UVzqkr1XjjZQetF03dXyR00i54ulXP7yYTfKY
9a4/+n1bc1P1CsBEn1MducyBWHio2PDd00B8Hiy/PWAfhBXNZ98brwdhosCi
s0RMMB5njr+kRxSCE7Q+LuHhISidQDaW+yMEQxYXdlM0QrGyPSxKoTQUz0h5
hZQvheLg+ZehdaJhGDXwNFXLJwxzZufPRheE4Z3xHGGNrjCkVrb8UfspDItF
KT7V/wrDyJuDaxdWwnCx8JruwHwYulN2idJ9DkOal3co1Z6FYYzNH4OEsjBM
ke12WgoJw4oIjax6CMOep38Wpv6FommgjOKzB6H47dL36cvOodhCSuhUOhKK
R87uEWtXhqB3U7/0oFQIajOvkdL1BGOSbdsJQ/VgFLF5T/TmaRCuGB5kGpYI
wqlWR7Oq8kD8QXAWyj0SiH8JFWFz7gGoJiIsstXljzNCnKG0DP4Y7yyfTP/M
Fx+qVzz2NvXB+/57OuOfvFDCkvCd3tITb92PePaq3x2v/FlNaJVxw/U3Cw2p
JS6Y6MYbdviAM7qVqQRMWzqi9LcTElON9qjjf0Po0r8L2D5+psop3wqz7EeC
t8+bo+GJtLFHXcZoXvF2j93QACloTs5poSZqvTh05OKEEqZEyF32/CeJ0MKo
G1XOhad1yoT/KZHD9/jWKZNeIaBtOJtxg08BrAiBXB9aVSFb4vtpHtCBRYm5
D+SWhnAq9vnslUQTkJA/+/1NuTnslG+crLhrBff4w2NGmy/AyOMDR0r07IGK
+Ha5wyMH8KzuleVmcQLtulMsHqHOMPTEebqu2wV+3C6+E3DIDaaVjc9pyrpD
/aL29FNnD5j72GwRGusJJDMuh4myvKCju7mGNMcbot8yKQgn+8Dil1gBYR9f
KDBwM+9Q8QOao3zXe0n9wQDR8pGTPwS/lzVj+s8fqA4dU35NGgDelspST3QC
oCZIpHkqNQAG9XJS+LsCYKxG++C1pQC4FPQSDx4PhH7j9a5ksUDI7R52Oq0d
CPyL901eWAZC3BJ7Vrp9INDnO1qF2QUCaWAf/3WzQDhL/KD1j2ogEMvA0yaB
QHjyoU92jCIQFsqsqZKnA4CH7x7HeFsASI44K/2JDYBTT7qoNlUCQOPnowVS
ogCAU93zWg/8obuq6v6isz9osSYFsVL4g1F720UmWz9IobPYeHvdF0q4XtT2
d/nASvnU6UuT3qB6w2JJZ9ML5G7tZLcSe0GzyS4r3yFPcH74jZF/1x2UiH0F
JObdwKuxiLxvyBUoN5DBr8UFZgKfitemOINa3Y/rBy2d4HPhkDsppyNUySre
IczYA3dJ2OtEHTvwWbKdFO2yAV3WWLcmASvY/AdvmHPM4Yjm69bCVRMI7OKx
s9I1AukFjbRFDX245cjNK7qqCT/SKr368lTA8WmP9s5lBTB7JpPKNCAKHley
L0/ocEAxwSuTW3OjU2/Ol/bwLg+ebnPVOhYkgQd6OClXXRVx3s13zSNRFe1+
zrz/lK2FZLWlbIpX9XGLMHlOV9oI5UV6Vy+VmODhG5zh8jtmGC7wKqRcwxJH
d2QaXyVboxsnDYy2XUC1nPmV5TE7ZHs+2lO1Zo+dn34n5qw6YCAzId5+1hHT
50tn771zQm2BThepNmfsvteuVZjhgk+Xh8tuXHDFW5/XdSbY3LDX8BDt+Q9u
eLPh5H96Se44vxDFRHLWA1kng3lPdXpgimcvtYeGJ075neV9+twTpVXEj5NI
e+HfPZcO6mIvrLAtM32z6YUdedXO/GreOBgs+oQp2RsZfm2lXXu0r7M+HuLJ
373RdFTJ59A/b4z+Sc5KTemDKZQ2rveofZBumjXuwGEfFKT67xnFijfmGHCn
/BnwxmuM52g+lXij6pGIhK+u3tjDyNgnxO6NX7XbIrbfeKE9W8Aj/yAvHNss
4es76oWCU6efqt7yxNHgvka2U57YzJAnXZLrgRV9G8XHiD1wbfLXcoubO16K
r5n58tQNmcp/9vykd0N5+SM83LauuMDx8+tikQsK03W/KRlzxg3e1abbZM5o
eLh3mSDihGWKKcmbJo44xHmlizvAAS++aGaQSLbHk5nRc5zn7fCcAreUvuoF
ZNEaedJnaI0jL3JIIkwtsfM91bqcoTmK9anmbKmaYjvV+/QbYsYYZ0j4sHPa
EI2L6Bq5SPWw/T/DoaReTRxWDj23kqyKJk1eChLKBPyls9Oqty2Nh4eVrvD4
CWM0XSY52yA7kla6qF5L+tip9Ug21J6GDSS1qq7rewvBHtmOtX6HFNwwN/rM
eUkRojx3gpfSVeAWSYqES4YGxPHrS83G6kBa/UPFQGEDcIqoH3Y7YQT3b1y/
S79uDA9iFBg7n5tCl5Xq58Z0c9CVPdInqWYJUrVPXzatWoGmyN2zwVk2oGqm
PzHLbgurZk53w8vtQCV878mrVHswqGIQHZd1gKtE7WvNUw4g1jxPR5HoCIbD
1ontp5zg7QN//ug7TiDv1rksJOwMKbJlfaUNznC/hm2kls0Fwr239M6kusCx
H8sNv3+6gBm3bulfcIUM9qQT3Omu4LV4Vt12wBVYjixV3SB1g/NURzd7xNzA
Ua0Bvlu4wbGFpz1LgW5gSvmbfCHODRTVp/q+pbiBZMGjxfcJbiAquHv5W6gb
XFG/e5vSzg3CppeDwuTd4EXSMwFJWjc4cTPlo/eEK9y+UeMkW+wKVJGrob3m
rqCQ5BhAOOwKLjopGoMNLtDHcyWwTtsFDH+8fk30zRlOLtjHUvk6A3k5yy/K
NSd4KVgWruDvBEHqrNe+/HCEd0QcrhImjkA4pLVyZb9fHPtCeZ/zlANYJhTU
6ofaQ8u9RoH2XDtofCH4TUTYFkhXTJxbn9oANZt14A9Na1CYyYfAF5bwMHGP
n1zOArQ64yLsaszA/cvcJjeFKWRcefmQ0csYeEY3e+ae7vevW+2dVgwGIPBj
Ukn9uQ5IVD99S2KlCVSMl2I8ZlRBwl6M01NUCfbyh/4WRcuDwn9fM/pzJSDd
mJGlyOg8MNRw0bLEsINztkuEKu4qBMhmqsYcoEePybelNWU8uLA78GQ0VwQJ
5lFMX9Sl8d+DpYymGUCF7O0/r6SUcSiIwyg0QA3tTy7PXS3Y78vnJAX723Xw
1O1cx40efYyZjaKZtzPEO6qFc+zvjHCyn5IyXcEEqwVqOYqKTNHXRvvD2zUz
ZPl3mrVM3gKzZVx0r0da4h7PsJlogxXOS2ivkg9Zo+bC4e7mnzZ4rJghCtcu
oOQ0A8X7JVts7VZsLJ3Yn3P6X5O52Nrjcn31f3HP7bHyfInlYR4HPL/T3zoc
7YAxAnp/+946YFJPXf8YkyPeE+iTmrRyxEhdn54POY5Yt80d0NzjiEcuLT+0
XnDEd2LSt95ROGGMasplRm4nfH/5jgGXhBO+zAnz3ZN3QqJzp0vq9+2r+8cZ
pMWdcJW01aqFywlfxGsYcR9zQpJ/RNz1vxxR3NpXzqrbEUcHHvBq78eJZ8yr
LLB2xApX1gC/U/v72mL6MyMOWG64Oc+b4oCXEw+9cRJ1wHte1+U6x+xxKyj/
nEeIPcqpjbLeOGaP1yyWdFdl7JDZ+4Z5loEtylHR90dYXUBansoYLksbjM5r
9CPTtcYOueLUCgkrPJ7iFxlx3BIzIt97Ui2Y48JX655fD81QX1BqKz/GFONe
Oird2f+P4ZvlDg3r+/zNt+AgVmWI3H3HzEcMDLCVqUBab14Xc2ms+RIEtHHu
jfdQtKsGvvunkxCap4rsBj9PFPco4VSacb/je0ARPfPLfWwyeFy2b2jWWQzH
B+szTPQEMHCQIXx7mB0nlKyu20UdwdRzN5yZz5JAXXZnOaszG+yUdlz6W8sH
ZUpp/0V4iULYboKS9JoUBKf/fvzHQwHudWTMP54mQN4dz53eqyoQxu9LRHNO
HWKOqVQntWmC9a0cIW4pHSjZiPy2UqsH449Nm7cSDcAkfYO8qNEQDtunPQ0c
MILsgKQhsh/GYN0ec2t9xQS26J4dGP5tCj6/+0thwQz8LUt/fv5oDo2f/klb
dlhAaqg1mU2uJQQ/SNu+ZWcFjRviRH0s1sBk9s2vftAaWrcbaYnCbeCbWzMh
i+YCKIePrvAWXYB3T4K7S0/bwjKdGeWbDFuI/mr3K+u3LbwT75Z9o20HFNKP
GgKu24HxxIdOj0E74GmcetTwzw4+KHF8OUVtD3x7icPJTPbg1fo6jfmUPTSf
WLj3mdEeLp1g7v94zB6GJ3h1pf7Ywfs3RXVOz+wAeDdMrJPtgNJ0y1BDzg7s
tRLWLKZsYbFQoPNJtC384Xuj205pCxvidFKXsy7ALV+KBUOyC1ADy9cvB+3n
r7i4oj1sDb65FsIUZ61h4+LRNwyBVpB3XNa9s8USDuzczXaasQD1a7dbXOgs
4BDph5dnJcyBjPqEPr2BGSy+LdjLdjAFIvhZQetlAvW6BivEPsZA2pSm9NHN
CDy1PIOO2hjCj5cNVVRaBtDxnzXXU2c9kDzfnL3BqwO2t9UoH81owukLzEvk
BerQkXqRaFZDFf5zaGA0XVKC+HLz22aZivDsILv8lKUccExTf7ROlwSLi3Uy
7A9FYEvaOTXuFR/o3HoWkcHKAeffj9ZsLVJDR5elUXj+ZCceoDvaGM2AF5y0
WOnVubDp4ulpr0cC+NgyaCQyXRQztfw0lgSk8KdwwVW+J3IY2VfHX1eiiMXE
WRp9Y0poTPMoLpdEFYduquRwc6vjmZTtD9WymihG6ndPRUUbY+4L9Z0HXbzP
T+pVxqeP7T+SnXwTDFDqsSUnnZch/rrL/MNV0wh1z138Q89qjGYtf0tf/zLG
hNx8HUKTCbpdc87i9TBFda4L1ipMZvh4zGFXD82wSZlLg8raHAsp+Ir05s1x
2OPdoU+BFug2aCKdvGiBsXYNrbx2lvhV+EZXaY8llm9YxvazWGHhy5LfOT5W
2Cp4juhrsxVuiPuFlM5aoSO3Enk/vTXqB2g52ohbY4ZI3GE9LWukvVTuWmls
jS6RmS8997lmz+Kh5h1la+yKT38TzmuNf2cnd34eskZVh2yWk6NWKGh/9My5
21Zo386aImtqhfcPrEtGkFjhtymBJNpaS2Q1NaWUULbEj0o3C04OW2Cl5DDt
toUFHu9k0KEdMUfmc0l7Ferm2DU1enuj2QzTSdSFjGnMsMhURZFk/x2+tnRU
WLWb4OiYuGvtP2M8dLH6hhoYY2CBNm9amBGafDN+M1RjiOcu1fVEDhugvU2u
Xf+SPk4GxH6f59fDTLmJP6x2OsjjLqgklqyFhPyaj9uVGvjoJdGM+mM1bLhv
o7z6SgXlt/24hoeUUJyZ5uGzd4r4quBGmW65PEqIGs/X5Erj2ZE2XutocTxk
1yHL6SKMyqeE02IyeFF1bnf9myEHBrj5xvado8eSA8c0RJ4sdNLd2M3VNz0C
5n3JLO4bp6DX5xrbwxxucORD82P5guBMlTzVoCoKrY/5P4mISEL7Uzv/bWpZ
MHpZ5BHwVQG+qARrJukToOUzd2PFGWXgNCmXHltRgVK1l3yu99Tg+L369SKP
//MdIfodnRY8/uzgadeiDavzYFxE0AWZ1SOUf7r1IMbg8/IsswHQzh38ajhg
ABJDtPKr4YYgL3Nh6wrzfj0yi1aN3zeCo3pFqS3qxtBbENI2/NYY7jC8YKI1
NIGh1Ow0eLk/F28NTIpImEKnwoO95/mmIKphPPxx3RSaSvSDDNXNwId4j5E2
wwwiTEp4yPrNIIl1VpqTyByWolpOmvOZQyXR1qvb2ubQsUARs+BgDm3zB0t1
fM1Bec3uaYe/OSh8P1Gi6WEO2mf6GXbNzeE2uynDTzlz8JIqv81xwhzCL++V
P/1pBqeFipimW8wgJb7hRYO/GYito7oCtxl4H8VFHDKFwhWrdttQU3DfOiys
RWMKXwtzbO+Xm0C1oE31qIAJKA1KtM80GUM+GbXHGV5jWPUwLnlTYASMlTzi
58iM4JJv+tswb0N4ru7eT/zKAH4n5DKeYDcAurx5OpIpPbDSdLvJEaELvWs8
lucP6cCLCEmioUQtuCo/vX7/rwb8R2JAneqpDv4ybfoH3qru89v7tH4BFRgj
WHDXJijBeITXI50RRcDGx+UzigoQMiTK0NYvA0zMN4sTjCTh6+fiw2/eioJJ
+WH741pCUGMbOPAg+hxYz9S+knfjAA4dIb6E28fh+EB1FOmHAzAxoNKsNfmn
szK669dQPx0OhJVea5pmw3Gygpf33vPgizPlo8cfCqLyNa4soh4RpGAN3xpl
lcCx4Nvq/H7SGLp6pr6mWQ6NaC/4bU8C2tVTPfaKI2BuXsZMFLky8kmcpjp5
RQXDbD8zVO6q4vv+xpp0N3U8+sslTOm5Bo6l93vJM2mhw2+xz1t22tgvl/5i
65YO0leuL/c818Uk4UdsP3/ooYpRnsr2H32s46/Q6b1kgGPTlW61fwxwds7r
+Iq7ITozBZqFDRvi1Y6qq8cljJBJk+hmfaYRUr3O7z/53QgbZ1SOqwkYo3tp
wcxxP2N8znLT4GLNvm5uJu3afDBGndBbsveJTFCqpm87nN0EtzfNB8qkTDAo
pPCXkLoJxlbH8ZzRNUHrOLPVBC0TLIsSMbIEE8wo+vapkc8E0+4Z1F2nMsGY
1+km7Pt6/NLEdNK90xi3/qhj0hVjTJuvr8/TMcZTP+da8PB+PPu6o2yPjJDU
pZnpm+t+vjMXtQWOGuFSeslRkX09sv9OW8eqYIhMtLyq5/oNcK6puiXB1ACp
knS73zXq45WW49d5q/SQiGorJzFLF2MPz9G5BOjgwK2FFzpq2liUNJHUQ62F
vWl1lBaDGlgfLPL8Roo66ms+v0wnqYbeRpcEnSdU0J7Rs539kjLuvp0snqFT
wppTY73GlYo4SDzte8xRAe+wnI8j+MniwkZ+6dWg/b6GBVIy/uJoR0joyHYV
QdkJKc2XTYJoX2dYtZl6FhV5t7mMHTjwUEUFxaznCbzyujrrPQ8ZyoCD+Llr
jQqL7t+DqEmPwGRlxPm29hMgHWZ/PtWbA/bUI2XS/c5CHo/l+x+OguDLab9N
wyEC/xlnlfuSiYNsrHuV5XdJKMEfRbUtMmCqOXNZNlAelHTfRG3RKMJrFqcr
E44ESFwUF1C+owSL72meVs8pgxe5wng6myowj/VcDtdRgxjVe6rrPurgQ6VY
mJ2gARV0vZNTGZpAwn0zOzFDCwoELH3o4rUhMkyjQMRznwNFfg6lq+iCD521
7yCNHhDxnc++P6gHTbT/Kf2O1wcJfQ8FHnoD8BFJrFS1M4A+FeZ52XIDCOe8
h2tfDIB/9ca8JYMhqM5yOdkqG8I/lz7Z3x6GEH2s6T+aK4bQNb+t3VxiCAFu
n66+bjaERwtcqq7/GcKceY1dzEND0GSWXGJrNYREXisuwypDGPvUqX46yxDu
tFy4mxtsCP1edj29Bobgqvrs4+AZQ6B6+UH52ZoBlBz3F8GHBmBNtdk0EWEA
G0y+VwliBtD+wbrq1IA+TJDa273j1gep8aBXO4F64HSS3ufnXV1Ys6Sq3JzW
AYd2oqgrVDrQ5/gv4YCANhScist/DlrwJr7xqYaGJrRGkv7eUNOApdaiKQ05
dSD9tDBy76waZPjq2LUeU4XJN3KSvbPKEOmesxPUoQQ1Kjc3pdII0D4gulRk
pAi/5GtbL5xVgCmTI24zJbLgf+mdz28qabi8EqhbGioBI/98TlGMikJXby+Z
5XlhYPAc+E//sADc2FAmk63hgSKVDpYOZQ4IDVueVmhnArKrU953Bigg5lFi
uZjLsoIkA4uD6v3tzpMSG5bE7jSo1kqsoE97Cv2Wz5N/N+bE/wI42w5mn8Wx
IP3rNl0C6M76QG/GTxjVP06NFa+LYpAfg+RbfwlcLfQgC/0qhQ8spW7nKsti
Wre6ufgtedSg52J1/wroZ/1gjP0YATc4Lu6usioh//MnBBk+ZVS9UWB+TUAF
rdK5KFK5Vfc5JirwNYMacs1u7m1uq2HLI6HWthF1vB97Hu7v8wS/aiRjuacm
lpUcKZDk0kKJe8cEBYe0kMklU1M9WBuNE77c1iDXwY9CtYy7OTq4fPQrqTiN
LvZn6J58HquLNH/ehab90EWjY45PXOT0MNAwlkM2SQ8P3i0223iqhwSZleq0
VT0cI//3e5FeH098nmg8zauPtLZUo0wi+th7hWZ9jn9fVyxLThSd1Meul43P
VHf0sM3s9MLWgB5+JxKfGLuuhzXVi0IHDfQw9yZVR8muLjaRn4n8WqSLjuQe
gWuiuviXt6CIumOfl3S+vguS0cFjDqVVF+q1cYM4X4mOThu1rQ+afPbVwq+p
m1+OPdHE26Ui7Cukmni2gNzxm7IGirWtv5MMU0fGn+FeRqVqODNXfyf7qSoa
vHROuPBJBZe8yNmY55WR45TqA4l1JbRRjbJh2SDgK1fLEaVVRexMce8UHABc
fX2FmLNeHhmtRu8bRsuiHnfeSIOGNM6/udUpcEQSvxwg73zVJYZpu+HVMUEi
qLp12kOXVQhb8jnBIZ0Pl19aGpkNcSMvtXfgZVoOTI2B+vuFJ9E+WsvsBy0N
KjP9/kXg2Ot8vFNLZPPui8LTq7Y1Cuuk4Mx18GDiL3qI6I/7c1iHBYyKtO6z
v+aE9IlalvOuZ2Egn1ZFbZUf1n8f0FZpEwKJ1+9GMuZFwItj7gDrCXE4/Ofh
RyppSaCif1OQqCcNqpMEklpzWbh7p6W6xlgefqaGav1HACjnjDmetj/HJH0/
3RATToBfxCubDhZKcP9vr+TYeWUg+mcclr6nDLt16veFe1RA+vrEbkSMKtir
hKSwiapBFI3r0OdPahDLu9wWGqEOBx6rpDVQasAvrsJzunka0DVtScnFqAmj
kxzOh9I04a0GMX3vmiYcunxpSNtwXydPpPP6lWsB4VBZEtOcFshkJUhKnNGG
WXn2i/dNtCHnh2ZIerg2PL9vq3I/UxveW07/EizUBp6049a7+/b2SQOXczna
QGeb/fDJJW2o7ZmbGLHShkGuaaaYfb1RPk8e9Om3FrhK2uaRtWhBjPHRIX5H
LRC+cWoxgEwLOubc+UgrNIFqrJnjlLgm7LDuNMw90oDmPdmBeikNOKBunFF6
Rx2exfvOHWVQh4bG8SqREDUIf+0gbf9aFT4RmMomT6qCpP4fjaMOKvCscPW9
YLEycJvtMFWOKIFRZUPvSxIlUKT/HbjBT4DFwBsqWXqK8IKhsH9lWAE0+GeL
uf/JwdDDSqEMVllYP38pf1dcGgr+ziapK0tCsu7goKqGOIzQEfO/2+f0KsWB
x2/lhCHpSEeipI0g8H/bcRcU5wVelqFOHVJu8KB9SG09yA4av9l51YSYIZqY
ZXyinRZYj+dXsMeQwC6v5ffDN8cVuHcpzUcKtztX7/44KMRCib3cLaHrHozY
8kn1fk4rKwrZnT3dtc6J9lcM7jccOot/bO/uOJLx47CWPovs3/M45C8+3bck
jH1fbPwC3ouizdrgZfU2cRzyqWdOT5PEw88fmseZSCMj+7/MQBpZNAlqx7ou
OaRi/vQoylkBF7UnYjS2ALcSbCVbURH75Ol6OCIJuO4wOFolqITHvMfntj8o
4ftr62wT+1zBfwAsqBhV8G5KhKp5jQp+mMhPiRJSRand4idGTarYn9BWWMml
hrc78ld0MtWQ+h1XJ8eqGkLYKaVDWup44zM/ydhNdVz4Sz4e9UkdFXx6tmbo
NXDSTeIXkYoG+o3fKX7iroGL6WUep+I18Mhw2x5NjgZ6hXaGlOVpoMzzf0rD
+2uOqTqRxgQNTFkLcSB4aeDN4hDRYnUNDGIX0vzMpIFszSuBTJPqOLfqXuZX
oo5Vr7I/Epuqo5rv7undf2pYmuRlnbSvR88KvloMSKsh3yBb4eFeVbzo32ju
rq+KvDkG6rz9KvgyXbA4VUkF2y6lz/U2KWPnJ/ElPgZltPYov7YRqIR9+nOV
ob0EpPscN79+goAxN9cHexwU8VDJTqunBuD3V47rkl3yKMYZOVUkKIfHhLO1
DbNkcHb6xDLJnBSeKHNQCZKWxLOilIyWMeL46boBIRRFsSyB3eTqhjA6aGWq
OJ0TQhdCsWDUHX7k2lFjHN4+iy3T1WmWSmeQJzd7tTqeHZsjRjXrY5gxo/NJ
3NYaHfrqihENvSTDhYQwxXqTtU6S3NTPOa0/FG5xkshph5GA2RVZ/58PaECi
y+0inGECz+ijl14S2OCtgSe9+wwniIx/7/4bywNvN68mkVPzwTfODy3MmYJQ
+8b1uf0BYSj6FRao1SwCnLQv9ZnNxYB9qJLz7G9xoH31VOtVkiS4aAzu2FFK
Q23EbLJOqgz8enc9b3NLFjzN4r2GbOThz8XbR/XuKoBJWW7yjy0A/8yZ7PRb
ivBkq/1VmyAB/ny0pJR9TIBUYVbHrwQl+Ds/ACGoBHncprWvxJRBJ3dZ+n6p
MrxifitOQaoCy6yn8hr36/5btyvrxVYV6DsZbWGwpwKs38qrmUEV1ujpDJ6H
qsKs2++LUKkKelqFEhGvVIF/QSDeZ1oVZsyTNem3VIHI/Ladz0E10HzCmBi5
b01F/OxU9/1t3ErBI/vnpEb5OGT6VIGadeNmYpUq/JVVfNUfrgrOr1Lc+JVU
YVq851XnwX2/htN85UMV+Co1bUjqqQLszLs7h2lU4KQeGI82KcO/6Ti6EjVl
EOmfEL+5r0/NtVYflm2UoNbem/fHOAGU5fk0m0wJsBblJnj1hSJctyvMQBFF
mNJqjKc7DzDpRC/pNC8PCx826/YK5UA1LnokQkUWwqLKl/y/SsNI+ifhqEAp
UBtQzFDekYCyT6Z+LpHiIF2U7pq2JgqbWLtg5ywCVxe5TmQOCMEukXbODRdB
kOkNHUnk5IM3XbPSJu95wGP+07hnIhe0Z5OdFOdnB769rSkoYAYSH+cpkQ/0
4EgbaqbIdQxkpHcjs3h2FWLGL7829nqiwLoV8DR7e7Mz66cVe+rqEcw9cv1k
Wy0d0nrerRbWPYm2VYmXLvqzYVOs5AJbCycaHSmwl5zhxjVX5iBPGl60vXCu
wUdQAFvjbBIvswihlfcA/iwURokVvcdf6EVxbSe1/kWcGHYl+mxTzIijzcUz
8ZwESVR05Hp7OVMKo+L/6d58J40ZT07HLh2TRa3e01JHpeXwOuW3R8EW8lix
fHb3kacC5j9qxVA/QA56dwc2UUW0TS1du1CtiBektM5p0BPw8P1e9QcXCbh9
hWI0boyACoeI69IElHDduOJ3S6QS0o7n6nzsUsIntppt8/+UkPPYf83vxJWx
wuK6cKyTMrJskrZOpSjjGNmSxHqlMpKfrIf6h8qYYez0kfSFMmrVDOQd6lPG
jetZGfXPlfFt3nEj4v19ZcrNefr985e+bHxeSlbG2pkr1FWOyth+Y71XZ//+
+jW6mr/78QgVTRmDT5VQXupq8dxlJRSJ4WD3FFbCVjmS8JAJAmZt01CL78/v
7mHuWu9YCXjLnNMj9oEiiiZvXPRRU0SVv3bRecWARAqC4jWVCmhzp/FLZLE8
vhp/xJp6db9PaNyU1POXxRcSu8PqGjJIMhM/vM0gjSMvbY8tfZBEUZVi6uZc
CTQ/S7HyWk0cX7q07I0ti6LEMcE01xwR1OL/V019Xhi9+2J6v6WcR+jlZtKo
4cfsR8nPsjrOoYxnWse/Xm5cv2XyZmSAE++qm7BY9bPhTbNo4dqrzPjtivqH
UxcZ0Pmv0poqUqJQla15cfJBtIvVFb9L+NnJJ7Ne3pEwoyD0dteakewg2LyQ
pZZgpYRrio8FnlAzgBb3kaIdEmb42BARMRfMBuOH/m742HLCxrELbe/kuWHn
dbHkMs05EJbMjbv5gQ+KPw1WVucIwnlaH/q4YiHIa2V6or0gDNbm1Z21IqLw
sSJx4oSfGJSnmRGfLBMHxpmrjiJ9EkDaxF7366cktF+RFHu3KwWaRR0i0aQy
0CU28SGBWBYuLUqkxP2WhQmmD/MnP8gBa9c33j/N8jBDj9tdkQow+YGoV1ga
oDD+wdDeLMBl10LWYFVFOKPTfdsyQxFMyf0vMwwpQjFdRHgmBQGcyqpsHhAI
QH+A9lSoLwF4R5XeduUQwFFvpuNaCwF8DWXNR14QwPolo3zWKAEYDO8odE0Q
QNF9wtxt34reutCYMkKAtAH7qwLPCeDpS2Xv0EQAq7DqOpEsAmSZmx2850WA
uecDxBsKBGhwL9Y4fpQA7HH61nxvFeFhrnqd8TVFOHo6/WLTfp6byWVV3fMA
LO4Ti2z7PGuaFJrzIkUBKs+1RFH0yMM//8XrumtyoBQqlTlzXA5+03x/Bedl
wbvY9BTKyYAKEW3lEEhD+H2K4l9SUkAVFsgXfVYSOArGWUipJGD3rcDrv/Ni
wB1wdGDyqSgEqbC9kckSgYY2acNUC2HY1rIMsmQSAlO2Kh+XGgHQVD6TrErH
B+7aiub+wWehzX7PmrT/DIRJEq/ysnBCHJ/he2IPNlDKancNuMAM2SVqrD++
MsDnX6QvH9hSwxeiJf3Qu4fAXbA6k1l7XeHJuYkL8udqO5skEg/vDfzplKNS
yHOyJcWj+HvDtowa9y6I3CY6ehzt1OZFP7oyY4EY/9H3lmxIoLrFV7vBgQ+S
OCxfp53B98b2EiIMZ5GX/NKtt9m8SOKQv1lGLIC/O0uH61zPY9XzWxThE0Io
7Wf+6sk/YVznTy18yCSKvwKN9H7zimHCYmr+AVFxNMlmdgwVlsCFvOC3y2ck
MUCOPYGKWgozhx1bQ5ekcOnFM5M33dL4sbdM4kW6DNJmR5+l0ZLFmAvKdC47
suilL8YQUyKHsSP38rmk5XHrVEvwyWfyaHund15QRQG9eWjGxB4o4J5VROl+
+aBy/Lj9pUBAub+Zn6If76+dqrI2NwEvVhh/m6NTRNW+i1JJXIpI4mbWoi2o
iLfPMGfKCivimYkzmxYCiqgc+n62lkMRxUpAWpJGEY16GM4wrQJayt4d8m/d
50/uh79uegCe+/rIdB9LcBiFzLfqFfC1IXlsjqwCmuow3HjcIY+dJxT8W0Tl
8ZFX9/d7hXJoY+VcQv5XFq9z51ET6cvi0fbPEjM3ZFDkivQVmn39/5w28eo9
qTT+D7IWCkQ=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036238443*^9},
 CellLabel->
  "Out[111]=",ExpressionUUID->"673410cc-76f1-4655-bdae-d7bbc63e9103"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{269.6863412553085, 0.005829420856974507}, {
                   274.4691236026248, 0.004871723536771152}, {
                   302.42825820472973`, -0.005612247358025571}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAurRvyJvRc0ADq8Et3vx2v9lxsFh5
/HRAgyaBh09Har/CB0kMycx2QNnsUFm16XI/v+Yr1JDEeEDNLQVpolhkP6Ze
FbKimnpAY428Smpga7+hH0mkLJh8QHjfijmHRV+/lAmaVmWMfkBlpa9zlupl
PznGeA90L4BATNaYzgOzWj8yrMl9cSyBQPZMe8Tb2mC/oN4d95MYgkDWU5Jz
JSpWv5g1l3pyGINAR5MTOOAFWz8MIR9eqBOEQO0kBeg+8U8/9ViqTAP+hEDR
vLSidHFVv2i1WkUa/IVAkxGKkLweTL9RXg5JVumGQDU5stAFqlE/tpvQrOnR
h0ClyuIxW/hMP6X9txo5zohAX61vwcV3TL8JrKKTrbmJQOPMMLuzrUm/936y
Ft64ikBQgFjLF0RIP2Hm0Plls4tACzmLiZmLRD9AmvLnEp2MQKgim+Sks0O/
qXI54HuajUDzRkO4NelCv4eXg+MJh45AQfl/qzqiQD/iUNxG726PQOouFC8z
UEM/YxctWkg1kECYWWMNudI6v4+sbZarqpBA/oEWUxvCQb8A1MDX7CmRQL8V
QBiFlzY/rKGVnsCgkUCeladug/4/P5a5cRVAFZJA7uR2mnXvLr/FY2CRnZOS
QEI2TW5RrT2/L7TQko0Jk0CMuOJAPEQpP96WU5lbiZNA52MwJokIOz/Lw91P
1QaUQIf07O5YVSq/8pbpi+F7lEAAIAXJETM5v178B83L+pRAV/5KBVCdJT8F
CKiTSHGVQA/1dfF0Ijc/6l1PCnHllUDw6hoilKcYvxRGCYZ3Y5ZA/0pkf+2a
Nb951ESHENmWQKwWcI/SDhI/I/WSjYdYl0BmzYPzau8zPwtg6EOq1ZdAZwf/
lXcfFb8tcb9/X0qYQMfwmng/mjK/lBSpwPLImEDeCz+KXrQOPzZeFIcYP5lA
QEh9uL41MT8dOpJSHL+ZQGtyFuYweQm/QmAXzss8mkBkXbxDDTYvv6EsHs8N
sppAZrA1+jjw/z5FizfVLTGbQHOA/3TvFi0/JJDSYOCnm0CWmjcZyLD3vpW/
Afj/H5xAQ6smtVlXK78a8X6l
                   "]], 
                  
                  LineBox[{{54.94147740877193, 0.005829420856974507}, {
                   55.999837639589124`, -0.005612247358025571}}], 
                  
                  LineBox[{{107.40278842310526`, -0.005612247358025571}, {
                   111.58916682520592`, 0.005829420856974507}}], 
                  
                  LineBox[{{162.12254499778203`, 0.005829420856974507}, {
                   172.0949086773327, -0.005612247358025571}}], 
                  
                  LineBox[{{217.62775237511167`, -0.005612247358025571}, {
                   236.95438362964467`, 0.005829420856974507}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422340#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.005612247358025571, 
               0.005829420856974507}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{269.6863412553085, 0.005829420856974507}, {
                   274.4691236026248, 0.004871723536771152}, {
                   302.42825820472973`, -0.005612247358025571}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAurRvyJvRc0ADq8Et3vx2v9lxsFh5
/HRAgyaBh09Har/CB0kMycx2QNnsUFm16XI/v+Yr1JDEeEDNLQVpolhkP6Ze
FbKimnpAY428Smpga7+hH0mkLJh8QHjfijmHRV+/lAmaVmWMfkBlpa9zlupl
PznGeA90L4BATNaYzgOzWj8yrMl9cSyBQPZMe8Tb2mC/oN4d95MYgkDWU5Jz
JSpWv5g1l3pyGINAR5MTOOAFWz8MIR9eqBOEQO0kBeg+8U8/9ViqTAP+hEDR
vLSidHFVv2i1WkUa/IVAkxGKkLweTL9RXg5JVumGQDU5stAFqlE/tpvQrOnR
h0ClyuIxW/hMP6X9txo5zohAX61vwcV3TL8JrKKTrbmJQOPMMLuzrUm/936y
Ft64ikBQgFjLF0RIP2Hm0Plls4tACzmLiZmLRD9AmvLnEp2MQKgim+Sks0O/
qXI54HuajUDzRkO4NelCv4eXg+MJh45AQfl/qzqiQD/iUNxG726PQOouFC8z
UEM/YxctWkg1kECYWWMNudI6v4+sbZarqpBA/oEWUxvCQb8A1MDX7CmRQL8V
QBiFlzY/rKGVnsCgkUCeladug/4/P5a5cRVAFZJA7uR2mnXvLr/FY2CRnZOS
QEI2TW5RrT2/L7TQko0Jk0CMuOJAPEQpP96WU5lbiZNA52MwJokIOz/Lw91P
1QaUQIf07O5YVSq/8pbpi+F7lEAAIAXJETM5v178B83L+pRAV/5KBVCdJT8F
CKiTSHGVQA/1dfF0Ijc/6l1PCnHllUDw6hoilKcYvxRGCYZ3Y5ZA/0pkf+2a
Nb951ESHENmWQKwWcI/SDhI/I/WSjYdYl0BmzYPzau8zPwtg6EOq1ZdAZwf/
lXcfFb8tcb9/X0qYQMfwmng/mjK/lBSpwPLImEDeCz+KXrQOPzZeFIcYP5lA
QEh9uL41MT8dOpJSHL+ZQGtyFuYweQm/QmAXzss8mkBkXbxDDTYvv6EsHs8N
sppAZrA1+jjw/z5FizfVLTGbQHOA/3TvFi0/JJDSYOCnm0CWmjcZyLD3vpW/
Afj/H5xAQ6smtVlXK78a8X6l
                   "]], 
                  
                  LineBox[{{54.94147740877193, 0.005829420856974507}, {
                   55.999837639589124`, -0.005612247358025571}}], 
                  
                  LineBox[{{107.40278842310526`, -0.005612247358025571}, {
                   111.58916682520592`, 0.005829420856974507}}], 
                  
                  LineBox[{{162.12254499778203`, 0.005829420856974507}, {
                   172.0949086773327, -0.005612247358025571}}], 
                  
                  LineBox[{{217.62775237511167`, -0.005612247358025571}, {
                   236.95438362964467`, 0.005829420856974507}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422340#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.005612247358025571, 
               0.005829420856974507}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNV3c0F2wUVkgoeyR7b372du0te++9skK27FHIKtqIRDtCKbdIiCKr7AiV
lJER0ff56znnnvd97z3vufd57sPtGWrpc4CIiOgwGRFRhMHg26TMWSDS5jc7
mDALUvqt9EWBszBoZrKgajkLT77WeDHLzAIxU9C4ytFZKGYaFn37eQZYqQwv
fr03AwekO3JbI2dAc/VFTJLcDJD5Dsc7rXyG/qI1kfzqzyCUp6tjZfMZuE9c
eTXy3zSk39vWljOehp6jhGbzvCmYVvoZ/+LNJFQOZf9k+DMBel/7G9a5JyBX
0IPin844PJJ6/m/IYwwa7KzbOGNHQTWzajnj3Ce46x746cGlj6Dqc+CjbtUI
+G/1VC3fGYaRvdRGq0dDcN9S8gbTk0GYrIiLG2saAIdHv1zVn30A8t6bnyaf
94O5e+FoeXIfnPzvoYnl2XdANxBvv1TaAwXpbG3Jdd1w9urXY0ztnfD6Vylb
zWwHpMmNyfNQvAZzqWWyAOU24Ca7k7rt/xJyhj98Pef0Ap4P343Htafw1/Xb
r/G6Rrj2j62xO74eWAgjR2p8HwJh095+6VMdVKsaTymzVQM172O961I3YE08
g5umvAR2mUbiVY5kwO3mvBiyRhM47dwYcvJMMtZF5D7b+laAldHrg3aMl3CD
8q+Qqmc51pRG0rzbvokTqKSWaF2Da683ezbD61BAnnb+pvk9dEkt/me89gDD
aDQax0QfIbFzodGcxmMs1R042KlYj/IbTkJMDA0YQ8ZCHTHYgKLsYkS50U9w
wJRYk/VAIxq81qReCGtE+hHDypbORgx7EUOIPNSEt1We/lkWb8L7RQctmKAJ
V44ZPRtSbkJLgtsOO08TMpDoXZE62IRAZHeN+nUjimwpRDpFNqKrhE8qA0Mj
Pnx9zUml6gmiKIH8A/8TbM5gtR251IBdiby8xgcaMHX9R5u4Sz2KK4q4xt1/
jCKRa24im4+QJ417UUbuEY7YTVrknHyI/MGaBlLKD3BiLc374vl7WEv/0oRi
/A4GiSiBEUcdjqcfvUvmdBsti8RyvxbdwupUwc6Uzirszimocd+pxIccZS5E
4hV4wetUe3PZddzO5F2xkriChoddJHoCS7Ho8Igz9Y9i9CsPGzwcU4DyY8/m
lgTPol8Iw9ufKWlYNVvZxU0Sh9ZiAZT6DwOxhCOhh8dOCtlGSl+9avQBmy+p
0rw+p+EZt06q1KtkcLt54iozcya8uLNsRC59Dpj45dOvUhTAKptFDYNjEZxW
PKobkVMCxvdNfzGUXYStdY9/pzLKQOGqjwivxWXg+Eb0fGTnCig7bx2viL4G
I88Xyoq+XgfjqBwVDcZycOz7fvladTmQPO2g3uarAJYNr9yo4grgO1s1qrFa
AcRpG+zF6pUgm8dz41N8JVR81j/NWVsJtIyxZ9+/qYTX5/vOag1XQtiRzCOf
hyphRTKJnH4/fuFumOuJ/XMa2zSGlGcq4Z170EKXfiUELr56RElSCZ6mIiQu
DRXQ1Ct2wcihAmJiK3Z9fpeD5OYheZ20clAOOsefSF4OxxLsDjgfvQFJf/N6
xjavgcI78emm/qsgJEB0QOrqFdgxL1HOcLwMX07OE60fuQS489v9eUMpiE5d
lWazuggHotYszL6XAJWv3XR+TDGsdF/IpDlYBFb2Qu9Iswrg8c3ePnnafJD/
EU9YpT4HijMGPIlHsqGt7VknNXkGaKSEfO8jS4U5LpvpWsYkMGYI+mQsFANt
FWwB4canoEkjWPo1aQAw+C1R/WfgBGlO4wHr72XA+gTnNc0Fc2yVTNx0YPNC
CCyT6Y8Pxv88joz86ohAKv3W05dvxmDgQBBruHUibnGRc9P/SMbVS58vmtKn
YfEFh9Jl7gwUf6mwwMyUhav8hgG7v7LRLyica/HOWZQwaKTWNcnFQ0/vsmb3
5eF02p1POnLncVjn4q1C9QLsj5kfDBsswIuat9eFHQqxSLXq1aO+QmSf64oi
UyhCT8amItnzRTguol9u8qkICapmX0/SFWNc37ZEoVox8j4S/6PuWIxZeZFp
6f7FuDD4kP7mPsZzM7VROxXj4P0009dQjLUZy+S6zMXIoVvHvj5ThLd+y8jI
lBehWCART7hlEabJ83hybRei8WToZHNJIRIo5TKa+Avx0+/1hWt3C/AEVerL
VeEC/D7uLBireh4Z+u9FMDHk4wY1w/LYeC5SMTBy/yg5h/oOH5tDNc5ipunh
5pLpbLz6Y/5GdkQWviCaLo/fy0D1ZKV315PS8WqaiBnvn1S8V9NZqRSUguY9
gbe5H59BkrAv6XcyEpBAukpsaRWLjyOILmaxn8abMS8vJy6cQp48l6kJ91Dk
e/awhu6vPwqGfwmZveGJeQ4JKr9u2eN80sHRWD8DzOsZ/kS+9kE9l+6RyGFd
A/iuptFXtWkH4TLYUtXuAQsRg8fGfP3gqFhwSsvMSbBh3bl57Vg4HHzSJaBS
GwFXQ9wKHLlPg2jFw8TGMzHQQUEw52qPA5M2z9zkxQRQ+Koh9HE9CWYYX85d
C0uGgfrf2yF2KRBwfLE4VSIVptiLYrI3UsGeyTVC9W4aGOlEm/papoMNc2br
6Nd0WGZVtD19MgNaNx64Cn7OAAs96uYvWpnA9kXtxr2STHgltMtRPJwJrBF8
2ndJs+All5Q1G38WeMYaHqeVzQL/M1vFbdJZIFtVXXOKOwvSZIPF7xFngcTh
WlX3oUxYCk3spriYCTnfX2rTGWYCZT+T8tzPDDhFwre2kZ4BfFvpe+1UGfDt
3WDPh3PpABtHlWt308Ci7zbnmEcabPlUj263pMIh8t+DlZSpcK80jDbSIgW+
j40/pslPhr4bf7fV089ABt/r5yUTiXDG7933eIEEsC6dEbD0igP/29wFMSUx
sCL8qsOy5TQI1Hf81R2NBH02uyPNy6dgSUgkj4ooHL58ZvrgxBwCjlHHNlYE
A8HS95rPFVlfcEsdOk2n4QnZsmEXDl92BqI/b4OEnltDnOXOa++PhlAkvdk1
2ygLP6+sWmS/4cWKW07KUod0sPqXyWToSQt8yzEva/Zwvx+Mxcns37ohO2NC
rKiTFx7Qmf3D0+yLDWniwoI7Abi1zaHvwxmM/PqW/2jpw7BcoZXOMzMcL8so
v/z87RRyfcu9NaoUib9fTgbeionCw23Da/erTuOM9eSFgBfRmC4dp+PUFoPP
L4xUM9fHYlRPsqjm+Th0ORjDmmMbj0d/lRc8OJyADrZt4WnVCbhwXNJtViwR
i4IMSpuvJ+IDqsMDRH8TcS2ik/61ZhIOHEmMZolIQoav91b4zyfh7oQNKdvF
JBztOpKskp2EdTT1xz/4JCFF7m9ueckkvCi/RNs/l4hNDpZiNFmJWPE+4HAE
UyK2PxFmTy5OQL74H7rd/+JRSJlYa9E+HjPzKyWzK+Owq8z/oMVELFpHEW/u
HIrFvSsGe9q8MdhbJCKxKhWNRnS/Rd7LnEY/CeGcu8JR2KZ3Tt6LIRJlotMn
3q2fwrsr6Vq9PeFIw1b1QPNyGEqqzJcKtYVgQmkbsYPWSXwzpfnyW2MABpk/
+3OP2w8J2r73z6R7o0BLRprsjAfeJ5pm0I5wRZGps9LSnA6okrKlO9hthaSP
Tzuc+mmCNFb9VMOWWjip+P7yrogk9t4vev6PkxE0T8+9iZtXAi+xS2Nbx/Vh
7rgut/g5c+h8ILXqFmoDlK2Jo6wKjmDwa+BD2rQreCqmLv147AHEmvOyLV+8
4Gj7wI9fRL7wOex2ty25P6TYcd4Z/BsA0rpWx+0/BgFt5Mzbb5eDQXBo/fA1
3VAoiD2fZxYUBh8KThlfFAgHukPbVsZD4UCtu8bHHXkKWIJdlYdII6Bn9Q+7
aE4E3BDlCtvci4CpYYFFGu9IqInkcnRriQT+LLWyfuIoGFHsj3JRiwKzf4y3
DvtHwWeehfKptCg41+t/ZqMgCi477A2cPB8FjYpxp4PPRMGF078dhD2iYElW
0XBcNgrIjijfe7MTCRkkJQYK9ZHwxTZgOdk1EpqjRpT/240AbyYpRcbzEVD/
w4ZBnDECDl/TaW86fwoKxEyqxP4Lh9ZYSl5y73A4M37Wpr81DDYXG0opaMKg
mPaHwdmHIZDdn+fASwiGF3+/j1KWB8EbwZfJpw8EQuIOlf9VG3+YemtEeH7N
FxylDHlYxr3h7YVw8x0qLzjX1dZUq+wBm+0xbQutrrA7F37YcM8RXvFlWzPK
2AEt9WLtvKcVhMaZX6rkMIOiOAWpkSh9CFIsT/yvHGBdUU/Zyo8AxbOBt6Jz
1tWfpD24Mekpis9l2opEE1WxNjX7QXm2Lv5uI0nQf2yCgiL3RfPGLfDsYzsP
X0MbpG6lP3S13B5vHj45IDHthPKfQ+7IErvhPaXbIydJPbByM6+IEOeJ7lpn
VOmnvbDFxeO/EzI+aCpJ/VnktC8ucGgy/b3lhx+z6J25O/wxvI1a9mh/AP6m
rORX7QxEm+mlZaW6IBTMX3lcHnMSWQVJqFmkg5FtqlLZcSQYR4xLqUR8QlBg
oviwy1QIdjaa6oxohqI3yAVlnQ9FjwM/L4d1hmJlSLVW+fdQ7NXP2ZLeDMXx
7iANq5+h6Dn2y16pLxR/2TgviVwNxVTvU11x1qEYq+aXnf0nBD+xBSu+zA5B
CR3itUukIej6xjv8UmgwHk8NqDLtPIkXWKVkzI+exJff1w7qagXhVot5/ahv
IO78y2XqiA/AaEmy6jcp/uh+22upOtYPRxo7dqS8fVH8dPobDS0fDNV7XXSf
wRttn7lZuEx4ovDNcwdlL3ugl0slHYeZO8ZHkwYz/nHB+LeTeZ+0nXDK8b58
aJo9Ttf+6XrTbINPqmqo+uYtschCcjXmiDmOLtb4BLoY7fuBHpuFqzo4P/2T
KalRDb0PtvDlKkqj8urWPCMHKxLmar6lWNOBIasMsN2VhLs1t7Wo1pWBtX9V
lXxdCzLebT25YmMAxqcGo72vmILhMH8KrYcFlL8PFHL4YgWvBbdtSK1swWis
91HFfXuQPjan+HbdEVh9RA6K8bnA9srNzQwVN6Cigdahq+5gWuVw9kW+B/DG
JURtn/KEqNqJO1SGXuCzt1KbR+MNP3vEQ2m7vSH3U1otnPIBz2sXRrsofUGN
6Uqo/wVfePdz5fMclR8w37BupI7xg/qewaKOfj/QrYmV+XXMH4zmuv0SzP2h
4Qg7cUi0PxgWbb7pyfOHWzLherXF/tCRPNvGl+MPzR5jB/xC/EE2oobtprY/
fP6Sa8i0z0e0AmPXydAPiO2O9Xf67Oe5nD7/cM8X2sZpf/Fn+QJDouTdooO+
8FXrglpQmA/Ml9i1in7whqXinK92/N5QMtVQGxfsBSYbYe38dZ4QyuBrvTru
Aeq05MHxxB4AWm5X/Ljd4XG+3OLzk65ALP5K/XimM1RyM9YaFjgCBUt4f0Ou
PTg5kZX0JNiCnokZFbGnNVxeXrw4pGYJt0zetD+nNQenM+JDka3G8JqnFa6Y
6cOuqkLiz1Et4FOYvj78UhV+rt0X5+iVAVrmtRLtJn4IVKRn+W31n/ruxfck
6+msmO9jsKqgI4nWttQKL/UVceHYWJa1rwbe83Ikbrmgg0OanRRRDwwwYfBY
wNZDE4x88nRy3tgcqaIs17oIlkhLuN9EdMgasznEQqPe2uA/zcVItkQ7dJ3p
HPrD5oCW932GWWsd0fLTREw1lzNyxvxce53qgg+3gxievnfFTI0pm28H3HHR
miX4SYE7prSwPIin98CD7v/5/83xwIbIzNC93x44UrYjbWXhiYJCJ9+NVHhi
lIEwZdC8J4b9ORP8l9ULe4gHBBN0vdDLiYx50cMLfwyF1BuFe6FcP9fenQgv
LKvc8eQL8ELTvyZVAxZeqFrneG9S3Au7bbpCIvc8ceMB18N3L/ffrS6eFIzx
RJ33LB+6eD2RmlaodK/dA5v+cEsed9ivp6JFP/aLO+YGJW3Fe7lj7GnjL3T1
bsgqxBTKnuuKBtpP8nYtXbBh+ULOjcPOGH5TyPS/e45YNd19n13HAVf7eZpJ
eu0wMSnle4eeLZYu1sbGPrHG5PnKIjUWK5RyOJgrF2GBkmzxenQ5ZtgYSeLT
yWaCRQnK7xZuGuCIzNdv/Vy6mEnJe+3bBU1MLTUK5qVURfKN4oeuc7JIXydX
nxMjigFP381ruB5Hd9H48p8Vn9V/n1g8O23FAfmq8x8lBMWBpWi2JjRBDmii
n7geM1YFn/rjHBWJmvDlGD5zfq0DRg10Yg1b+rChc+fzXUZjiCF79sKF7QQI
GChy/Uk3h2cf6rrMf1mA4mb0aw9DK0iLuTLgesEalB9XbmV+sAGTrIBvfHu2
0DmbdvI8sz1UyPI0C3M5AJe27gsvJkc4kM4a+WzbEXKE/I83dzsBkowFrGc4
g0yqegeDhAtMD6Y6975yAd26eP0JDVfQvh1eSn/HFabfnXYzI9rnEeLz9XEa
brDV2nI9P8gNiEuJaIpS3KBYNKH1Uqob6Kc1knSFuAGNnXG9iZ4b+AuyjXuT
uwEJv8p5x2ZXcNl9fT3dyhVuhM3p6Y27QLc7TFKZu4C8JW2Ew2NnaJhRCb97
0BkySi+JX9J0gr3wL7EtoY7gypMo9jTPAT47n7mpedUeOF87ah29agfvv4ct
TuTZgmQccWjsKRuQ5ZogqTeyhjfttPfdma3A5a5FpduoBbTcYWgoKjSHoQwr
3/aUE3Cm7MDl8H5j8FjQGKGmNYQrl3y50nX1YFeO4P80VBtmItvUrxdqQO7T
luP6jirwtkj90ulsOfjalLbu7CUJBWcVc67X80KnYe+BfjoaSH7RZkdybbc1
nTnvxaACB5rG+YXsZomgs47iOfgmjaV2ByfZoxXx2zfNGdqfavjqQgmnzU1N
FKoh/ainoYNvYPtMa48e5vz7e05ExxCNv1/xOXzbGCcGqmzmN0yxkPzEfUkm
cxzxICKi57dAHunQjD0BS+y0qip3YLVCUwFC2pUD1mjOqhunOWqNFx93yAxV
2OBTUt7dBUdbtJ/+tc5MYoe56uQ6NNfssIrBViWd3x6VSX7GyFyzx4HBp/99
I3ZAK90cg3gHB2z8mmrce80BbX0YU7v7HbDgjttM0JoDktELvGs66Ihvwv2I
XxxwRP7KuuSLyw54r5LbJbDXAR1n2ysDyhyQ42EGW7+VA6btjHDM/bPHf3Wl
hpuX7PHrRL22x37edqLrYTkVdjhb9fnGBJUdFh0jbfoQbIsQTG37rdUGJ5MG
T98+aIPxlwLIKpWssZruSPJJbyuEZ7WRt9Iscdgxnmej1GJ/zpe2iSvN8fMZ
G6PDumboze/AbC9rim0kDLeC6Y1xm3ztWecXA6zRKMhduqWHKc9cnvq76qDL
mcvK7ym1cKn2fZ2vB6D3gDSj1zVlvGFFfqT7vRye+jzJOvCHgC3TEe9C1YRQ
oVOHs4uKHVsGxiZu2BGjh21UUY0WMRQHkHVT9bLBMROfhZ0vgiB75s0VmUoC
sIycba7WkIMDJFyuXm+VIOuv5L88VXUojSG3EzfSBI8MsuUcP20wH2FMPhql
C88uvKeKCteHSK6fd886GUIuiZqUgLQxPApJmxdfNwFBWyKR0vITkHSAKUuG
1RyupkiEOoyZwwFRUivzPAsYvyc9WC9jCYI5We5C7yzhCrNjkJODFbxZeJRL
/MkKfpmo1342sAYRWwqq53esgRrmMv2JbCB18lRIm54NfIjaanqQZANDl1rX
OG/bwEybnv6Rdhug9hUMie6zgZ9qneXB72zgS/R6GskLG1g1jTridN0GjL3u
uFwKt4GMH36VK/I2cEaD7vPlX9bwllLv9ViZNXSepQ3+K2cNoS3/iZq/sQI9
d3YdWSMrWH4vcpOizRKWrCUvqklYQsrT6lj18xZAvRTvkzFvDreceYYLpMxB
x36w9O3XE0C+PfWDxdEUdA8/OyfRYgzOSdGcUkeMYF3LRMvqhAHw/5O//z5V
D0pZznjN1elAQ9m13vFOLTAh4Zs+MK4BnNnBkeY9aqAh4plpMKAET/XoUq++
k4OZesZfRC+lgBD0b8/eXhRWJTyu3BXmBfbMMOhfY4Sh/86rZfhtqquuXP4T
60CKKms+50JGjuO4pbSJ80l+vPThmWSVtTj+6csPTDovjbP2zKYKXvI46az8
lJpXGbOmRDfretXQNFuNbPq+Brb3yV89HKiFlEXbpS+ZdNDM85EGUYMu8v/k
9OzV0Mey7Vuzcs8NUI2rysyR3wjp3N+7e8cbY9cv41O5L0xwlFVt49gPU7Qv
PjPiSmyGDyie/fx80BxTHxjHjcWYo8jOrJbLF3N8d4fEUlrLAgs5AqtELlgg
GbepGueEBRK7OsmtMlliY+mJ1zm6lng7WUR3zM8S207xyU0k7u8Vz1TFC7Ms
8UhBycjBDEvk1Tw/qnXaErcN+zsDnSyRqyR0QF/LErlnC8ccj1jiB/OX53re
WuAJwUOkQ4kWGHSJuOzJPj995pgoaW4zR5rzw7RiNuboW1jl0vPMDPO8b9Wm
Np3Avyc9vmhWmOKQUoz7pxgTDAncduACY3yXmGD2b90Qy86aebtfMcDb5YJN
ajL6SHyxq+HCC12krGf1DVXRQVsGyWef7mmhxq1LvfOMmqjSkmrh/l0dFXxJ
Ge9eVMF1igil33KK6HjK/mRytywSvW0QuWklhYIlr0Kc74ki97c0nqVaPvzD
KFarps2Kd3b1DwZ7U2CtkXi7F75VN9kYOmxadhT0KOVspWvYoEDjiTStJD88
fMbQTLUuClXX7B6ymUmBgvfWj5oSWbA9yqN+oUsB1OYpd6e+KcPb6OTZ/N9q
cJrjV7VbhAZ4eA2JnfisCWhZkv0YtCG5nkGusUAHzElaBfMGdIGVGgxOk+jD
kmXJTAu/Aaws0lI2yBkClaMc+SsZI3hBT3HLgtMYfENWk2e2jMElqcpm+7kJ
5GqbKEuGmMJSStGQAOUJwMfFGYXFJ+BqfHmuBJkZlEm1c/X4mEHXf8QpWg/M
gMfi5N/EL2bAxOAfpXzAHNaIn9gwHTKHF3vi2s5E5vCcX6JE6bMZaG36X5yq
MwOlqZCuL+5mwP2+tabooBkMq7+v1yw4Abqv7vNbU5wAK/HmG0rhprAZETUc
3GECf6eYxGLITKD36COrHwrGUOpbMuptZwTa74805PoaQnbgZCeDrwF0zPT5
Ndvqg+y/R+9VlPTg2TBnSRCVLvQlxrOxfdSGEfrTJMIlWjCvVZAdqacJl2Dj
w7tJgFusySXjbGowSWoisGWsDNGFbgVHgxWA+KPPW7pUWahK/hhIlCcFR26T
1t3mFIe55zd7OFgEoSfIScOfghtWNyL8GJcZwZB/yFSwiBg6Hbh2G2pnW7e+
mQbXdx5Bp8dCMduOx/EVlYxEAAsvel/hVp5eFUI++UU+9noJzHkqHfBMTBo5
V75T1qzIYlZGQ1LJTQWsMXq02aetjJqTtV8b+lTxOIkE2X1dQJthbR7WAQ00
V4kdW1rf71O+DqUrFNooZSL/LIlOByXeGlRvU+oinNsIjdnUxSsZD6lPfdDD
s8oCBv5X9bGCPX/1q60BCkadVMghMsQst5t9y2WGSJhoEu7hNMLeSdmLIyVG
aPGA1Xd0ywj3lGwP1hgYY9sa31+OLGOUTs2iFq83xvuhVWLdvcZIMFLy2Ro0
RqEN7pnOLmOUHKTosL1jjDPnfel693mmUKHjjJOyMZ7mfWCo89UIbXdEdvtT
jVCm8ric3VEj/BR9w00hyxCZY5/5T6wY4AdFj+AWIwMcT9LxtLqgj7d1cp6I
7devE9m8+OmfLj7TEJda49DFY0qmG8eldTDK6NPJPUXtfX9ewWEsq4WeE6S+
z/k0cS/21Bo1pQZ2f2vIZOhXww3TSc3FGBVcMV3hVadTQqoUz+tPrsnjdueW
/x6bLNoZ17l3FUph7FRZ59W/4lg7d8L+YocQ3lx7ZLaTzouE32/0CuPYMJ/W
WZBkjha9HsZtSsjttX5jzkg7zLioXl/uuHU/hxJsRXTtEqWPwUMK6VZfLW4w
PVdBm+8oAO07QcXBrqJwe4At14+fABrpoo/186WBeegNnfk3WZg1KPpFIq0A
3S9OTmwGKMEf6k932/NV4J74K23mG2rAXsfnf/cSwN9LOa9vtWpAq2N/S2CV
Jsyb3aYoS9QC52WT+HuG2pBSVrQrfVgH5iKaF54268Dx+TdKk466UPfCfljz
ly5c//io9uIpPbBSpZgt+aoHo0nbZESm+sCRt8Z5q1IfvvS8bnX7pg8rS6zH
aDgMYCRnl7Ra2wBauTTImR0MIKKCWTvA1QDeqpb71VoZANy8XLusaACNBg43
XKkMgLHsHxfvkD5MGAtxRZ7VB10N4dgiKX24JbX1oqtbD4jaN3YCrfRggaQ3
auS9LtzyjfINV9WFnZy2urqr+/VOpERuL2tDEvu5tQl5bbCmWVofD9cC34To
3PQKTbA7uVMd9EYDUjSeazm07f8HzX/dH+bU4PIVqvH8DRV40sPx5NuGEgh9
717R+KoAJpeC8w/0yIFhGgnR1UoZQHEeyexQKehSDP8v01cCaqkqym9MCcNt
hecr3kb8EKX+9OzCXS7oYAuZDKY7Bn7lSj+rc45CckGQdtrEhrolP/cDq/Rf
rZGLj1nlj1Hgmyu9vufkmPB7KgXDNz1OjBFT7hdm50MuVlYh0gwhTOmbWZD+
JIavSNYk/+QQMGD0VOGby9KYQ2lnK39NFitfB5CQFMjjy5bJR1vhinhWaqlj
XlMZP6Rce/jgnwqWSptc0qlRQ71fscSVyvv2Svut7KKTBr6kvL3wl0oTz5lX
cLA1amKhyTPB7+ZamDVi3kU+rYXDypsR4u7aaDbqF31kSBv5Xp7n8FfWQUJK
3BBFsQ5Kx8uodU3qYMmXBMPE47qYO+OsQ2Ooix58iWNhAbqY7ubKWhavi1EC
PpHZZ3TR+2J3tWmULvKpRz/addbFr4W/2uvlddGcVo358kFdjGTi759+qYPm
PwuHX4TrYFVUTGUUow5+ojags7i7n/8QvVClvDZ6fC/rb2vQwolM9xsMglq4
J0SXRZSviZ4vdfM2v2tggu3f2GAVDbyX/pO0gxSwQD1y4VGKGs4mPL1W/0MF
E0j2FhZ0lFH/t3TQqXxF1O9f3MjolseFHZJqhy1ZFBhqpxdnkcHLeV0pegQp
tOFk/fklXgJFPefaifb9k0vhaGReugBm6a1JK0fzYNdTP6fodjbsTKXOK8pj
QLI7hseCqw6jQUHTBQOnldbz85ENrxNW1B8QtEvnSw7DUe+TIdd9GKCqI7Ys
NIgNTqxzJTmK8kB1hfk3YVoBsJmayqmeE4Zx8SVnp5vi4B+X+iiymgDVQa1F
Z05Kw2xzUMkDfln4RCEmvNInByk0ITcUAhUgeI+pI+u3IvRMkaT9ClSGid+U
YZl9KtAtwOwUzaUGeYssvZvO6jB1KDveIB1gQIzMfdpIA2hZBWNdujRgekHq
i62yJkTEpL07V64JZdJUbq93NOHDJaPBfoN9fhB7WZhzVguKlNg1+lALxrg/
vj/7TQsu7Zol3yPRhimV1EUCgzacPi3/m4lZG9Lpet4EHNWGZcpL3Spb+/dy
SdJrhrTgXaJxTl+1FqgVCTpMBWoBzRVn1UN8WvBewowt5YMmHPvQZlMQoQkb
wzOZCRSaQCbZYH/hogZICYnrSB3TgOAHG9WOnADbejnNoztqYBBAG/+4XRVy
xS5wtsepgOF0/uN1LmUQxd5o5SZF2BhV1ixUVwDlUoqX/5rkQODGg/4CPlkw
eivW5pwhDV1eEpeSxgnQmjt7nWAuAa+bVjgrP4nAdRnBmduWglDYEWt58yUv
mMuWF2/wcQHaFj6jJmGBoxpSAzkNtGDiwe3r8ZIELpHpiAy4flNnZKdzLKda
be0varBjoSfDRTr28wyv6DCk0fJh/jwLhtz8EyYey4U/x+f9T6/yolc5a6yf
gyB+cOq6PXBfBB/siUiWLYtjUGHG/GAuAbnGPclSGKVR+TZ1/0SBDDJIn5Pb
2ZPFYUjw2nSSxwetaXrbtQo4O3SQRv6rIrZIkD7+QaeMMXdJrXzEVPCOuOHT
HWlVfEBSeI9GQA19/JasWUjVcdXodEpJnzre4x3cps4ALOWrGi+m08ATcQJH
2+00MPzyC4q1Qg0M7fStIXmlgeTy+awLcxoYFrFImbOngcsRkee+Umgif9yZ
Y8RHNdFVaqtkjlgT8+LfKV1d1sCqgqoMzX4N7OHqEPhdrYG8EhGfR8I0sEO/
KYhFSgMDQgJqJt4BWpCaX+HkBwzqtmNJ9FfHXaIenrQyNXR0OP2j54kqVupH
B+y9VMGPGS2TXc+UsSk902bxphI2f7fhF0pUREqZVBdLfQVU8dpV1CKWxyHW
vMzRR7JIaNs9ctBaBi8anV+8uyiFOksaKx9OEzB+zHdtck0c72XFJ1J9FUFR
M14r3V5BrFT8pHG5ig9F0vJrRU9x429+OkXlEDb8Fcn2XvQHIwaZ1j/610qF
MQOH+uhvHECnh71Tf3dnWrv1ZiRQclU98+Br8ifXSKEg+ET7Zx1amH/cN/q+
lhn6D9HSJm+zw6ubh2tXmHmgn8VhJpaPH6aiHWr9uITgrNjzKwPkovDrv2yR
mSlxWBRo9Z47QQBZ49eZfpVS8Oi7lzv/d2nIOsISZckjCx7jKnNipnJAsfV4
etdfHgYcb7IyRinAlZEx+cEwRbARaGItd1KCno/mDiuyyhAW1Bips6sMzFHk
0sKPVMCG1GZYwUoVIoV3HJlmVSFpuaQm2kUNWqm0HrB2qMGXwzIlfcfUodEx
/XmwvTrcpTObnkxTh5bv64cZr6jDwJM7Fxmvq4NAm6Xwcq46eGhXnm/1Uwef
Z29r7kmow/0rNxR/z6iBGnFI20DKvq4WVutfpVIDzZ6ko3ezVSHbu886cEUF
Xk1pUhrrqUBvhUjUu7PKcNtHqT++VQlEJIyWF2cUwcz3Wt/TDQVoaWoTLNyR
BxvWzBWeVTlQ1pX+JjwmC192k2gCGmXgDneG4J1MaUhjYGRrM5aCA6vvEzMP
EeDF4vOBe6HiwOuUOCvxSgQaO0YOeRILgddGXxm3Ij+MPSEnmHnwwNhh+VdV
Bzjh1DnhJQkpFngQftiBzYYeHh4hVFTMUsB3DZfgToF/6iaWV1i0ecbUf86V
6Y2TrrZ+SeWLyFImwdymuPWpMWr0Xnv1Q+o+I94z5FLtd2JFwRT+O2b7c57L
cJIjTYEXjc2CRF8u8CMrXe2I2b6u714/mptFK4oUtspib3PEUSlThCZnSRJ/
yqun8LBJYd6huYudctJI8Gv+L11LBv97KPNfg6Ysviu+a9QiLYcG+N2PlFEe
pck2SCi/yaO/8K7BiTsK2MFDw+HsqohazWURvURKSD9pG6tVpIRxucMDJ/d5
ofSpeDtpijLmiZBZDE4qYz9bh2eNkAoqjQ0MuHmo4OUz5AkLWSponiCuLnVV
BY8GZ+1oXlfBWdGKbIF8Fez/K3vzT5AKfv/o8W5SQQWHplQJZGvKmNk2Efbo
sjJK/kd0hk96X1+N453rm5XQxyFzskVCCQ/FK3neKlHEK3SmOfOLChj9229i
Q0oBraalTrsEyuOyeFDlnRI5lPY1jYnZn98C6oRQ71cy2G/Xv8zcIY0RFqYT
Wi+kkCIgj+VqHQH3Vv9wtrFKokiJv3VdnxjOK9XcSD0lgudarJ4tkAphdasA
If4cP/5V6tRZIuHFGc+YoaUILlzIfuUZ2MCKJqJ2u8QRTNjikXdUQJAW+/KI
3G/fJkP6OunGE3+2W+O7HmwXJQ206j/kULtVt6L+e+Egm/nSQaDQCi1RDjkK
nz4O/2NfpIcIXtext5Qs0KRz4c7AMQ4QcinW3MnkBuEDp+aI1nkheqaae8VC
ANi2yQ7r3RACLjmJN7ljInCoffiC00FxWJU/cN2OURK+rF73OZ5DAPnQjhPj
8VLgn/Yoyt5TGjQqn5qQqMpA46Aer+NhWaiRexo19UYWtP+SKXBGy4Hxs1X6
hmPykKR98YH6HXk4X2Q3GiihAANEcy2/KhQgI8Cc9BypIhDniB+mdFCED9ey
h3WuKkLUbI8ZS58iOJ2IkY9cVYTkK40iJsRKwOXedreSRAlar8jTpW8oAseA
fhTZiCLsme9ePXFLEUxGoqcyfBXBWCVy6wuT4v68ks7WNinAhHl3BY+hAnzS
fkBxs0cezFVjU3JAHo43ijeqVcvB17s19oQ9WXgQkdA5pi8LHB/CnrZmyICN
+7MZnyZpWI0zPe8xKQWmP+P0jf4QoOMyrzMeJoDJ2wt/ezkkYEHuVvEIixhE
UXnV7RGLgGzioN/9KUEgcdH+63KHH5TltG/kBPHCJL/wpSdc3HB5MyHgUxk7
PHuUHxv7+RiwRArORrIywDVuwR8/L1FB2m5AktsKCfgbnavSTtlUN6KlM4mk
7VZ/ZNf7pUNypZWrS/bbn/oDSFdDwTunSoktJJeGFGzp8HUcF4n6PybczmKt
SilmRc0bg9JZ5Fx433RGl0iNB8vcJj3aPflQx5D8T3isAJ484Hmq+YwQfo2a
ITeLFMH2RseSHRsx3I4OM8zjlcBv7aJJX8clMeOOm+huKwFVXEgV3NKl0PqJ
ilKVmjTOvvo27rgoja/DZl1Zz8ogY4fdcOa+3zy0qOGiXyGLTmcazWmOyWFS
PEP49WQ5jJL7QNk8JodZZhvHxAXkcTCG3+qjpzxSgozh5X2f0BIuEeD1QB59
Pq6TiKA8RqpomS/vYxGvvn3rI3l0r+5fv1Mij4foaOpH/OXxvQbjM18JeaT3
pKvNm5dDc4X00Mx8OdxLcuG8ICyHz+Xsnx5qksXIw8W/CQqyWLVctRNeJ4Mn
wqzFCbQyqOfMOzgaJI0r/F/ezT2TQtO9bL33/wj4dCDe5rgiAZscpU1r3kug
Rbe7NNNxcUwIPtl830oUSxkXj9YmCKNjMJGL/kVBZFL1WRmq4MdCDVKr6nJe
FHj7M5C+hBs7yni5DvzlQPXnR6Dm+XF8cqiWeSWUCQf+/ht+ykyHPnTJlP3B
lLj2Zciivfwg8tz0lle7+rs13ruXxvA0tt5kr9L6qLWsfo0thWBbSARB0xgS
rUEOplZrfxSXaOCgxsXeT8KM0Hs79Y6zLQsk3h90pg9lB2+3Obt7zVzA+ePk
BfN7PODz1+CjTAkfHLxVlMF9UgD0Gmbaf8kIwdRHO/GERWFQPXs5uzFfFCar
jSJKOcVBu/k8icBVCTh9W7i+5QABDrn5PbarIwCROkVcsr4UaFRX2nz8JAUZ
v4ovk7pKQ/DDlbHnI9LwneUtXZOWDPR9/9TXWCED9mKBVlm/ZcBsNPH+roIs
7ImSf/odIgvOZy1fWJbJQs4ld5PDDbLQxxEXc6RNFobZmxXd9/F57oPko09k
gXVIRUbwsiwUsEVTd4fLAoPCaimz6j7PVCitw7YM9I8M9UbXykDHrWbuPRMZ
kP8cwso0Jw3Kq0QfaUKloSh9QEz7lxSI6pecovCUgkN88Yo9bwkgrfbjwKoQ
AVJDCn+Pb0sAuaueblS+OIx6L5DeoREDFlb9KxkpIrC1okN1bFYIds6Gnzgj
IwjRvu9DZ07zg5Yj85eT93hB9g9vrd0nbvDoGCB+scoJASMWktlcbNBlWm9a
DsdgQ/iZ3jULBnhnwtXE7kAD5A5ifmcfHd73N7n0UbeIYFeH9GCZ2Kq6ibwz
9ULPQ3XPmu5SRppfrRQpA8XKZP+1sk9prklEkOHvg4Mi502pMem5uMJAJj16
jBJY5OyY8Q1lFG0cIyvee/+nWhE58MFgbQ+lMDe2x7ISvs7zoMBoqDX9BT70
EuocSZITQOqSwh6eN4KYNp3mSawnjLeLe9IIDSIY48/t84ZaDAV3XJh+2Ynj
7Gdl0qlzEijGtRI9VieJV9ik/zvuSEC7p8NLtwcJ2PKmV6xPUwrnPjCXmVZJ
YXSM0+SPHSl03ZEsj9WVxiEVnuL3adJIQuyQ+/aJNP73fKjEZlwapRu119zW
pTFJyl90lkgGJQJpySb3UYnqbobDfvyh6alh//1zD5n1NfkapVGy2Pj4vXRp
zDTXvCqmL41kJH29g3tSaPHtpc34bSnM4fBwTDOQQqksMgP6SQJmFxFXjvoS
UOsAZZFdrySSvHNN6GmUwKHl1fbBPHFsvijoqmkphkXeRF9WSERRJoRivfuW
MPLOJV9tVRTCB8fJ77xtEcD8tCTS3wR+ZLumtaVziRc9T+TEDW9w460VtsSX
+lwYzErQMudiRw8ikXW/chbMzriTz0XHhJpWfbZj0XS4K8KdtVVzFLWP6vVO
WxxCsduXNYvn9lqTeISGzBR/tR4qDO+4TXWh1fXESODewJJ6kAZpnxP9nrql
/TLLXB8p0H1ga6s6eBRCX3H6VVDRgfxuhFBRHiModZg+n/17DNZYg1pc7NiA
vdukbvwaJ3zsvi9W6bvfh4+OsHet8kANv8SQdygf1DNm0GdN8UP98s1OfXVB
mAx/XfY2TwgOzE1FqPcKg+W/XcqpPyLQoBlrtUInBryjn5e6WMQhY1ymuOuI
BGTf0411+SEBuRyk5cRPJGHuyIvCSlkCcIcIwGQaAdhzP3mQdhEgcvTt1w0i
KXASTJYvlJCCv+KaSq/MpeDPmktgtJ8UKERGfLx7SgoENRq5PPeR8rtuxA1f
KbifVJAUaSYF2+H93n/EpMAw7PEtw/8IoLQsQ5H/hgBGEu8T1lIJsHGGZLVu
P6+w8XTIXJMkvGvtuEW/JgG/PUsuRhyTgE/kXd/LRcVhc30jTkdMDJST8yfo
WEXhh6HWWM8fYYj85/Fb6Y0Q1PFeeC+VLgieeQY1hTICIDOo+ERjmA88hpPz
JQJ5IaCmNN3yNzcwi93drQvngn+CN7Jie9mhzut1K1/Vceh8HtZw+iQzPPw1
yV4qyABXp/qnGz7SQBxfvRz5Pwpw47gekAQkcF3hb0rKyo56v6oqn3D9orrd
oRgLlaD81lKqmaPVxT9aR5alRpN0/rbqCYa4HbIkwdDRzXuzyxT4q6hpsL2F
Bg1y7Whc1ujxTl1RaS0LM1Iv2ARWSB7HE4kapobS7Nj8MeTQGDUXfn6+MH4g
nhvLL1L4PRnlQXeOk4+ZRPnwB8kMh0UIPx6fb/52qVIAP+py3yJ0CuKZvIBW
t3Eh9PCcHE2YEkZWo1XD730ieMA+NYDugSiuyC2vh8eLoYPJiEO+rDgW2hn9
2xkVx/hL1mfsgySQ/nTFgvW3/b3AQPnjHXNJ/EWQeyRQJYnDZwzvXp2VxJy2
65HbpATUVmJQo6IhoFDRa0IeNQHtddleJ5Ls62mcTt3EpCSu5HYof7smiXCl
S93WUBKr+AM5T36WQOFb+hEJXhLYeTIMFwbE8QUlKYFZUhwXW58aZMaIoZN1
VF7zfp2WSsa86sMiaEfJEPj4uzBO9Czlt/wUQlqj78wUs4LYmmoUYN8pgL6z
eTqB1/nxHOl9zSP+fKggv6pFz8+LdhrVX5xGuDGcIDrbncCFf8nCKc9Lc2DH
qSCisw6sSJA3vBQadgz/ba4zyMYy4ofu5ruDUXToP/c4tbKfCuteB5IHVh9G
e6ELmkwhB9FojjUyx+VPq6uEBpPt/a+t3KeOkE8PV6tPve03uWC3qB5l1qG5
Xbqtbp1nYZy/cRD4k+l4LlKRQzTT+1h2empYMqidun6GDnq/EGIL/Rhhe93s
WNa+frhwZZHcJWWF6+Y6IUrN7EDgXNNvEeGCAs3p2Ylgboh53PGuoYoHKl+p
fk16zwtMI7e5kxf3+7mB7M+hP/xQUCwxEbQpAE6c8tdp5wWBf3eo16d939db
hVDNFAiD5tvrp8hMRSDZiPm5/5YI0Ntcriw/LwrfazaO2DGKgVfWRy2NbDHw
MPZmYv8mBpk2p0lbZMXhKkuM5XqwOCz5vWN4WCwOO6/faMxWiwMlM2fNuSpx
GMonX3p6XhyuCI9HZfmJw9FadytWMXEo0dhiqZ3cf/daWktYghgEcfpbtx4W
g7/m5avfU0Xha72Ymd0PEaD6/C8/SksELvdd/taaLQxKz29ZNLcKgV5eDefq
nCD0UYvdPLgrAIPO957vbyqw3BsSpPMfH7Sm37EdXuKF85peFv+944FWK9bR
zJvcYNH947xCCBfQJfh5d7pwwHZcFU1nLyv8csuqFRZlAeIkyqSGOCbwNTOO
lntBD33tz7+krNOA/eSThEWdI+A/yjI/XXgI1O7Jq9wdJILZR8eVldg21V/R
FAgdZJhXT5mfeEsf/7A1bOfT6Wye760kbDrVQpR/WnWObRKWGw+g1A/q+l17
MjTL2NSi/3YEyxgWjpgQaFGC48Db5Gl63Cj1e750hglRvPnSNDUL0pf5/GvI
Y0VMPhQ3vMWODtRq3U4CXBjbeN01TJcbIxaEBSPseXAil0miyZUXra33jMvs
+HD75GZuvBY/9kQEF/RxCKDNk9DZI0sCWGupfqKxVhB5U9aEHeyEMPb2oSt5
60LYsHNlcDNZGMn/2hto7wpjglnblJivCLKYr9PHtoqg8IvbrNv7OikvFbuV
oySKif9ZZTI4i2KuOUdu3klR/BuZ9mgjUBSTzm3GO9iJ4v8uz32y
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036290401*^9},
 CellLabel->
  "Out[112]=",ExpressionUUID->"96b50b33-28b6-4224-b7ec-0e37aa015d1c"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{235.46731152551766`, -0.0008751938066376601}, {
                   245.2272325368531, -0.00046167546621060423`}, {
                   262.90487176371784`, 0.0008526229719620207}}], 
                  
                  LineBox[{{315.0385665310846, -0.0008751938066376601}, {
                   335.77962559627264`, 0.00001434639188789299}, {
                   363.14248911069865`, 0.0008526229719620207}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAApTh9CJnbdkBz/ePjUfBLP7/mK9SQ
xHhAbiYsVDj1Sr+mXhWyopp6QBjm4om1vR4/oR9JpCyYfEBQpkT+I6A8P5QJ
mlZljH5AGzRkwjcVQ785xngPdC+AQEx1tCnWgS0/MqzJfXEsgUCYbkTvbuAp
P6DeHfeTGIJAT5nlDjsmO7+YNZd6chiDQGrMxnbrcDE/DCEfXqgThECyerkl
FzoEP/VYqkwD/oRANFUpPgelMr9otVpFGvyFQBK+KfdCSzA/UV4OSVbphkB3
Uu2qpunrvrab0Kzp0YdAqEmmnDPCKr+l/bcaOc6IQNnIRaK1ECs/Cayik625
iUCyOaE4JykDv/d+shbeuIpADPg6AsagH79h5tD5ZbOLQDqlj8Az7yY/QJry
5xKdjECgulOVKDkTv6lyOeB7mo1AQrJhFkuZEL+Hl4PjCYeOQGv5z3VGsiI/
4lDcRu9uj0AxjYLTUrETv2MXLVpINZBA52kVrym6BL+PrG2Wq6qQQL1Pjl79
uh4/ANTA1+wpkUDPGrHO8MoWv6yhlZ7AoJFAZxEvo/lu8L6WuXEVQBWSQHqF
weGo1Bg/xWNgkZ2TkkDns1xIFk0Vvy+00JKNCZNAwtgPd61BxL7ellOZW4mT
QIht3GWPlxE/y8PdT9UGlEDucKwoNa8Uv/KW6Yvhe5RAm+5Kbnwe9T5e/AfN
y/qUQNS7TXUzowY/BQiok0hxlUA48QmCsVkSv+pdTwpx5ZVApBmHZjo2+z4U
RgmGd2OWQEm4qOvuXwA/edREhxDZlkBK+ZWk4hUQvyP1ko2HWJdAgl4cpd+9
Az8LYOhDqtWXQP2rRgvR9ek+LXG/f19KmEDVSX+gZRoLv5QUqcDyyJhALhrc
rHz5BT82XhSHGD+ZQNBEcsd4NdM+HTqSUhy/mUCsbWKMl14Ev0JgF87LPJpA
D1XvYsW2Bj+hLB7PDbKaQHlK1+stvuK+RYs31S0xm0CYIOsKB6r7viSQ0mDg
p5tAjCilEV72BD+VvwH4/x+cQFVBIiA7efC+c71tmg==
                   "]], 
                  
                  LineBox[{{48.99113348568345, 0.0008526229719620207}, {
                   50.03538897363444, -0.0008751938066376601}}], 
                  
                  LineBox[{{80.7804838316582, -0.0008751938066376601}, {
                   82.39285226989917, 0.0008526229719620207}}], 
                  
                  LineBox[{{116.43156519415245`, 0.0008526229719620207}, {
                   120.64884254345021`, -0.0008751938066376601}}], 
                  
                  LineBox[{{162.58382688877242`, -0.0008751938066376601}, {
                   169.59892857991912`, 0.0008526229719620207}}], 
                  
                  LineBox[{{199.0332736428951, 0.0008526229719620207}, {
                   208.7398190599314, -0.0008751938066376601}}], 
                  
                  LineBox[{{283.65579676178106`, 0.0008526229719620207}, {
                   302.1173690939972, -0.0008751938066376601}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422401#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.0008751938066376601, 
               0.0008526229719620207}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{235.46731152551766`, -0.0008751938066376601}, {
                   245.2272325368531, -0.00046167546621060423`}, {
                   262.90487176371784`, 0.0008526229719620207}}], 
                  
                  LineBox[{{315.0385665310846, -0.0008751938066376601}, {
                   335.77962559627264`, 0.00001434639188789299}, {
                   363.14248911069865`, 0.0008526229719620207}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAApTh9CJnbdkBz/ePjUfBLP7/mK9SQ
xHhAbiYsVDj1Sr+mXhWyopp6QBjm4om1vR4/oR9JpCyYfEBQpkT+I6A8P5QJ
mlZljH5AGzRkwjcVQ785xngPdC+AQEx1tCnWgS0/MqzJfXEsgUCYbkTvbuAp
P6DeHfeTGIJAT5nlDjsmO7+YNZd6chiDQGrMxnbrcDE/DCEfXqgThECyerkl
FzoEP/VYqkwD/oRANFUpPgelMr9otVpFGvyFQBK+KfdCSzA/UV4OSVbphkB3
Uu2qpunrvrab0Kzp0YdAqEmmnDPCKr+l/bcaOc6IQNnIRaK1ECs/Cayik625
iUCyOaE4JykDv/d+shbeuIpADPg6AsagH79h5tD5ZbOLQDqlj8Az7yY/QJry
5xKdjECgulOVKDkTv6lyOeB7mo1AQrJhFkuZEL+Hl4PjCYeOQGv5z3VGsiI/
4lDcRu9uj0AxjYLTUrETv2MXLVpINZBA52kVrym6BL+PrG2Wq6qQQL1Pjl79
uh4/ANTA1+wpkUDPGrHO8MoWv6yhlZ7AoJFAZxEvo/lu8L6WuXEVQBWSQHqF
weGo1Bg/xWNgkZ2TkkDns1xIFk0Vvy+00JKNCZNAwtgPd61BxL7ellOZW4mT
QIht3GWPlxE/y8PdT9UGlEDucKwoNa8Uv/KW6Yvhe5RAm+5Kbnwe9T5e/AfN
y/qUQNS7TXUzowY/BQiok0hxlUA48QmCsVkSv+pdTwpx5ZVApBmHZjo2+z4U
RgmGd2OWQEm4qOvuXwA/edREhxDZlkBK+ZWk4hUQvyP1ko2HWJdAgl4cpd+9
Az8LYOhDqtWXQP2rRgvR9ek+LXG/f19KmEDVSX+gZRoLv5QUqcDyyJhALhrc
rHz5BT82XhSHGD+ZQNBEcsd4NdM+HTqSUhy/mUCsbWKMl14Ev0JgF87LPJpA
D1XvYsW2Bj+hLB7PDbKaQHlK1+stvuK+RYs31S0xm0CYIOsKB6r7viSQ0mDg
p5tAjCilEV72BD+VvwH4/x+cQFVBIiA7efC+c71tmg==
                   "]], 
                  
                  LineBox[{{48.99113348568345, 0.0008526229719620207}, {
                   50.03538897363444, -0.0008751938066376601}}], 
                  
                  LineBox[{{80.7804838316582, -0.0008751938066376601}, {
                   82.39285226989917, 0.0008526229719620207}}], 
                  
                  LineBox[{{116.43156519415245`, 0.0008526229719620207}, {
                   120.64884254345021`, -0.0008751938066376601}}], 
                  
                  LineBox[{{162.58382688877242`, -0.0008751938066376601}, {
                   169.59892857991912`, 0.0008526229719620207}}], 
                  
                  LineBox[{{199.0332736428951, 0.0008526229719620207}, {
                   208.7398190599314, -0.0008751938066376601}}], 
                  
                  LineBox[{{283.65579676178106`, 0.0008526229719620207}, {
                   302.1173690939972, -0.0008751938066376601}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422401#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.0008751938066376601, 
               0.0008526229719620207}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwVl3c40N8Xx+2999577+1z7FnSQESyt4jIyAyV0iAlKUpJmkIkn5O+MpJk
pIUoo2EnM/r5/XWee55z7x/3nvN6v6+k78FdAZQUFBQM9BQUuVID7UWGL4Br
M6AzXOEFqHtQ/xxjfgGq94NK5MaaYe7dyEX/R81Qx7Ij5EtMM3B8D2IaV24G
qlc+zm8/Poc/7X4ODCnP4d5X+5P/BJ6DZOlyTaArgve3xJcuoSQkmtMkT0U2
wd32brp9Ac/As0fhxBenRtDkjqdvUXkKPhdMbD0pGmCt/noFdecTOMSksCyU
VwfbMycd6BxrIcWw67MSdQ3kCg9NTz2phlWX+Jf3Qh9BbarV/Q6RhyDz1kVN
5do92CaHp5ChCoK9y517j9wGbssn8T3zN+FY3FFj9rgbsL1uf+hz+jL4Q/5k
WtxZAkakncP+J5fA5e0Zx/2WBeDd2xB7duEMfKi54mdTnwOszh/lSp6mwlfo
aJ97HQUCd1mcmFOtYe+SOMu6UgBaaz6S3r8Rh6nXwmoum6fjWCf39q6z2Sh1
+/ap9xG5SKN3XLV24Ay6c77J+2/8HLo0Fimn3MrHkCfW87JqF3D61B2Zi0cL
UbfztM2vCxfxBE/13sNHLiGHrvCfJrkiXDNsgNTrRUgtmvy0dLoIuVMLqLWZ
LqPeyf1ZYWtFmNArLV76vAgf2J3osvAuwl3UP750DVzC+/dHbGdVLyH3Dac7
LgEX0ZVjsLc+tRAZbCqb36deQOOeis7Y4ALUi/f9stMkH93vtc6rbJ7Dty8F
Cp89PItFAhU57vfykGuzuEh/PBf5bUyZ1dlOYBr3bUtd1WyUyE86yWObiXYh
OwuDDqSh25tDHMrriWjCG1p5xfow7mHyDhZzPohdwSfyJnf744Dc7uYFu93I
I754v1CRD26nLkypWLpA9bSH6TVJfyhPNR2ukY+AM3uSsq68OwRHf41sPWAc
vGoTfVd+LBEKeXhPnZ45Cm8HM5LKs9KAtzyz7cJUOrR5c9FmKWfCYQG5L0IW
x+CC2n1rE40s8Ky766H3MwtWWTjFY45lw/CxMC81phzYe3BvaY97DlyTbimo
ysyBvIQx4XfHc6Bsdw/P2dAcqHy9JGGllAOO1mYTyW3ZQHMi/fNz22xwUNLL
WL2TBa/Yiqxofh+DXsbS432Sx0De/rZLmGEmLN7wox42zgAvlrt/7JTTQYj5
UXAPYxrI0qeVWTw+CpcvBJa1GybBQf1n+SeqjoDUgAJHL0scJOeFCYz6xMC6
UP/M1/tRQCMk4P9hNgz4H+3J/JkeCK9LdIaqhH3g47WGSdoTbuBubSLFz+YA
n1mC5jWXZWExIP/ZFSZTLOXS3n1t3hnvXw3u6rPwQPtS1/qlCz6YetbtbENP
AHIvuTwIehuCnvvHrJTyIvBQIpdcb2YUHrnRcXlO5BDeuPmLNDgXgzrivuFV
X2LR8prK30z6ONwtpvFenyEePZk0zA+PxqNZDoWCVP4RzKW/etdDNAELs1c9
D6Yl4E3Saf+3ZwkoFmliE9qXgAwsa73jLQn4j17ziN/5BLwzkNMqaJqAn2h4
qwNaj+CteyuNbepHUOS7F/VoYjyeUpexiKqMw9jc0AanpsMICcpcEfWxSHOE
Ue/tlRh88WKvTF74Idwbua/tlWI0ss1xF4fcO4iBvLa8tL/CUVONaB/iCMUo
mq+XwqWDULVztFRe3h+J5/9ikiV88Cf3SeUL8p54xtDW4RmTK7av3mKpGt+B
GXEcE0JvLdGFX3xX4Hl19Nm4/Y0qQgwmn7aU0UURMHTaIOTJNgf4LymA1iV1
F+x8GMbaVeoGxWP3D3FmeUIg783Q6PwDcGDPaMyz575Qp0A3ZdHuD3d8S46J
3A6EL593nSndHwye8xUtgT9DQH48wsjWIQyeZ3yl3Xc0HBLt1zPWMyLgrwLx
rtkjEk6xyv3LojkI+ptOD7zSDoLgt+tvL785CFmn2So7Zg9CQPdRpgdjB+EO
65tN6/sH4fIL731N2w/C9ppI4cMtkXDn2crJde5IUJNtsGEiIkAi/yNvplU4
HElhux6uGAab+mNcszMhoF/GdM75YjBk0kbXzcsEQRQH5Zz95QDoeovvvq36
gaEGW4q7jS/sP/zgrXPGAVj8afds9oAXuKZeTqWqcActOksm80EXMJ/a7c9K
twuGdv/alrR7G4gM0lYoFVnBky+K99ffGMKJJwdXVKVkgaB7Hv3vDScq2Dnc
u6yijX9Y9567+Z8ZXqKfsTBusEWvotMM/ZFO2MhQHL03chemdz+deXXUBe+9
+HYo2Hcvvm6PnxIX3IfnBfcPKl3zwiEe+7fsC94YY9Xs0UPvg2/CBa/RrPug
rpu6+GCPL1pJD7o25vqh2PVDXmoK/vjfkbyBH7f80db048VX9AGIEC/6ziEA
6SfvvdGJCsBjj0vFjI8EoPoTnV37/QLQZcjkkIFWAN7TdW/LGvdHxVTTPdIp
/sh3g0medcMP29s7Tnr6+aH79Adhm2pfLDfXeMH/ywfvUiQV6LH7YMEsa4WI
xAHMO389/x6xHxUW4qJoRD3xSMZ6csGwOxoU0d/vzHbDF7Gt2UqCLrhTocwW
inYhY42tRBmTM1LplL4bGHVAqbGkX9HXrPGnt85LwsUMn+y1TbzDo4eV7p97
/+OTR56hqiLBl/Ok+pAxBLhKQTG8PG1GaIPJxuncQA5TuHrMqGvQwRLenvzo
ED1qC32qfySpubfe6eT22R4pZ9ivpOd3V2wXmHr9Nfm+tht4GR+E5dW6gNRF
bfi8zQ3uObB9BdwL+vbyJ/2YPUCqSPWAjMY++Np1QfSSiicMqJz2YaHwAmav
/Ca6O16w3vNfopXSfmi6rSL4NG0/RDp9PXn+3n4QuNalovZoP9hNJadKntoP
Mbo517VhP3w+ufuCZ6cXVPXsMftP0wsoaqkdGmM8wciKt/HF+X1QGHjlcOpZ
D/j+bCbjWaQ72N90MAlS3wu1uG/XqX5XqIp792TPAReYrDgYQ/VuN0geL/Wa
1tkFp+2PvEnNcIabI6xpgWnbYdw0sE9w1B5KHP57pKNiA6bnM/gGAy3gIuNv
4ygVU6gtW338KUV3617uMblfVYa8vp8eEyUCsDtdszBpfIkkc9976PZIopRJ
TNekqQYquTEzKwTo4zX/d27XXAh8zftoZ1KmBU5n/rp8vd4az/t+uX+q1Q5/
zmvpPK90xKv852bovJ3Qa8PoaH20MxqcV+tVvrwTH+Qen3pQsQvltlXzEUW7
0QG4ieWIPfitpP+UjKwL8u3yfqNPumCxXNvVTgNX3NC6FHCjwBU3BxpFqnpc
0ccyZGxp1hWDzXYFvNiKg7viqaK28nt22wzmXHBFC/x8q87EFdXso11et7mg
lYV2yVN9F9TU+Loz//Qe5Od5czX71W6kjBoSG53dhTndhwYY/+3EowESXGmr
zthq4u9R3bwDjRNcs5MjtuMht1dX+1YdMMeBO9kh1A6NaFy+nXphjZe9k9I9
6CzxZ2jOYLqhGZqEhGfWoRHax/+KyFnTwTAVzg/ermp4V/fzUFO1FAafeGKc
EMCCZa4UFDzFlHA+uvAyRYo4eBtb9dOPKoF2A11m2hctUDv1JaVD1gAUWyvY
1k1MYao17WEauzlIPxd/zu5nCc1daQOJhdagqhx90bLCFqY661+J59vD/Dmz
6nU3R7ix0sb99/c2yN0Vv5ga4ATn+Khppap2wDUghwd9nCEBFXnU3juDRJGR
mpruTshlCu+7mbQTosd5q5Pv7ITa0K/WDc07wWjX1bi0rRjdtp2Tdyv/jfmq
yPutuoSkJUZL/Z3gfKegZW7QGTr4bErPRzhD4PGpXd/7dsCL9r6H8zed4MNd
0926u7fDuvwro54hR0gRe2bOZOcALQPbXtoV2IHGRSpl3pc2oGn90YZnyAqw
X7aC+osFZIxodNZ2mUFUvXS+yF5TsBmuHVhfNQCFGMeMjWwduGTFFylBqwGx
SezVrxflwHd54rbGY2EQWZWO4OKiBtXc+7sH1ijwRbXwR3l7IWToExr/MCqL
YYFq8UVhaqijKyV5c582LrulMgd66aPOo76fxnrGyLyzr6NglMDzb36R51XN
MYf2gH58twX+1eleubbHCrnPfBPwbrRGo0iTXVpUtkgzvpTeIm+H0m7lkzNK
9ni1qEHuKZMD8t7sZfBudcDkyCMUtl6OyHIxKJyl2xEpFm8VJwpvw2YmlvzT
FtvwtrLghWirbXgtOjwiQ3Ib9lqYpTt8ckTiVsut9IOOKJzj+ZL5qwOWHGcy
X9ZywFL2Qu0kP3u846UU9yfWDmk7A1O+B9siuxAD16qZDZq6p/b/2rTCvPKF
R9fLLVFKwVZZSMcCvyzMZwc+MMO35a/7fTQJlGMTfB48ZoRxioeLDyfr46WM
ANTe1MbK394fvCM10P2QuFPmDUW02nc+09FDCis+RCd78fJhbFQ87435DfJB
IofrU9a/hFhx1XqJGy+cnY389a9OEugK9ZZiLytA3bED0WXb1aHVJKpOdkwL
KgROoAOlHpR8dKQ4tmYAs8wUH7a9NoZ+v56P+2II8H0BJrvjzEBcKl6l+rI5
tETwy5y4aQEeC8whTy9Ywo5fFMbbQ61Av+lLY6SUNcSF1t081GQNpZZFXX1G
NjCbvyNG57INXAkb8tr/2Qb03UxfWmzagPapQcY1KluIibtj9N8PGwj17wil
fmwDxKbCBytvG7DdzB3TnbWGNxSPvlb4WYPl2omG001WYPXkqvfahiXk5Ixp
iMtZQl9pqqSDvgVYkoxvv2mZA8NbkcQIITPIVKO4uzFsCtv3frudE2QMgwIm
xYs9BsBb/c7gi6QeuFw57/rXQxv4/Ut/8aZrwPHZM4wsGspw9t0nTz9bWWj/
bXqQvVQMBN017MpucEFAbOO7kPI1YsjN5bwaxR9SgfXR+hkGTvy1dnstuUwE
zX0rj4tuSqOB/cedO7MU0VJsW1n2FzWkPOySLUithZqfXbzzEnRwP1PoN423
eniJ7VAs0Bhi3kGFBSVuY3RXTCgsWjPB6lOBOSH1BG5W/jztLmu21X9pwePv
zbBAwSdeMsYcRf9cC49bMkevg5n0ET4WuJSfEnL/sQWqz1CZ00xboH6/06u9
rJboeP/MrToeSwxOHzthR22JDgIUzXs/WuDm5L4zzhct8NsfkaAnphZo4LW2
rtlljn1eZVrpNubo+8tkJu2OGQY/HkzavggYfGz3B4oIApmZ+Mb8m01wp+GD
sqnfRth6er1Ck94Qc53+JM1t6OHY6+0vaT7r4ELtsm9AmRZGdoz5S+zRwHCH
spF7U8pYsY1W4dCWP4i+sihNrSKFVztnz7QGCaFoQyOldggHzvZo7rC5uUrm
H36fmuE2RSRnxYVc6WICjZqke89E+YHVyy312U4JaD15UZZlSQYO3pAXZI5T
BFbb+kDN16rgGC35r3hVA4z1E5PZf2tBzFFsFHyrAzvnOE6czNMDmyWFUC8V
g605sP7SWGEIP742+f/bNAI/Zk3txxom8O5Q/rMLxqbgIftkrEiMAJ8xm8XJ
DwT8LsmyHg4BUJtIucPZA7BOurXK0ZuB5H7Lbx0cZuAr2SScR2sG98Oece/p
BNj1dW1u0Bfgd/jQudxeAvTqtx0KFCbAvfAdXzlhCve0WyUrTU3g9fqkBp2Q
MVQsrmYffmcIjKOOxz5EG4C0M9eCzrweNBUTMtUuupAa0/fnQpk2hHwduGH+
XhOW3jnweS2oQ/JH1uJ33CrAfGytRVlAAehXqjSe0siAbI6zwkiTOGysaBoX
7OWHSd44A9UOVlDXXXtz//EqobE94RIpPEKyD13YSPiPBtngoonBDS4cl2n9
L65JCMuTVztld0tiUt1blhlFWXx5novZdVgBTV4qlfeHqSCblKaY8Bt1DC5I
lTqdponqz80LMym0Mcz1UId6gA7+9muZWbqrizUzzq6BA3rImVFHoTuij5M2
C6tWHQZ47nhJYvlZQ3T0yX6Tp2uEfPMT/8KfGOHA8U6bAV5jXLDMMjnrbIwv
9Xf35QUZ4wnXeq5FD2NcmSKK2JWN8SZFzZjXByNEVxXfHD8jXDQMtfXuMkTt
haP6X/kMcX3waY2OuQE2bLj5lm3XRxWPbQIXTfWwZ4fq61tcumj4l25X+htt
JMr3rCwe0sLa48FUvyg1sVDoIOOrNTWkXTbavvhGGWMDCy7fPqaAPGWmQR4S
smjEXjFeeEsSvcrV/m3oi+DkU+5jGUy8+Dkqj2HHFWZsn2oWiNJcIz3yNl7b
qLcS5kX935WO/yNSBDKdt62wAovG5tuOJV6AHbIrSh0ioPG75cuBWkmwMm/q
r/whAzlv//ambMhDdb5nt9i0EqTRmjVu1KhC2Ya755iCBpT8YPmnc0ATvknH
a9GlasHLk+93sB/TBrrAe4zKkTrwgar59l4TXXjPoyHQNK0LhkUJeCNdD/jT
WhVTl/XgTfRMwg8nfbDbsXanPEcfprUUSi6X6YNEZN3s4BV9mJteryhP0Id3
9gW3dhrog6Z6+a+Qj1ucLImvuuSlB9skl3TuvdSFiWdlVUVcusDJz3wx2loH
jB5/sA/21gZmgQdS3T5aIH8jtpLbSRPumF/IbZLVAOSWWPzQrwpdhw9/qDJW
hp9+JwuyMhXgx3tzWqGHslAzxyJs9FIKZpPO5ZScFoe0EbPkimhB6Lob+bSc
4Ib1hCus0auMMDO9OqDxdo0I9mI+rKjZSNCw3GiUsFomP+g9XH+6Ro/eCS9e
+nBw4Ttl36pgKgH8Nqp/6m+nKEpkzQ39rpbE+xO7Hl71l0FJHvOFh8ty+J+Q
1RHGEEW0pzgb+6RWGbWDVOc3PqnirVuyVG4D6nhMl861sVcDoxT6m+RuaOLD
6YWArH1bXEsY2Me+roWp6m8/iaZr485x8RnlaW2sP1s1MUDoYP8llvLhwzq4
ZvP5oex5HdRX9tB6lK+DbHyDVbcTdTB2R3yhi60OSl/t7pJa08a5XUu9xfna
+PN4/kQYjzZeW2la9zyqhcWv+bJcuzXx4/0pUU9mTZxI28N5SksD/WJLMoxP
qWEbZfgI5qlgieHdoYiDSnhm/24/XU0FVBKovqb4XhYzVtyHkv2lcVU10SB5
UAI9mF9F8WWJYMxT3luEDj8Wvyt4HtfFiTb8DCx3HzBs+ffTkXMh66R86Hb1
o+3vSJY12Z9tYXPESTb2n8OM1NDvxrOHt5YVnHaOE1S8PJDYrDHZrCoItW7P
CkLFxGBw4IhyRJQkGPZRzxU9kYaIibi+hVFZkGd55PRhSh5aeEUN379TBOdc
q7tVl5XBKSPhlqWhKuyivRTS/EAN7qwa5R/9qw6lpuxxNGc0oII/YKmQURMK
FCnWj0RobtX9EHV8qgne606ar2c1gTe7J/AjqxZ4qRfviOTRgtF9ObXl1Fpw
4kvT9prPmmA+7W29cEUTwk9yVr611YRIFvfbQ4MaoDSzVvvCUwNef7BhzTmr
Dgz/Hg4nmKmB6YMqB9tOFdiRrPWCVlsZCpk4uv4kKMLem2HfU67Lw/zIN32V
B7IwfaqGtfK6NHRIFzg1pUqCgLBheP55MXBrDqY8TiMEgTScFIH7eOHi0VjC
pYQDfld2HRQvowfK162vA6bXifwxQ9P/xEeJkmu9N68kjpN7+5TU/UY3yLeP
EzmWfRjwznbTbtM+DkzsnP9u486LhcMn74c2CWKWdVeBxpoonqc10VWllcQT
I7I+hxel8E9cQtqFdhm0/vUyc2+qHLYXsxlV8ymgrP33+uZTilhzsPpE3xcl
3Hb4cJEfmwoug9kPMX5VvPpPe2NsRRX5uf5j6KhWw8zwfwNcVuoYGqMaCXfV
cUhXMZLylzrePP2iQIJCA42HyhJEptRR5oKb08R9dZwKEluTtVfH3rA148JG
NTzu38wgQ6+GtbFlvNMqqth3WVSOUFNBOeV/4udYlNHEh+r7yQ5F9KWwZVoN
3OJq9WvN7gk5VF1JPiTjKIvXhhNCNAqlsXrtkr7dq615vW5UU9cnjqp9bztH
ZoTR8tWfXZa/+NE9JzJW+w03cinVvwQjdowKkonnbqTDtQs3I/7s/ku6XoiL
c7ebIF/fFCteZv5A/D5EI5rCvEz03X9q2zpLDfkt7yxHdVjg1IV04+2yXOB2
i7HMj5sPppMod7z6IghabkI3OrJEwXdvcX9UmgR4NJe8DpKTghqtk6kd1dJg
nn7AskFaFgLkD2inxctBp+5HzTN35eEMONSkNStA0+0WN6FaRVDr+GTslK0E
h+UqpEx0lMHAuWOPFqkMlY6ZdvelVeBUbDSzl78KlDPdihROUwHdRrM/f+JU
IFHqR5aCvQr8HB/5IrqsDHpJ9/sj05VhLOCu7eh3JZj34fwTqKYEC/bbqER2
K4IDZ6+79V4FUH/0rN8J5CFT+L1OB6MczDf+mg9qkAHRugNDmzuk4eMpPdu7
8ZJQMF4j/oQUhyQ3jXNGISIQMNiz6fVbAHwWMsKe+/CCrIHcdbEGTlCBI3NF
f5lBeOXGok84DSzK9itOFa4Sbt93t/3LGyPe3XRnHKDrJ7utX31j1Fwkza3/
NGUXUeKJ0P7OnWsMODkc8qBVgANzNaOYOYu58TxLza3r//jQp6GcwsJCCHMO
qV2f2C+KDHWH6b8oSOBHdx/dS7mSmOKgHrTwTgp3XK+87ksng+/7ywzShWUx
yGkikJlHDlclsX1sRg5T3d0KBKrk8cF4441PtgoYybzf7niLAvYzbP9+W0IR
afTL/Gf2KeKrdx/tdOMU8eJR3f+OHVTEsUe7A9nsFHGw5XGNKoUizo79iAu6
pIATfreGgjkVsKZ1KoouXB7dLvG/MaqUwz2UmXqyr2Tx6bmFOfq3MqjIsplq
80wai7bRPvQ7K4Wzkp6p/7ZL4h1egbbKaXH04QscihQUxeuNbg8lpYUwMKno
/TM2fvy2ua3Vc4QbcyJz9xpd4UBXDZVsh9NMmBK29uFvGzUmyPoOtn9dJa/J
PBcstP9OLrrw/ReT2UCkxurVC2TNEEqmkZoP2/8Sej0fdB6x0EIrXZza8Dlm
iKkYLez5wwHMDCs81Iw8EFkVH3F3kw/eBK6KSfYJAtXwobffMkSgtHC24A7T
li/UZIt99FgC3tVGPhDqlITLrG2ZVq+kwGbbuhH1Q2k4f6LBeHuSDJz6J6Zn
oiwL7BY3JNlQFmSLjJnl9ORAhX2ymuWsHBTRcq9EvZYDitYcHoVfcpDp+fqm
6pQcTJzTyLrRLQd1kz8jey7IwVL10hEZ2Ko7XOyh9loWBg1eZJWbysLhvHhu
7wIZ0LymkeXWIw2K+655VvyRAoMOnlPZVFLwoqa02X5VAgr3FIo114nD852D
47f2iELMQn1aZrcQOPI5jpJKAqDc9ap6PIQX9tK7Xi0/ywV8SR4fsq3Z4SJj
PruZHSM0ttz6tEuTGlgSPUVCOdcIDRVK1tvuv4g9nTsc6HfUEGViFZOZKhNk
ctv34Mk9y2T6/K3ie48pcYb5ZbfkNXq0pZ4q2RXAihEqlw8fTeXE5AmJW7la
PLhSvL4/vp0P6UWsE1kJQey08BO2OyuMkWErXrueiWJsQXVzLorjyNWoiped
Erh6nNWAs0wSxX3fkg/2S6Hhno71NmppPElrqld2RhqbKployyllkMLA75eH
uwy+8zTqOFQog0L23OKN9TIoJkQrK/dcBiOUWGrb78rg0vgSw6cUGSzTPbzt
sZ4Marox0nT3S6OYS7d9u7s0qnhaj7q3SuFRv0PSXsJSyDy92tLuLomT9z7F
P8iQwJdqWe+S1cSR3CfoHK8piney7O4xcArj5UMeJO9bAfQa+DZbGc2HNBdD
dH6vcGPGjHGbaQgnahzcfvlLLiuWZcc8YpRlQD11nodcN6lwh+DpNje5NTLM
7vB/rp+mydoDN3/5hnSRBbEsrekqw8S5Ujtd53sLhI/R9QyZqg3iIY/SMydj
GhjIpWuiTWeE3P3bDDhK2cDnbaQYRQcnULg+Td6jwAPC30gt7jA+CL75z/xQ
ngB8lH4v3HdGCEReL3S/DBeBj2fC1pmlxSCRZyO2+KE4/FIpdn97QgJSRWZi
zWQl4acK88x0pSR8Nn300IZfCm5kvt/+PlwK9iVURzrekQL/KDvxyG4p8GH2
nVMclILqHe/njr+VAnrGyJSau1LAOP9oZjFKCtjGfTgeiUpBwX7IjngsCfu4
ib+dWpKA7WYGJ69IwLX3SexU38Qhh6Gc3yZADPYJfnm11CwCp8/S5uxdFwLh
XMY7n7gFYU1N14KHjR9+3l3Nez7FA+rU/1wbq7mAN85VYMOXA6bNn6qrUbJA
jSLlnf2i9JAwFfpmRYIK2OOElWhl1whbmzu09l9nCYuTDq1qbwaIme07LZSF
esnozArDGe9p8jN1Xm1N4wopefVHXoITJbp2GLLlS9NhTRpbJ9N7JjTu2nZ4
yZcdd2ulRPWOcGLvgzene5e4kT6ezJ+Y48XXxT5Kpa/5MXDG9NLTHEG0ktdN
F5UQxl8qJ0O+5Itg0ku6NdtRURzcuEzVSyeOfWL5VwopJbCh2/DjtVAJNHSc
PMFNSuBN9dWmK+sS+OSEESe1tCQmOF4cUNKRxDdHmkR51SVxNrMz/wu3JJ46
5QEtXyWQ+7ePgOCVrX2Z15J3mEkg1bN6qslr4lh/UsbW9aIYplgTD0KDRfFk
Z8PvHh4RnFjWsQy6KoTafGoPNegF8UFdVqjnTn602bOr3TSVF9W/00k55HPj
aKFUNu9ZTjz64uq5q3NsWNKyOZlcwoTqn+INk1XoUO37jFXMjf/rluLhGxxr
5BWeHRSaL+ZIoBQzOHN1iDy6+dS0RQ2Jsd5s98mMCSLow0Ql1ZFFok0mPKn/
5AYxk++pqq5PDde+ZzA/yKWHaK4xqdgmZlgnL64ZtbHDTYaJmL89nNDg+1M+
uoIbVE6F2ddv6Szy/Oh8vMXpjI2yhIhkATAzF9op+FEQFiUo7vBzC8Pvkh9i
ywoioD700DBOUBRS9uSMHPsmCiU3lTKss8Wgh2L9HyulOHwfZ3AJ3i0OF+Rz
VrmOisMjtwAqyhRxoJNS23B3FYdXfcXHE+jE4aR71Z2ZPDFI93cYT5wThWe+
HMycKqIwGvfiXZ+FCIR2PTTj0RMGniabyh30W3xlO1ivWi8Ag8OP+FMc+KH+
s+Yf3ee8EBHz0z1CmAeGlttcPPdzwUODANq9uRxgxtn986o9K+TV63Sf9WAE
+y6Rv0+caCEu0agsUJkSfPrlX7JPrRLsjNJnNYPnCf2dQrHH7o4SvNVqh2Vc
zxKpzuKuy4UjpCEzQW32co6cLW1yEJVcJTe0C+v17lDgav71dP87NBjOulee
6RQDvl99zWzjwIKqGrzfg0fYcUCu8u1GOSfqGc0F+ZpzoxX1j5XA/3jQn0FD
UkeRDy3UDS4JRPPjBZpQ/dwiAdTiqn2tUiaI5jRRtR3ZQviG7T7ssxfGtVNJ
bxm+C2O8a3OXgq8I3m0bdDB/IoJ1Zg7xDJMi2NbB3u0/L4IX5sZZIgZE0Lsu
fDioUASFkXFfp6YItlDsI0wqhbF74fDkqQ0hvLtyWOyZuhCWxcpe/20miJqf
e1OztQTwocct/VnarX9YOMvDrme86MtCtz62lwdXm4PmBAa5UJ3dujTMjhPN
G36Z/wF23PW55MhKBzO2SV3+d0SbAdM3FIJ00mlwsP/YEfp6Cqydv3S/u2GV
LKqS52r8MU8a3p66N889RjarG/J8km0maznkGQ1mB4jKu9U0dMK/iHjKp4cO
2PwhJtc4j5wa/EtYye28oClNBdMuZ/3Nm2jhT2fGy1/6jFCq1JTel8cCWV/c
Mrua2MHUkpYy5gAnrB5QrNZ6xQUdlXuCQoV4gKK8WDV9By+80EhIpArmg9qx
5u/XfPlhR8bMCy1CAMRLF/Y2rQqAVrSgRHiBIEQlVRYXsgqB/qob63N/Iejo
Gpq6WCS0xWV7ubUqIQhK+C02WywEUzJW6VUhQvAp4r/uM7xC8FRH+7l8qSCM
Cj7zVmQShOtaiZSxewTAu3FthS2NH0L1j0op5PFBuz2jMVcaL/BG3WKydOOB
6yXGfjt5ueH2Ys/SQiMnyOTIM6xt44BvPu7zNwtYt7h/IJI6nAnaFG1kCRl6
aPTZ/F7VTA1Sv36wNNtRwHJMsghv8ipRd1jFxnnbAuHNWvJZgH+CeJ6948VR
wTeEPuPNnYtCr0kbpcqZzKPjpJtprlDt+Dy54nfdind2hSwWfqo80/OPHDh7
7PoLC2qcPEcdUJ1Ghy8bz6s+vsqIkZp+RcOXWFCZ48t0ahg7Cqm/czvFyIkT
vsPxWjZcqBtyu1w9lBufPp+0lorlwUvt8tmdvrz447JHF4cuHybcTGbe+MGH
Yuff9DSn8WPCj2DD+hV+HPqjVuizUwBVq0L+BJ0UwFHRi0FXbwjgIS/gpSwR
QL/r38Rq4wRw/uEBOwZNAXT1PRAVtcX/vpz6/pP2/JjCMiAjXMmHaYnn/Zim
eDGIj/1yADcvTjaGeXlK8KDrjyBF4OHGsTnN80fnODH82qcd5XUcWHFUdlvd
WzY0q6JzfcnGglTJh0aklRmx5m+a5G1FOjR45brDkY0al4tjOuye/iMX6riO
v9RZJTuC9FPPFSyQmruTjC61TJIKayH3zl3uJ2tDf9RK7WsgvHIcRfkKRojh
b9O6Fz9PEzyOl6XijvwhGnmfYM3oOpFx4uPiIw5KUMs1PfCGnwZOU+xP86ai
B5eTtg5Nrxkh5OBuj/AYFkgQ32Ur9ZsNZM4e+ehfzgEahuqM/9VzQtWE9YV9
tVxQpjctunmJGwrOPwov9uWBJlWoseHkBeujPdf1ynlh/zZem1YhPnhsn46H
Y/mA63dg+8+HfDDsZEI7380HQ5zD8ok9fCA82T5SUssHD0tzrhUl88GFI71S
b+X44LCh4Mf2Gl7YdSaSS12eF3iGaGl7UnhgXPP+zavPuEHAecrl9igXXH10
MkR0lhPilm5nOUxwwLbb9E/Uz7HD/TN1GWzqrHDwGMte/0omqKHv5T9DzQCd
VxwluM1pIfnA35uFAVQQ+Op9R8OPTeLB6aM+GeMrRKmdar9f6wLhka6cek/h
B0G2bfJc8PpIsNwr3VdeGk9o/CmtLs/9QF662lF9sPQ7KRS/d8Y3eIH8L9Jx
7obfCuko6Q8HjDbJYvpqz6IFSjS9G52TeJ8Gh0Mmvf2306M3/eJH9teMOFhi
p+Urz4JOA19bozzZ8CCVppuFDgfuOz1Jc0aGEw38g7LXNzgxOMzRMxO5kFFG
+4Z5MDduH90jfmiZGzvrNUUPhfNg6eNIueZWHnwjwnGSko4X886efrKiyIvP
mKLCz2jxIuezgJoecV5c4FponJnnwbY0oTiDSh58yHmHV9qGBzMihj2sOrjR
T/F43S5tbpzmGraUyeJCVvn4y/eQEwd6ORIpxjhwrHL6RsEEO2YliW27OcSK
B6gPViw8YMYQ+bzokAOMKP7yQIr4Ah1O76+5tiOYBl/e69nv0kqJFesy4jvF
N0mVqgtZj86skMt+f4w5xxdIL+WwhPLtP8nlCL+wW9FD5HV249te7+rJr5Hq
P++svyU+o1dUG+UYUfnspkmw7yzBunyq9aLdH+Js7PPyOVwjxHlOT8ozUICW
5JpEahEV/HjleOcFBy2M9YuFfg6lh+SmIq9P5YzgdtTC9G8jMxw3uThx9x4r
9AkYZJ+MZwe+Kl+o2dLlVLd4mkprTghzarNq/c4JHF+yu7bFcoHAm/d+Vya5
gHwQnKBjwQ3ZSa1PajK5YVan22eoihsuD/08eeYpN3C5TUh3PeCG5OSMofpc
brCa+jdywYkbBl7LeretcMFMddxS90kuOIKJ8860XNCYZbCfMYQTupzkKd7V
cQDbkIKJ6xd2GNmw2mekyAaH9gQ/u7OdBXqkEpiUdjDBPy6lwQANBli4pCuu
vUgLguIzu0+WUIOKseTVTHVK+Di7ceCmxwbxzaJFPUtnhRheX3rv+3uBOMWx
WaVu8otoO6IlIBM/QjAvzZi5FrYSq1Yi85x3WsiMhrATqQNfyIGOKaqevJ+k
dZPx6zeZCyQFe3KMXPkyqdX56fpU2V8ygaZWPLiRAlU3Ps56bvFoh1Zhww8b
WqTUedpm60uPvCHKqh+8GDHv0yK1vD4z7nkTcmjmFwu2MFYcEkxkQ7lLnO6t
X9jRSd0/t/w0B0Jd1eVCXk7MLL7bIpzDif9Ihq7Ho5yo/VF//18ZLlwRl416
5My15XuP5dzz58LwO/e6fhzgwrm2vxQp1lxYzThjWsrFhQzGe8vK27fOebW/
5W8QJwrLf+PSn+dADe2IjQ1/DlxP8GFXO86ONYM0of+JsaFIx6Hbd8+w4PEC
G3fGISa8E3tfWJaREUOjHhyP5aPHhfdKP8/R02LBDG2L4RcqXJ9g1rEtpUCr
qAqPA8V/yaSvJgrU75ZJnYy8lLrfC+Tl0PlzD9Z/kad3m/Q+/j1KXsq+0jcR
3U3OeubbVk0+IqTrbkuoX/xAHDTcHM+wmCCc9BYFk5jmiL7p5ks6nxeJ2R8U
xk6nVwnqZe20fqFNItI45i01UALDdHXAo73UsLs7LafHjRaYHQqXJgzpQe28
UkvxXwZoCAjSaSlhgn3xHsE+wixgryr9+kYMK3QfDLOZLmeDZo/Tcn332EG6
Lm/yjA0HWHbFsv4s5YC7huGmBeMcIM9TP27Dwwn0Fy/MDahwQvCRM+O66pyA
VFPj0cKcUCbvdqx2ngOyPggcsa3mgA9FrionvTgghldo79IkO1wZ133vP8UG
HssvR190sEJ5XWBdeToLMCYVXuriZQbTOytBqscZ4bs9P8XwJ3qQ+6zqL8FB
B2mx7U/dlWjAbNNElEOFCtYkjGCSnwIiv94fN9zSpVrvBGHmQ8vENXGdYI7v
C8RRQznD8PNTRIWKTP2G3jei3TfaYja/j9hBPYDBX7OIbZ/6R0wVekn+f0Wd
E+Ffybya70r9t36R2o1WnOz7FsiQP+w9JW1L5GavL2sC9zr5ZSH+k6bhP/Jr
N6d5WxElvq9lPdmeQo2U0xq9hD0thpF0AnNLdLigksfRkcWAvSqWtV9+MyIN
jVzxYWDGU0Xf2dcCWVDjc+0acwgr6jO4pSRZsaFM/2sPxxU2/K+ilaU6kx17
S+orhbY4OSPQ33ienQPz+Tkk9vBzYOwlJnU3Jg6s5hjKPtLDjr/mHzslB7Cj
uVtZiF8PG34fGK9k4mND98rIpjQdVpy+IHaXRm3LF5QzC9LQMGPeS1F7wXpG
DNdpmWfYxoBcXE292EyH4kUqYs7CtPj5ekr1jAc11lK2Ks5lUOJjDaqsXOV/
5JWgx46LyuukrjiIe7Isk7WCzfWKvQtkMU0qQwvtNPnoP85Rc7sxUo7Gr9hu
ZoAs/CtgXDxTQ/61eXVXaLSdUGRufH3p3xBx7vbLlKR7k8TXtsRyUeE5goZy
V9QF20VCzWE45b3rCjE921WNln+J5PSR1bs0FCBDs6IT20MJcmpPnixmUcO9
3q6LbBK0ELztW9zLEjoIMzBdstigB+9/T5Y/mDCC0IhzJfU+Jsimbd8b5soM
XxqUWCdUWYDV0HfsyAgLZM9rartHsMLNpAOB032sQM8qUN7FzQYSnMMqLSps
0H6hP6lLjA2kuhzlBH5uzcPQ30SaM6wQ2V40Ks3GClN+D9b1g1nA3V3uuOZV
ZvD+vsGk/ogJQqfkjJOuM0Jg3n2D3BgGUGG9f/qvLD0sXX3y93wjLTzweiKu
p0cDM2KJn2YuUkHjC4vysa8U0LGdc2+t1iZx8phTnXvSGqFaMRxbVL5EvAj1
SEp+vEBYm7hN7vSYJjofn1FoUB0nLsfxWl18/5E4Tj31aTL5BbHexuSsFNpE
Cly8Nko3/J6U7i4NDBIeIysojWFdforsFnF/ZUK7QMoa+22PGPxD0t5pC39Y
sEompFfhLsUNMi80m+2HAwUqqUZfn/9JibZ7La41HqLGP5YftA6M0OCBPzNn
hLXoMM2GXWhHID06JggcyExiwDe1f7+GRDFihNDpW8OWTHiVNuHkj0UmbNSY
DsEMZjTXPEnx3xQzmijV5WdpsSDbwmXvtt0seP3TwbZ4ZxaMrv5rV6vAggdv
nNPuGmRGoT0bUsYRzNjg6ga3PzHho4TnFj9lmVDE8pgNlTMj/qlzchf2YMCf
vZEjx63psX7kQGsLNx0q7RBOiGilwfnN/qeW3tSoeVzHTmGEEtkLWdwEHbf0
hmVx1Ntqg5xpbPcw6l4lXx3nLHEyXiKvm9Sc3H56gdT4mZjGUjBNfs/UvIZT
46T+1fp0R69B8iuD42/BMx3kucUR2/4rt4iHnUXZHAd6iXkHq/7psRFCLmDg
3tWU70SdWk12wO9Z4gbP7aejV34T3lJ7KQiZZWK6syzEOXeNuP8mIe1N1waR
MHRmsTuGAujba5ujf1JCVkGDxJodNUjUNA/UnaYBj7qfLAJPaOEJRBhV/0cH
FXENw1BNv+VfoxlvpDPA07Tw+xMajFBsqt8CyAjbOUhlNhUm+Bwmd2Aojgmi
PPln/K8xAWpTVh+/yQTmwiZDe09srTfFXnA6MkFkUUKQ8C9GeNkqM8YQygg1
jTcyL7YzwMurfLX36BmgWoG61V2BHm5NNIS+VaaDYKf9fGHctHA6tV/m1gg1
OO3k/Ch2gQo+5KdqndOihFHH5wZVh/8R8XWHFp95/yX0hxUVw+RXiaLssd6F
t38IPYMfbTUHFogrYq/WveumCQ7bs3uXT0wQpoVMTrS5w4RsjEBObUc38UXd
++kP63xie3b+3ObEK1LsnebfyX+fyf9m1n4Kqo+TXZ55vFTEFEl11DJ24Nw8
qRCfzlL1a5E8Gxj+FRRWyBvtuy+mWK6Tpx+wZ6UYbpIvToz1WmVSYMD2suKz
fZQoojjNSMlCjcJOc148yjTYqy2bFapOi9duCrW38tPhUHeBPec3Olx/Y+ay
9yw9ctyISO4RY0COzympn04zYO4iO/XaIANGZVFzjDAzosTYhlegECNyenIE
n2VgxGm1a465AwzoMNYTfe8YA75rkKSJ42ZA+84hlVOZ9Pi9jpQh39Hh4L4x
NgpmOozZHCgPlaFFkRGfGkNpGvQ0d4t+xUCNokpZJUUDlCgT7nrCPI8CQ89d
+jLru0meubPHh//YOtld8uB9S+YKqaNIUE0F/CH9y5Rmb6gtkLtmrc0sW6bJ
gvoOgQDGSbJcQpwtUneEJDvprA5d7yWjQ6Y/pqs+JgthOGqD4wWhdFH214G2
AeLAleCQHvWvhNbjDd/ZL98JsQCn5PSwWcJId+cbwfEFgs9jJmtl9Q9xdfdZ
1/i5FWLp21zIp5Z14uDzlN0FMZtExuls85vJFPBhNrchvJISnnrX2twlqUA6
9t4IW+OWA/l8we9ACQ2IfttJd8afFq4b3rxxl50ODv8p6Z/d4vYLy81PNWz0
sJFxySPFhx5aw96O/LlADw2pNYZTVfRwQNX/vPsNeqgLqg/2SqYH7pYAO0Kf
Hgbm2F1D+ulAJYKuMnoPHfg6lcWy19NCTsYhKnEKWoioa0y5pkoDjou9lx6Z
U8PdU26rF0y3ePth+9kqKUr4LvYu8fPYP+LzNNOdMc8NwlDqPkP3wzXilvll
demxZWKSuWvbubVFggF2OEwtzxOJXnsu2j+fJsxmpjmOR04SuYEJvF1Uo8TK
2Cvvz0zviCJljYa0JSSoAy54rlrVkINiXOpzHL1k63YHmpa5YTL2XKO92Ntx
8vPSiy/n6bf62CHdKZR5nqyZdagUWP9NVjxLfSnSvUSGvExcHstcJfX/0Usy
8f0lNQ/TL+3O2CT9+6jSh30pUMLtm05jJCUe2cZWfdiPCj9Rjmp9BWpMbVbe
XKSiQbbG7Dv/VdFg/dyKbrYhLWYl3pq7WEWLx5oPGx6hpMNH+e+ZO43o0Hq/
0H53NzpsLp3ZwbkV7egoFOm28m6nWuSjKOjwnvaIxN07tMhbXz9rtHXOrANH
w/O7W3yVaqCgoaNBhiN386esqdFghc4uI4IKT90vK/h1lBKD9mlShR+hwIkE
lrmWZ5tkU01QV57vX5JNR/aWy/gqqaMZfNzfbplkKGdVUz2zSKqlMR+2bJon
HcMfez26O00eE2O/HPFskmx+fu5r3KNRsn64uMRR/j35of118qWql2TsrU2G
KKFLRKSzzg+nq53EL5e+/HGqTwSOvbl6le4bseLD8cV/9jvhLXi5waRmhlDR
iiC+yy0QpYoNhzI/LRLNQedYsqOXie/qzpL3vq8SrhnPRkdM/hKOsd+OGIRt
EkJXKAdSDCiA8VGm8AdZSlA6/yTq2F9KoOr4KZ3SSAWZzvuqhn2o4d9QQ8OX
GWqYKspQGPShgTVtoSfOT2mA3vldyeAyDSQ22S+aC9FC9ImMnwGStNCQ97Pf
mZUWPiquM6kN00CW4vIlxwIaMPfRfimoQQPSARUhStXUUBlUL6UhvNWv7wP3
bIRRAde0MX3mTUpY3ptztbudAqb69/UJ3f9HaMzMyVDd2CBkZtb72WPWCZcH
H7VVJFcJ4/tG/iEPl4geud/b/kkvErYxbzxtU+eJz1M/HaNypwlzHud7zX8m
CTvVAKUOq69E2rMKnvf/PhDnWE6MnHj6ilC5fmLSg62YEKiRaI6Z+o+safSw
ED3xjpwx+9Z2OHmEtMzyNEkXniCpWBsTj13+RQbmxPqZJcyR/wP1H2q0
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.8847710363415947`*^9},
 CellLabel->
  "Out[113]=",ExpressionUUID->"6bf7ab18-e625-4603-8583-5d3a0032bba2"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{32.03755032352654, 0.000236833269139179}, {
                   62.12055229559772, 0.00010774037115020074`}, {
                   71.97267633850961, 0.000236833269139179}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAW5RrVphSc0AiqUoJhLcov9lxsFh5
/HRAIGLPKpihHj/CB0kMycx2QEzVO/ymmOm+v+Yr1JDEeEBq559G7joAv6Ze
FbKimnpArglBUrtHFj+hH0mkLJh8QODlnlk/nxi/lAmaVmWMfkDBr9En5NwZ
PznGeA90L4BAeFJ5W8RWGb8yrMl9cSyBQFPXTLailhU/oN4d95MYgkDUCagI
lC4Ov5g1l3pyGINAe/EmxFI3BT8MIR9eqBOEQDuCrIZAofa+9ViqTAP+hEBX
FrR2AEzbvmi1WkUa/IVAan3bnAH08j5RXg5JVumGQLNz1WCb1QG/tpvQrOnR
h0DUGqmJf0cGP6X9txo5zohAHHRfQm12Bb8JrKKTrbmJQIW6UKDmPQI/936y
Ft64ikAsSRrCpIz9vmHm0Plls4tA2YMOa12x9D5AmvLnEp2MQG4pkGECUta+
qXI54HuajUDNwTejOKvBvoeXg+MJh45AbA5W7BGk6z7iUNxG726PQPd4tui8
WPa+YxctWkg1kECIPIAny7X3Po+sbZarqpBAVWcs1NP/9r4A1MDX7CmRQKgA
4YczI/Q+rKGVnsCgkUAwqIlV+rbrvpa5cRVAFZJAcX6K5q9E0z7FY2CRnZOS
QNDmZ526Z4o+L7TQko0Jk0CJPdLhIX7fvt6WU5lbiZNAmY9g/OI75T7Lw91P
1QaUQHJs7oEqIeq+8pbpi+F7lEAs22T0FwPuPl78B83L+pRA/zJ7dMiZ7L4F
CKiTSHGVQP409qcXauc+6l1PCnHllUA+QwXjP4HavhRGCYZ3Y5ZAhi3pwzr5
yT551ESHENmWQK1w/eANusI+I/WSjYdYl0CmSLGh8RfTvgtg6EOq1ZdAlit9
TAzE3D4tcb9/X0qYQJlPA3+2i+O+lBSpwPLImEDjfdb+BfTjPjZeFIcYP5lA
PVnpIPVI4r4dOpJSHL+ZQIpWgxhUkt8+QmAXzss8mkDpQ/Q0VCTYvqEsHs8N
sppAOR558un5wj5FizfVLTGbQL6nl5td1ZS+JJDSYOCnm0Da7kod4EPIvpW/
Afj/H5xAo/OSvi271T4nv5II
                   "]], 
                  
                  LineBox[{{97.62109174576908, 0.000236833269139179}, {
                   107.13738397364168`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{134.13489008396468`, -0.00018857466479477956`}, {
                   143.27038567097173`, 0.000236833269139179}}], 
                  
                  LineBox[{{162.06902368670134`, 0.000236833269139179}, {
                   171.57487331006973`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{194.61168327422737`, -0.00018857466479477956`}, {
                   206.21802773721848`, 0.000236833269139179}}], 
                  
                  LineBox[{{223.30088180814093`, 0.000236833269139179}, {
                   237.57692718239275`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{254.39267758025827`, -0.00018857466479477956`}, {
                   271.4960876080131, 0.000236833269139179}}], 
                  
                  LineBox[{{278.86338696213954`, 0.000236833269139179}, {
                   304.14289523043317`, -0.00018857466479477956`}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422462#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.00018857466479477956`, 
               0.000236833269139179}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{32.03755032352654, 0.000236833269139179}, {
                   62.12055229559772, 0.00010774037115020074`}, {
                   71.97267633850961, 0.000236833269139179}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAW5RrVphSc0AiqUoJhLcov9lxsFh5
/HRAIGLPKpihHj/CB0kMycx2QEzVO/ymmOm+v+Yr1JDEeEBq559G7joAv6Ze
FbKimnpArglBUrtHFj+hH0mkLJh8QODlnlk/nxi/lAmaVmWMfkDBr9En5NwZ
PznGeA90L4BAeFJ5W8RWGb8yrMl9cSyBQFPXTLailhU/oN4d95MYgkDUCagI
lC4Ov5g1l3pyGINAe/EmxFI3BT8MIR9eqBOEQDuCrIZAofa+9ViqTAP+hEBX
FrR2AEzbvmi1WkUa/IVAan3bnAH08j5RXg5JVumGQLNz1WCb1QG/tpvQrOnR
h0DUGqmJf0cGP6X9txo5zohAHHRfQm12Bb8JrKKTrbmJQIW6UKDmPQI/936y
Ft64ikAsSRrCpIz9vmHm0Plls4tA2YMOa12x9D5AmvLnEp2MQG4pkGECUta+
qXI54HuajUDNwTejOKvBvoeXg+MJh45AbA5W7BGk6z7iUNxG726PQPd4tui8
WPa+YxctWkg1kECIPIAny7X3Po+sbZarqpBAVWcs1NP/9r4A1MDX7CmRQKgA
4YczI/Q+rKGVnsCgkUAwqIlV+rbrvpa5cRVAFZJAcX6K5q9E0z7FY2CRnZOS
QNDmZ526Z4o+L7TQko0Jk0CJPdLhIX7fvt6WU5lbiZNAmY9g/OI75T7Lw91P
1QaUQHJs7oEqIeq+8pbpi+F7lEAs22T0FwPuPl78B83L+pRA/zJ7dMiZ7L4F
CKiTSHGVQP409qcXauc+6l1PCnHllUA+QwXjP4HavhRGCYZ3Y5ZAhi3pwzr5
yT551ESHENmWQK1w/eANusI+I/WSjYdYl0CmSLGh8RfTvgtg6EOq1ZdAlit9
TAzE3D4tcb9/X0qYQJlPA3+2i+O+lBSpwPLImEDjfdb+BfTjPjZeFIcYP5lA
PVnpIPVI4r4dOpJSHL+ZQIpWgxhUkt8+QmAXzss8mkDpQ/Q0VCTYvqEsHs8N
sppAOR558un5wj5FizfVLTGbQL6nl5td1ZS+JJDSYOCnm0Da7kod4EPIvpW/
Afj/H5xAo/OSvi271T4nv5II
                   "]], 
                  
                  LineBox[{{97.62109174576908, 0.000236833269139179}, {
                   107.13738397364168`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{134.13489008396468`, -0.00018857466479477956`}, {
                   143.27038567097173`, 0.000236833269139179}}], 
                  
                  LineBox[{{162.06902368670134`, 0.000236833269139179}, {
                   171.57487331006973`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{194.61168327422737`, -0.00018857466479477956`}, {
                   206.21802773721848`, 0.000236833269139179}}], 
                  
                  LineBox[{{223.30088180814093`, 0.000236833269139179}, {
                   237.57692718239275`, -0.00018857466479477956`}}], 
                  
                  LineBox[{{254.39267758025827`, -0.00018857466479477956`}, {
                   271.4960876080131, 0.000236833269139179}}], 
                  
                  LineBox[{{278.86338696213954`, 0.000236833269139179}, {
                   304.14289523043317`, -0.00018857466479477956`}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422462#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.00018857466479477956`, 
               0.000236833269139179}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNlwc7EFwYhu29V/aWXYSUcY4R2atSRoWsVDIiQslokBWRzITqKykSReeY
IXvvvffe6+sXvOe63vc89/0I2N01cyAkICCgICcgsNXn4L49lg5Db7Gz29Sl
w3CyhGsB79KhjlaoPe3tdMg8VkbiLZIOPS540Lunp8FPrO6twz2psLTdu/Td
dgoMLbC0NDlMhi4xz5zezyfBJH7j+qiqN/CrnyQ9U3giTHyt9uYCfA2LZyr+
xIzHw2ft0aXcAa/gGXJ9EzPqOJjL6v/mdcxLeO3r/MgVphgYYAF+rPNFQbPk
Vyq/OF5AQ13G5/+xPYdnf/P5GHA9gfbN3SX7ksGwPo89a8IgEF57c5d2idgP
3v1UWVuR4gUfsPF+53R1g3Gn59QtNh1h2dxO8DkJK+j0Hw9fCaUmfDkpQ71V
q4wD5m/GREmb44GKwA5PBjuc8ueV6pqtM9Y5Pv3HisIVD7m9TGR87I7v3btz
Pfy9J9ZiOFgR9fHCN8KdSJjXvfHaNXctBh4fXDd6vsJtwwfnOV6Zpwz0xbbj
vpESpb747X+ut6J++uIukojzl918cUB9WezmtA9e4UxukxDzwYkpcGjh1H2c
5EDEf5POG7NXCE5M43u4zdx9vsnAEwckUZ0N/+WOv+mamjyhc8Nb8mmTMPk2
vp561AwOnHEg3dOmi3oO+Bkpu9v9CFt8yPX+pEu6FR56VZSmp3gRR6cnW90e
0cX8HUJfCj0UceO600PDUjooxmh72XFKFV7r879praUPCR5czfrpcAGKXP92
K+3nFXh5vsDQPf4qPMMYwdW9awNVxP2JRWbs4E9nESK9OHtoQs+vIbjnACme
6fDJ8TjBp8fi7LJ3nSATxYcYjThnOOfO72I35wwL2uUC5ghvQuLD3xTnep1h
00cGSZ37zvDIcT8S9DtB5SSrnHoaJ8htSl42S+MI981Dn3cN28NPXetb1BE3
YO1C1fAJNjs4VZ1VR/HYBsq3PVpbyrwKnfRZPGp5LeGvlGi5277mkPR4llwk
MoNQM6LRY8kQaulvIhdrbYhoIr5PflKFE8kiH5q/S8PIQdUe1jM9QOmny31z
KUnsoG/Tar+rhMVJrmdMd2riO4Wir33rdXG+v1uH5wVjrMRPTXFd1gzLybyI
Mfa9iL1lnivbPjTHj3+KZnGDK/gbsXtYyQ8LLPLppY/klCVeYw3nJWiywt5n
w418XK0x3ZT6H48/1jhhbKXDqdsaX3F/d2STbY1H/dc/LJ2yxkEXD3YFH1vh
EzTeNAFxlphUvsxjys0CZ1j8Nn/PeQV7q6tLmMabY4PGZc6S6YtY3vHztQ22
C3igT8VL7rgpfpTGYBinaIT9C2aent7VxcbtREw8aVr44ekXnaSy6rh4Kcec
3usspjf61rIdLoM1Vq4+tJ3jxSEv5jOW9OZBJd+KSE+8ICw7umCT7yALv9jx
K9MJnIU+sXw6FxTV4C+Nur7H6Zpw/3YoJ/0fbfjU69Xnwgxd2DdIn3ooawBT
/B+FyboZwWzHkgAFaRN40CbxWHfLBLZ4WNDkvjKFO0TKkiIUZpAr6cXTBiMz
6Mt/zUvcxQweCzzUYbMygw+uLBHVCppBRZHQ67XlppDWsOjKvIopnB53EjeK
NYHLTM0VCdHGMFnLXGWnxBAaPjDqv/hNH05ciySK99SF68JP9Jcpz8PYCj2L
5gfnIBsV25P6enX4sd9cU5IWQNpJg7ymq2dgU6RY09brU7BnMPTbaII4vHCm
hV2CnhsqQPca77Z1sG9h2cl9ghE3ipfK3/cSwrzaiSVvZ6UxI5kE7dSyHP4j
+kl+4t0ZXIIH7Z6TqmKpN8uqe0/UcANlyByflQY+7WdhcHZfE7MV37RtdNLC
PkbPD6aTtDHVJU7SYwnnsUaeb6TLFR1M9dp3xmdIBwesXI6/IqWL8y6lnk6F
upi0RjHkCqcunk6ssKZGOtgssWz5o5QOvkuYLhrtfB6P393Q87unjU+0adME
XdDCk/+93aGmPIe9JWi9a15rYDsHG/0sMnWcSNrS+TwH4JKk5flpTmW8Mryh
pHlNES9fWpxND5TDGrM2OlpsJ3HCe9WVXlpRfIKjsM56nQefeTLonPidGhPp
XPMk9R8Gmr1lFFLvGWFTxdJ7Dkd+6N333+nuXFH4d8s3TTfjBEz0SMvYSDgF
iTPJxyWzFeDThb59ae8zcLKWyI2EWBnOnT8yt9VRhT6/tkyzNSBkJlP2vHdf
DZ5PqMh6IKIOY3/Htr7/Tx3aH6PvTSTTgK+kNB7rntWA9bNs9RSaGlBm5FFG
oLAGjD61UZMzqA7bFvoUBjzUYWlyXOP7UTWIwzYTFk6qwZWulob0nwA2fpRR
te5SgUURMywKSAme0rOv+uZ5BnoYjrH8d6AALSloT5y1k4PWNhPXc9/LwOEw
iqvkHyXhhovZ+7BBEbi+6qeosMsHC3Qn3EqFWCCHcjjvw/cE8B1zaeqZ0Vn0
7fntSwfZtNjTNGxgd4cD5y8OKHpYC+IgmupxswBRPFz/s+75JSmcuSfjOn5H
Bpv4czI0BJ/CJFmdLIXO8pjo2LMTFzlOY54J7sftLxXxubtTz2dbz+CqhRej
DV1nMa+e9aBKuhKO0XlKHCCpjK+eYbK39FXGTC3x/SJhythPTFw975oyLn9X
FWSyrYR3Xn7o+XtFCavJ1RBdDzqLEyes0wvvn8FHCYuN48qKuEoIE15sVcAM
sSlK1UAeL7LI5+mHnsJPnhSRyfwngzsKOOjXb0hjiuy3N4s0xDE4b8ZiviuM
X2oIXcmM48fjaRXKxxXZcXbiR+9L9nR4aMF0/FrRNuJiMK3YoZkES9ab0TvM
5NBYYDEpnZ0Fsuon8s5bccNcFov4lwKCEPz9JK4/JAJVc3pOd14Xh0MEoOBZ
shS0uidJZhd1En6tz+IL55CFL4nLncLVT8HpU6d+1qvKQb3Jue+NNPKwV7Ta
/36OPCzrzoxh4VOAhJzubZa2CvDVa8Vsh3sKsCtNVb3gigKkOF1xQopeAXqT
ZJPQJMpDCYt311e25CCJ43WpJmk5GH03U29G5RT8lvTgdaOoLMzZeDGVOXoS
viehD6E+Kw1lj5/guW4hAWttO9PD9ESh4uTPlipmYai59LI3pIQf0omZnW56
zQmtv/hmm8Yzw0ubLKoKRJRQy9+kLTFjAxgX3V+vUe5FiDPoKrcEIbbXnpD1
/kmHn221Bv6aZ8VqLXGi/ylyY62Tdy7cYxfAyb1Px80nhfA5/xRbhsDjmCjO
gOXHsBiu8Wz/NUUsibWtRqm6JqRwExnNpGHwCbwlpa6Y33MSu/Z+P/vUUwbH
x0oMkHTIYO1bpAY7DLI4HRV8txaVxf1Wa9/vs8viEwm2P0fGZXAMcUTxwwgZ
7M/O4uDPLIONHm3AlOUT2HksVOmynzR2NGgupKuTxLMnIrx5xsUxi2yM7rk6
UXwHtOelhYpgROQznMQuhENq2EWnn/PjJuEhiXbEhQvi4v1sABve9zTNrE1l
wPW+XYighxQfT/+S19e0jrLklvqsUjH4eiMn7uODbZDva5sTrE4OlS/3iejt
MMC8JCM7XR42mFFuJ3GZiAv2zZWwfEvlg2/vHv7OXheAz2ZHz23OC0GeKfgt
9rsI/H3v9yegIwqXaf6GnMwSg64PnxVw1YpDz1wqvbN5EvAD45SM+nVJuOgT
5+rWJAmb2c0UnhFJQdr5vPH6bUnYsyG6SZwvCWWYjg26nZKEZdRic80+EjBP
w/Ok+TNx6OzH//jtDTHYX1f1tphWFHL3eaTQholAwt81nlf6heB5gRrezxSC
cImGm+YaMz+015BQPSTkhj+UI5MzPh+DzUkR+74yzNDaODSA/SQtrAxVGiDp
JoaV9KW8msPrYOW4iwF3SSlY4+CTpg9aRiO3erpj7Ajxzlty9WotKjzNIrgr
cpsRm96/FmQawoqfUwQmi93gwCENlh8OCXhws66t3Q1JfkzPbxnOkCuA49fT
QD6FEN64NG3UoyCMu+4wcnvLi+BXrUG9E0TH8XPgvraUdhzPHPfyq6ESxTNs
XYhBUxSLpI+Nd+qIYt3MRzlx3KL4RwODkTQ+/o9bifdmZY/jo8Q0Xx9vEewf
cKxuJFIYM0QyJz8PEMKbP+wnRbQE8Sz3u/qiaX78jOJxN1MXLxYLTbA5k8GF
+9t6bl9SYsfn+H98Pf2eBX/gV+5ZXmbA/dF651MgFRbbabwe4EOEaxvEekiU
N9Bv7tPu1gcdiIstSOKH2jjQjWzkWw7aAT2fI+LozpFAv9PThleeUcOOz5K3
vkNGeBcUskdFsMBY1ku3eN8fg1S6Sn/OPeGEb8+dcHcT4YGiDu702Y/44OWn
FYPnavihhxnhDbn/BKBlvf4yp70g9FZd3m5eF4TPb9dkhFoJQXYj0vTKBCG4
6Fqr6fVRCO5fM2rviRaC4UyTPJFGQtBwN18/dEwQRlt505CbCsKjs8LUn18L
QH4B/0qLf3nQrVrx1M+fD+6M8GVHq/PAl7u3zAwbOKF8EoGRrwg7FNNvslIx
YYU03ImaDBeZYM6b0Rj7u3TQ/4bcbTESCkhlVnL6zT1CSLr1Kko0dQNokFeT
Lz0dBiRXvRVrBdvRD3aJtReSq0ix/LbEHMURMjBVtt8tJ8U9AhYzrpXU2HSy
uFAbMeAMW6648bvMGIuYh+StsGK+RgbrSsCOWWqDv38048RKj2NUvMW5MYjw
GajBPPhxfcn7FiY+/NpDB0oy8ON3WjdUrTz5MdnrZwTeefz4MjhWpd3Aj5Ul
j0dNVvBjn89DmsXx/NjjxbiAtzY/NomqUhL6wPePO6/0Ux7zYqkT/kV23DxY
HYyE7vpx4dyfgQO2mRz4k9j9MKI3x7BgxaXMD7as+PviUuB9AmZM2jZBOujH
gN25WaZZ8qnxxKJGVDEgw3U1mi9/ZxNgHoaDj/mLG2hmR8Tl9do4GpoikOxh
ygWRm+nh7OnTYHxVfyfx3hYYcjx1ylOUEEqF7D+VtyeDKsDrYr0DNaSXeZpN
ysgArT/5rBWcZ4J2ZvkxL81YoGR3bUuKNBscIYp11+k4Bmllu4GPNgc0qXfN
j3jICd/sMD129uOCXGk5pLeUuWHCMbp3/r+54atXwVtUhDwwUer4FiUZD5Ss
OpxareeGN3pfapWbc8NFqvSX65lcsNOfXDDoJye850U62hPPAS/ttZzug+yQ
bfv9WmMhG+S+vhB0nYgVkpM0GEcLMcNrBEch3/kY4W9jn1t/N2khetlGu+hN
CUXYOwcHa0mgtHF98uTaEXBQKbx3R2gTTGeP2OndnQYn1L2ZfE+Wg493iA3/
ug+iWh3lkeeWK8j94Ki0e2gXSXhem1CnIcLfKtwjf/uQ4RvKMN3kMxXW1mYZ
vJ9Khye4lDWzhRhxb3Licm0TE85LCk13NGHBGwwKJ9MyWLGptMzuYQUbDmd1
136Ydwxr1X78EXqbHX/tVqlfXmbHDstP7tJDDnzqm+TDbHMOvH1e0mZJkQPP
+cdmx4+x4xaxjKKfluy4m0Q4fiz1GCZL/F1IkceGGdpfHwuKZ8V31zNdyY1Z
8Btvqe8fBpnwmw+7i390GLFjlVILuyA9Pkzd+VDjTY3H3jLujSWQ4zuOJ7np
I4nx20RqDo/KQ6RlathJr7yJJt6dvskiMod0c6R2db3bkPSs+X2/540g3tLI
9XnjNAj/+NQ6snUdpDvuc9wiPABSu/+t33EngmWyv70uyJH98492hRJECTOt
0UAgDS18sffGhZSaAV4oVXv91YURlosFc73JYIIVmc9+eH5lhg9NZcgNX7LA
vgSFjXhtVlhdfk//eD0rBPXXfRQE2aBcSoingw4bFN7urv4N2OB2mEnlJ1I2
2ACpOwlSWaEGEGdcpmCFuR7ES1Q6LHD8nqie6lVmKLpDkFGjxwTz/CK/AWZG
yH45t27Tgx4qKZwMUXlMA8nXTR6TXaGEKqruj70PSeFOqqEQhT8RdKW6+IPg
2wHI/CrdUaS4CaLy9Y4Izy4AstwmRlncBxjJTT5Y/X6P3M6x0YcXDaNP0ick
tH8sIZrrbIvlElvIwUXq4oTyIco2W3LbeESE9dzCge93UuwZR166+50Cd3Wy
L7v5UeMMkUh6CyI6TGJaWmAjyIC5/lNzFedjxDKjXt6fNxix6Hmsb5/JhDmM
/sWWBDMecxSjZ37CjI/Vf//4q5AZE/W/2thBzPhnl2cFdTIzDlZfUg4xZsbT
gIzCuJcJ1xGSV3xWZcJq6j9LTvoxYjmuFuaiOAYsyi5iP8hOj0mj4m+G1tJg
P+uBN7/VqHC03iUjkxByTKpxD7m8IcFAilk1+jkhFostjzr2bR8lsukol3Nv
IoXA5daNmkUE0VhTmvQIajyeO6J+vARVV3GXloq1A+Hbf7P2A6eAfKh57HWz
VTCfuFDLlLcNLqtemr/Segg2BvckdC4QwdLjgnpOjKTQQFdBfT+FHGbIi2nM
r1FCqSxny0Q6Ghg1vHd3boYWivc7Ml8JoodrWmPh91wYIBFBwmr6EgO8WcGE
WowZYaXwQcz9MEaYdFVh+EIaIxyooZ3yiWSEOTfpSHSvMMKxq/VXvQ4Y4OdH
ldN7Dxngot/+a90SetiqQnX98AwdZAoiHP91nwYCp+/4rT8V1CQaqtE1oIAm
Zu9e5c+RwgWGLilgQwwF+N0Ik3IJ4H67U1YQ3gPxXJ0c5QsbwH96nvvSwhII
z/uyZNE4Bu7sVYbX2jWCbkXNL0sO5Wjulw6D6pdhVK3G9Z70xTyaVyE+u06z
jogFi8Qm0naQX6sBq97aITKdcHvFfkiIuaz6DaSukOAZ+h/vBILJMJlC0WDW
Awqc0/0noVeJCm/kvVO5WkqNeV06HhhS0GKS9L4XZgx0+KWm8vW0TjrsMuD2
ZMOCHj98doPwfSI97vYP/RP/ih4b0NpynzGix2+tBkpfVNJhfXPyCYFdWsxQ
nkxKs0KDE4dW/xv5RI0pCFh4CqSp8KYuExftv7nP+iOy++PIMIOh1qZvEAne
e66QGXeeCLe6Jluatx6hvas834+6dxED+ZYJ55cNpG4W+nbNehlVZRrtyo5O
oPoLmg273R1IoIhbHthfB3LsdMYDGx2AccHpAhOaAF+EnKjOCCyDw747LwnP
bgBX3UKHRq5dYMjKQ/sMHwL/vNvN5hGE8MbMepjcS2L4grUiWN+FFHreent7
g5EcPqple74eSgE5s2JnH1ZQQjk7z1yNGqp/HDql7PKSGma2edik8dNAP9PC
+7QeNPDNi8Prdk9o4KzAX+fGqzTw/eQ1UeIdaph2ZKEsa0ENiZmWKUgDqWBf
g7l7xl1KOJ68GJsmQfGvr6LMw3wy2HXv6+RxelI4a1LW0w+J4fjp4S9n9Qjh
UZ6v+DmHQ6BmtT7ms7cDyMoLzjXYbAAcUP3GPG0ZpLu+/dEXNAUeVo0QO2j3
ga2rn8ot3/8GAZvyVgR1NaiTyTLqycEQSvLgs7z1ZgY13KHTqvJZQTH2RKKm
2xtI73bmSKjGLnrhxkMdZXSIlDtSs1ioCLG69c/wnioivGLlccRzmQS3hJyU
r/1Fir0TottEF8lwIcVX0ZVFckzRHW6lX0yB9XjGaxtNKfGxrqmLz75RYgM/
7ordHkoc40jKz1dHiQl2xATsQymx4QuRl58pKfGOaFy9gQUFbnjmpUHuTY7d
ctqEKOzIcFkyp8QwHyne+OTy6mEeMZ4tq70pwUOEDW8n7z24QYCPh9kUpTEd
oGvBRW7RIjuo8EGKjyfFBgp+zyJgVLmMeKnUmbsrp1E1VF2V/DaEeq2UZ+Ss
6xC3FXdN/Y1vQFOw2CdetROc8pIdXZ8fA6JplkMuIfOgrufNSMLNVZAcVjix
f2MTiJ0hviApvgv2fpMkO/7Lba0gCl38gABeZjdad90ihA/YK3Pq9Ilh6pRi
7hkvEvhBi43Px50UjtKlm+QCMvi08LOkSx8ZNOOaL0jRJocVqr4/Pz4ih/x9
Xk8snpBDRXHjpjFLcjjWdOrtzAEZDF7h8r/nRgZjeAqj1vJJIcs9EeEzf0ng
fe3riu4FxLAoL9HiuA8RfJeR0i7LSghHdfvN7/EdgZjqXkLzzj3gW4xnLc23
wc41r2Nq79eBobSQKXfLMjhin1lPLpoBVzUMajszRkDJDROJnPFWkHvzi+xY
2Dsg7t0RaDZahzzVY7m4+AcRywciu+z9SSRlKbr2K2cR0W11rqZQrqEBfRLi
6chNxF8evuM7tIOW1MXmw9f3EVV7VMBA9RGK09g/MyJOiJnYpPbjdYkwCmDS
HVQjxmpLcpqDtCRYMZ7BmTOXBHeVZ6t6CZFiX+VUuVMupLir6sT3zSBSrJ4T
c+PvHVLMVBAeySZJiqt5Lv/NLCbBtA+ma5P5SbBVkKzrYyti/N0ljV3alQhf
4E7SabAkxIubWpEDQgR4loC1RPP1AXJwKHinlrOLCi6drpeP2EItzx8HUcN1
dNDIJkX5dxn1S0pVet+aRab7U1QtzGMolyoQ753tQstcUIrPuhRNfjscUBT4
DVY6o58cHu8E1Z4VfwpsR8FdIdNu50czgN9YZbD7xDJANz/0CdxfA//dvNJR
GbMJwidlSWx9dgCbX9JdGpF9cKyVaOr6y0PwWE5srvQqAcydGFk6ZkQIfakV
4m6wE8Gp8JR3IsVE0DZpZVxBgRjGen0QrAwlhkQX07wsPhPD6ctRzd0fiGE2
11HdQz9ieIyH8fuwMDE0+CrQN5tFBFe9vioMHhHCLNEoLUN5QvinA1mxaxHA
8q0Qz1bnQ/Dt2eIZa8p98DTD5b6Y+w54wiwRT5y9CVjH7Jn4vqyBURWTLuLo
ZbDosdxLnjUL1qvs1S/vjAGXeee1GvNe4JFKwHRRtBYkZeoqasbGIquL+oJN
4w3I+8tL0fYH/cj4gu/Meu84+uxYxbOsOYemg+OV/AuWEU1hZMm7t2tISurV
oqPNJtobMec7Pr+Npm+KkhXAPRQ7Fy7nYH6ALCkzb9JLHaGP93fGI64RYIUg
Q/tzxIT4Q8Hkre0gQmzF6GdT3U+ITfeIzfgZiHCAFEd9JTcRHnDg3qwhIsJx
YTXEseWEeC9eYrvHmhA//eiD3rUS4CGG9BQNkX/3QOTDkfn5EDWcHhlyaNpH
iy0lL+gKd9EVA7psS+dtVDXImnBvegP5LSvIzqisoZusBTeTbi2jW0NvBl03
ZtGgWoCT3sg4qqB8wDlrPIB01/MC8nOa0YRo1JdrRblodShuoMG9DIgV/IqW
Pt8Brr0s10+uHwbxYX7CL/5OgiOt06E90fMg0jvVFVGuACOTaIcn79aA/JmB
ZheGTeDa/O79ff1tYN1P9lvMZBdkw912D859IH/rVk5d9gGQXFqdk1k9BGI8
H0eld4+AVnwqg9s1AtjGReIQkEwAEzEyG/9BACuVQ33icwjg0Zv4ey2BBJD1
RTIFrywBXI+eVU15eARmhkNddq8cgkLOSjvG9X3QF6lmJHRhD5BU3JRa8N0B
XxJFzdJub4G5P3f3205ugBKSQZrQmlVwd4uJnFBlGfAsnGxEfHMgkf51+3Ts
BEjLyX/FWDYEjglH0/QJtQOC9Ooz2q2lwJJuuHwn9z9056h3joGwEaGo9F+/
A3pR3DvngK+9oyhltmZv5fw0yul5V27gt4CkWsdO7MivoIww0Vs9IWtoyJ+o
9dmHDSRj0hLyOWkL7V4z7r1kuYMm+KMA1ci/vb28yvxXah/VzLwJZlM+QK5c
V8Em5SHyI2Fg3Ek4RG4Wpy2Vxg+RgNe0id3iIQpKz+HL/nGIeAfr2v6oHiLS
okxh+tADdMFDhMMkch/9uP0ttt9qDxXfPNsUvLyDWCgdesOMt9GJqBq+LP9N
lFDNTDPvt44GLqyNd5iuou33BBOSxMvI1lvE4Uh8Dlkiuhg1jkk0fce2lXto
GImQVLWU03ah8vtNHcpuNWitqrOCQ+cV0mi8LJVLXQHEBoPzh2E7kBTI5Zgr
HwRE8aQit/zHQZVApDif4wz4fMiofJFlEShErLp8AivgnsveJwqDNZDvFmdC
f2IDvCWiilsY3gR3P16SUbLdBgvdqxJ7n3bAyeHKnE9oF9yI/jqslrAHYh//
+CUtvw84z8VXOMTtA+63emXXCvdBguKhEWPKPiiIunl1W2sfxG/2ptLn7wHJ
525jzRO7QDBH57bM8A5gN3oNXmdug0nSz49HFbaAlFPHulnCP9+gEn4RVb8G
9CufnHvdswJesDAF+4cugRNDadHyHHMAa/pbkPpMgtUA3wjCzyNAIUaBk/1R
D+D/tHlAutEIFr7uS9M8KgDjaTacGot5qIdEjmIhuAGdrG+4KpvajUzUXhH9
4hlBY1pD7X/KJ9BKdOfBc/lZROL+rKHq5iJK3Tz2ekxqBV2nLKhTPlxFKcW9
Zaez1tG7av0/Abyb6Jb0i3Fepy10omkOvfTfRp/Fx/zLrHdQZ5Z6NRnZLvrI
9/Ov/P1dZM18Wzk+dxcpVmubL33ZRa81mIcCvHYRmfV17m3iXZS/6toeZrWD
hOUjTToDtpH3mpDr7O0tVPJ88I+65CY6flxpr7h4HV2kd5FKEFj751FW351t
VhCgErsisb2IBgxlMqNWZtG8c0h1a8EkWt7j25MyGkUluyZXzZ/1odNLU9Wn
NFuRLm+R84+yMnTaPC7M7sJjMHhcN/9MZwV4TRDDWybVBs5TiGhsK/eDR7nG
vN1Bo6BhUSsGF08Cl2j6iHE8C+yb7HxXnyyC4xdrMqNIVsCrt1m/U9JWwcwm
vGbDuA4WDc5HLJlvABcPWZPKO5sgslkm+/eFLUC0b50lTL4NumIU8nKfbAPD
mwl1IS3boPbc6SmlqW3Ql5pj3Vu9DXJfqV7v99wGIyq6z8TntwC5Tpb3sVNb
wEus4JnD+U2QQKfw88y/u3Slv/qBbWYNyNGX9Q89WAUxUYs6tZPLgM07Vuc/
m0XA081qFP9jFjikbtyz6ZoE91vOXferGwWWOsbARnEAUCX22LNltIMzr4Yo
hNuqwae7jlQCJB/ByQVhSp3EH8hccex9xNd69POcHcnyaCfiSRG7rSs/hHY2
yH3upIyhDq6+sEWPKSQ4tX2QwzSHcqtkFKW8FhGb2Hr+z9pl9MRlf/Kl3Cqy
DIgz1fJaQ0/PRDYbvFhH8Y1XHgd5b6D3z59t8Z/6t1d/prTq35vo2uHQuQD2
LTR3+lTZN/Ut5KcoUQbObqEkpf++OB1tIudbmYXdcZuowrJ6K3N3A1l06ddq
ntpAvfF3NSNU15ES9/BiAe8aqmA5/KnbvYJcA+6eOX5nGV0w6vSaLl1A9tJH
b9T/+UcAderlT8OTKP5E+v1RsTGkr2catJ0wiGTbgwc+ZnaixNkL0ZuMDYg1
c4LPxOIn0mQWZDLiTgVulWuSyVyVwNfLlM6duxV8IAurzt7vATnG4u0LjcNg
hmRThNJnHAQKs3kTrU4BwzumLzMU5oB0WNCklMoi6N299OnHo2Uwc/rPvdGS
FTBKsBvH2bYK/jhvMSuUrgEix8Ug26B10PzAKlCKfQP8tibzDArcAIv+bd7f
fm2AyikOH5c/G4COZMmv7N0GsAJJrNIXNgDRWQnq0I51EPS9XIpAah2QvBS0
l72yBhxCATGJ9SrQKUuwLDy7AiRHv2nkTy2B4WPOXiGcC6CV/uVfNqZZYKHI
V8XWMQmSdzL03riMgbanbdaC34eAMekbdhfzbvB1857USl0zyK8tHOnRLQfU
1cJCR1wJ4FR+n1LmehH64veDf/1LHXqedc6V07ADFRelDxlF9iPCe6HnF6pG
EJcpXXAU1wQ6OUR5iUd9Ggnts1QxycyhRUgs6Di6gDLakKye+DKiiB2U6VRd
QfrdFxw/S60iH00Jp/W1VVTitvJO8uUa2m3SMxQjW0eKOcK+XMbr6PyjmpCX
t9fRpbch3+5fW0dE89f2GEXWEYPbqARJ2RqKqCkW1pdbQy2y7n7KAatIs4NJ
92H6Cjq7rnaFNm0ZxXz9pHd1cxFl6BcHD7rOo+iVeH3lnBkEz9JtPimcROaW
ByOqcWOIfTTPUFFvGE3bLixKlfWg1RvjF71/tyKBqIsO1TLVaO7uifNcod+Q
/vw7qfyKbGBx6WTkBFUl4FNzCvdmawFrbRLBsftdQKX1Z9S5j4NgXiyHXvvp
KKg//+bHs6gJINh8KMTrNA3mUnpfilLMAb0W0/fwzgLgFSW6HxqzBH786Dt9
oWgZHDvQDPAMXgEsxKS7cWKr4Ht2pJlf9ipg97lUDPZXgTrPQLyh+Br4kS5o
fUd6Ddz6frziF8UaIJwdU/xYvAosU5+8Ijy/CsqW1KSHP60AWeoYnry5ZfDi
uRrBKYplYJUetlBNtgiuau8oC+I5oCM5OxkCZkCvtcZd77BJoGr+LW/iwxio
Zj1c4k4fBgppk+LOC73gR5bpFIlTO/h+UWsbeteB8JetKrLDxWDwQZ1hBL8j
WDRe6GB2+oX6xmhEtRL+olntGGOpvjbkXDYW/EKpF30KEjsjc2IYFYSHCc1y
jKEJLuPta70T6OyV86J9N6fRI582e/aKWSRTQR2gMzKPbr3c5OUrXURuiV5a
C9LL6JDpyvOs7mUU6KH0Zf7aCsrlVf5ShVdQsOHKQfDuCrKvU8ivp1tFeu9c
DuL3V5Cp/OCiZOUK4iW3fC3iuILC56763hlbRrIxKzpKqsuo6lPOGc7ZRfRX
22vciuOfL0lEXDSmmUOJwGT8SfU0Ij4baE9uMokkjF2oVD+NIZ1hoYilwWFk
r5DPemu0D9m8O/2usbkDWbBTvz0n1YQerYq2xz0qR0+Eqwhbe7ORCk39irbB
Z/DXZeXW8/IKYFjCSeDE2wyqtCL6y+Q6wdJ3gTdPWfrBGZ3B+lO9w4BGQZyq
KXgMvE/Y0I4mnASMAh62JkbTAGxQLF9ymAWGd1kXrmrMgyfdodcyRxbA2dyZ
qTm4BADBBJeG9DIo5mh9+z5hGaTmn820G1wGMEG6co9gBcTdvDqsc7QMvlGZ
S97pWQaVHJdTuqOWwaV+vwptoWWQm5A46Cu+BFpzQDx93QKwthj85nZiHqzJ
SFSpXZ4F/C3Nf5J1p4H//YFpRqpJkC7xOCw2ZQwYW7hYuFGOgLWpxXsR2f3g
iyTl8RXCLiDMlsGpKtsC+EfWGuYe/wH1o8pztlvfQQndz7vCzs/RqJQNxYJC
MUqZzC8Q9alF5+0skwPCWtHYxV+3Hkh1o/X1C6IK8QPoLROnkvS1EVQmB2XZ
/46hMkNs1Uk5iaTX3nRVsk+jb28NQj+vziC7jpK3f2PnEPvZKNvu7Xk0rOj7
kJFvEbm/Sf54lmQJFQtpdadnL6EIJzfZWKJl1Mar65NCv4xaCoykRtaXUMY+
nWbOkyWUYHJSuqJjEcl2fqhuG1tAxmsmlez588itoviBsfYcKmD/mZWXPoNm
YAbXWtUUinvVEHPy1wTyOXE/YO7xGGqNh8dJBUdQ4hk6AnM4gJ79rviTTtCN
0s10HmjGtiKnr2ZKI6R/UdaubtVt19/oYx7ffy2v3iBhN+fFMN6vYDng9MM4
8wpgmstdr3+rEfylpdoiTGoHQ4Qn5Ymbe0CKbngBqh0EiVU2NtNoBNz7KaB4
dmUMNLPEbGlvTYDDqorM6fopUPnjQ9511xkQu3CYcb17Fgj8ff6RhWIePLY8
rSe+Nw/cnbgn/+YugLg7sSdyhBdBac3KfRqLRcCltDn1xWARKOoYPBw/WgBy
D2i3Qz0XQIBGVMzqh3kwuCr7mSZjDqSXKNso2M6CgFN0pOdnpoFLlExJpOoU
+BlURFtlOwEMOMKySS3HwMyvb3p/JEbAfzce8L35NgBsbg9O67d2A6ekke6T
5W1A1XZ20IG9ASTdM/Jlvl8OeCs4ksr7v4DrNjwmtkGv0bh/ivtgdDGKX2VT
9bGsQaYnjwxIr7Qgm4Fb+l8sOlGyo0NynmgfWgzOOEFSNISU3JRPRBOMogfF
k92MB2OI/neTqGvDBCox8LuxcGcKVXN5Zar1TaMUtctPnjHNIiJBi2lLxjlU
em01t7pjDnVvaoRYX5tH3J1ifqL/zaPw3hP5RUXziH62oUswbB4FJtdE7fLO
o8PQoq6LPnNo3VHKsDJhFo2lrrldejSDLnvbzDyXnUaLmTeazL79y417N5ip
iCYQ13gsxS3RMRRmfFk0TGQEKRslyr4mHERfJAxAkV8Psoi3GtKsaEc0c8um
/ZX/ckRdM/9udRVyf9DBc+N8IXJIPGbGs/EEpX5/L9736BsgCY4VdmovBwFZ
3Im4qB4EfNaJpfzns0/sFjFDUxfQLaiRKfnntZIDpxid5IfBqJ7Wz7rjo+Bp
sn4ryb97cU2hKLvxj0cNNyI53xxOgrkQwuulyv+4RAzarc7NAHGW9Hs32GbB
qbOy05pfZ4F1dXjgKMMcGOOekk1TnANTAjOhl4TnwC9/yqfWXbNAODg4K9R0
FpBnESRyxs0A+yDdc73p0+A2242Mdd8p8Cww+A+p4CS4DZV26ZPHgfbDQzKv
uVHgDul/LTKPAJsBM0dauUGg5HKMn4uwFzxqZ2cQSuoA/mam7B+pWsDfk++J
KfJrwG9KRQ2B8wj4XCIWfrWQBTK+XdBzr0hHnlfVD5QTi9Hyn94qf81q9IGK
meGXWjM69iifK+RnO2J4e/FeIVEPIvxZ+MqKeQA9UpV65+c+jGiCurla5EeR
d7x5HlXzGBKfgGQDcAJtq0a8sno8iRjKZj8exkwhmm6pWx/uTiOP9Fqaj+wz
qDdajK48fAZpXHr9VKxmBhnWVT560jCDzA4Tzu8lzaCLRKH9nPIzyKHI8MJ8
/DT6MG5jPPUvLw7Gll4sl0+ijh+NoZeiJ1BMC6Nytcw4ylcVPXnx/Siq8OxO
sd0aRscCnYl0dAeR8tbbKWnHXtTqqUMyY9iJxB5l712mbEXxQp5Jtpp1KFtD
+aBHrRydcyPdalfJQ7KUv3ciHdVAcIHVIp1bHuDI0Z8g0SoHD852H5MTrgMG
BW6Kt0ZawKeo/nsO5J3AoINa8NJeD3ANt5Td/j4AzvE2uZ2PHwauDPszXtKj
QNzt2N2y5DGgcxisqjwyDvblogdNtyeAVSGheefQJFDvvexHED8FCnkkvDw4
psFS3YSx8s1p0PaS/VN3yDSg+H7zgeLtaaBdY9WTzzcNON/OrB5LnwKOE6QE
bxYnQezoim0PzSRwl1Qf6t0fB70ZMjQkZWOgo/P7NKv1KJiP0i093jIMoqdO
5J0+PwiG08eI4JdekKO0cUxlqBPIf/2T4DbaClRv0UetBzaAB2K3Zh6SVIFL
aFj3bkURMLDeBk1XUsDriFPx1HKZiOJvnkuWYzFSzWdVUjn9B51eiap4FNyI
Nmen0xrPtaG3+vzP+rm6EOn277wh1ItCzu3MaRwfRPP8f34/yBpGZ7XujKkw
jyJ51fzLvhZjSGmBrjbBaxzZHgY5WTlMoLbqI9up45Po9bxlXHnRJJpYzbrW
yzGFZG49SA/RnUK+zP+1B56fQoP9qfrbzFOIhTkhJCB3EkX0Vr+n4ppEIiS6
IkeXJ1BPn99DbudxNKljox5kOIaSc/fAR6pRlNMWTX4tYxiNEna5e50cRMFP
Oq+o9fci7UeholfNutDQEqu4X2IbkhlXazL2bEIJSw8j/byr0VnWEgmdJISS
/paoMYt/RlpRXiYFfCHA8+KB1BBVPiDPVFkJ+1IG5iSuW5N+rv3ns6ISgT+a
gbmzucIrt3bwoJW5xu2f1w7v80x/NOsD5S5qPMa3B4GzyXnXB2+HgdZ7cUfb
6REQkJIzCinGwFpOkErj4RjQq1C6wPt3HCRqyDmmOU+ArcITwgI9E+Cq8be5
Ds5/PYRySfGi9CTQXRhUTGCYBMI5jZGHlROgMOANNNSfAB5W7lXvM8eBAkPd
tZjWMSCgOxU93TkKvgo1z43mjwDOplvsFLeHQVi9zv0rJIOgqpPfu221F/i2
JI3I/9cF/pzu/pUu2w76HsU0JUX/6zVx+YubKbWgo3nQ7uNMGRi4wMD7Sfw7
sF66+6nncQx4eYNxT70hG825r2TRUhWjKH1S3gvyVSiKsGZ8418/1jgjFBe7
0YKUDx429t3sQEfv/mqwf+lG/WFcWz7FfYhkqDTkffgg6tsj43F5MYyKFcWo
Rr6MoN9WH0um/xtFI481G0IejqHoL66KDGLjaLrwv0S17HGU2FGZJ7Y9jt6/
tjqmxDOBcpmiuLVZJ1Dvkd9mwPA42uhro/J4NI7c8+N8GdbGUJ9g1FCGyhga
C6C+Und1FP2i8qoMvDKCfL762FGdHEYNdEv3NqoH0AVjtrEL670o+Jnysesz
XSjnfpB5YU47IpDfLL6u04IcFt4wXXtch95euP72kUol4hl1cQx89xMZhlzj
Jz2Xhd5sVAqV5cSAix6Wz+rs80FXsQSlIGsZ8L7h2qdrVAMUp7c/pBg1gW0/
76qvxG2gZ2mXByh0AkeOR8Z6Cj0gN12lPv6gD+hE8RHYPPvXh4bDU+Sdh0Ev
Ec+vYOcRYLzb7MSqOQrIP/bdlNscBcFWH1P9A8dA9PekvKnhMXAp8jRbFds4
8PJlky8VGAdrBVnjQ4TjwCpTkO9J4RiYzBObcdUcAxA+ffolexSYklStfxkd
AX+LFN9J7QwDo5Miwg7dQ8Ak2sNf0n8A9LltrgyN9gIWyjM28kzdwFDlppMB
Qwdg+0BJ/3WsBSjXzp3xO94Aftof81Ew+AMMbJI94yIRUDDSfRxm+BWMUjp+
N1Z5BJS+yHTqln5Ad5KJGn9H/UJE+QZ2vqASDT5feiJOWoc0jAQi2/40I737
GQzcE20onj+mfrKzEz3aoL1NH9+DqNTmw0e4+5Ez/VaksOMgCvVclIk9PYzC
7ze+GGUbQZXVTp+VW0dQbINDgbjTKFLQPhsc1j6KVIn/64z+15uqVVyaqhTG
EMseWQ6l+Bg65c/VGbs2ijz/nDm++uofz6B/CDnjKMo+ffEPpeMIcua8M/Yw
fhh98LUn8tQZQq8brIs/Cg6gGuMWLZvSXnQ+VcKy9Xg3SuSWSc2x6kB+iViT
1KEVpUZd/Pr8ZSOyOUgpO8dbgwhKx6r4/MqQxfZ41zfXAhSYWEJoQp2Gqs+r
8HwvTQBNpYMC4hH5QDHD+3GKXymwvEz+85CiGpz5kvxxzKYB0JBFBuz8agH9
ONagIKUd7KeznE4x6wLEHL3ldO09IPvKWFU3dz8wr5Dm0BYbBMee++mLrg6B
ZN+0V3eKh0GrWCbdJ4sRoPBXkT2udQRERLCuqImMAvM2lyou01FwL+9dwcil
UUBZJy71Tm4UyGV1Pa6YHQG7zVarW34jwO6cypjW9DD4eTLxMYHsMHBLdvQJ
zx0EF0SF1TdK+gGb3YB2ZGQvUDV6VCwo3g1OpFTGLMd0/OtdHVTJja2gLdVo
XPtvE6BJ8D+XWVgLpsOr+h08KsDDEQslCoZf4P7zCzYb7P+B6ZDeiAReYZQi
0EXgcPI/ZMP89O43gl9oZZgsuetiBZKYLSpb96tFHuNfHhc5N6GvPDJEV562
omwKy6/Esh0oIy5HsuVTF0p1fV6cuNqDZFl7Sj4Q9KOfH8fNq1oG0H/jdwWV
7YZQoGVJt9vlYeRiIHEvpncYqSeW0AaeHUG9WStrYZ4jiGvY/rrxsxGUsvzv
dfdH0N1TE2rkGiPIZH9ktWxqGEnVvYouvzmMvDga+y1eDqGzU9cv99ENosqp
0o07Bv2I6Eth7o5RL2LUJHAZ4exGe3Q1JjvfO9BjrfLz/oJtyLRt/AnBzWY0
ose708ldh7y1vvH+la1CSeO8t8WVEXp3ZpYlsPcbohEzcz/n9godnC+yW3uV
DI6aFE5ERuUDMubCgb/VGHBTxR6X7K0CxGSWB0SpdWBD8U5GVkwzUCWCXxVP
tgHCuhlitYx/PlhbQJM10QV2VAynCtZ7wBg5I5N8XR/YNOsStXYYAO0JElEL
eBAwbN6gk/337w8acrmOLg2Dlx4kzUPJw8Cuq3pJqXQYPDy6mtWPhwGdk/rp
gaRhsG90JSX94jDw1zhJ+aljCDgFsKr/ozTg3tAf83AaAIdneUbMWvuAgb3v
ZVriXtC6RV3y9qALdOZ70wb+6QB2Hkycj+zawKr5g9WWzmZgxvVDdce0Hiyo
kF6P/v0H5BVuhdzeLwWdSpb2zQo/wPCDthqX+ExQ/JjkkWX3A+QVF0lervAJ
vZ2Xqgy98RNZfAmoU71fjrRIixq/MNagVL5bG9peDWje8lOjhX4LGtp050kq
aEMPu/Ocr653oO8RdL6bRN2o/ZNEuMhADypp1GDjftSHtHMl3oRO9COWzDr7
SNpBlCNurz6zPoi4voqRtScOIfu4C1uce0NowjbRn5ZmGFUOGkaULw8hugmz
xJjQIdTwlHonoWsQOapJD3lMD6A7LtbUur/6kY+T7GCVcR+SaXY3Z/7cg97i
bZK21i7kXrpOxlbTgaplJNgvRrehxvG/zbYyLUj080WdessGdFlf1TWVowZF
proYRHwoRy0rbBdfHf+F0uxKyRQTchAWM5F9UxGGouIlhlbl0wHZO6HO5nv5
IDBtlS4gFYFjj3YTlnAl+Fyb+ZqA8C+4PTAlfoO8CXzlzXXUHm8BWnQfArR5
2oFyn/UKg0QnOF+o2+5A1g1u1MgduX7pAXMHyxvVvH0g29unI+RiP7BZ5lE9
YzgA7m/Tim6TDYIyldvZtoGDYNC0LTipaBCsldnmX/6XD6cP1t+22Q8C6cuf
LLp6BgBVpkpgPv0AMJoVkwcU/SCiia+5saoXtPReSj2j/2/O66KnlUldoIWa
pUG8uAP8D5HBayg=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.8847710363658543`*^9},
 CellLabel->
  "Out[114]=",ExpressionUUID->"6bb31bf3-f6f4-4af0-8c02-d950cf278323"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA1+7IYxsydUDwZklUXMgNv8IHSQzJ
zHZAIK5YlaRvCT+/5ivUkMR4QH35zmEDlge/pl4VsqKaekDl0wp0YIQAP6Ef
SaQsmHxAfe/XRTugAL+UCZpWZYx+QBSVK27rpP4+OcZ4D3QvgEBaO9o6xNn0
vjKsyX1xLIFATqVknxXy9D6g3h33kxiCQNvWpfL49+y+mDWXenIYg0CC/H66
OPnvPgwhH16oE4RAsxZI49sw7771WKpMA/6EQM8ya6mP5uQ+aLVaRRr8hUDU
ohWCXI3mvlFeDklW6YZANZUbtkEd3z62m9Cs6dGHQFDj4IOdAMy+pf23GjnO
iEDpkIKhzCvRPgmsopOtuYlAMuiYeaSKtb73frIW3riKQJLY0/v88cU+YebQ
+WWzi0D0lw+c94bIvkCa8ucSnYxAxh8CJ8VBmz6pcjnge5qNQPxZ0hHhG7W+
h5eD4wmHjkBSSgo2saOevuJQ3Ebvbo9A5XrBaR67xT5jFy1aSDWQQJH2JW+Q
UsC+j6xtlquqkECeYGQWVjTMPgDUwNfsKZFAraM472RoxL6soZWewKCRQO1t
feeOBcw+lrlxFUAVkkCwKXe1QObSvsVjYJGdk5JANQA8uxcs0D4vtNCSjQmT
QAHiZQEaK9O+3pZTmVuJk0CORX5mTLXPPsvD3U/VBpRADf2RyO1EzL7ylumL
4XuUQF73euPVKNE+XvwHzcv6lEAgDhvNNbHNvgUIqJNIcZVAR1Avfnen0D7q
XU8KceWVQL20+8+ex9K+FEYJhndjlkBQFMwnpj3RPnnURIcQ2ZZA7gdhD2JK
0r4j9ZKNh1iXQDuJAu7ukNA+C2DoQ6rVl0BaIkjUMwvPvi1xv39fSphAqteP
dR2I0D6UFKnA8siYQEKT12x4oM6+Nl4Uhxg/mUAumYatWmXPPh06klIcv5lA
nyrskG/QzL5CYBfOyzyaQMwocUVCCcs+oSwezw2ymkB5mJS1I/3LvkWLN9Ut
MZtAus6UaAESyj4kkNJg4KebQBLuKK/4S8q+lb8B+P8fnEBjZEA4OOHJPmZc
i2I=
                   "]], 
                  
                  LineBox[{{28.147672158285815`, 0.000056903745870189505`}, {
                   28.345906010881244`, -0.000056805913605640734`}}], 
                  
                  LineBox[{{46.18739195861842, -0.000056805913605640734`}, {
                   47.774532703139236`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{79.59264906365416, 0.000056903745870189505`}, {
                   81.52563657242423, -0.000056805913605640734`}}], 
                  
                  LineBox[{{108.47328522070279`, -0.000056805913605640734`}, {
                   111.60654252800289`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{135.92191804371342`, 0.000056903745870189505`}, {
                   140.9761731120965, -0.000056805913605640734`}}], 
                  
                  LineBox[{{166.9787449454888, -0.000056805913605640734`}, {
                   173.34588602910372`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{194.49261577756096`, 0.000056903745870189505`}, {
                   203.77922485618424`, -0.000056805913605640734`}}], 
                  
                  LineBox[{{225.68142984569988`, -0.000056805913605640734`}, {
                   236.53474616739592`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{255.7089435833911, 0.000056903745870189505`}, {
                   268.7962606921548, -0.000056805913605640734`}}], 
                  
                  LineBox[{{282.2979492675511, -0.000056805913605640734`}, {
                   300.3590809541671, 0.000056903745870189505`}}], 
                  
                  LineBox[{{312.78623743915745`, 0.000056903745870189505`}, {
                   333.2984268440447, -0.000056805913605640734`}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422523#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.000056805913605640734`, 
               0.000056903745870189505`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA1+7IYxsydUDwZklUXMgNv8IHSQzJ
zHZAIK5YlaRvCT+/5ivUkMR4QH35zmEDlge/pl4VsqKaekDl0wp0YIQAP6Ef
SaQsmHxAfe/XRTugAL+UCZpWZYx+QBSVK27rpP4+OcZ4D3QvgEBaO9o6xNn0
vjKsyX1xLIFATqVknxXy9D6g3h33kxiCQNvWpfL49+y+mDWXenIYg0CC/H66
OPnvPgwhH16oE4RAsxZI49sw7771WKpMA/6EQM8ya6mP5uQ+aLVaRRr8hUDU
ohWCXI3mvlFeDklW6YZANZUbtkEd3z62m9Cs6dGHQFDj4IOdAMy+pf23GjnO
iEDpkIKhzCvRPgmsopOtuYlAMuiYeaSKtb73frIW3riKQJLY0/v88cU+YebQ
+WWzi0D0lw+c94bIvkCa8ucSnYxAxh8CJ8VBmz6pcjnge5qNQPxZ0hHhG7W+
h5eD4wmHjkBSSgo2saOevuJQ3Ebvbo9A5XrBaR67xT5jFy1aSDWQQJH2JW+Q
UsC+j6xtlquqkECeYGQWVjTMPgDUwNfsKZFAraM472RoxL6soZWewKCRQO1t
feeOBcw+lrlxFUAVkkCwKXe1QObSvsVjYJGdk5JANQA8uxcs0D4vtNCSjQmT
QAHiZQEaK9O+3pZTmVuJk0CORX5mTLXPPsvD3U/VBpRADf2RyO1EzL7ylumL
4XuUQF73euPVKNE+XvwHzcv6lEAgDhvNNbHNvgUIqJNIcZVAR1Avfnen0D7q
XU8KceWVQL20+8+ex9K+FEYJhndjlkBQFMwnpj3RPnnURIcQ2ZZA7gdhD2JK
0r4j9ZKNh1iXQDuJAu7ukNA+C2DoQ6rVl0BaIkjUMwvPvi1xv39fSphAqteP
dR2I0D6UFKnA8siYQEKT12x4oM6+Nl4Uhxg/mUAumYatWmXPPh06klIcv5lA
nyrskG/QzL5CYBfOyzyaQMwocUVCCcs+oSwezw2ymkB5mJS1I/3LvkWLN9Ut
MZtAus6UaAESyj4kkNJg4KebQBLuKK/4S8q+lb8B+P8fnEBjZEA4OOHJPmZc
i2I=
                   "]], 
                  
                  LineBox[{{28.147672158285815`, 0.000056903745870189505`}, {
                   28.345906010881244`, -0.000056805913605640734`}}], 
                  
                  LineBox[{{46.18739195861842, -0.000056805913605640734`}, {
                   47.774532703139236`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{79.59264906365416, 0.000056903745870189505`}, {
                   81.52563657242423, -0.000056805913605640734`}}], 
                  
                  LineBox[{{108.47328522070279`, -0.000056805913605640734`}, {
                   111.60654252800289`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{135.92191804371342`, 0.000056903745870189505`}, {
                   140.9761731120965, -0.000056805913605640734`}}], 
                  
                  LineBox[{{166.9787449454888, -0.000056805913605640734`}, {
                   173.34588602910372`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{194.49261577756096`, 0.000056903745870189505`}, {
                   203.77922485618424`, -0.000056805913605640734`}}], 
                  LineBox[{{225.68142984569988`, -0.000056805913605640734`}, {
                   236.53474616739592`, 0.000056903745870189505`}}], 
                  
                  LineBox[{{255.7089435833911, 0.000056903745870189505`}, {
                   268.7962606921548, -0.000056805913605640734`}}], 
                  
                  LineBox[{{282.2979492675511, -0.000056805913605640734`}, {
                   300.3590809541671, 0.000056903745870189505`}}], 
                  
                  LineBox[{{312.78623743915745`, 0.000056903745870189505`}, {
                   333.2984268440447, -0.000056805913605640734`}}]}, 
                 Annotation[#, "Charting`Private`Tag$3422523#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.000056805913605640734`, 
               0.000056903745870189505`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNl3dYiF8Ux9tLe0lDpZKG0NDivCotQlODBkqRBqGoiJ9RspKyChVpL6SS
87b33nvvoak9fv11nnufe/6495zzvZ+v6Hk3YwdKCgoKBnoKCutv7S+3U74k
TgkM2X0pf0EonGqi17j6gpBPNHcunXtOlM39sTlh+pxgc8w+KPH6GeG0fpf6
74+nhLcuNdvDjECiS5c+mSriCRHw/bjPD/cA4h71Y6rt0v5ElpXiRlX1I+K9
8DOItH9ISLwf03Qf/4+40Xg6XtrxPvHWTut1ZZsfoZNzfiz51R3iEeseBX9n
b8LJMe81hY4XcadL07ta8gYh2lBNevJeI86w1kh6ybkShc4Py3fbOBGUHxh/
Hio8T9AMJLV5tlgRp6c4diX9NCSSPYRhJ3mIUPcx/kjZxE+qJHPcfZesRTLp
xYa46RqRs8GHjAUXzElx/qMNX7utySqa2JO9fufIQB7WNOqkC6Rv4uCNCU8H
8kbT8m7Znovk6glqlBh1JElHNl7KUCfSqPynSfSYE+lDlbbx37gTWeq15J0V
7kS22bN876VzIoNeH0vYlHUkWysS6W7wXiQ/NmwcGi21J2nSf8wePHmBfBL3
4I5F3DnypxJTeWyZLWlqkzlhxXyW7JfXsnsraUFOqNapDEmZkjeSde9aihiS
oj5Hlxfk9EirgUAt24NHSK2s8+3ubftJeiHHTB/adSQczzsGbpcirNI6KIe2
qxHbvWKX16y0iPtKnJSMu/UJf3GNvULnTxI9JQGWqv8ZEclThk2Sj0yIex8i
4x8omxGr9BZWmyGnCaVEzjYiwpz4e2ztYZelBRFo+UnEPNeCSPA4/nKl1YII
crkzPxZtQdBcj3/TLmNB8L7wf6HlYk4IPzX/LOR+mrid8ulst6oZocMfNmBf
Y0I4xs5d61A1Js5mjE+m+hgST/sqL/yDE4SbgcvzfCN9QkThoL0UoU3Y+3xh
P8+tQXR3alWXZ6sSs9+4dwSbHCB2/Hg/5Mu0i9AtCnlPv30S9H/oT+9IEyDF
ishCtUpZkvKgZbaLhxJpQOvHm0V1iAwdmlDdTa1BuvtaLYxmaJHZ4hGGX4V0
yMbu6z02e/W29s075Ab1yXV505XDWsdJmw7dp6hjQC7qyFCMTxmQ5Xr0BnPE
CfKpyynmBZUTZOrzN94UXQbkP2o3ljx5A1L5ZAJvvfpxsqW7IMppQ5+Us76h
f9JPj3wfwX2otliHdGq2K41rP0qylvNdG8vTJLf9utPd/eAIOW2u28VofIh8
hyr8NS7KZEYJr7jcFXnS23+/tUyGNOmeIppz8q0IKaWSt8vNlIkM7/kG+mnL
kJTw9JGF3Q7izTg724McCWJj5lK/uJEc8ft15vjCbgWC7o7T+//qDhKFzaUX
DcTUCAXLE4KFnIeJUzxz+55/IAirhZsShR1HiJzO/3onf2gQyRcp7W6aaRL2
Q6dONP3RJE6FJxjyTGkSX/dVrE2OahIGXKfsJ5I1ia52+7eiWpqE+Sa9EX+0
BlFpJPy6of0IsVD7ZtWpmiA68/LeT78/TDj0ZqSb71InblJpqim7qhA7izH9
+WMl4mOmx91YT3milTfoJv1LOcKegemiLc0eIkOUm/C0FSX2GjzvtXPiISy+
8K5SmlIQMftD+8fPzWGtQ+j8iA8Hyae/k2YtUohU/j25UzdUnHzx/V/AzIYU
+Yw+tHx6Q44s8KN9FVR4gDSy5N42V6FAxvjRQHCQEtl4LZj5ILsyedU00tRd
R4XsZLuvHiuvSvJ9ENLb0aBKpnRYni2WViO/LTJG/aesRsZ6+z/tWVUl4bnF
ktRtVVJFSijJ6qcKKV2Xcpw9VZkMSttX63v1IDm0YrJwdlWRtH0ccrPLRIGc
DGf7753fAdKt7D73P9Z9JO3VT8wXOqXJZ/dpaY/c2k2GrUexP58SJY8VFD9r
eM9PznhyJNQRHCS9Vk3Bt0+b+HFWJj1erRFczQz3c/ykIXZ2GlGc4+EiBq1c
1Q64ChC/eHPq1GJEiR0uyxPxphLEU8pHqePf9xCOmgnnb6IMcWnlyvF6Fzmi
1vm5sKHNfoIT0jcNtuZFbZw6z5BbnvCf8+ey/SxPbAg22rEuyhO58HXwIZ8C
8f4x4/HbtApExck7A3tIeaKcIvqTka48oaiv9Wff5wNEyL6sK1cr9hOPn7iX
n/24j5ivMlP/bb6XKGH/5f66Qpo4UFAQw0a7hzB8fCiuglGC+A7078r6RYki
Yc/wMBUhYqn3wMrLW7yEz9/l21NqbIRLS2j/c1dK4tT49VbrD51wZZtcW0/U
HPqpBh9T26AjuRYi2LqaOcjTZMBbk/7t5Kun9tbJr4RIYOiYkLsiSu67G6XM
2SBGPhG4Hx++KkHe/OL99UCXJNnNHXh+1VOKLCOCrVcLpcnUykEHxiIZcsbG
zbXppiypXOApMNEsSx4efM8fNypLqlgLntZIlCUPiE7vSBSXJV2SMrXjjGXI
/arP4xPUpMlvGs5kXc8eUo2bkWzWlySvP5/2ofGWILtb76ztvC1G/q7JZ7U8
IUra5JZq+SwIkbr9JeNHeHaQVM4ZDdtouUlhGb8LxjEs5AW9B3/WRanJauqj
I28kZ9DIgNLc3LYKTHYVGJ6wXYIL35ZdPsjREbk/im9bl7IRB0RB7Z8HN2F2
PzBoIZOPuGbzONorQZAo1vfxEBcVIT5ETIvGZIoS+VoHl4wExYgM91v2+jri
RH+If7S5kgTh5e3HPj4sQZReLwrgs95NZBx/YP7h9W7izmlt+frnu4nrx97/
yDHYTYwEkfIUNRKEZ+BOtnx+CaJZSDCqeJ84sWy50HSKU4zgFXF/xFskSggF
JdVpnRIhKiSH6HPthYjotftE0MgO4sEFqu9qirxEV+YdRhdjTsIg80P+yTBm
Yj5I2ErRgYZoqBObEZNdAmo6sY0S6S5wnA86ZdreiwIqIgu5HMsYGHVcYe4M
DflLcuDbno5t5CXGM/HnvDnIjkb+ZJlKbnJRP3LhVvt28uaeig6xT/zkxr8D
5j0cQmSOAqFvIidMfhaqFmT2EiFT57plBqVESa3FQ/0P4kVJKvUVLmJNlPSJ
llAeF9hFbkjErPcx7SIPe1m83CwVJftN9jwNsRIlPbOvlrqhCPmCI57i1ZQw
yUQd/sefcyf5dln4VNm4AHmYfWKQ6f4O0jPtotXbDl5yFy9t51FqbjKOqT7U
cIOd5Agwnf6SsI08ZNc+emQPLVme9Dejk2od7ZfYDPikprB4r/SjdINc5HWm
cl9UHIL2n5sZ1DxLwBhpoq5nTEVkLXhSfzRlIKys7mz4ULEScR1ZzEvRHMRe
5mUNfh5u4uSOvx/HtXmJhyy3Ljkq8hFZrg2P9Dp2EIoqkuqcagJEqO95kve4
ICH773KUN4sQQUfpuKTuJ0RcjWg7uidKiNAQndcfuClE+LRsRvetCRK+0pYu
NsqChOCfE9nGUgLEqKPqPfemHUSQwHsfTi0+gv35dMq+67xE89PxCwZu3IS1
7cvOS2qchGLoG8mxX2zE1Z3CQ04/mQhZqm8Tl7xpiYKZ5f9c+CiI5U6dZoeD
/8Aao420jg1AQdZEzq2EBOSJTA/hejuMcoWXfzleW8Abv/6UP7GhID3Lrnkv
6dGSRwWcmuUmGEk8MTubc4iVnBw9v0+Yj4MM/nW9/GsXJ+me9jym3YWb3ONZ
DTp5PKTgvdjL7K28ZMebwQm2lO3k9tXX/KXafOQJlZIM93d8pOLuJJqJOD7S
bdNnsuo2H5m/KvXEgomPVDvn2upyZjvJlNvT9cqdl3T3mFPoM+Ah175ekaSe
5yKbX9oG7LzMSS59LT1a952dHPZwaNRNYCG7opjjBhIYSa/JV5yV12nJsy2f
GEvYKEmKg4HX+7iWMaodNu1wCnfWQce6UxtO9Tq8OshZCGb4Y2CPzzBUFgWq
3IyYB2oxNeWXSuvgafQv/XgaFeFlRE9N84yO6KiRqHYWZSKOLdOH1l5kIcT5
qajSpdkJe/O5GSUPDoLgd/5K+4ST4FiOnam4wkVo7g0Xzt/BTdyiMmRPe8FN
CFaXtyxWchMLrlcaHzVwEz4+iSoDUdzETntrIYnD3IQhw6TkWAQX4eunUGTZ
wEk0hV0R2dHMQQi1u9RqJbITSW6UGwU/WImq+4vtOQXbCK6BnXYUwQzEiWeP
eD/toSUOd4XdUnpBSXQESo36RKxC+tkS06W/c5DUHSN1VXkEOCY/9vbO1sAn
dnE9qdIKfDjIzPo2cgj5qRMi45tnMfPr+bAxvhWs6OGvO36PgnzU71AYn0tN
VriIUvoX0pHTi2Mmjx9uvW/GwhrP6jaSp3Ro/roIK3k3XKavaJqN/Poq4CTL
D3by5wXJN5kaHOS+rzlhFz9zkLdviw69rOYgpfG6nsJWPPLo7c/CTxzkBb7S
QjVNDtLEUodu7Rc7+SP2x45BKnaShb7Dw/sYK3k62POMgxYzeThv7fmHBUby
zgM5hrbL9CRl4t+iq99oyNdTszKKPyjJ1z7JV7Lk1/GMvR25jAsYVtH4jdw5
jfcae1m6i/vwuxHlqApNIdol70etizXg1KZZ4Hh1EPbsjAtKkpmBlLq33uPn
FoHf1LUq7Pg6HNato5y9QkkwvYow8d6kJhT4BpeFzekIyVmhW4QrA2FhN+s8
TTARHhfW0raVbCOYq5meKVGzEBckmB8O/GUhXpsm7rkYwEp8pgr3661lJdIk
T+mbl7ASTHFr059cWInFh3YOjvkshN2QYe7uCmbi7vGMKYHAbcTnoWAbgoaJ
WNtw7lU+xEC8/r132ECFjli4YCFjvkFNLF1hZE15TUlc9hT/j6DZANrwvPXX
H5bgR5vGiOrGLLCMTAT03ByDV8kf6YefdEKTkYD5sFoGlKTco0vVq8Ux1bD3
fMID+PmM5jz38SnsNBL8UUL7D0XX5x6G7lrBf5zcd7mmNnAu52PIt2RKsimm
erfCD2ryvHHQ05N+tOStsyzcv9noyeFsvc0+GwbyFvPcjd7LW3pQLxHif4CJ
VM1wfOWQykSm3XQczxtlImUdGCJi2pjIFDWve20PmMjFKdYnDaOMpOXPz66F
2xjJycJIi8eT9CTepPoX+oqOpFksGmfYpCHlA+72+CpTk84TbDt5NCjJyfdK
ktmaG1jaJBQalL2M8P0cg8zaPKo+/6XxmHUaD5u6alJQDeHZNS+zDw+aceOQ
vc9y8DfcH7iDjdanFjyUC+MyS/pAdYH/XsPTCdBqElV8tzQLHc/NkmdcF+HU
bqE98h9XwVm3KXjcexPuUCQ/OnGXkih9ruHSw0pN+ItwnlhxoiGkmrgOej+h
JSaOnrvZ5U5H7Dv2cpbgpycytklX2T6kJ6xXVGy+pNITOsvn7fk/0RMevx6E
eJykJ/oPHPCgzqUjkitK/8taoiXWfVmWhZdoCPE3/1r086gJj7FrOfVWVMQH
Tp4zDYUURJDYxzNRbBvwwyo33un4Cqx7lKCH/gI8spdLq+CehSvnguQbr45D
Tcgsm9R/fbD3j4IUw3gdtPm0nU467A+FdYU7d2jX4nRs7aybby+eb06/+Itv
DF2JoD6hfTMofkQy8qrgP2RM4bNxLlvCz5t271v3reFzLtOIM0c3ceflzWk1
Ckqyd3JiqFaOijxzmPKRggw1eWj595TUHDV5givDmOUhDbnQZiRb3E1D3rTY
T99ARUs20vH91PpLQ8aWO9JlRNKQPwee0Z4XpSE/qb/JWXfe6qOLSUkVD6jI
13uG87Z4kkyMo9O4LUtBflMUbrF/sI5vIy2MbzuuoLu3vNMU0yJ+ratl4PGa
Q+tb7lzXrk6hSMLhDd6kYbxqq7Wd5WY3ppo5EuzpVchJ0x++phUALomv9/VU
1YDKmOGv2KM9QLHt4SGTkWGIZihJy4EpAOk7G+/552C+h0Fom/UCZBoPTz22
WYaLlcdfRG5fAy3+PzwZ9zaAYu14kd9xCuLjNa0/hlKURIuh+23zFkqi3LuC
RdiciniZJ7eY9oWKSPTVyojIoSLi/xkxr8dREX+Y/hRb2FMR9ouJ9iWTlITk
r3ztdj1K4svwVNYbTwrCuPNL8ujSBsjmkGeif6zBPFfJxsieFWjsWqAdPLsI
q7vLIy9ZzIP3x10KFWIzIPG0szfyxTgsiIyclPkwAF1uPhk1y21gmuxt4iFc
Ci//ZOy3FPiItLXSGjcUa9DeK8GQU6sLAyUUyx7PD6LA17y+iHsTqJdL18p8
dga9Px6133F0HlNGGfITZhaw+8/FL2I2y6js8/JW0H+rOHCH8U/V2XWsv60g
+HBwA9eXXnwXZKEge3P03kr5UJBXoiToOUgK0qScVcW9cSvyELRWW+uvs2Pj
Zr4U5LLnaoc1OwXp1GNc/nNuA/mYbt/Q8FzHHTMCTjXJq5j9dWdQUOQyXlI9
r37ebBGDpy3v/Kmax4MW+bJxPLN47Gr+yMkLf9HH63rxfrMR9D0UzW/N0YfR
aVH0hkbNaHFLtD86pQAPWZ8Nn5D7Ch905WfEWKvh9t34jY9SHSDZ61Z/5uAA
6CVIRNnxjYGuF5ViXfwUEG9+H9e5OgsCC7nhv5vn4eP84Vxj6kXgSipjyPq7
BDm+gbpGISswH25bqji3Cvf7Eo/p0K5Dz1Jcu0LpOijBi88+hzeA7lGPg8e5
DRAUTqUllDZAvcP9c0vmOvyheZtKP7MGTswUrGc7V6E7XLBb4v4K5DM7f3fu
X4Jv3/Vzu2gXoXVwyrfy7zwcfXQxifvLLNzgFhZkk52GUF0xRQaBcWBzVOSW
/jQIWd+vGscMdYNhwhzfrRMNEGA3rG0llguc/gqXzrvEYgXdgX1WUZXY6+DI
PKrehtwaRbdtvvVhVRZjQOXCML71pxGO25hAH28tre2t08jkov8kn2oOz4ke
bFxcmEe29FTh4ZQFfLZ6aoeD7BJW5T7gnXZYxr8ZdvKZVivouyPteRzDKopk
7f3q7LqKxV8uRVwIXEWVhqicTNtVNKW+l2kysYI0BZwKdfIruJvHxzxQaRlb
3Z2D/1tcxDRbg7f2PgtYsOnz+1rJPLqmztb49cxiY969qL7SadQOLLPL5p5E
35Tj4cqGI0gTIdoubdKP5nSHbLhPd6DgmErE8fJa7BK64SDtn42SVysHW48n
gF7Jbhf3gxWwnPO39ZlnC9w6lmFcptELbscOFKZwDoFS/kt58cgxKHvg4PBs
4C8cvXk66q3jDPxQ7G+RkJ0DuZr+8uDf81Dt/FyAn3MBQq/tfx8ou6X/hiM/
rBmW4Pf9ComkqCXwfy8/oLO+BK0N149/5l4G2tkTN3pHl2BWM6y0y3cJdHWZ
ynjrFuHOyxTxxJEFSJhRErIv+AcvBZXsXjvNQ258uoVY6ywwSxiLefHPgM+t
Ne+u83/Bh8l973udMTAXb1C3HR+Eicdp9Btne8Hq42Epz1OtoKm7FptnVw3L
U3wXNFt/Ae3QotiuPUmo9pgnn7OmDAtC/sW8bG3CZY8XXwIoelA2Qf6J14UB
7D1qH3z6yQgOLXF8CL48gVc8RnydVqZw5Nv5Cs+3M0j9YPaSEPUc6sWb3f+u
Oo+lcyHqp1X/4cTuPYfSN//hsT2FPUKBC1j0LqH5etsC6qUo82tOLuDbj7Ma
CfkLKP8zX83LZgHPfp80pyP/YU3NeOOJ4Xmkyj7Y3NQ6h2bDw5Np72aRv7dX
97r0DHZ07turKzKFha2e4Zc+jmOR3tSffy3DaDmHG4pt/cjjNvBv2rIbfb7O
xS5mNGEQy1qoYG05zjqtXbtP8QMptXN2HdFJBqujSWwPb5RCSKWDU75NI7DF
an+wwE54I3isYqa3Dwo+HfZwShyCBrF4gyHlMeBvLYu45TUJU2LP0+8qTMMq
1d1igTszMKzpqj/+dhb2n5m8cuzeHEw/v/afkNI8cPLnFjembeltm3TS9eV5
UOxlSX/G8A84yf5MnZ556D24lzx9bx6YetyPU0/OwQz/WV1BiTmYO1PrsyAz
C2SHVo49zQxwjR5Ps70wBS2cGX78bhMQly4eLqU4Cs8qpicv/x4EjZ4bVsas
fWCsZmfz2aUDYu7o4ZU7DTBjHBbjUVICXPlST/fWpUDX0uDXzeZkRHnZXdVS
JWjKpcBGSdOAZcueZ5O/t6M0cz0Ns38vKrs7yMhQD2IBY2yWmeYIpmtU5Jkd
Hkf5E/pu3ycm0Weev6pffBqNroZsvyg5g+NUa7Q3VmfQnWFUY9enWWweVOak
5JjDk6+KL0kZzqHnsaMhqmfnsOCOy6PTSnN4qWf6j3THLH6wedHSbzSLxWnl
xXJbfdT9oi5XPnUaDfwUpniIKaQ9EKdzp2ICL8qHMdzkGEN24WwygGcYqT09
tYZ6+vEuTrpp+vRgTck5sRe9rfiuLCpg5kUdDut+Er8oV4TDbQmLhywTUF6g
rZODMgU2L1YH3vtbBLfvMUQbFNVB4nWvxUttrbBhPCv2zbAHPGqiZkoe9EO9
cbeU670hsJxrn6IjRuHVSktVWvo4CKwKdxv1TcJem1/twdlTsJ1m6d79z9NQ
JbJoynxwBnjsi+Lehs+A9MAvRZOmGWCosf7U3z0DereOt7pkzcCXt/FcQRdn
wNpl2s9hcBrevmsNHT08DcaOpiV1VX+hcYHmK1X9BOS+HCXXn43Bbr1b2/jo
RuBTT+uIgeYgnFfM3ZQ51gc//x03DTjeBdMzlOYiv5vhXd7djp/zNbD3gSrH
D+4CYDKKD97lEQOCZ8Jihh2S8eb5YaXLsYWID9Ipbr2pRWrSgOemWAs2CPI1
kY5d+DnBKVVIug+fWmhZDUwMoNEb88eKN4bxQkGgeGr2KCZw8ZxI/jOOA12n
9Y96TOLuWZX/jFr/4vNfB0yfT0zhHXvqcl2zadyw/3xtyH8aj/orF9a+3Krj
bOF9GZdp3H/j4cfHW34p3kHPomHLF4QuiZj4M/5FOxZbm65bE2gTbLbbMGIM
r0zZ7eR4OII71tj/bUoP4RdxB8vQd/2YKJt1uLm5B3MCAoM829rxU+xlQ8hv
xJYrVRNf56twOqFJcUQkD+WoHZM5fn7BssQklcvsybBy+Vm+alAB3CoUeGLy
tAY8GW/vHglrAm2b0wXxlztA+NkNCsu5HlC8Kh7hfa8fQndG7NNsHYTYyenE
4vlhsGHlu15RNQpPphdk8s+Pw4OxnNH2hAmoztfSYYmbBJa+lw4CFn+B86ZY
W9jPv9ASYmC1nvsXzn9007rj+xdm9GwnFEcnoSh6uJKOfhKyLig8j2odh4hd
SpS+9mNwvfqe0p/4EYjVZ4xT+zEEVyvLKi//NwCqkgt/jYX7YPhK0sMpwW4g
zpdefJPcCjqF746q0DZAg7n7qUXLCjCK1W/pu5IDo9rN7xUCIyBy9Ez+nldJ
SP8iifpFQD6WHJT8vndvNb4fEHYLUmlEZSoNBomwNsx0Lrh6/Xs35rQHPPij
0of9IRMzvA4DGJVaLXLCcghN6i75+rGP4KdOR1PPR6NY6vZbIubXGP65qSik
GTGOIpbdYQoaE8h1T7dMLnQCw0/R8iR8mkCNZou0MesJnE+dYZ2qHUdteavD
d9fHMKMy64pQ/ygWPC3wong0gtFyt2KYxoawjPVAOnINIl1yOKHA0I+R1EE5
NJU9yK604Pu0pgN9b3yO6s1pxmGLNJsvXnUY8FmweHRbGX6nXeY51vkHCU2R
dZNf4XjEpVy/dCERTN3aOEuC8qA99N8re6dKCOg+K5AwWw+VQ7oPyIUW0DDJ
tP7veydYqtWrXmHtBc2Dr5QKuPrhqmoAR+rAAAQwR0XF+gxB8vUDzmTzMGy5
6AMxsyPgcYVqurBsFFgd7cdlbcYgLlt69lv8GNRfVc/MStuKeNgw0mMMbIdu
JJtMjUI504K9l+QoMHitOF/aOQKnvjLBnuYhEK1hlj9tNgi1oQ0a0uH90Ghd
ZuzwvRd2ae08+kStGwyk26bGc9pAh733FR1dE0j1GfQ/562FpJWcjMubxbBn
oNqe+dBviOt4PGAj9g72PoSlnbqJaLFmXywcm4vPh2VXQ4vKMaH2N/1UcR1S
8eQsVd9oRpVL8sG9Pe047VdYX7/ejao/+CX5envx8Ilcc7VX/egmaGjEwzqI
KnQTLhuGQ+iy6hY4YD6M2bVjLuYiIxhVvurxLGYEfWjmXzhOjeBIo5qvx/wI
8noKyk38GsHkAy3XMtRGUEz7crfjnWF8MSSysvfhEJrF381tNxrEmZ+Hw5qH
+/E9K5RxHe/DfH3Fq9R+PXjujF2R4PZOPAGU9+iHWrCJ56r8dq8GLOa90GCT
Vo0V2cVxJ2WK0K4u4l7USAaqX3wvP6sSgoU7OG91BCRATH/+QbIqB6QunfTy
OFoGzXc+znj/rIXL3hquJ3iaQMEvbe+lg22gnbY5pMbaBYVD2xl8S3vgjM9e
817rPpg8WdNqltMPYY3eli6TA9Cm9vjssb5B4MAX7NFhQ5DVaBnZyD8MbbRN
C5VnhuFkjeYfCdthqNrIbeKRGAZhsx3cXklb/bKQerJgbRA2ORSGtnEOwty7
Iylz0/1AtXPcOSGsDyb69lWN8vUCQ/SaX0p9F9w4z9G+a0876F809hRWbYai
I18TNTjq4VaLeaa1ZyUkX+mQn3lcALG+cU8Wm9NBMSHkXVZHEFB0WQ5uL4jH
o5QpxqWUOfix7rUBVXcJsq4eOVmTUYM3LsSu/KptwDWnJ6kxyS3448m30gy9
DnSNMiL/BHfjzaDk7ANHezHxc0bE5xd9+PD6DfGFmH7MJuxS/3s2gBXJfxj2
qA9ixUs5TdOUQYytVzzONjGIz45sb12cHESRx9FlR9MHMTzz/kq+9iDKJYY+
ag4fwDvhD0Ku5mzVVzkumjWlD2k7JX2T3HpR7c1kZjlVD55/be31pa0DR5k8
C/c4tuJ2esk3d3404oMUvgthFbX4IvXknnmPcjT0iBUYY81HxjvHGSspfuIp
w/i1H9PPsGHt/K7E5Tjwn9FaL7iPcNJ7n1xYcDE4VRbUuX+qBg//V93UMfXw
1/zRnSK9ZogjeSTSYtpg/Ei1uSzZCS5KX1nlNXugYrqtNc2rF9R8OBZ5/PpA
XUnxcbNZPyRvC/NeWtyaR7UXBtQOA1BvqKHJFjYAuH+Pft5WjMswPmnkOACP
fh0Tv7vWD1aX+uffWfdDzIqQnufTPoj4vBbvGtgLAqKxzCbWPfCEw+lTI1MX
mJ/4/bKStR3kl4LUU6qawThT1/eYSQNcV7ClWPtaA3PjwbsORZTCOuWn93VZ
uXDef7zo0pnvMFRn6lY36w/7xbqyHu+Nwy6O/JLLO/5giAD1x17bIjTLuzjm
P12J0aekFfxD6nBSSuT0pY1GjKTtHpKUbsV95rUsiewdOMSi8/VTXBdqm/Sd
/+3Vg73qw6yFW3WhN96/wLal+952s4ezq/vwgfOCn7NSP/7K/W9Yy6kffR2e
9sw49uNL6WmvGMV+jC47YSSydW7psOfBkK08Dl85+7xrvVjFpefbebcHJS4a
vRAp7MIq5v+8+9Q7MPmNBffC5VZUnn3LSGfVhAODf0KtOepxZOyOzheFapSL
8hY0Xy7GVv/1Ut7HOShufmDHid5U3B7m3ng64gHem9KJbzsXC+NullXjhb/h
5LZ9y2kahcD8nOfunXMVQPPj15XpN7Xgnqm0+KWyASpuN+z7VNoMLU5q3Uce
tEHj39OxHxc6YI/non8QfzcoBKDAhRs9MBG+e6/DgV4w214WF0j2grWikNmz
nX0Qp5k9GH6ib8ufhyS7GfSBz0uXGQWBPgi8L9b+LqsXqMQD9CtkemHz4BLh
6t4DpsoKprI83WBzeWroxXIHTND9ZeoIboO+e0fvRI41AyjELAvTNsIdbeOX
e8ZrwZ+dWUbiWCWUzc34HfEsAtW+AqmIboR9XkE8i09TwPO2wMXJPj8QOulW
duxtDMb2WH4sfJSFib9vnpJSLkAL1aQQg6kylNr75uT+xBqUOz9EN/a9Hm89
eezB8qAJ1WKqpZ15W/G7+PtoH/t2HGLdKLju1IndXXtNTgp1o9IMP3GF6MFg
uPWwp6AHr8Ro7awS6sVDxQ4yN/R70aNbzeKZbi+WxH6W1OHrxZOldvQ62T14
3/Q/2RjFHvQ/9erOLG03XojUy3Uw7kS1wk2ZKybtWCO2YRbA2oosA8zKcwFN
aET7U+leRT1OlmWHv+uswZLKlXPqT8qxZE2XPZa3EM32eUyZ9Gfjl+tdATe/
J+GMTL5361FvZDViPsBW9w1KWr7LPbPKBFfTzpUXkA9Ny0sSOm9KYYA55/5c
dDU4fKj5tpRUB9MZT5aLTzfC156/hjsLmkFbqWC1droVBHbGvHZqbgfeeMM8
cY9OeFips8KR0wWuOpzSrL+74cab9Dcj+3vAP2Ke7pZlDxhvUx6fP90DNt8e
CT2R6oGYppLqxKhuePpuY6M6ogs2x/fiZcNO8Pf5wnPoezts9zkaXFjVCilj
84VETDNkVVoOBGo3wpd44SKxxDooLKtOZ6+ohh0vbaOsp0rBhirtQGt9Ptie
X10I4PoNIXW1L1QeJ0DIf4cf7Q67AdyHNAWY2L/hJZ/7J6eIDHSr0Z60OZ2H
ocIT4UzmJdj5UjvIibMKnYp1NRqza/FakLDQTaIBBfL63sQ/aULvmqmoiLct
WP+BS07avg13b4sTKRtpx9u9jx8W7OrEoUKpeDG2LhzYOXcwJ74LpQzLuXQW
u/B5E6e88kwXhtklcE2868JAxwjxV7OdGPImaUhyvQMHvL6v3sxuR8WAQBFm
xTZMT5bbt9epBRXkWI9WWjehwPUrknf5GzDatVP44pda5Es9kXSMpgpfWn1Z
+3CjBD/MFuW+jc/DsX/ijobOmaj86uO/s8/jsPq4Ek1TojsmD9bydRhHw4iW
inmK0i/YPXzsq5JvLiTv3s3mI1sMTyMfvh5/VwHaapc4yPYaOJ0RWUp7qB7u
nbH69dOxERrLfFf0LZvh8UE/5vZtrfDo1UkeGe82UJ409EqJaoch+zN3P97v
ACp+L9YJnk6INEs0tDjbCcbzGiYuZp1wGj2f+FF2wu9bB46knuuAstfXZgc8
24GBkSkxV6cNVl+vukbXtgDz7+OpEYLNEHn0m9RF2UbwjB8dPkxXDxMHf8+s
JtfAPF8cXattBexQKiP8dxTDwj0mEPiQC6KFfWHWQ7/gwjlOdYr8GKB8tGR4
INcJhufkR2bff0Xz/r/n4tXS0ZdeMaspNQff8AgWpPMUYXPL+c4ltXIk3JtV
9jDVIEv0/oqIY3WYP/z+uYRlA/q+MF3y3N+EtfXBbbPlzWgbMsEZJNmKdxj2
Pl8i2vAKbe+9+5zt6GzsXqIR3o7pxrmG9N3taFF/7o19czu6LTqIJzxqR7/3
F1inJ9uQ8q6o/wZrG+5zS/7v7EQL0ta9uw0Bzbhk+tvt7mgjqpkVaoVyNGCZ
8sitALo6HFxjEMz/UI29TgNUiu1lqCFl+WxXSyFOsjC4Tn3KwYKiC5sLfum4
87F++jaRbzhLFVnbd/gcFlnvpQwZ+QKdgsEHak/8hGKhmU7dIRLKl/VomTgK
gaVxpNF4rhTEFneuWz+rgpWF699iL9XCtuHlCBHrerhP/9dTULARgjlKwhQi
m0CcZuJJyHgzOP4V1+H+1wIM9zJkZLNbQfcV5Toj0QYU6wq8L3zaYOZAfrHJ
9TZYiaip/La7DdaoVgdfvm4FB8Um/2KyBZ5Y7q9NjWsGgTG6z2ctmiAtMYLd
o6IBto19NVXcVg94hpXbaUct9J170Bu5VAnv6JcjNDxKgX3zw97SpAK4KFiV
3u9GgnwTxcV25Z8wq3csnCfiK3zlOXBG28oMbPfwB4+pf8GeYoe53a4/MHVG
4LaSH2KfZXb3jGABsr3oEVjOKUHBJPe9+0Uq8ZFbUnTcmxp8eSGDjfLa1nv7
2Yhf2JozjWdnfn562oiFdLvFthc2IbfzgFPBli8yPG365KhvC64x3TbuWGpB
3nxHMx/5Vjy1h042X6oV5R7cGFzvasHmSdOk3SYteI7lb1rv42a0UxvQ9rrb
hKcpAyzrDjXik2RjG9f8ejzyd3u4+fY6ZDr5QVLgcA3mcIuu3vSoQPZv4mw6
EiX4saifT+ZDPuatOwn/l/cHTy5/3XuA4QcyHhuJ0dH8ghoHM1yeoxZeOmIU
SBMSBVrhYRMF77+D5HhjUOS+P2CHS4UcKvlQ5xrdJxJZDHwnzt4PLiuHz2fN
5r5v6fvR41m/T4bWwsv106VxUvVQu/+g29WABuBWZHy9P60R6Mw3TBgjmsBf
ZAfXL5NmYL3G/u91STN0tUclRmw0w54/WZ/v/WuGa5bcJ+8mNsNd1gqGJ5LN
oB9xZVPeoQnUbX+Gxzg1QpyQn1mKYgMMl5zt+VhRB7LnndlOKdZC6rzzQ7me
KvjFfFffm7EcYr5ovW76WwRebiXJhz7kge71D6ddFLPBh0/puOdUGly6WKF+
lGLrnhwRbCevDf5ZCWnh7puLxOFUd/HGujRcO7p2cXj2N3Z8vzC271weVu8Q
d5ILKcKE8/0qL56UYfb2fWeElavwo3Kub2ZJDfoEq5Xc0avDgQOUlVxv6nGU
5uzQ/tQGVJjRyeZ/3YiSf7UpYw83YW7/jpjjCU3o4trzkLW7CesmTCw+NDah
jaCIrNrLJoz+/FCshq0J+wZLIjrMtuo7JDBw3b4B9ZXKuWHLrR6lch51GKrF
+/8e9ryzq8H0mxkuK+cqUTNsu616Rim2vlp4X1VZiMliO0EuMReb+vg2fuRl
oUfjyUqv8VQsiumV39kSgeXfwr42D2hAhEfH8HWLSIhcieF+xZMGQvsu3P6v
JAuSmcuUD7zJBabJNqPkt4UgdW5R2MamFLLN5f886KqAbQF+ktwMNSDGFngv
6EYtXA1Quyj4ow5o0580vs6pB/n71DF2bxtgrOvp6lXVRnA5cFjGILIR9oyp
6tDXNYJVeva6UUkjVBucpbv2sBFW3csnNJkaISHH8LyCRQNYv1Bn1LhaD1J/
71fOmtfBh3/3Wo3YaiHr2O/reUrVkJ5CH7pnvRy6ApI2H/uWAMP+eVudnAKo
T3BfvFCdAy5HVIpzL2dCx8bbs5orKVDDE5BKFH+G39E5U2KfDLHnsHf8l7wI
DPhD7ah9PhWrFvLsdiRnYjPRXsPTmoPy67pVZvEFqJgofMXpaAl+2b2dkf5D
OfpOqt/9HF2FLHJtT34l1+DvKZrdOt21mIEWuym76zDC9bKLS0I93rZgKQ/R
bkBhfbHfbLENyPnl3/eNxgaMy763zlPRsMXVmyzvAhtQRazW2YqnAVktevgy
L9ejvqz5i7BndejSrHnGza8WJe/b2vHp1KD1+Lk/g/mV+NXvzZsnyWWYedBB
wdW8GLV6a1kCC/LxVvUHGTeKHGSSbdyrLZ2BSxtrtjv4U9DmJwcWhH5CNT21
M/dMzOGt47FwI/kIEFc1zdfJSAHKlFxu568ZMGMrRr0gkQM0XeNn58u35twp
7DyoF8OhB3wPly6XQTh7bey8cSV4BIuKFo9v8ZyGe/GV7bVwKPhx2eFtdVAV
ciJwqaoOpK/qL6JdPYi43L6rTNYDxWjMkZej9TDCaF3o110PwwKj1sci6mEu
MpH11756eMZ0jW/70zpo7zHddTijFm6LOrHfSq+B+9soZMS4qoGCh0H81qUK
+DxkEivrWQoqkvmx+44WwfyhRCq+1jx4b8m9zn4HoTktbHD/Zjrk07cvjrxK
glApBQP6wnAYtEwUcthrjWfZPKJPf/uMDG4OKSu8KXhJ9F766bhf6Jy5R21z
GVFWTkb89nIevqpV/x2sUYQFr+FYo0EpDrzc/cWFqwKXqdWCtJ9XoaWN3Yz/
mRrcUUWbeuBoLXbGGqi2bdSi+vGIXVkBdRiVeCnncX8dfs98L+G9rR67Yj/X
naKsRz/2vYzahXXIYrKtSNCiDhkYY+x3/K7Fsc6bc8tTNejC++7x2Ew1sukK
PnJMrUT/W55nX4qXo/PqF8eTxiVonndf6ZBmIe7zPMMWtJaLiwKM0zzcf/Bg
VWdK0vBPNFrVuzDGkoiuzAxqv3jC0EOEz8Fe7Bw07/dYfyL6GVw919ijVpMg
KpItvj47HRqN3eWHs/6A47ROzpR8HohLBIerny6Ed/a2PkCUgEp6hM+doTK4
z+VLKmhXwnhoZZqlWTXsjOiR7PavgU/ca6/o1Wuh1eQo4zWyFmbr1Av6uetA
5LGpzEe1OkjXXnK1218HlVdOtzgu1AIe4qpyfVYLvOOWQXELNTBiKJNVrFAD
fa5sK2Vb3CDZ4/Fc2GGLx+b4Hrhv8cSXG6yfzxLFsPR9XEHWsAAedWQ9/rM3
F9iW0l925/yGD7cdHHb0/YAnzz52FETGg21C6Ie4h+9B0+OiqeSZC3jweFDr
I41PGPxTgvpZSyK6H2pmm27/icwtjyT0nmXjeMzmreueuTiRWbJLwqsAO+6O
iy4cKUaajn8/yLJSHBvvDKdhq8CYM3JpVAxV6OIQ6JGbUo1vz5jqvLhfg1Gs
PxknKGpRXOmK+jHjWnRi6KWav1GLTRbhFAnOtcjQb/w+UaEWQxEZE6pq8IZ5
/oGarX+Zy/up32XaamydozhRApXInDM+8kG2HD+ZmJ580lCCedIFi+OHijDW
3T/r95V8LAiap3rgnIMrlYzHQu5nYZdu0t+Fie+4SFlfqHsqDq3863XYOd+h
Q2rGvU5dB3Dg3hkVrf8REllOBf3JT4DR7kTPKrqfUMDLMjfg9hs8bx5sUi/K
AdWKCj2L6HyIkZJ70G5YBISNLv84lsCU8TSn4VgZhASHlD6qrADhRbXRigtV
MBd148Le2GoYsN2/S/tEDaSzfJaoe18D6pQZ/C+za8DmSULz0bQa6L0fOyvl
UwNp2oZt4/w1MO0/ev+UcDVIiGBJza9KeJWTeE6LugIKGPSzTtOVwdmVieXr
RcVQl+58/Id+IRCjPleKQvOAqTvYrvISCZJjGceemWeCUcZJiTm677DsK87o
wxEL0hcG3thnvAHXehbtvbMXUYN/ex7/mXCsZRW3NcqORxk+v5GoQz/Qwsxt
+cO5LHwqKHktcGcOaoeM6Mx15+GLtMs0Iy6FSIgYiLfkFqO6XMRkVWMpxq5I
xv/3pRy93aK4HKUqkTHfOS/Jrgq3r7pG2ehWowW/obphezV6XqHo/MBSg+H1
NBdNqGtw0z1anOVjNQb4dOSk91Whncu30eKmrfzsI5TKvhV4vllnb0FrGdp6
8f37O12CT/7RzYwWF+G1DcqEp/YFGMdD3aVVmYt3Zm+aUHDiFsdFbteFDLTi
CLRql0vDRr4YpfDhb+hrsLvG8WYoZt79cj/hnBOUS0/f878RBibFUi03cuPA
siOTI93nO7yK/3zM/lwmeKt6al3bRFA+yHZwj3geeKpamcm+KQChIyolXnVF
0M1SbWVeUwIc053z6YFlIFD39aYKRQXsrufOUpWuhLazoWFddFXwbFxsdfvr
Ksi2/voipqYKVOKPfZHMroI7+vCG0rwKzgVUy92MrIREpen8158rgMM54ORB
03IItU6z/5dTCmPLUlri48UgYPF0Jae5EMzcAnodn+ZDInuz+1G2XJijM7lA
WZUNEru0mi5u+cpPjaE+7y+kgilTZyBXTTRIqvZV8RwLgUoDYW/a8Euo9aVm
MeTtB1ybdKpyrIvFjNjXPyyL0tDP/LnCcdcMlIoUem5c9wdn912jVL+Wi6zX
hLZVleejia1ectNUIbJn3C9rbSnG7elalSv3SrGmaI2bYbgMRUcv+DykqcCH
Gi4MP5srcGT/1bBwm0rUklH+yva2EjedNpO//VeJ6qUiI1WilbhQYOaducXZ
dTvMxs57l6Meb56hv3oZuqhW//j8qwRfyLFer58rQsXsiuGJ+QK8ab9ia5ST
h+GmbW/+nslBBv0zb8zDfuMzVSrFVPV09IDEbKUvKVhg3dDoWvoVef8NTH48
8BoDriVK8MZdhlrCMW0s/z3gQ1Xla39j4GOJicoMXxoYS0dtu/b4Fxg8Zf71
/kc23LB9G3K3NAd4G5tv0G7Lh7OVqvnsOwrh+oOzSjZbXHxO9tOo5qMSYAQP
IqOjFAw+1687/C0DCuVzMXEZ5ZD+3nMqQnWrD9JfyUi5V4C84JPW3jMVQHRf
5pTf4q5b1PSbmmblcFsjzGDdoQx0MmQTqeVLgVUQPOKzi+HS5mfrOcYi2N0R
kuC1swD4O7k+Xt7MhSpniaElexJ2Pvqnk+CdBTTBN+vpDX/CG6om3eDuZHC4
Hjxxru4LbJu2ajwnEwxy204tMD13xnuHXx3av/gOnUO7qSe5Y3DSWs1h3CMV
Jz8raDEnpOOENpue9tffSLUUq20hlYPTeVPZAqZ5WHyNm9byRAGKmEn8pGQv
wgo9gal3b4pxPo2iSKunBJkpVTZKhkqxJ+YsW1RMGX4n200ot/7dKTcl80rz
chywqVVJ1CpHA0q7nTQjZWj2puPntHYZBvJaVejblqJOfBn1u4Ml6LujNZ2r
uggHBGJ2vpItxO3htXUPTPLRLUEzZ0QvF6ulmd08xBEfxVq6FF/OxO89d2Qv
Xv2B3/KbWNgCk7Bt5VQtjkah0WiR6JDSK7wqX1l248QV0A464sMp/w4urvzm
OqT9DYQ1UzXymlLgNuVsjHX7TzjGcpvnfFQWlB/+RTrtIiHL0Fn+UnQuxA84
fJkNzIdL+50c5g8VwoBmwS7hn0VbPPzR9/d0MYTq6Th/nygBpiOSI++iSyGl
VGMsRXCL88I+PJg8UQbC0usHVlTLIFpHVFO5txT+B9MRBN8=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036428446*^9},
 CellLabel->
  "Out[115]=",ExpressionUUID->"a2b8d0ca-2237-46df-b338-1487208e4f6a"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3c81d8fx8u4GVFIQ8qKZEdUUudtZURGZG/Jvoh7zSstsjKKa89LSn2z
7m2o00CFjJvIKFKppEKJIn6f3z/3Pp6P8/m8z/v9eo9zPlKeZOsTHKtWrZog
fv7/b8q8eoNv1TTa/cI4kX2eBHwakZ8nwmbRAGkbtxbB7f8ZyTz5+As93Pbb
5ew5EiQrbXItsZ9HX4X6Mu+eJcGRmgl6TMcf5PCeWTp8hgRr5Zgv7Q4tIb6s
4uSJBBJ0lp8X3FO3jP5tS7EYPk0CuaPCepSO1XBbXW4lgUaCC2uj3T5wcYL+
hlTVPXEkmGh/F2t9iAvuqQ3a9cSQoMqojqVSRwKK2K6MtkgSkEhbXhVOroHb
nxRLJakk8Gk5Pcu3gxfMBsRSPCII+7qWyp9y+EEuWOFYZShhf4VlatuzFjIf
i0RUkQn79yV8n/AKwqL4oYfZQSQ4VkTttTi0HhQOPBdT9yPB2VjFMdLwengQ
MGD50YcEDU6j3+9ThSD0k2hvgjcJRMSM1irVCcOehzK3KG4k0P/zV+y9uQgY
bPsp2O1MglOvb+7KnxSB8NZZ1npHErzM2WjEs0MUXj/nOG5qQ4JskYmEDzmb
oLLGBd0zIkHLbF5GgcZmqOv8WeBhQIJfveYl1j2bwe3rvPQskMAmo6n5Ia8Y
qPpbP365nwQbBM7PF8aKQ9uvtkS6AgkMpvaRbLZsg8NLoycvy5EgvGNqAz9z
G+SL5VBipEnQd9FGPerHdnhSMCjBL0YCU84spkKdJNRXTb5R4SHB+OzXgxdW
JEHiYC7nOU4SRI8btr4zl4L2dN+mlmVuuPboz0v6pBS89oq6zzPHDXynPWZI
O2RgDWrQzxvjhvYlNaX3ObKg7+tXPdfADSM5W1b1f5WFyH07GxNvcMM3NY6+
ZyAHG3+356yu5ob1J17G3JyUA1UKn2BdHjccfxHREXVIHuz3in5dReOGd0V3
/ddPKIDrd4/qED1umN1bcYjzgCJEj/1OLdTmBi52ivDvS4qQEuGr3KDODXIk
l7vD+5XA18TVv0SaGwKDV3ir05ShU9NEJXo1N8RKlPcVi6mBfxEntr7HBecD
cw5tNlQDcdFjl9TruSD9TvLVTLIaLORGK69c5YKSY6diz7WogRK2eumawwWP
Ew12+AfvhppdZ0/tCeECnumJU5qP1eHqH+NHbpJccPmhokinnybwvekevXSK
Exwbhb6FZ2rCC9PBoAVfTpC8Ot+27Y4mZMx6XDvmygm1l55Ek3m04IGmeOM7
Y05ocXUaF67Wgs1CcktO2zjh11JyncOHvdB8dztt9gkH2OyftPjkqg1Cd74o
e/BwgEj91VQOGwRNPvvdm8NXwSaDc+S9FwxACHiOcB38i+71F3uMd5iA8Q4N
jkuLs2iN7nerGNZRoh7kClk5X9DRXS+TujuPwvfkfPpd7y8oR+g2lhk/CluW
ODLH1L8gufEE5c61FkDn7Tx4ufszMjgryrvN0wKoTjvLS/k+o4ee293dSJbw
fl2IWFDiBFqqNNy0us4Sdn7o0MoufI8kt9xWv37PEmpHlpZ3kN8jgzSFo7Zt
luByN0x+RPc9SolYd75m2BKcD+R3NH8aR2KHB2etSFZQPiew6YjmONr3KbCr
3MkKvnl0+ZcPjKGIXZfPG5CsQfZVzAycGkG006P9zeutIcQkM50uM4IuDCjI
a261hvyJU406fcMo5/yjdlk1awgtKM331xpGt999X7fG0Rq4PbRXnJYH0WKe
Sf7zG9YwzrGqrrhwACXwrdw8ansMXtaQmM3CL1Gyh+mqp27HYO8zzf3XO9ko
6/YVK+R/DPKOMo5PXGCjch+lX6rxx0A/29Bdb6kXtTx22C9UcwyaRV8UZU32
oDUxjU9eLh0DIdF1b/ivv0BpX/1e21faQFV9lafIs1ZkUFvHve2mDWzbLC72
/XgrWgr8o/6OZQNrhjhjrSZaUOD3pDS/Dht4aHNa9jmpBZnOVOtFz9rA3zeu
XXPmjxHP/MfaArCF27qfA2S+3EdnOTwT3o7YAnMuJ+qCfh3SflJzs3zCFsTI
dUZZCbfQ7NmZYZ9pW3jslvhVNeE/5MmdoPWD8zi8uzdsKn+2FgFP6dcVhePg
G1FjmlJchZYF3tpKRR2HQda6KjXvHBS1xVHBW9QODvVnK8WEXcan/9PQXZSw
A+u+pqB1e3PxBUMB+ywFO1jYK3DVdD4PXw59eP4hsgOT3c48TP8SfOu53Dtx
fzsYEu0YuijIwJ+ifua+emAHV267nDzi+B+2HUrlNvK1h38NxzbXqd7BziE+
4m/D7MFzsDVGBt/BniTQiIizh8e6WcPZ5ndxiPpP94osexDLl1Z3O3kPpyY7
NK8020NM2q8onkv38RNtuVO3hRzAjl5423vgId5dgMd23XOANUtpXrn5Lfhz
/pWXa1sdoNQ1IESouwUX5we0/ehygOQDrlQZzlbMl7+ptmncAfR7jNU2+bfi
cTqZqsvnCBZb5P/u1WjDl3MkBB0cHEHI1iIvo/4pNs2ZW6Xj5QgvvF1Smsee
4lU5HT+3BzlCUeHUqwuCz3DQFergh9OOIGWT92nO9xk+fLm7MuSqI5y8cCBl
35bneD4z/kDSvCNcYI2daD3Zjm9m2qoErHaC3FXiLt8utWPvTEWpo/xOIEWr
9m5gteOejAHSBgknSGiVYSqSOvDVS6rsksNOIB2fz9FZ3IEd00Z9WVecYLXS
ErXtQSden9bklF/iBGxR+0uK7zpxW2rK0bgaJ+hMKJ/dz/kCa6Tu3aN/3wlg
jKPI+vALvDbl0krXByd4HmpSF/LsBb6fhHImNJxhn+MHXVpzF7YP+P4g96Az
8OcnJk+/7sKz5kWfjI2coea540uBuS4sL7K477qjMwjUXpq0U+rGl4uYw+QE
ZziZv/2lZm439q9XlvrT5QwmlZqpQqo9mPvKiMm1185wxX97e692Dy6lpoQ5
jTuDnsxd88DDPfiVzpcn9+ec4X4An5yaSw+Gp5U+Z8RdYN0P5T3fk3rwxpGt
tfz+LjBhmnCQOtiD6x609zWfcoG1iy4VH8Z7sFlZ1L+gOBfocb8voTLVgxN8
Bo72ZLhA4AR1p/VyD56azpq5zHKBz05ty7OSvTjxpa7Y4UcuIDHW/1hvVy+W
Zk7rzbe7AEXkpm/g7l5sF3P0ssNbF+IeskPTUbcXP+bm27ud2xXiMqKES9x6
scvn227dgq6Q/IPWP+TTixfaTyad3uwK4802OnNBvVg5o3VwXNEVQspDv7XG
9GK6WEJstbUrZBZcM2Jf6cUa/1QZ9s6uQP3DtYejsBd3jb59wevjCs0cV58J
lfdiLoaORGCUK3htejbZfaMXk1UXHqmVusLM5zemT570YvtP+/oar7lC7cwp
BffnvVivJGpiX5MrHH4utTLQ1Ys3rlvk0213hX9tWn9tB3vxqqcHtrX2uYKI
9Yywy9tePEmLVTUZdQUBUf6d8L4XP/j+75jVL1e4ruesmz/Vi69WHfJ5tewK
FjeyjYRmenGWa3ykA68bVOcIvvWY68U+XauKPLa7QQDHuG/ev14seJNzItTY
DXp33hs9sZaNF04YLMxZu0HOkc9yj9ex8fi283zRLm7wyCRl4a8wGzPTSKpn
wtzA/JX6AY4tbFxqaKRLinODG557a3u2snHyv8RjyYluwKG5jTNiOxu7BvFG
ZhW6gQRXapidDBsby5omb6x2g3ZT+Wq6LBurv0kuzK9zg4sx9YN3drKx+JWO
m9ub3cAxR4Hv3i42JpmvfVTe5gYJd6O1ChXZeJrL/KVcrxtsy45zd1Fm46Hm
tI/Xht0gNLHy4rIKG7eEd82rTLhBfO6Pung1Nr6ptI6vYdoNDj9xHRzbzca5
HyzE9y66QRvf7IqUBhvDUePcNxzu0OJ857ruHjbWvOZbKsHjDibS0SOgycYK
pIs1HgLu8E6hliSlxcYSnjX1FcLukEKxUBgneMOD5/c+bnIHY25vo3N72ZhX
bLJl5zZ32DLwxWXNPjZejuDr8pN2h4EvpGMnCf7ZqzBwfac7bC9PamYQ/Fn5
yNg3JXf453DI/BnBby4GfFFVd4cIIXnuboLZH1NmQ/e6w7lnhh/uEPxUt3ax
QccdlOJzJ5MIbi7q5Pqt6w4raVJBiOC6P1MC+4zcwYjulPKG8KfKVmBTtJk7
3JffdsuZ4II6ZclmK3dwRz7DzYT/GQJHdy0fdwfVES2BZSLe837B6uBM2F9J
N5QkOLo1/cAZD3fozDJUliL0IUv9Z9Di4w4L1xa2rKizsXdctzkp0B105Rze
PCT0Paq53j2Z4g6Kh6U//yDyoZ+p5tcZ4w4dk8mq/8/Xvm+WYYIJ7uB9f8PD
G0Q+pRmZ57JSCHY8ILhA5H/T6vq0vgx3kL0Z5vqLqI+1LuycjTnucJL7cfgr
on5+bxCpyS91h2sPz5QbSrDxY8bu0jMMd/jytivjnzgbX9KyzPW/5g7Csffo
xWJsLG+fdl670R2kNShzBaJs7FSwxnPoqTvcbZJ9dJqPWFeSc3jc6Q6XON0z
Tq9h41/NBpbXet3h0YsqA38uNk5/m3AoetgdDg44OC8S/fJQaklM7Ic7nK4p
klg/3YtT68WEOX65Qxr3x+NuRP856O/nnVxwh182wjp5n3vxrDdl/g6HB5xW
O/W0Y6wXy16dfumw0QPsto357O7pxckqH1PzDnrAOQcNl53Xe/FxzHkuQc8D
HF+9rV1f1YtlLKVj/Iw8oElMb3C4tBc3h7r57bfygJy/fY0GOb34R+Og4aC3
B3E/6V3yPd2LbQ50LW9O9QC9QcHfeVa9WKpzam5Vpgcc1LcVCj7Si78783/7
fMUDxp0ZpWqGxDylGQ/fLvGAHSWeWxP29eK7jx6z7Bs8wMGz8NWR7b1YwpgV
Qh8i3t+aZs6a6MGXnxSPfBn1APqhrB9v3/ZgHnTB+MBHD3DLVMib6e/B05q2
km9/eID7OD4z1taDH8r87Jbh9oR/vvw87xk92HNFRfU/VU/o/OzUecm9B1cx
q761nvOEuEfu5StZ3VhMPd1hU7IncO9tsRSN78bpNyJafS95QvyMWLFgQDem
VhoU8ed7gq5muWitXjc2zho3s/rPEyin5u6lTHfhyaDttSODnqB66r2rmlEX
VpbN8f+p4gUzlT2vq4nzdYOw/4ziHi/ocy/duNDeif8uH4z03u8FL1vKv2g0
duJnrz+ef6XvBc4+IsyAC53YM1WzjGXvBS19wi1fdnXinJ99AzFnvIBPaYe0
VVAHXn4kYsjV7wWnvxW+PfDpOe52zZQQjfOGkLp/DTX1bdipa4tNfeMJcPLn
f1Yc+BB3fhq5W0s6Cfvomyk6Hg1Yfq9ymbSeL0T5M/9d+lmMBbwufYsy8oV7
gaaxtZrFeDZ9Zn+vmS+YUxSmDkUW4eaJJna8nS+4l3SVtC4XYMucQ1xvAn3h
w6VafjOhPBw5Z3EyN9cX/kpNK42bZePnDWHKa7/5wnbjjd7h+qfxzdG+KK9Z
wv6ySLzhizh8mX9v2915X2CMX5VnisZgV69FVz8OP/iolprQVhuBZ4XPZbRt
8oOQZq/uhk8nsFjYlZ+n9fzApnHPbYaaN/JXu31nLtcP0nSOKDw3uogevSBJ
7SnyA+VzVAPH2GS0OcA2KazcD3onh20G/ktBTxmzx3/U+kGKmGdtqkg62rFV
+dfnR35w9JLMq3c+mWiUu1xl5KsfqN+lqRSScpDNcErFY+QPdgNcKzuGilFt
5BDfakN/yN9RuT3JswRxbtwVhkz9QS5slavdZAmqt2yDZht/2Bs//VY8thSt
a1v1tsnPH4p2+QtdvFCG2m9FbK7J9ocp8cQbYWkVCF1wS7v0yR/6hlZodp7V
KNi+dvzUlD9k/6M8XpNXjQoV/uy1n/GHjX4UqfLuavS3K2tcctEfSsUE1a/o
XEXMTW176wUDoIfXTP7YphqkUqM03qcZAFsFDcrL71xD2zv/aImdC4C2+UyZ
P603kHnx4dTlpAB4UCvpkvjrBooNyX43nhYA1C7ac7b0TTS0QTn1em4A7LSv
0S6j3UQ5Lu7vdK4HAM91C39xjf+Q4I+2FDd2AGiPrTFuM7qF/gldHquUDIQu
F++U3Sl1qK+r5tqsbCDU7i6K+lRSh66l4HBQDITxuoNkSmMdsuf+yjOiGQi+
rKYQiTd1qH5Bd7fIkUC4+7XMoEipHvmM/khIiAgEQ9/l7+Yt9UinkNusOzoQ
JBQXkq701yMRh60bt50OhBc7VcjMz/XoIfvwtdvJgWAc9yXu7NoGJNZWxP5R
EghbnxZ6WVg3oO7aIzKu7YHgWNu8cLO/AVX5eXy73h0I6c+DwtInGlCsHJX1
p4/wj63eY/S7ASmUlh+5MhoI/2oW9hqLNqJVLrdF338IBHvaoZa0nY1oYEvX
qNpkIFS9JDphXyO62f++hvYjEEw4KBFhxo3oXPafU52/AgHx+Yc8Od6IHC3X
HRL7GwgpX+kDV70a0W4BWR7flUBQreK4Lk1uRDzt2uwmriCIzihzOHCqEb29
YFnIyRcE+f126cXURtSo7+NjtS4I9k9Ifd0d14hSVsWqlWwIAke8Qp4724g8
72f+ndoSBH89ZsS/pDSifdHVLdoSQbCl6/fM2iuNSHDv/fSkHUFQcIBdaFPe
iD7+ZNv37woCl4cce9ffakRZQctToXuC4EF/S9qmjkY05W4rWmMSBL23Zm+e
WGlEZUacPpvCg8De4aINv0cTsty/aTt/VBAwz1R/7Q9oQssKiv3LcUFAcmWd
PUNpQo6Cxw5PJAbBjYBT5ZEpTUj4VblcU0EQlI05xXxqaELnPPU+WT8JgiOW
VzvZy01I3eZ4yeFnQXCv/LdE+RomGjP0t9N+EQT+jI221uuZ6OCurKdSA0GQ
eK/D21aKiX7/eFc9PRkE5h8Ncj/oMpFvXIJvunAwLPzcflQrjok2kq9IntkU
DCvOEXEbzzFRi3vN6wjxYJiffar1OpmJpAx6jV3kgonvoaztK7lMNMQntUtJ
Oxian063v7vFRElLe95JoGAo+rdWpZvJRFrfjfNEDIJBbOlGUVEzE2X3hvAu
mgfDwwpa99hTJjKjP/zy3CMY8tT3tK1+w0R/L/aV3fcJhsjD7UPL75joasxn
h7qAYBi0f5j+doKJuN3Wt9MjgkE+qrPPcJqJHsi6Xzt5MRh8+cuV61ezUOCm
cE+n9GAofLbl6xNuFhLjTRKzyA6Gsi3Xr93mZSHK1H/JWkXBIEkVUzsixEKq
DSv+3HXBEOQc5SAswUKWG1cdGmsKBrsbte1K0iwUErVK6N7dYKj/adKsKMtC
9Wg1K6QlGDSyI9b0K7AQu3x18pHnwSDUFHszQZmFfnJzuMh1BUPDtLGesBoL
7enk4BwZCAa9JjW18T0sZKPK2c8cCQbVQ2bJUntZKCKLsybzXTDYWNQHGu5n
IaY9l4XR12A43Oi3/8BBFuq/xyUtPR0MaZfvbBJELDS/nXtu6VcwuGavPtwG
LLTvI3dB/TIR71RU1oQ+C9kbk4LTOMnAXGfSZW7IQlHXSbq+PGQI7TntmX+Y
hfIF12zQFyDDgKvxrU4jFrobuubTNmEyfLpbwvpgzEJDfWvuLmwkQ8WHC5Hj
Jiy0uJcn7eVWMvCP/JttNWUh8QIe95uSZLCrHIlLOMJCOss8GhdlyXC2a15/
jGBnD16StwIZ/t1a+1PPjIXiWngHD6mS4emRrSk1BBfv5KvdsocMo8UyazeY
s9CDZL74X/vIYHhNlnKG4Lff+Ky7D5Lhb5DU818Er1jyy17TI4PanGzL+FEW
kmzkXzhnRAbWcLj8igULwaa1HW5mZNhewEIDlizkHr22WNuKDN4a33kDrFgo
4c3aUNHjZEiu3Jx4l+ByEDCYdiRDxnctVivBjysENnW4kYn7ukl+KsHjJMFJ
hjcZXqWMi+cT9jj9Be+f9iNDa/3DvCRivx0vBDOcgsmwTl9C3ZXwx0BtnZfW
KTI06ix/FCP89c5epyUUSXCJS9MDQo/zv9fxTsWSQSDwYKkJoV9b8/r/yi6Q
wSR9azAvof+EhNCZ2BQyGF1WkTAk8rXmrJCtXQYZjHXExQKIfBqbCC+uzSeD
dVjitwgi/761wl2fisnguIq7zZGoj4vrRMoeV5BhOm6xWeMAC7W/EjGKvEGG
MpmfssVaLDS5b4PYsXpC/9MJB5WI+uMv3PBNmUWGzg9tuqW7WcjMUzT7/UMy
DPGcv7RPieifVlGfB61k+JDUVW23i4XS5Dfuz2snw4Ejn3Xc5Fio6/vG0aN9
ZOjKSX2zU5KFrGI2K979RIaG+baVQmGi356/C1ueIkO175XO/wQJPTdev6s3
SwaVfQ1nqvlYKKz+oGnHEhlmZ0euGXKw0PPwuj3feUIg8P1IuTbRzze25thn
8IeAxePynRFfmSjzcXSsumAImFpxb7xC9L/DeoMWikgI6H7jUTo7wkRfrvcf
W9kWAgKNjryyxDzpsr5HLZMMgYeDspD6iInq/5QU6MuEwLaB7pLX95go2sjv
faI8Yb/pyD5ZYl7xvV8MW68RAo+52NtTiXmmICaVJWUcAs4O8dLlHkwk+Iib
+cQ0BBaqeBcjHJlo9uTk4AnzEAigxJTuPsZEd5sapK5ZhwDdafMzVwMmMrU6
XKfuEgKyvmLMPFkmCkgK6NEPCwF5hxW9ivdNqPZ3k6BPYQjEbS6yaj7ahJZY
ebuGi0NgNmnF3sOwCZlFxRlYloUAw+vzpp8HmtDUokG0dlUIfC9NUR+Vb0KK
q/s+Ct4KgZGNo4Njq5vQNf7ZZtaTEJioOxmZQpxHVyVVAni/hkBF4sgvudWN
iGFa9bR2fyikPCsalQuvR8YJ3wuP64TCTarrwJ0T9WiKpRW2CoUCs0Cl7KBd
Pdoj+1TcxiAUTP5OOIpq16PHK59CF4+GwtJo0YcNK3VorHGXuKk3se43ttf5
Qh3aKnEj5FN6KNw6u9n1TfItlPmzYYv0h1AYfV2ep/G+Fj1tt3genRIGoal7
YlPmKtCsTv2+zJ2noP1Vmlnp7Ry0nktdt7/nFNzVfAeS4qeQjE8k72BwOJBo
MWbJJeew9+115Qah4RD/3KrEQuA8ruKr1r51KhwuniRvfRF9Hsv/9yogMTIc
Oi4mLk/YXMAqC+pdmmfCgelZrljAnYS1k79lZV0JB4NvV/te26dgq5ue4mbN
4aD08cFZt/EMnLXqbyPrQTjQS8X9fTdk4j7rTHOZR+EgkVIXY3I4Ex+fx7S/
reHwyTXXN7MmEzvDtndXu8OhREO+Ryk4C/uyBxjc78NhoGXj5Ywf2Tj+t5kq
5o2AxoWzPRrsHLzhgfEZt7URcKbq+D4mRy6+dt7g1YpgBIRLxdpyaeTivg06
MbAhAk6k8+wmZedieQ3Fp4+2R8DLc9XdlyzpmE3mdWvRiIDl2Ocu9Y/ysNyX
1vTnLhFw7GXkr6CYQnzv1qN3fu4RsL3rUPBeRiG2jLy/h88rAi5Q7pxu7yrE
MWuahkx9IyB5j5i6iVQR7pGtlOsMi4Ahga2/a54U4WjPMw+6EiPgiGFFwdS/
Ytw1fOj7y7oIkBcYy1uqKMXd9/fvM2qMgICwaNruxlLcU7LnzF1mBITY/TE3
bynFbC+FjWX3IqC5tPLG/g+luP+r6KHg1gg4u4M8/VG6DI8uTqXxDEbAyKrC
qMSCMjz25tNAzHAEfK5frapwrQyP43GpH2+IeDS6ixpul+EPZ183vRon7Gft
H4t+VYY/87e8KZ+KgLpReu2gQDme3lqgfHAVBU7+NCzqjyrHM/+uUG9xUGDT
oel1Hy6U49nRjEcy3BR4k3JI+HV2Of5VccGWj48CN9Setp66UY4XFMPiBkQo
0HG95l/UaDlerWPyInQnBWbEUvoeHqrAws7zgVVHKcA47jGqOVmBTzYcDz1q
RYH8DzGbP/+qwM18zIjfxyjAX5JyMnalAvvcCacddqCA7jw98ciGSnxn4+yl
CS8KZMg/v3xWpxK7907Vy0VR4JUhfb9LYiVukjdjdcVQIEp3qlQ9oxLznb5+
j0KjwJ/CfU6T9ErcqOLf0naWAjrnz4euulaJ16R+euWTTgG/ExNOz9sr8c3D
4wtVFRSwjbwp00NiYM5i3X9Hqyjw257bo1OAge3nSlfPX6XATsNtB69vYGCO
Sjc+o5sU2A8ZveulGdh29Zutn25TgIwdt0YfYOBr9jqSl+5RoFnpWVqKLgMv
/1ewY+8DCgx18k3GGzHwVVdH5cQnFNA/3C0gdIyBl+4NHNrZRQEXPR2hAV8G
thLZq9/dQwFj80uzK0EMXOWfY0R9SQElh8pc/lMMbLHF1vLpawrcPn4wvjOW
gcspbI+T7yngUyEs+yudgedf7PZZN0GBWYrIH81sBjaTzfRnfSbyOfdV0ymX
gX+/tDi15jsFVGZkJi1KGNhk94tz1QsUCGx8JffjBgPzVSiell4k7OfMaAjX
MXD7huSYon8UEPvP4uWWRsLewuGwbA4qGNElrVvuMPBaf0aQIDcVXh3Uyw5u
ZuAXw5x+F9dQ4e/X7AVOzMBH8UO3+LVU4PR8qjr9hIHX7ZZw+itIhS+7alYb
tTFwT3nc8QghKkRmtdSkPSPiv6BtHrCRCruOnfw+3MnAwgt044nNVFi4y741
2sXAbL95fY+tVHiw8++bjh4GtjFv1LaTpMIm3cYg1z4GFsXCWmxpKox5ncni
7WfgfrXQ3eayVODySJ/KH2DgnPJupWc7qXB23+sY4UEGttugIq+vQAW3STcI
GWLgzRdSZR4oUSGXIqvdOMzAr+cnt+9XpYLCG3m/tyMMnOdnIta4mwrrX0+n
fH7DwI7D1aKqe4j47PkbX79lYDFzktA1LSpE257Vrh9l4OEH3mtl9xPx9dhL
RIwxcKHakzWlBwh9nqV4Sr1jYOdyKc6th6jAgcS5WARv23B6+QpQQfyf3Qet
cQZ+e/7tn/X6VJg6cPRAOcHF8zpzKYZUqC5bg+cIdvMrmCYZU8Fc5Rx593sG
lhz+8zXBlApv3j0xsyV4zMz+05IZFeyb2457EFz2gDlOtSD0u5+a9v91TzXR
t7NWVPialNajRrB0+anBIBsqsJScTvwi7L8XYfd9Pk6FG98uXy0luPK8Wo+X
AxV6OrTzNQn2nk/veOtEhe1PzbQbCP9l/b61ObgS+o22J20heGLoyOM+dyoY
D86cDCTirzK7dt/CiwoOUt3SNwh9Tj7gudN+ggovL9Y+YhP6yaudbDT0JfYX
TjZ4Q+j7uaz1v4f+VOBuPnm9k9C/RmTH9QNBVGg+b/i7lMiP//kzVUwyES9Z
RtaRyJ/i/FjZ7jAqTJyNePrxNQNP+aKi2nAqdH7X+uVI5D/IbCm7PIoK7FOv
wviIelF54HhpWywVZtLqWwzYDPxd9U4ynUYF2TT9yACivkJEKAnpZ6lw5FeG
fBJRj2rn+2J5L1Bh6247BrWdgWd+q0eeS6JC3gGeekuifsOGfgRHp1Gh7I5C
DCbqPaLMz9knlwrv048opxP98v3IoY99eVRIsVSxfc1kYN/fwsH6hVSI3yS1
X4DoL+cjzfGSZVTQv7GnResmAxvMCVYMXaNCxvXU88llDPyg5L2iyQ2iXqa9
RRSLGXif6e1G1n9UKPjCd4OZT8Rf4tF2uZEK3u+nc9OI/hc2afxy9AFRP3GU
HP1zDJz6Myns/kMqGOx3Uzt4moFJxS6Lik+osKO3qUqKmCd/Z0kCvM+IfLSX
XL9BzJvwouEr1HYiHiUNbVsy4b/Rre0TnVTwjz0f89mf8H/2XLVNNxWU7+aQ
T/ow8LtCB7UnvVSYnjrXxnOC6A8jlTu7+6iQLCEwGO/FwH0zHHql/VS4b/hs
xNWdmA+FA+2Cg1RIdGP2MpwY+Nnh2mNxw8R8CBxg2dgysN7M6ZGvb6jwIUjx
UoA5AzcX2J5wHKNCzMDA80Q9BtY6rPD92TgVfkZudstVZeBb08uUvR+pgMbF
3nBvZ2CFgpcrjE9UcBUZ1X9JzPNKw6tJGyapYLX2RPbKciXePh0rdHaKmB8v
ajuSZyoxPd8qf+Y7FW7ZMqfCP1ZiYUM5GfcZKmiY77hnMVSJU3/8vd71kwra
59DFkz2VmJTfvefgbyrc1ti8TuJZJY43qLx/fYF43+mmGeVRJV74HnlYbJHo
j6XVekHNlTgsz7w76R+RP1GRH5x3KvGUvrT9/AoVXKreHdNmVWKf77/HTnBE
wt/Pa98feFiJx+gdfn1ckVBQUv/v1tNK7KhfOqu3JhKWRTNLwl5U4r5v4TF1
vJGww+zqs9O9lfgo3YRLcm0kCOgtRA6/rMTP9LanpQtGwp3507fO9FVivW+z
ov/WR4Lz23u6AcTzzblPiwNEIqF2TfrQ/89DTb3CnUOikbDUYTQl2kKcj1Mh
t4w3R4KR4heKxf1KLJ9LfFWLRUKabFg0hVmJxae+m16WiAT+r9pTqVcrcU7O
k5cc0pGwtSokLKasEq/XpTuH7oiEDDmJfLv8SsyVoxt8dFckpEgMRQ6mVOKv
6HImj0YkdLUI7+IIrsS33V70XdeMhMUt9uj2iUp8IZ602WJfJNgHdoQ4uFRi
aRxZfOVgJFzl0ZF1MavE9odcrksbR8Jzp5RbJ3dV4jYduVYdFyI+1Sf/KkYr
cOn+2wshiZFg5zC9X+dgBQ52mDmwIZl4vjF1yyn1CnwgSiGelRoJxi8cY3J3
VuD+24Xcy5mRYCIm11ItVIEF9iUIpxRGQkimw4evH8pxtJapEqMuEjQ1LnIe
SirHNhojboPDkZCk4r/12/0ynB60Id/ibSQcJMme7a0rw0+rzfpaxyLBSka5
qJpRhrXF7xvXf4yEhNZpp11pZViSu3h3yo9IiO032ZzqVIan+t04D3JGweTk
2PHuuVJ8Nvp9ValCFFzRuZ4zLFmK6x9NfjsZFQWe6ZsslK8VYk7GRlHZHdFQ
5ducUvc3Gxcxe/JaO6LhyO/+HS7157GSl9VbGd8Ywl6KyjoFL3zT+8e9W0Kx
0P1oPs2OHIkk570ndm2IhRPmWskhE5Eo6+LQ+oqNsZDQrlel7xKFKDdbT1zZ
GguWea0HN5tGo4MLBeuiZWPBh+oic0EyFnWmGHvp748FtbEGKtfDeDRZX8bX
7x4LorsUw1O8ziLZ1TYOi/8R9t9uU4yauYgsO5GQb30sDES+dlKSTkaxuYrP
+xpj4YyxPn+jdTJiK3Puv3knFtgSSv3QkIxojvWbPZ7EgsRyP8+xsBTU37D+
dVt/LBR6h4vB51R0wefF8ax/xH5VX6Ot6i+hut13BFdWYqETnycHvrmERpYq
2wI44uASeSefMlcGUs+O1TJcE0fcp2339alkoLdYcePC+jj4m8LjxXs2A2lt
SX7lsiMOClPMlkg7M9FEx2GbXUfi4GNw1dZx5yx0Ym1uW7t5HDw+ajm2OjQL
fTD7tC/QMg4yzpsyuM5noXcvErf9ZxsHixdUrjTUZqGR7mcTe9zjgP+0XfSt
v1no5UvTKIiIg1Wbb7btyMxG1hsKvr6jxgErbuR+UEU26rH56nI2Og52XEl6
Sm/KRl2vUvTa4uMADToIXxnMRu0DnfxmyXGgLXyQulPyMno4fLTYriQOWpqr
rRjVlxESL1n/pywO1Oa0BQVuX0YPnH+cya+Mg0pR05PHn11G995cOvmmJg7u
KpokpH2+jJijPWpejXHQzvdzMm3nFXTjvfWT4OdxcHMoxba35ArK/3r88/mf
cbBab3Lf/qgcdO5wldXfOWK/wii72XM5iFw2dzd4IQ7MYv86Z2TkIAO7y2l2
/+Ig+3mPeEx1DvrxuFd91xoa+Eu21PH3Eev5ZnGdYjTY6tI2sVE+F6nMFUzA
Nhp89Cjo3qaei7ZYfrVokqDBXEZHIK9OLvrOnSxdvIMGlaV1L9IsclFe6NOn
ZBUarLxKirOKINaN9YRF9GiQ8V1+rOVeLnpdkRmTaEADi0f3Zje35KIny2Mf
Fg/TwHu99pBVZy6iN8azPhyhwTmZPzvDRnKRvuR9Z6YtDW60X7wUuEj4E7O2
TcGeBrmnLQw/cdDR5n4n1RJHGsQ4lA8e5qOj7yl/Vye50QCF/yhq3ExH9Pm9
1Q5+NDhTq2xuuoeOzlonru8KoEH6RQ7SlDYdBd/oj9ILpkHUmN31MF060veK
MFM8RQPB39w0laOEva76maVYGnSH3GF6+BDrVco6pRk0+Doo+YWVSUc8+4Xv
uWTT4MTSf7XauXTU2fF7/9YcGhjH5pEKC+nIZgbvzSmgwbHLMXF/qwh/z1Uy
jxUT/iqF589fp6ORjRc1hcpocNLaVmPoFh1561hrpFbRQIG8HXTv0pF8t1a9
SQ0NPu0M/nz7AR1NeWzdvaaWBsnVjtU8T+goPPGDypk6GrSYz+8S66Cjc2yK
QmQzDTgbGlTCB+nI+IRTjSamwS4H9W0vRuho7QKS//mIBl73J8+Jj9HR5W28
csFPaSAg+Z/OyQk6sr/1rVKxnQZ9hi8POH2hI3F9tsyXThocvBNprTJFRwzf
AilvNg1sFyyPhc7Qkf9ifKnUKxqou/i6vvtJRyrp3hKjAzToPbaOqfabjmYl
TYoLh2igNWLo6LZAR8wG5W2Ob2jg9pv/SNBfOoo+LFy4aYwGb7fdOeO4REeH
Bn+LvRqngdlY8Bm5ZTpqW8abLT/TgGFwRNRldR5KzqzMFfhK1NNE6NWnHHno
6I6LGzu+EetxIo+FuPKQMCvoStI0DUS076ED3Hmo38R6w+GfNEg06BnSJ+Wh
/BGtbM7fNHjsIHpAaU0eciVvFX60QIMnUcnuvwiW5liVSVukQUql6pFCnjz0
6fKHdTrLNNgyxLUow5uHanc+T/+zKh4+ypqopBAccveGAIszHh6sc3nTS/Ae
86zUcFI8sDv4rywQvDBK4VfnjQdJR1vbFYKbw5ySf/DHQ83d/dsnCD7NDbw3
BOMh8NvtH7UEG9B3JPkLxcN16Qc+xwjmUeRdI78hHoLkXB8OEv503v92/uPG
eFg/UekPBGdYsrkqtsTDFY+sE4mE/zbvmWfdxeNhiS5Xd5OIdzOlgGO7RDwY
pHqYMwk9RnhOJwxLxcOfm8aNRYRepQXeq/J2xEOmRUDgCc485K1iEn98Zzyo
FHU+EiD03fVIeVlEIR66cwMbc1bloe/HhON6leIhAh0xWLVCR/UTvxfTVeNB
6rJvqOk/OqJEDUebqceDd/nMyaRFOtJe+/APr2Y8ZGte0iv/Q0fLxZWRT/fG
w9+tMjnZ83T0ePfF+XPa8UC3veHpPEdHF1qCKHoH4yF4XPnq0iwdmdpZz62g
eIh9XOkTPk1H/wO8CGpD
       "]]},
     Annotation[#, "Charting`Private`Tag$3422585#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlHk01Hsfx4WGKbIzZn6FLNea0SRNMd+PUslViWkRWUpoiLJvzXRveJ6k
m7mJmWEsRVSu7ljLmlBulmyhy70pGjtFtohnnj/e53Ne53PO66/3eWudD3S8
KC4mJsYS5f/Xriz/j01iX9D+Roc69ygMNlEiRoVBsyiZRGeLi/jN08Pa9Z+/
ocUXz3Q4kRgkGKu5ZZ5ZRI3LaTGaIv75kZAT3byMTEJovLQIDGT0yrpO01ZR
EZJk4UXccj9uyy7BGpJsCDFmhGOgd0xxf1jzBnglpzMqEYZBvEyU+7CkBLit
aX23DMVA+OZjjCNNEr79bTvgG4LBw8OC8h0CHDy2VCRygzDA4dTfpY9Lweu6
xCj+VQy8G67PbtLBQ6byYEnyFZHf2sFkJGUz2OCsX7oEiPzr5XYn22VALdIq
zeiyyF+t4VuP3wKme784T/th4MQP7zhOkwdnYec9+0sY3IgxGsT1y0PLBhxx
1AeDYpcP09XhClDJn2eHeWOgRDwsYyxQhHyfm/7+FzA4sPydOHRUCYao+3u7
PDEI7is04I0rwf3MwYM7PDDoSlE9LK2jAuoZflDlisFdJeEvwylqUPPczcTq
JAYNs9ykNAoBqOSVPVZOGHzrOJrp2E4ARhAWSD6BAT2ptOoFngjDEoIrX+wx
UJaNW0yPwUAqK9W39wAGNpN7cHT1rdC2a8z7qjUGIc2TypvLtgLD8U7NGg2D
7pv0nZEz26AhOPPuHBUDO4nfywwFmtCRrZB0yBSDT7MTVvHrmlAT6acUY4xB
1KeDjR+PaoHLXKtergEGj+uWuzjjWkCQtSd1aov6cd3zK05HG8Y9tihw1ET9
WCUbD6XoQs6pZFr/KgkGUtTFeiZ04fscyVtsmQRTZPHuJtCD2Eb9W2rzJJC/
2BVdOK4HBdvKV0lTJDjVGtocSdOHX/aNtTIHSPCRX8GQFxpCXyBeo/wZCWYt
HtAk9hnBsaAnIxtKSCDZeUtx4Y4RLIa7RqKnJNDDnavopxrDrh4X07u5JPAP
WMfn3TYB5jv+lQw2CWI07ndnEMlg4cFZd/AhQZx/Co1wkAw3l7aqvvUkwW/P
E/LZgWQok6gcBFcSZDoFx8Q2kMGtvbR93YEEL/9jo8MIMAPzGs+eSSoJpL8I
g81f7oSD76x4bDwJkl8YKbVcMocqiszR6CwinC1RmAphm8OJhfcxG3lE0Mxf
fLX1uTmwpU/9FX+XCAV36qMCpXeDXEDxbEA8ERrcXD4p5u2GIY6XVq8fEb6t
Jgichy2gqfdsv5I5EejU8eMjbnsh5GSrT16dOigV5SeK0xGQb5w5EveKAGo2
sYEW8TbA1xvzPZmjCpU9GZ6fmo8A44cDro6iDFLW0yeiy49B4qOXD+yXFCDU
IDnOBucIY/OV78wuy8HtiUt9Z3LoUJQ4BGOBmyFS/ayhl8pp0OVFqkxpS4NZ
Wu2gQaUzRJ2ztSqV2AjV/0UpQoorBCQcmeyOFodA06U6cpYbFFSQbXydxGBB
WekRL8sDbh3gBVZwV5GGbfkVzt+ekJit6rLxpGgndFMYczsuQI3v9n0zBxbQ
Wze2hso1L/ge/0Ta4PEccmlTpxeVXIQ+0tTuucSvqGVkoKIA5wNzuStBkoQZ
pG9hkr19vy+46/st/9oxgRjkZ8/nUy+B2dlVk4riUYTi3W/fGWGATaE5/ndJ
IfqhkDyYo+kPXW3Dw+dah1D2YQlvtZDL4FMn8Fh68hGZFq8zNgoCoIX7wE39
7Qd0IppgVDESCJ+kP/tPlwyggoXSLd7pV4BPOW90veg9yrV7+LqAehWeOhAm
q3f0IvZcsfr24atwp0zynlx1N3r95vhfUbeCwGoGqaikdqJZy6I97J+C4UMf
ZA43tSN5yZ3WPe3BYLCb61iOb0Pa3hH49wEhUOrSZ7BLvhmxFuxNa/GhYL75
n6a3jCbU1k+b7hKEgnu05SnU0YgUXRf9Hx4Lg+6y5bypjHp0xKw1Nm8pDG4Y
KC91h9Wh0OxLrt6p4TCVvqla1rYWTaBktjQlAvQ3vrByk6pCdMqA+/v+CFAo
yFpZ7nqGiurGp3wiI+F9Z49f4bYyJJGrqqKrEwXpOFbsj9BixC9r5zY2R4Hh
+KuSVKIAGV848a+2bzTk3+q5+M+eQlToNVP5p0IMqPxZy7c+/hjpbqA7rzyN
gfrTb8q+b8hDwuZDdIOfr8Fi8aCjnWIO4k2cGo2buwbmzzbJZpllowMPTSyz
kpgwYttFkE/kI2mqYuW5u0yYzcEPJ4TzUUvzApWUwgSP7d/E5C7wEf1rrUVK
GhM63j7WouzlIy9LR0riQybc1nJKGx9NR7GdYYYRVUxocG92VrJNR6/WagkO
o0xgBUhkUGTTUAI7J1V2gglUXN67jmUeOqZzU7V5igmcHW0zEUIe6jniqHxo
jgkCKlbzsZaHRpKH5SzXmLDwYZfX1mAekjbCS+krs8DufJqQ2s9FLdVTcZ9V
WZBBnizyauKiJIdOyQfqLODUmxhzSrmIEJYmvk2DBb00e4J6EhcZ1JmsKRmy
YP1HddSvB7lo2knxWocxCx4cd3Kc3clFRcKFld9MWUCbSqxiaHLRXpkXy3hz
FvjofdgXusJBaxk5Ea8tRP8fwXZSYxz00uzmYuxeFgju5f6b3cNB8Q2Xw/Zb
ifx7zOdtGjjI7rTj/DpiASXkc8IXAQf9D9wclF4=
       "]]},
     Annotation[#, "Charting`Private`Tag$3422585#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{612.2727272727277, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036494667*^9},
 CellLabel->
  "Out[116]=",ExpressionUUID->"c100a39a-de2f-4553-add6-f2fc1c3ff28b"]
}, Open  ]],

Cell[BoxData["/"], "Input",
 CellChangeTimes->{
  3.883815422919569*^9},ExpressionUUID->"4110d7b4-eea5-4a31-bb44-\
0cfe6630cd3c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"NIntegrate", "[", 
   RowBox[{
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"q", " ", 
       RowBox[{"PsiP3He", "[", "q", "]"}]}], ")"}], "2"], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",", 
    RowBox[{"AccuracyGoal", "\[Rule]", "5"}]}], "]"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{
   "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0430", " ", 
    "\:043d\:0430", " ", 
    FractionBox["Pi", "2"]}], "*)"}]}]], "Input",
 CellChangeTimes->{{3.8834727230390043`*^9, 3.883472778461499*^9}, {
   3.883472906019311*^9, 3.8834729185553007`*^9}, 3.8834795181208553`*^9, {
   3.883482126787499*^9, 3.883482144273522*^9}, {3.883482217276063*^9, 
   3.8834822215965557`*^9}, {3.883553556768044*^9, 3.8835535750728827`*^9}},
 CellLabel->
  "In[117]:=",ExpressionUUID->"745956bd-cee1-4b9e-be2b-5f3aa5cbb78f"],

Cell[BoxData["1.5707974356954326`"], "Output",
 CellChangeTimes->{{3.883472908023087*^9, 3.883472918894421*^9}, 
   3.883473756965157*^9, 3.8834757830588627`*^9, 3.8834792781630487`*^9, 
   3.883479533577456*^9, {3.883482128229415*^9, 3.8834821479579477`*^9}, {
   3.883482213433366*^9, 3.8834822220822163`*^9}, 3.883482304860508*^9, 
   3.883552155575693*^9, 3.883552817559989*^9, {3.883553485870138*^9, 
   3.883553491492589*^9}, {3.883553566280285*^9, 3.8835535819873037`*^9}, 
   3.883555220826889*^9, 3.883555267047039*^9, 3.883555362002153*^9, 
   3.88363813017135*^9, 3.883644174744585*^9, 3.883708442549859*^9, 
   3.883722006966009*^9, 3.883810298337451*^9, 3.883812786670486*^9, 
   3.8838129141849327`*^9, 3.8847695385839157`*^9, 3.884771039644198*^9},
 CellLabel->
  "Out[117]=",ExpressionUUID->"9e5ee1f4-d7a7-41cd-9bb9-266f67dacb1c"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiP3He", "[", 
    FractionBox["q", "p"], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "500"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{
  3.883472743984514*^9, 3.883472924970978*^9, {3.88347309426296*^9, 
   3.883473122916423*^9}, {3.883473518202753*^9, 3.883473535921042*^9}, {
   3.883475379960205*^9, 3.883475413817233*^9}, 3.883479540293125*^9, {
   3.883482628916453*^9, 3.883482639204176*^9}, {3.88348280564531*^9, 
   3.883482805868981*^9}, {3.883551977573111*^9, 3.8835519778662252`*^9}, {
   3.883553499627589*^9, 3.883553501936421*^9}, {3.883553534820649*^9, 
   3.883553539257779*^9}, {3.8835535897178802`*^9, 3.883553606156753*^9}, {
   3.883555297363455*^9, 3.883555297498726*^9}, {3.883555364375175*^9, 
   3.883555364607202*^9}, {3.883638118282078*^9, 3.883638143800375*^9}},
 CellLabel->
  "In[118]:=",ExpressionUUID->"84ddf410-1206-4db4-8163-fea78d05a9fa"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81PkfB3BJ/Rybm8bM1zkdYpZJo7bDfN6uRK5sKTlLrhImDA1mUiEq
IRtDMqNFUdJBkiPHomxI7kFFtsK4DVbY+f3xfrwfz3/er9dfb83TgQ5eoiIi
InHC+f8em/lpfdB7hJpY6J7NiMDgQu7FXWbcOqT3TWYxWOhwKb63CvcjqkrK
E/UQeo+Z6osk2gBK9HGqpgodUZUnIsYdRryVaD1Zofv6qPko/jsKK82y72Bg
sG+hyyaCxkf+NTbbrgv9Pn4Pg0eaRp2bjxdThF5Ju2KzxJlFOfScybaLGJDy
WjU2KwkQ88SBEXehXV4Q5ijxi6h54mjKl3AMbtT6NDqs/IvYKrB4TOiKtucZ
QbQVVOcWiqsMw2B8cO184sgakv58a05Z6ERBrkYXaR3429smetIxqBKbmZ3l
rIfkE56inSEYdEmlD4jyxKC/8vvnpWAMJuSpjXJKG4GSHBgjJ7SaZkKGfrw4
DPZ46qjQMNitTb5KrZOAURaeLBGEga1+13mbFUlQ6j6zcTwAgygjLeNztE3g
1dBETvDHINWsSYdRKA1pb0yvm5/D4NHhAMX4ERkIFlOqm/UT5pEGgj+S5CDF
d7lH20eYt3+HxTRHAUZ7dSQEHhgUUH++XjRSBOeSl2WH3IX5Jq1kEZ4irPuW
4ZXoKsy3DMXLKCmDp9H42xknDJjHa/ikeByMi7w313DAQNI59TRlmwokdZF9
pewxuOPm072/TgWWtp8q/mGDQZHXphqrFTxkRHc3sSwxGAh2SvWlqYJ+kOQb
ecDAN4wkESStBmRuX0maEQZzjLWosEI1UJ/WEJXdj8Evl3N9YkfUAXOrK+sz
FPZvCldtJ2mCzlfMo1dH2K+rfmqSQ4RugycSl+UxYH1ydZIWEKHd/PsvS9IY
FH8X1JAOb4GinIWKU1IYyC1r3/ab3wLi6sZ24mIYdKjfNBy23AaM4RR64RwB
TvodY3TNaEP3yAPs6EcCXL8wMTRnsQM2jWY4jbUQoCIi7rBC1g6ws1m/PvQd
AVQTX2H2FjowaiLS5l5DgM/PVKvfZuoCTy6oObWIAD4/R9ZXmumBZFlw2LVY
AqRvYPnz2HrwWMxywjqaAE3SuM6lCT1IMNB8LhZJAB1Nq7zdbH0wlbL1tKUR
YEHr+JYeOhkKfxRJWjsToNzidcOR5p3AefDUYJVEAEi+ImUeQgEXxa23ixvx
0DioTBW9SwEtw8DOwBo82JIKgqrrKBCslPBh62s8uDa2de5VMISGST6ZXoQH
xooqR++ZIYxRh7QKUvHwwq+MgpvaDd15HXnn3PGgbcJ3HTu3FybLX/pUTqiA
3KxjcbInFR7L9h8YX8CBmqvm0bgEKnhU6kYvTuKA1Di2EPmUCh/nHC+ufcPB
ocxLyHeNCs4K7ytXunHANC1ooWYi+Mrla1a+xIHgLVMQ6gcwPZ/K/p2OA098
uyKRawzjqs9n0NRmoL4OPxIlawbsveLya73KwAmuetx/whISvkSxRf0UYdBy
oH35oC0YTdGq1XXkweswg3+69Qg4D9YqSzXIgHH5glhrwFG4OfFjA65SCqTK
vogQvjiC4ro0Yry3OOhOWwQcuOYEIgvm9z/v3wD7XuHfGIm6gP4CfTS0UBSe
WLpvbQh0g2QXQ80PESJQKSm7KhfvATD6P4dDAz8RviyPV1x3CsYfhcnvTFxC
WleWaeU4T9AvUbxVEixAbgYSKXE+Z6D00j2OVfssktth82d9thfgzi+4azyZ
RoFGdoH+M95gjw07phyZRGbsONJVPV8gS1J9c0THUb08M2djjB+YUj5u2Tkg
/HtBv+ZYd56F6Bt/9Fdv/wdxlRRSRWX8oTKGEJo2NozCekqpRM/zwHSs9s/9
6wuqH0riPecEgFFl6CB1+RMy+0AUFe8JhMgYc/pGXj8qCygPGk4Ngiux+XP/
tveieByzl2FAg4PLdEaFVTcif+DcsxigQaL1r0NDHR1oajlbW3D1AhTnN5v4
FrYjf6vyQhfNYJAMuvPVu68NVebvur74Lhist1D4odtb0DvtJk9rvxBQmL+Z
8WxHM5om7F13WSwU6H/bqhVdakJ8VYnl8UehsLHWJfXF8F8o13SOL2NFh3C0
axu3qA4ZhFONfOfo4DarOzV9pQZFtN2PCb8dBoqHEwtU3KrRQMZIyln9cCC+
KcztValASiGxP5N7wmGKKDKNDZchCZqJO41+Efpef0pQ1y1F7ZGuarGaDOCn
5ZDHWM9Ryb9HcyLfMuDJTsVSP62n6Pe7Puq63hGwSi8M0TIvQo3WvYvSspFg
//BOpO+JAiTQ8G4uKIqEnWm63x6K5yPk03pa2yoK7NTHW8aU/0RuFWmOvJko
mA6XOOlJ4aLfDCNMDyYxQZLVEvcsMQt1RZjobLjNhIS/4zI1GVkotFZCrv4P
JmSrL0tmeGWhZ3bpg8aZTOBGVU3kHchCpLMlF43ymNB+osWLPHYXaWRPPqFU
MEGX47uwankXSUicwYjfmSCovYtdkM5ED+x01w+NMuHhsar2DcsZ6OCdmR8c
PhP2lLwKyfmWga4So1+qzQrvP84KELzJQKtG9xzwq0zQsBHjiYdkoJkLPdfk
FFnAcVzidvDYKOlVdmCbMgvSrUpY801spC/i43hLhQWteWcU1EvZyP/mPHGT
OgsqcA52N5LY6J98+WpxHRZM/capaDFno6sTvbmNJBY03NvGp+xiI6Ih90as
PgsO6eq+uq/BRh61+ifFDFmgz7mhnLmcjlbFF6BuDwt8njpziT/SUZZd1fbL
+1jQtPdm+YuudHTgToy0sRELVlgDbrb16aiv33p+DbGgQ1by+tTTdPQfYhHR
pA==
       "]]},
     Annotation[#, "Charting`Private`Tag$3422707#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8834729258228273`*^9, {3.883473095599835*^9, 3.883473123190859*^9}, {
   3.88347351932442*^9, 3.8834735366214542`*^9}, 3.8834737585433073`*^9, {
   3.883475383272345*^9, 3.8834754141793947`*^9}, 3.883475785600163*^9, 
   3.88347928049052*^9, {3.8834795360621023`*^9, 3.8834795409546947`*^9}, 
   3.883481049015133*^9, {3.88348213000602*^9, 3.883482149808962*^9}, 
   3.8834823076685038`*^9, {3.88348262594995*^9, 3.8834826395791683`*^9}, 
   3.8834828067191467`*^9, 3.883551979062615*^9, 3.883552157232203*^9, 
   3.883552820474572*^9, {3.883553495490841*^9, 3.883553502250049*^9}, {
   3.883553535849196*^9, 3.883553539582345*^9}, {3.883553583678729*^9, 
   3.883553606637355*^9}, 3.883555222558572*^9, {3.8835552924387417`*^9, 
   3.883555298109735*^9}, 3.883555365107902*^9, {3.8836381245192842`*^9, 
   3.8836381448521357`*^9}, 3.8836441765580606`*^9, 3.883708444251793*^9, 
   3.883722009072154*^9, 3.883810300105698*^9, 3.883812915718704*^9, 
   3.884769540098538*^9, 3.88477104144629*^9},
 CellLabel->
  "Out[118]=",ExpressionUUID->"88feb29a-69eb-4f50-bf11-3ab1b072e38c"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:0430\:044f", " ", 
    "\:043e\:0446\:0435\:043d\:043a\:0430", " ", "\:0432", " ", 
    "\:043d\:0443\:043b\:0435"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{"myNorm", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}], "range"}], "-", 
       RowBox[{"Sin", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
         "range"}], "]"}]}], 
      RowBox[{"-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], "+", 
     RowBox[{"myCoeff", 
      FractionBox[
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         RowBox[{
          RowBox[{"-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
          "range"}]], " ", 
        RowBox[{"(", 
         RowBox[{"1", "+", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", "range"}]}],
          ")"}]}], 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], "2"]]}]}], 
    ")"}]}]}]], "Input",
 CellChangeTimes->{{3.883553088487125*^9, 3.883553204351302*^9}, {
   3.88355330604659*^9, 3.883553336624708*^9}, {3.883554701880843*^9, 
   3.883554702178334*^9}, 3.8835547380022697`*^9, {3.8835549196871843`*^9, 
   3.883554920825925*^9}, {3.8835554152361717`*^9, 3.883555450852108*^9}},
 CellLabel->
  "In[119]:=",ExpressionUUID->"dbfa69a4-38ff-4a4c-96a5-19b8ca17951b"],

Cell[BoxData["7.120584955419883`"], "Output",
 CellChangeTimes->{3.88355320708495*^9, 3.883553338644999*^9, 
  3.883554702930024*^9, 3.883554738336375*^9, 3.88355492156914*^9, 
  3.883555224381851*^9, 3.883555367634069*^9, 3.883555455167295*^9, 
  3.883641230673229*^9, 3.8836441782104187`*^9, 3.8837084461065474`*^9, 
  3.8837220105114594`*^9, 3.8838103037971277`*^9, 3.884769546016932*^9, 
  3.884771043152464*^9},
 CellLabel->
  "Out[119]=",ExpressionUUID->"1beec9ad-5e6a-4afb-ad78-ff734b08f519"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
   RowBox[{
   "\:0418\:043c\:043f\:0443\:043b\:044c\:0441", " ", 
    "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "3", 
    "He", " ", 
    "\:043e\:043f\:0440\:0435\:0434\:0435\:043b\:044f\:0435\:0442\:0441\:044f\
", " ", "\:044d\:043d\:0435\:0440\:0433\:0438\:0435\:0439", " ", 
    "\:0441\:0432\:044f\:0437\:0438"}], ";", " ", 
   RowBox[{
   "\:0442\:043e", " ", "\:0435\:0441\:0442\:044c", " ", "\:043c\:044b", " ", 
    "\:0435\:0433\:043e", " ", "\:0437\:043d\:0430\:0435\:043c", " ", 
    "\:043f\:0440\:0438", " ", 
    "\:043f\:043e\:0441\:0442\:0430\:043d\:043e\:0432\:043a\:0435", " ", 
    "\:0437\:0430\:0434\:0430\:0447\:0438"}]}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.881200608210786*^9, 
  3.8812006318545837`*^9}},ExpressionUUID->"93967aaa-fb32-46f7-b27c-\
892da0b16278"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"mom3He", " ", "=", " ", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "mass", " ", 
    RowBox[{"(", 
     RowBox[{"-", "Esep"}], ")"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.881200816587983*^9, 3.881200826759004*^9}, {
  3.881200881516077*^9, 3.881200923308035*^9}, {3.881297678198907*^9, 
  3.881297685451997*^9}, {3.882421016135722*^9, 3.8824210170180607`*^9}},
 CellLabel->
  "In[120]:=",ExpressionUUID->"fd99e280-b87a-49dd-a288-5fe39a52e19d"],

Cell[BoxData[
 RowBox[{"0.`", "\[VeryThinSpace]", "+", 
  RowBox[{"82.89392719144146`", " ", "\[ImaginaryI]"}]}]], "Output",
 CellChangeTimes->{
  3.881205023432626*^9, 3.881205761610588*^9, 3.881297109064865*^9, 
   3.881297734940659*^9, {3.882090705797106*^9, 3.882090717899979*^9}, 
   3.88209075798248*^9, 3.882329826488744*^9, 3.8824210175629473`*^9, 
   3.8828673410587*^9, 3.883105819927225*^9, 3.8834687129164677`*^9, 
   3.883472616774363*^9, 3.8834729296089363`*^9, 3.8834792828777*^9, 
   3.883479566953698*^9, 3.8836412327415657`*^9, 3.883644180105177*^9, 
   3.883708447794322*^9, 3.8837220122198153`*^9, 3.883810641024633*^9, 
   3.884769548126718*^9, 3.884771044735566*^9},
 CellLabel->
  "Out[120]=",ExpressionUUID->"68990b6d-5fa6-4ddb-840b-6229269d092e"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
  "\:041c", " ", "\:043c\:0430\:0442\:0440\:0438\:0446\:0430", " ", 
   "\:0434\:043b\:044f", " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", 
   " ", "\:0432", " ", 
   "\:043f\:0440\:044f\:043c\:043e\:0443\:0433\:043e\:043b\:044c\:043d\:043e\
\:0439", " ", "\:044f\:043c\:0435", " ", "3", "He"}], "*)"}]], "Input",
 CellChangeTimes->{{3.881033769215639*^9, 3.881033785832822*^9}, 
   3.881033912603038*^9},ExpressionUUID->"79a457e4-2694-4aff-b91a-\
36c1c1457a0a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"Integrate", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Sin", "[", 
      RowBox[{"a", " ", "x"}], "]"}], 
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", " ", "b"}], " ", "x"}], "]"}]}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "myRan", ",", "Infinity"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{
      RowBox[{"a", ">", "0"}], " ", "&&", " ", 
      RowBox[{"b", ">", "0"}]}]}]}], "]"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0438\:043d\:0442\:0435\:0433\:0440\:0430\:043b", " ", "\:0432", " ", 
    "\:043e\:0431\:0449\:0435\:043c", " ", "\:0432\:0438\:0434\:0435"}], " ", 
   "*)"}]}]], "Input",
 CellChangeTimes->{{3.8810339163716393`*^9, 3.881033972483519*^9}, {
  3.8835525860221863`*^9, 3.883552651904613*^9}},
 CellLabel->
  "In[121]:=",ExpressionUUID->"21c7637c-3a09-41a5-b3ab-b8f8756d6a35"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox["\[ExponentialE]", 
    RowBox[{
     RowBox[{"-", "b"}], " ", "myRan"}]], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"a", " ", 
      RowBox[{"Cos", "[", 
       RowBox[{"a", " ", "myRan"}], "]"}]}], "+", 
     RowBox[{"b", " ", 
      RowBox[{"Sin", "[", 
       RowBox[{"a", " ", "myRan"}], "]"}]}]}], ")"}]}], 
  RowBox[{
   SuperscriptBox["a", "2"], "+", 
   SuperscriptBox["b", "2"]}]]], "Output",
 CellChangeTimes->{
  3.881297096239375*^9, 3.882329828068823*^9, 3.882421019139493*^9, 
   3.882867342790469*^9, 3.8831058221678753`*^9, 3.883468715045041*^9, 
   3.883472630074232*^9, 3.8834729322842073`*^9, 3.883479285022437*^9, {
   3.883552617360506*^9, 3.883552660978874*^9}, 3.883641242649755*^9, 
   3.8836441901028337`*^9, 3.883708458176134*^9, 3.883722021639851*^9, 
   3.883810324676392*^9, 3.884769557826625*^9, 3.884771053774629*^9},
 CellLabel->
  "Out[121]=",ExpressionUUID->"c838d021-46b0-4977-9acb-43662a2ab4e4"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Sin", "[", 
     RowBox[{"a", " ", "x"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"b", " ", "x"}], "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "myRan"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{
     RowBox[{"a", ">", "0"}], " ", "&&", " ", 
     RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.881200495133235*^9, 3.8812004979799643`*^9}, {
  3.881200554925774*^9, 3.881200564433354*^9}, {3.883552698903925*^9, 
  3.883552710055686*^9}},
 CellLabel->
  "In[122]:=",ExpressionUUID->"2a836ba1-d54a-4276-b9f3-4a104a1093f6"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{"b", " ", 
    RowBox[{"Cos", "[", 
     RowBox[{"b", " ", "myRan"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"a", " ", "myRan"}], "]"}]}], "-", 
   RowBox[{"a", " ", 
    RowBox[{"Cos", "[", 
     RowBox[{"a", " ", "myRan"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"b", " ", "myRan"}], "]"}]}]}], 
  RowBox[{
   SuperscriptBox["a", "2"], "-", 
   SuperscriptBox["b", "2"]}]]], "Output",
 CellChangeTimes->{3.881200566098689*^9, 3.881205766859289*^9, 
  3.881297104639103*^9, 3.882329829671001*^9, 3.882421020938382*^9, 
  3.882867344672193*^9, 3.883105824494817*^9, 3.883472631849029*^9, 
  3.883472933666597*^9, 3.88347928700062*^9, 3.88355271284999*^9, 
  3.883644191905717*^9, 3.883708460019032*^9, 3.883722022458856*^9, 
  3.883810648191587*^9, 3.884769559704506*^9, 3.884771055479411*^9},
 CellLabel->
  "Out[122]=",ExpressionUUID->"51ef0d20-5d9a-445a-ba0a-a02b1f4a05c7"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"TMatrix3He", "[", "k_", "]"}], ":=", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"p", " ", "myNorm", " ", "myU"}], 
       RowBox[{"k", " ", 
        RowBox[{"Abs", "[", "mom3He", "]"}]}]]}], " ", 
     RowBox[{"(", 
      RowBox[{
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["k", "p"], "-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["k", "p"], "-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "-", 
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["k", "p"], "+", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["k", "p"], "+", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]]}], ")"}]}]}], " ", 
   RowBox[{"(*", " ", 
    RowBox[{
     SuperscriptBox["Fm", "2"], " ", ",", " ", 
     RowBox[{"\:043d\:0430\:0434\:043e", " ", "\:0432", " ", 
      SuperscriptBox["Fm", 
       RowBox[{"3", " "}]], "MeV"}]}], "*)"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k_", "]"}], ":=", 
   RowBox[{
    RowBox[{"-", 
     FractionBox[
      RowBox[{"p", " ", "myNorm", " ", "myU"}], 
      RowBox[{"k", " ", 
       RowBox[{"Abs", "[", "mom3He", "]"}]}]]}], " ", 
    RowBox[{"(", 
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox["k", "p"], " ", "range"}], "]"}]}], "-", 
       RowBox[{
        FractionBox["k", "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox["k", "p"], " ", "range"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}]}]}], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox["k", "p"], ")"}], "2"], "-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], ")"}], " ", 
    RowBox[{"(*", " ", 
     RowBox[{
      SuperscriptBox["Fm", "2"], " ", ",", " ", 
      RowBox[{"\:043d\:0430\:0434\:043e", " ", "\:0432", " ", 
       SuperscriptBox["Fm", 
        RowBox[{"3", " "}]], "MeV"}]}], "*)"}]}]}]}]], "Input",
 CellChangeTimes->{{3.881033977845848*^9, 3.8810339795737133`*^9}, {
   3.881034299194148*^9, 3.8810343272795763`*^9}, {3.881034608568304*^9, 
   3.881034692687162*^9}, {3.881034784166951*^9, 3.8810347952400923`*^9}, {
   3.8810348409016333`*^9, 3.881034881737472*^9}, {3.881034935763405*^9, 
   3.88103495049362*^9}, {3.881035061115604*^9, 3.881035092839991*^9}, {
   3.881035468416505*^9, 3.881035481765575*^9}, {3.881037944040091*^9, 
   3.8810379482351933`*^9}, {3.881037981288925*^9, 3.8810379843458767`*^9}, 
   3.881038021731368*^9, {3.881200578723695*^9, 3.88120059045376*^9}, {
   3.881200948721171*^9, 3.8812009940828753`*^9}, {3.881201567326044*^9, 
   3.881201588162565*^9}, {3.881201755288425*^9, 3.881201780770088*^9}, 
   3.88120234175987*^9, {3.881297769505846*^9, 3.881297778077227*^9}, {
   3.882090823944269*^9, 3.882090825369204*^9}, {3.8820909020622263`*^9, 
   3.8820909232220993`*^9}, {3.88242290969197*^9, 3.882422920378888*^9}, 
   3.883473253871093*^9, {3.883482453547862*^9, 3.883482478458909*^9}, {
   3.883482510803965*^9, 3.8834825189751062`*^9}, {3.8834827231464853`*^9, 
   3.883482723661664*^9}, {3.8834827542344427`*^9, 3.883482754813789*^9}, {
   3.8835543507923527`*^9, 3.883554361931973*^9}, {3.883554415089562*^9, 
   3.883554418297936*^9}, {3.883554453655249*^9, 3.88355448079436*^9}, {
   3.883555120149898*^9, 3.883555136186659*^9}},
 CellLabel->
  "In[123]:=",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:0430\:044f", " ", 
    "\:043e\:0446\:0435\:043d\:043a\:0430", " ", "\:0432", " ", 
    "\:043d\:0443\:043b\:0435"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"-", 
    FractionBox[
     RowBox[{"myNorm", " ", "myU"}], 
     RowBox[{"Abs", "[", "mom3He", "]"}]]}], 
   RowBox[{"(", 
    FractionBox[
     RowBox[{
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], 
       RowBox[{"Cos", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], "range"}], 
        "]"}], "range"}], "-", 
      RowBox[{"Sin", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], "range"}], 
       "]"}]}], 
     RowBox[{"-", 
      SuperscriptBox[
       RowBox[{"(", 
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
       "2"]}]], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.883554585129315*^9, 3.88355459015775*^9}, {
   3.883554759551602*^9, 3.883554764717204*^9}, 3.883554794748934*^9, {
   3.883554831789584*^9, 3.883554865191403*^9}, 3.883554906168315*^9},
 CellLabel->
  "In[124]:=",ExpressionUUID->"b024508b-6d27-4ffa-ab07-de4ed8a4b834"],

Cell[BoxData[
 RowBox[{"-", "0.4718922843178722`"}]], "Output",
 CellChangeTimes->{{3.883554853046928*^9, 3.883554865596673*^9}, 
   3.883554964408291*^9, {3.883555153142915*^9, 3.883555160597527*^9}, 
   3.883641242822588*^9, 3.883644196431122*^9, 3.883708469410604*^9, 
   3.883721104568775*^9, 3.883722033276618*^9, 3.8838106545924997`*^9, 
   3.8847695683439903`*^9, 3.8847710590365877`*^9},
 CellLabel->
  "Out[124]=",ExpressionUUID->"f3dede85-3617-4b17-bd5f-c45be83e3c18"]
}, Open  ]],

Cell[BoxData[""], "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8812015487577887`*^9, 3.881201561277553*^9}, 
   3.881205988917266*^9, {3.882421421644279*^9, 3.8824214264649963`*^9}, {
   3.882422925136129*^9, 3.8824229409038754`*^9}, {3.8834732509337378`*^9, 
   3.883473251891506*^9}, {3.883555002964867*^9, 3.883555024582602*^9}},
 CellLabel->
  "In[125]:=",ExpressionUUID->"5f437c91-8022-415a-8eed-7828551b0fce"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd1Xk0V08bAPAvP1uiJFvllaWIZImEME/WG5WUivwsiVCybyFbElmjopKl
RNH52pLKm0u2tCcl6V4SRSVLlhDfd+77x5w5nzPnzMzznHmekXP13evOzWKx
ruHBzPLpCzfyZCqN3tlIVUVo0WStgPLaE57p6LmXSyXjxjB20QbPfGRYr1vO
OEtn4F/htBK01rqwjHGrhr8Hn2c5ipW+Usw4Upxzn1NQjewUFQoYX8o0M/qb
WouKvQ1yGJcvT2n6E16HfEYH0xg/SekgpjxIVM1eG894LF7oW1hpIwopHQ5l
fKqpXHmmoAlV9JscYyzIvc87OLsF+RxUc/j//jDN/p3ahsoEblsyVoi+PO4f
346OTVfrMq54ZKA9Fv4Mlcpar2fcrn/6wU+PV6hJRWcuHLvMYGXUlvLXqFAw
rp/xeI9bflDpG8Sv5NTOOGq1QP9EwVuUIt6Wybj5gf0/m3M7EfvbvmDGgvZl
6/yz3yH3ab8DjLOzd3uMpnahO+0OYoxpnYJEtaQPyCRNefwk9rr347dPxHej
2PSzzxlXiF38+SO8B3EsJqMYPz3f4z/k0Yuizmd0hGEn5lxqz9LsQw3b+m4w
VvVEh7TK+9Az+YZAxgH85yMCSj+jPSUayxkvmmnXjxV8QfXnOrVDsQvFqd0Z
MgNocE3xXAi26eCZXvXcAcT9nZ9knBzfxfLNHkTbDCNNGEs1hZuMpH5Ddg1K
24Kx6zIVOlOWDqEJvYipIGwn1+duqklDqGrMic24iEsm4Xj8MOoT71rDWBMa
nwyH/0AV6NxgALblI/7dXz1GUbLUXy0/Zp3jOiUxNooaXENf+WKnyDq/VDAY
Qx4Bxl6Mg1wfBts2jyHr/rZsH+a+X/2aazrH0RfejD5v7P4R6nDY1G9k7Sku
54X9Pi25JkNvEu0SSS30ZPKnrrfk9qlJVBxlK8u4yv9CRTfvFLrO7pDywI6d
suToS0wjtmPKlBu27EJt7oLOHyTHP+Xogi2W5z4mHvEHNUl7NTljC6CVpmrk
H9Q9q6rEeDTG54eTxSwqEywadsSu51mv33BwDm1Jsj7kgO0olNkVF/YXtS3N
/b4f+4WwzhIeRxY0Pl7atgO7w0o052UkCwyq7HgYf0j6pXg5lwU1L1WBwB7g
LTFV+8SCibRj1ebYfxckY+wcuIBX3SDRBFvl1+z0HXtumGXp/jBg3sfLRwP7
D/CAQEbmJTXsNKErgbIhPBBv1VK0CfuCZQj3j4s8MKkTXamKnd+qJhvzjgdW
5yW2qmDfq893KLXlheiKcVoRe5Ad27G4lw88FqTbZbCN080aSqwFIIjzIU4Y
O8by7u0OHwFoPljgIcTEz6uQtZAqAHTCguVSbP1I1tF9zwWgz+uk8BJsLa+6
pRxiCfiZh8byMO/fRPPgAWNB8A5KXj+/mSb5ZqR/8WwRAvdYCadv2KZVyV3q
tkKwajRH/Ct23Im5hkOBQpC6tfLZAPbil66sikohcLS/odWPPfM6U+9fNWHQ
Hkid+IQ9VCpwplppGdzfEqnage2uPiesKSwCvq31GXXYO3vO3pSSEYGqY0bz
D7C1z4obstRFIHF8pdt9bJ5eDe9Xe0TgfkmDRg329TSPpycuiEB5new9Nnbv
SGdC6ZoVUMye9yvEtr9TzlFQEQVnTZmSM9i7lN3HJSzEoKlbTnwH9lxycB11
QAzuXLLdaoF969eZM0VHxcDcQMzOjDnvbvGqzQliYG2sf3E79kOjoe27WsTA
G8kt6mEr2h7PPG0iDpobHc6pYLOi/bXGkAS8NoxJEcSu6jwV3K4rBY0hV7e2
atLkNlGVcp5oaeA66aQjg+0xn3ntpp0sKNKrnzhp0KRv6zet8l3ycLFqOv2C
Ok2eO8S3fsF7HfTeHonMV6PJI20RRzU9FeH3UG/49U24//OvsjluvwGiHUIa
s1Rx/a6IuTQcpAJvrepzbTfSpMtvQ9Xd3qpgJ2r1V1QF95u8FumZVDXY3Nbi
lLuBJqvT9Hs69mrA/t6kvaJKuL4fGu65tlMT3khmOievp0ny6c2JJIfNEOd7
uLldgSa9LPQeedlpga3B1Jpl8jSZe0uz5vgxbbhXfEt3pSxNnv/9KNYvdAuY
3bT+D78MTX4tDQ7xDNABH8ewdD5p3J/NM3Pi4raCzWDhmsZVNMll/bE/PUYX
2AfGV5yTxPnbfo+r4KQe6NuEJFmI4/qRnNnVcVYfbDfVZz8UpUm/Q0cez5ze
BgkRZae3i9Dk51htN3TRABZqT0efFMb9Ievyx6RCQ5jvofYUCdJksYjKybar
RgAuLllD/DhfAWvNlMoQKFd8tvzAQ5N5sgXShrYAyw6U7xzgoslHkXMsz9cA
2xJN3w8tUqScFf9fhYPbwdfIzjVrniLvvlJO7u7cDldrUm44/6HIlNZFDVlH
YyADlX1eTFJkVuDwMZdPxmDoPfTEeZzC/63Mcnl7E9hE/Pz8c4QibyvzPg3q
M4G4wH4xie8UyTfJtarRyRQeVqiaeX2lyBKNyqi8b6bQzT8sZdtPkcqupbsX
TpjBxgt9Qro0RfbseFC1/4cZkHpJSVYfKbLjRvgmFGgOadq31o+/o8g/1TYG
8hPmEMjXvbb9DUVy7gfUJPhYANQLDua/oEgrDXOzyCkLkA/55fNPO0W2Oap7
HQ8kYIzbrTavmSJFj3jWXQsmYN4o4us5bCfPQuHXoQRk5nSuDMWeDlhZpR1J
wCB7l5c19rrEmbmFeAKOV9pzOE0UGVNFpmRcImCTfU+XC7Y+/56KmgcEzORk
68s9psgEoSTuoToC6NwZTWHsNyse266uJyBK9IrSbCNFekprz0Y9JiDIsVj4
DXa2ppQx8YwA5/9+ao7BnnToe/vxEwFNo497exsoEg6vUhTuJeD3Tqu6Z9jJ
R/eGoc8EmJtLXKzFlvdvli4aJGBCMsgkHdsm4Zb7iV8ETMdaJxth5yZ/rs0f
I6BGcMROBXsoY7VgxwSOz/TFOgnsmKspbJ0ZAvQ/7K8dISnyeUELy2uWgEqd
xVPd2JLFi3uvzuPzbIaNW7Bdy7befLFAwFUVSb5KbHaF3wyHQ4Bby9m2XOz/
Ac18+H4=
       "]]},
     Annotation[#, "Charting`Private`Tag$3439338#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, -0.46442719450540115`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{559.7727272727277, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8812015630303907`*^9, 3.881201591546351*^9}, 
   3.8812018022929296`*^9, 3.8812023460460243`*^9, 3.8812050330769033`*^9, 
   3.881205775010165*^9, 3.88120599045111*^9, 3.881297111623495*^9, {
   3.882090700825438*^9, 3.882090722076212*^9}, 3.88209076758456*^9, {
   3.882090806567244*^9, 3.882090827735465*^9}, 3.882090926856447*^9, 
   3.882329834861843*^9, 3.8824210246961184`*^9, {3.882421424311038*^9, 
   3.882421427395227*^9}, 3.882422942256439*^9, 3.8828673483991213`*^9, 
   3.88310582824716*^9, 3.883468719240418*^9, 3.883472635429822*^9, 
   3.883472937376811*^9, 3.883473261103238*^9, 3.883479290650078*^9, 
   3.883479572045383*^9, {3.883482514947854*^9, 3.8834825219709063`*^9}, 
   3.883482727811558*^9, {3.883555003820224*^9, 3.883555034254137*^9}, {
   3.8835551555269527`*^9, 3.88355516211535*^9}, 3.883641244931951*^9, 
   3.883644199397297*^9, 3.883708471353747*^9, 3.8837211081075697`*^9, 
   3.883722035374963*^9, 3.883810670141837*^9, 3.883814402300542*^9, 
   3.884769571462653*^9, 3.8847710607538357`*^9},
 CellLabel->
  "Out[125]=",ExpressionUUID->"e1a93078-515d-4540-8e61-efd727f24f8a"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
  "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
   " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "8",
    "He"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.881038328963751*^9, 3.8810383435032663`*^9}, 
   3.8812010317751303`*^9},ExpressionUUID->"5afa8d22-b29c-4441-90a8-\
81bd28869b4d"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"myNorm1", " ", "=", " ", "0.6514573663189586`"}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"myCoeff1", " ", "=", " ", "25.351749791847226`"}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"myU1", "=", "35.89034438287419`"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass1", " ", "=", " ", "821"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range1", "=", "3.735"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Esep1", "=", "24.81432"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]"}], "Input",
 CellChangeTimes->{{3.881038361675716*^9, 3.881038510654389*^9}, 
   3.881038542239026*^9, {3.8810385811464567`*^9, 3.881038582638068*^9}, 
   3.881202373054678*^9, {3.881204956477566*^9, 3.8812049617064857`*^9}, {
   3.8812051557204742`*^9, 3.88120519865994*^9}, 3.881205241019328*^9, {
   3.881205781955861*^9, 3.881205790558261*^9}, {3.881205869160103*^9, 
   3.881205874137602*^9}, {3.8824212226474*^9, 3.882421226902269*^9}, 
   3.882421273134424*^9, {3.882421312846766*^9, 3.8824213351452217`*^9}, {
   3.8824229615522623`*^9, 3.8824230104073553`*^9}, {3.882423141890733*^9, 
   3.8824231435749474`*^9}, {3.88242332196012*^9, 3.882423328788576*^9}, 
   3.882423489257834*^9, 3.88347327550917*^9, 3.883479579677216*^9, {
   3.883553641142914*^9, 3.8835537245189447`*^9}, {3.8835540039421*^9, 
   3.883554031665704*^9}, {3.883554073329533*^9, 3.8835540897355003`*^9}, {
   3.883722935484701*^9, 3.8837229451382933`*^9}},
 CellLabel->
  "In[126]:=",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiR8He", "[", "r_", "]"}], ":=", 
  RowBox[{"Piecewise", "[", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm1", " ", 
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", 
          "r", ",", "0"}], "]"}]}], ",", 
       RowBox[{"r", "<", "range1"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm1", " ", "myCoeff1", " ", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", 
          "0"}], "]"}]}], ",", 
       RowBox[{"r", ">", "range1"}]}], "}"}]}], "}"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8837230413164587`*^9, 3.883723061116477*^9}},
 CellLabel->
  "In[132]:=",ExpressionUUID->"fe2e92bd-99ee-4847-8c87-958f9c8e2ae0"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiR8He", "[", "r", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.883723094703141*^9, 3.883723098630258*^9}},
 CellLabel->
  "In[133]:=",ExpressionUUID->"11a1b2f9-f071-4cbb-8745-8b989c037646"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI
0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/
P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD
3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0
za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3
nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv
LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty
Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz
cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w
q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u
8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj
oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902
nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI
E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz
+mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9
LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp
r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd
l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC
2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C
zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ
WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW
AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3
IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP
E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb
RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i
oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg
UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A
8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE
MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB
AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA
3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C
bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg
/ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj
B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k
GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj
6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z
wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ
MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF
TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU
7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3
ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P
B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK
3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7
109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi
R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ
Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT
GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT
/PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW
12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h
SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G
cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2
naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ
/yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T
ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm
/jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO
PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx
3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB
kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI
UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E
bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ
wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC
ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ
AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe
LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB
gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps
m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv
ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta
+ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF
z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR
u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7
alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8
i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV
qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95
Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64
KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb
6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3
w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS
T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27
RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj
1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer
+3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA
2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F
zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd
MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV
QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL
N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY
04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/
D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s
3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt
FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM
1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY
46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ
OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab
SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP
VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+
u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs
CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B
NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA
XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219
CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6
EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea
F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb
zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX
7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI
WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c
Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83
cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP
LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD
tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG
FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY
LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577
YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe
YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW
dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv
XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj
MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK
3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai
QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z
Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd
jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn
2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf
zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX
z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt
WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls
nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD
2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7
nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw
w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj
6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN
sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4
VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF
XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl
KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq
+qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm
Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX
FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6
76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K
T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6
8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx
52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB
WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY
9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8
+pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU
juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t
O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w
bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj
LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry
JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8
oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP
a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ
NDieNYT/AXAvkZQ=
       "]]},
     Annotation[#, "Charting`Private`Tag$3439399#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.6514573659417787}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.8837231004454937`*^9, 3.883810676838584*^9, 
  3.884769578140485*^9, 3.8847710668265333`*^9},
 CellLabel->
  "Out[133]=",ExpressionUUID->"7571e114-1261-4891-869d-0b0efc646582"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0440\:0435\:0436\:0443", " ", "\:0412\:0424", " ", "\:0432", " ", 
    "\:0440\:0430\:0434\:0438\:0430\:043b\:044c\:043d\:043e\:043c", " ", 
    "\:043f\:0440\:0435\:0434\:0441\:0442\:0430\:0432\:043b\:0435\:043d\:0438\
\:0438", " ", "\:0441", " ", "\:043f\:043e\:043c\:043e\:0449\:044c\:044e", 
    " ", "\:0444\:0443\:043d\:043a\:0446\:0438\:0438", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiR8HeCut", "[", 
     RowBox[{"r_", ",", "cutVal_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR8He", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cutVal"}], "]"}]}]}], "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"PsiR8He", "[", "r", "]"}], ",", 
       RowBox[{"PsiR8HeCut", "[", 
        RowBox[{"r", ",", "5"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"r", ",", "0", ",", "15"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837231463016157`*^9, 3.883723168424961*^9}, {
  3.883724248255582*^9, 3.883724248801641*^9}, {3.883810683590686*^9, 
  3.883810689266737*^9}, {3.883815507574993*^9, 3.883815529342301*^9}, {
  3.8838170810815372`*^9, 3.883817088629632*^9}},
 CellLabel->
  "In[134]:=",ExpressionUUID->"e4b1105f-d069-4328-b182-1cb800c3aa9c"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3c8V+8XwG0le+/5sX0ipJTuOVJkfJOKUCI7SqLIKCNESVZJQ0hCJaMy
Uomyk73J+BBCZCv8Pr9/7n29X+d57j37OY+U/YWjTnQ0NDRXqI//v5cGar+Q
biUSKpoTk/+MQom2FEE/3S4vaA28G1xWbQfI991esCsUPtDIBMRXe4LPkZxO
+q54cLx01cutOhi4ZgTiVzvTodrI8QRLdSz8KDt8YaGzAFx6b6xmf00FfdJk
/1xnBaQwk7Zrl+fBaueuu7OdLXCOEIuLzCmHSr3nGc3pIxDy0eEHx1oTiP4o
GbNXmYYi/5sFmse7gGb+4v1as2koM8l8sftCF1CYlIzUfKdhsuMJG/lmF7za
/uDV+udpuLzgVj32qQuIa/6X7p+YgbKjxhqPlLrBVmwvXWPob4iOGOalWe+G
ZvJAzKOpWRhdtXfddbcXvuwq/Wm6OQueEWZ/5HN74Z3uPaTnngP1B7MtTNW9
8MD88J+zu+bgvGyL5Z2VXrC/+tF8V+gc7Bl78KHWug/+NKSItgj8gSbMPtAh
0g+852xzmPXmIf9Tvf/InQFQYn5adeTEPDzjeFfnljUAmD42nOw+Dw31Ivy9
5QNwruu8iEriPLhrMFn4zA3AlwOB0UdG5yFPtT/wrtkPuCSW7JF8YwF2Gqtb
FzINQmtji7pywyJs/8zhdb5kEMbP8pteGlwEc93Vd6pfBmGDwdr9w8IiHEBr
p9HGQVDaO/TUVGwJtK7aDyhRBiH0+W/eSx5L4K740V6MfQjUg1mXyziXQebe
o/5k2yGI36H//rD5Cvz2eDn0fmUIVHutDPa5rkCwRs0K0g5DQ9j5VuWAFfju
X21YunUYmLoSf21JWwHmjf+uRwkPQ8C1EZHKqRUIi9J+n7x3GBzrgwN3ha1C
1BOamMCAYdByer9PsnAN4godO+X/DEMr+/da9qo1UO1uZlRaHQbP4mHz9a41
qGdjbJCgGYGcbSwePRtrUKwcxzbGNgISBZYpiUZ/4dndpp99CiOwZXNxY8vw
X+jhQgXPUyPQfV+tfI5zHXI1xBk4S0fgQesLDh/ZdSg8oPpy9tMIWLPL265p
r4N4wn7Fiq8j0HddbIPOYR1cWx/G7moegUEPFh3et+uA8j3J7j9HYPwApUjL
agNIEXS/FjgpkB1ky/z+/AbkZiVTBvko4FbaYwGhG/CmTP3iB2EKTKk2Lxq8
2AA9kxuah0gUmBX+qGG1vgHWZcIbT7UosDKb9DogbRNizmzeu2hJgRJlns3N
t5tQSbwWdjpFAX/nmMNhdZvwoHv330N2FPjXGzYdPb8JtnNzVUMuFAgeKeb7
Lk2DUU2Gu0/4UGAw2GcfF5kGvT59NvvmRwFdcU2nY7to8Mbbq/kaVylAZ/X6
TacxDQ6un9Ruvk6BsMZnxwYv0eC4xB2SaSwFKO4OAdJBNFgw+VrRIIECB7dK
PXWMokH7qetnVO9RgOnAoz/jj6lyXwe7pocUiCyJj5urokE+8Lc9nkmBcYsj
JRrNNDjtavXxWxYFDBfYhi730qBemgPsekEBFtUotbXfNPjl4qPUntcUuJUR
9J1OiBYlaD/n2hdTwEjzLDefDC0eKijqOFZKgS1fjprLk2lRa/1V5s4yqr4j
sr3GurT4nyC3dv0nCuz35hA/bUyL8Kpr5dpnCtDQr9p5mtPidZcjJ2UqKRAo
3TCWeJYWOyZD6IkqCuwpeKv43JsWr13+rf+mmup/3SfnSq7Sok3OZQWRWgpc
PuP1pz+OFu80530uraeA5tzJnbMPaTH48SXf+QYK/Ak+eIUukxatajyqRRsp
4JEquCFXSovbjdLUdZsooKJGp6v9hRbrs/VMdJopMPnp13XjRlqs9Z/9J99C
gSzT9iqbLlpkPriqx9BKAZcfH7d6DlPtXy2VbKay3IUsk9ApWpyYfRwf00aN
x0bcncQlWhz/zZes006B9JiAlkwaOsyTSdfopbKduBNfCQsd6pO+nXHroIB4
7mHLel469FpQkZmkct++3Q/7xelQnM7B17qTAg++SQ38VqDD23Kip99T2dJm
mxSdBh0mZXJ2snZRgH96wYF3Hx3+VGcYPkzltsCBTDkDOlQY/3othMrxrDUT
u83oUNhU7VUGlc0e5asYn6TD6lOK54upzKny8IKNEx0Ge6V/LKNy4/uwggsX
6HDe5n5aPpWjjT0WQ/zoUMaKhz+Jyka9J3YnXqfDyyzyouepvMVdNyDzNh3G
h/0p1KBy1ZrSx+IkOjyqn9o/SdU37CYvbX0aHT7a45wcT+X9wht6/S/oULc4
/KcSlWlyfkb8fkuHbSHGNYVU+z9qN9fSltOh7VcOHTKVA2tLWXnr6FBFVEsv
ieq/vVYZpnJtVH1vkgfmqP5eG78dv3uADvcFebLto3LxFd92o3E6jGkNa75C
jY/mfaOTF/7RYT6nl3AFNb5/5DVTQpjoMe39ndTv1PjnFYkNJXDSo5fhlo/f
vlOA3DnrXEyixxw2roqH36j9wLknu247Pcro6+a4U/MpZ6lyqm83PTo7spJV
qPkmx5/kRfsfPWYUqzEF1VDj/yz4Lc8JerQTCz/NRc3X9J1uK7Jn6HG50s08
8Ss13ub7rhldpkceXxuZcxUUEEgciUp4TI8hHDfOOLyngKDy27CVTHoUFRuX
fFRCAeGKiCCbPHp8WboRUV1E3T+reFm+kh6Zb7CaLBVSQNbE0+79OD1qFNT1
FVLrVW5E96TkH3o0PlG2EJJNAQV/Hovwv/QIyRUf9j+n5nvWO2NTdgYkBfxw
fZROAQ2Gda0RDQZUYfj3X959qr8eNu44tI8B37YvC/JS+4eWeqrKK30GZBm6
leZG7S977PSkfa0Y0H7Y7s/v29R+VRbFti2IAZs2u7+cDKWA6SV+inodAw5u
7+gucaXAkW3jA0mtDLjpU3zayIkCR9NLuv/1MaBnwJPyb2coYNF06nvVbwbU
HQ4ivbKmgI3K01JrPkYk+wS/ajSmgDtFNS7UjhFtlvp+pihT4FwAbfTPs4yY
7L1x6rQ8tZ65WyNMvBmRvoGpk1OGAl7oE8gfwYhFxycph6n93O9RmUvOC0ZM
EssoUt1CgRvHDYmWJUa8tuV8c8TQCAi/aRSmo2VCA0d5aZa+EcjlOb68YxsT
VoyEuV7rGIGOltN5cRJMKH+H9qd2/QiQzC5Jmx1iwm19LjLrhSNQ8d8TpqZk
JmRf3x9aHDoCFq9II5tPmVDIcmPff4EjMMma80k1lwkVAwZ2tV4eAa6GN1fu
VDDh1S1FqwWuI2BnVDd5+BcTNjD90K34bwTW9Rcbv+kw41Yu0lkS3wjEZvq/
WNdnxopr/Oe+U89PEhNNJNmMGVWqe2nOMY2AyVcW3dtOzJibZrzktzwMD/Qk
C01iqPxWJG+iaxh2o3FS/Q9mDLw9cVUseRi8tdNsa0O34Dc/+mxajmEwSmVf
MI7egndiAh6GMw2DNHNgZOPdLThGr5K1vj4ETW0W+a1ZW7BsrFKubmoItnuy
0g80bsG0m86W7bVDMJ7pm/lHeCvetS18WhIyBKd4D0+LFG7FXz+SJSjjg3Dg
95q/xwgLnjm7rcZC5Qf4HUpU+jzFgh/yHJqB/wfkppF7eJZYkO39PWk+mh8g
eNxOu2TLNnRn6moLax2AqeKvy/Tbt2FqVDSjv98AJITGXkq+sg0lvE/I1Xzu
h2E+OY8vbKyYKJVnbn2gD0J0zM4I72ZDs486Um94u+HQ6ZQ/u/azYU3G9erh
5S5gD/513dyEDbdLpNRs9HTBo8rwzFg7NszPfr5jM7ULio1KfzFFsaFcfsSG
jEoXzFrK+Mx3syGTR98LTuiE05cXbzYEsKPm/rnXS57tIJu0X3QynB1rTKQn
TMzbqfreecUcy44XNyVaq7Tbwf+fYtP+DHb8JBNNK0vfDnevn+YraWDHY5xn
voUntUFDXPWTZ2IcyLTybGtBVSvsyU1+c+0TB/Z+X5y4sa8FDnQ2rs/UcODL
H1U34+Rb4DANg4FtCwdeXtB5/JarBRyOenTDKAfmug0nmYw1g36AVFAwIyfG
MM5fLIhtBk+Jpae6ypyYsCPs6f7JJvji8mS60ocTK2f/JRnYfgfDf9rcgQGc
eEhz4GqI9ndojG3T0gzmREZmvh/jPN+hu2RrcEYUJz73KN4NtY0ws+0Sd/gj
Tny6nnGSQasRBPMO7dKv4KSOljl1nwW+wbmVueAaNi4cahsITVurgz0XnfnH
uLmQVRP5z3fWwZbJnhf0glwY+ImS7PymDp71VnYQ0lyotXo1dNijDgY+3lV5
q8WFePGZzfJoLZiGa3el2XIh//bnp+z7akCdO0Q1IJ8LdZuuvX87XgU0txa/
3H/HhSZK+T+b6qqgkd7N+t17Lnx5iJGf51UVuC8eDZ/7yoVT3SWvtnlVQUYX
qdeFOmz2q1sfqln/CvxPaiKO03OjgMvfZT3Rr7CqzDlANufGzArz+yvelbD0
WDhEw5obw7dRallPVsIChyxJ25YbS2/Ej+P+SpiZ13Y7cJYbbU9NGm7hqoTh
9w5L1le50WaQpMaRVwF1xkXskc+48dw+kaae+c/wwP00DC9yoxubY5lNXDkk
9bsO/1zjRtXm13KkwHJINPUOn97kRmmhic+MLuUQoxFZv7KVB7W81zaF9pVD
6N/8ExziPDimaP6Ssf0TuN9i9NTR58FuA7dXnokfQefFy9R793iQxPLN8/Hu
MuiVfPHk4EOqfI3uCIW/DPzvZacsPOFBmiLfgGOL76EoJPPR0WwebBIsWcou
eA/qlqn32ct4sCzR4ZC66ntQZEyMjRjiQaMbH2xvqJYCv21AsI8KL/IatHYy
mRTD2za/INkdvNgtfUVhY3sxHDe6cq1tJ1XuOagkyF0M8TsvB6oDL567duJJ
YVcRsLFeuDJjRuUsct11lyJgKLH3dPblRcbNo0NOt97BHLeRnUUFL/Zz7oiX
/PUGus5JN7lV8yK5ecsZxqY3UE69awQ18CLNqzembG/fQKz/C4msDl5UkXzb
ER70BtSGWX+sTvKi14jTE17+N+CR/93mMQ8fBiWd8Qs1LIRJU/OTFEc+lHh0
pfhyTT60ZJPrV87yoZpKXqpbfj6U0jPtZbvAh1kHVhyvPsiHqKJ3wlp+fOhi
J//z77l8UJAQ7Llxmw8N6MfTLXnywWWmx1L5HR92NGhJejrlASXazsKLmR+H
zOzcNXVywWNSRVqNlR/52U8dShPIhWWD1elpTn5M9Sp02DP/Cljo48PPCvPj
Q+60oNmcV6DmV/nGjsyP1dqVIc6ir+CqkxyP6TF+zEitUDRhfgn8xNR35Sf8
+ODTUkjK32xIfVj8cOIpP0a9adJU68sGxdUwl+dZ/Bj+gXf6Z1k26LwR25Qu
4Ef5e0Lvaq5lg4OS6Xbhr/zYIT/x2oghG/L4C6K3/OJHy47tJEX+LDD87Ws4
qiWAWyX/rEgdzwTRHeIRW3QEUKFmx/iAVibMeH2pUNYVwKScRLUKoUxIXOLU
8TIWwJmtNAx/fzyDgfXs7Zu2AniRwVlfzeMZeLH28QhFCWCRWHHitbgMeKCI
Aya9Avh3JobG/k86nHMfE/YcFMCYduvrt7vTAV5Fn0gYFUBhv7Ox3eXpQFHr
bur+LYD71edTWu6kw/bdXpXODIJ4KNt2Tk81HSr1M7KCyYJ46/ARnU3vNJhy
2OL9JkgQF487Nn7mSYWZlAMfPoUJYttxHSbSxhP43R3MXB8liMaddC9X257A
H9PVh0MJgkj7eOiB3vUnsLx38gt7FpW/hj82Gk4BOt4G/rNNgpjjcYf9V/Zj
EPpyp1RMSgg1u1Yj39o8BOHNegZFOSGU4PDXDNrzEET3bDHVVBbCMtbW7T4C
D0E8L3jEaKcQbgwoyP9qfgCkRxdZrxgKoayUW9fkoQegdunY6ZaLQvj52KWP
HJAM+iQBuhsVQuh0d5+Ol1ESTNgbZO2tFsK/q+/aA7YnQXSa7+HZeiHsWj5P
+5w7CVrFux5YtQthwbdojzO998BOKFlDZVwIhc/+2G/vcQ/82EWcmtmE8ZkQ
z82LD+7CyxXxGhErYbwtbVz8YWsimO4y9WiyEcb2wy9YX88lwJ/LQbzh9sIo
f4BZ70N3AmjP/7CbcRdGzz75etWcBKiaTl0tvyaM/P5mkWdNEuDHsLSyc4Yw
cqQ4anHfiwfub3Ixeb+F8eRXk7Dj++Jg47fas7oFYUzJPjdBkYuDSe69ZZRV
YTyl6BISzxkHFZamk4IMInj+lVjBAUoseFN89UMERXCIIW+N5nYstP2t2TDT
FcEJfd+mi9V3IEnJ/cJ8vAhW1NRknDS6DWH/XY5guy+CAmH3xPaRboOnZ9Bj
+cciGN9prX5kIxoOvUuoP/lcBEexl8xSGE29P5bJf3kvgitnYi9WiUeDtRXb
YCJFBFuaLewUN2+CaOTrI1paopjmqNX1ZygScnJfVa7uEUVKZMSVt5WRsLv9
hdYHEEUN17GuR88i4bh0lugBQ1F8Y+Ik3302EqLLUsfNToli2S1JOfqFG/B3
Ni74fKgorsUqvl5ivwE9VpfyMhpF8WQz4yut0+HgGuwl49oqiiozEp+IA+Gw
lOl5T7lLFH0mzts5K4UD98K5wIIhUQxNPlvEsxwGRjFOh8oXRFE4wT52OC4M
SiosBnuFxXCXu80RtW/X4b6yNiePixieKt7cEWsVCubG32I/uoth+XSfaKFe
KHC7n+Fy8xTDYJEE3llyKNzKieL+7CeGxzZu5BbRhcI1xR7eC9Fi+DQhVs3/
VQg4ygcI1eeLoZ4UHUMBcwjskPkgff2fGKY9ES7UfRQEM/vNnm6nFcdDpIHh
JJ8gyLEflelhFMe714r/CJsFASmdTXYHhzj2f+Pqz2QKAkGp0/I/pMTx9J0O
7ibva7Ahvqm810Acsz0yru+xuAp1wro75+PEsfkh9yLHngBoEn8tx5Akjgk9
hccH+QOgQ1pMkO+ROC57KpEH5v1hSGl1TStTHKet22zO5PrDyp78cv9ScWSM
MXYIkvUHuZNSJnQj4ujuoys6LuIHoQ9pHbg0JXBrf/bqL3lfiHxy4bi0tgQe
/pgqs7nVF2Ke9h/UICTQyHh6dfeUDyS/KFEwPySB5sv9IxL5PpD3/uLM/VMS
yLv/5sG3Oj4w0DvkJxkugXufzba0Wl+GPaIVsaodEpj0eoBIzveGYRnSwESP
BF4tt+LoSvaGKOUI5YwfEqi+sRyhEeoNXXuMqgQnJHCcI2oIjnmDr1XLX9p/
Evg3/FpEzpIXWBtf1JjklERunR7FnP1ecC8yJKVMSxJfRtyvvzDjCW7R6l+F
tCVRYnnxHn2PJxCxI7989kpid999hryvnjCadFB7B0pi8bEV06OPPUHz+da2
Z4aS6J42daHkP09o+Rq39c4pSRwf7xKdc7oA7PTpl86ESiJeNpOfET0PTKuf
js2FSaKHlNqPwaVzsDHTrx5yQxJrPx8+xth8Dn73CM2lRksiW/yDc8Ph56Cp
IO784D1J1N3BdWpszh3i7UOcbV9I4t7KEIaBFjfgr7CztGmTRIcM1YKRd67A
Xnxt13SHJP6dWN9x754rMOU+4r/aLYlDpacnvXxcYTm5q+3RANUeeQeFHC1X
6Lp4xKxvnKr/9PLQ1hIXeCCFRifXJbFwZt3H9qsziIdI6FjJSWHKHe3ba2uO
kOu9RbpfQQqLpWZN2AcdgXCeYz6jLIUZ3BzJB746go1xZaurmhS6r7vKCsY6
wiM+F/cre6SwzVlGz0LeEYRych8kHZbCVQ3VmS2nHIC3dd9quw91/clfc7L9
ZyDjq9wPKz8pZJW3DNauOgMaxRxf+wOkMJ3Hwc/t9Rk4+ngodjRYCvXPhvOS
Qs9AnEu4wuJNKTRvGe2eUzgD7P8aTvA+kcIn+5kSOwPsYKvsqXdHq6Vwp9Tm
vWzqrOgmBEYvaqXw50epKcLgNNSxSQ/QN0jhN+bg7k3p0xC99JPxbZMU8gl6
vKTvtQH2Gm9zgR4p9OiSuM32nw213m8t9E5R5d8sW9d3nwLR/FJ1J25ppJdL
9l7dbg2Bzx5XfeCVRmP5zINpHNbQnxxszS8gjS9/Bj/2mLWClFD90GoRaRx8
q6DsV2AFksdbmhVlpZGW/G7o0G4rkF2e8JzZJY31hp5hL40sYfs+ode+NtLI
9fa3s02UBRTKnP1LZyeNJjlV7GLnLGA3S4lBjL00CnWK5NKZWsD+TsvBDBdp
NFNwYAc+C7C4eJ+r5aI0fnioS+v71ByCnglcUomQxmqbuL6SquPQxMavPZQr
jeErq/sM5Y+B+YJT+Ll8ady8qMF0nv0Y9PS8bV4ulEaJyV7u/MWjQHlu7sZe
Io138xWPJn85Su3/dx/urZRG/dOnhkYdjoKUD+/G3U5pZM3temucZQZeA9yV
RjQyqLQ1zXW3wRGoqTr1IYdOBiPzCf9rGkdA/HVmEQujDGZyB3j3SRyBuqA9
L+u2yiA/h/zRT3OmIC1lf9eIRwb3coT82zxhCs0O+S5GcjJYZPnZWoJ8GNQm
TFmNTGTQRI+73GrFGCKak5lyDssgs7X2q0sdxtBXMkLDYiaDBIv3q+I3xhB5
03ex1lwGo6dR8v1FYxhUfjJgaCtDrd+T5zKmjSDWYybP0EsGlaX2GA5MGcLv
+Whzw/syeL16ekcW8yHo60qzePxABqcaDOdFfhlA3Yd3J+YeyaBk60xKfqMB
ZNwYtEpOk0FhYSHe/fcMwFpE8/REjgy13wQJzcsZwNf9vc5RH6j2+EkYeB/W
h4dxildqh2XwiO+izsibAxDpQ/iJjcrg6VcNRYaPDoDPyWP+F39S9WVXOfft
+gE4Ins1UGhKBk8s1i8pHzsATCVNwWcXZVB2+kaz7rweXBz0jdq6hUSdv125
CnfrgYFq1QNDMgm1fip5VHfqgiXToeNNqiT0KVzcWVOuC279tWwn1EkYzHcr
bSxbF2JufQt23EVC02tX6gMCdaHjZ5tzkC4JhwJqD9HL6IJj6oj6W3MSDpg1
+jtfRgjloq2XvEZCzQ+cZcw2BCSOh4Y9DyZhkNpd59GdBGR+YiC2Xyeh/bRp
yCI7AXXnt+TvjSThX9o39C8/7wOuOo4ki3gS/tIJ13RX3AepoeIO0ZkkTBCb
5vtLqwMf5/f+XW4koXnBm6dF7dqQ1lBkf6yZhBUHGqSfvdOGsGcadbmtJOzK
2qApTtIGwxPKyU5dJOy7JCH/n7U2tJUK72odIuHO7cz71IZ2w2TIqlfuAnU9
zbZjhYu7gJ+zaNJRWBaVAjtaw3drweq4+tFyUVn8bd3N2yCmBX2fc0tEJGSR
tzHFX51eC9K8MyNbZGSRReifkG3jTlDpvCuHZFk0uzp5RcN5J+xPuWQvgrLo
ZBDU9vyhJnioqPc0O8kiWpRvlItqwOVl4TVbV1mk0LAvdtBrQGAFvfCMmywy
3Yt1YvulDrcs261YPGVRVI6HtbdEHbLCrnTv95fFvwflexcs1WG472NXYYws
fne5n7DxaAdY3DbuvFski4dKjUrN96qBjaXmskypLH5t1F5WkVMDRxkxgYIy
WbwsYVArwaUG3iUzFo2fZbH1yo49rxtVIXY0roOpgcrh6SiopAp1+7rafQdl
8VJHt3TbJBn2zTi2WW2VQ/W9PIRYvDLwvzdIL9smh2r3FRyjPZVh5oaSpwS7
HK4YRLuQTJUhRWp22yi3HGoxBkAjqzJsHA/Q8xSVw5veDc30N5Xg0/u4gghV
ObQ7WLGj4ZYi6EZ9jC00l8PG7Ip9t17Ig7BF2ml+SzkMuZwpUBojD3+kw1T8
rOWQYU8DE6uXPKSXGdYQtnIoQqPtL6gtD3SzbZu1rnK4Y8yV/3uNHFRa/PIY
DJDDu3VTzTEzsnCQJPgfW7oc4rHjk3CUBG+mv0o5Zsjhw3OyFhvaJCAVeS+V
Zsrh/vNTb7ulSMBg9P2J6ws59PxwqHpsTgYqLkT8qXwjhxoCud4WCTJAvF9I
8q+WQ9OC0FsevdKgdbR5+OeUHE7Qu0elBElBpkhQEfFbDiMjQ66/d5MCvlGV
6Ltzclj6Ys19zlwKFnwjd+otyeHns6pxz1WkoOAxRKZsUv01L7ig3SsJqhOv
yObc8vi2fby2X0cSFIJvXqnYJY/ty3oqZdLiULb3GaPJHnlMJHanlvwVgyPL
n+LbdeRxIvRGwkSbGFzxWHw5riuPqmvc8z9uiEHNKbshdhN5fMdgEiYxKwqu
2lpGJ+3kkfHLTa+CWhHI/jMkshApj91FLzgCnwgBkfsv6+otefzGmLB45JoQ
tJwV0GKOoe5PoK8/YiMEa4MmR4QT5HFql69zkwj1MP1eFIaP5fFmFadN7QNB
mHxxezo6Xx6j1N1FvFMFQMlJ+5Nsjzxmw5cLe2r54I704bXrffJ45zdJ42cu
Hyz8sN85PCCPuxoHvhYm8sFH6+gXKSPyqBne8OmFHR8cPfIjSWBaHu3v5Pdx
r/GC395wz600CthWILj1sTov1HA1S03LKmCp01h+Rgk3kL+PnjJWUEC3/sP/
MTzlhvjotaRsJQUMdP0DQdHccIqZxO6sqoDx96cyq2y54fc/n7WB3QpoEOI+
nsTMDfzjoq1Nxgq4FvNbQuEUFzh9dA17c1EBLULjbOUEOWHm/KTvwUvU7y8L
Huel54QrYufcO3wUMI1xsGxvHwfcDLxwdCVAAcV8Yg4xRXFA3h4fSZ0IBbT9
tSokO8oO/95dL6t8oIAn8sesTZ6zQfzrlIWWSgVMx3qXs2bbQNRWctyhSgEZ
T8aXPCNvg2fs6b0LNQq4OtDZz8myDYrPP6vgb1TAJsV/WV6VLNCv/DLWuksB
7RTns2x2s4BCVonK8BTVHs0048dKW+FTapvjHJ8izk9kJamrMsOgiZStj6Ai
dj3ameDExQw0q+et/gorou7Yv76P80yw34z5MKOkIhbY37g3UswEVbR7dgkp
KeJCoMvh2QNM0GD/ZKsuoYgZDeH00w6M0ENyy411VkTKnUrnHWX08LfpXRbf
WUX0isi1b02nB9Gr9E8fuCtixcrE6t0oerBpf5SU4amIpuLDRwNP0MNg+Pfg
Yn9FfNAVJFe7QAc/xzSPDcYoYtZg7UfYSQcLWZvLqkWKqF0gcT2mgQbGLPRT
o0oUEXfIsJ0tpoEuhtuHRt4r4hLr/vKTGTTw3k44+V65IpZGsW+PCqSBUMGd
e9ZrFfG+qigj7XYa4Ix0C6zrU0QN84OLSUqbhIpLO40TnRJKp2doSE38I8T5
RLM/Mijh5/lYm8tV/wjOSnszQWYlTM36ITL/9B8xLz6bVr9NCQ98dItxs/1H
lHaw6KnzKaHKkZxRva6/xCF9DN+UV8IbiXWzl5vXCAfZF1sf/KeEVs5z1XcG
Vwj/r6fd5I4ooeCzfJbd5StErBN3fcFRJSztHLViSV0hyp75RdefUEK+0YN6
KnYrBK/cIY71M0r4UvKJpe3wMlElN8pr56OE/2Ja5Y/PLBFKChKSck+UsPD1
wj9umUUCa1qCC9KUMMLgL/d95kXCwjViiMhQwo1ArhGcWiCuZ02nn8hWwlaJ
geV/bxeIPoUy2ahCJZxw05oRMl4gYhStlKeqldDBoD7tU8A8MaeUoFUwS+Wq
k9dvLs4RXQ14kGdeCclXjPZ9+DFHlHvMHLu0qISDfUUeLHVzREyB4UWtNSV8
Up1XNJ8yRyjtoXlZSq+M6cbMrhuGc4S94XmpSn5lFDQT/92VMUu0uRiwtuko
46koZa0n3TPE+62LwjtBGdXM3n1QfjNDpL9IV7ynq4y/VeXKRmNmCM/f6/qW
+sq4KqehO3RghmDzfRPSZ6qMIttYvGcLpgn9CKllir0yEsqe4Zg0RRRn/B1a
jFRGnuTpZZ2gSUJL79Ky0S1lPN90tr3QdpJ4OzTFmnpbGSVMd+09gpNEgfjA
LqN4ZWS++9/0Cu0k8fJ++e2Uh8qYXZ7Lx3hjgkiNDtc2yFXGxJW4S8NJ40TU
JY64+63K6OA+W3yrdYzYwhOZOd2ujL73slbsiseIiHyasv1dyjix8vS2xeMx
ImxmbmyqTxkHZZ6JpbuMEddc23R0x5RRQPXOi3fro4TXqeTxiRVl/BtytPyN
6ihhfYA6K4qr4D0/w3rmnBFivW0Le6WkCj5LyenIiB0hUp1meo1kVLB/WjvL
3neEGIso8bVWUMHTqT0LcHCE8Ko1fe2nroKWdN9SA4eHiZuHA8WL9VUwe4+W
ZY/0MFFq2f5P84IKKu16Hc1dOkjYTJTWlV1UwbzzjHb+GYMEjX/q/QOXVNDu
oi7vRswgof/QXfO4nwom6KffsXQcJFr6ac95X1fB26PPp805B4lJ++29+Ukq
OKYh4vW8Z4AQOX+jZHu5CrKrovngpT4iZtN5560KFXwZXbp872gfQRevn//z
iwpezWuf8FHrIybfMWan1qpgDBPXUv5UL1FKE3afu1UFB0sfG3O49BLWicG+
S6MqWJPImqjj0EPcf++38+M2MvIIPLwvfKWLYD1slS/MTkbMNJJ+Yt1FBA/u
JvtykvF1U8kOg31dhCvjCkmNj4yDWp1atPRdxC5TH950cTKKHzHaLRjbSXQM
e82H7yAjP3vX61d5HQQfy7n8/06Q8SqZY78NSzuRoXfVf9aKjAGh4fHcM22E
+tUYvYRTZIys+TA93dxGHJ7Na+86Q8bPBaIrfA/aiIiOxVWHc2QUcpRvl1Vp
I1bSg/b7h5BROuS7mdCJVqJnb0Jr5gsyyoYPv6etbiZcL2c8Mswl45UAPRPh
183EUu5bp6k86v8vsdAeS2omuKW7lne8I2NMq4wyybWZMN4iJvqhnIwyDg/b
cVszUdaW6djaTkbB0f4B4kQTYcReTPbpIqNB54HZg7pNRJdB7ZJgLxlbEkm3
3ZSbiIXSX5GnB8no7/ewbhtNE0FOU3s1MUnG/97pcR83/06U9ej6RE+T8Vei
5DF15e+EEe8xUJ0lo3lu/x5D2u+E843LzZcWyXi9NqdRIreRWCiPeCCwQkYp
z4SRgbBGInQtyaF0jYz6kawX2082Epya2So262TUDQtSoddoJFLOly5ubpLR
Tqq03oWlkfgfYrUCbA==
       "]]},
     Annotation[#, "Charting`Private`Tag$3439456#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVV3c8lt8bVopUeJe993jJSIT3fc5tZGdTtuwiibJS9irJKEQJISQrFCXK
NyvJzkooihDZGn5+/zzP5/4857mv67rHuc8RcLpg6rqXhoamaPfx//f6ePt/
wjduYzOlmf76ncEy/dnsQWpDvmjuiRJp+ZGtLLB8cGIfikDzF1ILqp/6yPob
l3ykHUpBvccKxaWqYmTxi2wpWx/zEKE73t1sNV/280vDC6sfq9Dmnzt626M9
slrCc5+WP75BRuPj/QyLHHJbH5XuLH3sRXntoic71LPkmjUe5ffkfUEO0Vp3
oqty5bk/1804SS2g6zardprLt46SvBxK6DVWkG/o+v2gd5cUUuS0XhhabCIb
Rx7XnJ9ex4YzZJuWcX+RjTFDmlSyqeKN/NAPezn2QFpBcpQwvZ4S2+0v8an3
acHhvMS4dibleKy5Lta7vh849Hq9fP7jUfZTznVojzgAf3u1lp414lQ0f24H
e385CMVDJ2fOVi2rhFNMznAeZwTh2kQf9opOVR377F9K6oywrGJV2jnQrcoU
9iPSwoARXhFYLcTe9Knea44uTHJkhJxYIKQpjqo+16v/QRfPCI0Fcqn072dV
l04L+a8MM0LoYoj6JTF6iv3lteudV5jgBRfk92SoU0TS1bnnopkg7WDGfHL3
Ccr881tP6JOY4Hx2mspImi4l+I9Et3o+E1x6ePjqeqYJ5U6kPUtdJxPYZPum
5pc4UjqTWx8U8DBDuVqLf8znq5TUpyS5ZjFm6FgbyneMDqdYD5x5MyHHDO8M
O9QDb0ZRvrP/+cqlxQyTZKeUV9oJFNocWckUb2Y4ZZzDVPM2k9Lx+uqL8kBm
UL/x+NUd9weUpC8dBu8jmMH8sKCnmWcehVfM9cKBdGbwYBPmVjtdTJnWqaIR
zWWGLVd14kz9E0rpuZ1kjcfMIORbozF9oZKiUna3+lojM5w2FWnU/feMYkiz
T9uhlxkC7/1dTRFvojibeg+jaWbYF3I7NLv5LcX7ykPBikVm6DY5wkFVb6cE
5g958m8yg4LttHK48XvK65kY6zYaHAT3v2xq2NtD0boiEBq2Hwcf+sFss6GP
8o755cPjB3FgmzM7FDg7SDHOt2xbYsIBNbTeQit9hDJ4fHm+iIgDYcf5XoOx
cYrN+xv4M+w4iHO0kz73fZIycUZUkYMHBwa5UbHRbV8pbutN1j0COEhNYq/t
5f1O+XHdJjReFAdybOVCBv9+UHz41h+qkXFgnJ0oGYItUdaeJrVtyeCgMefz
naMjvyjBOuSFSgUc+OG08gQm1yg0n97izynj4KTTqVNXXbYo0RcdFQUxHCTT
3LJVC/xLOUj323pEHQcft490dnHsoSZl3glN0cYBptIf0zBES2WRkc3XM8CB
Fn+X7/UD9NTM5o62vSY4WNXipLN4cZDKd9p1od4CB1a+jUUidMzU/PkdvJ81
Ds4f2iqqoiFQJcMzFckOOPj7+o9U9VcStZzlmM0XZxyw/hB9F4vYqQolH0Kz
PHCwwstSoibMTa3HzuWbncfBkIoqa6Q5PxX17Ws/5IuDrA9pi80rgtT/3B8s
NPvjIIn9TXvnPxGq7h9lQsgVHLQqnaCfj5GgdiX1KyqE4aBsht1NKUeaai5y
wWY+CgcKQl95d2TlqMN1DGH58ThgH7Snf7RylGpvmJ9vm4iD2SMfpFvElKhf
p7B2UioOln6aZt3+rEI9GzC80JmOAxsWJaqSLKIuHrpEiL6HA0NHMQI3hzrV
L4dJiZqLgzdL1xkY9pygbioU26wV4IAkLaRy1lGHeq1dI+xJCQ58G4OLz+kZ
UGntx/Ndy3Fw/OTJiUfnjKlxvwLbeapx8ELBf9mf0YzKFEtcHHiOA5PLBlI5
3JbUVK4yQmIDDi6f+OUeX2xFZa/QUdJ6g4OB45kPnNvsqPc1v9j8a9nlg9P6
Yqhzhio4fDWs9h0OFt9z0NUwuVCLzrMXeHfjoAAxakhpu1Ol9z5tFx3YrR/W
ylP793lSq9JOLo4P46CD5cSncOsL1OPk74T0cRw0FCTeKZTzpTY0RigZfcFB
fgONSRTPZaq6OY8t/XccsAzLooDwQGrr92dhjfO7/eH62L3VJ4RqcNW0IGAZ
B1srmpVzYWHUXvxCu8w6DiZyr703EIukniqMXfy2jYPuhYs091RiqGMqgsSc
HRyMXXry3KIznur04aXS6X14GNm6YdqydJP6zfmULY4BDzqyGxqvHJKpXpvL
YW2MeFj8HFr9TeI2VeWiG+sMAQ8rdef0uavSqQfmRh7TsuNBatrNpXooizro
ZKQmwIOHVIlq82e2OdSC0eZBTBAP/rf9NnxVHlIvmR/3shXDg66MREpNRiFV
/X3pnmApPJQFdT3fm1hCxWkJpKfL4SG7+kfGB4Vy6virO1I1inj4x1Iyy2FZ
RS1VOvimVxUP6vNKRbYJNdTgimunlgAP+vQCWJFpHVVHYmWeUQsPH7WtC5Te
NFBZ89wjyPp4WLtZnHM65DX1K+cYm64xHpoZUmP9E/6jVqUaP3GzwMOtkIyW
RZE2atjht+pR1ngwAJ9n3Y6dVKNo5aFcBzw0jt8wriztpvL+e3K+0QUPR2MV
bC5k9FHn/QVpP53Fw13v7+ni9B+p9T/TMra98ZBvZFvYxTxKjfM4dIT9Eh4q
zB7SnX7/mWo5Gdp8LAgPobylEvXlU1Rh69XTZtd2+TR+pqtYm6b+6vVY9Inc
xWPpfO3dNUtt0v8UmRiHB3FdsUelZovUxP9MOEpv7uoxLI3s7lmm2lJbytpT
8LDTWMH2bWmVKlmrovktHQ/x2hfObGRtUreOlA/vu4+HZFyfecyPP9S2R0IX
BPPwUJdpqyj/jwZL48/YB4/w4C3xSFBpkxZzuXs4064UD3telQU9C6DH5Anh
Mlcq8XAt/BUNy+1DGM2Ntf8yavHwNUx9j6sCDuuiPWdd+wIPwQdYruIOEbF7
IeM/+5rw8M7J8hjdGVbMc800evktHloSHqqnGHBiKt6tnMzv8LB/SPTB92+8
2IFvqhVS3Xjo4wDROXFBbNCh4oTewK5/4nKq+ikRLH9IeNR9BA/rJRwzQJLA
fE3u+kR/xgMwRcxOBkpj0MFI9/ArHg4/YwtUM5HDmDQisppm8SDNn3q4z0oB
+/RiXXZ8EQ/Oz/dc9ZpTwkoVPFt+r+zWrxfP0CQnBQt+8tmGYwsPDnIBo3cj
AdMRNV9W/Lebz3vtCiIeGhjrg7YYc1oCvGZqXffo0sK+slG5fQ8QoI3h5zHe
93pYVVJl5S1GAoxU2uxsXjPCwhhEtZ8QCLCnxMLzSbgpZhSROdbBRoCoe/sp
KY0WGO9vJt/v3AQo0lKRGky0wub9IunpBAngojIlsXTAHquf37gnJEaAq47U
mJmCM1icq5e8mhQBBH5tv9dvcMEsxyda7eUI0CBW223i4IEJn7KwC1EkgOag
O0Et3wv79aH9111VAuhdiIg06ffBmnSwuGew6096yIOm1Q9LfF3FM3CCAFk/
39ROUgMwWxWxp7/0CEB4LHCTx/gKJvk0SwdnTICH5k6qlw+HYVtk3Li0BQHO
lPo9EhiLwNbvc4YftSbAgk7+IxGOGGyVWURY2YEA1PSBExFf47HlcJlWzIUA
8Z5DMUWWidjiivI5zbME0D5c+5WnJRn74arJqOdNgEK5b7yufbex7x8NK4z8
CFD7+klUr1sGNq1rZWYRuMuXX6DZO/0eNvXCed36KgFGq5JCuZpysM/S3ncd
IwgweG3IwjXnITb2IJDiFkuAyzF297h2CrFhfORnzwQCdFyat11ZLsEGI29G
XEwmwOeI8Tc2KeVY31q6SEAaAXTaCtZwoVVYt3teW0gWAYxEJM+xl9Zg74dL
PSNyCGB7PJqvzqUO69B/xhRXsMtfrprlR1MD1trwuvJmCQEOGId9OeP9GvtP
ptM8tZwATwd9w+54/Ye9zh3cyKgmANf+486nFluxV8TJzOw6Aog6+7RSD3Zi
L6J/UPNfEeAoWb7V4Xw39nxjbaK4mQA8/K2GF1AfVnOWJqq8jQAevp4vAm4O
YlWjB8Vq3hNAlUs55rXXCFZ+kqWjvpcAGRPllpT1cay0ke9800cC0FA2624J
TWHFcpK4ljECOOY1jvTCNFb4UOHpu0kC1LGV9a3OfMcesiDLnhkCNP88UOkn
vYDlxOpuDf4gQLJXSe4c2zJ2f8vs3tgSARpP+m+R6VexTE97NLW2qy92+Ztj
wAaW/slj6ts2AZysg8KLr/3Gbhv5RS/sECBRwtMjkIsGJb++Kr6yjwhMl3yD
dT/vRYlH495tMhDhUV/Tf7e46dCNghTvf0xEuEXOSuL9zoDi2O7j95GIsHqX
Um5lzYSi4x9VM3AQgZVmb/z3VjyK+F15ipmXCNx7mU7/7ieh0PMvt0lCRBAr
G7u+5c6OQj633OcUJ8LIvvb+rnRuFGTSA/zSRBDXSnvwqJEf+TePfhGRJ8LF
zBDOpWwh5HdsJoasRISods5W3j+iyOfRkoQchQg3mrIjy+clkTfH705FNSJs
XItMex0vgzxv7PehaBHBQCrd1ipQHnn8ZSaq6xPh3nj/5dncY8jtAmettjER
lP/0mmRaKCPnSWGrkxZEMLyUnddVQkWOZjJ/TK2JULsgf93NXg3ZvVV+cNqB
CFYqOk/KLTSRtZKmur0LET5ce8j033ttdKrYcNr5LBFe3S49JDGmj8y5rOLO
ehPhwsJE7qKBMTK56Uy+4EcEV4sEqUW8GTLcOd91KZAI9qI640MnLZH+xcCL
wVeJELhAUmYkWSOdLxGksAgi4JTsvUaC7dEJi5vPomOJQE7dz/jz/Rmk3ppu
fSOBCFXuFlvyHS4IKef9TUomwtNww5/f1T0Q5XFpTloaEWKH/37e1PNCo/yP
H5zIIsJe2ZXfFcY+KDitOHv1AREo77Pa2d77IvbDRfcf5hOB/2GFiWbBZfQs
vPCeafGuHtWdpYavgchyIz9rTxkRym5LeS6nh6BVr4eZFVVEWE9zrWVwC0Op
U7l3HZ4RYU3w9a+A1ggkfzong+klEbQYj88ZB0SjnvfZ6Q1NRAAVw4fpIXHI
R+N+mtdbInzTnqalHb+BmOuy7nB1EMGs+Ffi49xbqOxI5u2OLiI8ufnMz3wm
GZ3Mz0gN6tutp+3MKmO522ieIz1FfIgIszJcmkVVaUhi/+2kmMldPDeXxSKL
e6gtOOXWsZndfKYEZCj6PkBuS0mJX+d29azg3xrZ5aL80ZsJ6qtEOCnKLyc6
nI80TBJuLG8SofQxF13to0I01XL9es7fXX+mioPWwUWIvyo27h8dCbrozZ4f
YSlFjWIxsU8OkYDLcZPvWO8TZH8/KsYWRwJuNbofoVfL0R9CZPQhFhKMJP0Z
dIivQFlx4VH1HCQQybRFqtqVSOVfaORZXhJY4kxH929UoiG/axHsQiQQDhi8
/y29CgXMhoS3ipGA5vyeIwESTxGrw5UwfykSVBzbbCx7/BTV9AeFisiRwIz+
CPrEW43M9QKv9R8jQabUkcI7kdVopdH/aqQKCU6WZPJkj1SjlGOXQ+QRCd5x
5HBOCNcgucd+VyY1SJCyMq1v7VyDuvl9g5N0dvlMVjST0muQd5pPEDpJgovX
9oWxva5BjIcvBC6akMCV4qjsPFWDSsPPB9y3JAGBKkWd/12D9DY8/Q1sSKBO
SaNLZ6pFs17nLv92IIE2QUBDkasWxU15XCpxIYHVXb2VeMFaJHba3c/qLAly
b044IJFa1PLe1feANwk0g5QeLQvVIlcNl4vPfEnw50N2hSRfLdpX5+TjFkAC
+qd/7V3YatHDI2cusISQYEtk/CsDYy1Sz3fw/i9sF08TJxxEU4smOOzP+0WT
wNM/gGHfrxoUesvWS/A6CWp3o7E8WYN499t49iSSQPROjHdYdw16GWx1LiyV
BPwVjIbTDTVo29XSY/weCTIiMjK+3qlBd0fN3W/mkmA4NetEe1gNOm5i5kYp
JEFTzIARp2cN8qcYu2SWk+Cr0dUAZ6wGLRP0HC3fkGAqNdw2abIaDXkJdp9r
3Y3PvVBstbUaNbVso9DO3XyosDmhsmqUFPyYr2iQBD4wd68suBrJTh3+vDVH
Avd21excYjXyrvxgd5/IAlMPdA5P6TxFc0YWNl9dWECd0VfZs60S9RZLv9s8
ywL0hOctZyorUT0tnSrjBRbQ3iYuXs6sRPHPajkVg1ggYE4xY92rEonzsY/E
3mSBj1/yViyIlch9ceQ0uZYFfv0873PBtQJ9TXC09KVnBZogR3MFShnynpMS
lD3MCppCrxRy2crQhvbWwgKOFaK5Nk1VVp6gg7Qp0Wc5WYH075LfUskTJBvU
XO0ozQrDBNMrbtxP0FVXUaKRGSvk1ayKGdCXIlZs/gP5AStciegNz/5djHKy
nmfNPmSFD+8qFWTHipHEVpT7oyJWiHHcnv/2shhRqnl2BKtYwdKDrrbtWjFy
ljQ6wvmWFez3fC7X21eMKlirEg78YIW4f2RhCdYipPszQHdakQ2WZpY3BcwL
Ebccb8wBChtwZMh9H1csRIu+/70hq7GBUMRt2Tcchej2Oo7iq88G2gs7tL8/
F6Dxv8VHdhzYALfuqiXrXYB8D48ROeLZgJ3z+e1ryfkoUwLGDUbZoGkxkcbp
Vx7y8pzh9JlgA7sB68ibw3kIPUk4lTq9ix94Nmm4KQ99lR3uHv7JBiLyK9m9
t/LQkeO+zW772EG52GFZQyYPNWvlF4VJs0OcoTFlxy8XzTsf8KsOZYc1c5eu
18QctJit2dAYxQ795hQ64X8P0M/hMPp38eyg/3Fv6Vb/A/TLaCtrMpUd9tyf
zNSIfIA2VOf+Yyratd9G39ebykZ7SZ2sZ7vZocT7FtOP4vuI479b9TwCHKAw
tBVXY5eFOHfe7ZMQ5QA+5mCFUJUsxK1ywEiBzAEvD/cd8WfLQrwVYV/0jnHA
v3FxsR89mUj43sXDgbocICJwbmhOJxPJXjKz773IAa/NLr1iRneRljDb3tg3
HOB6h0rx1UtHs07aRaqtHPB7q3bgypF0lJAbYLj0jgOGNs7veURIR328Q5lW
AxxQ9T7B+8xoGnLkuHtU6jsHcJ79rO7knYaCmLhcexg5oYCDeP1i5h1Uusnb
xmXFCTcF9Z83MNxGRkpG3t12nDBg+Phw+XIq+nU5lBTtxAlimvQaDcOpSHnl
s+OiJyf4jIm9kylJRS0LOVtN1ziBNdgk7qxBKvo8JUh2y+cE5mwXRUJaCiK8
F02s+MkJNm8NosypyejfT9mCjlVOyC72mv0qmozmCKovv25xgq2Ee3gKLhm9
OW00x76PC84/4anS/JqE/L4GaIWzc8HkvoptmptJqP932z8TNS6Y1Qrovth6
C6VLel5YSeGCN21t+TZ6N1HUycsxjBlcwBaVxkMVvol8fELvi93ngpSP1vLG
/xKQTm3qO5tHXDANo9IHnyagTbWXYv+94ILNM0kXW3gTkLUV48Ttr1zQ22Pp
KLFzHXHHlRsrKnJDrovi0K/JOFRS9qR5S4UbvsbFBNY0x6HjA48VGxA3HPWY
GbpXEIfMBYu4NXW5odrAVWz4bBxKeJnz3cSWG17e4BelXY1Fv5eSw85HcMN2
kkT5OlMsGrG6VJHfxQ02PfufKNpHI48wXyGPPm6QWuRrxDSj0XqhTxp5iBv8
Z887uklGI8KqV0jVJDdE3D37jLgRhfQSXXWaVrmBM9UpaSo5CtW9sZwY5eQB
JU87Y9n3kSiDrIwjuvOA7fMduSSrCGSh/z7plScPNC2McT/ViEAEzzP4cz48
EMaVSlqSjkA3SuIJr4N4wOxfbNmzvRHomsQI6UICDzxMTZINfhKOXMSucLyr
5AENgb37qujDkZxQg2DkHx7IfcD5VO1eKFpUN3l4ZA8v6AiPT6X7h6ISp2mh
kf28cOfa81+cJqFIOI9RRI6ZFz69x38qpAtF7AL2Yp8FeMH+1iCh2+8a+se7
Q1bV5oVi7/xIFcurqINT7dhKMi/0ZBHWmFWuoG7ectF96byQOvLUfIL1ChoU
5GFnuccLGz6S0uMrwWhScmtbsZAXFqz77c6UBaNNlcqm4Hpe2J+o7xwqEoxE
bQQM9n7h3Z1natzfuYJQRNYeZ7wCHzB8Kt76IRaA4h5cMBdU5gPDVzlCOwwB
KPHhpxNHMT7Q01/YOj7vj+4+rhO30OEDi41PX/gq/VHFi4uLGbZ8QFK/fqKG
4o/GRyeD+KP5QLVgqbfP+jJS4X6TJDPIB+nl49jdSj80JSQ8PjvCB1ebrJiH
7vqheHIMOf8zH8j/24g5GuGHhlT0Wthn+eA7c/wkMvNDAVa9v/f84YPf0ddi
StZ9kbX+xaNzOH4gUEYkStR9UVpcePZLRX4ojcl4d2HRB51LkH/LocwPfBtr
abQjPghL+vLDX5Ufhscy9lW89UHT6SeU5YAfnpttGpne90EKjxj6C3T5wTN3
/kLdSR/U+zaZ4ZYtP3z/PsS97HoBMdHmXToTwQ9w2URskfs8ottqNFuO4gdv
AdnPE+te6N/iJ/nwWH5of21otr/HC/0c4VjOSeAHxpRMr6loL9RdlXx+Io0f
1OTwtjPLnijFKdzN4TE/qDaH7xvvPYdY3zietuvnB+d8maovtR6I6fk1pYVB
fvg9+1cuLc0D0ZXdY706zA+T9fZzvv4eaOPuUP+98V09Ys7iJYoeaOiiscnY
913+CxuTDHXuKFMA9Gz+8sPTxb/+Dm/dEG84H8VKVACybynf3N52QWV+BwQ/
iQvAc4ElA6YJF4S5LdOfIQtAPoH5ruZbF2Sn39znISsAnn89RNiTXNA9FnfP
QBUB6HcT0rAUc0EcJWWZ6YYCsHVUZvGArTMi9VG3Bvx319v8WBb5dAblvxX9
bBUkAIfFTocpt5xBR58zv/10RQDyiM5B58rPINP7k0nTYQKgdTaaJBxxBiW7
R4uvXRcAi97p4WXxM4jpT+cp0gMBeKBOd/vjFUfEIGJba9oqAMcEdtKKd++i
5ziQ3uN2Afj2SmAe07ZHHYyC47SdAvCePmx4R9AeJax/21/TLQAs7N6ltKN2
iKnNz4JtRAC8h/huMp602+33G6uj87vf35/u+3vcFnFX1su7EgSBVvSu39YR
axRScL+lgSQI+mKFJ3KZrdGnu2HWrGyCUPot7L73khXKjtCKaOUShIkacXJQ
lRXiN+/tkRARhD3StZM6x62QyMasz6KSILzT9Ykq1TuNjlA5ygPsBAFf89PN
Lt4SPRU6+3uvoyAYlLQw8XhZouMH67QTnQSB4yNX2V4jS6T+8fREvrsgmIg7
MyEWS2R5MQPfe1EQGrLU9gQ8tEChBWyXpGIEodUueayuxRx1M7IqT5YJQvTm
FlVXzAxZrLpGe1UKws7Fo3TnmczQyEhNz8ZTQeCbGyVUrpmir48szjHVCcKd
SgnTu/+Z7u7/d7JUmwVBy952ctrZFAn4k/7d+SgIh8uGavSLTJDvOKFZj0YI
JBlyPY5rG6O2FtuGkr1CEFeJBV87aox4ywufHdwvBIWEK35jfMaoI1SltINB
CFiZxUwbl42QoIDTHT2iEKgyh//ZOWWEepwr3fVEheDZ6dfWfNKGSHbW6LCe
gRAYaBCarDb1UUzPXboSQyGgt1Z+cmlQH43VfaE5aCIE2EG/J8+r9VHc9YC1
dgshSFgA/hcX9dEE+cG4roPQbv/aeOUv6KEk78UKXV8hIAuo6I7P66KfKwkW
uhlCENm6IFdEr4PGhnIt72cKwXyn7grXD23U0VB7avmeEPD3LWZXdmmj/NgJ
q7u5QsDJyUFST9NG1lwK9rMlQrv7TSjHiqg2eqs+6hbfsKsniE/bz1ALZSVL
BLZPCYFxwBrlS7UmivPHgnimhcD+Secz3XuayN/GLPjit12+TFJe7yM1kbHI
1RCOeSE4tfZunWymiejqusPOrgmByEJsj9qKBro4ERDPcEAYZKU88E+PayBt
mZZMXWlhUPwm6d36UQ2dptMx75YRBv+na8famtTQuU/tjKfkhSGM5UbuTLEa
SrzxPsxFSRiMrgW+uxKihga/9buFqgnD5JV2HVohNeSS80W+xkIYxk26gt0u
A4rA73nHf00YFBpwL+ntMHT7e0TUozBhCJW94zZ9DEOFjfuwI5HC4LRgFL7G
hKGO8wcqVeOE4feeatrS11SE72BOt0wRhh+UaAVPCSrKieB1TigUhlSeBZbf
eyjo1Yrq740uYbCoqn74bEAZ5XY+czLrEYY3mp2CBbXKKKrgaEdZnzAMFf2j
eZ6ujHRPke+6DgnD2CU+sZPWyqi/nlOpb1IYjh2hp8pOHkdz4Vu+Zau762kO
mT1dU0KsuGdzLpwiIBky2Bd9XBFtfZc3beIWgZ/Ww6ROHkU09rqsjotPBEhd
2cHytIoo168wrldIBA5y/OFw6DqGpD7eEQVpETC5Ohd41O0YUs++5MQFIuCq
Hdr/KEsBeUvJj/S4igBYNv1r4j6KLm9wbjt4iMBXGqa1QdqjKOQNLefiORGg
S0tyZfwhj26cHrA66CMC3KLEw6N18qgoKnBYPVgEfp8QG109LY+mxl4NPU0U
gQ/uGan/7skhy5v6H+88EwGder16C1VZZHdaYUOoXgTedilvSInKIhchHraq
lyJwmU+7nQ8vi/zqFi27XotAX6CcSnmXDEqaTh6k69y1o/OAXVIGdVCHBgIm
RODS4LBg/5w0oi669FsxiIK8KhHjSSEj1hfaeS8PiYJshrhLgg8ZLcZK+vAx
icKmdoK7sBEZZQssHZomiILi/iuo6zAZ/TO/ouHDLQrX/Tp7aK9LosYXyVUx
MqLgeOKNXOcNCaQW/yrpqYUodBW/od54LIY4LXPtWU+LQvjlQrb6RDH0SzBK
KshaFPapdNId9hVDeS912zAHUeCiUQ5mVxZDe5f6d9o9REFuxoP1Q5soarb8
4T1xRRTudMz3JC6KoBPC7CcZ80QBzMznkKkwql54K+CSLwpZXiKW/5SFkfAz
v/X6QlFQPz9fMywgjPbpfXjg8VgUfBp0WmeWhdCbCzG/mqtF4ShbmZ9lqhDC
XqymB7eKglFVxA3vUUGkaNoz9W1eFGZpPeOzQwVQIVfoM+ynKMTFhUe+OCeA
WKalEu4si0L9423PZQsBtBoQd0xjXRRen5VJfiQlgKruo7jsnd14rbCvKo/y
I5nZJ9IWBDGoGfje/onCj8TDrge+URKDgQ0NqZeCvOilasF+AxUxuI0dz6n7
zYOMNxpTBihiMBsRmzrbz4MCvddKv6uJgcw2YeVzLA9qs3WcZDIQg9p9BlF8
S9zIQ1lRz8ZRDPb/d923qp0LFf+a5FqNE4PhZ4+ZQx5wIKzsT9HVG2Lwfn/q
mvE1DtR7lk2RPnH3/1Tad8Z2HGh7wsCYM1UM5pUC3Lq5dofph2dRcF8Mrrfg
7Noz2dHc45sLCZViEC/vyeWXw4YkXZUbRUbEoBj9d0GlnQXdEjTcjhwTg1s/
hY9+K2NBq5+djk2Ni4FS1/jbp7dZ0CvrhMfZX8RAIbqz8bEjCzI1/pzOtiAG
TrcqxwjbJBSkGu3DQCMO/VXsDPflSagN3yOwICIO9a4zlfl1BCT9YdpWX1wc
zn0yPLnvIQGlJGynF0uKQ4jHLxSaQEC29MJMbjLikJIxX9jiQEA///hvjx8X
B+1wz+/p9ATE+p27r1tfHLYTf/KJ2+KR6yuPqOqL4mAZkewgyo5Di+fnAk5c
2vW/wW5OosWhQB4vz0F/ccjdP/FSdYwZXQ+5YLp5RRx4/BN16OKZUYWKPz8l
RhwcfmxxiEwzoT+1kS+bM8XhVOWMtcEjRpRSnr3a2ywOefDO/azJIcTtwP/d
uUUc9tuk1BVIH0IFTHmjq23isDX+8RPu4CH0/HzBG9YuceiW+FPk23wQfSKX
JlkPiYOjxEqR3fGDSLyoTmpqflePQq7+fUkG1JjT77LMIgErs0Xp8jL0aMJA
wMGfXQKG7h1LdcXTI5qt81a/OSVAbebP2KsVOqRuQm+4n18Cqpxi0748p0Mt
e1SUOCQlYDXE3XBJkw51Oj1gUMMkIL8zmnbBeT8aET5XluQmAV9vNbvJvaRF
v7tri1jOSoBvTJlTXx4t4r5K+zDTUwLebM5u3YmnRXYD99LzfSTAiHfKNOQU
LZqI/hD2PFgCModCRdtX96JvMwpmE4kSUDTR/god24tWi3Y2ZJ5JgHIVX2Ri
Jw2asdTKia+TAJATYjz7nAYN7bup8+WFBKwfVm+yyadBLxw576Y1SUB9PNOR
+BAaFMF+TOVvuwRkyHDv33OEBuHizoV0jEnAUYsTa+mSO5iU+wCN615JEMzL
Pyow+wfjZeEufrVPEl6vJNldbvmD4ZqdTNjpJSGn6DPXysM/2ArvUu67Q5Kg
+epc4jmHP1j94EENeRZJkDIumdYY+o3paEH0jpgkxN7uWLrcs405izxmyDwp
CVZuy623Jjax4Lf250SNJYG9oPLg8aZNLMmV8K7KVBLqP05bHczZxF4WBCW8
OyUJLNMnNKQcNzGSqA7z3zOSUMr/4LTD1AbWIjpNcvSXhD+JfWLmi+uYpDgf
v+gDSXhavvqHILSGQVtvWFWuJMRo/yZk0K9hlh4xk1i+JPwLwX+B+VUssmgh
71SxJPTxjW/8qVnFxsRfisQ/lYTZc4qLHPqrWKKEFXm+VRKctd/lNl5ZwZYl
UxWrlnbtFpvI62vL2FAnnCCuSIJ0oB614fMy1uS9aHZpTRImxp55H+xYxhKr
dC8qbkvCg9aKZyvZy5ikCk1pPS0Z8vTpPf7pLmNOuucFmlnJwG7C+3Mofwnr
d9c+3E8hg208WfHB8CL2gmGN8xgig6xJbQO5ehHLe5wnkaZGhp8yoi+nExcx
n59/tU5rkWFL9KjapOYixhhQHT5mRAauQwf9lqoWMK0YgY2vTmTAyD7RkD6P
Pc//PbkWRwbi3YUNSugcpqhxaUPvBhnOd58deOowh9VMzh/OuUkGPiMlVWOY
w6p4x5X0UshAf+fkwuaeOaw0o+lmdhYZipvKWPbHzmI5CdHK2mVkuL2ZfGkq
/TsWf4k5OaOPDM6eS89v9M1gB4hxhQsDZAhIK9p0fD6DxVTSvFQfIsPs5sOb
lvdnsKjF5Zn5MTJMCBXw5LnPYNc8+ilqM2Rgk7n1uPbvNOZre/f77CYZfoeb
NlXLTGPWmrtnRV4pSAvSfUdf8gX723+AqZlfCgqySwbzk75gOa6Lo3pCUvBp
QbnIKeALNhNTF2AtLgX2OSOr6MQXzLfdqDxIXgpO732fEzI1hV03DOF9riUF
xSqKp0cEp7D60wN/FC5IgaRSeQKhfgKzm63veHlRCirO73cMzp/AaIJzMjQv
SYHjRTXSv8QJTCvLU8E8SApStfJunXaZwHo/7fHyi5SCm9OPFixwE9ic05HR
ynQpmDnK5ftoZBzjOh9bd6RJCphkwGLi0hiWuON27MYbKShNqN9IMx3D9qZo
VX77TwquVgzM+suOYXO1+4tz2qUgkQ6/Xjk/itXTRGUQ+qRgov6+PrP7KGZ9
OyxgfVoK2m4fvk1xHsEyXgQde3VIGohsWRmcgUPYYUOrSk4maYBCPcEH1kNY
2MRx6QCcNJR318lpU4cwj/2bwrIs0jCh+FFxD+0QpmTkT8rjlQZeY73j7Ekf
scEp35VoOWlgZRoqf1IxiLEc9Ko8eUoarkozq9sdHMDyNa4GL1lJw5WI6BTC
Yj8mfzVRI9VWGuLaGhYWevoxw6WKgaEz0vC6inuTJbMfixlc23L2kgYOF7EB
Eal+bDMvVD04XBoEwz+YcJzqw0ZUU/sKH0uDSPTUiz2tPZjH5fx7umXSEHhF
w4CzvAdbL6txna/Yxb90cI9Zeg9GEBzakKuVhsQ+IbKwRw+mf4CHu6FJGoSc
swbgUA/2sr/QpW9AGtinP41jp7oxPabn0v5D0qD9UXPphFo3NqTdvs4+Kg29
t4VvniN3Y6v1P+LsJ6QhOCir4xBNNyadK/tkdk4aTtZqEMwtPmAvR9T8Exak
4cdtfjN58gdMj2SGZJakwaLsk4rung+YW+zlnktr0hDZXtLFV9aFrTbFZLJt
SoOAT+qX8aguLGI73bl+Wxq04g5fHLDpwnAKxVJ2f6VBLSpUivZoF5Z9vn5t
Z0caHAXq37kf7ML+B8z92vI=
       "]]},
     Annotation[#, "Charting`Private`Tag$3439456#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.883723169543371*^9, 3.883723187493306*^9}, 
   3.883724249554368*^9, {3.8838106789301033`*^9, 3.88381068998208*^9}, 
   3.883815530570366*^9, {3.883817081645289*^9, 3.8838170890039873`*^9}, 
   3.884769587923189*^9, 3.88477106902424*^9},
 CellLabel->
  "Out[135]=",ExpressionUUID->"2ecc39e4-7790-465c-9828-db1bc6d51be0"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:0438\:0437", " ", 
    "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:043d\:043e\:0439", " ", 
    "\:0412\:0424"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiP8HeCut", "[", 
     RowBox[{"q_", ",", "cutVal_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["p", "q"], 
     RowBox[{"NIntegrate", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiR8HeCut", "[", 
         RowBox[{"r", ",", "cutVal"}], "]"}], 
        RowBox[{"Sin", "[", 
         FractionBox[
          RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "500"}], "}"}]}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"PsiP8HeCut", "[", 
    RowBox[{"500", ",", "5"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837232791240273`*^9, 3.8837233426423063`*^9}, {
  3.883815540588266*^9, 3.883815556769533*^9}},
 CellLabel->
  "In[136]:=",ExpressionUUID->"12b6b67b-c03b-421d-97ea-f2051e4c3776"],

Cell[BoxData["0.013629435562668211`"], "Output",
 CellChangeTimes->{3.883723346036049*^9, 3.883724252996694*^9, 
  3.883810694126998*^9, 3.883815557634583*^9, 3.884769590420074*^9, 
  3.884771133868091*^9},
 CellLabel->
  "Out[137]=",ExpressionUUID->"ff64a096-c4d0-4e66-ae91-449e7a8871f6"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{
  3.884771123945363*^9},ExpressionUUID->"871ac6c5-4f58-4baf-9618-\
135d4eb7eeae"],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"data8He5", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "5"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He8", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "8"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He10", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "10"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He14", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "14"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He18", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "18"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He20", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "20"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1800"}], "}"}]}], "]"}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.883723310084149*^9, 3.8837233122758293`*^9}, 
   3.883723350497587*^9, {3.883815582683811*^9, 3.883815584554695*^9}, {
   3.88381561947631*^9, 3.883815640181409*^9}, {3.884771080246582*^9, 
   3.884771125002054*^9}},
 CellLabel->
  "In[138]:=",ExpressionUUID->"bb3960f3-8cb7-4917-b64f-e3364369e663"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \
\\\"5.2761532752174853388993369662784971296787261962890625`65.954589770191\\\"\
, \\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0029408280607919157`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.205249645663323`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 138, 79, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"578e879d-ed0f-4cb8-8782-524149187443"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \
\\\"5.2761532752174853388993369662784971296787261962890625`65.954589770191\\\"\
, \\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.005878719760945554`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.409697248672121`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 138, 80, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149846881*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"dd88730a-a130-4b56-a74f-cc102a1009f9"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \
\\\"5.2761532752174853388993369662784971296787261962890625`65.954589770191\\\"\
, \\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.008810742182972333`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"6.6125413341748335`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 138, 81, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847711498982143`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"06dfa33f-66f9-49e3-93d6-4d14c11ca09f"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 138, 82, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149907778*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"4165fb3a-ba16-437d-9a9f-345d05364811"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 138, 83, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771156275343*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"8029ee35-80cf-4eff-be91-1b24c8a0b35a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.32728553751996`\\\", \\\"}\
\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0002053152607151166`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.0537230001754844`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 139, 84, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771268992255*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"e9f0ead4-330e-4f42-9110-13d6a28ae8cd"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.32728553751996`\\\", \\\"}\
\\\"}]\\). NIntegrate obtained \\!\\(\\*RowBox[{\\\"0.00041018968667778385`\\\
\"}]\\) and \\!\\(\\*RowBox[{\\\"4.104088979650447`*^-6\\\"}]\\) for the \
integral and error estimates.\"", 2, 139, 85, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771269044682*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"52b91d88-8a4c-43ed-a2a5-a848d01fd270"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.32728553751996`\\\", \\\"}\
\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0006141834544434143`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"6.147746391260976`*^-6\\\"}]\\) for the integral and \
error estimates.\"", 2, 139, 86, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771269094839*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"a4441929-3c50-4e73-b666-7e6bc55348cf"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 139, 87, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771269104821*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"811aecf8-e49a-4509-99e5-6adfed7b5010"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 140, 88, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360788068*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"f15a8dcd-fa86-4aea-85d0-c1d667aa4a51"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.250043297516262`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00003244162468533845`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.3433154188033762`*^-8\\\"}]\\) for the integral and error estimates.\"", 
   2, 140, 89, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360797814*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"b612c6dd-2502-4a1b-a882-cf8cc01d471f"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 140, 90, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360841082*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"e1be4e2c-c0e2-4c30-a8bb-950198c57400"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.250043297516262`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00006478039567389461`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"4.679967288409439`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    140, 91, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847713608515987`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"58c8030d-74c1-4e42-9517-55e45e48e8bb"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 140, 92, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.88477136089585*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"17c96323-51b9-4d83-938d-fd072cc65a11"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 140, 93, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360907577*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"361c6bb1-1c0d-48d1-8d21-2d4e44389c83"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.250043297516262`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00009691379948691855`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"7.003307821318118`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    140, 94, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360917013*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"e36ff5aa-6408-43f1-8db0-fa191b68db99"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 140, 95, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771360927953*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"05c05dd2-b2a8-47b3-9fd0-5a04a53ca1d8"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.07362537598696`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"7.393402187957511`*^-7\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.87773496711368`*^-10\\\"}]\\) for the integral and \
error estimates.\"", 2, 141, 96, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771454241901*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"45d851ef-de7e-4214-aca4-f64bd84175bc"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.07362537598696`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"1.4743679655144378`*^-6\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"9.73727190158072`*^-10\\\"}]\\) for the integral and error estimates.\"", 2,
    141, 97, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847714542904882`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"bb900c77-be88-47c9-b093-e20f55c44fad"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"14.07362537598696`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"2.200796466121101`*^-6\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.4560487875705847`*^-9\\\"}]\\) for the integral and \
error estimates.\"", 2, 141, 98, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771454336025*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"cc65cbd8-6854-49cb-9f51-4a2d9a4ce127"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 141, 99, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771454347117*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"c75e5106-7af6-45b5-ab88-815fcdbd3ad4"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 141, 100, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847714563181067`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"82805e8c-4626-46a5-b2fc-e26bd1055645"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 141, 101, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847714584790897`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"124faa9e-914b-4ab1-8c38-445ca45015c8"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.680638616040756`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"1.5644989197704066`*^-8\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.7102052267043455`*^-11\\\"}]\\) for the integral and error estimates.\"", 
   2, 142, 102, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771547606245*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"70090373-7d8d-4bfc-be5c-c6b34199dc30"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.680638616040756`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"3.1144242179832224`*^-8\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"5.397884990871931`*^-11\\\"}]\\) for the integral and error estimates.\"", 
   2, 142, 103, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771547650462*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"88271847-07ca-4dbf-88af-3b522d4dd642"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"18.680638616040756`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"4.6353397751374164`*^-8\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"8.040701036512545`*^-11\\\"}]\\) for the integral and error estimates.\"", 
   2, 142, 104, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771547691696*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"f2b5fda6-ec29-4adc-bb95-9a46b2d84f54"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 142, 105, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847715477017927`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"d99cd4ea-3d3b-4511-b39a-a3fe552f03bf"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 143, 106, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847716334108152`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"8f43639e-9d7d-4e64-84bb-9e76e292046f"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.070297633928053`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"2.234766417366056`*^-9\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.0133947342522731`*^-12\\\"}]\\) for the integral and \
error estimates.\"", 2, 143, 107, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633420506*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"16e74748-ecd9-4ab9-a273-c97debf5794a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 143, 108, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633460814*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"ab914f21-3d64-4ad7-bcf3-40576d8576ca"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.070297633928053`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"4.444138512275873`*^-9\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.016502619467315`*^-12\\\"}]\\) for the integral and \
error estimates.\"", 2, 143, 109, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633471346*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"253b3607-25a6-4f82-bc33-8b07501bce9d"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 143, 110, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633508753*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"219aa988-93a2-4472-b1e5-bafe351ca40e"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 143, 111, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633518948*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"a9ed6d42-63c2-49d4-9921-a6c28af23380"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.070297633928053`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"6.603013510647513`*^-9\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.99914134678313`*^-12\\\"}]\\) for the integral and \
error estimates.\"", 2, 143, 112, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.8847716335279703`*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"258493e5-610d-4fbe-855c-a2929e8725d3"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 143, 113, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771633537706*^9},
 CellLabel->
  "During evaluation of \
In[138]:=",ExpressionUUID->"db0c9881-6d18-49b2-ae77-c9463877cece"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiP8He", "[", "q_", "]"}], ":=", " ", 
  RowBox[{
   FractionBox["1", "q"], "myNorm1", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass1", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
          "range1"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{"q", " ", "range1"}], "]"}]}], "-", 
       RowBox[{"q", " ", 
        RowBox[{"Cos", "[", 
         RowBox[{"q", " ", "range1"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
          "range1"}], "]"}]}]}], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", "q", ")"}], "2"], "-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], "+", 
     RowBox[{"myCoeff1", 
      FractionBox[
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         RowBox[{
          RowBox[{"-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ", 
          "range1"}]], " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"q", " ", 
           RowBox[{"Cos", "[", 
            RowBox[{"q", " ", "range1"}], "]"}]}], "+", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ", 
           RowBox[{"Sin", "[", 
            RowBox[{"q", " ", "range1"}], "]"}]}]}], ")"}]}], 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", "q", ")"}], "2"], "+", 
        SuperscriptBox[
         RowBox[{"(", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], 
         "2"]}]]}]}], ")"}]}]}]], "Input",
 CellChangeTimes->{3.8837229434769993`*^9},
 CellLabel->
  "In[144]:=",ExpressionUUID->"d559092d-edc7-4d06-a702-6eff5ba0a662"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListPlot", "[", 
  RowBox[{
   RowBox[{"{", "data8He6", "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.883723371354705*^9, 3.883723373426491*^9}, 
   3.884770051716117*^9},
 CellLabel->
  "In[145]:=",ExpressionUUID->"6e0c70ae-f2e7-4846-95d3-a013dc639521"],

Cell[BoxData[
 GraphicsBox[{{}, 
   {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334], 
    AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJw8nHlcTV/3x6+EKClC5igkIYQyflBKSvNAoVkjzfNwm2/znbpDQuYQMnwJ
IXPmUipDJCFEUcj83N+rdX7PP8/r/T3tu+8+a6/1+ax9zjXRfauNlxyLxVIY
wGL93//3/q9z2YtBHVli3QfL6D+gftrO8aunMqwAw7ozW0LGM6wCxZNlScOH
MqwGzu4Y3XlyDKtjuZVI9dGn+8Rj8eZJ284fDQxrYMz3taolFxieBEfDDp83
OxnWwlmYB59PYHgKSgtHnpu5nmFtHLa5UWA6h2EdRC5qGzF0AMO6qBy1cnBB
4z3imdD/fELu2X6G9eBzr3rBl2CGZyMsyq34lSHDczD6QO6Lir93iefij8Hr
ldmVDOuDh1lXXRIZnoeTUoVvyxYxPB/q722GGXXfIV6AlO/hH6IOMWwAoXX4
q08bGDbEX+dnHaeVGV4IuUfJ+S0Vt4kXYX0f3RspPgwvxs4TciOPqDK8BJd9
uhOCy28RL8Wyxo9bWl0YXgaW9q/ro/5VEQOOWHtn8k5iNtCeNUN73BLm+nL4
c+69VHt8k64vR/mekbaTQolZKzDoiOsUZ0Xm+gpwfVQtH+26QddXYte2lX0P
zCdmr0SknMN/b25dp+tGaCiIHnzYmZhtBO/Uha8GtV+j68bgLR2wYFwsMdsY
gz6dmf5Dgbm+CvKH1VmnC67S9VWYfDZKwX8iMcsE7MHLS2aVXqHrJki3E64Z
M5+YZQrHvT9djS9dpuumkP892va6CTFrNbbvSU0+8aCSrq/GwdCsZVqOxCwz
POvx4HhUXKLrZtD8GOTSeusiXV8DzaMbv/TUX6Dra2Cxy/Pz/VcVdN0cCt+D
9gk6z9N1c6wWy3eH/jlH1y2wrWGNddEgYrYF+veN/M9A/SxdX4u+Ynt+2JRy
ur4Wi7rm34qZd4auW2L9sGG7wo1P03VLtF/9U5Hn8B9dt4LjtjdDO3xO9TKs
UP34QMvFuJP091ZYr+N9ZDL/RC9XWuHjyJUzzA4ep/HWGNziYWFzpYzGW+Pb
5iKjG+eO0XhrWMwzuL786xEab42EpyqVG/RLabwN6kMO9tkUdYjG22Db+GGh
nMslNF7GfzWVx6gcoPE28Nrn9dDecx+Nt0Xzn/Pnwi/uofG20GS51m8Zv5vG
26LbYv7BQWnFNN4WH+7emxbQup3G2+HTs2tWa+4W0ng7ZPhoZY28IqbxdrA5
emj27BtCGm+Himl+s7sbeTTeHs4aiz9v/ZpL4+3B2vbg7Q5HDo23x3qb1sFD
HyfTeHsMnf943LnuGBrvALee6DdqUUE03gHOc8c/e9btROMdwPIMUQ1rsLjU
O94Bf2LqrH4/9+tlliO0alreHX4R0cuybOYNUBq9qR+7l9mOsFq3raZ/VCqN
d0TdI+uI5JscGu8E3Wde7tyuHBrvhKQ/ap2/4rk03gmbrefkGAXxabwTHni3
tsNKSOPXIXiG3vbb40U0fh2eXV+v8OmJmMavQ4+fqdaXVCmNX4dF++9k1I3d
RuPX48Zt5U+i3UU0fj229VyasmzEDhq/HpZ+m/o1RO6k8euRHP9s6mmPYhrv
DPPuKnuO3C4a74x5gf32RkqI2c7YzeM3xU3eTeOd8cvcfs2xg8QsF4hzFMdN
mLyHxrvA5O2aZc/FxGwXPFy8zoolt5fGu6Aqq0xY6EHM2oAxOfYfrlYQYwNi
TrZcFg7eR+Nl1we5KUx1IK7cgE9h7VoiETFrIzoatd/+vU+MjRiSmxOb+I8Z
vxGJcakbF2jvp/EbMd8ywtJkNTFrE+43711Z406MTfi+9JdTTxgxexPYTleq
mhOZ8ZswOtz4ybEUZrwr0pcdkWSziTVc8b6P7pltEcznueL49WljFLyJXV0x
srvwwo+1zOe7YuoxfffC2cTFrljV/CtTTZmZzxXRRU1eglZaT7MrIm3tbq34
j1m/GxKkvmMt2cQabnByNbV+bczcDzfcDfj6cE5/Ylc3KFgoxHpdpvvNll33
G5p6OJK42A0D4+ri5k5j4uWGfc6iRbr1FM9mN/z9s6fmWgIxyx2XxnxJ0NUk
1nBH27CP+/hXaX/AHWUBYZemuBK7usNqeT9L9R/M/nKHUc3wBlEecbE7VM33
3qvRIK50B57+5PYco/3a7I7bDw+5LFzM7F8PrDyaFJ+TTftbwwMpGzaPFklp
/8MDieXjz3zavZ3m98DdQRUvvxygfGHL/n5ycezfEsqnYg90nl69P2B/Ic3v
gbGzD5WJiyn/mj0Qks7q91gsofk9serRopGZOZSvGp4Y/+Gt7b8EJp89sWbD
viH8rQU0vycGXJsZKdpI+c/2BD+uPdHVXEDzy8Zrqz9eYcjUC08s6g5qypvM
o/k9sT0vKU2oSvWF5YVZPztPGf3Kpfm9kFM7pXZQXTbN74W5kkVBQ49m0vxe
eO7aP6gjM4Pm98K10PfRc3zSaH4v9D1k1uqzOoXm98KBp5q7xs5Movm94Oi2
zbFkRgLN7w3T5ssdWgoxNL83ik1TrxxpD6f5vbHfesfChc+CaX5vRL46cyrs
mD/N7w3+ug9GMyo9aH5vnFiwvf1SoyPN743P21t+/a4Hze8Nxe2zbfNVFlH9
34zNv302sk7a97LGZvjU2X8dMMud9GAztLptI+e5+fay62aoqOoG2CwgvWBv
xh5en9F9Dof2cvFmXN0w6pG8YiTpzWb4TnE/edWB9KZ5M/74nXh4ODee5vcB
7mwqlTqyaX4frI8WGQQ0JdH8PrhS3rRXxSmF5veB1U3r/mtvptL8PvjPmxfQ
oZNO8/vgtalm09XkDJrfB/L9lMfuuE962OyDf7pXwuyVs2h+X4wL7wi6tjyb
5vfF3qk3j97yyaH5fXGj5ukOkxTSV1dfVLm2pmrx8mh+X/xXc2GFGT+f5vfF
1kerTG1Xcml+X0y/YOw2/Axxsy8elQW2emkx+u2HgDRr1eXZxBp+GHFjSdve
D8Twg2joFE2eMZ/m90OOwGTmACkx2w8rnVM1Br0hLvbDydLswkJdAc3vh2WL
phy4EUDcLLs+cQmPv5+Y5Y+WqvkzBz8h1vBH4brvwxcMIL8Bf0A7e9fEmcSu
/mjK9DjwZC0x2x8Ls6vdg32Ji/3xwsPV71s841f8cXX+8P2xOcTN/ggcFGas
VkDMCkBL09b/6sTEGgFYcH6u6KGQmT8Aenvul2kx410D8HbqtfYW5vPZAfiV
lmo8xY+ZPwDL+z24pGDNzB+AHe59Nu2bw8wfAP4fh9HqQ5j5A2EUO/ph/Btm
/YGYknnXqLucGIG4vWmFfGE6sWsgvm6/6JdnScwOxJWBA7ifhxEXB2JORfTS
1lqKR2UgzuhptWXkEzcHwrrk+ba/q4hZWzDUaMtPv59M/LfAVK9seudBJv5b
IJ1RXXvcnth1C06dzVGo+0P7ib0Ff5SyV8XuJi7eArsRF7zv/v/+24IFmmem
Pr5K+7NZNh+vPVHuJ+1f1lbo9DHUd9Uh1tiKIyOWKSy1Z/zkVjRfaVFpi6F8
cN0KlvGK4kPbKF/YW2GV+2n2wzOUT8VboZbk7Xj4QSbNvxV2SY17k18x+bcV
2Xpp6/Z1UX6ygqDIV9+0kUWsEoTMrGHbfw6kfNYIQr/4F9+vq6T1sl4QuG7v
fioOp/xHEGILV98cOZLqg1UQdAU35PRHkt91DQJ/t/7NQ8OpngQFQSFvHv/6
UKo37CAIGk76FY5L6GVuEE4NtsgdphZH65F9v7J/k9IGUv0qC8JZw59D4v4y
9S0IMZw1vild4b1cHQT9+XPXab2jetgsGx9lLv/mRXAvdwahwHj6i8KyrbT+
YIQtOnr/3D5/Wn8wcnwb7+kWb6b1B8OD1Sz3sdiD1h8Mk/jlM15bb6L1B8Nq
puawTSGOtP5g+Kbq66wws6T1B2PSq9jYN8eW0fqDob296/p3nS9Le9cfjCbP
iawVSkt69YEbjLy0ZwYT/MnvFwdDcHJ00ezBDr1cFoyObxveuZtuIH0JRvqE
I/Puz3Hv5epgmJ7ybjp+3Iv0JhgDTvAOTtbw7eXOYMw6+m5TdHwA6V8IpAv6
efS9tbWXVULQ8+qgu0oS6Z1GCIwWah4ZrRbay3ohaO962GK/PYz0MQSaK3Ou
xYyl/sMqBMI/HzOMeZGklyHo07L+WfivqF4OCsFz6yEd99eT3rJDcGyHw5aR
x2Jp/SGwmtuSPaonjtYvuz7Q+O/ueaTXZSFYKy/qk7Y5kdYfAv/u7dNvr6J+
pzoEQzpCdtfVEjfLxp9dd+vBetL/zhDcLjUxOvyUmBWKO0qu4U4OybT+UNxS
fxxz+zaxRijs+Ym63wzIT+iFouzdC/WHxcQIxXCX70kOctRfWYVi97WKdfEb
iF1Dofxu7NIVJ4iDQuF38H3Ybhb5FXYobA96vykyJeaGYt85/qg5WYyfCUWI
cuhMz+vEZaEYfOdDw/yfxJWhWFya4HBMO53WHwrn8d+D66yIm0Ox9klPyNEQ
4s5QzOGZjjXJI2aF4ZBizZ6De4hVwuAfvflwywlijTCk61sasiqI9cKA6rQy
1UvECMMcYXXVVOa6VRhOVPLT7U4Su4aB0ydizuG9xEFh6L+xwQpcYnYYDDsG
SadFEHPD8GlxUHu8A3FxGFwSXCzsZxOXheFg97NHVf2JK8Pg3mV79Es93Y/q
MJyb1tX30y7i5jAoVg7/V7+ZuDMMx5/Gnb2tTcwKx8bRwfpvWyk+KuEoE9xZ
u6aIWCMcFR/bzo2wJNYLh0g5s9v3DxP/cOzo3D7f+wCxVTgCxioFz7Agdg2H
26pNS1s+0X4KCscLTvjjAznE7HCkH9MctnsKMTcc0/o8MvlaQfuzOBztndr2
NyyJy8JxaSQvf+EL2t+V4eBVfz4T6c/s/3B0CvJbTN5RfjSHI/T4wYA7Xyl/
OsNRX1i64+bveFp/BIKG5OVn/aV8U4lAaOfGKvdflI8aEXgfpKi3s4vyVS8C
V44u+573NprWH4HWp2GpSQ2U31YRMFGc7nrjKpP/Efi6w3bikVKqD0ERsFnW
uS6NT/6aHYHZuu9TdoRTPeFGgLV78icTB6o3xREY/7XuYLV+CK0/AtYflaMy
VKk+VUYgf5/j1vDHVL+qIyAZ+Hh/UG4grT8Cw483uW5bRn69MwI7b7Ua5nf6
0PojcYnzMqG12JvWH4kJ0aOV5lh70vojscPpmO5gOaqvepFI1333dajPJlp/
JBqKq5KDH6yn9UcibsPzcvtFVK9dI7E8R2Xh01JrWn8k/jX+ODbHzIzWH4mV
4aJyY7PltP5I/P633WxkuR6tPxJfQr7esi/s6NWLMtn3Wf/1wKT0OaR/kfhV
9GNYR8dy0r9IWJfVeKikmJH+RYLd7rTQJN6a9C8SJyaXjDI5RP0GKwo+o/ZY
FN9cR/oXhVxjl5Tgug2kf1H4FMF73vHWlfQvClM2mi/Kfsb0J1GYHh78as9N
T9K/KDwYHoP6Em/SvyisTf2mfSXRh/QvCpfcqz4NMvcj/Y/CgFPeAY6DA0j/
oxDxSUfV5mog6X8Uiur3t5cEkl6XRcEzM+lZ/3Tqfyqj0LF27pfRlqTv1VFw
On/S/KNqCK0/Cmu4Kzxc7hN3RoEjWMc3TSV/wIrGsCd+44Vzw2j90Ri0fsl8
zWfEGtHoNj/X/TSe/IVeNA5fNnffrx5B65f9/aCq8IBSYqtoxL1pUBttSP7E
NRoeyb+Gbb9IHBQNqwCl+a8XR9H6o7H4js301pPE3GjMvjiOm6sZTeuPxs7x
Ez7UZxOXRWNIVNehM+3EldG4GGijNW0V+aPqaKzoO+aFpoTp96LhYK7ZU9pC
3BmNNy5ZTucnx9L6Y2Akf7fS0o1YJQbKD1VnhRQQa8Tgo8sYR60rxHoxWHZx
+aitb4kRg4L7mr/t+pFfs4rBIMtjG1rGELvGYMrZD0WTphMHxeBriNzNSXOJ
2TGYmHak7RPDXNne0dpbUjSD8X8xmD1I2WSRBnFZDLQTzi19rkhcGYP3c/by
Cjvp+1TH4PM648r0+8TNsvXU7q88t4+4MwauU2Z8tYxg1h+LC32naLqBWX8s
2hRG+Q6SZ9Yfi7mS5/q+l+n+6cUiKS/RsCiKGLFImZh/7Po0YqtYPPDyUJN7
RPFxlX1eQ0qfiBjioFiMXM19ZDSamB2Le4Lmv/xTTPxjkbbHvjNtNXFxLLqT
B4wwekz7pywW8s61t7o9GP8bi+sWd00q39H+q45F00j+7gd+xM2x+OvOPWP+
lvZvZyyWHp+m6b6JmBUH46pq/UW1zP6Pw+/EYa/6rmT2fxw+10kvtR2lfNGL
g9WYsR9GjCRGHAbp2A6siKX8sorDHuvX+v2bKB9d4+D5waZLcxFxUBxWm77W
NhIx5xdx6Mc2HqXbRPnNjcOK2QUGfM4WWn8cDnee1hg9i+pBWRxsh60t1qwh
v14Zh92t7+8ob6V6Uh2HdK+IN4sG0nlJs2z+rzdXKzJ+vjMOn977WjbNpfrE
iseBgXzDodepfqnEQ/uIzdhBduT3NeKxwW/gTa2XbrT+eKg8GHL0cgDVQ8TD
dIfXwcRPVC+t4hF98P2WX32caf3xUC8yCjyhRuf5QfHw7/CU2zSV6i87Hq+U
1VjnFtrQ+uNxvdu0/9cda2n98dBVuiM6fNeU1h+PjcXntP/+W0Hrj8fTQcbn
t4ctpPXHQ/hy4uP2rhm0/ngUmUzlVxQo0frjMf174PTmH+NJ/xKwVE+d//vb
HNK/BFyIe7fbWG0p6V8C6i/sCXibaUT6l4CHL/pP5f5YTfqXACgfy3zraEn6
l4BR2xb5v7C2If1LwBeh4sTvH+1I/xJw/7qS6FAinY+xE6Cr66AT2J/0k5uA
79LBCqeTXEj/EqA3Imwx6/NG0v8ENLTFb3590JX0PwERfwcH3K1zI/1PQGCo
yZ2eHtLr5gRoVVQu1xtBet6ZgPMz751YqEv9ESsRu/38Z7csZPQ/Ea8n7lDo
Wr6Z1p+ICU4zri5aTn5BLxEaTjVzcg2on0Iipt+9HnFuKj2PsUoEtK72kSqT
33BNRNQJj52sj8RBifh9vD3qzhXqv9iJOLE2aVR9PvkVbiLOxF0I/me7hdaf
CLMVh59oDyF/U5aIt4e91edfJq5MRHVGzZH+84Jo/YmY6CrddSeVuDkRWZdn
bXnxgLgzEay//9UYjCD/xGJDeN/v8gNHYgU2GtRm+24XEquw0d56UqfoLrE6
G6yfHkU3/zH9IRute8dzxs4kf6bNxo+o6HcSR2I9NtwcPn5YFEdswMa7I3Vt
/YqIwcafPjM8e04Tm7Jxz4CvOOIesRUbm3jHjrs/J3ZiI6y2ds2r98SubGj/
jvm0/Quxj+y6pfCW9CtxEBsn+Pu0XnQRR7HR/+nB9ZEfidlsdDrVPgpoIeaw
Ydn9fNCdh8RcNjb08w3bcZFYwsbznC+53fuIi9mYNuXS/acc4hI2WlZ77vXY
zPhVNrzmeAYWLScuZ0P6fVOoeCRxJRu2Hxa+9n5H97OKjfRdg2vGnSGuZsNk
1vtx1WziRjaqt4nT+KuIm9novvAhN0aBuI2Nyo4lyTtuMPGW3Y9/0oDhScQ9
bFhbPVb+voCYlYTjPxedOVNP+0khCZxSj+dn5zPnAUngTRGpaHNpP6onYfPC
4D4LXtF+1UjCalFH9lg9Ym3Z9TX+e4ZE0v7WS8K0H1FGpuW0/w2SIFe31+tf
F+ULktBXTbltiw6xaRK2/HuXUeNM+WWVhPUzOu+6cyj/nJKwVPPUz41llJ+u
SeAqd7L61lH++iRB2fmaf04X5XdQEvq/6LA1HEIclYS7tvKWplOpHrCT8OpW
4aaeRXR+z0lCVGP2a44F1Q9uEnKLZuYZulB9kcjmS9ljZOZD9adYdl1nndG3
V1SfSpLQYKN3Qb2L6ldZEgZ+SEqK+0v1rVx2v75YjN/dfx3FPwmGG1f3GaRE
9bAqCeUnM9brD7Gn+CfhvL/f32IVW4p/Eg5sf2byQIX6iWbZ/RVe+RqrsZbi
n4Q5Cl/X1o+n/qIzCV0zXowqGbeK4i+7H0adP9+NW0HxT0aNj+nAycsXU/yT
Yf9co4+uhT7FPxnq88JfS65qU/yTMbrw5Ax+36EU/2TsydOrKNw+qFdftJMR
NOn9OBv9KaSXyTh8+MDg49XUrxgkI6Dj0+X0cNIrJCNFKyImoi/1L6bJyHA/
N0x82Yj0NBl+m5dFrA0j/XNKRqFVmsbt0eakr8kY7n+uc9EpOm/zScbX/gOn
ftxJ/U5QMu6udNMO2mjby1HJ6LvYsnvVcEZ/k7EyaWoftWsOvcxJhqN5jn2c
H+k1V7a+9RLpVIX1vSxJRvkoi6mVRaTvxclQk1sxumsq6X9JMkrmCDYGHdxI
ep0MiX3apnAV8gvlybi6wOiH4k3iymRUHLe0c4oif1GVjFl1/5kZaFF/VZ2M
uBWWS7NvEzfK7lfmi3Fz/MmfNCfD2vGB75D+5F/akhGmwzYYsI24Mxn7phou
/DfNq5d7knHhWWnF8xPErBTYVo88mjeP/JBCCvTrvu/8cZxYJQXjdVxuKWqT
f1JPgWHxfYWTYuZ8NAU7Xj16/ZxF/Z12CqZtUOWzPYj1UnBDvuNd1iVigxQk
dcmFf1Ejf4YUTPn8yOuIB7FpCsa6iKUnDxNbpSAyaqz4bzuxUwpui6pyM6eS
33NNwdqCCltrZ2KfFLyb8tXDjkMclILrai1P+UeJo1Iw696PKOX7TP+Zgn7v
rIW33xBzUiDaOXji3R5ibgrKi1wOjJInvylJwa8jjjivQFycgqxZZvxz/YlL
ZN/n7v7bk/7S+LIUhGqUSVkdxOUpOL7ujK77Y+LKFGgLI7QdLxBXpYCfe3J3
ZyHjZ1MgsP87ZnkIcWMKivt+jnJZSdycgoMas385KhO3pUBNOG+hWS3dr84U
1IRzx6zhE/ekYOQprzuha4hZqZCWzTn1/C/FRyEVYnZ+xIFSYpVUdOw/2Pze
jlg9Fd9Opb2+8Z2JfyouvvorWF9ArJ0KC+c7g2/MINZLxbbHT+N1LtN+MpDN
Z8sacsiSGKl4r6PVsvkx7UfTVFz6GCDP2UhsJeNRs71mvaD97JQK9Su37qQ4
E7um4sOJ5fcO11I++KTi1M3Wy/dNiINSoZFx/JxaOeVPVCqOKx2P2M/kFzsV
zQrznY7kUv5xUmH2uv962y7KT24qnmmFy1+1J5ak4nLCrWtr/ej8vzgVdshp
d9SkfC9JRfrTQRt/1LtQ/FMRlPDqbHYa1YvyVGy/ssTCZxbVk8pUHC3g/Gqr
o3pTlYrA8gXaPhH0PKE6FXLy6cVQo/rUmIqH25an3TtqR/FPRYj2AX2/VVTf
2lJxT9daP+Qpc96TitJojFm+xYrin4qbgf16PP9aUPzTUFf7ffvKcWso/mmw
33/sbJ0h1VuVNITUWtrctzOm+KfB0NHr3Ost1H9opEEr79WdHar0fEM7DcZj
65PiVxlS/NOQ+jZY6W78XIp/GsbUv3FpDJ5O8U+D2YljO760TqD4p4H149ac
myw5in8azFtV5yzMVCT9T8P4iZ+6Ns2ZRPqfhj8TK5U8AmeQ/qeBPVWnwtWU
9CsoDburm+Z8v2tI+p8GiyNj8ueuXEb6nwajOTtftduRHnLS8Ltp2snH/6jf
4aYBy8ve3NxlQvqfhumqwYaTFpK+FqdB9BVchypz0v80ZD6KHFm/hvqhMtn6
J3cfG9RiRfqfhjtvQpasUqf+qDINDpI9Wc6mpO9Vsnis/890UAj1S9VpmJI5
SkWtgPxAYxp02+ICFh+n88XmNLQ+MmwzvUH+oS0NiqnLRvapcyL9T0NgRfCu
mU/Ib/Sk4VVKlPn2RvIjrHT4xvbtN+aBM+l/Ovomxr+NvED+RSUdxUdmmabv
oedN6unorHp4bnQS+R2NdFxg5Y1ScqDzUO10XJ91/PooVfJHeumIHtXH+HQI
sUE61L5lht5+QIx0DFIK8lmlTf7KNB3+o+b5j4kjtkrH6XExXxfdIXZKRxwn
4tS24eTPXNMR/lIra5YzsU86dqhOzvu4jTgoHe0pdsr3Goij0qE5WCv/hjL5
PXY6VntH3KkF4/9k6zUrOdURSMxNh86X08EjRMSSdGAub6PxWeZ9j3SUL+0a
FNtAXJKOI7p9Dc90Epel40/Agac/5clvlqfDsvCLmqkacWU6WMHxc3aPJ66S
3c/IqUcGaxFXp8NmxVMtLsON6Yj0v7ZBT4O4OR15L5qXfGP627Z0jLtjXPVe
gel306HnvnK0+jf6Pj3pePRRf3Pmc2JWBpYOMeo2u0KskAGD0ZPV/HYRq2Qg
ynLupK+xxOoZ4OlUxP+yJtbIwJ6FL1NzNYm1MyBYuC6/opM5L8/A/Hu32wrP
EhtkYNcvlzuLEoiRgZtJx9adXEpsmoHa2kbJiF9M/DOQ+1zXL/YkE/8M7Jh5
P7VnM7FrBvJ/r966T53YJwM2d/ZGFV6n/RWUgSSlA8c7txBHZeDTqUevL6sR
szMwetBObesttH85Gbjye0RNYintb24G9up99jJppf0vycDDs32uNg8nLs7A
nEOvOtKWU76UZOD7RolKyGbKp7IMNIz/Yf8yg/H/Gfjy4e9HlT2M/8/AvcDW
rqVnKV+rMnCrabLroduUz9Wy+//SvYffQPneKLt/mLLMsJnqQXMG9LzEHs9b
qV60ZeA8f9Tsa6+pnnRm4M6VZ391X1G96ZHdTxXPnc5N1D+wOPAv6mclqKP6
pMDBiYIHVrP4VL9UODCL/zdsXQQ9j1bngF09bYKuwxqKPwcdvwp/6M2h8yBt
2efZ5Dt3DqJ6qcdB8br0wV3NVE8NODiedPHm5VNUb8GBfEmz6ut0ej/KlAMT
t+vGt49RP2LFQf8x1skCKwOKPwej5R4Z63+eS/HnoADFi0Inz6L4c+D8sfzr
hoApFH8ODm25dC8yZAzFn4Pro74uDDKQp/hzMMl25oWz4t+9z1c4HFhvV3L8
bKlO+s8BFiwqbDuqRfov+35vNazvTabztWIO0kMu31h3nfqbEg7mO84Pb/g4
n/Sfg5yVk6cEKtL7XuUcTJ03abLuONLLStn9nWr5Wo1H/U8VB9lpIxsu5awk
/efA3vPWh8lJpL+NHKgl60c2BpqQ/nNw4ZuZvr/NatJ/DpSuFzuHzSQ97+Sg
c+WSszl9SO97OMhvOnrZ8g6dL7IyMejZnNojxuQPFDJR1O/AqRIN8g8qmSjO
qo30+0asnonH+wdm3bhB55UamVgo7HjK45H/0M6EuULFu90O5E/0MjFqp9LV
GqbfMsjEwblWQ3vuEyMTI4yqND8nkb8xzcTEzPHt0pnM+xSZsBycp1xTR+yU
idQXO1oiwsgvuWbisyg0OnAwPb/yyUTWjwO7JTuJgzIxWa+ys0mH/FZUJlKU
tS9oHSNmZ4KlcmW6gy75M04mDK/1m7lhNzE3E+lJR9KmqJKfk2Qi26LrRnEU
cXEmlvffsL6ikbgkEzs7Ryb4z6Z+sCwT5a5dq3YnE5dn4mZRXrHDXeLKTAiG
/bNgK5N/rMqEscvDNvXVxNWZqD+b2TwmjrhRNj58TXT6AeLmTIjOzLvteIe4
LRNz7pqc574l7syEnMVzOf3fxD2ZqKr21lw1kPwrKwsPTud53VMmVshCeb+p
jTVKxCpZOHXx5uoNfYnVszDZd5VR7Bf6PI0s2FqlDzR8QqydBf+l27P3nSPW
y4LKw48+NQJigyycfHfo9X0vYmRh6X+bXh/XIzbNQqJ/Smt+N3OenoXag+87
E48TO2XhqFHp7sLNxK5Z8LDwVPs5gtgnC//yap6cvUTxCMrCifudv7+5EUdl
YSH73/sHfyi+7CxceyIN9xQw8c+C9FTctUeTmPhnoaTzo/mqUqb/z8KtsFVV
jxn/XpyFuiGh0/47QvutJAsj61mCv5OJy7JQqpZl3iSh/Vqehd+r/52J7k9c
KZvv7rlVf7bQ/q7KgnOH2xb+Q8qH6iwsiRNt95zN+P8sHPeO1SvOpvxpzoLB
9iFeIS8p39qycPm1m+XAucSdWehzvviegE352ZOFlxMGxi2/TfnLysYP7zMl
K1SIFbJx94OLSZUNk//ZyL3c1NqXT/VBPRtLT56YZ1lE5y0a2dhltaL/XWWq
J9rZqJDCoTWWzmf0siFO26L87xU9jzbIxr3l4+6mmFC9QjZePLx588l+qmem
svkb9p8PkFtF8c/GuS1Gt3evp/Mgp2x81x3h9eYY9R+u2bitrjl3lxzVT59s
9FWK7Ijev5Tin41va3lfVhlR/Y3KxgZ2aHXciwUU/2wkXNbO+RSlT/HPRiLf
WbpFdTbFPxt7us0ctttSvyLJxo363P6X0kgPirMRp7F6wNXwMRT/bJh92n8o
7aEixT8buq83cqabn+vVl3LZfEVGH3KVB5H+Z2M/W07tn+do0v9sdI255x9Y
r0n6nw2X+/aTXwXqkP5nY+CBh5ePxNL7Ac3Z2FgwzvBwOelhWzbG/Pp7QPfj
fNL/bEQ3LdsVqb6Q9D8bJsLLV+sM6X0zVg4mb9T9bKJN+quQg3vtzsN/H6H3
EVRy4P+mbHLZjJWk/zlYp7PWfMgB0nONHMzsM1NyYxSdL2rn4Hl8nnJaGqP/
OWgubTj/650p6X8OXvz6dLVpFfVPyIFb2a/g5m3kJ0xzsDNPZHK+jfopqxw8
MHVX1J5B55tOOTgdPqihxYf8iWsOom5aD31kQf7FJwc3wssDdzL9VlAO5i2V
m3kihPxOVA6Kmp4bd/4hZueA61nTsSSV/BEnB4ULV59k9yP/xM2B9jVv351J
xJIcjPvktzy5h7g4Bye+V18b6kf+qyQHnm9Uny6qJy7LgcUU1XvvFpNfK8+B
9cfZpoN2EFfmwEpxuFvOD+KqHHxr+1vgakl+rzoH8ZzX1VE7Gf+XI/MbU3yr
3jH9Xw6mvejSMprJ9H858Dg9bmFLAHFnDmYPGWRZuI+4JwcS2yGxXsz76axc
JM3XXLW0H/lPhVzcO3i5REOXWCUXam0zFQdZEKvnImhWqNGPzcQauTiv10f6
KY5YOxf2rwec/ZBNrJeLM/lBF7uExAa5GDZAe7qihBi5+Puvb+uCAmLTXMwM
3zA7KYfYKhfZV8RnO+KJnXIxJOZ9fK4vsWsupgr1670siX1ycXrqyi1ps4iD
clG4VmnZz4HEUblYW+2TXfucef6Yi4iiD08mHiXm5GLn2JHd3yKJubloL1Np
8FpMLMnFt9NXziT/ovtfLPv8yYHf3f8jLsnFiKrz48f5Me9rytYbfK2+ahRx
eS50p+W1JFxj4p8Lm2WpI9f5MfHPxfbJEQ4hisz5fy6+5/9JeXOA9lNjLj6F
X2U/XEbcnIuQxfyJdrW0H9tyYTF2wdQsd8b/5+Jyi/584UfG/+fizRyz+/ww
YlYepkTcW37gO+WDQh6sjjeXdkUQq8iuxya2F36hfFLPw21H34JKP2KNPHxO
fvRI9RLlo3YeqtYrH569m/JVLw/2F5VOTk+k/sEgD9xr90ebO1B+Iw/TFCI1
mqcy+Z+HTKeGf/O6qZ+wypPtv7rnReepfjjlYeX5Q2c9E6i+uObhqsYQy+eL
qf745MHvJ5Scv1N9CspDyM4+P3SPUv2KysPNiew9+92o/2DnIfT8QqUxQ6ne
cfKQZHla83winQ9x88Cxm3wupZ76EUke+nztliyYRvW0OA/78n5WJkQtoPjn
Ydbc7Wv7XKfzp7I8iNvarDcPoefr5Xk4dq7Y4njZTIp/HlSWrdn2A9Mo/nkw
WbI/42s1U//zUJwaGfrq6liKfx7Mh7/dEvJeleKfBxfVzJslrr8v9sY/D4KG
MP3FKR979aYzD4mu1oPDHtPz/548mK7RMjAbPYr0Px+PYhcXWjydSPqfj/cn
Mvy2TZhK+p+P/XXFGg1OuqT/+XhwPHnHmyt6pP/5GFpdY3DAhs73tPOhtLTw
y8in80j/8xGzsfjcPmcD0v98vD7v9utSLfP8Jx8fbx4517hiCel/Pva0JJZ7
llB/ZJWP2M+ZNz72IX13ko1/PfKVsw6j//loaL+TtMiC+iWffOwqWDfQwo/8
QlA+THj7Um2Y/ikqHxVLTh8bwid/wc4Hq2eWvFkR+Q9OPsbOcr5etZPOP7n5
ePriuKJ9EfkVST76rvzy4CyP/Exxvqz+nPp6NZH6rZJ8POlJsl/hTf6nTPZ9
f/rd6GdM/Vd5PpwUR099OYb8UmU+rNS8vA++J67KB8fZIXvecfJX1fko+m67
OXAB+a/GfHzr2ZC9jPFjzbL11umWVLQRt+Wju3OpsG4hc/6bj6ATRiuiOMQ9
+QgzyrwqrSFmceG2eriZ7gjyf/JcDFmUraPlwPhBLg7aXWiK4BErceHZ8bvP
mCpiFS5umWu6KPwkVuPC4rFt44Kp5DfVudgnF5W1x5J4LBeSe2FHV4USa3BR
4z26ZByfWIuLll/35KaUMv0kF84LPgVtvEysy8Xtu19u36gh1uNCjmui7NpE
rM/Fnt2vnHVbiQ24cLTd/m3mG+LFXMx1XLQ84BUxuLAeYVTx7imxERcXa7P7
Hn1AbMqFfFryncqLxOZcaC9d8VznILEVF6c1N6l/yyO240LaEu01I4jYiQvD
cwUVz8yJXWTff87csaqTiV25SD6gl97YQ/fPk4vI+uBfy5n768PF4tOWkRsE
xAFcmD2reb9oPXEQF4W3TyzoGEscxsXXNL3pWcz5fxQX818eitIQEcdxcbRL
5dQNc2K2LF5LJpjz/9H+SeXC6d/WVOlRYg4X0Zs2be1aR5zDxdXOa2/P9CHm
cnElR2H4vzW0X4VcNEe3b7qZS/tZwkWR87rbv6to/xdxEc/Vul33h/KjmIvV
u6snpesS7+Wiv6Zpg6k9k09cfEtyHuMQRflWyoVXUj/jtgLKxzIurn+PvrDw
KOXrKS4qCuW+ZF6mfC7nIpZ7xGhYNeV7BRdN+TW/1Z5QPajkYu0m/wX3X1C9
uMaFebJTQ8JLqidVXIR2hoRvfkH15i4XX47wrG49Zt635WLL5JAlb6rRy3Vc
vF08dkafLKpfjVz82nrN8XQA1bdnXCyJtvYKMaN+pJkLfsAovwpNel7SyoXR
vBN9x/6g86M2LtQaLA1G3aH+pJ2L1qU6DosL6bypkwtF0y8PB2+metwty98R
5x10Pale93DxWXlX2vnvVM9/y76v3ob0x5malP88iLe7dE1fMJ7yn4eP7zaM
+ec8nPKfh2u3rvzMUxhI+c9DycbGzHdc0hcVHuIMBQalbt29+qPGw4NKufPs
E/S8Rp2HN38qdRzyRvTyWB7S5rws3TtvAvkHHs6v1TkifEN6p8XDWq3Go6HT
6H0DbR7015vIh7nr9rIuD38aNGvWmlL/oyebP07ESlhH+qrPQ9mKPdMsPUl/
DXhoWarRtMaH+qHFPPxrPn7hnyedJ4IHVqadtGcd6bkRD0F2Zsk3VpHem/Lw
smnz21869D6cOQ8n/JsejehL/ZIVD/uvXtnx4wOxHQ9HDY0duh6Qn3DiIel+
zaaHR8lvuPAQFl6d6s0hP+LKQ9X1U3/ZLuRXPHkYMfkou1vHuJd9eNBO+oqC
LuIAHjyqTvcxPE1+J4iHJ17CUWdCyA+F8WA49Wpsmzb5pSgeLvS9cOlAI3Ec
Dxoumdo1SeSv2Dxw3aSHV2hRP5YqG791wfenl4g5PJgt5EQl2JE/y+HB9fFY
t8EtxFwehl5QKw30IT8n5GFS9f1J6W+JJTy8UpnmtmwT+b8iHj4pr32c8oD5
fZNsP9UPaVhmQH5xryxeHx4ku0mJS3jYNbT7VeMX4lIe7lx62yI2Yp6v8aA4
5ZAZP4/4FA+Vn9puXagmLuehrbX2B6cf+dUKHn7lnJtwbTxxJQ8nlUXyyvrE
13hwzJhk6mVMXCWLZ9u62Fs2xHd5WPPx0IRFLsTVPDQp9+w770Zcx8Pyzo2B
Fh7EjTxElFdd7nIlfia7v+9WPjmxnriZBxsT7YZ8K+JWWbwi+1VyVxC3yfLx
n0tShR5xu+z+uGu/Hz2GuJOHhom6B0/1Ie6W3e9mPeGUW7T+Hh5qPnd6JmcQ
/+ahcEbLYsFSYhYfNt07FwZ/ovsrz8en9Y1j5ouJFfgIUzwx7w8THyU+hqk9
DnhVS/FT4SPvif6MAT7Eanz4h69243yl+KvzsePyKl9OHPFYPl5Lb6rq/GGe
H/Bx+/DKLF4ksRYf5b7znVs/0P7T5uPvmT/Oq9cT6/Kx52tISdsV2r96fEjV
los+TCbW54Ob9PNgXApz3sDHnJLP2TefUn4s5kP1Q/3vnpnE4IP9dfztpfGU
T0Z8zLDWv3LzBuWbKR9Cw8iSq4rE5ny4HFWe5mFO+WrFR/Sd3LsNTD7b8RES
GfTB9jLluxMfK5JCdg36RvXAhY//jK9VzppK7MqHbj+N69/tqH548nFmaHru
rH9Ub3z4uCjc9iRrLZ3XBPChFzf2eqBkEeU/H07yW7OMm+j5dhgfaZPUFrDH
UX2L4kPg9yI7Zx3Vvzg+XB+OffWYR/WRzcfck4eGN96g+pnKxy5fZdfvPVRf
ObL1PB+Wb2VN/UoOH8kJwX9Pl9J5FJePyNKwwr79plL+87FT/eWLkc5UzyV8
3J3vOvjQJqr3RXwEGMoXLlBQp/yXxf/g2VTJcRXKf9l8zQMtRpyXo/yXzbe2
yWbDluZefSnlY/eefj7HO7rp9zB8rDniLbn7S4H0nw+tPeu+bDk9jPSfD85/
AxrqX40m/efjuutfe0M56ncq+XjTcfWRRTad513jo27j8t+OStqk/3wcv+id
kJlK5393+dCIHvNqRNdM0n8+Zs7c2rhtOp0X1vHRp2alxbBG0udGPp7n8h5x
E0i/n/GRmBtg8N940vdmPra6bhmmWU7nka18fHGd3pFgRn6gjY/Ajom2Wx9R
v9TOx2/rCY+LnBaT/vPxfuIInKglf9HNB8vBPcFlFfmPHtn+5Z73nexE/uS3
bH+wowPECuRfWAIkIHv1xlPE8gLozrSAvTP5HQUBjr/vrHP6Q6wkwDiNqw2r
CskfqQjAChkb8Hc2+Sc1AUqMfyu7XiNWF2DnOPPtFtbkt8YK0Lbh9rpDjcQa
AjS7bfuyfj35My0B5rYmphvXE2sLcO/+sYPW5uTndAV4u8PJz6eCWE8A7s6L
dmFTyP/pC3DAjhXplkVsIMDvtFjPcW3Ei2XrC6o1EC9jzp9l6z8rLrzEJTYS
4ERT9gXOU2JTASY9y/N8M4H8p7kAWQqar+5tILYSoOhbwfj5BcR2AnzMq8ob
eYPYSYCjweKlAZ3ELgIsanl1Z5Ya+VtXAWbmLtm8aTaxpwAq3Bm1P0yIfQQ4
skzT458jcYAAH9D3Z7AbcZAA6tvWKdh7EocJYJAyK+uIK3GUAA7H0+STHYjj
BIjVDkt+YkzMFuBCQCevknlemCpA4oJFWKZKzBFg8INvwz0+0vfPEcBr/tuh
C68ScwVYkbLhYC2fWCj7+/8sz8KFWCLA7oTx2QLm/hUJYJgy6PaLZ3R/iwW4
tW19wkIh8V4BVt3UH3DOmLhEgL0J09UiPlP8SgX4PiNpR4aY+T2EANJSzRYF
A8b/y+IlcnMYXsv4fwFMo5333/IhrhBg6Ys5B1f+oP1VKUCt4Y91u1OJrwng
Xu/6oJ8icZVsP7PmzM3Pof16VzZfZvpZ14HE1QLs774n3p5E+71OgG2Sol++
Xyk/GgV4pmja54Mn8TMByhbZHlpVTfnULMDiwtLaPQuIWwW4UV85XWcb5WOb
7H4WemrL/aL8bRfg0h3xbztH4k4BSmtWj5W6Ur53C6DWs6R+ihI9/+gRQFSU
lHDwONWL3wI0PdjEj7Jm/v0RIW4pme9s/0D1Rl6IGKMBMzYl0XmNghAvfIoO
6Ayl+qQkxOJThqsP7aDzHRUh1Ie29104leqbmhDWP5b7zy+l+qcuxE/Vp9t/
z6D6OFaIoh+1G+rWzaL8F4Jt4DzhnA31K1pCHLG5/9nbZBrlvxCvH+8tERvQ
+8S6Qjy+Z2Y+cCr1L3pCVNkafowapkH5L4TTYe9Pq/7Q+ZaBEO5vXQdmPyQ9
WCzEqUC52wFW9HwGQqy+Ltz+7++fXj0xEmLmwm/ldw8+6mVTIfyClOr/jujq
1R9zIRrr+kXcutSP9F+Ifv8Vq3p+If2yk83v8i3j4S/qd5yEOHqma3nVTzq/
cxFiyPAdaZ0RE0n/ZZ+/Yrbdc18t0n8hRGlRgkR70lMfIZSeDxdpG5LeBgiR
cHLJRD01et8tSBav+eX8jtf0/kOYEFoThqW8dJhN+i/E2TOVFan/kb7Hye7n
y81RfGVG/4UwcEgyv+A2j/RfiG6tP2Fnj5Jf4Ahx+8zDV4u/0vlmjhBWZWOs
/+mT3+AKscLwtNm5QOqfhEK0JfmvnLaT/IlEiGVzxbsG3qJ+qkiIt0/N743+
QH6mWIj/PHqWjO9H5617hdjvev6qvyL5oRIh1kyxmdufS1wq+35qx7xXqJB/
KhPi64KfEf1yiE/JPs+z3555fcl/lQux+VKI3blw4gohfkVyteJeEVcKYfa4
rdnTnPzbNSHu1qblbyojrhKibuXbEKch5PfuCtGx/PDgJb7E1UJsffl28u8L
xHVCtNfOq0obTH6xUXa/Y/zN7jgSP5N9XzmFtZeKiJuFuGy49or9M+JWIVKa
ld+kjCA/2iZEi9Wk1VhD3C7EyA28e8kxxJ2y/bI5sMRoL3G3ELWVju7sKuZ9
fyFOBJY3zH5L/FuInZl7DRxY5H9ZBeibF6bQPoxYvgBXGgaN65pIrFCAiQ23
twfoECsVYK7vcjnnGcQqBYhvT1C5wlxXK0D/E5pP908iVi9AIXvCpSHDiccW
YGqnlpu8HLFGAcaF1RzKfUffT6sA7X+ybv53h3meWIBts9QmckqIdQtwZ1qj
syqbWK8A9oM7bDbZEOsX4P36Z8OSJhAbFIDtq/Ak/S3d38UFUFvybWDyIWIU
IHPYAt00H2KjAkB5XNueiYz/l90P/5l/vzyi+JoXQPHR+hWcNMb/F2ChWXdB
jB6xXQF2WQS+fFlP+8epADZdTYMboohdCtAvx/pv6Aim/y/AqYPPObXHaD96
FiBwdfZWVWNinwJU/PzrZFZP+zugAIYt8re2eRAHydaf8kJd6yPlR5js+xgF
bZULJY4qwGsb35Aj7ym/4mT3TzIfKW3UX7ALME/fq/+tF5SPqQV4+ML72ZVq
yldOAQJcaieePk/5nFOAtKofAe+KKd+5Bfgvcn70XjbVA2EBhuxSHa7nTP2H
pACrV09Xqdej+lFUgEvVPdov+1B9KZbFR+T0s+g+1aO9Bdgzi/XOXkzPs0sK
sGz/LZV1LlS/Sgtwf3Xr7O5xVN/KZOO1ni76UE7175Rs/JKPq530qD6WF+B6
6Vf5+7upflYUINRbIvygQudLlQXYmdB1yCp2MuV/AVZyfTdub6H3i6tk6+OG
9A0x0aD8L4D36B6l53b0Pll1AcoTr2b7qlO9ryvAhMvKjTeekB40FmC9asgU
/4UDKP9l8bAtZNek/OjVk2bZ/cm3yRoY9rCXWwvQFLD9y4GFnb360ybLL+2E
D5MS6X3odtl8C3THxtUxv+csgNKtg1ticknfugtQd8Ps67ASen+tpwD1TxV/
PSkfR/pfgNllLTnWm6j/YYlw5v3a8onPSE/lRXAadi10jQ3prYIIlSvrDJZe
pn5ISQRhvukBf23qh1REONdfa59JBr0PpybCLSv5BNMm0nd1EX4ktLO71Bj9
F2HE5nBry/nkDzRECJwnuhXBPD/SEsFw9OYgHV/yE9oiKCYMWK0bQ35DV4SK
xonNy9Kof9IT4ftEhXU6WeRP9EU4Ocw75gSHed4kwnVB+rliNvmbxSI8PTlt
zaVg5vmTCPp1bVpPnMkPGYmgzp8y9NJS8kumIgwx5ZxdMpr6K3MRSuW+H5j6
idhKhF/tk9dbnSO/ZSeCrk2RcW4C+TEnEdLOFXeuH0d+zUW2fotT9daRxK4i
HG4+Mm7UPWJPEdiPZhfuHM+8zyKCZtdkvUf+xAEiXHxZ9ugQ068FiVAk+FYw
9AdxmAh2M3mCfwbkJ6NEyFC5Mcg7jDhOhK97I2wXHSZmi7Ch8m5LeBNxqgjT
nXebD1Ykv8oRwSRtr9HPucQ5IgxPm71zvhMxV4TPGl+sL0QSC0VQnjwzLItP
LJHFy+jZ0m0lxEUivM8IVPp0lrhYhEkZdk7JN4j3ivDtqulFp/vEJSL8TFz1
I6SGuFSEs+w1LbUPiMtEeIyaLYm3iE+JsH5sv2MxF4nLRQgYfunOnaPEFSIE
P18gH8P0r5UiqLxOOJybRHxNhH9Tjk9WYfx6lWz/lHxuVVxBfFcE63At75wx
zPuZss8bFThjRyfdvzoRJhYFX1l7mbhRhHY5j9LSXOJnIhgk3A28ac/4fxFs
PHXYx0Yx/l+EdbPNLCOY5wttIjjeDtOfWUDcLoKvrWfwe3PiTlm82/tPv8Qi
7hah39khnpfLaD/1yHi34/f+G5j+XxZP4yH8/f2IWWIEzspw3mpP+1VejJXp
gWr7JLSfFcS4XzJurcYj2u9KYqQcOxOjpkisIkap0qfg0wspX9TEOLo52mOx
J+WTuhj6bsa3mjIo38aKcer0unW1+ygfNcR4bJby3eEi5auWGD93V+7fU0P5
rC2GRnR4zNcXlO+6Yszt75uR+Y55vizGsLP8uu2fqF7oi+E/9Oya4A7m9yZi
7PB9c3BlO9WbxWJ4uJ/Zav+a6hHEuPwyvebtE3p+YiRG6tlva6MLqX6ZilG+
58s53Wiqb+ZibC7+c32rDdU/KzE8qxvm3ZpC/Yqd7Ps/jBRVfqP66STGdIn3
qOdX6HzJRQwrG6XwQ9mTKP/FcJHt+KPW1L94ipE5e2FVm85Yyn8xuqM3lw48
NpLyX4yIZ4oLa/Wo3geJ8afwXGiZ+2DKfzFCzp3+aO8hT/kvRtyXCd9D73zr
1ZM4MUao3XvwcVMt/ftjYtibFz9hTXjfqz+pYlwzFbpVvfnbyxzZetLnDqi3
UyD9F2Pgoz2VrALSN64Y8dP6+vv3qJH+izHS6yF/n+0o0n8x9tk/jCrdN470
Xwwl81qtym+kp8ViWCiP0R06nM4L94rxXo932HIG6XGJGJXGe6v+LKV+qFSM
g093cvespvclysToO6p12G3z6aT/YgRfzWf/NmH0X4ypNaLFVQvJH1TI5nu1
M3Ejn843K8X4Oq1P+Olk8hPXxLj50tVq/hbyG1ViyLGOlR20Iz9yV7a/Bq/J
bZpHfqVajN/lY5YXq1L/VCfbH85mBZffEjeKcUCn+M7QcvI7z2T3pz25xDuZ
/FCzGIlq+XG8VeSXWsW453hvhq88+ak2MdbdTML188TtYpic4r9ICCD/1Sm7
fiCtNWgE+bNuMdoaVV5EniXuEUPx6LKxIfbk536LUftE+8iy98QsCTa26gde
iST/Jy/B78ddA57/IVaQYNC8pL+RceQXlSTQ+BRWGtlFrCLBt0+u5jfcyV+q
SWA89cmvtbeJ1SVotU7f9E+N/OhYCVSHflzeAmINCT57LOdX+RBrSRB17cOp
wznE2hKUacf2Ty8l1pVg4T2TZzZVxHoSrHnwJFW5mVhfAqPi0aanu4gNJCgI
W7zZtC/55cWy609jxl5TJoYEDed4hdNGEBtJsPLXP8WYUcSmEjzRH8I/o05s
LkHyzV0rXw8jtpLA4+7N6QMUie0k8HMdYzrpL83vJEH/h63pixl/7iLBA/MB
110aiV0lyN13+k7WJeb8X4KOH98sHuwm9pEgqfnN67nJxAESVHfVqV7dQBwk
QWzOxNmceYz/l2BI3kd2/kDG/0sw3HXm7LsnGf8vwc1YxbtzLZjfv0mgW5Rl
G/qC4pkqwa/fb14f9CPmSPBx2+95PZ9oP+RIUOMVkMwOYP69Qtn3N/DN8X5F
+0koQeR4vbwHtsz7UhL8WTFzdssF2o9FEkCnIeXGROJiCY7cmdGxL5H2814J
dJb01T3cQPu9RIKE0o8L5HSISyU4EfFzdWME5UuZBDvnjL/pfJHy6ZQEbTu8
5lewiMsl+O72Xl9nKeVfhQSdu/N8GyIoPyslyExNjvp2iPL5mgSbikTfzj2h
fK+S4G3aRpd1/Zn8l3HFlB/9Z1J9qJaA1Vn5+oc11Y86WX4M0vnuE0L1pVGC
4vWj3UdOoPrzTBavBosgfVuqT82y/ThEPbMwiepXq+z6yKNTKw5RfWuTQH4i
+7TSA6p/7RKsHmgUyuqg+tgpy9fdL22UFOn8qFsC8y0mr/dpUv/SI8H70JmG
Kw2p3v6WYEPzgcT/JHQexZJi95hNbjfO0fMYeSmmlK57sv8x1XMFKVT/Pasy
+kb1XkmKtz85z8Zo0vvLKlI4VB0NfOFEz2vUpKi7vHmAy4SvvfqhLoUPe8uO
v2b1vTxWijnFSoLa5le9+qMhRVO81vYo7x+9rCXFiRP9vV57kX5pS2Fwxsvd
XZn6HV0p/mzxLgh7pEr6L8X6lXJPHxfR+wr6UjiNHLiY7cKc/0lxfbOhZ+Yw
6n8WS/El5kdNjivpLaSo5uqq6s4hPTaSotjDNmPBX+qHTKU4ssauzfjaZNJ/
KT6kTivqSKH3Kayk2HFQv/7+Ykb/pehJHF6a+EmH9F+KCSr/phdL6HzTRYou
tfSQ6oX0/MhViqy+rZdO1JHf8JSigGV/4+sJ8iM+Ukwt6bivEkl+JUAKLf+V
SolM/xQkxdPrK81GfCYOkyL4TbT4yH7yP1Gy+1f/yGKcI/mjOCkqVk0fs0yO
/BNbiueLnQZ+OkCcKkXE+2Hp/U3Jb3GkCBzl6efdQpwjReneM30+RpA/40rR
kb9XJbYf+TehFDN9TJ9+ySWWSLHt4OrpBirk94pk318+2l4vh7hYth/8VJdd
6UP+cK8UGV8K3OuDiEukeLPfvM7hMXGpFL8j7FfNWkT+skyKATtclCxExKdk
+7np7fid75nfW0nhprx0/AgD8qcVUlza1ma3N4G4UoqVkvtnl1wkvibF+Lnv
Pjd8I66SQjuAZ+2nTX73rhTCv95NH22Iq2X5Iag22xBBXCdF88bhrP/4xI1S
ZAapqHUdYN7/kWKtfILFyNPEzbL7u+bVRM0LxK1SFM5WPTWK4TYp9lWsePjv
P+J2KTorGrqeMp/XKYVVUen808x83VK8m6HiImG+T48UsVFO13NtiX/L7n/e
yKA904hZhTgi+Pz5bQ+tV74QAQuGh/lfJlYoxKxWx6PLUoiVCsEf/f1lJNMf
qxRCyZtVp91F91utEBVst5s+uxj/X4hTK3dHWK4mHluIl2PMBn97T/HUKMTN
W180ItOJtQohNh506NMYYu1CnD1t/Dv6MO0X3UJ8irx5ccE85vflhWhb8POV
yVnab/qFqLPX3HVnAdP/F+J/NZx/VM13GMcrMdIx2u2Hn100WRhKJ03mfVrO
ojpi2Zp+IJlKosmoXTKqWyTXMurzXCo1ociPq5Fb64QKmdZJS+dGhlYWGldD
0r7n7Pn++Tr3nu+59/N93s/z/jzf5/MVP59a/eg0x6uHwJM7rg0XHJghMKtt
fklUJse3l4CL+uEDZR/rwVsgv7l5rVkYs6/AvOwLfm5VrCd/gYkx5ZqOscwB
ArZu4c7YxPoLFEiZfmd0ZC3rM1gg9nsX2722zCsEjtTuuHI3jPUdLhBx8UxG
8glZ/9L6HEvEKrmfEi2QE19UMnE5548NAhb90fFFLZxf4gSqd41vX+bP+5Mt
Atd2rF6RWcn5SSXQG/N5yC9TuJ+zXVqvf328nH7k/UqSQNxh76/8jbxfSRVQ
9I4SGUs4H6YLDF3qWbbwJPePNALjIlb2PDbnfLpfun9hwUOLz/H+JUugbFrR
u0eBnI+1AubqMzuXvOF8nSswVtGoq8yyYv0LHFJ5nOmPHMb6F0i7776yIuc9
1r+A19xSTVCjCetfWj+Pj606rXgeQCd9vr900pSBLXzeRmC0MS6tbKLh//qj
F9C05/TuS+V5tUoBnw09Ae59Jlz/pfg3OF/QneR+Xa1A54vY/U4Bw7j+C/SE
htxL2czvv6kXCLnRvSaqwprrv0DFxj3z+vq4njYLbN5W3LfNleutQcA+9HTe
zHCeh2iT1n+B8l6xFz8PeiiwPKNnsX0D1+8OgUtv1POtl3F97xJwOhYb6mqQ
679ATOH9VsdA9gdG6fdNWnD+wE3ub74S+FNN2dM8uP/5VqB7rI2NyGe/YUJo
Skw/vHsA+xFzgghzzTsXxPMegwnpjsaDV4vYv1gStEV70i/Fs78ZTkh2b3gx
byT7HwWhvT7a1E/HbEewflHaUrmQ/dIYwoClJg0JBmYlYev1pHVBkeyvHAjT
2xUxXvL53smE+L/X37aLY382lbC21q9L/w/zDOl6d229baLYz80ilGxcVD+0
lXk24dnl3MvJC+X5P8KMo3n6dWeZQajp/qT0lIL9ohfBUX/pfddYZm+Cz82f
NE9rmH0JLxOq1l63Y//pT9CobnleXMUcQAgZnzn55DH5vDJhQqo6P/sv5mCC
yQ91JRuV7GdXEKa03qqc+QVzuPT/+6nqRiJzBGFvVt2oOUeZownhBz86nlDN
vEFa/6UdNSlt8vwPIc8t0yfEKL/vgrD79cEdfabsr1WEr/tVsyKGMG8nKEdU
5OZYMCcR8s0Wby0cyJxK8PyjwZj0hq+XLn3fIrTg0075+R/B/rxFtuF3uf9P
+C58pF+EjjlLuj8J1wq6NMxagrON4fGmNcy5UjztuVI3YjZzAeGEWv3lLTPZ
/xMeGBc8rajh9SsmmI7et+h5iuz/CZlDXFNUYNYR6lsGdcYaZf9PIJepio4j
zHrC2dSZD176MFcSissbo84943i4Qhh0Oe25ewZzLUHVUfYk35G5jnC1oNpo
qef4qid0FOrL9/nI+3/CaxuDwr+J47OZUNXa2PhNMLOBEPPBb3dftnJ8txFG
bnGxGhfE/JBw2N7Xy7SR9dFBKI3QulV5M3cRIqOsM5Musr66Cd2WijvRk5iN
UnxaOofm7mV9viIUrmxK3PWY9ftWig8z51LzEta3iRZl5RlJ76Jl/WtRdKJ2
Ta0Dz9sO1uK2Eyl1TZw/LLVwGKjKUezk/clwLXoPzOme68T5RqGFznL9h8l1
fP7eTovAQ8c/QxTnqzFafNuUNrV6AOczpRa+b3PSYrIn/PofdMu9jw==
     "]]}, {{}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1800.}, {-0.043973441500137336`, 0.24354833873629553`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837234819851418`*^9, {3.8837243863887672`*^9, 3.883724400306735*^9}, 
   3.88381087004075*^9, {3.884770045203422*^9, 3.884770053092277*^9}, 
   3.884771730532537*^9},
 CellLabel->
  "Out[145]=",ExpressionUUID->"0c58e727-f54d-43ae-9b3f-c742083982bb"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{"Data", " ", "interpolation"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"factor8He5", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He5", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He8", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He8", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He10", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He10", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He14", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He14", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He18", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He18", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He20", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He20", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"factor8He5", "[", "q", "]"}], ",", 
       RowBox[{"factor8He8", "[", "q", "]"}], ",", 
       RowBox[{"factor8He10", "[", "q", "]"}], ",", 
       RowBox[{"factor8He14", "[", "q", "]"}], ",", 
       RowBox[{"PsiP8He", "[", 
        FractionBox["q", "p"], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "500"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883723386297536*^9, 3.883723396212397*^9}, {
  3.883724406369341*^9, 3.88372442875569*^9}, {3.883816192397832*^9, 
  3.883816239365567*^9}, {3.884771748738398*^9, 3.884771806320818*^9}},
 CellLabel->
  "In[146]:=",ExpressionUUID->"d9505bf0-29d1-406a-8f06-1985e55de13f"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{205.05990670704205`, -0.019802545853269526`}, {
                   213.87842888274332`, -0.003238749422977665}, {
                   233.87152150198952`, 0.021698033309523114`}}], 
                  
                  LineBox[{{306.15274193739367`, 0.021698033309523114`}, {
                   306.17783089361774`, 0.021682560656058034`}, {
                   335.77962559627264`, -0.0031513853414033193`}, {
                   364.7990839817759, -0.01948615837019065}, {
                   369.4830422768445, -0.019802545853269526`}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAA8IwPw7oaeUDz8kRbHkeUv6ZeFbKi
mnpAtKCLmyEJiL+hH0mkLJh8QMj+IVdl4Wc/lAmaVmWMfkAkszNcUmeJPznG
eA90L4BADbLOAv7Qij8yrMl9cSyBQGPdidygYno/oN4d95MYgkAjUkOE5sVg
v5g1l3pyGINAqHnQSjfogL8MIR9eqBOEQKYkW+jFcIG/9ViqTAP+hEDTUr2A
xo1xv2i1WkUa/IVAdoHnM6S7Xj9RXg5JVumGQBqfrYvDt3c/tpvQrOnRh0AH
PNNtmE95P6X9txo5zohApx5C8eadaT8JrKKTrbmJQI+SWXiuWVC/936yFt64
ikBHjteOQEpxv2Hm0Plls4tAczz2evmTcr9AmvLnEp2MQBsCkjPO9GO/qXI5
4HuajUB92GADT81MP4eXg+MJh45ApXXLz03saT/iUNxG726PQOWg8BokRW0/
YxctWkg1kECKHTfLvEpgP4+sbZarqpBAjW+xXaBfOb8A1MDX7CmRQFKshflY
0mO/rKGVnsCgkUDcxtI8vzNnv5a5cRVAFZJAJB7N1gTqXL/FY2CRnZOSQO1V
WRIFfi8/L7TQko0Jk0BDwcZKzcpdP96WU5lbiZNAJVnzYBbNYj/Lw91P1QaU
QO/6vSzwrlY/8pbpi+F7lEAZ3aqU5iUgv178B83L+pRAg38NDOXBWL8FCKiT
SHGVQDPEXg9x/l6/6l1PCnHllUCjj9/G6PNUvxRGCYZ3Y5ZAAte8uQFV/z55
1ESHENmWQAdUlSMRxFI/I/WSjYdYl0DaW8PCcOJZPwtg6EOq1ZdAOzw5SYVF
UT8tcb9/X0qYQOnrbjgYZgc/lBSpwPLImECkU9s4HMdPvzZeFIcYP5lAH2Lv
FRXVVb8dOpJSHL+ZQB393bXSMk6/QmAXzss8mkCGRe3ai6DivqEsHs8NsppA
i7OV8fABSj9FizfVLTGbQGq/3/WLkVI/JJDSYOCnm0C0K3yXVr5KP5W/Afj/
H5xACm8xd7p4Fj+HBHAk
                   "]], 
                  
                  LineBox[{{102.89876865782874`, 0.021698033309523114`}, {
                   112.01052639632749`, -0.019802545853269526`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887056#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.019802545853269526`, 
               0.021698033309523114`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{205.05990670704205`, -0.019802545853269526`}, {
                   213.87842888274332`, -0.003238749422977665}, {
                   233.87152150198952`, 0.021698033309523114`}}], 
                  
                  LineBox[{{306.15274193739367`, 0.021698033309523114`}, {
                   306.17783089361774`, 0.021682560656058034`}, {
                   335.77962559627264`, -0.0031513853414033193`}, {
                   364.7990839817759, -0.01948615837019065}, {
                   369.4830422768445, -0.019802545853269526`}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAA8IwPw7oaeUDz8kRbHkeUv6ZeFbKi
mnpAtKCLmyEJiL+hH0mkLJh8QMj+IVdl4Wc/lAmaVmWMfkAkszNcUmeJPznG
eA90L4BADbLOAv7Qij8yrMl9cSyBQGPdidygYno/oN4d95MYgkAjUkOE5sVg
v5g1l3pyGINAqHnQSjfogL8MIR9eqBOEQKYkW+jFcIG/9ViqTAP+hEDTUr2A
xo1xv2i1WkUa/IVAdoHnM6S7Xj9RXg5JVumGQBqfrYvDt3c/tpvQrOnRh0AH
PNNtmE95P6X9txo5zohApx5C8eadaT8JrKKTrbmJQI+SWXiuWVC/936yFt64
ikBHjteOQEpxv2Hm0Plls4tAczz2evmTcr9AmvLnEp2MQBsCkjPO9GO/qXI5
4HuajUB92GADT81MP4eXg+MJh45ApXXLz03saT/iUNxG726PQOWg8BokRW0/
YxctWkg1kECKHTfLvEpgP4+sbZarqpBAjW+xXaBfOb8A1MDX7CmRQFKshflY
0mO/rKGVnsCgkUDcxtI8vzNnv5a5cRVAFZJAJB7N1gTqXL/FY2CRnZOSQO1V
WRIFfi8/L7TQko0Jk0BDwcZKzcpdP96WU5lbiZNAJVnzYBbNYj/Lw91P1QaU
QO/6vSzwrlY/8pbpi+F7lEAZ3aqU5iUgv178B83L+pRAg38NDOXBWL8FCKiT
SHGVQDPEXg9x/l6/6l1PCnHllUCjj9/G6PNUvxRGCYZ3Y5ZAAte8uQFV/z55
1ESHENmWQAdUlSMRxFI/I/WSjYdYl0DaW8PCcOJZPwtg6EOq1ZdAOzw5SYVF
UT8tcb9/X0qYQOnrbjgYZgc/lBSpwPLImECkU9s4HMdPvzZeFIcYP5lAH2Lv
FRXVVb8dOpJSHL+ZQB393bXSMk6/QmAXzss8mkCGRe3ai6DivqEsHs8NsppA
i7OV8fABSj9FizfVLTGbQGq/3/WLkVI/JJDSYOCnm0C0K3yXVr5KP5W/Afj/
H5xACm8xd7p4Fj+HBHAk
                   "]], 
                  
                  LineBox[{{102.89876865782874`, 0.021698033309523114`}, {
                   112.01052639632749`, -0.019802545853269526`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887056#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.019802545853269526`, 
               0.021698033309523114`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNV2VUVlsQJWxFkRAEAQUklRAUlBi6pOGju7u7uztVQjqUlkYYLESRUkqU
BkUpFRD1GY9fe82dc9acmXvu3XtfsHDVtCYmIiI6cpiI6IH3kNa79EXQXyF/
HJi6CJGXzhTGJi7CzWKGwn/Ri/Bj6PCj5ZBFGK4+rSrsswgExaCx/xwXQUX5
Aje/2SI8Id9xndZchLhvrod/SS/CqRfbeRkCizCzcoyh8sIi/Ddd2nPj5CKk
6l39of5zASZ8RiM3FhfgcT+7MdXAAhy+49P7onEB+nsdOSlyF+Cox67Gt4AF
+JNEyu9qvABLE9d/JosvQHdFJo024wKYRP3kf/57HvKlX1zceDsPyhwah161
zMPfUnF6h7R5oJQinhu0n4cbBsx//kjOQzBrhjrx2Xm4dXv8SffMHHCraA+I
xM7BL9lnXok8cyBk1D/Y9WYW3lzp4nvvMwtLXpsSv2lm4f3A0AfuthkgmSdR
DtSegffNoZO/tt5D1oMszq7492Dd/IVm8MJ76NAprpZsfwcXv5NRcqm8g57Y
rcbc+WkQrZI7mu8xDaTnNboVSKeBmjEstT7jLUjauBksnn8LbPdWyLZrp6BZ
/OW97etT4GEgCN+fTsIqscfiCbVJkH10rlFxagIWla696DGbgKPH1eRCVsdB
rKNN7I7rOFR+7Olk/T4G+nH/dfIGjcFH3XKuQeIx8KT8PX8y9g206fbkHzrx
BlZ+NxD1pb2G5g6hNBPq1/Bv6N/9hdujYO3RnWLGOAqHKn4rrpeMANf5Q0+y
2UegoKPR9J3eMISMuHMctRwC4tHK4HHnQXj/aC/JzP8VmEh/PfkyegAge16S
P/MlCIQOLTcXv4DTT+uveDb2Q1Xz05n4x8+hyZLz+JnxPpj5lKMq+OkZGJ7R
qSD69xQWOfLHss88hW3pyLVTfE+g9YCBY9zNx6BYd3iK1v4RMPTUnpyO64Xh
+8nR/QQEIuOt7wWF3SA5ysJssd4FLgfSCZLQCXfUuP1tctvhBm3psf92WsHh
6fZZdr0WEKXUkjv96AFkzoV2zfI2gY+IK++Dsgb4z7e21xzqgN31IttXyftw
RmGIRUujCiqMBHSfOJdDEdtz64DcEvBdduq2KrgL5jreh7nY78BRmQ7Z2ldZ
8GXYhSztXCq88ClfzJuKgnsnODkF8r1hPvpvG+MDgHPn1Hae8Lnjcm6hosl2
OL4c/0S1RZGI3WfS9fX/S8cdJSFbTrUctP28zPo46g7WTDtlkOYXoixtQK69
UjFOO3zrSRUqxaDv2tV21OWoYJt35utSBQaVX3JnK63C3mqWtiNa9/B8mr7b
ne37WPuIumw+qhbzHeyGFg/VI0nbbYdx0QaMZ/0TXLLZgKJJvptztxpRrK/5
S6xIE8akFvz5OtGE6vQGZqsOD/D2slPLt+8P8F3P4cDvgc14iWvIp/ZnM/r8
m3Ngc2vBnDue5O5zLTjxgOl0oXwrvuGnIsKqVox8LK31gaQNeUnDjNh12rBt
N14qp6QNS/1pf8mvtqGWz4S4Jns7ihkaJA2YtqN4Oi3NQHo7prpqPrPrbkdK
MVKO7sV2dO1+5blA3IF1uOy/RdeB9+gOFhPzdKCfv+nsFZEO3FTPqSuU6sBC
5YcnzWU6sNvP0DtHogN3LKMHDIU6sMJhw3qIowMltU7+PU7dgWz6Rvev/G7H
qs6o92az7fjnTZd6S1c7ivbTnVbLasfL9WQOKnbt2Hv1zfKwUDuSZJ+U/E7S
jpWdTi7zL9ow0Ms4pi6pDUltF56F3WzDwRTnWN9DbRhLsiL6oLsVb5VW22u7
t+Id86f5gRdaMbT2oqPiUAu61/+1n/VtQboBAU5DxhZs2l29PP+oGS30ODaS
LZrxXlNpXxRRM37+mPZvOe8BPqcv6R4SfIC9HWdJLAaacPHhr7Ie0yY8H01Q
P/CtEf+ENQZqRjSi3lqmbT95I8pOsJyNLmjAyy1rhEqOBkxidYc8q3p0L3DX
vuRdh/ExVxfEImuRvmPxzPHUGmTlkUkeunUfDd4s8zwuuoeRkdeuMFVWo7fj
LgVjTRW+n3ie+L2+Et3qCBlzTRX47JWbwqmWclRTGyftai3DNdFnQNNeitqO
FHd0O0pwWO6/gbrOYuzyZ6hTfViETDyvVEaC7uKRo6QmOhEFSBspnpMcn4d+
MaLkrzNu42OTlc3gwly8Rhqv+6kmG/+JJzs69GRi8INEKcKbdGRR6n6xN5mK
4WvXko1OJ2Gy8na0l1Ycjmgp8U0WRiFN8W4fzU4Y8v9s8UuoDEB1I4qqsSBP
NDfyCBJ8bYfsC8PtwS0EHOKvwSM6QuAXFWBmE2QGTmfWg4ynnGHoAPl1jxBv
iLl51ubiTiDYRfrairKFw7SqxJymdBTcMKVl2lOPhSCL2rgh1QS4lP5oMkI0
Gd4YqZ5aOJEGqU/WzZg800FQ6EXH5EgG6Lz9kfPxYhak/snM4fHIhoQgG6+U
lhygos+k2NnKBTJjq8MCF25DgczkbVHFO6BdNzb+yzYP9o7LjOgH50NUStoI
xBdANMn465rEQjgZ6TSREHUXtD/KfflwvQgoZK9/a6kpAh/LEpM6umLIT1mj
HIwsBplsqtlTq8VQecHY01u+BKobuM8TlZTA8VG9pXt7JbDh+9+mv0IpHC5n
DnXNKoX6L9RVKe9K4YRJkOY7hjLABDchA8MyKGGIfE+eVQYj2jWpB/vLgNGS
ZVNsrwyOLsRMPr1QDheCxySL5cthOH7a471dOYwvV1qGRZdDshHXw9yCcojg
eTx0ubEcAjwHMlV7yyFNibH80EA5OGbGXLccLYewg4LnPd6Uw7ory0PJ/fjB
Wvi/+ZflYPH8mK3p/nrXr2a7r/b3V5da8dy4Ww405DEU7XHl8PkVNZ2eSzn0
dmbyXVLfr8/wp16OpxwG79IZdR4pB7bNIeM7c/t9lNmI/2oqAxWBz4sbEWXw
y9YjNl6tDHQvhXcu0JaBmImx3vG5UuDgdIihLykFNufCOnaLUmBaWQyQZSoF
yduRIwlvS0CXqn2ALL0E3vWd6FqWLYGPI7/o2H4UA5GTd/pqZTHYGkZ9kiIU
Q/+51ZPKRMXwyqj/KH11EUjxOv/qUyuCzLVPri9X74KVfHDABZ67YGcuT9Tj
Wgi1eyz1Q7UFoDo3LBKxmg/cwl/0D5/Phw/uV5uTtPPg3+eGhzIxd0CCOkZO
p+U2JJD71m0t3ILuAqFluRO3QLvh39kYwVxQyj7L9s4gByos6Uo8Q7Ph3u6f
paCSLOj+ZLXH8jQTtG/s5mQvZ0Dj7szFv6QZkJ0bUh3PnA5sYVeeWEqkQcWv
cG3XrhQQqF6+ababBHcdsk5t8SQCw6fhm6528WD97ux9gZJY4G3LGEh+Hw2v
vt4VHKKJAmLjBWUZ7QjwYvVWF88IA78e6lSKsmBgkk76tcAeAHRjCxuhDT5w
2+/3RIi4Jxg2e228L3OFViuPkra3diD2KkSs5JwFcMud29WZ0QEOV31qd2lp
mLRgOR3zkBtl+ku/JzipoxyNopqCiDHm9bq1bn+xwuX+26jI64iP0+TpF+67
YfL15B5s9sSv4T43xht9cGbru3xHiT+GnSjfOhQbhC8JZWlGJqFI2PDbvkwV
jhpCCUcIHhFo2Xnrpe+LSKy79+SK09lobDVn/3bUIgavHozw5CqNxV/f3y9W
vY9Dg3pTaouTCUhiuVIvKJyIlx0VTxIbJCHxxWXFas9k5LX0uX46OgXVaIbc
GFNSUZRh45yRfBr+1Q6asHyShkI6P5/Si+zzuOEqe0BdOrLed6LzYcjAu1zq
GYfjMvDW2mcT9s0MDOdcYx9Wy0TWrP7pHzX7+MuRtPhgFlJGhrA80c/CG6xu
V42qs3BZlvOAw04Wzspe4Fy7kY2i7vrH5oKysea02JRsZzZOX7JNPL+djSY5
qotu7Dno/X3K5LpuDio7jEsHR+Sgh6VphkR1Dga5cB2OG8hBuYQ2Gv1POfir
w2urgyQXG0KeOzXS5KLOCgmjPEcuNk8qikcK5uITU5MmF9Fc/JNscpBSIhd9
HrhaB0AuipXoFdXfyMW98uPne/hz8dAxlo+NrLloQpBJzqXMRZqaeJGgv/t1
Vl5UOa/k4I+oGeqA/hw0fTKu2FCZg4ZCHClMkTkYPTV8b9IgB5lIzBZXefbz
XMyblv+y0TSD9Jf+q2wUYCgpep+djWnN4h//GGbjQ5La6yOM2ShlIWZjM5uF
Fx8U335zJwttngwacGtnoeGPNzHhx7LQZblH+XN3Jt71suMMcMnEMRO1Jdlz
mWjVR2Aye56BD/9ObS26ZuDHr7XhC9QZeCeD/5Z7Rzp2SSdzVxuko7FpqlXh
zzTU9465ZZuThiyzTLL0/Gn40ieLtigzFYX/Cptdf5SCLIxRDHxryXiX761o
0+lkJFW89XpDMAkbiM5RniYk4gmiPiUljwS8q0c/8TwpHm/1fj3bXhaHk511
gYqdsajWeFv/3mAMdpBIkR6di8a/f382Zm5G4fZz23C/35H47YXBt89HIpHN
poLvCFUEKpQ9cT/JGI7zIj9jL7KHoXvnrXO7JiG4KbZT5+UShI8MvIeYgwPw
coTUpG6iH+oUPtNOivdBtdbDrs2VXsi9/SMjrtUD6V0DmsX63NCDfDNGrc4Z
6TleMwq+sccQ/mODg/9ZozzrVyrksECaAn0KzRYj7A2NDlFnJeAPE6ywgpvY
RVWQWFUijOo3WYSrflKChQp6fOCVhGham1f+PWow3GO3pE+lC/GZ5ExXrpkA
GUVj4dtiCyhZjTJaZbABtfOMxI9T7IGdXV71w7YT2K4snXRic4MTwfFtKa/c
wZqNq5PJyRNadF3UVg54g+NbH0Jljg+QxLsTeC/4gfLJmTiFMn/YswmcRaZA
qBDa/muZGQS2c0waB/8FwxsC+V9vi1Cw9jL49dQkDB5vrrQcORIOepJdGXs1
4RBEMmQUqBIBlw+lVYR/igD3FuH1H2GRQNV0L2uEMgq2Jvi//SiOAvOhs9KW
3NFgaMTcRNwQDcuaF0ye88ZAtjyxaNW9GLCVihe/fT4WMt91qKelx4K27dur
UX9iQfHATqmTVRxMvDUTleqLA1dt0sS/zPFgr2J3MD8gHlJS8OiZwXgYYGua
saNLgB+Hz9SmWySAGnFAXEp5ApSH3rc0WUqAWPUlSuJzifBA95iqr1oiRHo9
KnscnAhv69ViVioS4baX+42ll4lg6nh0Hj8lwrOsBw5hpEmQJiFSxEWbBNax
O9TP2JNgZOnnZd0rSRBIq0b1SSgJDj380BUpnARnjbLe8QkmQTv/7OdfXEnQ
ONXFuHEuCerzr9pQHtuPnX/aBHxLhJbiQX/eiURQK9+ukGhJhL0Br5KHqYlQ
e8Cwv8k6EY4LTNAKCCXC+qaqoOqBROB2ttWlHkyADJ01nTvpCfBAoz5vSyMB
Og+ZM3KcTIBVSwVL3b544Fr75Z2+Pw/WUeKVz1zxcKzNs9tvMg40+iNi1MPi
IOAQkVjcxTjwShpTvfY8Fswz3XPcrWNhiURYR4MoFnYIUwIbuTGwUXBfwPhS
DDA7HWru6I4GB4cYO3rlaHhjb0jIm4yC93VJLzXNogBBxNTwQyT8+LWwPmQf
CXeEsxKef46A8A6ROFP7CPgeMmHfuBIOIbyti5Om4SCYiCMbk2EQVV4rdFI1
DIJe1PlVRYVCZP9XaLUPgbtZJL5BN4NhOGlgl58rCLQmdhrIDgWCDEdpg9yc
P1wlkz1M1eoHbF9c+2sSfEFLaeifvLEPvBc/X3WOxxsi19VKzP94QnbHnRqV
AQ8QmhzRp7nlDjxiNUd2Ld1g4WpY63UTF3g7e8A4ftsRfvrOs8jE2QP9Vl7I
2DlbeHbz2MWyRiu4YSJBek7eAmpP5GgpdJmCioRykPyaAegzrk8QM+mAUPvx
SkldDdgl5yUq5FQED7eG4h5zgM8hjKtCNJywwg1lJQ20eKuESzfnsTD+0jJO
N70ji5R0RlfnURVPRViO8q1q4az2e2Gw1sPr76K6HCeMkMa4+XdUgRnGECxc
hV9YYNOzGaM/G1ZYT0pbFXHcFskFCn/6XbDHlDtDLzL2+XvBQd4h6qoz3uQj
O3VAwBXfRVWvLWe64ejJv5+fx7ujxpNbJ44GeiCB3Es/1tYTW+fvzzGreSF1
N3PrQ35v7BHr+nftlA/aZHtten30wViK830Gnb7Ikaw+Nxjrh1TVtdXNav6o
VqlU9/10AMoNP0oPGgrAiUMMZ/iiA/GAWsq531eDMKF0teLVfBA2H0mVTY0O
Rl5ewi8+1hCU4U/2LnkYgmkFk9NvVEORspNivnU6FCVkxnmZ+MKQ7Ujl5XrX
MNSMufDnYE0YrviMPmVcCUOfyr9iu3ThSDxk3RytEo6FbO8ODgaF45R1VXF/
VThafVmJ8xkNR+W89zfHv4ejLv2H48u0EZheGuFXIhSBMuyew+RaEZj5K/Ed
r2MEGrpWbBOFRWBvXtTP6PQINHcO1nt0NwIXxw0OtN6LwL3eGV/bpgjMrtF4
8LY1AhmPHxI53R6BYhPN1JT78cuX4y+XGyLQnnLZLKkqAsmc4w3JCyJwa6S3
wzclAkO3lrZfBEWgKl31z5N2EZh1+TSfmnoEyq/KumZejcC3zPZEKzQROKJD
yFPZC8exz2pWk2/C8Xdb7aek2nAMBocL/lHhOHq4yaZSLxy588x8WbjCkbrY
w/3nj7B9P+w0cvVZGE46tDqspIQh8YUNF2qdMORb4TR/QxeGs/JhfAadobhA
tOJtfiMU23rFA962hCDj+MuOuUshaCYeARl3g9FiTubuqZPB+GH355aPXxA2
1ZU++zgbiGNMdtwRkoFY7JtWYFMUgAzWoaSt//njtZ671ela/jhhqyxCX+WH
sZFND71++qLxSl1Ur7wvUo9VXruQ6YOvqawedrzzRlWpeai94I3dziwXmay9
UOAw1QGBCk+cPKJacmLFA0lN/1sfvuCBCtH134qM3PG2qvxMabYbztzKm/x5
2xWVkoemig664FXbGKdoFyd8fP2S/JcxB7zUKkzDdd0eL55X8Q/Ms0X3WPP1
S7+t8eyxY30xhlbI+W6MbbTDAqPfPN7UojHHL0/aLGtXTfD90yf6kiWGSFol
4/XVUA9FXr1OUjpDwD5u3qSpUQ2Mfu1crcyogvS2MgaBBXJ49BOzriqzBDa0
10VWGQpghDuZYv8ROqTL/7k3euYsJHYvHvv38wr8ParxuPIWgM7BkbbJU3Kw
/CF7MUVOGb61C9j3CmnAMFOj/nsZbXhb3PmcWUkXUrrPCDPIG4DDsXHQFTEG
JdLLSryUZiCjH5y8EGkOV09RBiVuWUBOJpnaHsEKznHdc/7Sag3RRaOe0hS2
IH1N6nqPrR3M+GRM8rbZQ9efhw12RI5QltrqdUPaCT5/pmX3C3WG1Ps7rN+b
XcDzUwtnwpIrrNdT3ouOdoNrH9Koq6ndofrAH/VzJe4gVKlzcpDLAyKMP3RU
13uANMfBoGI+T2BZIBUpq/WE3gWVw6VsXlB498GhlDwviHlhWqJ3whvivmsY
7vp5wyeTpwu6C95wl6rkvpesDxREV21LlPvAT6PEh01EvjBwZmy4V9cXmDsa
eyzu+ULnS7HFtB++IOxZZCgj5Qekm5RUvrF+EBv8/CFLvx8ossgNyR7whwvT
y/FvRfyhfkZz952LP/wtJp5TKvCH3qc+b1mf+4NWrpio/bo/uLelMtOSBYA4
n5jDFc4AYKP1aeqQCICYYB+DBq0AcCWhDjtrEQDpiYJ/fzgGwK7DWUct9wAI
8Sg5w+MRANGmNkdSXQJA93TrnyCbACAzjLD9px8AVaO8doyKAUATIzG6KBAA
LlU753XoAuCx+8vQiN/+kOz+sdtj2h9CrjqoX2n2h/XpMtXBeH/4Sifpqm7o
DyU2qgdfcPjDw+obf2S++YGVauvb121+MMoQ1RDu7weHCq6ymwv5wUT0mGv4
V1+QIQqQ3a70hSKJsdXnBr6wwp937vQxXyAe37mw0OIDz/+9aFYy8YE+9hNH
zEl9wO7D+iOhcm+oXzn8Y1HaG7pWQrl957ygy/CU7FE/LzgSdjK9jswLiqqc
uoKKPKHAvnggfv+9XjDJPL/e7QE5rj5OnQoeoHi+pOH4qDvcTTO7vqfjDud3
Wm9nTbtB5GWOyv8M3YCQuvw5rtUVpg6klp1sdIEh9cMRHZXOkNP/cL3zjhNw
ZF+rkklwhLu33F7E+TjAx+RrdR2m9jD1ImTnqJwdiBD3uddw2sILH2eusWM2
YPPtnGLzJyvInOU8E9ZnCdyfDmw57OtXj+B6saoAc3B3u+HmqGkGun6F88Ma
JmBRGH+15LchGK5HujSX64OLybs5JxVdMOk3yeDf0QZfrlMCdnc04dHiPRIf
CXWQTV9KDB28CXX1Bx216OWhLVr3PY+jFAysmkfXB4pA3sGBMxc5rkC6SxHE
dV6AUxeYqGTeT/UwrZ3N2ONjwaRz7VfMe69g5DzG3nsrgmR/Ays83KWwbsLr
qcaGHDYYkP/pNr2Jo1RCbAf71VDTV+5NF4UmKo6GyDeLaKPYs/dvc0x0MLZD
bfFUoB6yXIi7MphmgAdMHl4IuWuEHj/1c99UmGCkiN9xCS0z3DxxeoVezRx1
CiZkp+QsMLTT7of6DUvUpAiqtuC0wpKmpfXPlNao+W9Qsv+nNX7rv0wzPW2D
sVYrw0Rtttj/+mkfQ4od8iYYaFKa2WNWWE7/00sOOLJyMeLMjgN+IGWc3Whx
xKsp7bRXPJxQhzeAs5/DGa32GMnz3jqjg9VUUmaUC97OH5TP53RFEYbj/4r6
XVHLuVLmOZ8byjTKOXAGuGGh/oy3S68bfl1YDUwhdceLeqxMEdLuqPnuWLpU
mDtW/qLMetHhjhtkuQGnv7hjwpwVOzWLB2ozb5CNaHqgOI/yFfFQDyxilOQ0
qvJAfrcTtOxDHlg2PPgg/4sHJmtNS3Wd8sT5N59uh3N7osWxwwxb0p7YbP+h
h1TfE/eESIh6HTxR0PjjBqu/J05vGzMLRnmi49Ggx1uJnlg9XBJskOaJRhE2
Sb7pnhinYF6vlOqJBw2/Xp6K90TT7sUx1nBPLFAg3b3q7YmK9++Zn7bxRNYc
JtduLU+8dfDnFwlxTywRsxYuveiJOGtKsX7UEwnfx5+xrO2f07H9tNYLD9Ti
/cMVWeaBzZmpnd1BHugmxPfuxH5/VJsyNIGsHviF8rYN5Y47Fj08eWmh1x1/
XZYU+JLgjhZ0Z+uUNd0x5pTWFVIad4xL+9F6/q0b6mm9Sm+65Yad29VefQQ3
DI6adnAgd8N53fYa/XRXDGqVmBb+44LC1cFOaVYu6D4mdjL0uTOmFvEQs7I5
o9eRY7R3w5xwN/dBA/mkI3YVy9bd5nTEteZTnoZ+DthuFDvt+8QenQQvCZw+
bo9hhmbCSmp2aKRz7YRcmi2u217l5xiywUl36iiqozZIZOd5lVfSGp9ZhT7J
97HCGYfy7fBqS5Re5H9FOm2BE9PfkuWPWGDbhclaD0Fz9BJIGrpnYoadIsJe
3CdN0Victq3J0BiDxP9zE6owxMKw0vGDm/qYLFUi6CCgh7W8jesNPjpY9pbG
lK1dGz35mZbO/NBEpZbCjqFrGpjlOkUk+EkVg6d8lOMtb+LuQa+HgjPyOKc8
wz6oI4NBApo9qyMSOPL02vz1WzewdmCv5ne6AB4iELtHnOfEHd5AwQfqZ9Dp
IpXE1Onv4jPVfOd/5Z/f562lkEprHjgWEHj9ENk1uDjGS/77nShI9Tjuqg1L
gurNE1NbnLJQ8b1SVydYAQ6V5iz/6b8JTyr7BixOqMGjeebycBYN6FEljPA+
1ARnTn2KP2ra0Bh9+979WQIQKt13/9rqQkPCB6+uNT0guVDytsLeAL7fzT8W
t2AIn6hoLrNrGcN1c/JalR4TONB1kdnytBmQ/50N4+k1g2M1qlWujuZQ9yz7
HxmlBZAXxJd8bbWAulfXrEl1LaGdoDtxadsSFOTuSeklWkGP0PU2NyZrWL0a
d8Ci3hqoyet6aUVswG7siWLEYxsw7qXtT5K1hcpBKT72p7bQd/+4rKS4HfT9
uX574IEdNOZfS29jtYcRxxSrvTR7MAlnPh/ywx5cXKnKwNABJPt+VPF1OMCd
xeFeOQpHUMIqLT8bRxAJyit92OIIj8T9Xx0ncoIFnUtPTWSdYNNux6A+2gk0
OkJEfvQ6gf/D6c+Ce07wmPJmvzmHM2yybp8I0naGolDzgfBAZxgd+bHpXuAM
FXk8IsqdztDqdFvp9GtnoFM1SXm87AyujmHKFt+cYe9VQeH2L2dYCaZzD/jr
DDPUHOH//XaGtBxRw6DvzpDpq6xPuuYMylcWi3KnnaHgFesFyWfOcCWiNO3I
fWcwOcHkuJfoDDsa7Fs0ds7gllpI7w3O4NPLVEtH4QynxxXoqef3+5D4lO1e
7QSvfahJxF2cwOgD014cjxPMUPl1mX92hFBXN8mpYkeI81lj+aPtCGMVX0oW
SPd1lwR3UW6dAzhuquXxExzAacWl7vGePayx8iaY5NiD8Pau+1l+e1C//VPo
SL8d/PCSui5haAfqP3L0Jz/bwrCr3r8lH1sIj1c5FfzPBrRmjFY7omz29ZWQ
adMhG9gt3+sIibaGJZN794WIrWHKblztu78VHK79dHFsyxJeFtacWLOwhJXH
uWKENxZQZsCtcFnSAgzv3SBLqTEHHSeezgxqcwjbgqc6QWbg/sLg+dojUzir
N8JAG2sCL2cC1xwUjKGv+tePc4eMwEKex8W21wAiufz7I331Qd1hb+Q+tx7s
MrRknJ3RgT8/l9QPJxFg/snp4HphbaDlNa9VXtIEy+6+jLNJGlB66eaWuoA6
5FPcozVsUgH5xV3zsf+UIHgc+SKlFcAyUmjkfbwsTNWbqegMS8HJTnorKyoJ
oHqdP/W96QbQyJilMIpfhROBX6+o5PDCoMj1ldUWVjijIf2uoYMS5Jq8ueYs
Z3viSDjafdxoUKAyVLvHjQ0Dfo5V+iTz4esTGp/ipq/iOwXOuYeMIlijenu5
4JIE5o/237/1VAoDxtNXVnRksZyy7hjjkjwSf+j/b9pOCcXC3pG3f1TGOAlR
Dk1TNXy/Vj9d+lEdzcLKbPPpNVFvVPOu5U0tdI8ZkB3w0cbt1vSDFQUEZNVn
93mOOigV4sR8YEYXXcJHUvh39TBQSxvYjhjgAq1xdwe1Iarp6hQ8ZTDCR9+Z
o86fN8bTNkaXqs6Z4AVhU0chSlMMVaHIGyc2w7HDO6+/+Jjhdwflv+9XzbBB
KlE7QdccR7nzyz89NkdBvWHDdS4LrBGtDI5KtcDlvYT6si8WuCVnfFVC1RK9
5va2laosUZUs0aPjryUyeS+8C9OwQtvF2H85RVb783mr+W3NCjWkN77GC1ij
3zfnIoKvNar+VX6p0maN7humUY7b1tj+cTapitsGx3Se3/xnaoNqUSxvHNJs
UEiXe/7DQxskOxM64bpig5f7nrwgOWaLw/EjngVcttj6U/y6uLwtmj2j5Fg2
tUUjS+m9FC9bfF1IfwiibVGQMsNwN90WrQv8yh/csUWKzWyhoLu22M1Vfkyz
yBY51EW6hAtsUYAuI04wxxZzXG9oKSXaIk3B07zQIFtMfUUSPm1vizNMPT3m
WrZo4nCw5tz1/TqfaK9T0tui8KfnGyo/bRB+Onwcf2OD9XMTE833bNDV5vrf
nWAbbHeb5ylWscHGF2t9T8/aoB/T5zrHRWusLDXXLam0xsh+mVZve2t0vaMl
s81ujSxXHH5xLFnhuycPVS/mWeGpYeIre2pWWLSTcKKO2AofvFTu0m+wxMNO
k0nHjCzxiZ6Y+OgBSyxg2tjruWeBViGBSisqFijYYMqts2mOCSolX1mSzJFa
N1TTnN0cfxD9Nr7Qa4bnpt0CfXXMMEj39KvNMVMsFHHSdPhhgrXaN24k0Jhg
is/aM98rxthA+eKxkaIRvk+8FW5pZIhfpniGWx0NUO3t9/VwX318EOwY/yVU
D2fOxbbzROviM0HOdbtYHdSa8VwfiCEgPT/zSFSkNirsTu30Bmth5yOPvVpv
Taz/plDj76iBB8sCaDRN1fHyL+uXL0tUceTc/JMnkfvfBVnuypq5Etp3JtEX
iSngCMUVKzEaOXQ6Q/Ho/JY0xtclsFc+k8TK71xLBtcAQ8/IFZyfv4F2PdT2
evHXsFb2YnHnlSvIUyOy+KeDG6ltQ93aT7PgQ2bThgvvqXDqb5/LqcMbPctG
dR5/zxwHuvfzuUIVjOAXGycsOcEOMrtkN1bZ+AA+1ORdMxKEJxdZlU0ThGGB
Yu1uW4MoZGVV2960lQB9W+kj992lgLM0RY/DVwZ6/96l8fCVg+AeHk5hDwUg
k3hQzG2rBNWhCq//EpQhskFN21pcFVwy7I8dI1eHyOk39WZ/1OGM6UVvio8a
kF8otvXfK02IkpXz+FWnBc/K2s+sJ2mDcpp4T70NAdR/OdNeFNWBsUqTyktk
uvDb7OzTyre6cPDwfIlfsR6U/1PRjbDSBxEX9akqZgPYbNslHX1nAMpvKUvn
Uw1hm/aZU4+4ERje7zyquWoEpEtWNFFJ+//j5C9c4twm+/7m7JjDUxPILB++
u6trCpM6LXQDK6YQF9Jiv37NDOR79esO+ZnBR9YW9kutZnAgjI2N8NUMyBRe
hQRwmkNfrWhStok5BAE7b1Havr8inx/KQnMgmI/pu6yZQ8vAqiwHlQVEvn+Q
3nPdAq4+/4KXjSzgjiHNgkegBVx2XYpPzLWA8TDiKe8GCwhP33Hj67MAsnOT
4Z1TFpD8+jBSrlrAVgVaiu5YwPlLGfxX/1jA5Pm3rv9ILGFT8Oha/kFLYDi6
vX1qH4sDNk0MiS3BT/FrRMSv/X086cLxXyxAIfXrlOeSBVjN1YjK7/OYfKJy
55FeC8i5lXOxp9oC2uzSB53TLOCQhHEgo5cFkBwsdJvUtoAZxkXroisW8E56
Ly6czALkEi8HRq6YwyJ9vFp9pzk8HFmMO5lsDnf5ftDcNzKHEFpH/dT9uQz4
NVL2bZuBXuKul0GXGYSufCDXCzODnpGg2ZdSZlCsee8qkphBoPyRO5FhpqBC
2eyC302AhzjysbKdCVAscTHIjxsD6bfR+pdixpCmPaO2U2wEDYLV7gvERkCm
z83SYGwI166EHwptMQCNJXtl56MG0PSovu6Ovj4sHQlyYK/Qg4i/BTcEt3Qh
36hXY1FQF4i907S1fHWAtmxSq7qVAFXUcX2HtrVhdK47MuWSNpD4tDy0tNSC
nwHt36tzNSFnl/hg9AsN4Pxyh+TsT3U4H8ennMCmDvc+9m//KlWFk6euNPHs
KUNVgOern3I3oSyDJLkiUxFeRQdFhs7Ig3Qqj98wqxxwr9w1XbCXAWtnRlWi
Wik4tqXu6LspAdpfiwZYjMWB+0zO4NV3N6Dgn8XxLl0hENBa8VV8IwA2YomN
Pqp8QBZNNVafyQlUin75pEnMUBiU037hJA18YdTl/ElDAmr096Z8G7Z7hpye
Xf84SYH2u7nXUwzOoyKZQCZKsKPf5cSHDgw8+OoadWmn7xXs+qfcsrTP48qH
yRgqhK6jn8bcol+yKOaE75aNvQO8dPPoxNl0SVzuO0l0lE8ambYu9fi8lEFx
8+KvzGZy+EGS1H/oizwSsQxfFwlSROOEXs5LJDfxX/N3XesIZXxzbHn3/m8V
TKo+ZNbnpobHHQUpxV3VUeGU17EBZg18RFzMsPVaA8sjPX6lhmpiTKzUj0wO
Law40EG/OKiFrRu6dBau2lil/tH49wkCknI9OnyngoC2wb+3WUV1cFHB92Hs
oA7+2OrpqjXQxS2cOBW5pIvPBd/n79jqoXZt3KkvH/UQJdLmLC31McVtRgOm
9fGSV3WAh7IBBqy4wWaHATreeqpXxmyIWS7ftWJjDDH/X3FWwooh3vpKrlMC
Rhj1IaDmSZYRdn04H7O8bIQ2wjI1//Ea48jtH0+IfIzRfnJUdb3VGIsfO91v
+2aMUklvqI05TXAws7ty0sAE9bvu6bHEmuCowfQf0ToTJPnKoMQ8YoLcrbGD
o+smOCSyu6N0wBTT5X2Oppwxxbt3UnnzWUxRhNzYxpfbFIdlE2OYeUxRfU1A
sng/nn6dxfhjP59kVh50icYUu88nJMscNMXVpQ8E+U0TPN196r7oaxOUsxHm
v9xoss8H/XrMiSZIP2NpzGZmgjEUFlIyfCao++bPSOx/xqilUJX955ExDjaa
zDRFGqNOwGJTi4QxmrqMvaP6aYTy9x+Mz9UYYf1U72s2IyPclupr/XXICJW8
n1E61xoi6ZcEtjQ1Q7xTzPHGZ8MA7/XpFgvGGmDpncftM+cMkJ9ceCamTh/9
g/ocZEX18cfkYw3ePj0kq+mgMFTe59Gxm51zQ7q4nr33fkxFFwWfDmVovtDB
l0/pPN0lddCxfzNVqZWAHiL33ffYCfgZnSkycrQx+YH3W0ESbTxa55fzy0EL
yT5/Cvo7ool2x68yGQlqosiZDXvebA1Ut/tSmLWtjhGxEepVavu8K9zRflJL
DU3eOAwWkKhiMkTeE65TRo8agyw6nZsYw8AkHvpLESNZG7EkTwGFSP0SH12X
x5QtHivacVk8vFqjuewsg1r21XkWB6Qx5H1Iy8gtSeQ7sSHmxC2BErSdcyt+
Ymicpn5Fdt8/x/T3n/doEUKli46E1RFBpCfTtGRZ48e/CVZWYkd5MITKa+ye
CAemcVD1Rrkwo+I7HtIw2bMYxSGyLWl9HNPphwJTryz0MFSV8lN1kUCT5eA2
xSQV5D559eoq83mYFV4Tnhm9CHPWZsNZ/twQwT47ej2JD0ya9f1e6AgAIfgy
4+Fz1+D5i53u8HfCcJwsMO9FlgiYkdES3OTFwY7UMiDKXwI68nyJsgYk4e5F
v77Gs9KwfKuirNpSBrJ/vFRUqJaF0ju/pQw/y4H2jARpI5sC0K38/UxroghP
CXJqlmlK8LZxNcy8+yYUkVu9WVlWhgChwtInh1ThAauryTCzGpSQBUu7ntvn
f3aHWcsydUjh+m3Gz6kBMY+lJJ7e04A3UhfjjnJqgsV5stnNUk1okfOOtKDX
gsJNYz2tVC3QqyybafinBUdlJIQcnbQh3MqMx3NcG4T13AQ6bxDgKN0f0yv5
BLjJE+I39JMA/tzEm+FaOvAJ2+YkqnVA5ajdOaL/dODmGWRpUdCFZq9odp0M
XSiqaTkxPakLx7O9nITP6kG301qWvY4eXKwlTbBJ1QPylAOHOJ/qQcNVioD7
O3owdSfl5Kfz+vCHzqh0RkEfXo4Rj0Q76UPgm8al2UR9SGPlX/lQoQ8Sm8UZ
+d36wFbNa/5vWB+U7xYEnZrVh7aptr7Bj/pgWF4xIbKhD7e/sf4w3NSHYoHb
XPxr+vB1lPI8LunDtP8l0WNT+lAx8zyDpl8fSpnxw/oDfXjI4lSVlqcP5kZ0
O0dD9YGePijNzEQfhKwU1/Ov64Nf6W2GfnJ9eH2paXZtSQ/W51KTKB7ogWpG
Pqt8iB5sDDhIZcvqQZW+PsPRo3rQTMsUU9+vC9lesJwdpQs6lHYCL0V1ofFS
O5HhVx3govhmq1uiA4r2ueTDajpwvOwL1+v9+VodJnJ2LyLA3DmLUz3SBGjZ
pn35YkkbKFbkRivCtGHSZWLUlk4bfq+SbzI1agFlBGvnoowW1DPeEX46rgnc
Dl0TU5aa8L5ize7qlgY40G2xbflqgPZJjir6v+owrvtsbiRcHWw2l2kvkqqD
+iRhxfiAGhyRzms/9lcFDn3gYQ7dVgYXsR6Oz8s34bb2pkHgayUQFed6bvFQ
Ee5mWmyPlCjAQyMc+x4tDyt9ss8P2siBA7lnNK+0LFw5O8RUwSAD68/cdvJ2
pUCQN7FCev/+H5daoB4plAC63Pia1XlxuH+NTvV5mCicMaEfL2G4Ae7ZdCKL
bUIQ2h9csK52FULiAi9xfrgCjMHn6P4F8MGBpHSK+wyXYONE/082mX1d3bSb
DA7M8FHw9HzkBXqoOfNJeNftNNBRNqnfO/1PnJidYcKGY7ZnwD3OI+vAYaxh
PZ6kdpYaHVlSGw9XMGI/Klh4UrKi19D77/yDHPgm+9tIUOhlzLf54vuCih+v
ynLmGVgLYJ4nuwxl41W8mOS4k70nhHJiiTdjhG/gxIk06nhPUdQqo9OXqRLH
ZpmyJl5HCZQ+Wev6KEQSI92O29WkSGHNbx+9vjvSGBpg93ClRAYl4yzHFipk
kU2GviajQm7ft7mfHy2WR/l76is+txSwR88g0SRBEXvEPaMtfZXw6+oFHgvT
m/jC5dkrISllFDcuvvOYSQU9PHueL+yp4MPgu6HeL1Vxtf7FhkmuGjaun7og
wauOSl9jDWZT1VGb+IVs0IY6SmcEJZ9Q0EB5YiWbiLsaGCqWmja6rYHrBsQG
mzKa2DQpeHcwQxMv2pINWs1oYv4Z6sVqVi2sLut0zbTTQsVPPnm01ft8wPeW
if+DFv6xD1AZZ9JGDpJksr8EbfyPmny6LE4blVLTh5+0aSMjd3E+YUkbrbVe
JxCOEzBHzDwYeQm4Fur1NVWdgC8kZP8+cSYg7Ukegn4sAZvtiiRVCwhoQ0dc
XVxPwEEHx2NaPQT8pG4YYvGCgPMo3joyQsBw/s3/CscIOJd7gn94HydmVYcs
RwnIwHt/0fQlAU07XSmeIwE1+6RzChoJ+GP5xI3VuwT0oXpkWJOw//wO0+ct
dwIGunladhAIWKMW+ubUNQLqkQu8+UVBQKLygeiIdW20PdWdW/9YG/OuPRdN
zNbGz8PUPEzW2shbdLPKm18b+Wr87W//0sK3MST12b1a+EnUQcAnUgv3JCkv
yUtrofzLVTlqIi0Eor3KjQ5N9I/5+mHGTRM5E6pO7LBq4s62c5r4hAbei7Uj
vIrSQJa5qcoaPg18IqJ6Y+utOq5VvGIuC1PHz53Lk+9Y1bE/P8BQNVkNx72Z
K3heqWLueZH8wEOqqHr7xLaeqApOHTQiWXNWRnvRgz06eTdxmjq0/tFTJeyr
urml8VkRC5MJjDwnFFFUTcQ0mEsBw7kT1Gxl5XH25iciKuP9e1h47dt9d1l8
4JtzRC9SBn9y+sZJZkhjz4v4kxmFUqhC0RjnWSWJ8iyrPOQNEpjOIv2D1RHQ
g0RSVclDDBfCb1/74C2CB+QOLan6XEfysL7RaU8hTC8TwnmXq+jT6pzbZiuA
ugGDtq0m/Fg1Syi2q+JBu8H3G+TpXNhOFr1G6ceGlZfyiphMmPGd9ELyk9hz
mOVBYXpKmwrvTTXd/iFzBE/VUTpQl2716KvZJd9580V844bSNlXDEWA/wJXR
4kkFHKRPnufEnIN3ZE/L6uWZ4QTFOTtzOTZQ6Iv/1CXOBb8lyGfp+XiA+dxO
39YJfmi7/8/nwZ8rsHgx7f3Rz4JA12/6tGz0GnTkN3+/1iwMB/9YS3ul3wDB
ibrk0/ai8Hj95eTTG+IwU8VTyUwqAQyXh6vLVyRArpFdtv+pJFSaXv9iWyQF
Jy8svbLwk4Zd0381ucoyYHDHnObDOVmo6WlS5vkkC1bKl5Q1GuVAq5hvis9b
Hi749QbUCypAVd2r+IYtBWB4YslNW6EIR1w79Qd0leD065Mf6w/cBKlS6/Ca
mpsgvXC+tUpNGfLiXXeTNpTh8mx2tlSMCrT2k008OKsKg3shiwOVqmCvmjLu
w6cGR9WiuoofqMG7M9ZKBbTqoFbAeOmWtjqw8dUEdCSrw0TX2fs/n6hDDX1N
g8aeOjAqtP7pZNeAg2z6UbwEDchcudxWHaoBD5em41krNeAPSaZ73oAGfPAO
tT62oQHr3ynnnI9rgrWryvRjtn0kfzd+CDRBdoX/jZC2JlxaS9DRttGE750D
NobemjA9pZ+sHK4J17qnxtkTNOFPw+vBjVRNeHRLOepuxv66QZl48X2k5mLY
eJWiCRJ2X0AlThN0jrxJexyyn5/958TnoQl7EV9m71hoQoOnufMh9f28pAyd
3w1N+FR3x3z3giYMU1gIRx3ShH6le8e4VzUgXtq/60ufBqRaMJS8L9GAxCbl
+O+B+xYmxaNWTlMDGoqOd41f1IC8qC+var6rg0lcqsP4U3XIaaGO0U9Th4aM
2ABpfXUImX1xtJBJHWJPXmtZ7VMDrvs/10sV1SAtiSk1+rkqDDvipQoJVeim
kD3F1KICKmavBY5dVIHT4zFyEWnKoBpUW1CydxOqyF7vy/qb8Ci/u1K5QwnS
l00uk1MpwW2B3IwtB0WIk98TPNqjAO/krf8EkikA52y9ga2+PFBOnhRdK5aD
McmM4xwfZUGKKLxKnFMWCrsrzdXtZEBR7vZWSJk07FxfcFmfkQIOei6DLiop
sI3XjTqpKAnWjDkURwMl9sXJ4/V9eQeZJsTDBxrFYNfvv670I6JQp3+RNsno
BsSVsTeI1gqDZ3BVzfqvaxCUTRazInsVzm0L/3BLEQD2CKnvU2P8oG3HV2h7
lg96Ncz0h9ovweWL5QvSopxw9/ut0KfdF6E1PWh0WYwZrv8iL/EIYIB/5HI+
NX5n4H/aUnim
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9},
 CellLabel->
  "Out[146]=",ExpressionUUID->"1f539735-0c90-42d8-9cff-72de5c5fcb5b"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{203.3760510377738, 0.0010469839407580503`}, {
                   213.87842888274332`, -0.00016339146638356307`}, {
                   225.0184479242596, -0.0009113836271674432}}], 
                  
                  LineBox[{{338.92282289757327`, 0.0010469839407580503`}, {
                   364.7990839817759, -0.00016587999370534787`}, {
                   392.7015524435873, -0.0009113836271674432}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAA+FnQVDIPeUDytrdvPd1Nv6ZeFbKi
mnpAwev+oXZ6Or+hH0mkLJh8QB/EJ/PVJUM/lAmaVmWMfkDq8f+ULA5DPznG
eA90L4BA9S7XCKzlIL8yrMl9cSyBQMcEkIufAEK/oN4d95MYgkC9xCjZllAq
v5g1l3pyGINARzV22CcHNz8MIR9eqBOEQHO2HoSZzjU/9ViqTAP+hEBmTKz1
VtIXv2i1WkUa/IVA9RfYKdRfNr9RXg5JVumGQIKPBOy9xR6/tpvQrOnRh0DM
OSS3gJsrP6X9txo5zohAwGxA3UmHLj8JrKKTrbmJQIwaP2FarwG/936yFt64
ikC+nVP9Tj0uv2Hm0Plls4tAXTkbeBiXF79AmvLnEp2MQOSnxxr1XSI/qXI5
4HuajUDgAmUM2v8lP4eXg+MJh45AgWUbgk+Z9b7iUNxG726PQDpzeUdpKSW/
YxctWkg1kEBuEHwMaRcWv4+sbZarqpBAfOCTPFf5Fj8A1MDX7CmRQGXeSKQ0
OCE/rKGVnsCgkUDOTgMijKqyPpa5cRVAFZJAC2hbJsxuHr/FY2CRnZOSQGCv
AHsKnRO/L7TQko0Jk0DjCrNQKlwNP96WU5lbiZNAVZjn/3s3Gz/Lw91P1QaU
QHv4cOO73tQ+8pbpi+F7lEAdMGwsLxgXv178B83L+pRA4DrjkbmQD78FCKiT
SHGVQNim9WuLywU/6l1PCnHllUD15bZyNfUVPxRGCYZ3Y5ZA/PC5ex3G7z55
1ESHENmWQEbKoy5nAhG/I/WSjYdYl0AvHPUFFrwMvwtg6EOq1ZdAzhQs2zWM
/j4tcb9/X0qYQNwahx2VpxE/lBSpwPLImEDf3yrUNVbwPjZeFIcYP5lA2aSA
oqeKCr8dOpJSHL+ZQCjUtcYtIgi/QmAXzss8mkCSC37HNav2PqEsHs8NsppA
cuZIHPnDDD9FizfVLTGbQA7NU/4stu0+JJDSYOCnm0C7KenXp10Fv5W/Afj/
H5xAcULVixZvBb/fFGSw
                   "]], 
                  
                  LineBox[{{70.48634179285979, 0.0010469839407580503`}, {
                   75.39450218401522, -0.0009113836271674432}}], 
                  
                  LineBox[{{137.78089692450655`, -0.0009113836271674432}, {
                   146.4541539893639, 0.0010469839407580503`}}], 
                  
                  LineBox[{{274.7509398838317, -0.0009113836271674432}, {
                   304.2137718455637, 0.0010469839407580503`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887117#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.0009113836271674432, 
               0.0010469839407580503`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{203.3760510377738, 0.0010469839407580503`}, {
                   213.87842888274332`, -0.00016339146638356307`}, {
                   225.0184479242596, -0.0009113836271674432}}], 
                  
                  LineBox[{{338.92282289757327`, 0.0010469839407580503`}, {
                   364.7990839817759, -0.00016587999370534787`}, {
                   392.7015524435873, -0.0009113836271674432}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAA+FnQVDIPeUDytrdvPd1Nv6ZeFbKi
mnpAwev+oXZ6Or+hH0mkLJh8QB/EJ/PVJUM/lAmaVmWMfkDq8f+ULA5DPznG
eA90L4BA9S7XCKzlIL8yrMl9cSyBQMcEkIufAEK/oN4d95MYgkC9xCjZllAq
v5g1l3pyGINARzV22CcHNz8MIR9eqBOEQHO2HoSZzjU/9ViqTAP+hEBmTKz1
VtIXv2i1WkUa/IVA9RfYKdRfNr9RXg5JVumGQIKPBOy9xR6/tpvQrOnRh0DM
OSS3gJsrP6X9txo5zohAwGxA3UmHLj8JrKKTrbmJQIwaP2FarwG/936yFt64
ikC+nVP9Tj0uv2Hm0Plls4tAXTkbeBiXF79AmvLnEp2MQOSnxxr1XSI/qXI5
4HuajUDgAmUM2v8lP4eXg+MJh45AgWUbgk+Z9b7iUNxG726PQDpzeUdpKSW/
YxctWkg1kEBuEHwMaRcWv4+sbZarqpBAfOCTPFf5Fj8A1MDX7CmRQGXeSKQ0
OCE/rKGVnsCgkUDOTgMijKqyPpa5cRVAFZJAC2hbJsxuHr/FY2CRnZOSQGCv
AHsKnRO/L7TQko0Jk0DjCrNQKlwNP96WU5lbiZNAVZjn/3s3Gz/Lw91P1QaU
QHv4cOO73tQ+8pbpi+F7lEAdMGwsLxgXv178B83L+pRA4DrjkbmQD78FCKiT
SHGVQNim9WuLywU/6l1PCnHllUD15bZyNfUVPxRGCYZ3Y5ZA/PC5ex3G7z55
1ESHENmWQEbKoy5nAhG/I/WSjYdYl0AvHPUFFrwMvwtg6EOq1ZdAzhQs2zWM
/j4tcb9/X0qYQNwahx2VpxE/lBSpwPLImEDf3yrUNVbwPjZeFIcYP5lA2aSA
oqeKCr8dOpJSHL+ZQCjUtcYtIgi/QmAXzss8mkCSC37HNav2PqEsHs8NsppA
cuZIHPnDDD9FizfVLTGbQA7NU/4stu0+JJDSYOCnm0C7KenXp10Fv5W/Afj/
H5xAcULVixZvBb/fFGSw
                   "]], 
                  
                  LineBox[{{70.48634179285979, 0.0010469839407580503`}, {
                   75.39450218401522, -0.0009113836271674432}}], 
                  
                  LineBox[{{137.78089692450655`, -0.0009113836271674432}, {
                   146.4541539893639, 0.0010469839407580503`}}], 
                  
                  LineBox[{{274.7509398838317, -0.0009113836271674432}, {
                   304.2137718455637, 0.0010469839407580503`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887117#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.0009113836271674432, 
               0.0010469839407580503`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwVl3c4lu8bxu29Xnvvvff2XogQIhkJGQ2bEpVNZLQRlUpmQhpSFL1XfCWl
SDTIHmVkr+yf31/ncT/Pcx/PfV3HcX3u8xTzCXU4Tk5GRkZHS0ZmKzsUYUkq
BrdfT+mya4vh2PeTI9xPiiGtUOpIR0ExqJhySn24XgyU03e0qWKKgedx+GD6
0WIYjHCs97EohpNpmxW3ZIpBO+VZlzZVMRwvEM216isC79HqW/1VRVD9xvM+
1YUiEHD8+bD1YBF4nnTqMhMpgk8czR7n/xTCG54r2TcfFcKLiKYft0IKgcjD
nHRHqRBWLOdmXkwUAKPUT++dwgIojiumue5aAGz0w0MJzAXAVFTWPEXKB96f
StZTwfkg375Zn8ufD/t21uQUL96Hs2bO3xd78qC5G7qaZfKALaolefDkPTBq
0TSIfXkX8h/RSPT8uwPJNJ+ltHTvwIRF85dP4bmQlHFUf/DxbbjY/erP49+3
oOvmzLNzgrdA1rmyItb+JkT7PKfZPp8D31/GrelVZ4PVmmLJqdEb0GR0c2OU
4wbg4suSTtMsOCLhNRlzKhOMvrhni+RngCH1cv9a23WYONZXmrl5DUwOiMZk
u1+FFRVP/nDSZfgo8jyxWPwSGAupluSmp8OJmGaTlsVUmGBIf3HXOwUitfx+
JncmQ0zGqe+TVkkwqljIqP0uEXgpXIc+mieAx8epw1y3YoHez0u69GkUlNB7
tpJ9PwveG/28HXQRIN03/RWtwkCgs5j6l3oobIUNZP+e8weH3LGYd23HYJvG
cpH7jid8oL5uFtnrBASFK+Wa7y2BVjZFkiNTDixYjMiu/NZGb+PvOxuPbPAy
8V7fs2JnvKL8vvXhwyPY7EBXyqxyFJ+OLkZQDp/A40XLau+CAvBuZ1LrQlsw
nvZ3cBVOPomT+vIDakxhOKd4IeVu/Gk862c2u78/HBX9rz03kT2Dy9tm+yM8
zmKcoOP2fOw5dPDhKn2fHok5IVjJnBiFWdtsXcNHo3Fq0IYtWD0GT+QU+3T/
jUEVK5WHblmx+CXqUqCydByKBu17nlkSh0WdZm3thHjkWPwnpBEYj/2p7AOs
VfEo52c0R/odj0Pzz6zbqRIwgveNeDpzAm5Jxyg27CrTn4zZSuoEnKCydmSb
ise5WfajXHXx2Mi7VjgaHY8hEfLOG0rxKEH/RbqnIw4Vn8+PUPnF4RNdViLF
fCyOSl1LcguORdkH4h53+2Lw3x/Diw6mMajAVH+P+W40ftkcfH1kKgqnf1U5
/FSNwj/kk0PMwZG40Bj7JCv/HKr7zl7abj2LhNnAjJHZM0j07hv9wXQGu2Ip
z52UiECXlvJPJprhuG+K59UAnMaX5+uV+vaG4SFvq81Wq1NIe0It39DqJI6N
exBiLoUgr/HrltfxQcgkMtFrfTIAHyXSv/h32A+PvqT6FG1xAtuVrp6I0jiG
58QD7q+K+KBJVu/IHLMXphynsKzbdMP0/WIsR0ZdcGzYzOJ+10GsYBiZvZxn
h2FkKWt8jyxQxrfS9kw54O8ni0/s9FXR7V1mIdvAHOlIx+SKb5kC7NDuc5nx
NYSHxi/9ZQ6aw6HFJ9oO5jZwb6+RPFXyAbjWtnwv6pMjzDtW3lled4G33x09
glncIGOtwWiG+gjIL/U93nfSC1qrZItb2ryhlPpHGUH4KNTOnShr8zgGFIH3
8p5dOQ6TnU0OEZUnIO4Rwb6v3hceXEvpeFHnBxyrp550lvmDSPVtS87UANhI
UvXzOBgI6jUVsvdYgmCMPKfzQ20QPH0SSRo6EAzxAduSU93B8NApWGjRPgTe
1H2dYKsJAVHqklIvplDwjFGJoTkQCvxHIq4pXQiFy8sLP2jLQqF7/vjo5/pQ
GHpeX0R6Gwr1qTYKIi9CYXskJFo/d1cHSky9T4aCm5Df/QmdUIh2rx5Ung8B
stHL5hl3Q2CsKaouQj8Eynt075q3BoOl6oOAELtgEFUVueb9PggmXrhz3NAI
guG3qx5xNwLhr/DT6TuTAZC7nsUZqB0Ah+qlnged84dqhXuLEs/8YFTVi5p7
yBdqyNt/fqDzBfmxuF/vZU9AFOd29W2T4xB3XZ/q48Fj4MVcIjTqeRTeusp+
PH3CB+pHmGip/bzhlOZAs8RxL1j72X+ipv4InJ7eGgp96A4X5WgnLlw9DBb1
9wcZTx4CCerNXPb9zjDEXZdcKucI7d8vTXVROkCZ2f5R0zo7CDmd6ixy0hpm
l5dCDWQtYNk4oDN9zBQKHXfyxg4awRdRe5/SGU1QtE47+89IDqI+2VfWFRDg
0RbF7P7LzCh69bikhYsM/gxzHLh3XgPJDYut3TQMkOymInuIhwnKr7E8EmE0
R5Zlab+jBZZYNdz5flTYBp8kXTlx/LwdsrQxtB0+fgBvObUddttwwGRwv1V5
3hGTAijOdq47ISHoTaXLURcc3c9z+XPdIaTq8xL9SnkYI92GQxkM3LA96nCb
pLc7MrzRT/oZ4YFn3nc1j507gpZ7XtdxBXiiVqGq+j1JL1TWvL6P55IXqqZb
zweMe+HlEuu9Vw29UXKhsyo61RuP7bnzS+2DNybJWmU8J/fBKutjSKvmg6Tp
Rlc9Fx+0tgy3dAn3Qeluf4fwNB+UkSqiKc3yQeNjEsX0OT44r6Sj+OqaD47d
5sn4meCDdL91X1/y98F04vm8dSsfPJDt62Yv7oNUsf7cdQveaDPwqi+wzhsn
xrjScmK8UVM2KyxM2xvNv2mOa0944RfXGQXRbC/sbcv6E6jvhRU+Vs3PqzzR
bjam0WX0CPpxnFzZx3AEKXOm1nikPFB2kinRRssdl5LVOCJ3+0Ke+LxBVfcw
furO6adTdEWS8N7nt3gOYQR1rE7khjPONcW1mP10Qv4bLwZzHjviEtfPdsb4
g5je+/S08T4H1HTIm+9gO4AW6gzDrx/YYd078sodSVt8k1xOVnFvH14b7aBd
IliirBx1N2uSOXY5PltRXTBF+Vqurylexpgg61sYlWeAK0PNT/7FaePIRPDD
tmNqeL1VVe90sSwOh1X0PZESwuQQX//jxyjwwd4bZ2zYqeHozDc1SSphGLXp
fnb0jixMz0addKBRg74Qaj+6Mi34by2EmVxTH+67vtqJLCFCi9e//sFYExhI
vsJ9N3cPZPEmXpR5aA5xqsNW70os4FUPY9PbTCvoZeFfCwmxhobPj0qUdW3B
M3PF3292P2TfYDjz3soe1tZ6oljZD4DInuRmuy8HYFjrPNWBZAdYPZLMNqR0
ED6Sz258/XQQvtuwE3a8HMG5Q6jLdNIRJrl/kCf6OcHhVf7LBb+cIM9I/UbG
HmcYa6U4uiffGV7byng+nneGN7r/yNp1XCAiM6PpQZgLCBYM8RkWuoCa42eH
3GYXuPj17LWOARew1qx7uDLtAv+RDfFKzLuAe2bZcPiEC4hRV51h+eECx9os
b3K/dgHGaw36tZkuECToGiTu7QI6wnUKaVIu8HhL31p00BkiBb/aSGU4g1fn
stE3XWdwKXTJPPXDCToiC7eIwU5whs/S5sK6I1A+OWVwLd4R/pHJ2JdvHgSH
dKyUDjsIa8tPp5wHHUDrctvkNQsHuDXDVC778ABM1vfxR1EcALuz2sv9zvZg
PFvB7WttBzsBNfoV/bbA1ZrqaulnA+qVL+9vj++Dp5HRDNe9rUD37RDL268W
QPmfh8lBo73gNdazxVJoBkHMt9heke8BnUtRnjweJtDxW0duwB9g9HR4FjOn
IWTwvPQ3fa0LtNmnH1Ee0YKFVCO7LjJ1oPFY1vS1VIJ+mh+ielnSIPisypnr
owhoPXsZEZXIDiEan26rWS0TX9VdIGSsbpNs3dusiso48eaHzqOfX4iiyRGa
3H070niRi6IQlZXw87dboT35ahhMmdc2nKuJSW3RYfbJOmhG5yVB7a6PP3Q2
bKZFjfDF+/pDZF8B1Yz1E0V1TPDO9cLOI1GmCDqBFpZVe/BQmxvPyX4zTGha
eB66bY4UFmNDvwkWaNWb9i6a1xKf2WZy/CJY4exHAfraLSsUFd5J+/RrHwqx
8Eh3V1jj/no9pZJgG+SvhkfborYYGCl45vU7Wzx6iUWy2m0/Js9Pc7QN78cf
aQVH5w/boePhpgnmJjtkrGjkYma1R6fA36XpmvbYKduTGudgj/c+Kn+d87PH
iAWB7vGz9ijNO8QbFm+PwibT8nd2dbDtW03EOXtUk5Xy4w6w3+UmY9cNR3vc
27p6ilF393mUfPJNTntMWUtiqOqyw68lZTJjYXaoPW30mp3KDj3W8pgvpu3H
RDNK1ftk+7FrsruxPMgWn6w9/UD/2QaZx16dFRK3QZ5Cqs19QdZIrnrRZqNi
H/LeFpnLHbLCjYqA97eZrXDs+3xXgKol2j71okreZ4HxrfzzHu57MfSC9qPT
J8zxy+m1RFN/M8zkmSNZHd+Dfp6vwxncTDHS9wGR1toEPd+o0zRpGeMDfa5r
l3SIKLtz7pHkhgGOExr3eNXo4SmjOyvWwTpYwEyoXhbSwgSfKLPAj+pofPP8
91enVXFVmlrgl5YicnxoFBc/L4PRlvVwuE0cf+TmJIjqCeKBf3cHcvrYsTrO
kltDkBI/QxcvU+lz0lnl8ofrr8hB5d+3mME5AtylicqyneCHW6n8GTZDYuDV
OlaeYygNpJ/u5e+S5SGGssJMulYZ3EWeraYFqMHAdc761SANUB17+fG2jxbU
ovmXp/t0oPhIQuYFST048PSeqP+sPoy79PFVlxsCH89/7u+diMAoeFuUaQ7g
ZpomZ1S9Mex7dXdi86wJnGu/pG8vbwrxJ7+I63eawqrqA+sLYXtAr2dumYzO
DE4/WadKzDIDBkFp2n5Oc9hblWW4fMkcNrRIdx7+Mwd1c9au/sN7QZ3s5P6k
qr0QPtitkLKzF7D2r0mviQVcybvGFR9pAY+LijqDHljAV+bPFg9bLICO16dD
d9ACnpjFOstPW0CIj4XWlVkL2JcZqXHmjwU4T8oHbXdZgNmbGYM9tRYwf+mg
wokMC4gPfPfjspcFpJ1d7RmUsgDurKan14b2QsNo+Z2PWXth3Gw8tdlwLyxO
W0zX9ZrD2Y6nT36fNofvLsnbFyjMIaOyT703zQzMuRofKdOaQTTlwSfvYveA
EiuH4d+/psBKbjc962gKCYn17aIvTSCJ08ugg80EOAw/VTgdNwZSyE0Vej+A
5j5CRtC6Efi7p3ulnzeEmYfuidzkBlBkP5D4+YwenP+zuTdgVAc+UFyuKd+n
vdsXf9/95Zrwnf+dKTeVBnwIFNFrOqQGsVbXOrQcVOCY3efs11MKEJx/DO/G
y8JR46WX3qxSYNo1+PDKXTFI3LcZf0OQH/IerCkX6HOAuNtmUv1rOtA2aXCf
EF4hThhxidhpd5Fop3nNLSnIkMLqnsgJD2ZU+bNv1daKCxvOjmcR2wRQtzwu
O0RIDN823G6x3CuJb6hCOAK8ZPDpiYrjNwPk8cW1eyN5R5WQzNBQQVFKFd/1
/2r9elUNpZ++jNabUceByCdtv0w18ban/4L+ZS1863Kuu++DNka+aTt6YEMH
Zfzck2VF9ZB9pevopo4+Xte7kRBkaoDmO7dahcEQ9xdea0QlI9xS/pNCwUJE
fo7p+fwBIhYX/y1xKwQ0Oi/LsiVvjCNZxw5JxRojZWqNY8Z7YzytuS6kwmCC
DTx/LebMTPDf767+D2dNkH/iyfHqQhN0yBj9WvHOBLXOXb/0ZNAEJzx8PRoX
TdA+SPns5LYJvo7+6alGYYo5RVZ/i7ZM0GekRcNh3gSLVGWS7PpMUKiqaH9V
gwlK+GWL38jb5cPycCYh3ARVyw/I7TM1QRavFw5e9CZ4gZvROvKDMQ6XpNG9
OW+MndqPpJx3OdJFX3ljpBHwV9qKTDwL4Je832vDtkTUY1q7cDbRCCuE/9wu
KzPExOZSkclmAwyI4/pd2a2P3eUH/YKH9RB9mW8UD+niIsPDq19/6ODNgaTI
yHfaqNR1XEu4QgurtyWlLNM1MXf15WyClwbqiLw0cVRTR4GJmKt2m6p4KW24
gDJZBb32a99aoVZC8DS9mRsvj/36l1s4FmTw63lK/9QjUpgaf3+fQLM4Ssbc
dV6WE8UronxiZ7gFEEL6NMW/c2HS/c3TWtlsWMv/LHasggZfTGQEewf8I/WU
vlUYqvhEkhuVzxEQnieKmSYN93ZSgKbX2Rv+O0zAlB6s8DaFA9by/z0mi+UF
MzkQOuUlBE+/0v26xCMGT+i/Ryadltj1QfckVP6TguJMR98SallgbXtOTqUv
D9+7qNROeipCPrU6NU+EMihXkX/nNlKFwMyXvf+01eC71d8XXTLqkNoqu3KA
VQOunjJ9JzitATRBxPWxt5oQHkajdfSiFgTnzizvt9KGXZ/53G9LGwKUZKbC
H+jAVMk3bSMzXZCdfu98/bsu/BHQMzb10IMC+llpxZ96QHZhPVnRQh+sD6qJ
ypTrw9zZo8zUu/Pspb7/WbW1AXSw2KPcRQNosB/W8qg3AIGR3kO2wwZg2n+x
bGvDAIQyc3rP0BvCu76uz80MhpAf/u8UGZkhXE/QbjaYMIAPfb/fZDfvfrck
r6x6ywBqZx7UqB0xAPavro/f8RpAWX7BjkCLPigHR3L7B+kDaXDnzRi1Pgy5
OlG039CDeO8h1hN8enCkiZUwl7Vbh2wOw0sqXZgKP/iSKkgHWkZ63BU/asPQ
an1lgog2CDIU5BwK0oKjZ035WJ5pQvTXY6Lbu/1Kaf96ME1CA+yHoqdYHNSB
0NiUuBKpBqmOImMld1RBcHazgzFUBWLYI4Io7iqB0O8VLTpUgPX9UdX/fsqB
KAvtyrNJGUgzKlHmXJaC/YfJnMnXJMDn+u8m91Ux+HD7TgnXsAg8KGP9M/hZ
AC7n3i0fe84DshF529PZHFAnnvbfhSkW0CxWp3Epp4Ejq1usVT82iWY9FCN6
beNEyjHOzoGn7aRh6u97uPWWSKF+ZTnnlSgwUrRLK1eeAQnZvS9M6QjIXU/a
QznDiS8zBsn/NfHikqDRSOYlwd3cM5ItIyqK1B5BlN1zYrj2a99lqRoJDIzb
ST4cJoWvPFtoW8VkUIqFX+tLkywmJSqe+nBYHpdfpeQJjihgJl2Ek7aHEm6F
ufBebFFGSHYztWJXxScG6W/9alWxuqNMw89ZDatJc1xsf9XwP/+Ct4qR6mgh
LxlzdUsdhRsPX6WP1MAP06oWZ6Y0MDHoBOMzR00UKLzukVutiUovHca4GXe5
2dUaznpICy8sGTCduqOFjXsGfyl+08IBAXozXWptPMAZ1HlZQRtfp77YI2up
jaVZHuFMbtp4xe7dUTimjYsPCqRbj2qj9sKrvjeuu+9Zycvl9mqjsD/bfUk5
bXw0y1TdQqGN1rXbVRqdWrgUVSydmquFq62f9o7v/rc4AkbiWbQwdcTENqpO
E5M5G4HWa5frDJrNrpsaOCGlLP7wuga62Xc8URDSwMNWDB9EC9VR79Or0mYR
dTSs6NjrmaOGtk4Rpio0avj5umJNbKgqltCFGsuWqGD+T+mAGE9l9DOKv5zF
ooS0gSXqzM8VkLt3IO2yrTwSx13Za/tlsX56zkPPVwatqSRf1/+RwivuFuNz
XpIodVWwPaVTHOPl5xXVjMVwputDpqWdCBZfmrdV4BLEqINs/mc7ebG5Lncr
9xIXav+RaKICdtQ+92Rubz8zKs7ei/6oT4t+cuuMITlkGOXe28c6vkh6fpA7
2PZ5Dyk8a2iSbqubaKSr3V2as0h8IVx0asGKDPYe+PbsQy0NcD9tFVLjYoZ0
Zf8O88cE6HCkdZNs5gQX2zOPFr7wAG2UzqUzn/lB91lCTOxrIcjfEcgLsRYF
io+TPK+fisF/ZQmTN5gkYN/boeyzRyQBaQhXB0qkIIM/KdBuWBrK+CT57Dhk
4UXG4E6grhwoFReq6B2Qh/KKFxfsPBTgUnvSF1t3RbguUzj301YJUvTEVu+o
KUPPV14TS1oVaDvlez27TQWOHmxnK9ijCixplzzTb6nCj9Esv4kxVaBTQa1y
BTUYb/ioUOuvBrLsUiyU+Wrw6bEFeVybGkhXF1wSWVYDCwPO7CEOdXg8TnG8
QV4dog5s5KGeOrAlrRgNGqvDnVTdq/K7yu74VapMRx0CuVp/+e9yeOTIyptY
VnUwgVjqtVk1KH8vyrDYogb0rEaaKblqEK59Y7r9mBpwhE5cn5NRA77w8EOM
o6ow4KZtvfe2Kpwn6Ml9tFCFl4dSKpMHVMA0mfPKK3EVoHLqfZflqgyH2a7/
PZesBHHRTyU7ixQh5eKbabZaBShw6pwpbpAHNe/Wt9QNcuDTtP6y8qUsSCk8
eMBfJANMYuaVn1N2++v3eHmfjxSUxFjE8GlLQmfuga+NFBLAshky+LVFDDio
oh/+SBOF5OZ85sYUYVg5qfqbbEEAZkuiEjMc+WA6wIh05wk3OPzV1bCi4tz1
6ZpPmg4SIOGbadhpIjNUiS+zHnzDANMxbE839lED20sfo6ZHO8Qz0tbr1f8t
Ea8687f8II0Qy5b1DmaFPiHlHXNo+HP9D6nMN3d16fwKifuUv7ZZFhke7U8h
HP1BjRVbiVcqGBkx9Ufppy1uNvzOcv6lUB47mmyeU1Hh50Kmj6ndahd5MFNQ
rkphmg8VTnSfljMVRH8uqyVimjDWFVzBPZ6iqHMvlZsjTOz/eUdAIkYcMwN/
FzHHSuBlgzdDJ8MlkUa4On3WWwqfyLxbVDWXRo8idoMhIRkkePm4PZuSQVod
XxuXx7J4nP0L/9XjcihUw7nDRZBHzF47Vf1UHsn6m4iaZgr4gFE063irApIp
FjIJ71XEU2xkTbrVivi7eNAph0sJzxc6TggGKKFgx7xG7TMl9KXKinb9q4SH
KDF7lU8ZzaJejV7VV8ZeFlMHsf3KGFBCY/nSURmLv7SVHN5dJx70fSFqoIyX
U50ERQWU0dLVrTViRgnfhHyb2vNCCSPGtj4+C1VC0oTwf1NCSuis0yAu8VYR
V46MEK46K6JPoEWE75AC3jcea5/xUkDPxuvift/k8XfMyAcBkEcp7ajDznly
SHP8ZrTfoiw+VjB8+4Aoi983PsT5J8hgxw0oZXoljVfSJW/NjkvhtwXthXA2
KRTzmg2gUJXEtejZe2SWEhiiebKv55A4slxrIt/xEcOM6zS6fSdE0audNr/9
gzCejCXjkK4TxL9JzQ1lhfy4Jd7x0iqRF8u620tWXbhRZ+rm+VIZThwevsNj
N09AhXYN3dZAVrxH53aj+S8D7lkbnkj0pcHJ9Tqj2T5yXLpoaEpWvE6anoh9
a3VpnsS4zvxReWqQ1J3b2kclW0RM0n2p/Et/hHiGgee6fNYCUZfqr1rdmQ3i
LbPaLzriFPAsJOU/hxgaeLTU8t/oewbgMDlxWJGSFSiXvGJ1cwhgksTVTV7A
AScb9CdECriATIjU+i6bB346PTiqGMcH+tmeDzJdBaD0uuhvIxkhePXXhi/q
tzBUqXuw2u7y70i35060gBikfY66ETUiBu+Z9rlsFYrDnqSK+npXCQi7GwgR
tJIgfEji3J8KSTBfAI2fe6Xg9LriBbafUlB3ObfXw1MaguV62DN7pYE11jYq
yU4GZExHJplqZeC09v1PzNyyILIgLxrgLwvnLEMuMFTJQmW5snHvrCzM/3ih
3yEuBx+2EmgG98kBle56D6WfHAyoQqZhlBxMnPxXdDVRDmRrzIUp43b9THTT
3dJQOaBOfGl01VkOtGXtsj+ry0For/L9BCo5uNLK+bi5VRY+1ba7/pcmC15n
zwbmGchCktna+6RRGejoJ3ctSpKB1wP2S6p8MjBzOtHkWIk0iCk45Z2TlYZz
MlfJKwuloDXhRO8ezt08p/F8/XysJOSENXg/75cA+adbSmK6ElDCHh4qcFEc
bl/Sp17qEgMezm9nd3jFoGut+OsNZ1Gw/jv+j19QBOLUvYQvxgvB4UL0UP8p
AClqI/hVmh9CeL+8UgriBf5b29/pyrihNP6Fj2I/J8h13mU7ysQBW6yVxZGa
BDAONtGKfcwC+TkCuZRTDLDefVtXVpQWvPVK5a/aUcLTirs+VcvbRJodLZrD
FqtEqVnq4CrlWaIOY+n+T0UDRBk/Kifz59eIN2zFCTZpfaSIW6BzdW6aFP1j
6RRjwgpJzKKcCCtbJCpSlvHvCgrskuYq6LKnwSULF9+gcXqkZ12N0D7FjFc2
dt4OhbNhwnqpg7MsO5ZbBa5YfeXAG4yGp9jDuLC8QSWdgZYHGbSazTOv82LI
+AslVhZ+XPgoff5vnAAqs5mfvTMsiKMHeAKydIXxsF0yh0OCCJ6d0++tdBfF
i9TJFffmRbFJ6bBfQ5wYVlx5kTZGKY7UOc18PQniuOTv8SVsWRx1Ul7ypHpL
IL3sQ+GFJgl88UBxJFNEEhsK9xranJJEm0LDYarXu/PuJx9RuiaJjIx/EsVV
pbAuFC74eUhhWcWF6dBEKdxve4Zf464Ueh6PcHtaKYVqLVJ/J15IoesTj9mx
ail8eD3G73G5FP54KK1x4KYUHvQMXBuI2lUbd9mTTlIoZyMwwi8jhVdLTyxt
zkriwGI5SfupJIqMFsr/9ZVEi29XbpjxSKLXSZraAJIEftuTlHvZQwI56i+F
/1oSR7Njj25fShbHiXYtzy4mcYyj+Uo+d0UM819vpgvQieG+7YAnOdGiWMk3
cMaiQwSf7P3axXJfGFcCMm4RvIXwwd5oy2EeQVRqULzG08SPg0ktq9Yn+JDy
y/BDoR0enJxWEVa+xo3tGxxDYjxcSNDTMM6/yYEl6uI0BwnsGJnopPI7mQ1f
vxsisv5mxsceCo8+1zIgY3jBXv8kWtw+fq3G3IIKM4Qv87VQk+OqrHTDo4QN
Uq9MbXLl3BLJ4m9TTH39X5IePcFdQn2AtL7Xdv+egeckrarFqtPy34i2Th57
e278IY5FBpx5R1wg9m27xa8U/yMq3Pue6Lq+TSSeHHsrm0cBEu9K5KSrqUG4
LOrr0Bs64KyUoRB5zQhRl/unS0tZgHDCl7+0kQ3edTI/WpZlhy/vk2+q7ubW
LKE7Cp+7OeGn8CF7cwluSDo1/JrHhwfMzyuLtGTzwvsOb8+BN3wwdbG7dqqb
Hyq+/jeTMCEAh30Nw3T/CkKDYn/qsyEhaParD8j4IAx8eTVBSUUiEJNKuHhX
RxS2rh0S0MoRBRfK9rSAaVHoLE9TETESg0C+Q9W6F8Rg5WYlY/47MSjdpE8w
2RYDMhGqGiYVcZjRHKxechGHELJX/bPnxKHG1mBjNUMcFruX1BiKxGH9oC69
zCNxmK+/5eNQKQ7lVDsRWQ/EAe08WpduioPfH0qN5ERxEPG+W+9wVBxO8H55
FG60u75//xQ5mzis2p3K5vglBqNP+5625ImB/jdjNxM3MfgeyMtfwCYGmnna
diwoCu2Hv0pVnRAF4I2Lq6UVBU6CUPV9MxG4QlxJcQgWBq+jF07NpQsBoeyN
1FiuICzOF3Tn5wsAu3EZx607/BCQmRyx5zIflIkcuSBymhfWfMojHtnv+uiJ
oqlgKW7otbrUNDnPCe9l33U/eskBBUFz/xmHs8M7Q9Z7WgoEGDesS9KrZYW3
cUOSHKzMkBMefkzcnQG247mu3cinBZYAz4jbfVTgVXl1woeTAurk70ZaXt4m
1r97c05i/B/x1tIDj7fERaJInu1egtQU0ZB6/WXmzQFiousDy+/dDcTKl5vv
rh5qJR3cPmRgxjVMitnu39YxnSaNO9knKygukVzkj1cnla2RnFi3Lg5w75C4
Lv45Ra5HgWlS75959FLhz47GypPhtBjsPndQkYwBn9yXbEqLY8IHHSavkmdY
kJHy8WpmKRtabpr/V99OQMUJSbV9s+w4kpHd+IGaEz3OnNRsY+dCCiX5shku
bnQ1HfrSzMKD+x66s65u8mDri7/3JQd5sTtPrGathg+/mVoXSiXz403lmlF3
MwGkLCp0cP0ngAFnfsj13BfEstIpmWJ9IUxPEMxLbBHCAlk8b2oljDs3TRLq
64VRt7+GvFVcBN3eLhjaRYvg5EshfdVmEbz3/FRQJbkodhy+POHFJ4rcbWf7
leVFUWzTNZFbUxTT/2NY4NMRxemSRG2ihijOtbFoX5IVxdhLPs8ZeXb95+3P
F3O3RHDhRt+9tyiCgZXnJ5+Ei6DWe2qFG4IimHWKPiyvRhi5zm+zUe8Vxvzs
6BjK3fNZkF1Q7jESQuuUzpS2UkEsppYrk6cRxLqlRlcjVwE86brxw7WAH0ez
5Gp+9POh2FrXC3Z2Plwct84KMODFE4VVI6ZuPBhZem+YIowbHQk2ZlwJXDhZ
m0M9foETSy+U6f9N4kDWiru92VHs2EZDleMWQEBTgUtXXx5kwx4m/0CzEBa8
rvSQT1eeCX9WvBjc20uP9YZ8DWEXaPHNanDWW2lq7HWkuKXTQIGMLj3UQ05k
uP9Bqvq11g0SRY2r2czICknf7afkv5V50lJDpepl5klSxb5LjUPyg6RONcfl
ONkPJNb70caxyfVEz9Jzy2yNPUS2GxFNyhJ/iDwRNSLn/OeIlNpGFBLay0Sb
gHN8d5bXiN5+nS2TJdvE6lLCvsxCcpgx4F96Nk4JSrSnZ09I0kCl2p6dFkc6
+LVGiFo+xwDnnpoVs15ngtfpbbQmt1mAfufsaK8VG7B5LEQfAgJcMn8aWqXI
Dldu9pdeIXDAN7Uji9enOWDj4pCc71tO+Mynb4PpXKB880OhjRU3bC8w9jRv
c4NklYrQZBkPcBg/Vz67jxd4c7fjNAZ5oTp/3ngiYHeutb1ifCf5QM7wjPD5
I/wg7b5Ny/6eHw6npPItSwiARfdxI5YIAdAovxxq/loAKMD4v9RFAViqzTvx
XlQQBHLIijdMBGGMW31I1EUQ3OtS7+p6CULlzBdfKw9BuP1LcejIfkHIMm4u
S9cQBOat6MMDTIKAIzFnonoE4IVev1vUXQGQEtBSpzwoAEofDX4YbfND3KvL
H1zy+CFoPJaQpMEPRqMysiu7HJeJK+6dMuIDqu0MnaLnvGBuPO7uKcIL6n1K
Qb6JPHCRX9CTpme37s23vy/KcUPoMRULi5NcwPvfZ7WMx5xw3tYxr2GUA0rM
LxdqcnDAa/NhSyt9djBd6jvufZgAvn8zgoZOs8EfDuVkLxZWEJKxFQ2RY4bL
sm1KjXqMsH91Z0PbmB5K77LtKzeiBbtfH35vqlNDsIOzHbsYJQi36tp+oSMH
PQ6QMfq+ReQwja79lLFGPJf6kFZy7zJRV1XRlm95jlivqL9AYzJBdA/+9TPs
xiAxj182Jz2/najo/7tMle4W6fvwnSS5xq+k/6KWA16tDJG+kUl43I6dJNkn
bv3kiJwn/ZDJFTj1cJmU29QZKte6RpqLpbmZNrBFOpGk9Xtungz/FhbrWU5R
IPWZbK/NHiqsXh9VM3tLg8XRhhluuXQ4mu/zJsmPAXMyGO5S7s5NaAAlpWw/
MwrHVWzvSWZFMrbmiz+vsKHaWmLTnwME/Hb+tBUlCzsukbbthhvYUdyn5D8I
5sBjXlSePayc+JpGvCm8jBOV/qPM+qbHhVJXk+Lev+XCkUcennxEblSyOGme
94wbfxBkUpUEeLCAn6W9MIoH0y6myvS382Dgdj5VEz8v2o1R2xi58eKMALOb
TgYvun0eZCiu58WEwLdVkX28KOnhIft8kRedPx8k2e3wouDnBuODZHz4p2ln
9t0KLwavxEZWD+9yJbt1RqWJF0VJn17b3uHFkf1S2TJ+vKjnN3D6lzwvLjM4
RV8a4UEpiuN/PTJ5sGR9gy1WhwfjbTekeTq5keJ5qtWR49wYWfXxUNoMFzIb
qw+2hXAha5b+RshvTtz7vU23zIkT037YxjbUc+BMoPHItgAH8r1pz604zY6e
sgwtnE0EdP1G7XWRmYCrmXNUnvZsuNSr19jOx4rT1XoUaynMeFV+2XV6nBFv
5ZgkHjNmQPpIGlr+q3RYOam+8+krDZY8j3oCrNR4fXNbX8eMcpebNLbRYeTY
aNB9oUJrh9RO875cMmaD5Hss8vzmq1VSssC9gfa5RZKzsRXRSHyOpMhzWrbl
/jgpwuWwacvKICnofdt22O2vpD8zCt9TbMtJ5Y2j+akr74mry/sLKFR+EZ0T
xVpvSo0RZ/bH/CQV/yXaz1kc+0u3QFzrDCWfqF4mFlLtSHY4rhF1a7I2pf9s
EtXpxtr0tMjgyyfj9qIZcmCnb+gSuk8JvfSFqf/MqcHyzwG59GEaiGIu+ikX
Tgdy5G869dbpITrqWY1QOCNIMt57A0NM0H3DYJnVhAXotrtjqLJYIWfI4pdN
IBt48zkblVETwFalUML9FgESGPxeKkmwQ+Cb4TsTJezAzJ3J6CnKAfIc8wNe
mRywSHvzwbuNXV848eaxrzsnFCzIcktVc4LROd+uAQoucE462RRryQUrJ288
Gk/mAvqcRjOWWi5gzRQzGBzigqiaNW1HCm5YuD/ffZSPG5zr7iGTDDfIHDoW
ba/ADbQutTc0pbmhKqQysZGHG9KuTtynJeOGWwWrClwDXEB7i0yH7AUXZFrP
5Q4lcsHBMKbpb+ZccOQcVegWGRfov07cjn7OCc1KxpSRHpwgJlXrJrLDAXH+
Ppb3bnHAjfB8J0l5DugUO2g28ZwdYp7Jz0tos8Prs3X6rM8IEM969Pe4JAFS
jjAkz2ewgZ19YcHPOVb4+NBLjfiMBQy3jJWLjzMDHCupvM/CBPr6HGIfHzGA
bvke9oZdbhlxPu2TaqWFo1W1gfdsaIDWLnm8/R0VbFjVRvnpUMK727JrnLv3
1crH+/cv0JDBkwTShe6Pm8T+wDnarbg1YkSMIc2Q/ApRdVtGcrF9gThoY3Pb
fGCGWDcIig3c48RfgVM2BlZDxGWLOXfFxS7ih8+OpdlOb4gXH8XtXKB6RdKI
U2V9/rGT5F8YNdSRP0gaqs4Ql7f/Q8rNzB64vZtHndzupT+FBZLZCar80Zhl
Epwr25v1+B9poz4kNKhzgyQ973laenKbdJdgboP/yNBH1fSjYDgFJie9ps78
TYmZaU8vpNtRY7L2R5OwxzToxLn+Cyno8PoNmp+T1vTITNHz5WQ6A9ZaplR0
vWbE7Onx93kDTGiU06vsscqMRpm/3xSRsyL9Pzt7pm1W5En+HCZwhg3jnYqG
R8fYUDN9ol13PwGlumO/zz0mYN/GlZEJWnb8WtVjQuXKjpJnU4slCtlxxfG0
qsoIO06I8iYTBDlQ9Nv0m1obDnyfYp/IHcGBAuTjayLZHOj96nrf50ccSBHU
HCS4yxEnp4xTjP9x4HLOqmFeAwfSrS0V/qrhwJbOjaXPJRwol0qxcf4SBz5J
Epti9OdA3shmz1giB0Z3J9rMMu7uDw6fj+lgR3Oro5/NrrHjq81zV/3M2dHb
o46ceYmA93qMyA/fIeAB5PWOMiCgtK3yrztdbFjN8X5t5gQbOlYJU+wfY8XO
+p3Hi7MsuO0f2QMzzFh1ftLs4SATPv9a4Fr6nhHd742v1hUx4OJlZ33/CHp8
oZpmqG1EhzG1BwYqN2hQTjzt0pFn1HjtTvRi9xEqvOhI7KymosQAz84nKUXk
+PGhd/aEARlSfmYpW7y7RepR+RZbUbNO4qawaNb/sEradDe8Pvp1icQcIGo/
822e5DgT/4hYOk26+jwwNSH3D+njKc9tzbQhUnguT2n/2HeSkwl1AV3EO5JK
ceOKeksO0fvyX0kdzlYiCyVhr+rtbuKnqWgzt4/DxH3E9IYfdePELEp/hey8
GeLjvo8XCboLxMdxzozMPMvEk3jch2VqlfitJs75b9U6Ue/ok8Kk4C3iQJDP
y19MZHCN2qhX122XcxM1UwcKKOBD92BAUT8ldLKlzFeyU8OqV5/biiENbJ80
2KD2oIVX6++bAsLo4Mi0YFxNDD2MauGfpGgGWB7xGgsKYYQpn74iTicmCDk9
VC+uwgwzeWqHzDaZQXf4/D7FehY45tGjlhXCClOL1e/v0O/mX6OTszOObHDQ
JMtJ9jYbHLoF9qrf2UD7BtX+BUYCzP+x6XXXJ4De1NlH3t4E8DK/d3M5gQB7
fNbz2W4TgKuQfrWyjADu/+1ZbK0iwNrNy7xB1QTwLLRhy3pMgMfv9B5YFhAg
CDsab14mQH1F+rGrJ3e5c+TlTSNbAtT0qwW/EieAdm/jLO88G8yfsuY9U8sG
Xqzv3k6fY4PIb6w599XZwOCULsG9lRUY7f6ejZFkBZ6usMnZkyxQ3DjDxviM
GeZDlC7KjDFB50RgYxEzE+jWarYMyzPCq3R/ERsjBrgoeCXT2pwekuR8KA7s
oYOO3iWNLzq0QL8sec9Yggb0Fd+rCNFQg5tihMToICXcrZEgcVdTQKzETQG9
BHIYx7bFDnMyeMNM1tDFsE0sehaxRyB+g3jodv5/GRP/iLG3FOadrFeIfhuG
7mkli8Q7Cgzr1mtzxO61hAOXrv0l0rTOHteR/EP8Id1SMlk1RAw7N/xtPPon
8euXkulrwq1EXXsn+kjJEqIEpWWiQ/xb0nnPrNo23k4St8LeSufhPpLPrXbx
QetR0q9TZySscydIC/Onzuj2zJAYH5bNvKFaIGX30nT8y1wiDT1/UYfcq6QL
j86VM1xbI2Ua/pX+sb5B4vnP55ms6zbpcUtUVrIjGcpyHMhsCifHXoYHGoOX
KfDEUyKn711KBPvBur+FVHh9QreFLp8arQUWuFyyaDAiv//P2RhaHNTRYGJz
o0OfZ/U7Lcr02FVHzXpglR41/3lGuFUzoB42ReYfZ8TulfPpfQxM2Gz91P5b
ERNycTl9sVNlxgFp6zD+p8yY29HCTyfBgmS2mTrzaSyo+PnTp+dDLHgmITRe
Q4kVT722u+cayIoMmc3iXHdZMUJ39s1hZMXyQ3Htkt9Ycfajhv/pPlakGx+3
svnJitafiT9ev2NF1p45zi8lrPj+wZfbhedYseLlqfP7iazIyHXZe3mFBUeX
hZRJhSy4fNJJ5ZsJC1ZY2fwO7GJGUk7+cu1hZsyhW6H518WEK4eDHvvvYULb
/bw2Bx8w4hHvK1PbWwwYqp8qVrePAZPCGv/0XKbHCnWusy+a6JCl6afIgwVa
ZGt7IcrEQ4tBL8ei96nToLHI5sf3ZtQYSbAhzOynQrmlzcvyByiRemIkZdqa
AjuztcXKgRwjRxWlviuS4W8pu/udMtuktXsjeji5QTrW5SfjV7RG2qA5Ktzq
sEpisEbC+NoS6afPamPD7QWS8MqBgx4acyTHzN6HSdemSFfuZT+dffKbdKN2
ipz94xBJcN3TeBu7Sb9q9KpV2ttJYwxSJicMa0nst7LpX8g/JpaIm8YqS7QS
DQdsaK4c+EF0jzc7mJkwSKTqv6sjv3+M2MjGs3OVdZIoovtp4X3jDFGFa/vr
fNU8MU1JwztmY5HYfMHVj0N/hbhdahvXGvyP+FbdOICUvU7kP8V+nvHZJlHB
Xpj6J2mb+LNU/LWMJxnQ3M9YPOBCDuWnxFRSLShAnZU/3VeFEirFqwZyWKjg
bobtav0oFXCqkN278IwaPlhbvM8Pp4GNnOnqRiVaKLnOzFDcSwsteTJT5Il0
8KfShDuPnx40RWjXiWX0IFk4+PGJIgMoR25mvy1mAMd0Y4e9BEZ4ESU6yx/G
CHd4DnoLvWcEtnWfSjU2JuBN55kztmWCT3LVx/TimCA5jMmfpYgJFIWD42vr
mCDI6/B+rRYmuCYhlZe6qzQPXR1r6pkgoYchuKOYCWZub8//SWACbpa3s4QD
TPCOPs8vkIsJGCzumnO1MQK1nqe5VjQj6E7yTywLMsJXg6ueKc8ZoLuMM4Qf
GIA7rNtlEunhUJPOf+ra9CBwzPGeZuFuXe1bG5pUdBBQM7gV404L6noiZa4V
NFC45doiME8NlMP6zTzK1NCUlJFa4kMFoinsZqLXKEF7+qPH7+cUwB7tquPa
QQ7WPmT0fX/IIFXBzP/Z7A6xd+CcWiDlNtEucqqJxLhJnBS4/yaVfp2oqyKT
U7K1StzkFrbaGF8mEj19ZkM+LRI/E808Jh7OE+Mt78RWbM8Q7U7nnTAtmCRy
a73+Em7wm1hB/slPvH2IyDhFbDpU30OsMWd1nujqICbX16aE/2ggcnslB1pr
qxNtDnzfqHvVQPK9/PpSW3UHyVeg/s71+B4SDM441N8dIjFLhNiGzY6RjjqW
VwlrT5Ic99xX3wyZIbFv2ehJ28yT0sMNfBQPLZK2P/IEvzq8TJL1rXm9vjsP
jYSwdHHjNVLY2zRLP7EN0qt+mQm6lU0Sd/aoosWbbVJC78d/Wru+QEFcy+go
GzmGK7G5fe8jx9yHog1GRRT4XKo4wtqLEhksPmu+4KRCvdW7VzTfUuHzPOat
FB9q9KZOoQ3ZoMZgq4v2Ty7SYDxv4VNONlqcFAuyCrpEi49iftxM26TF/ksx
ycZH6TC0hjUsFOlwQmTCapmNHvnM76W8dNn1M/5Fhnez6JH1AK3YjSZ6LHov
efX6JD2mGQSlpFEzYH6c6ouzXAz43+244CP8DPgjjLzUhJMB/ToX/8lTMmCr
jGSW7B963FZg0bJ9S49tYawST6/S7/rTer5gB3qs1PWAYkZ6vKN7kyPqNR2e
NbLz4PGkwx7iB+6yNVo870445HWRFr2v1kAYYZfj/8a7ea7RYOHxBeqrlDQo
tK1zmCuUGv8HpQRtlQ==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.884771807810534*^9},
 CellLabel->
  "Out[147]=",ExpressionUUID->"b8e30bff-228f-4f09-a3da-66e9a752aaeb"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAKB20iAhXcUAYgj4uhqEkP+gENWXY
InNA6/lgU6Y8I7/ZcbBYefx0QAwH7nwgryC/wgdJDMnMdkCPDrA8T5kZP7/m
K9SQxHhAJAEhuWQCGT+mXhWyopp6QDv6Zn9afBO/oR9JpCyYfEAwUzgUNvAS
v5QJmlZljH5A7J20JbnmED85xngPdC+AQHoOGU3YpQ8/MqzJfXEsgUDuXgTA
DEYKv6DeHfeTGIJAmG0qw1vQCb+YNZd6chiDQM2yseCRjwU/DCEfXqgThEBw
D1j27joDP/VYqkwD/oRAyMg0KmctAb9otVpFGvyFQI/BSVHmiAC/UV4OSVbp
hkBYOfgQXqr8Prab0Kzp0YdAR0lqu1oMAD+l/bcaOc6IQGsb0RRAAfe+Cayi
k625iUBmhCb9JaD7vvd+shbeuIpAMPH6UarM8z5h5tD5ZbOLQM/gSceFa/Y+
QJry5xKdjEAwJpmU093vvqlyOeB7mo1AaHT9YqxN9L6Hl4PjCYeOQGBFEBef
8Oo+4lDcRu9uj0CUGSMTJf/zPmMXLVpINZBA7IuX7PVg5b6PrG2Wq6qQQKpM
ZTkQMvK+ANTA1+wpkUA2tYPtqO3hPqyhlZ7AoJFAbHPoR21T8D6WuXEVQBWS
QBeiXCm8uda+xWNgkZ2TkkAYEDaGOwLuvi+00JKNCZNAZzBRiTMq0j7ellOZ
W4mTQMeFIDfNO+s+y8PdT9UGlEAIbTubKjTUvvKW6Yvhe5RA+gCa2qct6b5e
/AfNy/qUQM63uY5AOtA+BQiok0hxlUCG8boP0gjnPupdTwpx5ZVAeoASMPFk
vr4URgmGd2OWQM9zbFMsWuW+edREhxDZlkDPpBV+DoCzPiP1ko2HWJdA9D1Z
FPGi4z4LYOhDqtWXQLRfCtEhW7u+LXG/f19KmEBKuHforTLivpQUqcDyyJhA
TidJ5a+AsT42XhSHGD+ZQLTYjSYHyOA+HTqSUhy/mUCWAtAicVirvkJgF87L
PJpAVcuNOc2j3r6hLB7PDbKaQFzZ+mrb85U+RYs31S0xm0BcBRq2HHTcPiSQ
0mDgp5tAh5Tq9jmBg76VvwH4/x+cQOoYGwVwf9q+3ZGINA==
                   "]], 
                  
                  LineBox[{{56.987697845938115`, 0.00015740168521195873`}, {
                   59.31532342258449, -0.00015454375463536357`}}], 
                  
                  LineBox[{{111.16334183543614`, -0.00015454375463536357`}, {
                   117.78760613393806`, 0.00015740168521195873`}}], 
                  
                  LineBox[{{166.67734684334525`, 0.00015740168521195873`}, {
                   178.78554370976136`, -0.00015454375463536357`}}], 
                  
                  LineBox[{{222.65956889534633`, -0.00015454375463536357`}, {
                   242.47873546930526`, 0.00015740168521195873`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887178#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.00015454375463536357`, 
               0.00015740168521195873`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAKB20iAhXcUAYgj4uhqEkP+gENWXY
InNA6/lgU6Y8I7/ZcbBYefx0QAwH7nwgryC/wgdJDMnMdkCPDrA8T5kZP7/m
K9SQxHhAJAEhuWQCGT+mXhWyopp6QDv6Zn9afBO/oR9JpCyYfEAwUzgUNvAS
v5QJmlZljH5A7J20JbnmED85xngPdC+AQHoOGU3YpQ8/MqzJfXEsgUDuXgTA
DEYKv6DeHfeTGIJAmG0qw1vQCb+YNZd6chiDQM2yseCRjwU/DCEfXqgThEBw
D1j27joDP/VYqkwD/oRAyMg0KmctAb9otVpFGvyFQI/BSVHmiAC/UV4OSVbp
hkBYOfgQXqr8Prab0Kzp0YdAR0lqu1oMAD+l/bcaOc6IQGsb0RRAAfe+Cayi
k625iUBmhCb9JaD7vvd+shbeuIpAMPH6UarM8z5h5tD5ZbOLQM/gSceFa/Y+
QJry5xKdjEAwJpmU093vvqlyOeB7mo1AaHT9YqxN9L6Hl4PjCYeOQGBFEBef
8Oo+4lDcRu9uj0CUGSMTJf/zPmMXLVpINZBA7IuX7PVg5b6PrG2Wq6qQQKpM
ZTkQMvK+ANTA1+wpkUA2tYPtqO3hPqyhlZ7AoJFAbHPoR21T8D6WuXEVQBWS
QBeiXCm8uda+xWNgkZ2TkkAYEDaGOwLuvi+00JKNCZNAZzBRiTMq0j7ellOZ
W4mTQMeFIDfNO+s+y8PdT9UGlEAIbTubKjTUvvKW6Yvhe5RA+gCa2qct6b5e
/AfNy/qUQM63uY5AOtA+BQiok0hxlUCG8boP0gjnPupdTwpx5ZVAeoASMPFk
vr4URgmGd2OWQM9zbFMsWuW+edREhxDZlkDPpBV+DoCzPiP1ko2HWJdA9D1Z
FPGi4z4LYOhDqtWXQLRfCtEhW7u+LXG/f19KmEBKuHforTLivpQUqcDyyJhA
TidJ5a+AsT42XhSHGD+ZQLTYjSYHyOA+HTqSUhy/mUCWAtAicVirvkJgF87L
PJpAVcuNOc2j3r6hLB7PDbKaQFzZ+mrb85U+RYs31S0xm0BcBRq2HHTcPiSQ
0mDgp5tAh5Tq9jmBg76VvwH4/x+cQOoYGwVwf9q+3ZGINA==
                   "]], 
                  
                  LineBox[{{56.987697845938115`, 0.00015740168521195873`}, {
                   59.31532342258449, -0.00015454375463536357`}}], 
                  
                  LineBox[{{111.16334183543614`, -0.00015454375463536357`}, {
                   117.78760613393806`, 0.00015740168521195873`}}], 
                  
                  LineBox[{{166.67734684334525`, 0.00015740168521195873`}, {
                   178.78554370976136`, -0.00015454375463536357`}}], 
                  
                  LineBox[{{222.65956889534633`, -0.00015454375463536357`}, {
                   242.47873546930526`, 0.00015740168521195873`}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887178#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-0.00015454375463536357`, 
               0.00015740168521195873`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNl3c0EFwYxu2RvWcyQ5LVkHFvQkhkRUZIZiFKpE9GyghFRRkVUpJRZI97
jey9994re48+f91zz73n3HHe53l+L5/VfT0bQgICAgpyAgJF7s+/3sg+gX/7
ehP+ij+BnyaPhchyP4EBH4fuehI/ge8SCVtLxj0h32fWLpYST0jjeJch8rUn
1NB2DtUz9YT9BYTZ9rye0CglSm1j6DHsk1K8wvH+McwMTurdVn8M31/kg0Xr
HnDtS23GyxgPSPKw6NI7OQ8o3P6xhbzTHWomPhpmu+sOW/+OPtzZeQT3FHu2
x58/glzcO5wMVI/gTaeopOJQN+jQ+eKm4DE3SHajrz7Q/yE0+BsPRHYeQP+i
4ofq9x5Ae9t/gaf7XOGEcWwNxxVXSGxME2z40wVm3Y7dFmV1gRcqaZbyNpyh
Xipvj0ORE8x51nFm76kjDNh90HmgeA+mZ/jmE+87QKPKL56f8u3h8w8GXBZu
dvAVb0R6p4QtbP5atxc+bw01p5QVeL7fgd5mzGUUtlaQNJ04tVfoNqyaH1CQ
aLGAbB+q10NNbsG3mrqCTfMmcDvgQ9vi85vQGi1MDJ80hGwMYonhbfrwwxkB
hYkgXbin8Ao5RmpDqayqiN9SV6GV65kaiRlVeOy1b79loRLc0mPxttaXh47n
EoM2nGVg2gK93PJbYbiU0OEYk80AP16FXv7RpJjRm9adk0sAe04DJR5eSRzS
d5HhksN5rNZV4fXdXgEHZFzuGKNWwon+fQYdSBnPkdR8zNa4gjk1VpZOpqvj
gJ+hHZMzV7GsZdJa+f41/EbYYuDbjDbmVc20UDfUwbcsO2k0BXVxXD+PhOuQ
Li5neyvX/1wP5/ayiGWz6ePAiFEFqff6WFz41tcIYgM8HP1WleeWAa54+85I
NMkAu/0gZ6PtNcDWN4GN5L4BNlXSNN+nuYFPX5XinaK9gbUE7fkd/hngGTrD
TfIRA+x3rbBJM9MAmzw0pPvz0ADzuBv2kYoY4N4fDbGpTfo41OD9WwN7ffxg
hMQ8aUMPw9iQ/y576GH1lZnu3kVdvGm1p8NuoosPZVIUM4p1sMpzwQ0tVh2c
OZ2XbtisjYPv1X3btNLCF6lNFqdmNPHzgnvTb6yu4seDN61tWtXx08vixdXn
1TDYLlnjfaeKrUe3JjvmlHHe2NADZYXLmAL9yq4OvoS3DiQ9nFMU8T5zVny5
ghzerPzoxd1yHou2x4gf2Mjg85rU/p0EktjMKESJ4oooFjvZ6pzykR/r/U3S
3uNgxx+tScF6GBnWT2O5vaDcBcSbwhRoXlPBK0nR1rb9HDCEmTbJuoEfvvw1
9s3HSwS23TkTKEJwBnrE2d91SZKCW+ZVpZziZ6H5FV/31g/nYWszJ4vzlCwM
dI35PcksD/ke6LFpCCjCIJ+tsj/0EHq3x7vrOF+C/3j0Ma+yEpwVZqp4Q3YZ
Jj0smH2YfxnyuOttf7qpDNP6DQj3p5ThdW8LCd87KrBf/EaQeJMK9IvmS2EU
VoUvpN2fXHVWhceFWof2vqhCZz8BE+MaVchm4/w7vl8VnrHODOccUoWbUQE0
nC2qUDC87tp+piqkYP1FKvJcFfLXxFPTqKnCmrFrPQJ7KvAesxbxYrwKvN9R
ULcsqwKXxrleogplaD3mKZ2ipAx9xFSaWbIvw2FG+7EBzsuwdaFsbdpdCf4y
8dwerbkEnS846HoxXIJlHl+u1CQCaO+oNpzAqAiXjdoX1h7Kw5qpcQvJmovQ
b58xuJ5eFp7gnaaSv34exrQOda4/PwuZlc5yOv+WhkIbS3qcA5JQ/XnO646j
fzYhyLoQpXwKPg+wLr/qfxKST/nfzS/nh3ck2cOlKHkg9dWZ62fes8KIwpOd
8g608EX8sy+6Mf+AgPrmNZJLVeDTp9iDOxE7yCjX/nT+z2M4NnzFVESQGV89
7jw3+YcT71hFsFLF8mIll2Sn5QIBXJr+LFy35CT2bkiMfvxFFE9tN/XX3z2N
Be9+8GlikMD0nSovwuslsYUJ2UzpvhR+IUf/bYpLBq/zEp31ETmLy4cCDNj4
z+ECpw1BTYrzONDu+omqvvM4IrqOQTn6Ar7kyEEdqiyLLyWnXn7SK4s9f56c
2TC5iEGG8cFG9UW8d2KLzZdXDscyWPF+t5bDT7tGycLfyeEN2bcudr/kMDXb
A7N7+XJ46LC3dDJNDnPlDPOJv5LDkx9meJPM5PDim2nSAnY5TPYj5fJk+UX8
9tGn5TTTizjZ7aXGp3FZ3Nr6hkvXVBYnaDFdtK24gDXv8/4L5r6ASUW/OdnZ
ncdUF68PFSSdw5oURNqXOs/iN3JPSvCODPZnko0gYpLBY3FGy9180thcDfMz
CUthCnPmpZcCklic+s+KlOQZrHGlCEhTncbSBVaFrb2i+LaerX7jR2Fs6dST
N3ZTCMd4fTnRTC2AyRAnt3YRL/6ag/skG7ixjG50ceVxdkzkxXi90JkJn1sr
dqh4ToPbrLR1CWVJsPyhUpf43gZ6i4uNfIsb0V0GbodLHxeA8HiRdjkpASR+
jg6aCihgWOxm379P9HDt3tq0XRUzDDmxIhzXwg4JLeTPiBVxw6F0XziqxAvp
WJp72Zj54dt+t3LJdgFYdSXx1llvIfjBneGZArMw1Fxz73J7JwIpPkbwcR2K
QiPYHeqjIwZ1+ip6SUJOQ87rfcG86eKQINZpxyT3DBxn0nO6/k0CHmdvpjQE
krCdr3PvQ5wkhDwVbn2LknBxOiKNRloKzialX5FwkII9K5GhKm+l4CX9XTKz
X1KwItH2X2ipFDRrv2S2VSEFr96scawolIIxLUK/+L5KwRL38vdX/aUg3wk+
Ve8bUtD6p5syCbcUTJyRUhTrloSivAPp6oGS8BeLdnj+aUk4t/SMqfC1BFwo
zBRQyDoDJVdHJdrKxKHn9QPN2/g05DnjS9STKgaJ3OneiAedgo2cLcK3b4hC
Yn1aNk9mETjgU077rOokpD7rp/XKUQgOTlt1ZJMLwuBfztH00fywuZyhEPPx
QaXrRmaVqicgW5bD9nl5bri0QTrEcZID/j1vGPubghWGvj8UU59khFTnA2Yk
vehgTm5wQNkpSnj/lEdhRh8RdJHjk0vj3QF6cSnKtJdmQdhL+/7wv2FgR88r
jY98Br0XVNOQZ91GvUQXfbh3CbECL187YT05FlUrOc7zhAZzV7A2rvkx4Eiq
B/5e0sz4HwNBKWUjK+5joThOr8OBDZ0ALUchF/5n+ORjBSUPnmHXCxnjOaq7
7eutbqf4ME+Zn/0xYX48qCdHwccsgFuq6l5eXhHAWzEX2UmRIL7Lq6ZO9UQI
F9rZy5MIncSh4V2pqegkrhjZWq+9IowtiIiZzpYIY36qieh6PhG8JDj8xdtN
BKt0U+Sr5Yhgy+WS7+ITIjirTOOuMqEoLvi7OJpMLYp3bf3TX5CJ4m/ay+OM
SyJY/3VWU3iVCGYNLY/TDBPBpofMdDHKIvivHtmJwVlhPLy5/8nHVxg7jLzp
3CAXxv0wmqnE9yQWT9FUNZ0XwsOix3zM1YUw/be1F2YfBPE97yKD1X4B/GCa
9WMFkwCefXbiypNL/Hgzi3Km0ooPy9WEqZr+x4svClcHTLOcwCK8lsXRgsfx
ekAwuC7IhWuu8vKFs3LgrSh5y9l9Vnz/G0X1fA8zNtuQ7z6VxoidLjVnyj+m
x5vf/Ijtn1Jju5/H2nWJKLCjwO9p02fE+LXXI34dwkOUvvUgOoFgA5EKnaf8
yDCDdB4lzzL/q0FxtSPnKlq6wKPqL98V+heANZ3c6S9kW8CeNNjuj+c/cCpY
QalhhBjmRxcXP1wgh2KpTWQGg1RwZNPdgDCTDt7TdCWLzGKAY9e3KBr+Y4Lu
QW477DIsMMrJm8S7mxVWnrZB1PbscGrRPGZqnAOGc47fULzKBRV7aW/qx3DD
GKF1Eq/241BPsISEe4MHlnhHeqccnoC2jtkCXR688JrEKuHwOC98llF6QlWZ
DzKbjctNR/LBZhsLivR+Pmjn6C8eeOQfelc5Ze5f4of9sOuBnQU/FFyj+/fE
lR9+5dl+XuLODz+ymotq3ueH3N6Sluqm/PDEuxE0KscPVZzaazVp+aHJRbqS
8k4+uG50Q+dlBB/UfDrgvqjEB018RjjBNC8UiYCdHX68sCfHPIGekRdS8vBz
pUuegN9+ebfwn+KB3DXcHVYMx+GDF8GFRtNccL/l9ouNNE4orpg0I3uHA2YV
04aepGKH2Ul0GnVfWaGcZZvN+bMskLJsufFZHhP0YdDTaJBkhEzDpZkyCfSw
ftPneiETLWzJuPZqqPsYHLKmzxeMIIfi4pOSw0okUOPNdpTlAgHUaMm2Xxfa
A8SO83Pr99eB1fv0d+nu84CwnsgrWHoAWPxen7jBHAP09TgDWrJ7EEvI1ffA
Yhb5/Re/+oVzDQVe05M8c3cHnWrrb5GK+Yc8CI1F77QTYXY9AjrGKlLMc2zS
XP8LBebIkPO2c6DCGzY3XBNZaTHTrUGbXAN6TPlBXJ0/nAE/MKogGC5mxNc+
ckte7mPCShlntdKnmTFXLel62AQLboy7JmbeworVFCwTkn6wYVX90yPrD9jx
8MkTj5dEODCtsyj/5QYOnKmh1ZNsxolVt6SmZno58Rz57aU+ZS6s0py4aBnD
hWUyT5y8N8iFtywHWLaoubGscfwNOlFuTJLq+KheihuHO2U0Xxfmxle5bxk0
UnLjJgq5a369XLgy8y5zThQXBpppbSVKXPgY9R3+/T5OzDNbX9hvxYkfK8fS
tvdyYL1fhpNWlzjwX8eivyzv2fGUXICO7xAbZtNZPwPZ2HDObyPJbSVWrNHC
tX/TggWnn4nOYXVhxiuyHA8X3ZhwTpBj5mdnRlz1w+PPxi0G7GvJpVqiTI/d
/Yp3wpVo8RU7r8/981RYSYZPgzaIEges//wwxkaOX7bMt7J+JMG7SSDZkYMI
+5OP0+gc/4eylfbbuA52UE6Oj3JV5zrSCuTFaTeWEL+PiVncvwmUGRFWnWDZ
iU7xeryXSQ1Brx7CAe6n7eC8Hh1hZMs4yEhYN10vXQQl98F67J81AIr0TF5F
bAMZ0/5hVZUDEEx/7N70UR2JLoW/SRYmhtXUtw+JdUkh4+7vvFQ7cpj47sGe
2V1KKH11ennSiApuaTgbCEnQwHSXBhaqJVrIpbzkdk2THn5PTbNzZWSANgPn
KgIbGCDBuYdPT3sywrxkPx0ydiZIEyszVvmdCRps9k4IiTHDwJgbkvOfmKGN
nkrXBDELtJx6c3rBmAV+zJBun4hngRPeIlnFPSzQNmlj+R4hK1zr05xe52SF
eoMC5NZCrJDVWK+0mZcVCrEU3bpJwwpDyK4MCM+zwJj+kiLXQhZYIVlR++A/
FjgsQjztcuZIZyvMTFrkLHCF8PT3c4nMcCrvAsuuBDMkuzzMTpDJBM9N8J7O
EWKCJsRRp169YoR3c/03yRYY4KbfPnsiYIDNf43NZwLo4Sxx+lDLSzpoEyzY
5LhBA8lWYxq6tKlhyu9r6lc/HIMP31zfOdZOAU8YLu3eISCHWkEzo9/4SCFn
A2/LKVliaFLlFaCpSggLT0/Ptbw7BKvrh9HVEbvg2Bgzh/LzTaCyPHOS5v4q
oB5XrB9KWQAvu1KJ77hOAMXRi09uufWA1gd6srsnS0GtdkHZoUMpklskL7M0
6UHzw1ovaUQn0OvFM9JzFAso5u6Jhr7xFbR3y08C/tpAHVsV9XJ2OyjFObjn
MdkB0oz4oTegSoB37l7wtDvK86cur+PaPxNj6TBVV/5zpLjWXuW8VQEZPv5j
TDFDjAJnDho7SYRQYsPz5lnc3Uf8rhLnXERLjfsaZ3ospGhwI8Gm/lHEYwJ3
+0LDc3T4dhOrTvMxevxSzvvPvfv0eOLmNqVeDT1Ob+J6ZcrCgME322kHQwb8
bTa5zzaEAbN/2TVRyWbAy6Jmz/dbGHAuy3x4xCgDpooarqGZYsBDSrpO/kMM
WDxr9CN1PQNOsLW9WJ/KgF8E/SyY8WXAlNyhx6KuMmB6BgkzKkoG7HKXayWw
mB4rG5dO69rQY+rfy/9yiOmxGk91Pq0kHd5RHPAFqrT49JzuuwI1GizW56Cn
IUuNVZ+mJpWxUWH7RRlLgmlKXCn3NmHhGwUmtkwTcL9Jjn9+oXvzbp8Uq2pq
dF95R4IDDOLt3vAS41LL8qBniYT4kmh/lDAXAXZUFn99mu0AXR7k7G6c3UGq
h+dvOfzaRHojl35edFpDNNW69F78y+hVwv7KYNIscqvwk044HEM1Cm/dHqX3
IAcPmZSHVVWok2hbajr4I2Aluxz5e7cReFBEfjUjGgAFNoO+7+9PAFbXq2Ol
lXPgUF/poMFnGfTWOKxFhq6BXsFzs1qBm4DZvC+F1XkH2PEO3uSH+2D7PlVQ
9vYhIOhhiY9oIIApK6MH9+iIoNiLXA0RFWI4vP6ehv4uCeyIuNjj4UsKbfLJ
4nAAGeyZoybT9yKHHE9jG1IsKeBV5ocbajKUsJ3IhgmtUUK3G+r/pSQcg0BR
0iVbgQoW3Oy8EvWHCtbLivoyXaSGZPoM/QfR1JDk1rVbZ6ep4eWWl/pfeGlg
B1mtusoVGrj873D9+E0aKGkNBVQMaeCzNuvX3ZdooE6DaxEpOw3UaGoophig
hltigYTCYdTwguQYzW8xaiiGr0pT5VPBd+oUctHSVFAYjDC2xR6DFs5rTufW
KeFAEo+JlgIl9MwR60l3o4Dd3wQc1j+Sw++krO+r88lgsE/a465KUvijdEKi
p5IE5otpWYcUEMMqI4GCnAQiaGCVAwV8CGHksv3UVz0CSJj6oVZU7hA8lZW4
+gHtAeEgCiOjsztAxq9qS/zjJrBIyNqb2V0D4Qf6pcbXV8Ci5tRiiuwiSGrI
a7eqnga5EUbPw7THQKrinHzml15wdk/xEdJvBKNbOVaBeekgOSfY1j2vGJ1z
zC63PmhFqm9SmKN+DaC/dj03L8WPo9ryleFT7TOoU7XOOHdxER3cch3SdV9B
DDs08TZTa+hJ5amTr1U3kXqIQrrBm22kS3lv6Gr9Lgq2vJ3CsrSPSOvKGR32
D1F3o+0eiScB7nkzbGFnR4g9SmvJW9SJcG6GVUYxNzF+5zRYmj1GjF8NXP2s
EUOCyy6+7WJVJsVjmTb65QOkeFWe/NW+LRm+3fM3w3eUDJ/h5k9jvkaOFUo0
LIK/keM7qU/eFS4f6YU0h+H1KQo89Y/n/bY+BXZ7Ttaz5kiBd0kKHIMeUeCY
ANWSGicK/MRDabL1BgUe10wPrxenwD0SnG3TG+T4ptH5VasMctwTPCvrb0SO
a/wkfn1YIcMdQaMj+15kOOVuUjDjLimOMZHRUXUgxQGVyk6U9SQ48qKSfv8J
EjwQKqAD7Ykx56WkU2VJRHijgLNorZMQC9tq+LrsE2CrQzvJbnYCPBr+ICzG
6BBZVG9z7d3bR9+zWHUkXHaRNMW60GebbRTHzHSzUGsT8Z0Lub0luo4yP1x+
2ra3gtQFv6tGBy+h16/jiDup59F9w7Ut2+dTaCs0CdxeG0XSnwL8Mgr6EFXX
a8O8wFZk1Ub9dSe9FD0ji9Qy0noJxOR8thcGKkB42hciia024EEfy5Y11Q8m
S7SVYk3HAMnzrb7AzCnQX72UeXN1DuCoQS9jriVQq/YGr79bAfYHD96hsDXA
L36nvdl9A6ynqEjuam+Bs79bpLlZdkDzovM4X80uEPe94Exqtw+qrlYUNS8f
gL57bv8+WP8DTOpuH/9YEkADBmFTR2JC2PM84/xMNCHkLLglOylABF/5Nh/n
ONKBmkWZ92UGYlhBOjsv4kYM7z3LJ/9YSwzpb1NGP2YggRPbP95/0iSBdhId
0nseJHBs2avVP4oEOsQlU19IJoEWAd++cP8ggQYfnO6qfiaBZMPE0vUBJDA+
6nRqiyUJdF6wUvYTJ4Gkimr79IvEMIUuXrH4MzFku8ecWK1KDOcsapDPMBHc
qyKfknUigplnzkxqLxFCibaDEkFbQigqFmMq2EYAG5VvKSMZAiic8cy/jfUf
eCFwTljl9wEQzS9h61LcB2QUHo7v83ZBZL7bYjzfDujZeaDF/HQLCN9ZN+eq
3wBmRRyq09TrYO1KWfxP5VVAN+lVmOmyDJhkhvUtTi0CEW71zSHrWXBbcyDJ
7e0kuDvQzpOXPwrmRL8jn4x+8DQorkpvvB1U/SL/c+5UDZhvIWPkEswEMhOb
XexDqeiU42Hudfsq9OXSqi9Xfxu6o/NBOuleHyp875fjvDyC9KLCXx7ETKDP
lz5dPSkzg3K4Nwc/586jbsM3LVICS6hixqHXRH4FnW3VOB/avYr4q0ZKxW3W
kXbLlIDm+Ab6SP72xZ7OFmKtomW0St9Gd+S0nmZs7SDmhwf/HZfYQyXS+jI7
evsoU9rhc7TVATqzQLpsfesQ5ca+6W++/A8x29Gsn6EkwDyV7J0tNgS4arfZ
iyePADfQTIQtH+nF4leXq/AFQkzp03gn1YYQsw/IuDsGEeIX9mfeWn0mxAaP
pzzCfhDiIvm8H+sphNjvo4Zj8kdCXMH980vxC0JMyPy6Us+KEG+2hhWyEhyt
P86m/lxGgIc/NR0YPibAP0Ql070ECbD7vcstKaH/UDEP08yN4kM0GKKYEt9z
gAxqfbgvju0jT9Wbtb29e+gbXdBp9dJd5MtEI2IQtYP02PYcu8220fXOj8PZ
zFvIIl93sxttIP5Cf6azZuuozl2zv2JxFe0OMb8IcltBD+YS9BnHl1C3qRZP
Uv0Com9RGJk+yuPPbIGBZK5TyJbelURCehypvZhOFO0cRgKCZ9cHZHvR/GVz
5Zm3bchZpvPU485q1AdHCDjIc1CoyEofnWgUSBtd8UjewuDPXGXHMNtRbi/b
1ppRdII0IdfDXed+cMI/S6tjcARkkZKsnN4YB7KdtbNhe1PgZKOjIdXSLEi4
kn+ypnEBeCVfUNmKXAKJZ/SN/vKvgCGKcdVpp6O6ZN9n5kpdAyrevk9qetfB
bR3pDNmdDSAr6diJKbbAXfuTdiXk2yDjHH1Q3MY2iHF/ad7RugOyXAzNZ2J3
QSBna4i9/h6Y3P+Qu7K1Bx5GP0sVD94HzpSVt9rJDsDwfW3yZJcDAH+du/Sk
6gCwl6nQnKY4BI+r4ia/nzsEi3tPfs5pH4I6abHsbf1DMOokFzKtcgjiSggP
evgOgQh78sDe3AEYNMzrDYk/ABZDfhqtlw/A6ZQ7M7xt++DVs7Nv+7X3gZEw
7Y5TwR5w/pOiqsO4Bw4G3/0hNdkFGbT+T7kjdkC6PFnd6fxtYNq3O9HTvAUk
knceNvRsgm85AlTF7RsgjyEh1bpsHWQAccWQxDVwLI2OeN9jFUg2jVC/vLwC
Cjq9v9ASL4N5jjM2rW6LoFHjhvl22xxIC/u7acU/A+p7jCNmrSfBF6q8xbtx
Y+ClJm1TZOQwyDrTaTY23gviWL4fCxfuAIGmXEPzNQ2A6uSgYZdCGaAV4eYU
qPsGPp9Qv+h+MRldiwq2uAbK0GHEiGZ1ZANiy7xxM2eqHf3UbTm37dyLrA1H
lThHhlDftTgnba4xFJXo6hmSN4G4i8yjuZSnkeKjGYo7xbPo4mHqXDvfAqoW
jgRLrn9R5nT0VOKNZdQo3OqvYLuC9oOLFo/fXUVOq3wlKZZriJ6e7dg1jXWk
wBFT/kRgAzF2m+/m/N1Arv+9kgn6sYm+uRvHBxhuIRX3C7d0V7eQf0zel7dP
t5EKQc0G8fY2Wi60VLK+feQPT/33/Qp20KdzARfPE+wiErqk3zbndlH3lc52
AuNdhO+upRPf20XHQ89uPjoaGVapl+6a7CKa0pDrhLK76FKvJv8dkl3ERcP2
sRLvoEBgvmJ/dwd5/0ln+UCyg/x/agR9f7WNtOf4qHYptpGwgZ7x5sMtFL1i
20Xfsokeno6/UHV8E6mVugvH3dpAfR6J47zh64hLcK5zLmcN3TYlE/nQvIom
XMb1mgZXEE9jRMrF0WVkEeFYypGzhNjn43gIIxfR12BFu6935lF6sophKP8s
mrZONVdpn0LyRc4xdzwmUNDd37kB9GNI6nlowedLw+hNpa1UvU4fEsyy8Bo3
6EQwlj/6kk4LenCocNUztAqJ26i+q5rJR6RUuwSPtt4g511F6p3sDHCCyVv5
ZUoZaH+3N+70uh6cDBrA8mltYDD1ab6wTzewucrBYK44AHyb8/1mXUfA/V6P
oaq8MZBZ/uFE598J0El5/0M6yxEP+jc3bZyaBVHCrHqW4vPAUyUzKJ1rETQ9
yXmYtv4XENgRZX80XQa/oZa5oNQKWH1cl+uwuwJcjZt7N3JXAVH/z2pj2zXg
SmeQJEGxDlp5Apc549bB/N5IcQ3fBlhQkOxa+rABaoe15nUIN4HGOY20XJNN
cDJiaGwjaRM8HZR4vji8CVZiCosCqLYAmV7IUrbwFggfzSp5dHYL5PmTrbVI
bYH0/Av/9ZzYAoRxN65+P9wEHrcboW3TJoicJSa+/HoT3Lj/rddNaROE63Uc
kdwG+DOlVrf2ZAOsrSYXjhBtAHYFib82T9eByUaf9+zcGtg1MvjZq7kGrEcb
otPiV0FNNXnf8OwKCBdtkt4WXgF2UrQSfkfvXqNtecpxbAnoh/Un2FxdBC41
Rc18nvNAceOyydv3s+CR328CyuRpkMX8lqLv+yRI02nTs/k0Dj5dnXGkDx4F
RL9IFcM6hoCz/8DMUkAfiHD59UbydBd4SSoUo1DdCjz0ZsWO5dYBxv4vpTsd
ZaAyIDzcZCzzyDe463teXAK8GVaCaq8y0Yma4BnC8DLU8oWo3kilDrm0wgTF
+0d8fqD/2zGtE52xat3e7+pFjxf0LJQWBpGKpXpD0/oIor8cPaI8NYa0Wuf2
VWonUMfLpO2EuCmU6vtC4rzFDNKeeX1+lm4OvWKSCfqZPo+e1GkKh1xYRM81
omVD0/6ihk2h2hnSZVSbnBav8mMZ3TYXfLZ9eQXVk0ffSm1eQUQyN22pdVbR
cl0NbK9YRQqPgwVLT60hsvIy8rjnayhuOfKXbOsaSnyb2exCv470/UdoRS6v
IzeOLE5N23VUpXfyW7PXOkKO9vbZL9bRS89PzIR+64hNsVezynkdRT2UCT5+
fR2dsJahEOVfR0x6L74yzawhyQORQvqENfRwXmLFVGsNmaeIs188ytX0F95z
a76rSC4stHuYYhXRpir+MXqxgprb8qtLNpfRzF7W+JNby+j4+F+Xg4dL6M2p
Cgdvjr8IXiF84ZK2gMrTLg10ic+jvfYpDvxpFoWMKpZcIphBvmFNN730p1AZ
9bP6mOgJRJ/F9KihfQy1RZjZqhOPot/8VNzv9YbQobXZH4lXfagoTIJuuqgL
na6sX7w+1Ia2iFmfkSw3otF2aSjNVoW0dYXu/3EuRhFB6zpnjVJQg3FhbcCL
IPDEta6srCgLkNW1vE0RKgNeJgkDH/tqgKCe99lB+RagKqSrQLHfDlJm5J9b
p3aDp7kPNt6q9YPlnCobtaYhELp5nDyeZxSYM+Q9EakdA0Z2rid/2UyAqYwL
lmfXJgHThwemJS7ToNT9c5n54Aw4vlN3WVZ2Drj3fzju7jsPiJ4GftLNWQDv
zgtGMXQtguBP85XHxv4Cben3yvE9SwDJ6cwmmC2DXIYJjqKyZRB7Xz7nDtcK
gNWz/91zWAFa8gWkP1JXAHFERcfh6AqgJ1S9o0u9CnpGBU9HnFoF3z/JZOQo
rIKkOd676PIqyH0t2Z91NB9PzrubeLSu4HLfPOlov4NCRln32ApwN47RuJO+
AmKnnc4+clwBPL2TAsq8K8D5xs4qZe0ykEQ7ATR2y6BmxktWamMJiEaSHN8h
XwJhnufl+Mn/Aiup+4b2awvgomPc9pvGedBkNd7rFjUHnoe76sxrzwI9rpHf
g1vTIJQ9qkjhzRTYfRzdTXhiEhCFKz0/83kcXBZXiq5nGgOErb7vZp6OgL2k
wPJzJYOAL+OU7K5TH2hh3Uo2o+8GzzZH3yR+awef32oYscm0APmzNHosLrXA
QUKA/tP9cjASStg/0pYLFlZXnjcGJQD++d3WdKpIdP+UiNXAxd9oSTVuOzGk
FPmNrn+ncahGDLWP7uVJNqF3o1x/j99vQ7eK7f5+ze1E2fayYj0LPWhTbNDt
G90AGuGQV2U4PoxWxO75vaMcRZqcx+PIH4+hV9w+w3s940iouPvvO7FJlHVq
K5Xg/hS694Qm3yNxGo2J7S4oVs4gz9sNTYlds+i2heQGYdccmg0Idawon0cJ
WZG0ZnELKChSpE3LahHRFsozijD/RZwpFfWBmX/Rwox9G5vcEtqP2NgLT19C
YooyfINHPqFNq+F89tQy4mzPOFmqvIw+3cFnPfWWkWTYdIqF4TIKo+PJf3J9
GfE/yPrWo7iMslW9y1/xLSPZKtq3DzaWUJSeRtLmmyXEK/vQ9IBrCY2eu/Rq
OvwvKrqSvcO/uoga/HX+il5aRNG9auvP/ltA9wn+2ZUmzaM6Yl463+I5RC/7
6tvdilm0sBDiIFM4g/S07N68T5hGXYPknbeeTKELvwrab6hOovThqFdGxBMo
nXmt8XLOGNLHEkGHpqNoNPtPwPLyMDIecJm6wjaIaCRpk1dO9yHhe/M+8zLd
CPg7MF4404G0/W3DB4+3opgcNtxH2YB+/W12W6mrRNyOi5d0yTDyqAuIMHLK
QrJyc+NntN6jq1kZhtSHMYD9g3pF6+XfQF0cFDhnYEBePxFz4qAS8PHpXOGn
awDP+rgNvpO0gvLwZx+m19rBJL/z9r32LiDJRuxrntALqBtS7m6YDoBr+29V
HhEOgx87CwQcNSOgRlaJVJ14DFB42n18JjUOghXfz1PrTYD7NfEFZ4/4Mjgk
c1LXbgrsvOCoqTKZBj0LHREEYAZMmyR+8aCfBWSzDwZ/ts4ChhyyKVm/ObCd
EXY3g2cejA2KGuanzIOKynOEVPwLwJT+wk27wAXAd+bebkzvAjgnMXrdl30R
yP3keH+ovAgSlcTmKM0WAZXFffkvlovAyaxMo0d3EcR7mIdWSCwCX5f/WEN3
F8DZ4JQHNllHuqQ+5f7aaAEYphpQG84d+Q+H3C79vXmgez4zRqBvDpw7JHy7
f2EOXCS29WV5cdT3dsd8Wi2bAep01Xb8S9PAOG9TXJFmGrjRP86Y4J4Cf4Rs
PlfwTIJCxx8XwpgmwIXxwcz9vTFAeVOxrqNnFLTdEJcd/jECvItF1Xomh0A7
0+zpL3cGQJaXTFdnSy9gP5/gLCnRDXxaVhz+8+0APy5X6wRUtQKrEB8mLbIm
8FX7P+joUgOa9kyohZrLwfdcZxena4WA1FzPI3gyHdRykfwMrAoFwkr/XWiY
/oS0zh0PYTvMQicss74pnEZIhszjY8inP6jW+VhtIXMdyhhhJON/1IyoieXv
CZq3oRdXBwVs1jrQwD7J69TH3WjBP3TLdKEXBaW0Rk5fG0ABfewhjR+GUNht
r1ktuxGUxMPN8th9FNVNqj1S8BxDNVN3Fnedx9FtaOLJbTSBzqZeC2aSmkSm
a+WGZvuTiPGngMzT/CMeva/RTGYzjdxZqbzeEc6gjqU3dxrCZtDbAesiC8pZ
JDGx/feY2yxqutVRHtk4i3aW6V3aWeZQZopqfuK1OZRnX7+y6DqHbAlNqVNf
zCEGU4pX/YFzyOxvYlDo4znUNxMU2GU0h2Qk/j0aFJpD3zWEvFvGZpEuc8LI
7KtZdJjFX+l86uic6UninzkzCJiZzJBIzSDNQd7FjrhpRP3xtWvYzhRKbl2z
/6Y2hfZa64gTAieRdrqkPnnhBCoor5y6NzyOAgx1bBy2xxCzqRVvIukYiv2q
/QWTjyJ7TY//Jg6P+uVEdebRvkFUV312dDGpH5l5gmuvzHvR5IVO3euU3aj+
xfLDqm8d6GDT6Xu4bBuSP2wLSPRtRq8N3hbf9qlDor8fPc53qUS8b1ONyW6W
one5+bm3XHPRmpCMmdnN7+ibn/SOi5s3UvnVUCaSHg/2hUz+/QjIAp8NLMT0
EovBv5uadJ66FYD280cOUqUaYLVEHBrD3QgcMn7Khyy3gIvzqR2/VdvBbQ4x
XfXQThAo/R/qKO8GsHBobHm6F1BJb/Aq7faD98H8eh7bg+CVpdN7/dFhsGsl
Gt7WOwKqH798KJQ3CsRXKKQ4g8aA3Yl+Zqlr44DTwkBjjWgCiJ2ePb6WOgE6
RrfUGq5MAv9oyeOC7ZOAcuNJdYrOFPDaUXjAiqeAz5s5F3GeabDfVGte7DQN
1B4MXIhNnwYBW+N30wanwWiJ58TAwTS4F3uRSZB2BuR/I5z0PxqJQrVLKP5N
g2PKpda1w9PgrFP3ytSvaTBPSZAa+mAakLwgGlsSnAbvzbdrrtdMAbH+yUsb
ZlPgrRxPovT4JHgyEet9x/RIr12e5guVE8BYF7vLCUyA/RtZJhUPx4HKxkwy
Sf4YcMoySPdfHgWupgE0jcdHweyve2Zul0aAelukq3DWEDgMeVER1TIASoIl
I54N9gFlNzmg1NcDXLl3K6VrusCP+08b8PcO8F44+sfNp23gt873R25qLSB7
XZmcl6EB9NWa9Bg/rwZMxcW0CfPlIMKAMZXqXTEw/joReUH1N3hH8WtoePQL
oM3bLs1MvQMoJHn288wTkBg9cuFfykQSj941znAVIartveRetnJUVuT4TetN
FRJMLvdz2K1DZ8TD0g20mlFWYbiVwJ9W9OpRbopKRzui2mmsKu7sRMeU0T+V
6m4Uc0WNOTG5FyVqW5B8fdSPrLNmG8UkB9ExOl0+/q4hdKz0KpmSzAj6viet
fWp5BLVqu140ThhFkT+6RK2ujKHnuk/aRofG0Lxj1IOnd8dRl2f0sfGZceRy
Xjuk1ngC+Sb/O1wunkAHfc/S+Bkn0QIX81kp40n02G7n63bEJHJlHnljXjyJ
vCqWWPR6JlF+W3hP/eQkMv49Q9c0MYk6PzG6WXdOolhwQiopbxIZzMy2poYc
6ZKhS/CL7iSKCgrhLKKcRFcW6z+JZ0+gumife4q6E6hql6vr3Og4MukKen/X
ehw9j0p/daF/DGUctD0lOLp32SFFheTXUVTjU0ElvzOCJvrHiaMvj6DrYc0E
UcTDKLN9RfOn8yCyOX2e7X11Pyr2fvDbla4PdTsl1zup9aBmKpGoCpculHyH
gyA7tAM9je9tD4xrQ1axo32vElqQzPq9LUW5RhRUcvj9JF8tkgyv/Bq1+wf9
UnB4q19bisa9A5l1eAuQA0mGR8WXX0jUytcKqMYj9RfPSkksjcBQgik3aUYC
YLhfS26skgnuN5N5EMQXHNVxfMPl1VKwRPxbUYWsElwbI9+1oKwFCTSHLw63
G0DgSuY7TYcW8GbgfnWPRhv4zzkjdY27A2z6gZYHo51gMzcEXIjqBgqvHCXE
5XqBch9D/rWGPpCyluIcozkAast1yUTyBkEkWhtlph0G4gmD2tXCI+C1t3W1
fckIWNp2inunNgrSP3WYbVeOgpNrre80ZMeA2LPDbdVPY2B2ujPk99YY8Fb+
UWKpMg4EFTYDBJ+PA5lnBE+HcsfBtkf1iPvAOKh1l/g+tD4OuuZc/egIJgCP
ZnML1eE4OPcz+PvQ33HAEihVFNs2DhK/6qpbpIyDPa8QYu0jffodXth8JzkO
XvJ8NXUYPTrPleoxRcAY+IdM7ubxjIHdr/+2y1NHwUJOtbGP+Cg4YUe9oZY0
ArTNdAR96EcAxaPdHq6jHJ6XmbKrjhwEUVZys/MyA+DhJ/8On9I+cMAY+uS5
Qi8gsYcGpCndQMjJWpONvAuQa6ccdBt1AP2Pz3Yd49rAhrXlPlFXCxh08JaP
oWoChJNyLBQmdeCpEbpVF10FnoTd/HOnsRwQFtxUK/xbAswPNL8Gns0FXSen
mj6PpQGXz+e5u77HAAVzMoI7ha6IoUZz71puAqKI+hFw/vUvJBbM+q1BOh89
2G7NXizFiHolg/9mTAW6w1Y981mlGmW3cS8sDdQhlHffbcuyCeU2t9vKTbcg
SXIzs9iINhSjYjDz6ogb82ldVmhLOpFX1GLcCYVutCuMFpp/9KAr7hyGchR9
qM+BR+eF/lFOPRPtGw8ZQOfjXu1E/hpEedjhzGzpEOLIvzQsWzyMwjNjbm3p
jKCTQWrBZfkjRzz7+w1gGUUsxiLZF21H0Tl56+EXqaPIKDWz82BiFFEcVsk9
ZxxDph6OicRnx1CAyugHZ40xFLV68BXrjSFDNlbNnetjaOPGpz0hpTF08vpn
+psnx1DIY8K8lH+jKESorEehcRS5Wx4nlH89ikqduuU7VY/6XoK4JeWVEXRT
Oet3VcQI4uul40sSHkE8c9OK+rbDaHPSzNDQYQjpn3ukQGY8iD6jn10C5wcQ
S2VMwX+E/WhuhTZ6sqgXqZ31y1K27UEhJW2Szwi70YXzx15GvepEIUw23d60
HWhaU0ZE6VkbkmldbZ6ba0FSc6qWJ942IVf0bv8NqEcNBTdpnPuqUbrbzZ5N
+z9o1aKk/slCKdo/JjYf3VSIYutcVoLyfiPBVB2CBckUxEKtFmLcE4nUJYRW
uDKeAE5H55XnIQngInOwflXqT5BpzB/8tSsXUN/v+va4ogRYNPqsLGqWA7mz
RAu/kivB2WPHYntXa8AeBWO1ulgDkD6mQ7qo3Qw8iUhIx8RbQYIn4fZichsI
YxOX+8HcAbSYZhglH3aC9b//VSSWdwFVankGSaIeICd5s4ZeqhfonxG8EKzd
B+aO2ybMGveDmaHA1Fd6A+C8umHJ6IVB8JSU08yYcghEkHf851k1BNpMnKvb
nYcBo/DAEjHhCOB88qJmFI4A+6Rin9GHI0CystB6Jm4ExLY70Y8XjgACHzGn
ysYREEkYXvCycwRsmb8MONc2AgzSYn41V4wAY9GrBnePuLifcqbkeMAIqBz7
YEBpNAI2C2t99Y+PAFKrc9z6WcPg7+VfDD4swwATyZ6Jtx4CtzftYmXjB4HB
vy7C7poBYKaZx8863A8mLOsc4sb7wP2DTQ+u7l4gT9z+7XphD2hc9njxL6wb
TOTsa+/pdQHrp2sm3Mc6wXSPVpBKdjuI3ab+ckuvDSSPnqy8OdkC6DC7relA
E6Bg8bLP7q8Hh/tlLeV1NSCoOkQ6KrUSDMimM1/xLQfRSn5so5EIxDuXJ7py
5QNm0s3MkMhMkH7cL5SY4RtYGP/+LH4sAuwR/i1ySfdFj4KEjO4oJKBbu1Q6
Zy9moPyDe9+/h+YgylGT2FNzRejd3EngzV6GHC5OXgo48wd9aCb7fOZcNeL/
pMb+/FQdWso2FYinbkSftliEfvQ2I3ePOu0FtVaEb5gKFUS1oZdnXn2262lH
+nSBm6epOxHRgSajulQXIt/jJSJS60ZJ7NNOGdd6EFujLEGaUi8inCSqtRbq
Q7GG5h+0t/oQ+Vs33fncftR7RfFc7Z0B5Lc/K+h/MIDy4nr7S/0H0brnGu+F
zUHkfu36UrLBEPJUYYka+zSE3l0IbK7oGEJBWaLN5zaH0O8USjXJo/wMBXzW
+XtD6N/+eNnI8BDy+kZwo/bnEFq+66j1+d4Q4mZuXYpjOtp//qkt5fdBxMuw
FywrOogeEzxOePl+AO33inE5rvWjFs91hRuK/Whyzryx9lEfctAyy7n5sRdx
a0zGxGb3IF+Tdrfzxd1o0k+evTu7C0WtReOznztRrDx/KJ1XB9paeUkoea0d
fXjy08uWvg0JO9p8fVnbgkQdG/I2lpuQ6TVLlQsKDchjOYg4w70WFXIYDFxI
rEIRdQoaRaUV6CpFKePJjlLkaLFL1VNchGpyPXWoKnIQu8NcfNHTn+irq7zs
e/sviP+EfcobuTD0bSw5NITXHziaFiU1tscDr8chZu4NaeDEcaMywRvZwN6d
RaJSuhC8juwlvbaHQV/ez1ivznIgqeNRTve5EkyerHZ+e/OI2zstDNUI6oH+
D37qx+8agX7I2LFSyhbwsaD1vwnFVqC8RMI1ZdMGFMK/Cx3zawedvzlrP73q
AArGcxF7YZ1gKNGmw8+7C6Smu9N+tOgGqkJvL1dI9oBml0DNRys94IB7XgQe
9feCwgwq+bAPhDVopvsfccC3TEtdHbV+0GlBJ9z7sx8Q3o0wmCQdALO9BFrq
GgOAbShqctRzAAgIFVp9ej8AXsf3erknDoDFaZZb92MGQH1haUSMzwCYeol3
WY78xEh2PJ2KcQDQW11rz8T94MfYtudV034QwBxnLTDZB5y9Z5oib/WBemN3
MbLKXvBF3KNvnKsX2F671/vdqgdMuzA69kZ3g1esnYj4yMeQ+Mwz3N8JlMZc
nqdPdwD76hU5j6l2IOGkbdDU0wbof+bIOeJW0CFWFckQ2wIYkgNeUfU2gUlR
++rTDg0g2DtMW3ymFuxG/WwqMaoGyV83CT8U/AFBEp3BT+nKwVWTsedOuQj0
1lcJCigWgBOGZ+6X5v4G7LtG6iNaaWBkQjy3jP/It6PGkpibAsH7mtvvBkef
o1urVr0DxvGITrTjj4VDKuqiefRuTOI3qlRIi1qLyUcmGn5jZqslKO50ebN+
dBm6/FhR8sLpP2iHsj5F4lcVGmWVlP4sUIsefSZKXntej6TSdJuS2xqRrxqb
cCJpC/ohr6j1i7UVKchKLbRytSH7Z0/7rZjb0e0Tcp+q/7Wj9Gu/K5wGO1Bp
2YhSQ1onOtR2r73j1IXuZZswYZ5uVMFgKPywtBtRtjbGntDrQYQp9k3O7T3I
j/gJC6tKL6pcYZ/r/HKkq/z6Y09We9GdoZyoXok+lJYvz9dt2odeXGFClu59
iF0Pk7r49KH/ARwPxlM=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718078513317`*^9},
 CellLabel->
  "Out[148]=",ExpressionUUID->"5194f2fc-041e-4298-90a7-c07ce5819017"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{198.8279330464098, 2.3574129718587112`*^-6}, {
                   213.87842888274332`, -1.6880821233456003`*^-6}, {
                   238.01510716333044`, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{283.3673381659702, 2.3574129718587112`*^-6}, {
                   306.17783089361774`, -2.257476188559813*^-6}, {
                   335.77962559627264`, -8.449859968301717*^-7}, {
                   363.6983821180695, 2.3574129718587112`*^-6}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAAMNMs8LbdkBa+Kx8gcbDPr/mK9SQ
xHhAefWBfu+Wvb6mXhWyopp6QHfrMTuDB4q+oR9JpCyYfEDteKlqLDa3PpQJ
mlZljH5AtyMrQV0auL45xngPdC+AQBxJ6ZgjoJQ+MqzJfXEsgUD9wKAETVao
PqDeHfeTGIJA7Xp/g+Ygsr6YNZd6chiDQHRmQK4wsqI+DCEfXqgThEDFWmKg
RGqRPvVYqkwD/oRAMcTVwn+4qr5otVpFGvyFQBHlmFkp46M+UV4OSVbphkDm
WqG0R110Prab0Kzp0YdAVPhnnqzLo76l/bcaOc6IQI8USwi3S6E+Cayik625
iUAStIFvKRlTvvd+shbeuIpAI8uF/toSmb5h5tD5ZbOLQDVdXSCp5Z4+QJry
5xKdjEBh41tBsQKDvqlyOeB7mo1A+f5PltAbjb6Hl4PjCYeOQPiir3Mxy5k+
4lDcRu9uj0AXv7qGPtGFvmMXLVpINZBAU+CGDrJrg76PrG2Wq6qQQJmOaWIh
gJU+ANTA1+wpkUBRd1ly+TOMvqyhlZ7AoJFAb6wCpT/kc76WuXEVQBWSQE2X
O9Ewt5E+xWNgkZ2TkkBkBF4EO0SLvi+00JKNCZNATmJs0A1+Yb7ellOZW4mT
QPug4aJgM4o+y8PdT9UGlEB9D1iKB7eLvvKW6Yvhe5RAl7hR/wUUYj5e/AfN
y/qUQPYVUiXPvIE+BQiok0hxlUBBzfR25AuJvupdTwpx5ZVAxTceZEXVbD4U
RgmGd2OWQIZpgliwb3o+edREhxDZlkCvZrKqPTWGviP1ko2HWJdAjrV1U9o/
eD4LYOhDqtWXQPqfz2lTIGk+LXG/f19KmEA2jW6T3DKDvpQUqcDyyJhA3isf
xYpzfD42XhSHGD+ZQEKk8bHdwlk+HTqSUhy/mUBQ+93sJNx9vkJgF87LPJpA
2m8i9gSUfj6hLB7PDbKaQBi5fs9c606+RYs31S0xm0CNgIuX8B11viSQ0mDg
p5tAuFGrmVGrfD6VvwH4/x+cQGNCmj/olmK+HLV5XQ==
                   "]], 
                  
                  LineBox[{{48.817191338773306`, 2.3574129718587112`*^-6}, {
                   50.824371588767946`, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{81.65855647092259, -2.4645544965154083`*^-6}, {
                   85.13019853498008, 2.3574129718587112`*^-6}}], 
                  
                  LineBox[{{125.2066735726475, 2.3574129718587112`*^-6}, {
                   136.8061153938451, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{164.57755725000186`, -2.4645544965154083`*^-6}, {
                   173.52645446340443`, 2.3574129718587112`*^-6}}], 
                  
                  LineBox[{{246.21705982165926`, -2.4645544965154083`*^-6}, {
                   266.7888422707213, 2.3574129718587112`*^-6}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887239#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-2.4645544965154083`*^-6, 
               2.3574129718587112`*^-6}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{198.8279330464098, 2.3574129718587112`*^-6}, {
                   213.87842888274332`, -1.6880821233456003`*^-6}, {
                   238.01510716333044`, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{283.3673381659702, 2.3574129718587112`*^-6}, {
                   306.17783089361774`, -2.257476188559813*^-6}, {
                   335.77962559627264`, -8.449859968301717*^-7}, {
                   363.6983821180695, 2.3574129718587112`*^-6}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAAMNMs8LbdkBa+Kx8gcbDPr/mK9SQ
xHhAefWBfu+Wvb6mXhWyopp6QHfrMTuDB4q+oR9JpCyYfEDteKlqLDa3PpQJ
mlZljH5AtyMrQV0auL45xngPdC+AQBxJ6ZgjoJQ+MqzJfXEsgUD9wKAETVao
PqDeHfeTGIJA7Xp/g+Ygsr6YNZd6chiDQHRmQK4wsqI+DCEfXqgThEDFWmKg
RGqRPvVYqkwD/oRAMcTVwn+4qr5otVpFGvyFQBHlmFkp46M+UV4OSVbphkDm
WqG0R110Prab0Kzp0YdAVPhnnqzLo76l/bcaOc6IQI8USwi3S6E+Cayik625
iUAStIFvKRlTvvd+shbeuIpAI8uF/toSmb5h5tD5ZbOLQDVdXSCp5Z4+QJry
5xKdjEBh41tBsQKDvqlyOeB7mo1A+f5PltAbjb6Hl4PjCYeOQPiir3Mxy5k+
4lDcRu9uj0AXv7qGPtGFvmMXLVpINZBAU+CGDrJrg76PrG2Wq6qQQJmOaWIh
gJU+ANTA1+wpkUBRd1ly+TOMvqyhlZ7AoJFAb6wCpT/kc76WuXEVQBWSQE2X
O9Ewt5E+xWNgkZ2TkkBkBF4EO0SLvi+00JKNCZNATmJs0A1+Yb7ellOZW4mT
QPug4aJgM4o+y8PdT9UGlEB9D1iKB7eLvvKW6Yvhe5RAl7hR/wUUYj5e/AfN
y/qUQPYVUiXPvIE+BQiok0hxlUBBzfR25AuJvupdTwpx5ZVAxTceZEXVbD4U
RgmGd2OWQIZpgliwb3o+edREhxDZlkCvZrKqPTWGviP1ko2HWJdAjrV1U9o/
eD4LYOhDqtWXQPqfz2lTIGk+LXG/f19KmEA2jW6T3DKDvpQUqcDyyJhA3isf
xYpzfD42XhSHGD+ZQEKk8bHdwlk+HTqSUhy/mUBQ+93sJNx9vkJgF87LPJpA
2m8i9gSUfj6hLB7PDbKaQBi5fs9c606+RYs31S0xm0CNgIuX8B11viSQ0mDg
p5tAuFGrmVGrfD6VvwH4/x+cQGNCmj/olmK+HLV5XQ==
                   "]], 
                  
                  LineBox[{{48.817191338773306`, 2.3574129718587112`*^-6}, {
                   50.824371588767946`, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{81.65855647092259, -2.4645544965154083`*^-6}, {
                   85.13019853498008, 2.3574129718587112`*^-6}}], 
                  
                  LineBox[{{125.2066735726475, 2.3574129718587112`*^-6}, {
                   136.8061153938451, -2.4645544965154083`*^-6}}], 
                  
                  LineBox[{{164.57755725000186`, -2.4645544965154083`*^-6}, {
                   173.52645446340443`, 2.3574129718587112`*^-6}}], 
                  
                  LineBox[{{246.21705982165926`, -2.4645544965154083`*^-6}, {
                   266.7888422707213, 2.3574129718587112`*^-6}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887239#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-2.4645544965154083`*^-6, 
               2.3574129718587112`*^-6}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNl3c4kG0UxtUnihZFklFIVJSSEY5RkUoyyx6RrOy999577xXZK+PYm1JG
2ZGRiCRkf/46/7zP877X9d73fX73JU0jae1DBAQER4kJCEhybsw/o2cUtGWb
PEpCxig4m3aSSmKTQbDcj73nxlcGwQzF4wa97xgEVc2X0uRsGQQXvRS0lgQY
BIX7s7I//bskaPG8/C7kXhI0JF8zsJW7JHhB9FZ338ZFwdufXDsSQy8KlgaV
KHMxXxQc8DAR3NCmF/yP+lbbW1M6QfPWYkc1M1rBB+uLtzZe0wieubn7Qln2
gqDym/aTLlzUgkdbJM6qnj4v+KdnFlemzgmS+NfNQQGlYOvK58HHlhSCauvV
1y7xnhWMZspraf9HLtj58Uvuk3IyQa3kjI0y09OC9bsDbudUTwp6HvnDkv6V
VJCqxLKR7PkxwX35zX25ESLBjMqg14o6hIIqcNt6a+eQoJEEQdp//PswLXqZ
VC56C4q5hue4yNehN/6Jd0/eCijsEmRxdv6EoyeWIysipkAr5KWcqOUArFEm
bRQbvIeWJqv+bvJ65H34qTikYACTC/ylrj6cRMLQPJJO6Tk81iNRd3JtEU87
6j/Uo1zB/tA3XVz2qzj/J+jPs9w1XHk84f48bQP3cxdcGbU28adakUbbry1U
n/p7JFBoB0cr3Fw2lXdR7ch+RMO9PbyTvbL7aW0PVX0VnB+a72OxKOMn0/p9
bLu6LNw9so/UoiGi2237GNH9s/eD5z7eU53y4qPeR/UczbEX7nv4585LYtW2
XXRYoPiWOLODJTtaRd6T27gm/285sXYLbVz3563sN7H37K7h+4v/MNi3y5Di
3To+SD+aKsq0hlHahLdO+KyibSWf1rXxFdTNfaKkyfwbeUWlWsfaF1HiYb6w
2LV5XNvijM8OmkFiWdJ/FcuTqJs/2vK5aBSH3j5cEnIYwOvH/91Vqu7GO0d1
1TlNapFk4YGKoYAzrpmQKhulV8J9po6Hnbwd4He/doD082f4mkogVNjwFcpJ
E044aI+DoaT8/MDIJFCrnTB0V5gGQc2HFHY5s5C17TRZ3vEDhNc/eLlU/oQE
rpBuE/NFUIpzt9bf+QXz3SLLiZLLcJeXnbOZ6zcU6M682nj7GxTI9S6ZEK7A
Gyrjayr3VmCCgfTvsdcrcI9wU3nOdAXCpS5remitgBxPW1KowApEP419P7z3
GyTXP2Tcz/kNC8uvxnsFfkNHSsAGu90ysJi8tfSXWQL/+PM/+Yl/wYX6FKLZ
6AW49UOe7wnpTygquK76VOMHPJkxFp1MmIV6I9kuieppSDdvsTL8MAWCh0iq
7Ie+AWVRT/vhxDF4ntDIQ28xBDeekin5wAD4ZWi36RN8AqpIIbtilw4onuU4
5EvaAG3K6upLMkWw6akQ9vuEHuxtdf6zq87H2nPeREOX6jCMLq6NjLMNJ33V
uNYDP2AQj0iHYfdnNFRzy+1mGsR2x+NXhp8M4RcqfetrwqNYXZtCU7A3jjRx
c3eeN3zDjPXQEp2ZScw/mnLI7+cUNltMWP35+B1FFduX9sKnMWCTMU2Idwbb
6xxHLGtmEDZppILoZnF9TUk1Q20WGYeK/xI4zyJHd5MyxcH8ZcvS5KQ+iyWv
hsOPMMzi6ciH+aEtMxgt9EKd+8kMJnCWPWWumEbP9/+uFhNP45zPo2ePBb/j
pUvc9xzUpjDpn/f5Rd1J1DTf75FS/4as8v7EG97jeOcvo13AzVGkPhVIJVA9
hE8piU1Xrn/BUjYczfDpRy3Pux1qA5/Q8dqalDTLB7xXNNRLEd6OrGpPjp5a
b0ShgKF9+bwqrC9y5xj9nY9cFDXSQY4h6HvPZ62FPxaWw8w+VDwoAiLPAgOG
8mo4z0VImjLfCNdeV0w8bm+D3jfqXKwm3UCvmxKnbNQL3WYtGqsen8G7Qkb0
P9t+2C4aTDEWHwShYfYJxT9fIGyUcpfWbAgCZ+QrZTqHwa4iTbV/fQTimKMf
VWyMwuxy5jGZ7jHIYJFkEzAfh4UHoh3iy+MQZF+Q7CswAax+Xwmfqk0Av43k
a1q5CThKbZdTTT8BjAM3qRjrx+HpiRN33bjHYfFGtBR4jcF6u3PebOEoHC7W
q+UrHwENI0KiKzHDsDErMFipNASLNYkzTARfwbdysAu9B+FvbIXK+kY/nPw4
sCrzrA9+y55NNg//BFNV9fnHAz+C6VIpq/dAF1Cz8m58J2yHt2ds/hVfagZn
ltNEfhz18IPH6+OWWSUclf02SedSCJ2kAtd6rqZAq/SorICxDohzWLe7HY1H
MkaO2y233iGV+Z96R4JypHkufYeGvRYdJjUI04434oaQaVK7cgtq8Swrebu1
4xstxgkuhy7M3Q0hMxL9gISJWQMn3vSibLzLg5qET8hR6RxNUvQZNSL/qi9k
9uEm76F2e8d+7DkfSXGMewCX2ua2iXoHcJdkNfO8+CBurYwFn04dRAt/GZq5
4UFMJRdcb1odRH+JIKF/iwf+ONiEe62DeLPG09PGdRD/C3tZfuviIJocqSqj
ShnAppM3nAWIBnAmftqp/1k/1n6xt7np2od5O3LyDXGfcWpVs5cs6RNuhdD/
1xLQi0Jlep1X+j7g9vlfyhGvu1HOpVHJf6IDCz+2Mk/xtWGd7h1NV5dmbAwO
NdItbUDczW8XKKpF50JvUvXpCvxxKjdFlqQYExop5F/IZ+MVbW11H74Y7GNX
V5mRVUNjG7mft4kjoG+uieqjVAbEpe3v2dwuhBuB4suUkWUwzXaz8r/OKlCO
Tvg83F4HlCWk0eKijdDQf9ilyasZMvo0VvkzWyGnQJBPMqkdrP6+jugx7oQk
d5OnbVTdEGun5+cT0QOWr09XJ898gI4fKl8W/+uFFktdthSHXghIsqKPmOiF
a5/Z+EJYP0Gm436lo9InEDsfy65j8Ql+9decM7f6BAs9aVxLGgd5Nqfaw3/n
E/g2xhZNr/RCVl8Av1d0L1grTlNNsvYC6b/nkyESH8Fmq3lL6eIHYHMe+Hf9
QzeQ9Aee5VfoAqVfzB/mmjrgXZq/RPHpdvDFliQBkVaQJHYcFFNqBuNE7lNZ
qo1Qmx2r80CyHmr/fmrnVa8BqdjbKa+OHugz9zbn9YQSOOxt0fpCPB8Yvpp2
nXqUARljZX0vQqLBgcPy85CPLRw5Zno8XdgTFaud556kxKN1IeTems7E8wq7
iReFCrDiwurmel4JgqF/V1tYBfKNvu1AyWq04iQhVRtFpHlwYbaaugE/fpX0
Ds9tRGbRvplVuma8EdTfKmTWgo/TJ76eymrFlIBmwsvv21CAKNjVPLsdn3us
v2U070CLrp8ePhc6MfaVMeWNxE7smT2t9XG7E3PYC0Sec3Zh9qm2oWmxLvza
ZbXYytWFOt1Hpu0OdeEZh87EwuxO1LDqPSLI1omLOQn614M78FfaYnnW53aU
0JRSJl5vwzOZO6xt26242HZ43mOmBXfXKr4cLmvGwLQRggsGTagXbGTWeuDH
Y8c41Shi6vFJTNltRWbEsSQWBt+tKqzOkFQSK6nAqJW451xypTjjf3L4+Ewh
6pQH0537+BZ7K/LUlxvTcC10qEVaNQbNup5c+W3uid4i39u/Rb2CqZe5xBkV
wXDBjqbHQyMR6FS45oImMmBDxftGs1oeRNDEvkiSLYLbfoe46BRLISiH6mMh
fwXIW8tfnfz3HlxOzLNY+NVAuA71JdMVhJ2jh06eDq+H9f8yFTwjG8D0DEcr
kVMjFHG94k550gRPRMht/faaoGpX6Mel8Gbwq3g1NHe8BUycrMe9XreATgBH
Z19mC9AXEXk2t7XAcLxPqU1XC+B1AQbe4hZ4yXSe6I19C5CscZ3JvtoCr0oU
VGJrm6HyJi85NVczLK69PUYb0QSi+qvslSONIBhe1kJL2ggs9y4GxDE1QL8C
TXM0az28HK9nYOFGmO0eSBf5Vw0X6f9lf4h5D/xv7Nfu0leAA11JDrl/Kaye
spP+970IrI83DgnL5YM471xVQls2JP6ebIlhToP39CnX0ldjgb82z9KBMQgu
BF0//HrYGDJIS/Q8+OyRVm5ngPRmKM5PcqaH0CXg+nbsE5HZNGxnf1rCRZmD
YvcljuVT5aMsu9ZMrVkRdpwhY3yJJTgxaV/tOV+GAck176L/VOAhb6dxvi/v
saZ9v/hhRDXSa06rfbxai0nfPs2fj0RMiPg88G6gDjXNKJqZzeuRLVwi2362
Hh83IJm1cANmB/fsf3FvwO9TTgR2hQ2Ymo2n1Zob0Kh8RyalvgG1uw+nO2Q0
4Ovwz5sSZg24/qKx0OdqA4b1Xcxo7qpHwuixG/nP6/EGU+mhi4l1qJeuXhKj
jeg7VCeHxLW4ZDB7tcCzGiNk4zLLp9/jdZeJ0w+YKvGqK+v+olg5vmF5mKMm
XYrrcofpdUWL0c8p8+UicyGOuaTN469cJA/ycQs0zcJndg85dKZSceQGKf+i
Zzxm8nLkjXCHoXjgdPi/Nje0F96pPrwqgj8zfje8EHGBFUlJG42qEKA9fztO
KTsW7idO/vxWkAIy/i//9fzMgDu7Mr8L9nPgYbO2qNP8O9ickFmv/lQIVQpB
NkHhxXDRanSMka8U+ux0Vf2byoD3b8gs8fUKKNIR3Tp8sEe9cEP1fNR78O54
43YuqgpeTElmbJtUA/+KZsk6cw1wLp1eNCirAfa4b9zrNLUQo3NWSFWlFnRz
poTTLWuBg+dc0tbrWqjwFWZr5awFVpXp+wnDNXCbUz9UVKkGPPXX31ZUVMOK
93OdMytVoLo8Spx9tAp4bHoYf+1Xgkh+kY7L1wpImam/zBJeDnteO9WtnGVw
1rm4T6OmBMhixR2p2YpheVr19jWfQtikLH3dkfEOIrKNSuTOvwUN9ur4KZNM
0EnOszUuTQWfN95DjN0JIHzlBHfnuUjwVvEau53nD2HOozsyD2xBOu1vI3+L
NA65vVqNK3LBa8q7/Lf0grE/dWG/dzAKvz5Z9QaKJLy2QPHixsk0/Bj4iqTS
JBPjbg1qkhbl4NA5Upbb7Xl4OiUl3KKkAPv4ZobyuIuQKNmoUM6+GO9YNZgK
Zpag2UfO89SlpdghVPGlJr0MqS9TPrtiVY7x5m8CXK9WoN3bhbZLWIFrYY9+
u3JUYonr+GFJ90o0Lr3IoFheibzm1DZpbZVIe1tkVrayElN53xo1elfisli6
iy5vJa5fF9pc7qxArZrHOwxQgU7ilclrYeWoneiu7dRThidJXZ22FkpxT85p
p+F3CZqPh9dJjhXjuVEbhbslRbjBuVp3y7wQqWUuffzvfj5S/znvedwhF18s
uTzXjMrGP1HqhkejMvDrlZBVGudUZNP/fibrXSKaego+noBoDL8h8cmhJgTz
Ao6MS6h64uktvsQ/DqaYwOgY1ZaoCiwJQQM3O5xhG/9bVw4OgHdU6d/djkfA
RQLm45mscbB/7wnPH79kOJ3z9dQvnTQoH3ypyXc5E6KDbWPc6rMhZjqlJJEr
F748fLIT5/4Ovn3Rs2zOKoButamtDx8KYdryy8p6URGot1ANqtgXA1lq0GtW
thKICgt4ltpUAt9pXNs5BUtBtl75gklSKVR5Sf8hnS4FV9gxHT9eBjf/I2Cf
PV8GDtFl4/dJy+BvovGO4GQpLMvI0wnFl4KuzNitXv5SGB174h9/cB/h8dYm
E44SqJgIM+fzKgZjioJPh1uLQLk46NyvpUIw1Age5f2vEDwZEtxdj+bDe8tr
FNOzuSCpffRyUnoOpF15bThxPwvuf48UXelMB9+uwcsCd1NB7Pn5PY/rScDz
tOPitZYYeCEiy5/7IBwoxxTDS/UCwMjS/PJVblcQ7/7iW7OrD0Ip33O0KtSx
h7b0n7a7I8b9ehiqfMMXF8j2GQrNQlF+8OgpmfwoFNLZfnm4IR5LuJltSj8n
4znKFa2aq2k4TjH/6L12BnrmlIisO2fhg7ErKos2OcjZLhj74GkuliR6xE5s
56FV9fbRD875+F7jW5XySAE2nfBpOOpRiG+Wk0YGjxRhL0lNcZRREQ4o+NDM
NxSh3xl2Yu+dIix6+jr2GX0xOl4+fROuFuO7rqdM+rTF+FT5pOPpzSJ8Y/PC
2KO2CNd++JaBfhFWL1q39BwuwopftXMT7oVo8e+lmO10Acb3cdIHRuVjiXLh
oWWmd/hKbU0AA3PxoYlThdiXHLQNk0rfI8jGifh+WtuTmZhBednH5HA6Ej2r
HKmcSMGWrS5XG+kk9NkllN5tisX3tXE2l6gjkZPnfDSjUgjSuWbkpVP7oMLf
k45nRx2Reu3zROLfV7hVddb4rJIa6H6gG7+yZwuCdCW2cSue4MK/12V2IRgi
OhYSY1PCwStQWD7oSAxY1e139gsnQKLFMdaI7GRwySI4Ix6VCtJPmity9dJB
/e7hVZ+LmWDJ6u48XJ4FHdeiFeuv5UDuyKsRf4e38EF3NLHhbS70C9Izkhfn
Qavr7GXt0HdQsqxUO/AoH74OBV4rHc6H4tND+p7CBSCcs2Jz1KkAnOKbpa+H
FYCpgXPBeccCSLqSbscmVACrmTeIN4fyoV7XcF3oST5AwMWV7ah3EJvKcUYK
8yDslsilyPpccOT76iaR/BZ+OlMdZ1LLgaYvYh5Le1nwUdabMsslE3b5nKz1
5tPBVavpsAXPgT9fXIqgN0kBC/qBhsprSfCcSJJNRzoOlI6LbDopRcHRnagZ
+SdhUCjck/pONhBy3KlZ1tY8oCW3/fa5U3bA9Dw55peUFqTcrqacbFDE18KL
f3V1rFD5cpPMzVU37C0cF2U67o/8EbHBTFshePzS6OW+3ghUZjRUkvSIwdnj
bqp75An4u/GBUt3dZBzy7uqS70/B+Rtdv+Rk07DO6sHTlcp0DAi6UuZGkInH
s0JIg1mz0EBSlbTpVjZKlZOX/6XOQW/z3BDWyRyUnyB6G+b+FqeYd+TCCHPx
VppDXYV6LubSmLPXRediGfczyqi8XOynSJxVis/Fnft3kl68zkX/2QUWIrJc
ZGLeNyOJeouGT/NUuLdzkDi9RtUHcnBRjeQIs2Y2ckuK3lXUOXi/nZtitGQm
6jk8pLWkyUAjNxrZtx/TsORppQuJfiruynNIeP9OxnoegRyV5kTk8C5vEXSP
w7PVclQMl6Mx6C2ffkhuONqqyVJy0YTgwP5qStyGL95Nfjb1KNENrYnzXR4Z
WCPhnSILgwOyqiBYfyy3LwuRTrtS7GtmsBLzrqBMwAW8Y4/27qp5w4PkfXq1
F0Ew7uwkSXQqDNokGIfvyUZCid6u0oBVDPhH/+cwZBEPk8LStBmPkuCDvdjU
y81kkI0MmfC6kwr02fx/RF+kQdHkkvMT9XTYfnra7PWTDDjx45FH8IVMAP1H
+pPdmSBGGFybpJYFbY9Mi3n6ssBZJytF5Eo2HP6xI+WglA0uIcxkn42yQZyg
L0JGKxuONtnkCfBmQ693bMHfpSwICdfpJvTMAuUESopL+5lgLymtyaCUCVza
bkeI4jLgvP+UxGJdOlwosZui7EqDnTKn1dnaVKiXN30wEpMCtIvLVIHqydBb
OvFd+0oizErQurHoxQEJG9XCpYBo8OEPnLwdHgG/PnN+U3ULBbIqEXub2kDA
oQmndVlvsKOOufZuwAUG1x7clQy2hCk7N97hPk2gvXtSIr5MAgO/sInF1Buj
/A9Hs/1UB7wV/qC9jNkDM23Yzk0+98ObxT09kfnByPWmVtMjKgzHPcTMqV9G
4sW3udQTJ2Kw/pNunF94HCZ0G2uT/k1AA4V5zfqzyegXLcHCdD4F9d7N7Owe
ScXvlha/7g6n4mYgsdR8eBo+fj7Qx3snHatarWWdq9KxXcsnlJMpA9X3D+f/
MclAelFyK7u0g73NdSmwtDID01buymYXZSBr5YU8j8AMdHnq6J8kmYFdL8y0
DNbS0Ue1Q9rDOR0lvJs5MlbS0LY4zjpLPA1Ne7X+evqkIrv3E0Xl4hT8LchU
ptySjBecdtQLvJLQr9bES181AXOi9h0XyeLwCMOws2JGNI6euHzmP5pIFBFL
CpO1CUPTE+MJQ/XB2PRCL/P1oh+O1JJR3L7riT/Y349GmTrjG5VDoHzXAj+E
M0bKEL3EqLSPO/o+wtBPLsR5MksfCo4kOi/I2kADM2vWMxlXaL7ctkE/5gVa
r6zmvwkFwHHqFucZvhD4Wl57P682DC7ZbEllMUTC3LSa3ZRONFDpsBhH+saC
WyU91XXveOjqefZOUDURUp/VtUkdSYYrKad0ilqSwa1os1jDKAX05cbOpR86
0PnsOgzZpQLLxfkSl7FUUD0qqw4HfSip69RYr1waJMQMRV8wSANqa6v+S7pp
EFIbaE4skQbfCZJyTlOlwe3I9jcpnamAg7zf+LVTof2BlJ77jxT421fymUsu
BQjGW2hu5CWDfcCDyNbRJAg9W7rfwpsIOwKNW7km8UAVnHh2zTMWenu5zMXs
o2EkSueu0YFPXwza+/6zCYOpwsE36gwhwHeChvuIUQB07l1SvmnjDdxO0QsD
um7Q8Omn0/0ge5h0nXmZdssU2i9N+AObGjTG3luK6LiPZ4+kBfwY1sWf710e
X2OyQoErOqYM0c5YKCnYZuvqgXF3J3KmH/mi5zhUKywE4u87nmrEBSGY6Zn9
qvZDGO4ytZLf+ByBG+7WEtPlB9y8vdceZBuDfYGXmskuHOg6+XuQbWQ8Dg+f
6T++kIDASxcseC4J0+uXf04cT0bZW4/p3lsno3Qu15GqD8m4JVpzLPBkCl53
KM7c5U7Bm8bVfkuPUnBOxiDupVgKkiz1NNmzpWDRq6giy91k7LlYqvq2IhkH
v/fZ+ysnY8Sv7zYKQ0m4H/JlXvdTIl682f+wNzUBy0hOl4lIxiMJU/h2+tdY
NDLj+n1EOAYpK56FxPtG4b1Fhu3migjk2Th2Y7czDI83zhZPtoZg5yVnalnl
IHz7OPXBI2I/ZCIo/qsX7olX/G59iT3mivemGLbyhmyx259tX9bbBN3tpO3z
5dWR1DDkJBP5bZB8JSq6eUgbfrt1tfNVmsGg9OUUsi57oPwnEr0+6AqEr77G
Nl/1gtolYnYHJT+4/MvNfPxlEBgRDZsbJ4WAQvetnnGzMKAO1z20dT0CqEWN
W7LaI2H42MaT9fvRYPeCOpEuOQaURqjeen6NhV3NVNamxbiDvp9yN2YkHraa
ymv30xLg/Ml5k4sPEoEwyqLnBSaCDi6G3j2VBPFBHAz+3EmQmiHs8fBgJpgd
4U06mQSXB+qKV2sTwarzWNrowTmHxrgNhqwESLtjnVA/FQ9uukpHJjbjoOdV
isHAr1ggeEj7i7k+BiLc0+SdTaNBMvTxQBlRFJS9zdWpd4wAmwA/lurRMFiR
rTf6xhAK2lVnPnjKBEOGrncv35Q/3CJM1ZPf8QYdl86HAVvu8IwnSYV9yhlE
vRj0BExsgG9Roy2TyASGFPIyWOk1gGmp6Nsl4g0BAnPqPOpCdVRWWJHvLjbG
mYj3ws5L1jiSQDIu4+yMPq8yXVyM3JFx9q1hr6A3ukeuuVsc5A9Z8okrQ8ZB
qByvYvJUKwTvkXMZ9G6EYr36D01Ck3BU0HikePFDBJ5TfZTmfCIKV2L5enLY
otFT94TmI7aD3P5oqMdPGous/IyVnq2xyLLLuaaiGoePSdotL3+Ow+sW05+N
LsUjvWEWz/7jeFy0KfNtkYrH3ien+advxeOD+Mbl3OU4HGlgGI3zjsO9nPd/
1PdicWqR+UO/VCxe3UrT2XGLwe+nTkUSRUZjdvzbF498ovBc+N7yfbVI/Fji
2RZ1PgIP25DfJqoKw7bnK4fNREJRRor7z1hpMJbLM880MAei2XJBsWK9L6Za
7E2R8Xmhg+CpXxFxbrgG5b9f9jhh2isBmiARayR1stANTjZGEP5vvXpKA51Y
T+YIL99GNcJ2HC9WAI9nGWOepwzAf8pe39DbAgbvbiZenLGH02zWRkIkrtC4
/Uih2tMDUvXYNRK+e4Nh16puIY0/NBaLMaywBcGxsJe7HcdC4Nm913OE2qFw
8w8H7eGsMJDqXeji/xAOp/yfPpMdioDb53QGT7RFgvyxiVa5yCiImWAmEBaN
BprbV4ZPDEbDXdBaZXoQA9fNWlvPh8XA77+ux3LrYqBDfK63sTMGtojPOluW
xkDOqy0HIocY8P7FXTrGFAPGw0VfgvOigS6V0n7sbDScoi1YzVaNgpRvrLt7
vpEgOy8ufDouAphCElJvBofDg7w4jQH9MPgmUHUu7EYojN+9739hLBje3W3u
slwMBOWUWauCTT9YYN2k+DLjDeOWDPQkZR5Qm2pO6anvCirvx0bELjiCTDZD
fLqgFXRLHAqilzCG8iKWobAYTSiTkp6dFxCBpMGIiobv0jj//Iuc8QsdnHLm
7mXzMcW7EqwvSMVssOW+Ngn/mBMWOZTklVxyw3NyYSW1PJ7oMNEbMnLDB9PK
ZHcU/vPH5zEOdhUFB/87Vk61PzoY/6zWPTnZFILjZttz9AOhKFqsf7u+Jwyp
M0Gl/YAjl3punbvzJgJZ3W7VXzl7wCPPLFXm4iOxv4pec5I4Co/NO95/KxuF
Y8esvu26RiGne0VmXWgUjpxpjN5yi0Lv0Q2ySfkojJ1lUe0mjcKQGQ06/rRI
dLdZtR+gjUT9/gUOTfsIfJBqpfCxLhxvTX2lvT4fhkOdQ1zZm6G4ETMoFPon
BPMJcn/JDQRjHssu41/RIHwzycYoUOuPIVvbin9P+6K/wphh4QMvLBe+I3td
zR2JSZZ0RDRcULZPMeZDkj32Yp6luKoljmfJGLEQGeMv7qKRV4IvkXSY88f3
GHH0VNmZe14hDmkUo8ub118CpyDB59BWI3DjiKgWorCEaMVXFI5M9lAVlp2X
TegCEEbyhmncDZ736KrRxnnCpGLvCjOPDyxouvIcKvaDRLm/i/FHAsE9gDD6
FFUwzDUedjU9FwIFAm4CTfshsG5A2bX4MRQ0x0/obnmGwcW5+XwqpnBQSyqx
j8wMB5OzfLUzJyJgOsBgK04hAkjrrzWZ+kTA2DH1KbGECLjjcV6HNiIClk6v
Opw3iYDkMDIaT44IYN9Tsu8dDAeq2QYjb41w+BqS5KL2OQz2ajxWrlwNg92f
39z6dEPhQuSNa6ahIRAWk+V3MyMYiMxLyvNEg6A57oKID00AmL2yyJ774AuH
bz5o+K7uDZPS9hfrBzyA965TzeRNN2BIYTDosnCGSL+rHree2QF7XGriRqQF
CBXdvdQTaAQnIynDrn5+CS+D/1hGnHwGRaVn36qcBSycT7O+/08VNW+Vk72i
1McwxdtVAsJm6LH76umPr9a4FddCR/XYEb9fbRk3b3fBMaa53lEpd8ydV+OP
RE88LPPNO47UB/N7un+Rc/khnWXLXym+AGQJ+lT9jSoI08UTbOBVMFIp1Imf
vBqCy8/JmP4NhuD9l2KttwwOci//Pv/Z+VD8sns5gVwiDG8FSiQ2H/A2vc7I
9mR7GPL4cZbf+xaGU7umTNNjYfhWqHdkvCEMV5llDIz9w7AwTWh1TSAMFUiO
uC8OhqLkUefXv5+HYvO/Xt6ahhA03vnz+QpFCN6hy6a7IhOMG9wN7iGbgdhW
+ktSlzkAOXdde2Vv+CFhsijHPqUP+pW0bfN980SeFiuJ/wLdcaqFb9KQ0RVj
PYxnNMSckF0z5BAnky3SLRnMn502xxJFn4/dF4zQUyzdU0hKC2Muf62i+SWN
4xFh6z4vmaHzUEjHhTcvwM+82ox46RU8fn/mSykaw08SL6PRBQs46nL45syG
LVAhZZreqBOc4dFNThZ3BdHVLkpBP3fI8eGQFCz0hNdHsw02yrwhcWxM60eM
L/CHrp1qUPCH23SaW+qrASAkprU2rBUE8zL+RXzyweDrVUirNB0MP39kv2RR
DgEusUhv2toQOC391u0zUSiQsntl7/KEgs9b+p9mMqGQnj27xiIfCitvJK/c
EA4FgpY+mYqzoeAmPGd0+lMIzF0xOZFlGQI6tFGlhEQhwN/++dxHp2AosV57
GNgRBITBV6aC9APh7V4/hd+cP7wV4ROPEvSDf6W9T/9Z+IDHCEhfCPACXraF
kDAvDxBnMP9J+doNJlzqeGw5XGCNo5ddqccB7G4SbxpT2ICaRrWNvrA5NEr5
zQkUvIFc+Rt7CzVaoCyvUJtuIgf7bnWH83YpYF/sn210ijRurN89ZMv/EnnT
KUCTyBB95qmvHZIyQ0t7HdmgQ9bIxkNEOh9oj/7HNYSzbJxx8j/yjfhwV9xW
pOMsiXDHfEtxEX1bT7x+xxcMhbzxRT7Xtu/MgR6MR3Madfzw7mNfceEWf+Ql
Tx7U2glAyRU/XiQNwm9zt/6Q/wlC7ucnBG88D8YT575XzycFo97xY9xLn4Ox
2U2V9+TvYPz75nMB90Yw/v5Pat78RzAea2U0XmwKxrtGlHXffIKxwHLyc8Hd
YGQlJuPIeBeExnSnzCprA9HVLifgT2YA6mv3eI3p+SONLzvzLVI/XJRv8Bnw
8UGJEfaowR9eSJPWeVX/qicmX/1M8+uZO3o5b5z/ouqKPm8MZRvkndH2aBlj
jaU9/jRxu7NIZ40nCS5f7Mw1w/2c2nx50TeornK/aYNCG1ncxn2G05+jXB+B
z5AAJzoPzd42+vcIbKtJcx/PqkEr6QJrCKku1Pr/yhjbNYaSVdp5emULuP/Z
1/i/uAOrE9LEsJY5AGks71zJZ2eoh+nDOiWu8H5o2Eze1h1ML6T3Slz2hJ4v
4W+h2Au+kp8/c4/eB2zfJf1M0vOFpy5q662hfmBqa131ItIffr8QoWQ2DwDd
c4vJHNcCQTd4qrmwKhC2HndGH2cIgskOdosp9SAwPKMhSmgVBCGb8rHWBz54
daVUz5Y1CN4IOqRZtwYCkedjHQr+QAhXu05+2S8Aeohyd/JK/eFXXh/B1Hs/
OGYv0cQc7wt6XH8bj6n4wNczqRz39rygvIouptjFE468eC2pPO8OdSVtta+4
3WBd8bnjuTcuoGNamJVM7wTtgeX758AOel5PrJfxW8GF7qds9RfNgHfK+QTn
hCG4ZKsI2qloQ0r+Qt7nQAUwuFhL5ZssBOGNn3Q7+4WRwEx6ap1EEbc3/6VX
OGjjrs4i56k+Q1wE9SvGu6b4kZJY79WaJQ5Pq+PLblu07We+F+zgiJtS81ZM
h11wX6qokDzfFZPk5HIdhdyRUKzkp2WFB569NPqPncwL5UloYw498cb679kt
pq988FCwoyWHmi8+8TC+cf6OH04pOsjcnvPDuaU1vkpzf1wK5yc/PeaP+0U8
+n30AXiScSGtiz8AI1gm9/7cDkCP/XBX8yMBWG1LE5Nb5I9FvIMmjLz+WKxG
wRwZ74dfxc+nLoz64ifPnzI82z5YV7OfUv3PGzUW+q6ND3phPIwM3ojyRLXD
7m+1+Txwkord8XmLG74j47ff5XJFmaQIB8NQZ7weLOpaWOKACRS/jpygt8UE
/9+/cvUtMYGOQ94g0RQ7M1VkI6wNkUdLWqg0XBvHr9wy+celhM9d6ZhoVESR
p6uXWc3gNqTKeHwR/yQLr/fcrRokNaHP58O1Bio9EFLe1h0aNQZu4hIP43Bz
iD4nImbEbg09bBLk4pl2wBnXfyxlwxEYr681XTnlAtdXb2Te9nOFzDN7bLRL
bmAaS/3gBpcHdGgu9X3V8ITaH33Z+UZeoPZl57qhqje4Sv6e3rzuA/F9Y1Va
wz7w7dRDsnltX+gw6ItfOtjntQlPCUko/KBbUV50l9sPVq4LT1ccTJ7dx5/l
z/rBbOljNqaD54Ifm5VHHpxbyCOmlBrxgWvJjLMXb/pAw8+/nrta3rD34yIS
2XnBewdhRjczT/hIl6s0LukBipXzV7LI3GEmI+5BQJUrZJ3xZlF74gJUDwlo
ToU6wY3K4BEKbXvgWZiKOkZpA7wXFMfFcw78fCly7wWjKZQJpUIemSHwF9Rq
L9Vogz7iE9J0ZUiZiNJ7pvcYdE5qTVhunMEdmp95nszPsPThdb+hRVUUWXrW
jXWv8N0zSsr5GUPs/qZz9IeRKZ7b5xB88tkCG8dOyQ1R2OAjmeUYUy57LFAr
Lrp20wltJOpqM/edMVDs0Qu2Z65owmxHTeLthinDor6Y4Y4XxTbPLGd54PaV
2/laAZ5oRO0ncVLOCzv3zzMf3vPCtWT7945e3th9lqpw4bc3/r1YYj/M64M5
+TUdRJo+qNcxViCv64PxijVlw5I+SKBHHdND4YPUo02TYdXe+ODIYcFqYW/k
yQku3Mz2wnuN0vbX/3gixyvRP/J0niizaEGQwu6Brxa+RcsxuaOLSMjCNwI3
/EElZvWhxQW9Tyiutpo7o7Yr3zUaekd82OL1huCmHQ6I11TQX7TGzDp/Ps9V
c3T/mEGkmW+C6aXqh7ZzDPD5hkCi2RdtXC18ac80qoIrNM7LoiOSSG60M7cp
T4/KHy7qDv8VA4aAxxuHehXgWsjHmtaal+BbnxfUaaoHLb7yXehsDH3lxowP
Cs3g5pFpu+UmSzh5pOrYaIUNtNbR/ZL1todriuOD/RxOkEA9Xubx1Rm2TKgK
jQ+5AuojI5C7HeRe8dGUY+5AePLq+Tez7hDxnJw3IcsDaI+cKnj0xBPunixm
q+zzBN6aklwJAS8wVBUgifX2gs2OSG+ZMi+4Od9O+KLJC+oCjh17d5DvU71E
mU5uXnB8W5eaicsLLhNde0jR5QlhPwP+rYoc5GrV5LJHogc4dch/Lh13By9n
+xF/Qneo97ypx0fmBlW1+5oniFzBX4ZN33DaGUY8fHeblJzgj2ZsO2W7PRze
STl0j8wW7iWp0H2/awWMtdJ2FQ8PfFzYpZsCJpBII8/OL2wA3VGe2a4z2rAa
eepkw7QqnORK7jP6JgWNwvJ6dXy34dX3pT+VDkJIE0KpwsQjh+PXFWnoiTTQ
O7LYWVVOB4OC62IaXQzRxIRcrrLBBJ212K21c8xR9P0+o4C5FYrv6JRW09ki
i/zmiE+GPaqdZ+x1PuKErXIT578kOKPEQshYbqoLvqfIENkPckUdld/kRVpu
SMfxPL+B3h1PEzjwydS7o6s3Rd7bBx5Y0ZgWdrPAA/+TKftosuOBK8dnCC6y
eaLZ4+v9ZMKeyJzzkObeQZ8EU97qfnJPFPpAoXz8kwdyN77flTHzwEwrQkne
LXe8apwwZvDKHfdOGFM1VLrh7P79K6x/XJGF41xMxZkDrv2w9jOezgX9ZC3n
L591Rl7b3jGzBQe0kJE8VOxjh83vWeNvE9lgzq2KK5Jalth4Mr/bKcsMl0M3
u9T7jFG2WNJN6os+Jkg9Chb/oY0PNGyPfmhUw6d0xKIEETI45cHG0KskgBlJ
NyhPJN6GvbJfOgmUUtBEeja+iFkFzlwrlL/srgUPFreUaOX1YDxcLHmBwBgC
9VjOnK43hab33R6HtS2A52N1m+GiFahc+sdyWcYWBAcmTVki7cF/ZTY9q9gR
nly7wfOfjDN8T0iuWOZygXPJ897/EbqC8+9+erH3rsDdbC47JecG3Cl2mrRD
bsAufBk1RNxBLLmm9m6IO8h9Jzwn3+IO+uSEN90PdGiv9UOkctQdoka2ZI/W
u4NvVxfBO293+Ply/8whbnfgZlQ45NLlBtqro1c6Rd2A5emZ3zE5rnD0S3F9
918XSOa/3K3M6gLlhoGV6g+dwSbsxcOzmY4gMsBw+mGEPTDQf1y/pGELQ8TU
JaHHreGj6dG44lgLSMqO9a09aQZcqzVJJw2MIf/q5VRuA31IJm7rnPqmDVK3
bqcpCqhD8eaLEz/J5OC5yp8V9ev3YIRNz7Ivhg5v2fs5yNY+whNj0a/vVr3A
02p19uPrGqgxcSXHyEIHxwfHYz9+MkAfv2fMUYdNcMW4sMrW/aDvHbln+HrB
AusjghmVOK2xgf9YkKWyLZ5++gVJNOzxCA+BZZSgI9I7lQh/XHNCBe69yz31
zrhkV2zmb+yCObt3f0gfO+Bpew4yA19XVFkQdxRZdcUEizB99Xtu+DjOSsTY
1g0/fVv6zR/tho1d0ZTF8W74QiyOeNTLDY+sv8yYU3BDa4r4Ewxn3DCOeYD+
X4krckrnDK/xu+IfWghpyXdBec1HW+wkBzl7YeU85TNn/CL6/dTfw054S7Ts
yhw4IEjeCNWRt8Msx+IcwicH+2VlM8mKwQo9T9mOJ42a42wNLY+TgylGJrxe
uXPUGLNX3jzc3dfDcGqiY7K92nidROncHW91JP+2J0igIo+o4GkcyyKGoc/M
fpd6H0XuqKfh90nuw4rCYP/RKlnQrGrUKnyiBuaFzjHtX7Tgt6WYaNlPXWA+
2/815+sbEGQnOFnSYwKsDq3rppTmYChdpFt6zxIYQ27G1khbA2v014hNIVuA
bVKrI8ft4cKHfOWcIgco5OZj/HbDCYi2fxsaiDgDj4Gyk/0XZ4hezblqJO8C
hP81ShSiCyzcuKbXccoV1HXmWTQPeuOtJbYKIX1XGJCw3xa3cIVXJhfSXHRc
IUVnjJhExBVGheyWGI+4wl+yNVr2Ihd4vh3Vmy7qAqz/OexfbHWGZHDzeX7T
GWj5Fw1vHncCOidbrphgB5jd5sv7tWwHGWecDNSv28JKQoiD5ENrOGHFzCQs
agnE72i9vrGYg+c0E/PWHxPYsn4v+fupEdwUajhaG3rgawFThsAKbXA51zFX
1aQO9zO3CQzsnsO7RRHhs4WP4HgyGZ+7DCu8C0hXXCHgR7noqaFpain8u5RB
EkSlhJWUjgnclpoYOpB4c+e+DtZlviS1/KOPYTOxPor8xhj58f3M/mtTnNuJ
EDO0N8fohYt8xOaW+FEsZ+m5hDXOyF64T05ki6/HMPdsvB2OWC80659wwDe8
Ng2yLxxRqI7QR9DOCWk43j95fdcZf37hlVpJcUZlE8pfTavOqH6ryt3jhgv6
Kohc+SfrgnXX8zq3Xrog826apo+yC06prXyqAZeD780r7zzQp1NqHNmRBmd8
QMzXMaThjGf6jcjTR5zQqM5gj6HLEW9e3Vl4G+aADhnByXMH/NM/eq2jpNwW
J9M5rSgPuOgowYi2kKwVHjpTQupjaYEXDxvb6zuaoXnHFJ3bGxNkWbhudTrs
DY58u/wpmkkPnTr/vDOM0kbWlyknXVbUkZ/3S0aDyQs0uv5Ft/qDBP7jJAho
F7qDhWqqqua0HJCiso9zGY9BeIN7SEL0OTzh4j6T9Ugd/ktmNyUe1gKuTxHX
rR/rgmar2rhMjCEsXQjSPDNhDLOvCT8rDpvC5LoE2+Eac1g820ye72IJ4nOn
GlhYreGYruWgVqENXJJ7NuxEYQeFwkEBzfIHunaz288zdQAPocta0zqOIH1C
7u3DO04g10jzcWHICWiP1lv6XnUGZQlX94sHOd4XxdoR8upAh1QV0n1azqBI
m++8JuEMAfb1o4wMztAozZMi3uQElDEppsXnneDfnW9FVg8dodHQ8GnDMwdw
jdQj/HHbHnoYOZ3NVm0h8U+TKFWIDVjGVWuXnbSGXw+5lqTeWELIaJMAdbE5
xLKwnVcZNQXutaF472VjiBDrOvF01BB+6fJheZkuJCkmHK4x1obR7R6aP+Qa
wAuyTGfuK4DEZTPfILFnYH6CsWt7mR/+I44pGWSnxc+eenanSh6g4jRPMme3
DGasrxyyTVLGJZOgBaJ0TXSVdxA2HXuFRjRTZknretjv7XJE+ecb3FK/GdSv
YIK1PA8XvzGbIYPChaTTw+b4mCX33z0TS+yQY6h2/mmFhtfoAv7es0HTwn3u
DTtbJJRyzz8eYoeqtDeGZl3sse/xC2YdCQd8XEo8mvTHARkFTl8dMHbE6ft3
th3aHHFY38r9/vpBf7TbDiHadUSyVZmQgRFHFAx9rLAe6ojW/ekF3xgccWYo
MgD8HVBsgJFp4eMB13SXp6ws2SHb89Yqv5+2uHffa4O+2QaDigk7BB2ssen+
3dcZ56wwmZ7MlSPCAqfJ1Et+bJihzMnHX38Lm2KGQcStQAtj3PRRGBC6aohn
KuvGQVQX+TKrjG/e18bP/iYT0qwaOKglfoFgXQHfL0gtPnWQwnBTfWuaOWFs
OaJiyf/nXy1/8OGpnxJCMMlLcawg5RkoMHIWuhxSgK2fblbDCerwYI/s6/dU
LdgutPqEvq+hoCWfzvKZATwi3s24t2wERt+ohB4XHeSyXIPScRkzyP3+Wml4
2BzELR9y9Bzk2ZMgi5+XIqxAozR3hL/ZGmwraGNzP9vAWPhsLXOdLfxm2dQP
87YDNYrKDEJ2e6DSyVWuybeHuIxz4tdJHIBcw8d1XdAB2hsrh35JOoDTW5tV
irsOcJECmdL27OGyw6HTWwn2kCnQTFhAZQ8hQicYPIzs4DITl4Bhmi30bIUE
upfZAEtZ++UzWdYwrnKUxdfGCvYHTIZd2C3hfpaOXUWbORReT/tFImYGLh/Y
eOzzTSCyKGSc5YCfrt3zZw21N4BNZrIMhcHXoHRpLcyEXBucPu75tt7RgBTH
tqYmX0U4edxbvNVfGozuLpXObNwHUwGPqk4KRlj7rl7W/okLH3zn+Sju+Bh5
bz8oJymRQ952Bo1VDxV07lfvXY7UxP8BwVaWFg==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.884771807870121*^9},
 CellLabel->
  "Out[149]=",ExpressionUUID->"89d2a29d-4c06-46e2-aee4-6125700af1de"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAX0YXmnZqcUCTK+cCH4hlPugENWXY
InNAI/KYVatvYr7ZcbBYefx0QCF8btjQ2Ug+wgdJDMnMdkCw50ULNRZEPr/m
K9SQxHhAZhpcM8RkUb6mXhWyopp6QI5uJ/st6Fo+oR9JpCyYfEBMxOrcjQNb
vpQJmlZljH5AJBqJvYE9Wj45xngPdC+AQMeE9/7YOle+MqzJfXEsgUBJotiX
oeJSPqDeHfeTGIJAkZnN8YBAR76YNZd6chiDQIqCzFXfaT0+DCEfXqgThEDS
8AoZ1H0lvvVYqkwD/oRAIstt/4CWML5otVpFGvyFQI7bNN9mizo+UV4OSVbp
hkCjm/LvgvtDvrab0Kzp0YdAXeVJPVeURj6l/bcaOc6IQNyqTZtp7kS+Cayi
k625iUDxqDe6aoJAPvd+shbeuIpA4zuLLgiZOb5h5tD5ZbOLQA5+x8TBazA+
QJry5xKdjEDmPQD2Ykr0valyOeB7mo1A99jEPePvF76Hl4PjCYeOQJzHQtoM
kDA+4lDcRu9uj0Cw7Qh8i5Q3vmMXLVpINZBAkA8gX8MSOD6PrG2Wq6qQQHy/
2OXDFTa+ANTA1+wpkUAe4WmAgMQyPqyhlZ7AoJFAJfg/fnzDJ76WuXEVQBWS
QBzSzNV8FgU+xWNgkZ2TkkAeOC+1oa8BPi+00JKNCZNA1w3s4hfeIr7ellOZ
W4mTQJq7zKd3oCc+y8PdT9UGlECMLNEWfqArvvKW6Yvhe5RA3eUKQRgKLj5e
/AfNy/qUQBuzSL7T8Cu+BQiok0hxlUAI5hdGn8AlPupdTwpx5ZVATpDkmyvh
Fb4URgmGd2OWQDhJ2YSomQA+edREhxDZlkDBUwao/EILPiP1ko2HWJdAv8HO
yBm2Fr4LYOhDqtWXQJT1FdgheR8+LXG/f19KmEC4dIB8hw4kvpQUqcDyyJhA
PGR/fCD/Iz42XhSHGD+ZQHkD/RbQmSG+HTqSUhy/mUAJ7GEE3K0dPkJgF87L
PJpAs3lVJ+3DFb6hLB7PDbKaQKNS06Detvo9RYs31S0xm0BoYdAwoJrWPSSQ
0mDgp5tAAEyiDoPeDL6VvwH4/x+cQOLjYs0cUBc+pviIyA==
                   "]], 
                  
                  LineBox[{{46.22936644294048, 4.010595976467009*^-8}, {
                   52.681161749041614`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{72.20061667506386, -3.915595238517091*^-8}, {
                   79.09031063654152, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{103.0671894313898, 4.010595976467009*^-8}, {
                   109.1674602351076, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{134.85697042199502`, -3.915595238517091*^-8}, {
                   142.1004823898024, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{164.24225783142916`, 4.010595976467009*^-8}, {
                   172.44632414193504`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{194.5025261952843, -3.915595238517091*^-8}, {
                   205.3439514314462, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{224.6510596562491, 4.010595976467009*^-8}, {
                   238.33563165192402`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{254.1717415976144, -3.915595238517091*^-8}, {
                   271.93274956248786`, 4.010595976467009*^-8}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887300#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-3.915595238517091*^-8, 
               4.010595976467009*^-8}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAX0YXmnZqcUCTK+cCH4hlPugENWXY
InNAI/KYVatvYr7ZcbBYefx0QCF8btjQ2Ug+wgdJDMnMdkCw50ULNRZEPr/m
K9SQxHhAZhpcM8RkUb6mXhWyopp6QI5uJ/st6Fo+oR9JpCyYfEBMxOrcjQNb
vpQJmlZljH5AJBqJvYE9Wj45xngPdC+AQMeE9/7YOle+MqzJfXEsgUBJotiX
oeJSPqDeHfeTGIJAkZnN8YBAR76YNZd6chiDQIqCzFXfaT0+DCEfXqgThEDS
8AoZ1H0lvvVYqkwD/oRAIstt/4CWML5otVpFGvyFQI7bNN9mizo+UV4OSVbp
hkCjm/LvgvtDvrab0Kzp0YdAXeVJPVeURj6l/bcaOc6IQNyqTZtp7kS+Cayi
k625iUDxqDe6aoJAPvd+shbeuIpA4zuLLgiZOb5h5tD5ZbOLQA5+x8TBazA+
QJry5xKdjEDmPQD2Ykr0valyOeB7mo1A99jEPePvF76Hl4PjCYeOQJzHQtoM
kDA+4lDcRu9uj0Cw7Qh8i5Q3vmMXLVpINZBAkA8gX8MSOD6PrG2Wq6qQQHy/
2OXDFTa+ANTA1+wpkUAe4WmAgMQyPqyhlZ7AoJFAJfg/fnzDJ76WuXEVQBWS
QBzSzNV8FgU+xWNgkZ2TkkAeOC+1oa8BPi+00JKNCZNA1w3s4hfeIr7ellOZ
W4mTQJq7zKd3oCc+y8PdT9UGlECMLNEWfqArvvKW6Yvhe5RA3eUKQRgKLj5e
/AfNy/qUQBuzSL7T8Cu+BQiok0hxlUAI5hdGn8AlPupdTwpx5ZVATpDkmyvh
Fb4URgmGd2OWQDhJ2YSomQA+edREhxDZlkDBUwao/EILPiP1ko2HWJdAv8HO
yBm2Fr4LYOhDqtWXQJT1FdgheR8+LXG/f19KmEC4dIB8hw4kvpQUqcDyyJhA
PGR/fCD/Iz42XhSHGD+ZQHkD/RbQmSG+HTqSUhy/mUAJ7GEE3K0dPkJgF87L
PJpAs3lVJ+3DFb6hLB7PDbKaQKNS06Detvo9RYs31S0xm0BoYdAwoJrWPSSQ
0mDgp5tAAEyiDoPeDL6VvwH4/x+cQOLjYs0cUBc+pviIyA==
                   "]], 
                  
                  LineBox[{{46.22936644294048, 4.010595976467009*^-8}, {
                   52.681161749041614`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{72.20061667506386, -3.915595238517091*^-8}, {
                   79.09031063654152, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{103.0671894313898, 4.010595976467009*^-8}, {
                   109.1674602351076, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{134.85697042199502`, -3.915595238517091*^-8}, {
                   142.1004823898024, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{164.24225783142916`, 4.010595976467009*^-8}, {
                   172.44632414193504`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{194.5025261952843, -3.915595238517091*^-8}, {
                   205.3439514314462, 4.010595976467009*^-8}}], 
                  
                  LineBox[{{224.6510596562491, 4.010595976467009*^-8}, {
                   238.33563165192402`, -3.915595238517091*^-8}}], 
                  
                  LineBox[{{254.1717415976144, -3.915595238517091*^-8}, {
                   271.93274956248786`, 4.010595976467009*^-8}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887300#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-3.915595238517091*^-8, 
               4.010595976467009*^-8}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNl2c8FlwYxo1ESPbee+/Nc9sje++dkZHsVEJSdmRkpJAIKZSk9NxlREpF
hRKZbyplFCXz9el8Ob/z4Vz3fV3/S8DvuF0AKQkJCRUlCcmZH8wJDf/1Q4Bu
RlV/bz9onG4oSS3oh2+JtFdELPpBMbJmnGnlOaR/Uxt9m/Ic7iQn+5OSPQfH
6bk6l+N9oMyPgw0ve4E7oOn6NFsvHOYY+Lbl8Azs1a4+ok/tAeUj7pcNaruB
JfvX8YHHXaCaceXy8vNOUPlDmUk68BRC3dLj7198ApI3hLMwngh3o+V4llw6
wOPjhe88ig8hcLdlWpDyAdxgPxj9dqwVqI7i0nrTXejj2SRxymiGCquXSfLv
GqFClvxHS20dTJ9/wCWffwP6rJXjIsoqYUe+KeVnWil4XZb9uSWSD6QtrU1v
ZS6AfPv54cK0SAj9le7xRdwbEx5yKtSlJGFuvXzLq95M5FK/PX4uLh936lg4
M1mL8TBnzu5r3Ss46Z0dGvv7GjJzEq60sVbh8Ut/bqifuI61zNdEU65UY3WP
6D+V1Bs4TcEc76hYgxrF1ya0b9ZgwujI/oq5GkwrX61P/lGDHz9sHVDqrMGJ
om4lq4AadF9nGmr4dANV3oZXuIvdwJKbriW15tXIpFP9cdv8OlbZWnusS1Vh
wxI9Y9HnChSkp406o3QVaSnT/N29ytBsLtJ9MbAY1ceXFlYdCjFQ286FV/4S
XnqfSf5vNwt3Wl63/Sg+j/ZT9uMLYYlIcu0y9fDbSHSgfVlHteyIn840NAtu
uILvqEOgM0UUMERS7KsnOwOR9h1m0S3nYFJU+L+UjHR4KF75ipIsB56vVMQt
Z+SBwnyobJFHPgyU3fov808BaByTt//jWASBp2j3pZ+8DGp1A5qnfYrBcmwC
C6hL4DNxs4YzvgTMX0cIjdWXQEv1gxD2qhI4wX+39ZJ3CTi+FI+PnC+GdtbS
eTOtYqALTumj97oM+x54ttDaF4E7t8aHYZ5CEFbI9TfpygfrIJ8zcYaXgGK8
VsLGNhdSknx5cr5kQWLtp9t3bNOh/Kfn1tSVVMjQc5v1eJ0MuXOCOTfnTgJt
L+voA4Eo8PF4Txr30h9ezDx2oKQ3hhrB1Icis3b4mKbLO2YtCJnv/bzwfDUK
v/6M2JovOYk9Ar70kmNJ6BSwdsJ+JAX/Jq7yrKWcR64qUgeHxTTkTjTuTGDO
xOTzMqlSv7JQ/L654dvUHHQ6vX275MVFzPGU9/ToykUSWfLKUZU8lClOh5Aj
eXjc7suaZ0geClR7siea5+G9yfTn/1HmYUS8fOFfvVxURP2sT/IXUYdZhcNp
KhsVbr8aITpk4a8cKvnh/AykW/xeQqxIw0ry1+rfk8/jvGKdFKP2OSTp5D4p
OJqMz9elu7ybE5BJcVhzKPMELty01GU0i8Jq7PA4sBaMZBcY7y9WeeFcyu2F
wyQGaAUU8fUlxvBQ4fxVrcve8DmakC5TGgydcldc189EwoOuX8ellmMhNy/s
WgDnKXgxPvKzfvUMTKYvKS90JEPyE7m+UasU6BIw74xpPgcVHOXZxZ9TQeZk
rWnB6HlQ1XKi1Sy7AAr3ZqknRNLgymh6lfmpNNj5FO04VJwGyZwZLxWT0uA2
IedZvUIa9K4pK041X4CgWUfv7zvnofrpAW9d3vPQdGmnpY0hFW4WhpjFjadA
zB/Rrd9nz8KNeuvj8xTJ8MRxyunchwRQo46vNo46CR4r0po107HwSjrxjJ9c
FFD3H334/HkYrPf/pgOmAAhyUTtHXukGPoWZn//oG0Muyzvzb/3y2NDx11FN
0x5FHa+o3vrugyL0K32nfgVhWNafa/9qwvEjUwax/3QUdiuoswYci0X2RWpx
UcF4dPu8nb6v6BSucb4JrexMQAYuS6/DNxLRXzm3lZQnGX/8yTQ2epqMl4Sn
rSS1zmLBijqa5pzFfWQyE4VtZ3GI7Pew54Oz+JFP6Yx53lm8Iyjn565/Fm98
7pGbeJ2MNjfEg8PVklHt0yD3wmYi6kY9CtU4fAaV7pnYFrufRr/mQ4IG6idx
+9JK4fhcHPJFOfc6BcVgk/PEk2/PIjH67YA5JV04yo08do32O4pTbpVLkZf9
MCk+Yv/ncFekGLufJWFujpXcC1esHvDigIjEJ11zA2h8QczKXnUALfVcL7Fv
3jCV+dRTXTUAaporJb2VQ8D6XzLF77lwOGDHxeBaEQmilo/PV5RHw/OIN1gc
GAt9zSwnaTfi4N0qU4ClQzxM+AZTKEWfBGzsshNwPAXaX4qED/w7BYeaEn2O
ep2Gw+eaV03PnwaNmMQbEH4aNDmONh/hPA0nfhwLcMg6BTHyFVUS3SfBljju
GdUTD7+WG6yk80/AEte1pg65ONDXPWY1UxkDgY77ftz/FgV9FylpLtNFwvF0
lXR98XC4r/Y+0mEnGBiuPkt0qQ+A3dx0YpKSL3C6vJrStnKFiLKDQxI8NlAv
/N98T5UWKC7lsYiMC+Bq3/Dk6VhjJJA4RH8kdcAID6N3qokeKNdlY0dn7YfN
pqybx8QDUSz9ZWZ8dzCee32vjp7jGHo3FfgEMESgO1OmecKxSFQaeZTmei0K
E9N2mFaqorE3RSStKi4GpyVviqtyxeI+FkOWrxdj8Q7PxQivoVhcILervT0T
izPUH586dseih9TMmE5MLCr2UbQ9+hOD6pvLSXEWMXjM4NzbpBPRqCPsvKVx
Kgo/uLe4GXtFokG154d89ghMOjhkOxN4DLPPrgfe9w9BKi8/ljWFIDydy5l2
eOQIBn35LHDF1QdvMXVOkKS7omuu0QNnLTucu/9yKaDDCL/XXTR+symFDtTT
T/adlIU7k3wnzm4ZQbkaqcq5HVuItPRR4+l0gejjprih5g12rbejfjb4wWvG
FRqVtAB411H4W1rqKBRM/5LpuBQC5OLRVh5tYRDd+SpAqigcMviddWJYIqAl
t/1N4qMIILNLEelUj4R/rYJPruVGwrMT2izvMBIWbI6wR/ZGgn7YxK/p2kiQ
9YxnmvWJBOVv62nn1iKAVoqpiT8wAn4Z2l3uOXocJPKzScJ6jsHGh4+XCmdD
YaO0eJzhZTAo8zUKCiYHQfXQnxpfqgBwvdrlQAz2gxG2rel+B2+4ExFdfbLK
FTzn+onXeu2Berj36r/r5vCt4mZuNUEHuJnXlnrGuOGnSJSeT9mebyjZ3jpE
aohFPC5hFkHWKBlzdmdJyRHTfGw1V2Pd8Ge9pONCuDeK8V43CKT2w+2Rgrvy
cv643TbVdksgEBUwvUPscxDyXHY8HusbjLkc4soLdSFoss7mGXw3FFPmhlQ8
E8JwucBisIviGCZNXC4RsTqGfI+FWiocj6Fb5EXuD9zHcJrJ4fHujTB08QmV
fbUUigPdv4pO7IagRoebZ/NIMP44f5qsPP4o0k/O7fR/DcTy1OApKakAzMsP
vUljeASr8p6cJVX3RbNg+dUhNi9kF68JvpXhiv4ktjcPDTrg49/0wckL1rgZ
ev+BNY0xpi7ZOVBLqWNF79tJFxIGnFHcHO3elgW3idjmxmg9GH/J2bo9bwbZ
u9musM8ODlNuK7P5OsFs0yBz0Vk3+OSj+s7L0wuqqR5HHvnjA9a/qQ8eK/QD
nbvinm0Ue3l9YPlDvkkAXJwZ+tvtHAgrF4xmE5SDwPs0tUTAeBBkDEmGllkd
Bae2z7QtmUfBq7pi4l7eURA69fmZoO9RiAudP7W8FQQfLqXqJQUEAeOpqefl
5YFgkUsiceZGAKhNfWW4n+QPgcVMmkoKR+DLkz3yeOwLCYP9rPbCPmAkdPtf
xZgHtJUe9Y1QdYU4vY2mdH9HsFPOOXvzmC20P1JRzLxvBrMvn4ztBOuDQhWz
HzurMviMTXe8aKYG6xF7LeNcSRzSvrgQWEHABM2H71T7jLH10Gzx5ZNWqNXy
sSNwwQ5PRZ+1/BTkhFb001Sst1zx250HoZfueGCLrTabX5g3flz5R1W15IMt
PZcMLUn98NpnHxLjb354f1UsaqPmCCpU2qhpqfrjfS+eFa1Sf7TqHaIsfO2P
z73simDEH0NbMk6WNvtjPd4oP+LljyxJy/6Ppo6g9tjzIFaNPd01y71Mgv3Q
NTIl5Hi0L/6iMbm7vecHy0/YBm10vPDmxpWMgYvuWHtZlfFNnQtS/rAW5Sl0
xKF9XqqDznZIlZB4LfuPJZIs80sL0ZogSUbP0tVdHTy3XKWh06WAQwQFwZMb
NEioNyotchCBM3fjEkXL1cF0VanPktsAwnvO3E9qOQz67koey7vWwFlLnLbe
tgN93punml84giD5tOBJPxc4vG3emvHEDZ5P/y20mPCALIOHdk8eeIE7m87f
xyI+cOZIWMDYCx+QXeItEzXzhS0yI5i77gtKOoR3De994Q9J5GDgpC+YFmlS
u3b7wrQ1VQDLWV+o3hH9mMzhC1fbqF+9zvEB+YCCsk30hm73i443+b0gKSaF
4a6hByjZC7+sk3MDA+lV+4wvztA451bcFu4Ixja+Aj9e2UHJyRByBWobsBP+
crTQ3gwOPvdmdQ00hJ9037of3tOG68Iy9/6Lk4ccQVvXR9304LXlIqZMyY8N
WWvNKbTKSEo3RKUwqIOYN7a7UGaEbQJU+cOM5hgnUPLVQNAGjU4dyb2bb4c8
hKXTL4YdUKlq6QHNvBM+fr3qHNrlgu1v/pN293dDzip+18F+dzzNWEo0XfZA
df4ZlTfDnviV6Xb5TrwXLjmuFJJ/9MLnHaWsV9e8UDBX8ynXGy9kWFte8Q70
wk7gah957IlEZM6Nfe+BZSNnae43uaOI/nZMpq0bdl/mOOJDdEEh/Zpwur9O
+EhkmXqQzBE3n8SUa/5nh0357bOK1TbYP/y9rvucBS6Fmc3Z5pigRH9rsXS4
PmqVlPT5HNHEVSoP0gs5cuh2kyulKI4ZeY0/1V0lZwWH9xc6FbbkoFek9tAV
A01Iu9PfPcmjDw6KjIeHvxpDwto9wSfx5nDhqXmuXo81DBzOjbGftoXffY1n
1+/bg1Cu8bEYD0e4d0GEcHnICRqrlhOvMrqARKuKuQ6PK1jLh+s3LLmCvPul
MxnpbsDZcyh8/7wbvGHxu9VP7Q62Y9fvbPx2A+nMX4lQ7QZpZ6/b3+dwA7dE
W6W/Lq7AfA1KDx1xAT5uTul4TWeo0T9bwDjjCEbAcVrA0wFyHCff6TbZAbVs
Z4DnuA3kzfdkOA9ZQku/WiJhb86LH0fceeRrBGeqTz2P+KELy4q5d5La1GHf
QFB415QsKNHs714LYQd+Qvn8UMsBfEZ4Q08zIY4suXPPk06p4Jknr30PmABu
UStMjfoY4Mva0oHgMBNULS7M+kIwR+Nxq48XXlnhbJXGp0PUtrh+sNai5Lwd
Bgq50sSP2GP7qmus1IYDZn7Wqy1cdETm+guw2+KEkr/b9YQMnLFe1IlSrMoZ
DYQGtSpfOuPceMRKQZcznubs7Iq94IwPDjJRi7I7450LT5SW4p0wm/ycYkrD
3jt/Ffl+3XHA+boHdE3p9hhSNiiZrGmH46I1XGf6bDDx3Nb1g4FWCIIJiUmk
5qjbFS9LGWyCWZJKmsQbBuikGZbEeEoHTdUWnvLGquGjTxtasSWySN9BpvbQ
kBvvkJdsxVf/IshkSBnk1QlCj+vORqm7AjxP852XkdMAIYs4k8PeuvBj97Aj
+bYBsIeHPLUINoE5mXOtwlfNQHrgAw19viUICs7xMgnYwDs/rkQ6B1sQnn6m
XO9tB2R+m9++69nDw5L90Wr/7OF9AEelbaoDcPpPqHvOOMBgF5foFKMjGIgm
9nWxOMLlGbk46wUHmKiaV1Uo3Lt3t7QiksEBhDWf/In1twfLtUcFmxft4Mm5
YxlMBbYg/zixhifaBu4nnqg8f8QKdKJsWieqzWHYkzyr4LYpeL6ZV/FNMwKj
WtV77ur60N/SYtGbS4Cfg02sIqdV4bNikfDjVFk4Jrai1v6eD1KScz3MwuYI
8dIPhERyONGxIHiy+JoUCtQ/aokYUsbh0bLEP2VaWPb59olROj1MqR8fPChq
iCp/NFd79ny6/CVYsBIPo8OB9MlSBQs8OPKPKjLACnst/m6KSdpg1Fvp3/rb
Njhv1rNxtsEWGzNL7Frk7fDqle6fvy7aIW8w1+MnPXYYtF2h9nXIDt/3LKoU
ttmhwTuvXb1oO7ybsHqnh8oOb577NKkXb4tkqVl3ZLttUEYWJEtGrPG1XqSz
0X+WKH2Q885mmznS19yYGrA5jBcN2//TaDdGSX+dk6K/Dfb41XnyJaUevqs0
Puj0TwuX3jnZbjWrYKEkJV9duizeK/Nv6EgRQNbWNe/iFlI05Xk4fESbAY5H
LcdLnRWBm7VjOYX0ChBF8bm8R0ENiG0i1NZsBMgj5X0e76YHGrVxs1m7BjBx
cNn/ZKwxfBCyyjB5YAofeqVkYp6awRa79J3tbAto09C/FcJhBezXvYoG/azh
pph6SpiSDcTw3pmduWQDLM/E32sM2IA++eiyzIwN5ExqCbx4ZwOupnxkQVU2
cNwx6Va9uQ3Ilzo0kN+0hk3Wv0SrGCtoE1g7L0tmCa2m11f4HMxhjvFILWf4
Ybiy2NCZ5mACPXIRD9RojeCiJY+/c5k+dPgXhfjv04VovphlvUpNIJTtMNFR
qgCJwB+Nn/myUKHuu393XhAqPmQv+JbRwuejdQWfvMmQN9taOEeTH8kZ/pmH
1knhSl3N+1Z/JexZj9Bl6VbHxBgzX5E5AjZa5rPe8NJDaruq40bXDXC3+2Cp
R7sRDhzJW3lQboIpXgO3L5sfRvOOVdnmTjPMKL9oqblljj3x57MX1y3QI1da
iq7Nco8HdQ4FKFqh2cuoFPNjVpin1dpZu7f/m4dbvL7yWuF768E42mJLtKmW
e3Z50AJrs28XX3xljiL2Fi0n88zQd1+SqBP3YUyu2a9fEGOCHYdIzh24aoTr
vwt7V0oN0KIipOXTcT2sJXs+brznh1elZO+9itHA/NZPXqtRytjiq3EkslQW
RS4dfnCLUxhJW0NNm0mYMKPudcnO92mCpct/Px2d2eBgwqkVPnpRYN+smd7P
JQ8US5yDtPtUYCbLd3iiXQMCsl1ftMoByCRie5OcHjh3ESvr+AwgpEzedWzW
EDyZrWOJ8cbwVfDEiPInE3C3JG8roDoMWodS267vHIYq651f1R1mEFG6j8IJ
zCGT4unW2nlzeCxhaKqbbw6aNG8zIo6Ygz33qpfuhhnE/rrC/Z+zGUQPl1+g
TTwMFhQkWR/CTUGX9THNmLQJVP5n3k3dYQT5difserkN4VGUQ1qXoz6s/WBb
2h+iC4N9gVl9Hdqwo7t9ZzBUHQQ1ot63/FQCXT8rukuXZWH7S1beER4RWEz5
ETFIxQYvHzvMSVEsErjztVM6vtKhTHhVUqWqAEonZJjOJktiN7M7Q/Mexz3y
KvcrYVfF0YETmUIamjic+hL6uQDzpfTRdFwXT6zZezOm6mNXzwH/n3t9KH2/
xsqsnRHSbstq+8cY48HvwqeM/E0wlXng60t+U/xoUPH1Vp0pOo00CtFumuL7
G2XEC2yH8cdUW5bEjimOtm04xjaZYiJhWchD2hRzJyPKIM4E0xrEIr9eNEa5
OzepsuONcHH7vhRRxRBZ2HioQvv1sYL+X9hHVT2UtHnZoUiugyaW5Wxk7lrY
OV+ZaXxGDQ3iPWazo5RwketKXViaLLqVCXC8+C2CnyuTUqpOcuLsZliE0TAp
nigwfB+oQwqWcQlHv+1ygHRjkHNm+t6/vWwayB+VAa8z828GfirC6M5L9pVO
Vcjj+KZp5KMJBw0nRx07CWBYn6fJe1wXvOBkh9MHPcic4vJO4TCAslLqo+Ly
hmCt2acuy2kEhXQBdp+GjQDjLyWM+xrD0d5QBmOiMQzMRgQXzRvDsHVVQMuU
MfCMfGf7XmcMp5ifZv3VNQb39qq7f+uN4NUL6VOh/xnCYDQZk9KaAUi/zY7M
+KQPl+SAabdMD+rmjzLHqOqCxVagqZAfAVpovrw4z60J5t1tJW7VqvB17CeT
7Y4i9H177fEhRBa6r4k/n64ShXTe4zs2ATzAe/DLWdOH1GAykv7H5tp/xONf
3tBfq2dE1jGhgggFARSYuqwrMimOl6pGtKdF5XGX6dqd8TYlzOqYyediV0Ni
7fq3KgNNvH7X6fiSIgHv31YZpZ3SwTWfMwsvBfWwgkluOVBOHy1/MRBfMBmg
nqIIo8FrAzxX7OtxwtMQH3Nn8R57aohjYS4XM/4You+FtCP5u4bo0Cz/4fYn
Q7z73veTb5Yh5i08jc8/ZIi0+ZUnk4INMOdLvlFnmT76NLJTG9XoYVZapqJp
li42UmTE1l4D5Ls6Phj0VQuzP80u/fynjl82Sy53fVRBeRO0H7qoiNNOW6nN
urIYAF+8mqXEMOPCRTqGcT5Meet65JksAy43DQdUx88SF8iYeUcvUMFuvwfD
0X5OqJUb7FZPFoZPd3+4nvSQggkWJuYPG/LAqgJjtHzK4Oh6nNeFWQ3OxPmY
VL/XgFWduhM2btoQqzWybFQJIHXXXmzLRhf8k3a6HsroQfSfLbOWOT24OmSw
mBmjD18VgdRwXB8W2B075LkM4LsMj8a2vAHYay513uYxALVQfdtr0/oguNAU
cPaMPsgmMHB4/dIDh+7bF3L09OBo1sfzD8L2OGmi9ezVBQArKwc/dtSGIZYl
1veOmsCzOGip3a4GD/RdPogtKAOjWse9l6sK8LZd8K7bAxlIOe3yn7ilGDwQ
GZNab+cHufulF+gYmaFjh8D1x3ODEHzncnT4uU1iH7vcI4ImM24NGdqKNfJj
0e24iw2HxLAuuKlCQ1MGNxLSb53IVcAgh+H8Zy7KqNS9pGH0WxVpGPmEKl01
sE9KN2ntghYWgOP+uTgCCqkfa80X0UGL02+kx0108XW18l+bj7qYq0QY5DLW
Q+5GB5PkHD2Ub5q+zNikh24bLhLtDXp45EVLxM1kPSy86ccQpLDnC+anjwwQ
dZGhZ8Tyn6guUhWeIr03Dph7QEMGpAj4W/+k0RmCFv7XRhM+zKaBPEEUIzxP
VHHXv/RzoboydkWsRr3PUECT2V7HrEgZVPk1VStWLIaL+wp+Ey4JYLBBu1P7
R1ZUHnPLpJzYhy0/Jv27hKYI3xJiuPX7acENxiiqiznB/PD4z/d6QnBbIz/k
JaUEXGQz7y27JAulHpLXPn1TgNSXhLarvsrwiDYmeLdBFa4dbzjs2KkOHVdq
VQP3cr9Gq+JjtKE2tHWZMOg3EMAj4LUOzxuAdoHb4ZPNOnD3vjvfhqguuHC0
vr5tpwsnl7OvOrrrQjCFjg+lni4Qs6X8hPY4ws6P53ytmQ5EXh0OozcHqKj+
HrRCs8dHDXacWnlaIHGvmsTzkwbIFv3J1l5Rg7XIXFvpERVYFFCwnLmoBHL+
3eHH+BXgVTTNGwd+GdDIffP8eJ8YBCvk573XE4RmfwvKLVUOiLjf3pWQQgO8
6d1Rlz5ME9b0tRfwPBnG2FB846xkxhopapILPXy4JXzylKWFCDJ3WKwMpEhi
K1uD/PgpOTxnR2xnYlFEhaitT8kGymi3FeiubaiKr12o0pSY1PHjboFPV6MG
tt4ynH50UAu/f9TTDlXSxq1jHgzVXARsYjC48KCHgF3cLXBBBlDSKFP2hCOg
71sLgzPagNqSOMcyS8DnOjLWJmYEZNZhHbgarY0hrY6DYr5ayBYRciCSRRN3
cpMCEgrUsXmUVZj4WRUtYiR36TaV8YxlfOLtH4pI5uKRLtkuj69prDOf90ij
42TsyOqUGPq0NLFeeCOI5zqkRzZVuTBHJEJHrZIew6X/XODr/Uu88blIpmP9
F8HMSzZYt5kOPixJiPU94wDmo0pPM9cFoMopwtF2RhQulLMZ/iiSAp+/5mV9
++TBYm08nIRTca+nrFA471eG7bH5kolnKuCkliRH7agGNVvdRGKzOiy2n3Uy
G9GA9DHKwPhuTfB6LrOQGacFdtEttfqLWnA98LDWlIQ2KL6h1hLZOwmH6AUc
fmiBjVWJulyMFqA1X+yfTk1IfSyh5z+qAWesms3r93qrX7CcV5CfGhzi9Te5
NaECki43v/4npQxRixWxczaKcOJv3d8+G3nIjMu1XveWhsBrnYHuX8TgTQ0l
WTIIQfriSVnq/7hBN6uzsZiDCc44JLKc9yaD5ksOgZyBz4mJvh/dyBwo8Pfi
gaarx5kxweZWud0uDy7zPLpw6roQXg3hqL/AKo6VB398SLKTxqXSgv6BvRxK
GXOMerWrgGtrl+tPNCthVcKWpLuKCq7/ulRxNEsV2UyqHv9tUsMjT6qTByrV
cdiTKZXLQwNNt/5zzJnSwEtTWRO6MpoY9DsQB/Q0sbl86JEOrybafVli5e/W
wHfetdvBChpY/V3qR3aIOoqcfyh5NGKPL9g+uhkbqaLOIRT5sKCMP5XmWGWD
lDCo60tzyyMFfG0lX6L1Xg5jghorfvySQh6R/padj2J44vPJp0H5QrgRuj22
ZMaLUn3LtzI1WDCnJ+uEJxUVZpfPJ3Ou/UecpEnoojq4QfBpf8t9yf0QfK0Q
v5lwmx1UeafMbj/gh/Fvi1OnloUhxES2y3pdHE77PaLs7ZWGS40J9tsS8lBc
7TBuNaAAZZR/HpGYKEGBmdcXpmJlaH4npT7/UAUOGD+u1b6tChA5X0s4rgY5
rVONiTtq8Ka46Rmpmzq0JlYbqp9VB0oBgRTyGHV4/EP0VquiOvyUm71Og2qQ
/LDpnzKbGjAeadvp1VEFhQv+v4kaKuAweiP4BKUyXKsrGG28pQgfyyiOHZNQ
ABbi2UhZKjk45+TvWpEoBelB7kJ/iWJQ83FiPey1EJzWYnMTi+QDzQOvNC9S
s4H6w3+i/n9ogecAacAPx78Elmep3JmVX4j0HOcGlyb24+b0rt/SVybkad1u
3C/PjeNOfakBHIJIGmbgqrosgq/1k8kiCyUwu6EoKnVHGrXX/6S2MMmjg7BV
jmmqAuo66TNxvFZExbFWr8xFJfztlxjpNauM+taCMW0NKkjtmWbPaqCKv0mG
0oNuqWLdEf39mzOqmPP7u1HmN1V0iW6PV9vLi/YTQSPZ/qq4kVdDf3pMBS++
zPrpJKiCxbs+h0YIytg/Y7lCLaeE31QdBX3WFVD2aGx/frk89gbX7rgQZDH0
nRPrP3IppPVjEhYoFMOxiK481zUhHOmE8DQ5fryqeqWkrYgdm6X0NhMr6HGx
pGmAjYsUzT/eCPlu9pjoaPSMSv3SDuFd38Sgq8EhKCu6PEESxwbyhx/mddLz
ga669511eSEIM3U6yndbFCZdghzy1ySAjIlt8xz5no8Pb3I2DMrBaPNTkxop
BTjErZggdFgRIshFzxeAEjiELj6kp1aGtNXR6wwNyoDJEfMhPCpQuVAaaXtE
Bf6ZVna6n1aBPk6TyJQAFZCqSPqPT1AFJpfU5JdalOFCRagINasyBOyzrvti
rQTdG4xq9r6K0MjvQIyyUAA7tpdtD5jkIYci2Y0YLQPmi7Lag+ckwfklXYOQ
lxgsc2oWVRwQBk7DcOmMHH4QjyUe+jLDAST+WYmupxghcaZD9fkMBfgI3okp
6/xOOBks9WaKfIWojQyqYwWUmPebfP6WIhPGPll8kR7KiRUh37xq7/KjX8+N
hw1UwnhUrHXro7wYNkmSfL4hLInSPqc/rExIY+XC60cSznL4yPlIZtUzedR8
z6P6ZW+v/VZj8k9lKGL1047UF3u6ahjHKZU2KmEKwyln8l0lzGhVGUgWVUZu
3mSP/wSVcW7i1wufVSUs0o1lTbyihEPCsC3AoYQbm1Jd6eGKyG4xo2FwVQFf
vr8mqnRTHq/YO40c5JFDbiovQvAtaRRZmmb/tiOBdz6kOcfxiGFCwXfNgIPC
WL9w6FTQMD/Sf0q131znxJVSBpZBJmZcDkqKcWemxs47u//eNv4lLjY+unr7
6jsC5eB7udRbJKBi7E/fd5cOhJ9GmM+qsMKckXli7zg37J97P0ZVKQB8d8bF
lOqFIdtAUDb3nBiomYpEKklIgomommhjoTSklG747++Uhd1PNTw/HeRBuJDh
eb2IAqy4D01zDykAiUP5zoajIkS9HTpocU8R7l19wXtsD2ZvjrqFM6wpAuuT
nx36HxXBRUD2i0+RIlR1tw3ySyrCoeX+oswSBdAMyKL6Oy0PCzL1ObRU8mB4
/EJ1HIcsnN8OGoickwIXM7XyP7ESYMZ5/GDQO1Goe6snm0smDLYx+4JLDgjA
LbwruD7BBcNvumu/R7HARM2rnBdPDoLIEIkaVyAJkPwp7FK/NUo45+4LKgur
RLBZLHVBStwkdu2382dEu3olxbjH7LjmcKVZe4wX1aYDBo+6CKLRxRZOMk4R
lNjeopFvFEP1k4T86wckkSfyTU2ijDRSHh9SO8oki30qvgeyHuxxDPMvadss
efz+9vydXVYFTPq3ptJ3RgH5Iq5G/0QFnOB7PU01poDzDFOepG8UUCzhDBP9
NQW0X1t5hCYK2Ox3V/rLgDweSHhs2Sgrjw3qZffIJmRR1zpFSINbBvtMY28t
80qhV0Fz0JVv4mjDPvGd96wo1g+cCO3/LoQnKA5wG0sLYGhHYK5AMTema6iV
D11lxUqhtyppJ+lRU/nUh43wfdj14nMru8QSscEy5Oqh5FlC+6Jk9GwMKazc
vHj36seD0Fai/nnjHzOQnM1eVxjmBHeu+p+MGvyg11fSkzUjCPwf+n6c8BWB
ilMX9W41i8FMIyUeeSkBMo0k+va3pWDhO9G5zk4GDAT7v7K0y8Ksgs3bj2Ny
MP6YUtTXQx5I4m7ScNTJg+k07QOGQXm4/657hPm9PLD/shtXb5WHL6+FM6ci
5KHoXcDkQ2p5KNfz7I+nkIP5VKMOy1YZEE6b7V8Xloa4Sz2/SN0lwcwxijLU
TRzuZbx+XCsmCvlbY0MX+4Tg592GI646AiDK+IqGS4IHklMLIxdL2WCr8MJt
lQkGcNAvsa/coQTpi9uXApTWCVmnY7T/y8knvLr/d0Un6y8R/tDlieZQInl6
oaVONgOa3E1ivC7GhrTk1FSL2dz4klUrNPgDP2bFGaSaGQqhmeeWIuN5EaSh
NQhivyyG3B6y93mjJVCJzHKfK7sUJjErGcamSGNPRS/r9TsyaDO041dYJov2
G6LPsgzlMHWf5HvHW3LItf1Txea1HJbTOCYF35bDuXWaSf7Dcvh8Yqow9bos
XqD+piHXIYPGpTBlUCSNLR8uMgUrSeG19wd7u0okMJJYrbbwfK+P8ZjNf+8T
QSHl7Eq5MiGUDv3dnmIogMoVNSLbxTz48SOu7w9jR4unJftd6JlQ03HUhVyA
Bt9M8Eb4Te8SPbqUqz5dmyG6DzK5qaV9JxRP3lV6+44Ugn4qhl0aoYW/Z1sK
vfuZoMqv0218nR3m7DmsxxZ54IqLFnuCjQBwb55ebkvZ48B3bz3yMkQgNeyv
zCcfMfhOJ/7z7T4JeDN4NlMoShIWQntYlmukQMaEJObDVWkwPTO5f8dZBtYU
zmlTvpMBIxNTUkE6WXBrlD5EcUAWhms22Ze7ZWBf+shQg44McGtzvU85Iw18
fgePmSZJgeCnLQczE0kw1f3qafNBHOJMeoWLVMRAdbPlHfqJwEieKMXoESEI
yTUc0yMIwLBHYtPReR5I/8JCcGDnADfVAJn7bMxQzWee2zZ1EHYUihafuJFD
1OdeosbRFQJbMsu+S71viO/vvbxOo/uP+K9A3I+LnxJvvrL/T/kePTI//8Ba
cYcF2dNlDAZPcKJ/mefHJ/v48K/95Kc/NQKYkCW+qbnHtyJXzBsYokWQ1dqf
8SmzGMYcfv381zlxHD3XmdtDlMCIT7uiPU8k8dXzP/z/0qSwaObD3XlmaUx+
EBBfECCNWxzOomdPSqNYXqv4AxtpVKe/Ik1ckML6bvviMnMpFHP/tPguUhIb
qtU0g3wk0GpaxK+PQxyP2j4rH6kUReOp6eXJdWEM4gmazBURQkF9E4MfkgLo
oXru92VOXvwzOTpQdJ0Db4X5vMn4y4xgKlCdLUSPnWEjLHR++5Ek/PBqcMM6
MfawklNN8xDxGdvVuI+XlwgPvpD8vvmVFE6mVy2fJdLA2+248sc3GcFOjO+1
vNEep/yxEgm7zQWPlSq0VEf5gP29SNzKuACQmunI3K0Vgrt02gMyRiIQGXD1
C9N9UaDNGhs/+VsMriT+fTq1LQ76Ooa2mm8lYP5pwO6PcEkgo/6wOfJWEk7I
q+rabEuC1PHHhVKLkgBStbltNZLQba6e2y4sCTcvRrdEhEnAi7Kc1/mJ4sCk
GnjGwFMMqlKUpJhoRMH5ep7teqYwvOFeGTWdEoSv0SpNd+kEQJXu2PEgZV6g
SxKhFKTjBN+URvor91jAmyO+TleWAUz7NiLqDx2AivzBPm+JXUL1q5bc67vz
BMdR50OZQ+NERtL0PiuzDeLo7X3n72XvRzLXyeLvjw/hfvOaY0q2zOhKCl7q
e7w3PLfCWFDFjTRuNhvzqvwocK2RQPFPAO/lTz9LLBBCiUlTzQPkIkhaeVn1
gaEo2imTE3YdxZDyoMGbp8ri2DvMfcN0UhwHO1xX7B0ksMu4r5uxQAIFbxzw
lbgigQymtC3NYRKYWbt8R4VKAplLQ2cfhIvj3fHsH7VVYrhE/pN98rooPp6U
562JEcGUiy2rlRzCuBA0MztaKIipA8SBmm/8GJwhnhKqxoutT1iWf3tyIhVj
n5+xNSvuNFxXlmNmRGJkAG9NKA2SrdoGKpwmQ8XNYxuB738RS68/j7q4r5p4
OcLkTULxCuFhWEDbl35SKHzR5udwhRpOc1FEtFxmgP1uMd6kD1iAYQKHl2o4
gJf+rI++Ow8Yi599WBHED7+jz2h6bwuAaYOT6ZVQIfCjn6MPbBIGtu5uB9le
EXhydK64Z49752tYE739xQB2d80qvooBc/6NxDwNcfBlq8247SQOzzRML0/q
iIPQX92AxDUxmB2307GOF4PFM9d3UvpFIUb/hvK97yKw74l39OcJYeDYLeo6
UiMEAcPM5tsGgrA5Imr46DE/9M8p+y6L8MJ1/9zVtkJO4P6Qt37xFSuc4k3i
bPzACOcHtSM0zxyE+6HTz6PpKaA3Ni2RsLFOKPsZ2vy28TOBqvnatxirWWJh
Uc+M1IcNYrPWa53caQqUnq7v4Bekw3upsdtydExo8WLjetckKxYvqoX0neHE
mzfMRFqmePBtvxFtRzI/3qJKO/zmx17+zxEF6xWEkO3jT567FsLobz3ffEdL
BJu4t4hdWyI422yrH3tRFEs+FsneWxJFv0+1/kN8YnigrGgkh3ePc2oMnx36
IYq+T57xzqeLIpl4zA71HxF8bFllN6osgo9sTtw+YCKM0QdjTYmye3P547JB
4KIAOkeOSQ6k8yO36JVySjJe5Pc/vzrYyomOAuwECQU25Bov+nYvkQlZTxV8
mjM7hLzlFp8D3CnRNO7dmX9JO8Rq+vvaCuI/iNGpD1+8tuwmlJYExzmM/CJM
z/VwB6aRwvXQGA/v+AMQMWz2qPYyPSzMfdr6Z8YMffte+PgNscHl6yw6yYJc
sOAY1hOixgtmv83EJlP5gerG5tD7fgG4ZvVrdWteELZCr1YyTggBvcbwP4mb
wpBOdfVQq6EIfHnl//VsqwgseU0+7V0TgVd0hHgOKlHIPeYpFrsgAm29tjPq
lSLAQmJbIyomAp9rSCJ8zwpD3a+7BSHNQsCl/F2Tt00QdqWZFZsKBeDln92N
Kit+0NdnC7v4igfezA6NhTzlhAYxncrUBDY49lJt9A8VMyTlG85rH6OHydMF
NYZ+ez5ivzhw5CEpCN5+335p6jdhg4LKfOXxIGF/1UJA9O4XYkEUTcUi9SZx
34+XYXfFKZBkMT/Mv5QWySnmPH7OMuDUWkXyGTsWvK3MGaNwiR0dmfUZDUq5
0DLwh3uAPy/GbGPP0Th+ZAwZPFV/WQBL9+nM1eUJ4oPaUdFwPyHkTSaJdKYW
xt6IQmWeNGFcTPSpeD8qjEwcORYrm8J47va8lPFvYbRjb7lKgcLY427S/dRD
GM3am/cHDgohsbV9HDiFsP3tcu8PLUF8nXe6PEBNAAtNDwou0fHjMRbSP0qZ
PLgudHz7xENOtBHN3X7XwoZ1L4TZZk4yY+vdf1nX2BkwnXBUrUWSBj0im2ON
lsixa26d7QDPP6JWMFz/4zNHvPmwS3GB+x2BxKAiSrnhN+H3f21PgqRJIdai
a/CvKxXQLgaxVlodgme5dvsnthlB/8Xo10oJVlA/INv9T4gDlDUqk+994QLK
guBXzGG80FajcyLWmR9an9tomDkKQEaAn/15GUFovmc2EfNZEHzFXLo6AoXA
MeFSmMMzIcjt/HEv/58QvD0wd1CEXBho245uMs8IgZrbu9bey0KgYkjDsi4g
BHljD3sxVRDs15cenH8qAPXcUmMHRvnhkYBhWGMhH3Ddsm9P1OCB639b4h5X
cULh9/Jh5ndsEKJlOXvzHTOIqwap/qtnAO2t78XdD2lhXxVbNNk8BcyH8Vo9
fL9NIG0lGmiZLxFqaIWnspfvE2TabZ4Idn4jShAyOKY3Noje6iRnto/uw+cW
fq3mwjR4ovsnT+EgPaa6Shz7+5UJ79Sle7x7z4ry2aPddBc5cF92QDTJIW7c
Cnf9dcqOF2N7hi8vSPAjxM6RJFEKoIFws5H6UwHcZ6FbfNNOEEfotq83EQWx
7dXCgzQSISR95a1G3NM/6VC2pTKtEIY//rEsNiyIuWwHJCTiBLHctfgaz7IA
/nh7MZ6wx6Orh+Sy6GP40UtwFofJ+HB9M05laJwb/577UvH2FCfKTTels8yw
IQuDWpAxOwueFLusEyfEiBPn179xMtPhE0/fkdM1lLhRdlTyGxUpJnkm6EqW
rhKH29Kqvf5+IpKL37jkkT1GkNpIxivSq4QjP680bTzd64VpfitRBpTA+HC5
+0/uQTBrPKddNcAAUhur2o71zAC+K985XdhActC8yv0dBwxwU8n8YuGGtEts
0SpcvEBu+nY/2SQfPLJ5ajV9hx9Oy03VapkJAJKw9nru6Sxa3hIWQC8IQw0K
tF0agsDRkdStoi0IAl5lDcNsgsBFmXrswCsBKE9+ppbpIQBO88a/ffr2/CKv
6fMsHT9kBnSSBgXzAm3rd5LwWG7gTP31Ws6YE+j/nnx4aooNzqVeeZRzmAUm
A3XJD6YxQnnd3dAFwiHIuaH3QUDuACSFrpsMLJJB4S51dyvzPwLBW+rkDuEr
ocRn8XbKRiPx9/zlqZ2+BSIDPfh+ebhB3Nd7WEX8JjkeaHZ2su0+gGGxabTZ
Nw6hFVF6kVDBiLTnVoTv6rNgz/7Qe/wP2DBko/3I8b8cyP7OwvnPDhf+Cr1y
PaOfB5naG8fO2vOhheCFzmkLfrxy5ULtzAA/zv+3nPNCXADfPRuZ/uktgELH
NHApUgClt/RSurwE8Df5ifabogI4aZ/vJPeCH9VISJxVzfgxVnTKq9+aDwsp
Tto57r2f3uZvcHofN1b/Zo8Wp+DE3D7N9e43bHiHLvWQSDALMtQnpKaPMKLr
D/HD53nokTVkvYEknRo5Em8N6VTuQ5MDisL/+LeJPTGm4REvl4mPWm56iwUP
ETcfsc18lJsiiCQMpdyPWCWov+i48MOMBI6T5v57o7ofVIyPsaYu0cCksWtK
Yis9WLpcuf/ZnAlqBXP0T7SzwOs8MT+tNTYw3HUITtvmgF7BFT/JV1zQxxPa
FO7DAxl5TiUCrbywf+bM89JnfLB/uM3S6zA/sC385SbN4YfrvU8J2rf54fNC
u8FMPT/kUaeUMpzjh9RJGzrlvf59a9/Ihc1SPuhci1kfSeSFhM1v9clCPLD/
i/wLiiwu2GUMq/vdzgFtRR5D1i1sIB2toJgbzwJePdIO2UxMsJqe0JuQRg9J
6g1lL+/RQMj83Ql+gf3wIsdi6Z8fCVy3KTVxoVkjbHqEOHI7zxA+aN/sPELS
SzTLeL8soP2TaHOXwGrsuEG8ynWlJ+QLGWaYh1voxlHh04S4uuDXB5Fjv+bJ
4UgGlBh9/ufOMBPGZ3GL9RxkRdWZd/rxLOzYyLIbVfKVAzsO55/2P8eFjTeC
wy7PcONpY+HDweS8+MDCtezaLC/6uJBPpJzlw7Cf4X3Ln/iwVije0/4XH2YG
RgzW9vDhDkuxRPzefMl3XH86W8GLW36BKfm3eNC1SJCuLZ4bFxzP3yWn5kI7
jceOd/w4cOKAnpP3BTZkHpGPkT3JgiPKpMMlOkzYW2mocuIzPdazdXZ8uU+L
9baq8/9iKJF7JSLqNAUZmnX/jFX5sk5MP6B2SkxsgVgc8M9F362T+F9+Z1BT
zAzh9fCOLe35VQIr/XzI5/JdArdWvYaECgUI7E+ntwylBqWn7nozAYfgqnE4
ldZBRmhSOHWvRIcZriW13Y4zYgUaHie+ak524LqdcNqpgwMe/FQx0RLmAo7W
F19j7LjhUmdhZI3BHjcw1zn9WuMB6oJVOqqjvOCxNJ3LXcoLF++9q15O54VM
ynj2wT3euTep+SyvlgfeJTaG5Y1wA0sWW2JLPxd4/pxFpxROON989z9Pcg74
9NhZicOGDf4Hu+ShGw==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.884771807913631*^9},
 CellLabel->
  "Out[150]=",ExpressionUUID->"333d3fb8-a790-4ae7-bb89-013511cec26e"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA9+OozeEydUBNMhYq0T4lvsIHSQzJ
zHZASvMH2oL2Hj6/5ivUkMR4QEpHpKOgfyC+pl4VsqKaekCS6RNsH98TPqEf
SaQsmHxAVt3PvvYKGL6UCZpWZYx+QH3sa/UczBc+OcZ4D3QvgEBz9QxzwUIL
vjKsyX1xLIFAtfGqbaBNDz6g3h33kxiCQBPCX+UsFwK+mDWXenIYg0Bwi+JE
kVMIPgwhH16oE4RAGfy8cPNwCb71WKpMA/6EQAbSDszlZfw9aLVaRRr8hUDv
bY37aq0BvlFeDklW6YZAjLAZir1a9D22m9Cs6dGHQBzViWMT+Lm9pf23GjnO
iEA3Ou448CrcPQmsopOtuYlAZFiQ+8o31j33frIW3riKQCwdOlmRR8I9YebQ
+WWzi0CYB0OCBpbTvUCa8ucSnYxAPdgJlCMH272pcjnge5qNQPTiSXwIt7s9
h5eD4wmHjkCqoVG4YQXjveJQ3Ebvbo9A2hGJqq478z1jFy1aSDWQQA2moCcr
MO+9j6xtlquqkEBr6S5P4971PQDUwNfsKZFARO2wqqQD8b2soZWewKCRQBt/
5rtO7/Q9lrlxFUAVkkC4ElxziP/5vcVjYJGdk5JAVSG/HGap9j0vtNCSjQmT
QIX8HtU/o/m93pZTmVuJk0B6Z7e+ybv1PcvD3U/VBpRA6azerR2U873ylumL
4XuUQBzO9+htqvY9XvwHzcv6lEBbj5R6Q+zzvQUIqJNIcZVA/oIBxxGv9T3q
XU8KceWVQHnZMoqYtPe9FEYJhndjlkBOBCZzUuj1PXnURIcQ2ZZApaedNXnE
9r0j9ZKNh1iXQP1ZLnhO1fQ9C2DoQ6rVl0C2R9Lg1pXzvS1xv39fSphA+SU2
fhZs9D2UFKnA8siYQGiNWqUIDPO9Nl4Uhxg/mUBXuJHbzTvzPR06klIcv5lA
k27X2U3U8b1CYBfOyzyaQN4ffCoozfA9oSwezw2ymkD/+2kMhRvxvUWLN9Ut
MZtA7Njoom0N8D0kkNJg4KebQLrsCP25/u+9lb8B+P8fnEBbrmAsbzvvPe2U
jf4=
                   "]], 
                  
                  LineBox[{{29.452369301991823`, 2.5289129789311914`*^-9}, {
                   29.77697655697027, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{39.16255208208346, -2.4732876447352075`*^-9}, {
                   44.3782042470042, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{77.93236940525493, 2.5289129789311914`*^-9}, {
                   82.58051055959623, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{107.00154754131341`, -2.4732876447352075`*^-9}, {
                   114.65587849371965`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{129.56953655425139`, 2.5289129789311914`*^-9}, {
                   140.1627768112932, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{165.03186039081942`, -2.4732876447352075`*^-9}, {
                   175.82174917024776`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{189.6841038074597, 2.5289129789311914`*^-9}, {
                   203.3121881495924, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{223.6661230653593, -2.4732876447352075`*^-9}, {
                   236.29005670499302`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{255.4048101131285, 2.5289129789311914`*^-9}, {
                   269.7808351967017, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{280.6973914656235, -2.4732876447352075`*^-9}, {
                   299.79556275401126`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{313.0113169703733, 2.5289129789311914`*^-9}, {
                   333.45970377204986`, -2.4732876447352075`*^-9}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887361#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-2.4732876447352075`*^-9, 
               2.5289129789311914`*^-9}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA9+OozeEydUBNMhYq0T4lvsIHSQzJ
zHZASvMH2oL2Hj6/5ivUkMR4QEpHpKOgfyC+pl4VsqKaekCS6RNsH98TPqEf
SaQsmHxAVt3PvvYKGL6UCZpWZYx+QH3sa/UczBc+OcZ4D3QvgEBz9QxzwUIL
vjKsyX1xLIFAtfGqbaBNDz6g3h33kxiCQBPCX+UsFwK+mDWXenIYg0Bwi+JE
kVMIPgwhH16oE4RAGfy8cPNwCb71WKpMA/6EQAbSDszlZfw9aLVaRRr8hUDv
bY37aq0BvlFeDklW6YZAjLAZir1a9D22m9Cs6dGHQBzViWMT+Lm9pf23GjnO
iEA3Ou448CrcPQmsopOtuYlAZFiQ+8o31j33frIW3riKQCwdOlmRR8I9YebQ
+WWzi0CYB0OCBpbTvUCa8ucSnYxAPdgJlCMH272pcjnge5qNQPTiSXwIt7s9
h5eD4wmHjkCqoVG4YQXjveJQ3Ebvbo9A2hGJqq478z1jFy1aSDWQQA2moCcr
MO+9j6xtlquqkEBr6S5P4971PQDUwNfsKZFARO2wqqQD8b2soZWewKCRQBt/
5rtO7/Q9lrlxFUAVkkC4ElxziP/5vcVjYJGdk5JAVSG/HGap9j0vtNCSjQmT
QIX8HtU/o/m93pZTmVuJk0B6Z7e+ybv1PcvD3U/VBpRA6azerR2U873ylumL
4XuUQBzO9+htqvY9XvwHzcv6lEBbj5R6Q+zzvQUIqJNIcZVA/oIBxxGv9T3q
XU8KceWVQHnZMoqYtPe9FEYJhndjlkBOBCZzUuj1PXnURIcQ2ZZApaedNXnE
9r0j9ZKNh1iXQP1ZLnhO1fQ9C2DoQ6rVl0C2R9Lg1pXzvS1xv39fSphA+SU2
fhZs9D2UFKnA8siYQGiNWqUIDPO9Nl4Uhxg/mUBXuJHbzTvzPR06klIcv5lA
k27X2U3U8b1CYBfOyzyaQN4ffCoozfA9oSwezw2ymkD/+2kMhRvxvUWLN9Ut
MZtA7Njoom0N8D0kkNJg4KebQLrsCP25/u+9lb8B+P8fnEBbrmAsbzvvPe2U
jf4=
                   "]], 
                  
                  LineBox[{{29.452369301991823`, 2.5289129789311914`*^-9}, {
                   29.77697655697027, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{39.16255208208346, -2.4732876447352075`*^-9}, {
                   44.3782042470042, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{77.93236940525493, 2.5289129789311914`*^-9}, {
                   82.58051055959623, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{107.00154754131341`, -2.4732876447352075`*^-9}, {
                   114.65587849371965`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{129.56953655425139`, 2.5289129789311914`*^-9}, {
                   140.1627768112932, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{165.03186039081942`, -2.4732876447352075`*^-9}, {
                   175.82174917024776`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{189.6841038074597, 2.5289129789311914`*^-9}, {
                   203.3121881495924, -2.4732876447352075`*^-9}}], 
                  LineBox[{{223.6661230653593, -2.4732876447352075`*^-9}, {
                   236.29005670499302`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{255.4048101131285, 2.5289129789311914`*^-9}, {
                   269.7808351967017, -2.4732876447352075`*^-9}}], 
                  
                  LineBox[{{280.6973914656235, -2.4732876447352075`*^-9}, {
                   299.79556275401126`, 2.5289129789311914`*^-9}}], 
                  
                  LineBox[{{313.0113169703733, 2.5289129789311914`*^-9}, {
                   333.45970377204986`, -2.4732876447352075`*^-9}}]}, 
                 Annotation[#, "Charting`Private`Tag$4887361#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1800.}, {-2.4732876447352075`*^-9, 
               2.5289129789311914`*^-9}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1800.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1800.}}, {
   5, 7, 0, {1800}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zFwBHE/BuA/kxlXpLgixRUplsmYG5Mxi+AQLIJDcD7BIVjk4xC+RXAI
FsEhOASHFFukuCLFFSmuSLFFiitSXJHiihRbpLgixRUprkjhG/fszM6z7/zm
nbfer/6VL33hi18ZQviKL7+1rwqe1Xf7SDbUWOcOG9xlxK/hHr+WTX4d9/n1
jPkN/EZ+Ew/4zfwWfitb/DZ+O7+Dh/xOfhe/m8nGnOF7ZIbvlRm+T2Y4khm+
X2b4AZnhB2WGtszwQzLDD8sMPyIzHMsMPyoz/JjM8OMyQ2djwpwlw0+4M2fJ
8AV35iwZftKdOUuGE3fmLBl+yp05S4afdmfOkuFn3JmzZOi6M2fJ8LPuzFky
/Jw7c5YMP+/OnCXDqTtzlgy/4M6cJcMvujNnyfBL7sxZMqQbIyZMmbNgyYrh
l/WZMGXOgiUrhl/RZ8KUOQuWrBh+VZ8JU+YsWLJiONNnwpQ5C5asGL6oz4Qp
cxYsWTH8mj4TpsxZsGTF8Ov6TJgyZ8GSFUNPnwlT5ixYsmL4DX0mTJmzYMmK
4Tf1mTBlzoIlK4bf0mfClDkLlqwYzvWZMGXOgiUrht/WZ8KUOQuWrBh+R58J
U+YsWLJi+JI+E6bMWbBkxZBtrDNizIQdpsyYc8iCE5acs+KK4XftM2LMhB2m
zJhzyIITlpyz4orh9+wzYsyEHabMmHPIghOWnLPiiuH37TNizIQdpsyYc8iC
E5acs+KK4cI+I8ZM2GHKjDmHLDhhyTkrrhj+wD4jxkzYYcqMOYcsOGHJOSuu
GP7QPiPGTNhhyow5hyw4Yck5K64Y/sg+I8ZM2GHKjDmHLDhhyTkrrhj69hkx
ZsIOU2bMOWTBCUvOWXHF8Mf2GTFmwg5TZsw5ZMEJS85ZccXwJ/YZMWbCDlNm
zDlkwQlLzllxxfCn9hkxZsIOU2bMOWTBCUvOWXHFcGmfEWMm7DBlxpxDFpyw
5JwVVwx/Zp8RYybsMGXGnEMWnLDknBVXDH9unxFjJuwwZcacQxacsOScFVcM
f2GfEWMm7DBlxpxDFpyw5JwVV/zyj+//U2OdDUZsMmaLCdvssMuUPWbsM+eA
Q45YcMwJpyw545wLVlxyxTXDX26ssc4GIzYZs8WEbXbYZcoeM/aZc8AhRyw4
5oRTlpxxzgUrLrnimuGvNtZYZ4MRm4zZYsI2O+wyZY8Z+8w54JAjFhxzwilL
zjjnghWXXHHN8Ncba6yzwYhNxmwxYZsddpmyx4x95hxwyBELjjnhlCVnnHPB
ikuuuGa42lhjnQ1GbDJmiwnb7LDLlD1m7DPngEOOWHDMCacsOeOcC1ZccsU1
w99srLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaEU5accc4FKy654prhbzfW
WGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS84454IVl1xxzfB3G2uss8GI
TcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpLrrhmGGyssc4GIzYZs8WE
bXbYZcoeM/aZc8AhRyw45oRTlpxxzgUrLrnimuHvN9ZYZ4MRm4zZYsI2O+wy
ZY8Z+8w54JAjFhxzwilLzjjnghWXXHHN8A8ba6yzwYhNxmwxYZsddpmyx4x9
5hxwyBELjjnhlCVnnHPBikuuuGb4x4011tlgxCZjtpiwzQ67TNljxj5zDjjk
iAXHnHDKkjPOuWDFJVdcM1xvrLHOBiM2GbPFhG122GXKHjP2mXPAIUcsOOaE
U5accc4FKy654prhnzbWWGeDEZuM2WLCNjvsMmWPGfvMOeCQIxYcc8IpS844
54IVl1xxzfDPG2uss8GITcZsMWGbHXaZsseMfeYccMgRC4454ZQlZ5xzwYpL
rrhm+JeNNdbZYMQmY7aYsM0Ou0zZY8Y+cw445IgFx5xwypIzzrlgxSVXXDMM
N26xxm3WucMGdxlxj03uM+YBWzxkwiO2ecwOT9jlKVOescdzZrxgn5fMecUB
rznkDUe8ZcE7jnnPCR845SNLPnHGZ875wgVfWfGNS75zxQ+u+cnwrxu3WOM2
69xhg7uMuMcm9xnzgC0eMuER2zxmhyfs8pQpz9jjOTNesM9L5rzigNcc8oYj
3rLgHce854QPnPKRJZ844zPnfOGCr6z4xiXfueIH1/xk+LeNW6xxm3XusMFd
Rtxjk/uMecAWD5nwiG0es8MTdnnKlGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j
3nPCB075yJJPnPGZc75wwVdWfOOS71zxg2t+Mvz7xi3WuM06d9jgLiPuscl9
xjxgi4dMeMQ2j9nhCbs8Zcoz9njOjBfs85I5rzjgNYe84Yi3LHjHMe854QOn
fGTJJ874zDlfuOArK75xyXeu+ME1PxluNm6xxm3WucMGdxlxj03uM+YBWzxk
wiO2ecwOT9jlKVOescdzZrxgn5fMecUBrznkDUe8ZcE7jnnPCR845SNLPnHG
Z875wgVfWfGNS75zxQ+u+cnwHxu3WOM269xhg7uMuMcm9xnzgC0eMuER2zxm
hyfs8pQpz9jjOTNesM9L5rzigNcc8oYj3rLgHce854QPnPKRJZ844zPnfOGC
r6z4xiXfueIH1/xk+M+NW6xxm3XusMFdRtxjk/uMecAWD5nwiG0es8MTdnnK
lGfs8ZwZL9jnJXNeccBrDnnDEW9Z8I5j3nPCB075yJJPnPGZc75wwVdWfOOS
71zxg2t+MvzXxi3WuM06d9jgLiPuscl9xjxgi4dMeMQ2j9nhCbs8Zcoz9njO
jBfs85I5rzjgNYe84Yi3LHjHMe854QOnfGTJJ874zDlfuOArK75xyXeu+ME1
PxlGG7dY4zbr3GGDu4y4xyb3GfOALR4y4RHbPGaHJ+zylCnP2OM5M16wz0vm
vOKA1xzyhiPesuAdx7znhA+c8pElnzjjM+d84YKvrPjGJd+54gfX/GT4741b
rHGbde6wwV1G3GOT+4x5wBYPmfCIbR6zwxN2ecqUZ+zxnBkv2Oclc15xwGsO
ecMRb1nwjmPec8IHTvnIkk+c8ZlzvnDBV1Z845LvXPGDa34y/M/GLda4zTp3
2OAuI+6xyX3GPGCLh0x4xDaP2eEJuzxlyjP2eM6MF+zzkjmvOOA1h7zhiLcs
eMcx7znhA6d8ZMknzvjMOV+44CsrvnHJd674wTU/Gf534xZr3GadO2xwlxH3
2OQ+Yx6wxUMmPGKbx+zwhF2eMuUZezxnxgv2ecmcVxzwmkPecMRbFrzjmPec
8IFTPrLkE2d85pwvXPCVFd+45DtX/OCanwy3G7dY4zbr3GGDu4xuk/8DrvOr
zw==
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd2VMMIDyzANB/7W9t27Zt27Zt27Zt27Zt27bv2dvkJJO0r52ZTuM3aFuh
TYD//e9/IYL97//XvzgggQhMEILybzv4v3OEJBShCcN/hCUc4YlARCIRmShE
JRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQl
G9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa
1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd
6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZ
wUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nB
Tnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFN
bnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+
8Zs//OXf5Q9AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJUohGdGMQk
FrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlaykZ0c5CQX
uclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrUpBa1
qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrfmXwNvSjvZ0oCOd6EwXutKN7vSgJ73o
TR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jN
HOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e
9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3u
co/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAnv/jNH/7y
r/AHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu
8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5
yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWo
TwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejP
AAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8C
FrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEO
cojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7y
iMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//mv4ABCQQ
gQlCUIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEIS
kZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpR
mCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGY
JjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZgh
DGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUs
ZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzl
GMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZ
z3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OXfgz8AAQlEYIIQlGAE
JwQhCUVowvAfYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG
clKQklSkJg1pSUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZx
SlCSUpSmDGUpR3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa
0JJWtKYNbWlHezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYw
klGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCS
VaxmDWtZx3o2sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJT
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle8
5g1vecd7PvCRT3zmC1/5xnd+8JNf/OYPf/k37AtAQAIRmCAEJRjBCUFIQhGa
MPxHWMIRnghEJBKRiUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWp
SUNa0pGeDGQkE5nJQlaykZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUp
Q1nKUZ4KVKQSlalCVapRnRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlD
W9rRng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNY
xjGeCUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rW
sZ4NbGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5x
ngtc5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGe
D3zkE5/5wle+8Z0f/OQXv/nDX/4N+gMQkEAEJghBCUZwQhCSUIQmDP8RlnCE
JwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlEYpKQlGQkJwUpSUVq0pCWdKQn
AxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURhilCUYhSnBCUpRWnKUJZylKcC
FalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa0JRmNKcFLWlFa9rQlna0pwMd
6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZ
xGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nE
ZrawlW1sZwc72cVu9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRl
rnCVa1znBje5xW3ucJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+
8JVvfOcHP/nFb/7wl3+ffAEISCACE4SgBCM4/wfITJPU
    "], CompressedData["
1:eJwNV3c4F2wUtffeK3tn79H7kkiUkchKiihFEanskpGVSD6zFCojSUu8b2Tv
FDKz9/az5+ev+9x/7nOf59xz7jlCTrcsXIiJiIioKImI4mG271ZyBqSUTVNY
cM+AOm4UrGFiGTCsxnVM+2c6pBLcO1F5Ih3ayuirE/LSoHam67mBzVTIlUUU
8UUuFfJesHv8zyQFUvHwrvVa/we/3VdntzRNhoxLcTeYlZ/DbokzW2uUSZBy
LvfsbmsiVFvnDVGKSoB1/HFNn7WfwjPWXBUXmp5AxptnfiexxcIYsjyTe9ZR
cKZqiv7yfxEwpNkz9UXfI/g+PzfXQ+whFPecyGshBMF6LoNs4u/34ULW8xeU
OT7Qq+XOHv29W/AmJ0HGidYVDjrTKSUI2UFWdcPQEiM9OJn3dWtKRBtv9Zpc
mnluhTe46AvGUy/j2WOXfKKbr+KyV2EDAfYeGIltVXMIe+EjXL9S1fW8MWXB
bPlX+juY85LqmZ5HvvjEX42PYW/v4hnWRKVTfvewyp05acPdezi7Zpz9mOJ9
HKjAce06331MyCu4lFR5DzvV3ZleFb2HKfRnXkudvouzaYP1FDR9senHYlPL
VR88GKYVKPzQG/8pcfloN+WFV63/dg/LeGK1lk7bq/nuuFt+/ti79mu45j1J
R0T3FWx5eYilv+kS7uKjNVC6ZYsTtq9fHz19Fu+UHbvIEK2HPxCvMjQecGA6
l7fMgWEaMG6kpJet1BhW7Cin7itYQjoC3UHLEzuoe47s04DqJWj4UGYwt98J
vmThvnFL3QU2S5EhC72rsMX6k63D9jUY/vCnXKzDdWho8iCm7foNuEj7Z3hX
yB029QSY/w51h8MHvqrTT93hCOfZmgJTd9jGtjxkgm5A08Avxp+Hr8Oi+fNX
fSrcoNxC8rdPF6/BYC1rPfGfrpCTmYdufukK/FGWthK77AQlXKP2ehsvwSqW
l32Y0gGyXfmWfuyUDYxNktSrcj4HuSe0Uh52noGshQvlTZ16MOplkf7fekUY
ExNBELq1i97EbxY2tKngp3/3/8D4E7jZrU482uAMJiskHzDVtMBk7PXRIiTn
sWXsTT/kY4udhqX5vj2+gEt1Y0UHtByxlHvi6PPKS7jQTdjAp+gyzjd80l3j
4oRvcxmKzYw6Ycukud1+KWd8Sii2SVnDGXf+p+XKxeSMGdrEbuqVOGE7xoTL
iyJOOFBgzLfnymUsSpN1Sfb+JWwx1Ki2X38RryY5tftbXcDhQvnXJ17aYgvv
ikCqkvNYtYAwY510Dtt6eOhmW5hjitX4oPtTRniwpblGhuoEFl5tz/BT0MAi
9bwOFMWi+KycT31wFA2EmpmVbG8VoPb7nIz4SABpguI966b04ffcjzOcH43h
v1/2G7TU5rCDtjmMOsgCtjLtBN/8aAm/UxwseGedh18dBQNr9G0gi32u60yG
LVT9rUMU+dYOig6+dbNwtofxhIpXgy32kKB7jDl7yh6WSjVVzH2yh0rMFff+
qtjDzfM+dadu2MH7z3wlh+xtIerruzlDYwObPva+tAg8D++c577z9JslrL3f
lJ320wKaD/UYtmWZQ/ajeaMVpWdg8EJNXNSaIfQPsos8QX4C5kZczG5Z0IaX
ZurEVz8pwpJ3JZNyk0egivQ7WiZlcszdGV2iJSiFrewrbSml1LAVq98pPhsd
TM+o8WKTRB97xlIJ+TKcwoXJqepl1acxd0TxIOsRMxwwMkmxQ3kWQ1Nyh8jT
FjiTyTM///w5HDWS8PuRhCVuvhK31FduiYfZTr4R4rDCgxZ5KR7KVrgoJEXG
n90Kp5bypmcjS1wgNn6/X9YSk32cKsy5dg7r8Jix03hZ4JAOy8Enxmdx1duy
Z/YrZriAf7wpgMQE5z94TTTeaoR1Xie1hV0+iUt+n7eoqtbDyb+/d+RTQBx7
S+uCtbkavmlboSCxJYOJXl3+6hXGgxvbtmZ/lq4Abn6NBrM8IUj5puzEn5MK
8A79kiSPhzqMYV359p8qhLaS4zDdUA9S5LO+kFE1gLkxn1P8+g0hkeVTyUvq
xlB2IEo+S/cMtD970LtGMIH4GYMOi6kZDK0NTbYSN4e30KDYsbvmMEHm8ZuU
FHM4XEN5tjHWHLrbybzLtTSHz/9OPNj/Zwa9fpbclqswhSos6VbaZ03guI8I
9Znk03DzaOwW/M/oUJ9nrZPtDGGs8YXha+P60DI76raerh78s1t6Wn4CQgcR
53vn6DQho/q60BCpMiy+2X+duFwK9uz0Vn4t4oGcGVlcNUWDYHGjwITRmQP3
LRbrpbNJ4DgtxyaNk4r4c6mXah5Sw79kgE7ZiDZ+X+GWesZSF/tv1Uj9fqCH
c5CtWY2PPvZAJ12KJE/ito7vEZ0phtimzmhYp+YUlnz8vhW/NcIub0M65vWM
MQwzu6qSaIzpKZxiqlOM8U3Hg4vJ1sZYlfJ59NVDvCY8Tvx9R2SE/27wtYUu
G+JI7SM/KrJPYmOtz2w1/Ab4Q917y5ArJzB/1Ik2B//jWDiKKuTab4jLxX+y
uF3TwlVUr/yKalSxkd/d0ykbCrjXKOwgkVMSq1U6LrHp8mGDqDEx43giXKfQ
/qWIjBKWNA9ePT3DD+dQVpTiP0nYUhfIMb6sAOlv8Uu7qqtCSudJtm4VTfjt
JnXbxaFjMAg/bYzj0oV0dHw5OU+Ow62i63+FfuvBrYuWOcYDJ6DjaNAGeZE+
tBKjGu4zMIBn0gxcN18awMeVG2FHKwygYt1s1ORrA1i6++ADMDGAvs5Dkj1I
H/qqliRvbpyA9frqXK77enDBqXfKo+M4DFLb7fkTqAvPcgXqPtkD8GlNsd2H
r1rw31syt2Zldfjt4x0SmQBlOOrNJUyqLg835Fh9n2tKwK0B0eftMvxQza6c
u/QJLfwuxjV64t4YehRVGDydz4Kj7oOJPUUh/DDLM4aiThKb/EEaZUQK2JqW
qc77qjJWoohuknqihk3co1/we2riBvez7tdJj+He0AASuhMQm4Rt0+yw6eK4
tO/DdL26uMxCXVz91nHclfZ33+/PcTxc6cZ/iUIP869xXVql1MOnJxX3G7qP
44sxs+6r949j31OT46TzulhJxuPTgbIu/mBDk49fQUy80EdKHn8MZ3zgu2Ou
poUn97LGGtLV8bolGpNvUsGvWL/JVTQo4tWnhfy6erKHc34xRH4SxwMvG+Ls
twQwpViB7kM7FkxkdCe7tXYFGX/stHT7RgwvazV+YjrKAbmGPpycjBaCxc6c
wS4VEjCx8WEa62tZyJGuohSeoAhJv1xsOMOnAknS+APzrqnBxXz7KeHbGvC0
Of3UrrIWVI27vX8mTxsKFDt477UfgyJbn4U73gLo9fn10h1ZCHulFIevOkLo
5en9l14HwtrK+xRvWgAMttARPUUPoPFGus8fomNwIaGwbiFfC/70UY3ZYNGE
bg2WvGta6hD8Yrv6WEoVllXKaA6NKUGGRzlKGd4KsBuFBz8tPQrlT6beuGcm
Do1ZG17zfBOEBV9z9MfJOWDmQlBX0D4ZvF8x1Pnw1C904MmmqNZChaucs7ra
IznxpycqisQSQjjGS/+lmIk4tvnXIVUodRQfjYt1sv4gj70vqNiszSjiADOS
zxL1ypi/aPLPuRuqeF0rtL74lxo2c1LZlVxTx49JLySe79LANHO/Bp7e1sRS
c0LNC/WamAg8uQZ7NPELmmlr+mxNrOmWf+OltCbWfVRybvGmBobvSh9meKvj
/bbTDsvaapiH36it4RDPuzKtVxMklPF5ThYBNUtF/Db2e4/QezlMrb9dXHFD
GjMIlzm5zothZip/8WIdIcxIRd+jOciFC0bkTgVLMWBFVcFFpZlVJEX1j/bB
uRWw/d/Zwd9BdPAMVY3Q83xOKKcd/vj6JUE4SfT760CJKOz66M0jWCMJc0wz
crYey8C4ns1pzi15OMubcYYlTBGqbn5PmetVgt/+qHdT7ihDRKVLNDWiArWT
PokWxqtCGVeZCQ5SNXi1/L1quKYaZMhqct1TVoP/fZNP4ieoQtkaJVfJe6rw
w0NB5eVqFajvyFg41Hc459Uaw9QPJXhd13j9no8ivDX5emdtWx5yNfreDsEy
MCil0GX5mBRc9yfmNw4RgxtFQWtMiUIwTEZf6RoRL/y1QL7flcMCbXWZotzs
yOAcbS8ja1cv+Loo898L2h20fWWALYmHAdt/M5Ii5+PEDxMcZyV7+fH+D5v8
SW4RbMtSbiMeLY5zfMMs5b9JYZdLki5HU2QwxfUyJUEJeWy4sXCJ6L0CPpq5
/9YhRRFb1xjqvjqnhHcYZFvM+pTwZk0F+W15ZTwn7EV4YaaMH83f/bmjrYxL
1EmFFNeU8PXGNtXbAUq40TFR0/uPIlZMY/15ZVcBP6CTedVDkMfP+nrugUxZ
zGXnxzC2L43Zm6ziPI9I4r0rlVdEScSwQGHxTN1nIawo/LVKJJQPL7QvUvNd
ZMf0SL2WVpAO897ZjEUftxEH9X7NJ+I6cOlszzQROxGUNi23ybvJAD8Te52u
O+Q3LXeMwu9OPnjxY2WKfIIQvJp51/NbqCgkVUy6I6YhAScXbqo3vZWCfrcb
uCvbjsJweWbTxTeyUH7GO5RHVh7+A3Gp67IK8Lxj3vGD/xRghFGAwWyXArzA
XMRzb1IBvguo1+1vVID5P5Xe1DxQgB8mv/acp1eAzK2aewb/5GB7rMjVsxay
UF2MpSTZ/yh0/nijOt1RCkaaNlyLJ5OAegvqgce8ROERiuZXywVCsCjZ3Gs8
6AicokBv8WVOmN58d1KLlRmSy/ok0BiRw3eVV0gm05ZAUk19gPHLEXTecVvr
lS8xJu+SPU+5S481HtwqbKJlx5brP76QdPLgU59J0t3FBHH1ZMA2KhLGzOIh
J3lJxfCuH6VTA7cElntLEPi+IImf0a9p/xcojV1alMzbfx7FLGY5HzPKZLAc
RZsUhass/rpz9uZkhSzOdK/yITTJ4lYL4gcfImSxnYMgje+aDF59Xu5/lVMG
72zuTrgvSeM0q7HvUo+ksMFi1MvlLglsfDQiveyQtyCBPY21VQTrHLsZTxMk
hPPEwCdjKn4cSmMpnNTKhX95auxfdGDFP8Js3jJH0OLP+rWfHggSYWnqVNX2
5yNIstrt7LD0LCh4MTUYxEICTSMprEjY6OHAh6lwkx5WqKnrauE5zQVlRyT2
7hYeget0vNL5dEKw9P1t8wMmESguX+VV8U8U3gx/S4j3EoeUKUd3vtZIwKyk
9n2pbknYT/858EmuFLQ7kttiJC8Nqc57b9zxkobhT99nzLtLw/lbXosGwtLw
UUpdYXOCFPS/fMMstEISSgPHc1zvJaDrkeS//y6Kw6OmZ2Kru0Th0F6x5Eke
EbhTGebhJCcE3Y9+3+ZU5IdPHh0RUEHcMPrpGT9PenbY9+cPT74cE+QO9ak+
fYECbu/e+hflsgliKm7Xz/xoA0PvhDPLbJfQEXai6j0ZEvwC+r2RnaHFJCl/
LsTlsOB9CWehNl5OXOXq8Nb7DC/+csNTZkxGAEsfDY3+ZiuEReL2vD7PCmO9
od2UtFOi+NnFXA9FDzFcE515ufu8OHaovIITSCXwy0HNL5S3JfDXVZKKsCwJ
zPxGVYU0QQK3iN2TPaIvgdPUZUvYSsWx7kiqRuOKGD4ZkB/8lSCK+6uvr0xi
EXzW4FTUorUwDqFtdhz6KYglBUKJgw7xTXYpt589zoN7WnkNY49xYLatHAl/
0sO9x4nHHujTYtIw1rxgIxIsF9GxqHFhBXnbZNJuO9xBkg7T+czMK0A41exz
FoEYtn62jjB8QQPP/Uey4+/HDCM0UlUyb7HDCeqC60ui3PAG8bYb61M+aL+y
peeXLwA9g3Y+6qgJwRk7x7QyV2GYNlm25nhFBCZydp+alBGFVcJacelYFJav
C5Vc5BKDubdXYl5pisFa8nfQW1gMzrwXYvb6Iwq7azaqWk1EYUVt2yWTRBG4
aVCcqZYrDIeM6yesHgtBOsPLjEs6gjA2x7nRO+0IZAta1U7z4IEUR7yz4QEH
1FxnPDZsywr9OUplGBgZYWnzn5fKYpSw4qpVtCLnPmC+yMVHcJwF7qnXIgV2
a9A/l5ysH7QERNSgzzP/iBiPGkorU5yiPsT5Zs8jByZMdjZSwHWcFacduf0j
W4kTE9d1/J06xoOpedM/pezyYYVKsaSl6wJY547FM7JKQRx1kNF8N1MI8xQF
k3SdFsYDCpE5OXXC+P4id+wKkwjWnm9LNZMQwUQDLOtdNCK489mrEclyYbzn
81Dd7Zgwfmh2Olg7VghHh9u3og+CWFnCHpGdE8BhdP5UTGt8mKQ+U8DZlAcb
/BT3uufKiY/JcJhdN2DDvLEXQvsJTNhnxAU2rNHgKUOhmJE6UswksNz3c2QT
FVQ5VH/hHEOFOuoqbap/wEyz3rfJBwSgZhX77NYaEWQYYqp1XKaE0dPdWvmv
GGA4v+on+gAWuHz2vlK1Jzu0C4wcJ5Lkgia8ZSzbqTwwJrpGL6eKD3aR+W3V
pPNDW1lz3j0mQRg3fvrsyBtB6F07KtHILASXCpWIxk2EILnaRe8BeyHI8Ora
zW5tIZijeZfWZ0EQHrx4KVvjIwirJEXa3rwUgK/+m/OUpeCHx8PE7Xv4+eCX
e88IMkvc8NqLX7IOIZww8hUJw/EuNkjqFZMOt5hhuXTuvvsIPVQNoxruj6GE
rx2+pq6REENo/GM8o2AVKLvuniSv7Qd/Y92XrvL3oJCOORahNALaTj1DxnCO
CE+y3MzQf02BixXKynoL6XAANwtNtiIzzmMhzw/qZcWRfO8eVRtz4DD7mpcX
AriwVLvydL8bDx6kb3BIZjjEv5XjZI7rEdwb811/6SY/9lvLVtcUE8DvJT90
8UUK4Au7Q5QcyQL4+OLPiUALAfxT3/Hh4zJ+3PrLxN6g4wi2b9QsjnvBh9ON
Bj/RCPFiD4elb7wO3Pgos8eDDhtOLG9Z1jnNzY6Hw8SDXuWy4A8V1j015Ex4
mT/GmyWQBjdQMgdsfiDDvcDCpd1jD9UIMtIPgmVElZzsHdL4Bw2kh2tqmgyA
mQjC8ThvAsjgVBu3Mj0AYhQfFS87kUNLWLiT2E8Dyfd/J/wlZYKMRVo8ejdY
4NjTvqE7mWww6+PA7nIyB2wt1Cd0WnDBheR7r+YbueHLfDarsl0emJYLxoPH
eaHZid0B3VA+WOLvH9vcwQcrJiOIynv44D0m9fHbCYdVVdTmCBEfdPETy8kX
5YUG5z5SN5PwQJx5IWYkgwu+HcwnPtjigNSl5vbtvOwwuWDbKZ2KFa4MM1JI
1DLBy6tSX2w+00E7jsvcSSmU8Lz21+LhkyTwVNTgOeXkLRAjZ2BU2jMHqj/y
t+w7N4D50ThRCa4hFMAHWk0ECIizSkBLZmkPcSiGPNJTJMM0X7yOvJWlxnkK
Q//5DtFjJ5UJ2h5+Zlxb214jeYQVx4lUqcpOsOED1pLygDsc+EUzheyZOk7M
Tz43frebC7ccj5CMzuXGr9zUn9fI82CuKYFmfm8eLJ+pwH7KkwfPRRAUCiR4
cFTrHSWPVG7s0/0i+FIjF/YqVtin+s6J9zRPhTxx58DTw3PhpeNs+PRzzTv/
pFgxvWOHRR9gxpOFf4NpTBlwcrRniGoXNb5r/I7mmiA5zkZ2tVc0ifB01rB7
+YV19IRD18VEeQqt/htS8jUpR+msJjkldMNgiaYtt6NgBXTOPj9G+WwXzFZz
F7Mzk8I869Z8/ReUMPU+/NY3RQsf9PNvzIwwQsH8B5nFlcxwT+9rQfIlVuh8
29NSrJENKrCLO8xss8NPweJzTEsc0JEiSOLKG06IujclrAS4YHRlgvz+eS6o
z3KSX9SUC75RaRdRI+eClzsKi08HcsLj0tSfBb9xwDdFFGJM39hhRtv0Gl0I
G6ztHwtLYWU99GuK6ciXGR70ucqu2zNC0s6QpocBtDCXknf5hy0lrAubClrc
J4EhB7GFRYu7IDLniempLAIwNYh2ZrQeA8eZc2curGSDwj8Deb2vhlE+2cRw
nPgKSjck8ruqs4O2wLi0OAkJlpFrKjeUp8Ac+ib0Dnw0WD9IufLyD3pMk+K0
FR/BhIuNjPLfErNgTruVRTNjVqxFvdLtcpENb1xb5rLRZseCJUG0UoPseLvr
vazPKQ5M0zO85+nLgf8wa4PVaxy4xDn36S1BDvxkLDJ6MYMdPyfc5uAaZcO+
ZqcuCayw4s+9JifrWlgwy6KtvdV9Zvwph6DNusyIrSqvLku8oMOLmcrnmCmo
MfJXdnojT44tUis6zosTYyWBhFrqmS3kanl9a9RkGe2/0a++yT+Mmk69cxq4
HAuaqWjr8paHgZJnCCXps2WgXldS0LS2BVaHkwwVyYjhxszRFu8+Mmjy/mRS
qy8VfGDhfZK+hRb2cd29iDoZILV56PesaiZYzpHCcXeJGXJy2J8LnWWBV/ue
i9wqYYVtM1ID7ifZIPfmXsSx12zwjTmjt1wDG3RL/c9Y9BsbfObq/T7ekw0W
N78/fYfACu1Z9EIc9VjhFZInic6OLPCUCVsChwkzXL+6/phFmAnKTPC1f7hN
D/n5F92FrGngO/ald6TbFJCIqlIx/AoplIs0hJW6B4Bryj3o9q0NYBu5elyi
YwFk3hA24OMaAKlTeiJWowVIMv4S5T3GEUTgpNAOpVhGbYy+GlGtmygwczmk
UYwI89AwsYp8JsU7QnZmknSUuFE87Nw5YRp8LaYz8vciHc6k2Duf4cGI6ReX
un42MuEbr70yRIqZcWLbcZbGqyyYW5MqmXGeBe+Kzya167DixzvNfd6OrLgZ
y8UNn2bF/2qmy2LIWfHlg/Ro91gW7PHLiGF7jBm7m4tXHGVgxv/a2Wtu0TLh
zs7NEaPDO7tZe8NVjI8WV4i9G/mhQoXXQ/9sMDOT40vew6bvSomxRRJlrfCt
XWRGhjR8JdeQYHrSeqzLLFr+66rXEtGNuIqabns6fgUPP9UmDxKPgD/+AnOS
N5bAl0Vte72sDWDgGRgREL8P5lPzfH0SSeC/Phmx5nfk0N6veNcplAq2mmaS
EXHTwrUh2CF2hR5CqZQaYUdGKNQdEvTkIRMUV3vGzCbFDD2na+0yspihVvfo
DdFZZvjY8NxpAXIWeM09qvHBIjNs1yliQnnM0DlYoR+pM8PhmZsPppOZ4JvF
MkflVEYYbOXAJldCD28JQj2xEFpY9auu9hglNayvSpA3MqOA6suSK+WOpFCQ
/DPPM10iaFH27mzg6hbIurv1jvUoARjl1c4L3ZwCwR5lF//mdwCdAK8zKm4Y
UbFr/G3tHEbvL4mc0nixiAIYp14UPVxHR6MUX35d2UWRNreNIyKI8QMni+MH
zmRYOdXkpQ8lJe4L6/ujdoMaZ6Qk5uk/psXgxVsr+wv0mL7E2Zl0iAHTciw0
mFAx4bb7W18+3GHCdzXNKrS/MuFrvFeyfJqZ8BFZCYPzn5mwymT0GfPbTPhJ
UqWTAdnh/9353sDUw4D5NP5r+mBLj/0PXqt8jaPFwVoed5UCqbGG5dexMWlK
/LR9/atKJtmhTrBG8PwjxtH3+6P4xvYQG9Vd3omqDSSpbPab1H0ZmawSK7f1
jqMKQge0cWlHq3mZ1FrrlSD5AsNngcRh4EjrNlFyYwEYNr29OHh7DVh1zmi5
ee4AHQ6j7YAnRNCdgip1W50UWtAM5I7kkUN58Ycz+8OU8PGz7ED0lxoeVcv9
DCNo4bUAPrnLc3RQZiP6VxMpA2y/e/LnWiMD/I6XxWR0GeFgP0V2khMjNLAP
LlFWYoTV4Z1Zw0UMMH3omuPZAXq4+V6elwLRwadC5/AZC1rop9floJRFDQVF
89C995RQyCec/HEwOSzMudt8hYcU3p43zE4KI4LnDaxfq8XvgEfna34W/14D
rKv8qqTVi2DsDVMqcfooEFJbLM9XawH8Cyerm7mrERWra/GgzjByP7ZpHg3n
0eLeJ50Er1UktjTg84lyG/Us2axonjtAdAcPtfRESPCEvpGd73Uy3E4uZep1
nwLrPrl9nPw0FRa1TonO76XGb85xDD8RpT30yeqvU8To8D362xrefXTYDDBc
eKJPj60EvWxlLtHjguU6GSs5eixj7BY5VESHe3jqqzwmDnl78TR27KDBQt8/
1nQGUOPf9V3PXo1S4nzFoEfH6Slw2koWXeM+KSYVqv82jIix6HcWd9usfSST
Vmzk57+F+KxvfSXhWkURdOeka2jm0cpn9HMuexgVbfuF792uR+TnuKU4UQ0Q
kRpdLxsaAttX95Nfcc+B0F8is+eDCMBc8O+Nhi+bINbT8/Hbt3vgQxjfboYI
MVwbfUNsd4IUOg/p/haRI4c/+3vHJAYp4LRpVqW8BRWkOnrvVkEoNewRlOf/
4UkDw+cebOpw0kIy8wX6qju08GSwv1FaNC003ft2q8+GFqLfN0Ws/tFAoZq3
a0lHaOArxbGoES5q6CcuMSb/hxIWiaQO8phTwB8m3VT/Eslg0bfgToPXJLB/
5enN16FE8Jh4lVXAnV0wgsWrIzI2QCCxQphnzAowx8gh9sUMSBzvcd7pHASK
Npj72sVqECGvKUK1WYsE4259sLg/hBaaMzvV9mfQyBXP1vT/VpBW3zxhzn8D
1fcqPrrKt4uyfzYHsqgT4QvcOSl0yiTYdl2lhnOPFAs09Ch/jCfHg8RPp+en
KTDpwdu7fuRU2AhYMRcOUeHsUy/Hwu9T41K9v29LW6mx+jVTm7xBamx3Rp3p
dgE1vvdChGNAlRqrRhRSXgukwi5L0UA7jBLrXaP2FDWnwL/e2xXFDZNhutzX
tfcAKSYPjhK9fo0YRxbvtzW37iPj6CzXH8HbqFTrTqfZ4hqiG0qh+ym1jBYo
1MM+3p1CLIJO//1t7EcrHO8nkwYqEHnHiUTCQB045iyc5Uk3BPpXJ3Vo5qdB
YYuUYeWPZdCdETgUYLUODD+Fb/TlbwOHe75Cn7/uAwHCByZrdWKo1PVCIn+U
BDYU6ei8uEAGrw1usUZkksNcR95241wK2KnQlnHTixJOJqRFcu1TQnb7u1Vs
p6mgwGNKiW5rKhj4XHQzRJQK9thcXOwspoSbS/XhJ4gpoTbT8PO/bBTQfBqZ
aS+Swcc6VC/zE0mh1tgxgSVyElh9OfGZuTERnOHsu8nStAuuFo8k+Jdugl8d
uXZ/r6+CzHb/YPfORXCa4/UsjJoADpnxF6q4ewE/B0X7UEkZEPj77nVYUD0q
ey8mHKIxiL5kEQ8/mphCT8IG2rkIS8hX14xi5fgaMh1DR99ZbqGAgA2Xn4J7
aGduf1TPlAjfLKNiihkkxsu8n0pO6ZJi4eG7plQeZPiGIHKfcCLH6kXJpU8F
DvmfuB9+NosCh3sE/KCepMBWepEaYIkCm9uQXGZAFIc57fVpaEqBjx4Ec0vn
kGOR8ZXm2ioy/Oxc+NO0AlI8GG76+LsTCX5Oya3ybZoIT7CXMZ2I3kfpdp4f
h9e2kfFSsBnpkQ20dC+amJKWgKw40qU+JM0jrrthaVltY8g573aG55e/6M1G
ZrbHgy/oak8CechEPZi3F3nYY/kPjH86ud48Mwnw/n2nNcUlYCqQ8mNIZxVM
L1pfzGfbBPZMEzr3cncAY7H/gsjcPqCXeDtVuEAEpSfLX9lqkkBdHVWRPotD
vb9VVBagQQaln9OXsE6RQV6rK97kl8hhJqeuxukX5PD1MomqTw45DKaRls+9
TQ41PjrEpFOSw/MdOt05LmTQuX6h4UUcKaRU4utcfkQC2Y0ung8/TQzF2Df7
HjUdgJbvxTpb73cBsX9i9pjRFrh8ayv+Xs4aGC23ufWoaRkkyVk5fYmZBfN/
uJxuHR8Fagoad0Oed4Kn77Jzo8k+ggpZ4j0TwQZ0/l+9arDnADpn3yHcszWB
jJrOuFttLKDHUk/8Nk0IKCWdLHNleh3x7JNPmpzcRlHBiSS37PYQaUC8ji4j
EXb3i7eqMiDGrCF3E76ZkGCXSYbNZ6KkWLnCfc28/rC+idLzUCfDL3lOnl33
JMN2/5jOhPuQ4bfvb2Qa6JFhkS8ClDO9pHhIiETjkw4pZrnRReN+mwTHjSed
t79DjFPmCd6Gp4nw0bulFH8W9pBPWwVr0/Y2qqKb2g75uYEK3My/5pmuIuN7
Fb8S3i6hqbqqX/sl0+jobSt5hd5hRG6Ym360+A8Kc3ybxXayACnmjPTeU2kA
4QQTcC22H2yRRtIGsU6AOCWCi/CLefCIraSI5MYKmKr7MoEO/+GRp5xFe3ub
YJqNufP12A54lvjtr0nwPvhEbfWnxJkITsuKcWXaE8MG8SdNxGIksJ340Z0N
RAIljy5lc4mRQhKHSclQW1IYGXBrtteOFF4ZPHXdWOrwL5z42vKghgRmOi69
/KRAAutfuCk/dyeG7ryo0NKfCMYz+/0S+7EPbMSopH5q7IK1x0Xp165vgRsr
xOe/268Dc6m0ym02Aui/MBK1AhYBF2mrBoF8CtwXnpRWSxoCmudChnf224E5
9HjUGJsDnj2I5yeTbkAnJ36wsxT2oXeEu+H31McRycJkMKPdHPIv0wgeTlpG
cUncCb4tqyg+DV4ObNpAgbfWtowjt5GW24M3E7u7KI+4NJdX5AD9YH/qXO1H
hBuZZKa71ImxDYfumZ1aYrz541bVsDgJzhbh7v16ngSrfIuXlj6sFsxUDVfE
SLCmu4IjSw0x7rDm3rVVI8a6HfIv+g7nnPAWZraWOkCuDLLf/qPbQ6vzjGbm
OduI3S0GM21voIBE1MrNsoZOnOx7qL+2jLjDLk72Wc8julWlqsrACWRXVDK1
2f8POT+a0Um8/ws9PeJ9XMj3BZrUNi75QtEA9qNOlKb+6gXcTYGad1zGgF0l
ddW0+CwgJO8LxLUsgcILSmIF3QRwptrCf6NgHRyZJE6UP7EFTGYyTNGzHXC0
zriiKm0PRDw4uyR37gBAzYsnLtkTQS1DJ77YYSL4Mcl0aUSLGGplKz7PcCWG
bzoKbnhdIYYPRmNLolWIofTToC9P/xLBIYLEu0xTIrjQU1YeonYAhn3ZMseD
9kB5pTS1qv8OWPXrn9lR2AJ4mqnZP3cd+L2+UJsyQgD1ehk9TXNLQKRw8R11
6iwwafFggZzj4K8j1zpnTT+48+AZ445aK5AUjNYYvJAESuZ4vaza6pGF/Pxe
x2YPEjm3a8yRMYqeFV95HUc2gzQSw49xMi+hgH26QCbCCtqJaDhW83INHX3e
aWHNuokuTJp3PtY/5PuR06u/5HbRCM3GmmPLHpqkJVNU5TtASR7vCcx0RNif
KH3Vw5EI3/EXv3s3gggXej9ung4lwowi9IwESyL8XLXhiev6AXJxInT4LO4j
Xs+h8zT/7aHzdqfuLxN20Ehn9Or3Q99IWjglX9y9gVbuPMUN7muo2tRaIqlx
BeW++WdwGP1R3cZD4hNEM+i+o3BTXeso6vLJvtbY34vsfUZZ2SuakAwiLc5X
eYwWEhoYfkfUg4b7Oik24j2gUdE7c2NgBJSxHrs7tzwFRifJsuCPBWDKv2vt
w7sC7p9hvO6WswqaPY1id9bXgQVd7KXjNFtAPfiRyHbPNgh5nL6RenkXOIwr
adhl7IFxn+oWjah9UPH5tAu1+AHo10z3u3PrAMTQm0gTuR6Al9+zaihoDsDR
/xokf1zYB0yT73uUL+0B6yMXdgDnLiBjz5UIDNsGVvw6J02KNkHfZlTg95R1
oEHmddHbeBXwrBM8S+uWwb/hlecvFRbA8sH36q7wKaCfYPRANWsE+MqcvdPH
3wMmzIi4L4Y3gGDrHlRJ6gP28q+veyrXo9Lj1yvibLvRu9LyjWKJETQlRHbz
kOPIPtNG7IvnPGLxcVKrNl9GHvzNH6JLCeiI9CP50Lk11CD4o51hbAPNzl3w
UE7bQg7FCsKv6XcQuWovb736LtqncL/awrGH2Fe063Le7iG6yac+THN7aLnb
tTptaA8x8G6/ywnfQ/xSrzjtBnfRxumuE0VzO8heiDDgWLyNePMyTowqbKGq
Rz3Nzrc2UOm/HqMSrzXE7n3sNwAExD31nnrn7xIi8eojLY+fQ85xR5oipA/3
dpNXqYoeRoaytVI/w/+ivpttrl0P69Alu8tH0q/YAksJ4ZHJjjowNNQtUp7w
F1zYjDYauD8Mrh3rVRjamADxVmfHBFTnwFJQVwx5whLIzitNWe1bARXHXgUH
rqyCHEk3lzO/1sEm+dnKXM9NcK7kn/Hdti1gCTgUbaa3gblAoX9a2Q5QH8p9
eFZ/F5jsTbibPNwFtlaB+RKHfrrAq8odHtkF7C3fKT8d8tfY1dPlRsI26F2/
7k1yZQuULZ8qaiRsgHNF2UM/DNZB/0Va3sCLq2Dh13FxhRMrIOCf/T8OwiLQ
oV419WCcBcwp5X4BU+PgfWJjEWnMYd649pM7kqkLkGrWZF0vqgEXhC7SMigH
ola55lLfm3Uo/fKpbqrfXSja7bMTS8cQMrdWN85hmEBfOlrPi9HOImWLpw/e
li+iedmM9ce0K2gkVy8yg3IVWVVTHw1qWUP9lLY+hTYbyD5O+7NxziaKqkXv
+T5sof6cyfAU323UdLtlZm59G42+pjbbld9BMTQL+m5CO2hLuXnwadM2sg5p
lX4iv414+hc/KZptoeGVLLArs4ni9xOf8jWvoyL+n/lOCmvo8ePbymoXCUhp
b987ym4Zlea6/MuyWkC1mnIOne+mUehLt3UFPIaUHrv+91ZnELGZ7ml8+taB
zsbEJvyiqEbzSX8nPYMiAfic271DXAe24p9lhnN2gVEeK6E51SHgdU7neoji
OBiMR3PRy9PgfOqz9gq3BdDOvlF+2nAZCKif4PoiTQC4+r2aSe8qqArmLmk8
uw4aqt53BcVuAE1d2GEbtQm6JfxsCAZboM0h/EI83gJodExGgrAFFJlj0y6P
bgEV03abjCdbQPvLM++ZzU2Q912agkpoExDqiXkcaTZAztuRXztf10DDA7rJ
R7Kr4Ox3lKN4awV826q4jB8sAfszr4x/dMyBcS9e82sOU6CSKfTOjXeHOftr
GMiJGgA/uwMFNAP+gNu7byrdHv0E1Q9C8jzC49FX8zOvyZ7WonRFpxFV506k
2aWVyAQH0UQjc/J7xzEk5n8yQ2lyCt3q/5HYLTWPOs+N6pyNW0Luet56X+xW
0FDmU6/QNQISZVD6kGu3hjJV6pYywtfRO4aCg2DfDeQRdPczqeQm4iCKDA5L
2URuKyGKtI2biOb+HsfJ0sPezv544tVN1DQixrLduYE8XYwopSg2EFtd3W/P
7TV0RYC7GX1eRdRlhS1PtAlo2eBI0tKTZXTsZGtI+81FdPaoJ92kxyxKlP31
bERiEo1txLsovR1BP5j8o9+s9aFWzH7E1eY3Uv4z0S0tWolyWx4qNak/A0Zy
yaJ9fLVA2mW9hPpzByg+iJBl4v8HAiQaz/n9NwpCKt++Y5ydBPfDuTiTdmYB
rZaTX+yPRQCCW0/nPl8GVgY8BEp+AiA9xu9Nc3sVaBtdcjr/ZA1cq8Bx4t7r
wPQJS7cp7wZwnvzmfTx8A9hFOsawlGwAI85aVb+sDdC0E/+h4+whrlJl+4I1
62D68suWvd010G21hrN3VkGr4Qn+sSoCMNhJYuO0XQFZdSu3+H4sgfHCr/L/
rc4DeUq25C7+GbB7Wy9Rh3IClNi2UlZ/Gwbm6YWM3wN7AedJ88xe43YwX78z
TF/zA4z2vJPsd0lG//5jOPE0twb15wkQZug6EJlThZwQ7QDye91Ro9U3gm4+
qYiX251AZcSFmqUDM6ju+xvXrjsLqPnBja3sgSWUQ6fc1mexgn5aJij0Pyeg
pcjGZ765q+i6VaQ7ZfChj5oLywvkX0fC9dm1jqHrKDvBS76tYB2xJh8Vjkpd
R50ir8Znz6yjusz712ar11DffLYhF9ka4iSjPfmcbhX5Ul7W4xxeQfEDMuV/
Hi2jx+d0t0g3FpGWz956csIcylqkUo8cn0LpW9dLi7fGkDSl2eknPUOI2SWY
T1uwBxGragb6n/2FIoID1cvvITQTZLpfKpgKKHxCSWjkawBH96XO79f/AAG6
2uoksn7A6FY7YCExAiLv+Sm8554AtvzUUcJt0+AeudICH5wHVTaXFMfllkC9
4icjzsRlUPOhg4uvfgUsp926Od1IANqs6Uo7/60CjcaSLFuFNXAq+Chr5uEd
rJbP6Kx/XgPqT9KJxF+vgfrcwJAI6zUwoATGqTtWAevRBE85nlUgCkRFyWQI
QNH99KoQ3QpYq5tOeYGWgB/TDTmeyAWwb3mG/vfJWeBq/Tb9aMUkiPIbfpe2
NwqKVkg/yFIPAYdwavbfvX/By/D2rj8drSD5OZ/WgEMZ8LS8mOjqm4685AXk
iL9Wo7+xYVOWrb/RxxVTh3rqPnTjKF+EQsAwqq6nYPmhN45CX3h9qW2dQrGT
DiQCnHPocZZRnTXrItJrZLw8eYg70Yeo6GGyFZR8cla9ZGcFqT+1q1/7QUDq
ovKCDWarSPmdrVL3u1VE535N4MKhz1dqWes78n0VhSepXPD1XEXtGkoGJssE
JNhjKMkBCShYgfxss80KOm2Vqjh/YhnpEzkEepEsoQrrMaoo+XnEb1ba4sc4
c5i7bDwFCidQz94DxyjmUXSnap2xPOYfMqNJO+Ga34WMvgs5b0i0oLXm7vL4
W6XoeNesKJd3JvAXf/mZWacajLQqFMSr/wal5R3veHl6gXqH4vDpniFwSqVw
IMt3DAzeuHm8uG8SjN4x6/l8MAMcLmk7p/fOA+6QqOxopSVgxEb/2ubMMkjs
eTG6oL4CXpXE3CQlrIDf1fKmzf4E8I09cIqsnQDqKo03lpYJIHc6guviPwJo
aYWE188JAJ7ZXX7FSwDJVgvPK2+ugM65T15TT5eB3VHvnwERS8AjCX4syV4A
IpUfwhNmZ8G9J9rlhJkpcGsH1s3mjYOqzCUBBZURUErdPnkgMAA+L4rscsR3
Aj3xYh63lCZQcqQ58NG7ryDN5H15OdNL1Kumt/W9rgppXhX4q5fbjmQKZkO3
VXpQvEDBQ3E4hDg6llZyPo0iT9khb+K1CSSz2KP7Z30akX65+p/jxzkkVtGT
/FZwEU0+sqGtyFhCK98l85qClhEYF5c8qbiCvkbPW/mVrKB6+updJbJDn6ee
WIKECeiM9nW7OQYC8qFK02RvONSHUOoa5kOdKJHopTyWv4xOvZGvuN61hArk
JN278xcRY9nC1wObeXQx5vWzjO8zyNdhwKr27yRKuqR7HnwbQ/NzqkcuXRlG
d6UbdgQa+9D4dbculYgOVPXtzUGIeCNSFvMZHab8go7vfhb2rHkJjgnMqric
rQIn73XbQJ52ELjEUvbXthsw32COT7IcBNxoXkhydwS8Sv4dNnXIc8w9dCx4
ZwqYBzOShqbMguDbKkzH5+dBZs6+SuvSIlg/IbEU1bYESlyvexPuL4MHK3fX
99eWwUvn0IJwvRWw0pHkMHxxBYSr1bSOGR/2Uvt94xQr4LXE3omvhzqh/1+w
9JuVJRCaz2bjL7YEbsoFPeq+sACkNCP/AME5sPKQWVc7bRq08LrFveiYAC4u
oyeH/4wCuUj6ApqsIZAZ8cLn1ONeYF7f16H95A9QIkItA831QJ/osTWM+AQi
X93/hOyz0NEvFEou/T/RPLW4mFXiL8RINPdbNvIvChyRtn+u9Q994CANfXpm
BBGFEm++MRpHJ/0EpjrpphBLX/zUQdwMMrjvQfO9YQ69Mjw4YfN1AQWSZN0I
klpC9/tjTlk0LyG/x3qX/9NbRjgxzkM9ehlduQcb4nKWkdRl88a7T5eR9MhC
p4HZMkol71KpGVxCjIJU+Rr6S+h45mxJ/u4CSl2vXwgRnEd31f80U23NoBd5
HmFHYqYQa5nNyOmhcdTy0fZ55e4IMr0ysez9exB9Snnz+bd9D6ItsLNszf2N
ahbDH12IqkOZf6K6YkVLkCXDK2nwNwt82q12PLj2E0hV//pjw/wLdNlOfQn6
0QXeO+i5hcoOAEemRbfzOcPgICeZKz50DKSTX3lCLj0JmPPmF8aeToP5Rwfy
5J9nAXEd/+ha7Dz4j5uWmJ5rEfwZT7EslVgCOXMWNkn/LQGV+NHV2IEloF2f
+ZhmfQm40p8unhxeAobEdRZ3s5bAxW/pgcGqS4CqIUHGEy6C7z7qH+Mq5sGw
loS/39osMBdSieMdmQY7mk45bDGT4Nejj5MlW2OAq7tgZlhxBLxQarLgv/cP
zDy3NNDV7QZLpL9zPzS3g5DX1OzMDrWg2nDKnnOgGDjMKF7g1H6FDNSOuV/f
qEQPU95qqUm2oaGzcVfPHXSiwmG7N5ky/ajaethrjXwYGTv7vt+vHUXJOmeJ
TCwm0KzhGTbLrClkLD8sJP1+Bg2Pi9Ike8+h8Hz/VKH5eZQZ4NrOw7mIYA4v
9ZuFRSQXm3JvRGMJFfrqiLwzW0Iz84wCEdpLqKVyPTNlaxEFhhVG+UguovOx
2Xtb5AsoTIqe1TZpDllZmgrG9M6gh79uVZj0TqEt2lfztKkTyI+N+EyPwBj6
ctq25cLtYbToMVoSrDiAeubOXFBT/Yt0Bxt0ag5+ocmFq5S6J2pQyr34kevv
P6C96wnv2KJeAd4TGd7tEZXgpdsz3361VtAsp5itbdgJmsXhiJp6HwhO5X65
7jEEqpVxrQPrKBD4mke+/WgcsM+9/hdSPgm49jcv6X+aBoow7MPxq7MgiUT9
p2z7HKDraZENWZgHGiQvtvzLF8Cvp/HGapqLoDyGZSrVeRHMqKQ9vqm9CP4H
57DzmQ==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.884771807935392*^9},
 CellLabel->
  "Out[151]=",ExpressionUUID->"f494f265-7b7b-4226-bd0f-d070e4c94a05"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3k8lN8Xxy1lq1RI2UqKbAkpu3usSSJSSLaxS8yImSH7vu9mCsk2Wmgh
y4zU1UYpKmmXZSq+IZVKtPB7fv/M83q/zjPnnvs5n3Pv69lMCnP04+Ph4Skl
fv7/tGk7f0mE5yvasoAd3xZykchO+n/j4bOo1FUt/xTBvVf2bLnz8QfSu9Dj
YEtwlvp6j7Muv9Cq/0rK5gq4aN+F8VMnHy4gccniICbBK5Xanjmb/EX7dt6+
qUHwo5pUUZ2mRdSCFMo687lIyU7MjPqQF2J6Tj+7nsdFaSujPT8s44e+nkXD
7QSP947FOJosg4v01xqluVxUv6epXaNJAFZOf7lmncNFAgJSzysmBaHgsppV
STYX+d9NmBXZKgxiztYHX2QR+U0PbJ9grIC336RlTTKJ/EvtNoeerAR/RZXX
PhlE/hubAu8Ii0LrHpZSQjoXHTxDe2pvsgbkTucGVaRyUXKM2qjA2zWw5KZ6
uCKFi665jczcoK2FXeojb4qSuUhces9K9SYxqPxR0OiTyEXmC7+l3+8XhyfT
uQvGCVx04tVllbJJcXCerRkWjeeiZwzJPUJb14GAlo91SQwXFYuPJ35grAc5
gfY6DRoX3Z09XVC+cwPol2y9eyOSi3483X/W8ckGeLLJP9I8goucClo7u4Sl
warf6Z02hYskVqX+qoiRhYLVk6zqYC6ymNYTcJKSgwTViJ8fA7ko4uG0xIo2
OeDhVVmUD+CiwUwn7agvG6FxVMzwpA8X2fAXtak2yUNicZlclxsXcWenjNOW
5OGXoN6ODlcuiuZa3hvbvxkGzrsINThz0cVbC89OTW6GjrAtaykHCX8keH8T
2LoF+C6bq+TZEP74q6n+nqEICveM/dfoctEQQ4rnxZQi6IhzDyEdLvqsyTd4
H5Qg284vyEeLi9b4PTt5eVIJLsvK1WercdHhvsiHUSbK8OaRUN/RTVw0dqYj
eM24Khz5nX6ffzkXzerWmvAbqoHVyXMxmbxctGwgW2wuXw00efQfLlscQ0oC
7h1v9dVBP4G5bGhuDIWELgmfy90OId9yfq76bwzFbKoZrJTWBG+nuQ0p98dQ
agjDZIOlJugaFz/1vTuG8jhZ5wvDNOF7/dY4w64xdPbgiZiUu5og+2/rtd72
MXQ73WJrcKgWpLD15sPqx5DQ1/ETu25rg/SuzVeHEsdQSZea+KOgXWC2Uo/l
pzWGjrSs/RxRuAtesVevDlQfQ/Lnf3XLcXaB4Lb5Q6RtY6gx/050mNBuSC5e
7WMiN4buerhxxc7thtH35bQSoTH0429Wk+sHXXD0SM3qejeKnPQn7Sc8DCBD
rrLTOGkUiTefz+FzQpAd5fftaPAICtGaNf4QjaDs8ufY6aMj6O5Vwy/3qhF0
Zv1ODLMfQRFX+h0yvyAw0Kv5aq8zgo4djl6RYQnwYWdmAv3fMOo7WPVEdAyA
4W+QG5c7jArspo/IbjCDz13aJHbdO7TeIiVMN80CXttkf5a89hZdf1HpzX24
F+a33y/qFHqJBE1nHE6228FyW2vbfW4DKFKlJNVCwBGi1QeUYk/2otypoFcu
dU5QXDNzgvqpC0VJHVH1XecMEqTik9INTSjhyk7TP5ucIeNEo3R1UBNKs1zl
UqTqDMwi8idH5SZUQulK7ULOELywsE6v/iq6+kBpTDbYGUidnnPC1lfQRNR3
5vObziBZlnPjrn0DOvQmZ/meQBfwyu8pka2tRVrleFTluiv0pWq1a51JRf+V
lT5bec8VXlZu+HBxRQqqLDvW/aXfFZ6Ot5UknExCImXrG1u5riBd/Ue8/mYc
4p4Ko5mKHIETqardkmHhqISxSdTV9Qg0Clp8Xd1wGP8qjDfM+HUEYkxpoq5j
mfhy4SGNY7xu8LVzp56QVTb2LVTbbLfCDU6FS9HsLuTgJwUvBSQ2uQFpJr8v
51g+Pp+/Y+CslRu8lDynHhxWhI/kjgS2l7rBEz5ph91dTHwjAzHGdx4Fu9yB
WtpUFXY5NnOTaXwU9qa+f1ugW41n95+ZsN5zFD7nVa13SK7GyuJ/9BqOHIXU
5KWEu1I1uORM29uwRCL+2PNQpFktDm7evnmh/yicLf6SvpjEwpJDMo0rgt1B
ccA2qrzrAm662TvYecIddgReYdF5L2Lb6qh/x2PdwV668b8/phdxov9LuycF
7iC2//6uH7cu4umvRd9K2t2BV79txZUbDfj2chHdjcs94JSg8Am7uks4bMf8
Lc0qDyjdr+i2i3kVu0zoDbZc9IBnDVQjh5ar2Oxs1LheqwfsDCl7q/f0KpZc
/UfEtNcDAiK3tB8TacI3Z/4ddPjhAcJqHkz36CYsepl/nGLtCfs8uoRoB5rx
vJ/F/E9HT4iKeTDjGtyMuXKpItHunlCYNn9QOKUZt+UK7EgK94RYj/vlfW3N
2OO4ML2owhOS1gXz/pG6hi+rrxa59tUT1sapnJR5cQ0zP9jL6v7xBA8ZmWb2
9DUMdtbMd3xeUFGlqqvM34JVBTIveK/yAjURn8zIHS14MVKkP0jBCyzSdfWa
U1tw/aFV66NtvYBaGxnNUW7F5U3b5TsdvACNBNjqG7XiglV2KouHvaD7/HBM
un0rjr6XZ5jk7QVnTTJP50W2Yrtda7yyqF6QW3G8zhq34jkJ8QtlVV4Q5kgS
Sdnbhm+ztKqSWF7gQl4/98KlDefvPsAMvugFbqum/lsKaMPKLrmpBi1ecO7u
5/fPUtuwW7kg6U2PFxx2Jfsl4TbctfmvtPQXL/i0drm9iFo7zmmWFuP74QXZ
yZozXbrt2NVcX3hy3gtMKxcT7Sza8awv9ReHzxsGaJS2z0fbseL5r89cJb1B
qtHwOcppx1kaH3NOG3tDsr7Oc+v37fgw5k9JNPOGPftfHo/43I63HFA4GbTH
G3SGjMtpv9pxJ8UzSN/BG848jgwRXMHGX1peW7729YYFjZbgfZps3Gk5b3Qr
yBtkTDVE9PXZOOOFpM6FUG+4YiDVvGTKxgrzBxWi6N6g+8FUZsNBNnYy7F/c
kOMN6w+WJIefYOPNj6Z/8hR6w+vrUkbKJ9l45uiKz/+VesNS6WhOexIbp8dZ
v2Wf9YaISu1fpEI27rh1u93lmjdsa1Nf+tTIxmmOY5eBTXBtrPLxa2x88P0S
S/kGsb/372N7OWw8vcy4ZL7bG8pKd6ev7WbjTdbt5FNvvKHovqrz8BAbl9yp
HPo04g33lbRpLC4bC6E0a8OP3rAzWFYc/cfGX3cdkh/+4g2rnsnIfptlY98m
o5wdP73B9LBikfA8G79S3zqf8NsbathZi3N/2bhry/fHW5aTQF3k0aydAAfr
nH1jGClCApWaAIUOEQ4+L337XPdqEgRsEeH/I8rBhWsL44OkScAa83n5T5KD
BXLpUx2bCN4o8xBLc3C0kJfzSkUSbGz3YB3ayMGkJY0dV3aQQHCNdOgyRQ5+
ES1ZzrOLBGZVn6LklDnYZu6fgKMBCfhOHPm5Uo2Db1I+htciElhlhIwObOfg
nZ8fDf+wIMFUeXHocU2insAWGysbEoRrJgqMaHOw7IfyNqY9CRaWAp5s28XB
y94G5xkcIYHAgc2/TfQ5mH7Y8Xe2Jwlyn3x3XWXIwdNP9f3f+ZLgLO0/uSYj
Dvbav3lAI5gEj20s69VNOPj5fSGThDASUELjlRIQUZ/F1wtPI0iQymVUNgBR
H365bks0CUTOZYteMeVgbUOcGBFPAt5Od2qWGQfXt9V/vpdCAn+5S4JG5hws
rZ3nuj6LBFWXeGS6Cc67FHkvMJ/QN5L8RdmCg/lU3LU6SkjAE/E3xZdgWp3F
mRVlJFC6WPeWTvD0JnVh97MkOL0+6LsfwV7l4pGX60jwPVFuUYXgQck/o0sX
SPCEaravh8hvXcS1dbhCgs3204omBHeu6mXXtJDgo4hMXh5Rn2Zm09YfHBLI
XexPZhP11y07XWCJSdCjLijYSexPKiHhL+MuCW4VJ9swif3n/QkI/O8BCUIz
kottCX34aPaD+o9J0LIqWH+I0I86uxuyB0lQtEXXyIrQd/L4xsah10S/eyfL
swj9PT4t36AxQgIJ3lSXC7ocPOD7OTn+AwlC1pLqq4h+XXfrdFP4QgLzq06C
8lpEfS9re078IIHnjoC48xpEfY7ZO+8tkGCWnrV1pToH5+w9siJwmQ/sybig
46PEwTz3TGkcYR8Im87hc97CwRGg8l5ktQ9Y3TMfVJLn4KO68x2XpHyA57la
8hEpDt6uyAj+ruEDF5uQpSjhbwmx4G9qOj6QeumAzdxyDv69aEz31feBFXcD
yJ28HHz/1cfU5+Y+oFBakTBGzA8pZ1d1u4sPuI6XH2Z+ZGPrKGHlr+4+ECwc
qRo+ysY7/N9dVvbxga+T/vmqb9n4L0rtPH3cBwoXwrL0nrAx4/vgy5NJRHzu
x4UnbDaOGT3v0ZLuA+VO6xrqmtnYpy/m43SODzQ3JO5xJc4LzXNbv7szfUDZ
ysTR9ywb9x6JEIVGYr2pnJ//ktl48Za45bIXPhB7KSgscA8bf7g88dDorQ9U
dQuK2yE2flh+3TFy1Afk9aN61umy8alIH6/xSR8IoHxX2qvExtoq107eX/KB
zNIO5iF+NvYvcGzOUfEFKunSBiF2O7aNVdK/p+ELUQevqMpfbsc7g3/jfzt9
YY+i6Xq5unbMY1HTF2riCw7HJBLu5bfjsl/f/jtw0BduONc2PfJrx489Cjet
i/UF2fCDvpMr23Fegk/J90Rf6DdSmdrMR+Sv2SU8kOYLWo1edLNfbfj+x9ez
eQW+sE9rWYL5GHGfhCh0C9X5gmL+d7p5Sxtujr4W8rfXF7C4S+S+w224lPGc
836DH6yfpdUezm7FTuxzGrfl/KB195rXy+NasdibqNoqBT/ouZ8QW01uxXly
G3Pd1f0gumF/UfWhVpxW5+/1EvnBq+Gchv6NrZje/Evgob8fDA++kRi+1ILd
+qWcmlv8QMvy13Y2voa73rQY/+b4wZAt02D5lWtYacJ+mxn2A4mJJBnTymt4
din199MHflB/bmg2MeYaztKarfo2TNSzJtYa6V3D7JLez5rC/hC+7a7x5cZm
LOF2Mv2Kuz/YVj92oGY14UcTQx2NAgHwbux75Uezy1hZd3u1glkg1CWar7vJ
qsPBmmzOT2YQVA3xdx42KMEozTM3fyIYbvUkCDg72eFQl0buielgWHePpcrk
WuIK1QVdl2/B8GYuIsJrygD/7i/iyv8JhpaGAAVmozRqW9+t2yx6DCRKQhWP
uToijQvq3MFdxyDO5Saz5mwQ2vhoYbd0yjGYWa77dG13DNpfaZWzmHEMpifO
/7uJY1EMuXiMm3sM/g0m3W9nx6E3EttzGpjHQC2wXdbKKQEx3L3GjBqOgZO/
keQUSkKiX7qzPQeOwaL15pIVAmno39qS0Tr5EOjV2aIYti8XDfZfuDirGAL8
kebP1nbnoovZxEirhYA5M7jGBPKQy/IpoaFdIWCX1Fe7e2c+ap431RLfFwIi
DprEt2gB8h/5kpgYGQL7TN/NyXgWoceN+7Z49IbAwIuhjC9vS1F9kPfnhsch
MGd+TrJxLQPFKNHaFwZD4O+e8ESVPQykWlWzr3QkBIYlRGb8mxgopXjhxKMf
IXBcrVrzWxIT6UWfu2uw6TiMpzY6/5Q6jar38PuvjzgOtdF/7Y3WV6AD+us3
rog6DpTffVfemlagRVW1F4uxx8Eq9vtfCKlAR0QPWo2nHwdLxPR076pAYs9r
lFrLj0NA+6z5O78zKIVkNuF45zgoyHQ9m2dVosDYxMA8sVBApPHta2OrkGRY
qXzS+lDIGVZwbM+rQne9LryKlA0FzoNVfaiqCm22eGrtrhQKrwd7BeZvV6E3
IptV1A1C4fO1AoFlgtXI9lTXpwfeobA65QQrI7Ma7bi2FLy8KRQ6kzf169Nr
0AFJHpPR1lDwWubEHUutQeQonrXXO0KBQcoxPl5cg5oRbzv5bij04TcZ2y/X
IJ1HfPxDL0NB2dqx/xC3Bul9XF7evBgKzWcjTa0ta5GLtUBoLn8YzMVW9Cg6
1KKoBgHTQKEw+DIj1zl+tBZ1UAQn5MTCgLbcUkE8ohYZLQrtzFQMg4Bt+eXr
qmsRrF/50NM2DLQzRFvu/KxFXtErKw0cwuB8VBrr9VItSny3krLucBi0jIxb
PxOuQ7drV61/6BkGmcLeLIpcHbLQXO2z+0QYWOueX3HEvA5Z7xX7s7IsDJpF
1HrHMutQYKNY/0RlGOxN4vjoFNWhzNXi1bdrw+CwzZGLwWV1qPe5+B76pTDo
cL9vl3yxDtmS1hW/7wqDuhbpMr8Hdcjh5Aa1jokwuLK2G33lZSHpB2Phi9Nh
cDbnRbuYMAtxJRs6zGbDQCa2YFBiDQuFNxvbPPxL5LvJ87ddjoUeRDTpzAiR
Ie+M7DBdl4UuyTBcClaQYa+QS/MpYxYqvB0doy1KBkHLrGOnzFnIdY3FXao4
GUQ37GvZbc9CnxpeHFySI8Pm0R1L331ZqN/xOq1angzHfhekiwezUPPC2XLz
LWRI/TVyRyyMhaL3BL1PVyYDqSfrVDOdhTxm9guqqpFha9m45sFYFjIr1VZ7
tJ0Mci1WxoOJLCTy/k/4mp1kyNC/+pSaxUIzmaOM5l1kuHF7d/+pPBYa0LzX
4aRHhlMVFrnlRSxUFpfHd9qYDCZmc47mZSykKr25aLM1GfzVumKlz7OQ6K3l
bXdsyCBC39pp1sBCswGTr/32k2GHktga28ss1NF6bfNFRzIst7qwgbeFhSqP
nrK0PUSGfbWvtl1qY6Ek/tigGWcyjFl9rzXgsJCNg1WTtjsZ/nlNchdusJDG
vOrzQU8yJL/sZql1sZDY2dULVBIZZFZvXTC+zUJzlj9kpfzIYBW6gl/7Lgu9
mX4F1wPIkOSR8Fywm4VuFt/wdQ8mQ99IEhn3sFCNQU3GUggZlGfFBl0esFDa
WFpjdRgZiks1eQZ7WehYxrEn5uFk2Bi0ZqPmIxY6sOPAj48RZFgBFQahfSyk
80JnQwaNDLdb6fF5/Sy0IVbKSDWaDGa9rOmCxyz0d8ui56MYMmTHbkmKfMJC
o73c5NB4MlQ+/oaMnrLQXUrPuTVJZJASXOv8geDzGxofNqeQ4eT9zLbQARbK
wQVfnNLJ8E1pfc1bgsn+keK/Mom4AkdK7RkLOa06ons6h/j/9TA5d4L1Wkzc
DPPJ8PCrwSUKwbJuW+LfFZIhVH3dskCCefiEauNLyND7IWAGCP5wfrp7M5MM
zeoRj/4S+e/bP528c5rQY5lBZTnBjXOtov4VZFA7xvGRI/hv+2mVt5VkGL1p
4ptL1GsbFWtxoJoMF1qoye+J/VUYeHveqyVD0e9QWXmCp/9YRBvUk+HXcf4e
c0IPoxvKpVfOk+GNqE6yHaFXTtzKq1sbyGDwjscBCD2H0Nfe05fIsP51kKYU
obca7+BH0atkmOznlX5N9CP6djtPSjMZhrnJEvFEv3qTy2UWWshwhuuQuPI+
CwUL+Di855CBznra9I7of0ePVYhLJxlKA5MjN98h/J6pmt53kwwx6xMbbG+x
0MUVs53td4h5snX46Uz46/ej5y/Vu8mgIm4poH+d8F8eZ7b6PhnaF+EzL+HH
yTWJyjl9ZDC1cDDeR/jXYMDXnPcJGZ6+5rAeNrFQVrG1B3WADGIRCr3aV1hI
RXJNiddLMiDq2gecCyxEf/n98vPXhJ7DzNrX9YTep14+sBkiw8LIQMdYLQsF
ypxd0hkjQ+6/UP6LZwg/yGscE54i4lmZJLkCFpofW5sW95kMGg2Dr+NzWMi6
9mfV9y9kkO91+tWbwUL/Kd548e4HGT5ujEVSxHxvU7M1a14kw9A4/9kaMgtR
p3e4b+OlwO75B4L7Qlio+5I4vYKfAqu7BhSGAljIX/PtpTQhCnwXYA11eLBQ
/a5gKTcxCizntmkF7SPma26/zhMJCvhrfhQ+asVCVmwte8v1FNg2yhrUM2Wh
cYOFlB2yFLjvM2x6dTcLKUHGV34lCqQJPzQskWchlk19T6M+BYSfy3vu+Uqc
14kzFYeNKHCjT/ap46c6NN2+O5wHUWAmSD3UkluHdBR7ZJ0sKJAo90d7+Blx
/i9NUP7YUeC4Nm3VVGsdGm1RkbXxpYDjl5NsemQdSpmifPvuT4Ed/6Rdl0Lq
kLJCR/eZIArEt+57Fupbh8LybSjfQilwUpHkJHSwDi0GHes+FUWBUzvDhbbs
qEMymy6RJ/IoYK+0+YX0+1p089BPy8JCCvwJW6a56zXx5ZpjLGNYQoHNt24d
1X9ciy4u9N3LO00Bd7WKDN7rtUhvcEZ6dx0FOFdXrckvrEWHMzXvpXAoMGQ/
uqvVoBYVfr8mpfCBAm6OZ9q5sTVohhQeg8cpQL4nkddAqUE2A5ojRz8R+h8i
cUh+NWhZ06U65gwFtj+OF62wrUH00HM7Vi1Q4LRI9qSudA3y+FRmOb8qHCq0
DyrqN1cj9ZFESr9uOHx5zDu7/EUV6um1fxCdHQ5rw85Rv344gwqcVm2ZyiXi
d8t1DHrOIJfh3hi3gnBwCpo5HnbhDJr8ZqlpVBoOvpY/jcuOn0ErpYyY/yrD
4aCyfe/KnxXIMUDZL6E5HFj/Haf781SgIX5e3rTX4WC22DCuI1KGZo2a9Qq3
nYDCFRcNrL+XojXLtE1fPDkB0r+0/p0/kIm2+NOFX4dGQII+j8v+tWQUP2e7
AwtHwqInN8d5NhRL3LRO8lwZCc7nHEp8f4Thi6kWz5dEIyHpQ1nQZDQZD0oY
nQSJSCA/EP0ddZKClXeq9dzaGAm/vSV7ntBP4IEwYc+7OyPhYGysv4EvDSt9
upf3wD0SVOzfhxX9jsPXr94aC/KKhOaSnvP/yPH4AP2GjohPJNjIt59aOxGP
Twq2vrEJjAStDkmJ1UEJ+IlindKj8EgoWxem+p9DIo4mJd3sT48EptvT6w3S
ybj/rcnMs6ZIOKl+gCSbnoYf39DX29MSCdrfukfq2Wn4yVmdpI62SFglVJ7B
P5mGB3xUJauvR8IOdbejO23T8YupdSah9yLBoCLxH1k0A4/8mc4Veh0Jhomd
G42zMvFXmfLtxjxUSMpPyrH0yMHf/pXSrvJR4aSBlN50Zg6eHSm4tWU5FZS7
BFy9W3Pwj9q0QyIiVKhyG//dtiIXz6uFx74Up8Juu/5tYm25mNdobx9lGxVK
rt5xpvDmY7Gjv0Lq7ajgeCG9cj2nAAdcO0yxc6CCkcLYcqe+Atwp0hY5d5AK
tywMNcLHCrA/JyLOypWIt7secxQuxBzJ2fxxHyoY9m0KqnUuxF5Pp5uVoqhw
VGVDc9xMIW5Vtm3vP0mF6Tf/8vp5irBIQsN1ahwVLqFd5ktiRbhFI/hudzIV
Vr7JecmvW4QFcyae++dR4UXlT3ppbBG+bMWdr6+lgsHMRuOXy4oxf6XpP7t6
KmRG5F3XWleMXX5W8f46T4X4rz/TQhSLMV+dp8iey1Rwf9C4LNmyGB/ifScz
waZCdfWgkE5KMf57/aXJtn4q2EfIF1X9KcZ7tfpSzs1TIVCnMz11oASL1Kol
KPyhQnb2p7tiwyW4VyLr5Jl/VFhuzVqW8qkE285bhRfz0eBnvAZDjKcU2+Eu
z/iVNLjt8uHeiFopdtrfYuAsT4PTN/dP68eV4nVYbPeAAg0iWkw2C2aU4hea
FK39ijSoEtI4yi4sxc4SGsrmqjSYfCj4obuuFB95e27dDh0aHGnKXlPyoBR7
BpV/FbAm3tfPJn1dxcDybxemEm1o0NX/c+/iOgYetXWZ+GtLgwd30hy+yjEw
SXPd8KwDDf6kUksStjOw76+8h8NuNGAMbR1w3MfAikGfu109aKCcvuFDoiMD
j7/Zd3vQiwbyvMvXlroycMBNIU6vH1HP/ddDAQEMHJyaVN8WRgOlC82itxIZ
WO3XaLVWOA04blnP1mYw8HQgOtMYQYNVzxx/WeUx8HHbv8U1UcR6BcMxHmUM
TBanJuYl0+D+fQlBsyYG1kwdjBFOo4Hme8rH1jYG/janTU/JoIGZgY+9aCcD
h7/5EhqdS4NDlXzdId0MHFkddNSfSexnhhs18pqBZ/aZfBw8TYPvyr9mvYYZ
OHBOLNS8ggY1Qz/V73MZ+Oi+znj5ahpcsFW4uGeKgS1+ita+uUiDg/OHK1b8
YeCbZ9+r7b1EvK/c4XV9kYH1bNgt7VdoML6tXtSBj4nVznp3l7TQ4N17qvd2
YSYW29vyye4mUd/KHzOX1zFxzveM8BtdNOh29HXL28DEApXuf9Tu0MCDnl18
UIaJf88KrBK+T4N1MmmvCuSZOOLM21JaLw10Trl+FNrCxDN7rm4cf0SDBO21
+gGKTDxW4ap55ykNGp2Zli9UmPjIHg2O1iANigq9eCfUmHjwG59Z1QsaNDFY
esPbmdiu4mWv6GsaCAT4T13fwcT3rRoPxr6lQTFfrVSCFhObfUsYmnpHA5cg
tzuqO5m4s/yQ35FRGtw9rt1/XYeJr35dpOp+JPy1bOlUgS4Tq5Y/W2JN0GB+
u9XK53pMXGd5PkNikgZ0Bn0njwETb/waszZ5mgZvjRmiYoZMfKrMoezbDA02
bT17RsSI0MdSaYvXNxpkrNCI/kRwzpffDf3faXDAVHnqsjGhT9ljHeM5Gnga
mdq6mTBxvEXdjYZ5GrT+pZ+ZIXh+hm4l/YcGjkmPhwMRE4ef3v844x8NdvdZ
rOkleNpcweXXEg1I715piQET+8/Mjfrx0aH7jmsxEDx66mHQ4DI6SJl82XyY
4CPmVbNmgnTIXEobdSR48HPEySZhOqwX2vx4N8F2p/Yuk19Jh9vONz7zEnzf
bGNunigdsmbcjFqI9cw+z677t4YOkwb7/PcT3MnsqTwmTgd1L7GIPqLeXWYV
296so4PFwJGfOgRfniZftd5AB+3CrZPJxH6VmZb67dJ0mKsIc+wg9Kgxlb6t
KEeH/J+GGq8I/WSnZ2xKNtFhsSwz9h2hL4Nx5xmfAh3+FAYyH+gz8RrTU0cp
W+mw5bGD2RmiH1lTIR9HlOhQL3P7nAvRr2UM01A7FTqk0Tg9f3YxcRxI/upU
o8Mtrm5NGtHf+cnJeDUNOri4G+suaDPxFCopFNpJB/tru0+XEH5he/YNNuyi
Q8rMru8lhJ/S4gU22OvRIVlDXzKK8JsCpleWGtOB27mvfVqJib8ON43pAR3m
I/dujNnKxDcWJ7cOmdGh/JBi6sxmJnYxcW9QsKbDxLWKrnhZJlbyYMzcs6FD
obZeaaUUE/+IfawVtJ8ORuOBedWSTJx/w5R9xZHQd73NguMaJu42Urpn5E6H
qXWCx4KI+Ss56ik06kkHdJ3mcJGYT++YU/uSSXQwq/Xq7f/NIM5vkYEHAXQw
vcR/qHuWgXcafhk+HE7owTR0ChtjYB43ZYXfEXQYE78d8HyIgfujvf3O0Oig
L2f1QP4VcZ51PJt6H0OH8RdW1IB+Bq7SZ8+T04l+LXoUNnMYONT1m6FEFh0O
jNB3mrcwsGGUanx7Dh06f07nci4z8At2xfLFQjqEU6/kH65l4FV6iWLZFXRY
FzoVeTibgaN326izmujQGmZREHuYga0PJ4dZt9Dh9/N0sTB7Bl5H7WyeaqPD
CkNy1R5rBr7aqqGv3UmHRF7NkUv6DDyhI26Fu+ngfDfgia0MAzvtHPJ8/ZYO
u/1ksqZfl+K84xJl9sN0ENrL4Jl4Wop7ztkO3hulw7N8xS2PiPvCQPaGdfNH
OuQ+f/zyMKcUyy+v1Mr+QodH2b8DqcxSPP3Ck9+YPwoKEt6/H7YvxcnR7+ur
VKNgYWu99lBTCe5skRmT3B4Fiy5txq7nSvDczEGZ3B1RcOihxak7FSU40Odu
fpROFMwFsAw90kuwnS2L7mgSBaJxtnZstxIsvTHAZpljFBhuyDPk4y3Bzbcm
PwdERYF0pZtDtEkxRpR0rlhMFNwLZ91t0izGj+S3vrwRFwWktOsrXygU44l4
9y7xlCiA9vJqrkAxljV5UoTzoqD70VFT2f4inNbRqru+Lgo0xa/slHEtwkeu
JSR290fB9wXejkXvQszPklynuDUaZiNkx2Wy8rBNrgrzjlI0bDO18FIJyMMF
kUZSJJVooLE+KG6yyMOyViS5sxrRALvzi+/8y8W7Jy4pSulHQ/ahBw6TYbk4
WMVy9yq7aGDu6qD8ts/BTy6dcP5Ji4aHMqsrTvBk4TNtT07fexgNN+e3N+/R
SMXqPg7DWwJPQr30MYUfiTR82ffL9atrY6BSy5Cic3EvVuR1cv1zJQaaqFdC
pmZD0IFHaG1gcwxoeRiWnI48jmKYag8GW2Kgtfmjzb9fx9HAdn79y5wYMKw8
qPnxTyiKO9K8wftODPhPJXrJJ5DRi2trXnW/iIHUBLklv9hwlObfd7joXwzc
NBljbj1CRU1aHNGlpRjo2p0yls+goqG/dd3H+GJB4oyO2OAAFWkXx+y2FIyF
6y8LPV7b0NAwVpOcXxMLbts7RV7r0dFuqazn7ltjYdONe9mVK6PR+EMrJ5V9
sRBStsV5qjAW+a1kdvfuj4W1AR8NnPpi0QfbCb2QAwQ/tuZLFYpDY33pclcO
xcLW9a5jKC4ODT2+P67jFQvXEikJS/7x6NkzmyiIjIVcnjO0fkYC6nprV+l8
NhZ4az/cn7dKQkj27JqF6ljoKaSd/uWVhG4e/ZJUVhcLK0zfGb+MTkLX3+UH
vLsQC3u193B1LyehtpEnmj4tsRB4ORgSxJPRpfeOd0IfxIJ8UN+ozKtkVDZ1
+L/U77HwKmU4kHdvKkqxqnf4/TMWBrlF9xLcU1FY9c+O0PlYMBJ5/JlLSUUW
ziW5zv9iQbt1uMq+LBV9uf1UW0UwDtBQguijT0S8zDb2kXQc3A5O5zdNTkMz
1mZi4mZxQOL1cnl1Nh29qi08mW4RB2cvPKXUXE1HdxZHP/yxigOvFEtFu1vp
6FRLfPuHfXFw6OnOIzbcdGQuf+No26E4SFVoH3yhkIFO/dI95xoUB7ZVbfG6
lRnIvH67UVVBHNQv8D6cic1EQvpi192L40DDLaPGJycTPXo4py/DiAOTxqz7
TWWZyOkb1mWUxwG/HD/Pm7ZM5GvkuDOnPg6e3LCNOPI5E6UMUFXpnXGg68pj
tv5gFrL2c7uwi7hV+s2X6ct7ZqGV80j5+604GFqxIYjvWBYqkRNWCu2JA+1H
V5BjUhZiBZZv9h2IgwHd64WbrmSh7kW84cB/cXAz9HYemTcbZRXWMVdNxUHf
jqqHK1ZkI7utmZIPP8cBm+azI0EiG73Y6yhh9T0Ojrm+tPmhlI0mSj6sNlqM
A1NroVoRm2zUuO1B3gJPPLRrr1AKc8xG5I5Lq9r54+Hlvo89jUey0fwIdYW2
cDx8jIl6cy04GwmpCQsqS8TDN1O/ya8Z2ejRjc+pHyXjQXqG7bKpIBsVHBhY
VisVD4cP127dxsxGG6jlfBs3xcNyN6Pnt+uykcqt7YviqvFAq87YqHozG80c
FIt9qh4P8pWJVVvuZqPm8bk/eTviQciU7+zcg2xksLJrQXhXPJxcfJuh/Dwb
LVbW0Xt046GG6j6R/iYb3dbK/JViEA8Sj0omukayUdrd41Qz43h4tpiY+exD
NrJxdvy5hOJhRFSxD3/KRv8DGp7kUQ==
       "]]},
     Annotation[#, "Charting`Private`Tag$4887426#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3k4lN8bxu1RyE6KKIksLbIknMc6so51EGEYuxnLYCxjkOQrVBJCWuyS
kCiVoyztUkQk7RRZIq3iN7+/5vpc13nPuZ/7uZ8z76tIpjlSuDg4OMq5OTj+
/2vVWnN5Lcc8OixCirbsqEBrtRifJ6IWUKDiCmfN7Qr08Apha9en7yhaSHdw
/lYFylKXPnTO7SeqGuSc2sJm69qJosRHvxFn3CFTo5sVSFC5dYBktIzSvtu8
NWmvQI8vHhHe27SC1GyfdO66UYGU7cRMYh9xQn0dP9f91gqUIZjg/ZGHG3S3
qpyKvFaBJh6+S3I04gHytolEnpYKVEVoatNs4oP8XkPnicYKxMe34UXp1Boo
pQybal+pQAHdKQtrlQRgUHbWOPwye39josZkwToolAnIPlPL3n+1zcqlXxAU
t0m/yalm7397c1CXgDDInQitDK2sQE5n457ZG4lA2kll3w/nK9DhJLW3fK9E
IKDPUINZVoGuHnwzeztOFNJTP5/gKK1A4rIEQfUmMQiw+iXfXVCBTH//kf1g
Kw7qPl4HePIrUPTLBtXiKXFQ++qyTvNkBRookCLwK0mC2GB4oeGxCnRKfCL1
Y4E03Nyr3OiQXIG6F86cKNGSgZWrIlPjCRXo+zPbc479MkC761jmEleBnE9c
u9UpIAslm6umOSIqkITQkZ+lSZugXdQtz86nApl91eNz3iAHHOkOeTs8KxD9
0VeJda1ysCSf2D1PqkCD/znviZ+Th6m+Q3i/fQWy4s5r3dGkAJTuk48fGlSg
9wvThhmrCuB1TN/gl24FSnhv3vPOVhGC6ycVRLQqUN2d3wNFU4rQtWx3YFWF
nY8U3298SlvBwKr15Ig4Ox/Lu9Q/FGwD7ufXPU58KkdjBRs4hqa3gdSfnz/f
j5ejmV1cg/dBGRpE1VQ3vSxHIpSBxIYpZQjVeuhu/rAcuT6JeRRvpALnMtKO
0C+Xo3dn20NEJnbAnwNpsva0crSgW27EvV8NJDrRu82B5Yjn+TGxH8fVIOGz
sPfIoXKkzOfV/mqfOshXz5/mtStHYdRVgeocDejky7hDUCtHSZsvDpbJ7oKi
ms/1Ge8uoiNhBUYy5rugqkZM6cvwRZR7I6vmJG0XnP/kN6XddxGdc4pOSu/e
BV5SSf657RfR3aNmSiHU3cAbVUjTy7uI+OcnorXv7gE1+1O044YXUX6nmvjj
YG3QNjx99mf6BeTRIjpDP6kNze3imkXxF5BCzc9euRvasCQtck6FegHVH+9K
oPHrwLEAjRsypAuo+9DB92LVOvCQ9fWOtsoF9H05q8n9oy5Mr9/vl3HvPHLe
N2U/eUgfNkrNRlj9OIfEm2uyuZwRiK+cbi5glCJps3SaboYZcHU+eeQ0mo9u
DpX5vn90AFyLT/flFWUifwmfnhNvDoB0wXpxc49MJOyoqIoWD4Bi+uFIoU2Z
yOdJ+XyJrBVIoj0Zw+eOIp7uGpZLsBWktR97dbQmA9k1NZ+9z2cNg3JfCf91
pKN3x3pHGoxtIHgr/VznagrKenDU0MvFBjQupIa97U5Be9ccuLAu2AYEkyyP
bslKQRlpj4KCTthA/bcgP37JFLQjvv+n4hsb2Dy4fcOMWzKiB4xKnk6yhZVW
352u3QlojfGsQ2KbHailUp+YDEUjO9WBzKeP7cBou8riNt9oVCB6HW99bwfR
LeumIr9GIeX3qRqPBe0hDaUGGvJEIbPDkgJyZHvw0LqzvUcvAnWS5X28+YjA
9HmRfiosGC1XmEtzNhGh51/O+nZ5N6Sw4fqeSzeJ4OauZrnhsCsyy9lh59JL
hPWK1746fXFGx2LWH6l9RQSN2tHMszcdkKzFyIIDnwO0pSK0f94C6U2G9V08
6ACZQvW2Q3v5cIxq/hEzPkfgcJjqk4sk4eSUN0O3RBzBiMtg+3S3G84Y3qGi
vdERnsXU5pRJeeCCI3cebtvlCC4Vw+ltVz3x9Xez69d4OMJW55uVQVM++O+Z
A8UPLjvC5sJxxQsvKZjnW/608XVH2EB4SSqMDMCClm8N2u86wuvFeNEkgUC8
6Ufsm7phR/j+SIUlohOEjRwrlLI5naDKelxmT1oITl272mDn4gQskefrCRNU
nOVrxXHP2wkUPDfzvw6n4bzrpx1QiBOUlIfvcP9OwxcD1L/vZDnBtlMZPzhZ
Ebj7rvs+0Von4Nu8LlAiLRKvSWzpGlhmP5/s03MlPBrnTAe/dKtwhh3iX4oC
RmOxWX0Tr1yDM+SJ0mcVBOLwctjvPe/anCEm7vI9b904HDabmRP8yBkkePa8
Cs6Lw1bfqk0SFpzhbVi4e6sJA/P//FRfAi4Qd+ZI577seNzZpjHqbeUCu84t
2MHVeMxgxKxRcnaBNLkCricj8XjyNw+5PtAFZg6njDC2JeDe5a3St3Nd4KlG
3meptgR8mIucOj7mAmbDuxezuhKxfldtw8UJF5A+d+fX7/eJeOHwt1cB8y4w
MCQj9o0zCZN5U3XmuF0h76kMZ6xREgb+89OrO1zhQ8GPk2+akvCv+5My3Xtd
wajxhPrJJ0m48b+dFplGrlAquFnk8eckvHkdPi/i6AqbeXi6h+WYeEVo3EUx
3hUYDNap8DQmbu3bdvhTmiscjjxhFFbMxNTj4Y212a4g2/hOe7GJiV+L/Fu7
57wrhMUYXah8w8S3xDd1mtxzhepjrwaLtJMxfdBvhu+ZKyT/Xcj9diAZq52+
JPto1BVOlbRsfOmVjIul9sc4zbpCSpjOZbv0ZBy/wWOHvyQJvPXUJEYeJeOU
K1rGfzeTwD/tYjTPeDLOMBdyy9tBgkXOysZLc8k4P7LzSCciQdMF665wURYu
WVNcSrIiwZPGqKU0RRa+eDb66qwzCRx5VbZK7WbhxgfK7zaFkGDKP3em1Y6F
27w5fl2lk+AfDWV1e7Jwx9KIsDWLBCA0Z00MYeHHijkG8fkk8DgQfurlYRYe
aAtwEjlHAn7u4y6vj7PwqC2EVNeSQNuv7BK5hIUn4xcLX3SQYJ10hvhcIwvP
rn/SEPaABLXBEvrz7Sz8vbKqh3uQBLw7C2uju1n47/6UseJxEkRlDxknPGFh
rufui7u/kGAu9TkXzxALCwRprX2wSALm+mNfRcZZWGRFUNFnhQSbtDlWz39i
YfkdnXa54m7wwUBfFBZZeFvnGco2eTfAsx73SL9ZWN01OumWihu84zH2Xlph
Ya2vNqectNygEsWGCXKlYP005bopQzf416Ap68uTgo1lOO6kWrrBtMhiawxf
CrZsGBmWcXKDMM23z2z5U7Cd2dXZK15uoNEUbz0lkIJdRrN5CUFuoHkGb7Ve
l4I9IwI2jUe5AW2iySNCMAWT+UArhukG80XEeXehFBxcusFKMNMNuKodP/EI
p+CIPYs+5XluIE38UUBnc9z9x3H6Z90gOT9+Wx2bkw9V5T6rdgM9+tiJSjYf
+c6qDGp2A/M5+ZEANmdnud9aveUGFbzGKzPs/U8paA0U3HMDNQlFAT02F7cK
Tmk8dwPHHjFZS7aeCzYTHD1jbmBjc+H0ZrbemvdY2nPSDWRqHyd2sOu5wjij
ufjNDdpe5T9WYtfbKhxtnrXsBioffx91ZPtxq8LGU3GNO9zcHtNtxvarS185
+rqoO9x69dxjhTMFP+xf/c9+kzsMPPab51xl4f6AkfMTyu7w33GlfWfY/Rhe
bm5j7naHM6uTx++y+zWel90nYeAOXHIN35kzLPxJJeDTJQt3uFezu71ngoW/
dqBlEwd3ECxvni17w8J/phZUIwPcQUTiYrJoPwtzpj4G/kh36M8SGa27x8L8
0lWkc4nuIKTWVzjSwcJSpu5Hnpxwh2yb3xumL7Hw7hL8VvWmOxT8aW7XTGXh
z8WnBwR73GHjnJ2YaSwLlxWH9s71uQP3NNXpLzv/a4ul66+9d4fZdH6TQCcW
fl9EizNe6wGkUsuFrQosXFRkHqIk4QGSKa+GY8VY2K5oo9caeQ+4MXiXL5aH
hW8W3jN5stsDrvXnQvwke14LNgu7u3sAzzpb/sO1ydiqYInDwM8DBFqt6nTP
JGOOgkeL8uEeMJIV9rgkMxmHn44b+ZjiATtPCZ2LDEjGFvlPKyJqPKDmB7+S
lXwy/nmStT/zpwfs2tUby2AxccNJF81QzoOw9ubXfusQJvY/qaZot+4gvF73
aW2fMxP3nxjmk9h8EPjeL/5aUWHimuM7n5+zOAgbo8wlBPuSsEfOm6C20wfh
o2GRqdi6JHw7ExVMaHnCnIN26DPnBOwWOttRaOgJgln5Nmv0EvCC7dlJS4In
nFug2K7KJmAV8b96lzw8ofd3XwbxbTzOP9v6ipbqCX4kpmdOUDwOadZQ/N3n
CUUnaQrpNAaWGttYvy7EC9bvDp+KPBiLaTt/3dl1/hCIdUXmcN+PxD8kxGuL
z/vAC5k33199PojvVu4+n1bpA2c05n4XEg7i4zrEwpA6H2g4ajl2tMoDq7jl
HNFv8QEHwWE9boo7Pliyhjx6zwcylUSUjD664k7FZVnZOR84xaWn5zTjgLM0
P2WfMfSFhJd7mxtDALti7vRUE1/Inyt+dyTKCG8lbkkMJvgCx8VNblyiBvhW
pHfwPgdfCJDh+nDXURfPtYyYj/j7gplaKuJ8road9/etyGT7gpRssJBwhBja
bNkWUTTqC95G/cn+W8xQflfZ2Jc3vhD/s/f8ATtzxI8yLPd/8gVRne/CG+Mt
0Ly2i8L4nC/cpzdzPXtoiTq3Lj7dykuGnOQXt+oO2SLyqubOKzvJ8McoeFpr
qxOqaq2a6Ukng+JurjfHUg8i2T257tJZZNjef05JiNMT5V6O6Qk6ToYktdfh
d1meKK7C7Oy6YjIoS+uue5DghSzz3ts4XCFDY/rgKZ9AbzQVLl8/NkIG/q9N
AzezfZHGtoKQRU0/iNxxxuDRjD+SEAv5prbXD0w8dlYZbaagPyuGDP99fpCX
3KdlRqSg+y8/HXlh6gcdPNbT/E0URM7WvtDm5gc9sY0PA8MDUMHi4HBimh/E
Sy2FGT0LRElvaw61HPUDuS0muZ1/A5Hfk6RPX7P9QIDU09i/LQjtqlZa9Cr0
g2ID6u9iRhB66EEXhno/OF57qvGVTDBauSNuzjPkBxyvVe+9MQ1BHxsmHxm8
8oPc2LiafYEh6FHJTceYt35gua5HUCErBBXF+PlMTPmBp+No2am+ELRH9Wri
/VU/uP3r2CUBx1AkI3WUi5PXH6K2pRb1RIaiVa6D/+1b6w/PWIy9QidD0eMx
rsI6CX/YY/zXG/WFooATjs3Zqv5QXb/UtNM0DNkwlff1aPrDNt2lD5beYUgr
5A/+p+UPtnTFppmEMMRhdvEJ1cgf0vg45EYbw1Dxz2+fiU7+cHv0W6KhdDh6
eujkZkmmP6y9oxym1xeOclP88hdT/UE6cyms9l04srmoLfA8wx8kD37ivfY9
HN3/NLKQe8If9qpWM85toKLOsC29/BX+wDOv9QIfoqLk3O/6kzX+cKmFO0SQ
RkUGjb1Xei77A31nJ2UpmYpuLIacSWvzBxph9WTpWSpqTrgatvyQXe9kWt3+
ISqKKD3ybvSpP9Qc0ucN/UBFmh0k1xuD/qC1V+as7jwVXeJcRrHj/hD41yK9
hp+GQrb2tTh/8Ida4+h+KwkaUjE/r6r12R/85C1MszbTUEWmmfj8N39Ysm5+
82EvDZHrpDL7fvjDk1JrgRUjGlJ4/Hm5/q8/cONntFZLGipdnzMRzEsBmlxn
xIoHDXns9j5ouZYCpk2EsuN+NCTjtLtfeT0F1jWM7OoMpaHTBS9ufJChAOP9
piOrCTTkfL1a864cBeRl+yyE02hIbDS+/PwWClxQmrFuz6Sh/r/WMqztFIhd
vjzBc5yGcuXkc7zUKfC+ol57Pp+GbNA8p8FuCkzIfdFLKqahtb53Y2V1KJAS
6Ddfc46G7qflT//Sp0Bz6kbP2AoayqgI8BlGFEgIE036WENDZr16L66ZUeC5
uJjXXD0NcX1ea5V/gALnWCqotJGGOgVed0TZUcD5UrzV9FUaYqld0XJwosBC
AS9rrJWGjGxTa3a6USDO5PEY7QYNLVOd5IS9KPDp8hO/yps01H5iW95XXwpk
+xIVEm/TEKP5J9+jAAr81zak/K2DhnQGHyTWhlJgsmfN/NpOGvq+VDJ/NIIC
VdkfEu+zuVmaSgmIoUDvupCHqndoKHIfjJolUMDStOSVJpt3HRSz38qigJpW
3JVh9vrZpI9dnOkUYE2E7lBgc31Zq97bTAp0qP+QFcLs/ndmXu7IoUC+TkPW
ObYelfceW87mUYCTJz9+mK13glujMLGQAnynqydb2PVUbFtd51FKgYtfPg/q
trHzQHiWoneBAmU7QnoPtbDzEFy+JFVFgdnG6qXtTTQ0nhUTslTH7n8wpBVd
ZuejnvBm4AoFzjrtDWuspaGDfRucm1sosEw7fJVWyfZ3tMXwzw0KbPSaraOe
pyHlSfvtJpgCD2qfevGW0FD24pRIVjcF1CUtczVP09DC6pE/zx6w/aw3fjKf
S0NugoofNzylgFiWnIItOy8dMree+A5SAF9+lWGayn5p3r1w/ts4e/29leMr
kTQ0b5iTte8jBdyCxH/eDqYhVysVeuoXCqy9ru4j40tDin6HCKLfKZAc/uLD
RTsaup7/cGaXQAA06b4d4tlGQ/IXKMMM4QCoPN2mWLmBhtIvc9zpFA8AyR6x
0o9CNGTfq5NPlA+AqCLnzcZLVDTx86J+hFYAJG9PIvljKrLhMVK6rhcALnsi
LDmb2PMsMiLEYRQA6+xOqcBFKmKqrn933DIAxovb/c4cpiKJg4lHr3gFQM/t
DNaKMRUlBEpF/iQHwBqfeo0ru6jobXSTBwoKgBNuUxTuzex5z57UeBoVADlB
q7vL/4Qjkw6nwdmjAXBmv2DVtcvhKEJRXVGzOQB0bkqq5HOHoyGNe2tj2wKg
RU2+9MXXMGSgT/5++1YArFjyKPS8CENrnIru2d4LgCv72m+VV4WhsnQeavhY
AIQJb8kuNwtDjyfH2uv5AoGxvPnyZ/Z9vFY1Nq94XSCUnzIekHALRYSQ9SGZ
IoGg+vqVN5dRKLr71XiDv2wg7DmaUK8oEIquf6uK26gZCJRG3t2+pSGo/G/E
3iyXQOgn/duf0xaMEtbzNgRWBELUpeSR7q5AdJ1YdsSlNhBsonSoDy8GoqWT
ul6mDYFQkCSreSE1EEVIhAhuvh4IngcDd941CkQBG56GDD0KhIRxY427rQHI
YeuZ7eaLbL1/d+30LKMgFV2NC1tMgkA3x/VngL0fEvI7PhNPCIJDyeF565X9
EPurcN8zmyCwvql/In+ZjG5NXHvOIgUBXebXVa1aMiIWGPG8DguCrJ0PHlzj
ICPGkn1gYWEQcH0h8x6r9UEPrkZpCM4EwRVv0o7aJwdRyK7rN5YKg4Gf37rr
aSAR3XnCp7j3bDAc2x1+9IoQEcmEumRGXQwGzy4FJ8lAe3SvcsF1rj4Y6h69
zM1fsUVKGzW+f74TDDCiwXNS0xq94b2oOTYdDFxLF7JVT5kj51fHyu+iEMht
eyJbv7IXoQzvnOOTIdCtnpnNImljqlv9++ivIWBivIgqj+jg0h2/dd2+hcB9
y+1Gg826+E9f3nuFvyEgt2dK1m6tPm6V7tVtFg4F6ijllWCDEdasVX8/qB0K
t08tJIS/N8Xyj3/ryKaHQr4XlXn+uA22LbPIXskMhaB1eIghaYuTIk69e58T
CpeW7hxpKLbFoxIa2ZcKQyGJNf5xd7kdLvDyeWdwKRRuWmfWeLoSsfBc7zHv
56Gw95xhvwnREf8TzX9boRAGRX9aMwy5XPFgX23dwrYw8PxOEBBCrrjuGKaD
Whg4vX5xPjTRFbvxTvOPaYeBKPOz8NCCK27+Zbxb3DoM+A9v3hA6RsIBb+ZS
U2PCgNilsrSh2B0blPLaPE0Ig3D00uPuU3cs7r5RSi4lDGwJz+9+5/HAnc8t
6q5nhYG57KPB1XAPLNt79vncuTAYu30vNFL/IH5ab7310MMwqBiReHDjlieu
CvadufQ0DBgPbY3HpjxxknJc2+/BMNhOZhSlyXjhHecvWp9+EwbGGRc/eER5
4fRTv6Mffw+De6GCaqBwCOslVHfrbw6H4NO/Ipn+3lhY93ZuplI46B09Wf8k
yxt/WnzuNqQaDurZbRFljd44L3zla+TecHBT7NDu/OONv/q4SNYeCIfeHQ0v
D5v54AsE7gBpejgUtR49f7fXBxP3Scuviw8Hg6kval8GffDKDrWhFWY4DBWK
kIff+2APYSeLiaPhcLTlktO6FR8s9uKi8rWScNhaqb78ZLcv7uxtHa85Hw58
O0VZu418MfX6w4LSynBodDpR6mnlix+VLPClXwmHuz3ybgJkX5xONpl07AqH
SeWFK7dyffEeZ9dzFvfDIcJdW83zjC9+ax5C0n8SDtsuT+l2lftiQ9W8e4rD
4SBx/RLv5zZf/GPuXfX8VDhkihpcOvbaF1e8W/L+OBcOt11nSgInfLHjgIDM
y+/hUOvCtFw354uvtO7OxCvhUJGy70Xtqi8OYqYG5YpR4eTqmUATeTKWop1W
SJOmwkY+ZqLnNjLu9ql9GbOJCn83+OcaqZOxotkzSy9lKnzZb5Dqvo+M+7U/
cTioUSGXtF7oFCLj5O2/r5vtosLVwAOL+eZkPLpWUVVdnwosykLfNyIZZy7v
fbcZUUHZybfbxpWMdWYtz4ibUYHBEhCgHSTjU88iBP7aUuHKwqNoIQoZm3Sl
35l1pIKRDP31f8FkPN9SFP+eRAWZV+clnoaTsU1R55cHvlQo8Vd2uhpDxn/+
G7xwO4AKAe+2XnKIJ+OaxM/uTaFU+BWx4HEjiYxdw5dFKyOoQBTPI0+xyJjX
W+RhUQwVIu5z3f2YRsYtRKW07AQqkE6YxdccIWOyiZ5+CosKPKGkTO1MMhbZ
a7MQnU4FXe7HnllZZNyxzacu8D8qvNC8+70mm4zDpOnkg7lUoNhGHjmZS8ay
Apmy9qeoMHloRNjsBBnf/1Py3KSICh5+f050niTj2K9XsnTOUqHDY3DdmlNk
rDTeZbLjIhU2ndl7WiqfjJ8/Hf4jV02F2Kmy4Dk2p9yZbhatp8KYYP7nvNNk
vPPqaghvE7seDgkxzgIyJkpxGL29xvbHaMx6H5sj4jlEb7ZTIa5NxdSIzSfH
OD6exlSghf3+uZ7NzYizLaKbClt3YKd69n7PL3JmWT+ggnG7MYcUmxd5ubyU
+6gg3bJbz5Z9vkQw1y7OASpUSh//68DWu/cxF/fYMBWmP7pbKeWRsfNO7qHW
MSpMbcxT6mbXG5PHXXvyHRXqheeu7jpOxgVL3ElhE1T4rjx7JjiHjFvdeOwJ
0+y8Pf48HnGMjIdu8mzZMk8FxZXxNIv/yPinPO/S8ne2/7f7j0xlkLHeJ96S
5pX/97eq5mwqGbtZ8lFzuGmgvtL8tC6ZjOMv8RkH8dNA4FZ2UEYiGbdHrpmU
E2OzVXn8JTo7j4Nr2n9J0UBN9u237xFk/FeXP2dgIw2um59qEWLnyWCFX+u/
bTT41/qYu86fjD19Bfj8d9DA8akr504fMmZ2C4wY7aRBWySZkM7Oa0fWWtZ3
PRq0Oq/Un3MgY5AWfORtQ4Mzd8Ip+fvJ2CdBsEzfgQaK5p/8SrTJOPW1YKSk
Kw1kdvS2R+8k47vlQtKPvGlAkumOLNpCxma71vvpRNPgkNSeLfV8ZOx/ar2O
KIMGhrIdWog9r0d+rBf4mkQDfkPcUfHTF/feErlyIYMGmUGcq+8nfbHlAbG/
gsU0eN26aZ1FL3u+68X6Jsto8HWc8pt22xf/t178wt1yGgRtbr0a0uKLH74Q
JzAu06BWw43v9QVfbEOWPPWhkwbFA+/23UrwxQ6JMmrtkzQ4TuQcCVPyxbIP
3kWtfKXBrT3xNV+kffF7qUvtJgs0kDTx/6qzzhdHNRtaPVqmAeHzqWcm33zw
A3rT3ln+CNAp7Y+VuemDv1waclqVi4CNYtYJmy18cJ/jzbgLChHwXDju8zUd
H9z8+1yJ6dYIaOItJslt98EJhOAPR1UioHyFQy58jQ9e++FvlIgWm38rikpl
e+Mdsop5ipYR0Kosn/k19hAWvsPb2mUVAd5C3+6MOx7CC4FTIxTbCNBaVrp0
WPMQbr92VbHOMQKeVku3vvroha0cLJr2eEWAPtY4sGrrhUMzQ/tNoyLAL2/a
Lk3ME9f/uCYcUBoBmtdareWC3fFy2xnVV2URsJnZsDkRuWObeKYZ8UIEtHh2
ql2QdMdf/5ol6FdFwL98eUfXO25YjXPwk3BjBDwYiaOdknLDdesWbrV1RcDc
o+9yftddcY2CZqjAdAQ4PHUK6n7thCutqu7V74uEZIlrA9Jl1vjk4tUNWz5G
guXDi1UnbeY7ZslRSXgiEuB3bY39ysMOq+e73nh+iYTOogjqfsEPRjxNlysK
ZyOhqUMgpaqMEzGo1TuFfkeCaDEX2aJQEh36Umz+SygKErI/tPdRtiP1N6mR
fbpRsMlJWeXiB130nx0MhupHQduaO3UBF/TQxO0VHQHDKMjtaBtKOrQPnS9N
XDY1iYIP/UaHrw/pI3GPmKM3bKJAfKZU8GWHIfozGHS2wjcK4oV0fsq2GqN7
D+0fJByLApeHFlEJ0gR0wllo63ROFHzV1eYO8Scgt/GHSQdPREFZaG7qr0YC
mvpmvsvgdBQsqEt9+m1piQQ3GBT+K4uC1ErF66r0A8gxUIWS0hwFu8aEf+i1
WSPZb5865luiQHjPTlbnP2v0IaFcxrctCshnBF+NmNogeq78Y+NbUfCzZGXt
3T4bVHhNQou7Nwpmy5+8YbyxRWPcnJwZI1Fwf5mXZ2TaHlXmdHj8eBUFB0Rm
MholiYgqndQSMB4FssQiK31tIlrd8TOQ8CEK/jS1/S2PJqItjjN9/DNR0Cx3
VLp5hogCz4+UHuOIBsUQ07iyIQe0YNCsd3J7NPyIv2ZKSXBCwgaDNjo7oqFh
iCWcl++E1Pb/8HmlHg3HFjEzusEJ+e/T/2/bnmjg1jlk5frOCQ1p3x25YRAN
d72sKSdMnVG75vOE9w7RsJuU+t+1387s75PvuUedo0Fg22CbwnoXtKguVa5O
iobWlTAlIyUXpK7m8SjWMxpoLyKuH7d1QWXb329cFxgNu64syZ8odUGpCgu3
tJKi4Y0pS3NKzRWVbZZ49jI5Gkz35VjQDVxRu7zOJ2ZqNGwzWZVstHFFC5sS
hO5nRANR6PCN/WGuyH8D1yHPk9HQvfddzvlqV5QioxTFmR8No+/M21quuaKz
0hYZVQXRMP90+0R8lysaksxqmC+JhrU0P2fpcVdkKSa2ml4VDVUPhszK1pOQ
v+he8R210dBYkHFGfyMJpYq4bn96KRq+5kmtHFUmoXbhYvsNTdEgtG3rXW0D
EhoSuuXXcTUaVvvdfp62IKFFwfE4v9ZoKNWPDa4mkpD6ui3nL9+Mhh6LIJ5x
PxKyXGvW4tgRDQ5fDDS4w0mIIhBw/2dnNJxuPgcjMSRUtqZu3rg3Gv42bbxV
lEFCIjx7jIf62f3sefE6uIKEiuScbOwGouHIV9GO2joSUtClk3pfRIOUXW55
ZSMJ7Q5pDW8djYb7mJD87CZb7+FhhubraJh4mh7NeYeETM7+Olz1Jhr2yHJR
Z3pIyLFfv7jgYzQcmF8i/uwjodEvByuFJ9nrP2+dlhogIT9uZmPGl2g4alAp
sDhEQl83ld1cmY4Gten4+mOjJETXwb2xs9HQ//3CwNvXJLRs//bZ7DzbnzHh
x9/eklB6MOfrgMVo0Ar9k93xgYQED2/5PL4UDaKeGeGWEyR0utR00fVXNFQ3
NIcf/0xC8q3+K31/2Hkls3JOTZFQ1dMjAoR/0fCH8fWx81cS0vxSJYFXo6Ft
/rfawAwJtXLd36zLRYd/CeFvBedIyGjTlx1XeOggM1agwTNPQve01+psX0OH
OWd7hxtsJtqrGZ8ToEPqpwJr9W8k9DLIxkZakA5Pc8I3ebHZJy2cdFyYDsO2
A13WbP5ckkteI0oHq5dZej/Zz0dcuxLOEqdDvrF5pTebf/f1M35K0qGFg9me
wT4/7fO3wzQZOlyS3MMImyWhtVzixydl6ZCQ4j8uwtabt3FvsbccHRSMJWai
p0lIVtulcngzHc6SjCtOfyGhi3axjfZb6FC45X5Z9CQJ7QgqvHlPiQ6j7s3L
Ip9IqDn1ei/aToecnwfnwt+T0P6SkWdtqnS48rc7NusNCXW3/BnbqU4HCJjJ
CxgjIZu+jZ+rNelgqvvClGuEhDw5D60UatFB2UKliv6MhD7KsgREdOjgMD7e
bfuEhML2npfI1KMD1zvt5Mn7JMQMfL+DYUiHpW09nZ6YhPhSuXXmER10gv4d
0GsnodxiJeMgE3Z92uphz1rY+X0SQHIj0IE8LN1gWUtCypNHyf0H6KD5UPGT
cjkJNXDUhlva0EE7OfdFbykJYa3pw3oOdLBzTJWyOk5Cb8/QGmUOsvU33TSm
RJJQ0NUTN0940UGPokZxCiahb4+bevl92Px0NJjHl4S4OL6P/fKnA43KkVdr
T0JbAxgCI1Q63L/r+lR5B3uer6+/aBZJh+U1Sf6+Cuw8ra3Wb4ymg00suuAr
RUIqV16EHmXQAXULvLzByc7Xrz192ml0OPxP6L+eF64owuphwIV0dj/sbRL0
H7qiplLfVcGjdHit97CT0eGK9hqf2PXxGB2+9qfbOlS5Iv2smby803QQsnH5
FRLtipLG0tVWCulg4dP+XDXAFd3W3NQdXEwH9Z33Uq+6uSIYsFqCc3SYXh72
2m7oiiw21ZDmauiwtjzwdCa3K3JoIG+yuUUHs9/ypfkZLiiP409LWwcdnlkf
iBWLdUGDjidtt96hA8Nf5eNBigty/YmT//TQwdZj8RjJ1AV5gty7mqd0GBKI
mln3zxkFPR+u5P1AB5+Yq5mhgc6I9cNmJxaIgRHlkvvbZZ2QRIdlmrdgDPCv
nevi4HJCdUfMXqwKx4DJ0fartV8c0aCEQSJIxEAEeWaRfN0RqWip3bsjHwOy
HhSTS06O6DlNwLtbKwaytZqXG1IdkPKXntwHXjEQVk7fyce0R32vjGYHmmJA
OmbxUXsFAYl5/gyrsosFDqNUs7gRDRR41TXSziEW+O30/GZvqqNba1tjfjjF
QvefXzX0MjUUcIOebOEeCx8X8t0l/VXRDamF4xN+sRAd5+7q900J+Tz72qwc
HwsU1+gEDk0Z1GDx/ldVeSwUnutY3RfMi7nLjP/ZVcXCAv/d1m2tAtht6Tzn
z5pYKHqyfqiLQxhzVXivJTTEQsDenqpjBHHswvl64+T1WLCv7Vdsvr8RL98c
NtreFwvBtf6/Ri2U8YHdT9Krf8XCtTe3BmWQFl5brpay5S9bnwin3EyLFn4o
kZV49l8smO7UNDy4Yy+2+WURdYorDmwPLLjLSGhjO9zpzRKMg3dxh9Wr3+tg
Z9sWfZJCHCiRn35wDNXH3sEl83yWcTA+25v27yRghVe/p1Ot4qB75czx6h7A
b23cJpdt4qB+ZqRa+Ddg8i7J8QWHONDuUN0s622M/X/mPho/GAd5ptkqfCom
OORIWlUrLQ5ClvsGH9eb4pgLwZ4BhXEwJrNNPoJlgWetjT4NnomD+10+nfq1
FjjohxjVtDQO7nqK7rnx3AJ7Wt9iKVyIg3/8bwwHlQjYbEm4fLQuDo7a//rB
6CFgsQMtX+w64uDJzq2nFX5Z4uzFzKjbnXHQ/H3XBVG5A5ivzOuvWlccnN41
bHbN+AD+s8AnJHA/DmYOqq3hzzqA35W67+p6FgcVpu2nxqWscOP8SqzupzjQ
/e9W7h5Fa7yjZGC1cjIOuLSK8Rpja1xhXpMpMRUHpjyRNZk+1rio2KH42yzb
P7m1F3PY768ss4rbl37FgdTLb4F1UjbYrugAj4IgA/wXqccmftjg+ybyObnC
DNjeIDUdImqLTWYWJP+JMKBJbdvUGTVbrG1Sun1UkgGHla7WLR2yxZu+zlrl
b2ZAg7v2x9N3bPE0yj/Jr8WAOwLk8rhYO3zd+8ngJW0GKM9/CbbNscMZLD4Z
ez0G9J+Xk7hZboe3YEbZaUMGDPhkih96aofdjLwubbFkwH8CUV3divZY+VDB
bI8VA5jTbsHu2vb4O/Pp7mBbBqiOMdKOWNrj47eNr19xZACX01RbRbg97jVQ
7jHwYsCTAQP9v832ON/Tm/+tNwM04v6+sOqyx75JRdaHyQzI2GA8sHvAnp3f
tc8fBDIgUeC9Ws83e/zwlalkeAgDWNU77+pxEHHR3yQ3kXAGbPi4nemxhoi1
9s+Nu0Yx4O/FjFQOSSLmOKiy5Q+dAfx/3AfSNxJxX4Iv5WwcA2RKRjsHFYk4
pH1g+kMSA/bd/EAd1iDi8/uu/4o4ytaXZ08PNCViqvu3/RJZDHAUfXLZ0pKI
98fvYLVlM6CMnlm1ZEPEQ9dLeVdOMiCEfdE2uxBxxcsXlhfyGXBr//bdd92J
OOqXcLZZIQMoYi9+n/UiYiG9VLFjpQy4XlEce8OfiEdJ7S6a5xhA9mne8TuQ
iGviFoueXWDA5dmnpjyhRBxbqD5Gr2DAWMgb11fhRGzWRtksU80A65y/zckR
RCw2XEa+WcuAfy5KbrNRRPzmx3DloXoGzHe7W+yIIeJ6KdEvnFcYoDRawtwT
R8QJOlbqlU0MoL844sAXT8SWrodpli0MOC+/6FaVQMSSsbeap1sZEPeXY714
EhG/P720lHuDAX9Cr0TbMIm48Zrmvj23GKASsZLhmEzEyS8Ck150sPvLP2u5
jUXENkvnMeMOu96V1uUuNstKjnJt6mYALdZYdWcKEU/uFbfAvQy46nGAFcjm
Fmeb/8gPGLDnUt9KGJvT6Ece8z5mwNfAZ9WIzcT8jvW1fQx4e8Ih4Q17P/mW
n442zxjwjlejyZrNXwd2FcwNMIDh6tyUztZzYzF4JG+IPR9broUcY+vNEC/f
pDPCgNkg+9fe7Hqctca8R14x4PGOrQJciUScGy5RbD/OAIeBCY1cth/3qm0G
e94y4J7jmeUZtl8c79OFDT4woG7mpKZiLBHrb7pt2fyJPU9eVkqqdCKmuy6l
qXxmz8fFu6952f5fPqFxu2yKAbK3/3i00YhYgbds97E5BghG1p0vCiFiDzQU
yrnAgBO+vUu97H6fiheuivvOgFKBOuuH7DzwzSbL+v9mwBzP4FaHQ0QMKm3O
o38ZoOMmWzXoQcTx5Llc4goDDI6nZmuQ2PUPeXMbcsdDz2U5VS97IlYWLTK8
yhsP1JzThtrWROxt3R+nyh8PGmWpgR8siPg5hq+SQvEw6dj6944hEV+vUXwx
KxUPc1NReumqRLzw3n09ZUM8hJyN4hVSImI1ubwDrzbGwwu91toweSIuO8nV
cU8hHlRFEuuuiBHx4YQPVed3xMOjCxvOZS/Y41stG99JacTD5Vh+JPzJHv+Y
ddqYszMebosr7EbD9jjIr/t4/N54eGIXm1vdbo/tbCoZjkbx8CGmWq6LaY8z
M14334d4WLwXM3aXfV/c6ZScMTKNB12Fml8RXvZ4r3aGr5plPCwckROd2G+P
ZeUDrXgc4yHaUlxx55IddnY7l57gHA978cGNHe/tcE7ecMe8azx8kg3j5+q3
wxxrLLVeH4yHPykf22tq7fDEnMqmVko88CxtdQl0t8PNd6ZmAuPjoetme73w
JVuMIo++F0uKhy+uOXNCebb4sYLS8O3keFibxNrUzrDFkyyvTvH0eHgeC3/W
m7PvW6P+PJwbDx/nil/PjtjgjPZrutIV8dBClUw9/90ae1xNSe3ti4d37nME
2rcDeJIsFxv5LB7mr0h+eNV3ANPF2kM2DcbDesH/wrnqD+DjkYtOUSPx8Np/
99FjlAO4e2eAsvzHeIioaslMe2GJNeutH8X8jgfv3SHZibUEzF0pJblNKQFm
Wpe3Ht5mjq1yVAu7lBPgnPXR94bLZvhEjMEGsmoC7PnaJf/wuRneZEGWO6eZ
AE+JTiIklhnWmby8bcO+BBApDePWGjLFIarmOkJ2CbBmQxCtJ9EE91+OJi3F
JQCRlf5I2Bnhs639Z3oeJcDe4Tc8skFaWN3PYXxrUCLsma8Tpf5bi/a8uif6
MCQR9BmfH6msCCE9JyPziPBEYNp6rWlKFkFmpmr1t6ISoVLycvNUojjy3Mqb
4MJMhAvzlRV9YRtQ9ofrkkfzEsGe2WTflbcFzfgp2E7dSoQGwwbZk1Ma6Pur
gpQTOBFS64ZT1Es00R8noRadu4nwrHigwcR6J+Iz+yN7+F4ihHo9XMXOu5C8
0uDnjc8ToUx2rkr8ym5k9/Fouu1kIgTcWV1f4rQXNfjP3WwUTQKBull022Uf
UvjpP6EqkQTaue6JEWf3obz/RkXKpZLA5p+OfffHfSi2oYdyemMSoKQDnbZR
+sjwV8n6hG1J0KBNbfqduR89PmbpZ7ovCeJDQZSrwhAZyXfk3NqfBJaVhzrK
Phmixkat69pGSRClKlc6qGyE8l/IC6mYJkGdeZW6dI0ROrh5qVXQNgmqq94w
r1YiNNV8Ye2QTxJk/yi6k9ILyNNcWtveLwkcYy27uT8C6hvO9r5PSQIy364C
O05j1Lwc19IekgR+pOrq/fuNUbyF3aFz9CTQHDgWHV9vjPhH/zQFZSZB1Tau
lAPpJmgbp7P73ytJUFv5/vvQGjNEfIxEg5qTQNI6eNNFOTOUVKj2YLAlCTZq
qTXt1jJDzzW49zXcSILKVyqiZV5mKNmjWca3KwluJ60/0XDFDA1dFXnZO5QE
oYWOcacszREna/m41kgS8GSLjZ7zMEfqVp8J518lwfYz4dtpYeYo7S1ui3+b
BKYnyG9cj5sjTSFaofpUEqzPz1Cyfm6OMgKeuOb9S4LcxmjpShsL1LT7hvDq
ahKsM7/uMeJhgcaWK3pDuZgwTC5i9QdZoD2nknTM1zBh75n/LLnTLdA4VpP6
JcKEjy7dSoltFkjgmHSfvzgT3DhP+t3uskB7XbkznkkyoRKU3nY+tUBZX0eX
6mSZ8DihLG/dpAXS2ZD1wkuJCdcQM7VRjIB8P8bkPFRmgoFG1uDyJgLKvuJr
rqvKBPc2U7R2OwG9N993TUSTCZ4Xbh0M0icgIdFt4cxdTDg8GiJxw5SA9MZE
tk3tYcJffPX3QxsCyo36nN+ly4TX1Zumdx8ioBuGgza79JlgWWfwMyOAgD7y
d/KcNWBCwzp7kbNUAtI/V0iPNWZCrFGetWAyAU08snBWtWZCxOSW0J9nCIgi
WNj70JYJt8PGD4+dZz9vM6kXRmSC8Mmk5LhqAnr35KjcFRcmTDx5+7zvKgH5
CL88TnRjws/a4c5jNwho3E6Fa8GDCY/cl1+tdBDQ2NP7E3t9mLCS5p+x5gEB
HRTZ4D5EZkLkDZtDpU8IaJQY/CiOwgSb++3XJp8RkPvJG4Ybgphw4kpD9pcX
BPTymUBjewjbL5rKhwsjBEQS89jiGc4ExzUqN0ReE9CQY13+PxoTnsVdFtZ5
S0DOp/7wnYtirw+70S3ygYAGBqziIYatJ8Up5OInAnKUKJl+F8eE0obrHNOT
BNTvPO11OIEJl5c+H536QkD2p/f3KzGZwOn6cfX8NAH1vThm0stiQsHTuiDh
GQKylRprCUxjgpxBOXX3LAE9dlXfLnCECVOXlZ6umyMg68KkM3VHmZCfv7vx
LJsfDj9eZ5PFhE3zD0Qn2XxARi55JpsJqZ0zi//n+27h87nHmXCX96zreTZb
nLlN3pXHBNY11w5hNveMCL14ls8E0Wt7fu9ln2cme4gQXciE5GYSWZyt565H
ww2JYib7/7zndy1br3HJilprKRM+VSXhX+x6Ol/ZlZHOMeHt2aSrq+x60aZz
Ir8vMGEfXzK6zfajw3MurbiCCfM/Nytpsf0yOIuW9lczwXuNAReZ7efN18cD
X9ey87f3+cgBtt/68m9HkuuZcIj1vm6K3Y/rh3bZKFxhwsJkWIzZEAG1vunf
5dfCBCGrhvOb+whIW0GxnKeNCfJanDnl7P63+ERKVt1gwvjmcY933QTU/E70
z+cOJoTy6JRktRPQ7i3ksKw77HlIbwn53kJAjeTmcbVuJiTkXb8jfYWALn9w
7KI+YPs9ZKV4/CIBqSuVa4s8ZoKe0IjqhxICqvNfrG7qY0LhXySzkE9ANZ9O
ZX8fYEKK3aV7BhkEtF3548rpITb7ThkksvNfFbA3UneEnc+MT20xsQRUMTno
kjDOhGgBEVxGIaCtKtvub3zH9rvpxcAjTwK6GBSjf/sDE7pYuQ+vOhHQuS+S
mzm+MOEUd3L8TSCg4mnXz0cW2f1cunSxUpqA0i2qHP4sMSGekTAUI0RAtAtL
7dRfTNAROikhxM3uJyk/h/SPnd+wgisnZizQ3N1ne1TXJINn2sahT9gCjcop
lp4VSIYKYmnu7FUL1M2I4BUTTIY3C1YncLUFKtZc//KPSDI83Vfz9HquBTIr
tmE+lk2GAA+XYCH2/aa5VDIBcsngoON+xoN9/20gTttf28xm2ycBkUYWaJY3
a0uZUjKM18u2LClaoDOR9+7RNJPh38JbZuqEOZq1NBETN0mG5d7VLZco5uhl
+cnEo2ZsfSKnrlY6m6Oulbcf/1okg0XhqivV1BwVtbDaPlonQ7+X/1Cwgjky
Vbjt2eqSDFIaHzs5X5qhop+61e7ByfBrgOnOY2SGTKs0DM6fSIZz4UJ/ZCdN
EP8+sZtep5KBUW5ee/iJCXr86Me+jQXJIGsovunGVRPk/A3rFpQkQ1kJ1SaL
ZYL8DRy1squSITzu34ebEiYo/XnsDsatZDAZfUob0DZGvStYhvg5GYSK1Gc8
LxmhrJMVhULT7PM81F4eDzNCdkr/ST2aYes9dLc4RsMIDR1wlLBYTAY5wmy3
VYMhmsz/uN5gJRmeKwy/Sag3QPxqAmtUJFgwF7/JOrJEHz2+PXPkkxQLQj3F
fRXd9NEJ4nOe8g0s+GYpcj5fQh/JxJZwyW9mgTRsOtOdvQ+p3tFYEd/BAneF
y857E/TQrJMY85k6C6TeaFzj0dZDzRM//ubuZIHHwfL+s3O6SF+w87eANgsM
9B7mSPrropWyCsY9XRZ8NZ8v4JXXRXd3//czXZ8Fq/uP/+4a1kEZ3eGxJoYs
oMtWXyOe1EFWJMelVcQC63e6jy5Z6aD/AZFGJGA=
       "]]},
     Annotation[#, "Charting`Private`Tag$4887426#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwUWHc81f8blb333ntl75X3YybZrlL2Hsm6uNxrREZLRpJIUVIiRUKSt/RN
JQmJQomUFELDqPjd31/3dV7v+5znec45n/f1IRMY4xZCS0NDI09PQ/P/T/vW
6zdZaZZRFf90fbERGbHqJn/5HL+Ksg9N8ocZklHfrd1yjz79RInBn4R5DMjo
hJqQ7yXPNUTc/tNWqEdGe+s+l1Geb6B0M+nVTzpkxK7Y+mq/+V9UKub2hFub
jPov53DqNW2hjgtFhjyaZKToxGuZ9HwHtH+cki5WJaNcdrLfLD0dyAeLifMp
k9HnvulUN3N6SDro/iVCgYxqdze1aTQxwvPr7T/KpMiIkVHk9YWvTPCS5rNO
nDgZhf53ZJVVngUu/ySnS4pQ+S1c1OdK2UBC6ZLdHx4q/3abvccgO2S3KrxR
5aTyP5AKf8TCCQxfN45qsZKReyVpyNmcG5x6+zse7CCjo6k7PzBOcMPdp+Oj
1v9S0B2vqaUHJB7o67kXc3k9BfGJ7mZXa+IFuotfhaaXUpDVxqboR0c+UMow
U+qZT0HEN40q5V/5YGO/352U2RT0qlRwN7O8AMSwfLKMfJuCzvB9zpwtFQJL
WS8334cp6L/V84UVusLQW/FS8WdHCvo55HjJbVAYfM+sqPi3pCBC4d3ObhZR
eNAff7WrNgXxc+SsXUgVB5lLH5lKjqcg6wUjRoKIBGjVJBt/zExBCc8X+Nla
JeBm2XwOKzkFjRwn6KR8l4Sfzn4x0xEpyJ6uuFW1SRrQq2XFm7tT0Mzqt125
29JgwC3zutM8BZFnbB5PO8rA5diTLlf1U9CNhxuvyr7KwFgF5y0auRTEeiRg
hVFeDsa4Rrcn/ySjvr9aah9LFWAg6vWQd20ymiwVoRn9pgCOJnfE2cuT0aIW
7chTUIT0qnme/PxkxB3yitL4VREuzYtIsScko30vEp+nmCuDEZf3Ei1KRtOV
HZHcn1UhYtzW/1s/Ca0aXjGnM90J+z7faV14QEL0wyd5fxfshHW1KN/HjSSk
yOjTMWGsBkXZ90w3C0goKnqb5Vq+OrgbHhhKdyGhVKnLIxdFteD5941Zxb4k
lBNVai5sowXusa13b7YnodP3TlwvitGCjyfP0XJfS0KX3Imp2f9pgVDJE+6w
o0moJ89aPjJaGxL5N3Q8TZIQ8/Jnon6PDnS+mBg6W52ISrp38vVH6EOynEMn
7E9AB1t4FhOK9OGcVtUUo1UCkr6+1itxTx887zt4tGgkoIaCR+QYZgOoKTip
/h9DAvrP12uG95oBNHvsJLY1E9HPvyeaDswaglstfZANMxERjL86z/maQAr7
JZWyK3GIr/n6KVoCAmfv2RO57oeRkHV2jGGuNYhEMBccEAxAgY0OYk4V1nDU
taJuaNofNQgLPAm+bQ3t71j0fG/6I8vFq5LF49YQP51S1mLtj6JKn7xY0LCB
yvOeHgVffFH3F1a1y2M2UF30/ZnnLS8UkV/0hV1lN3jvGu9NCfVALWsHSuTM
d8OQ+/RNLnoPtBUgCybuu8FW7m7a92oCKjG4cy4sbTdILPaMnXrvjrqmRmx7
hnbDeIaKhIKXG+LVEb5KItvBhyGZXfm9Tuj+6MWAmed7IP5YeVFspBUK5vd/
XDi1BzZiO+Zbei0Rp5uMCvqxBy7WMJ6ok7NE/i+uLFeI2kMOl39E3hQg+v+u
Z3hE2IOxqAI5G5shp6bmyqeMe0FzT2t/NIMumj7Z+7bRwgFuy7j28B6bMz/x
LG+Xj4cDLOc3nCMNj3bpMe2pZotwgOho1o5+3rWu3Kzn4eGFDlDu21R5u5sd
q6YMrslMOcDFGdru5t1SOCF0XOBsqiNEDjMn7v2iiZksllwpbU4wG6l/sGPe
HDupvDr2st8JnDpxscskwqU87Vhuxgl0DXIW/EMBK85kqvezOwN9Ff+OKncL
bH1UgEUi0Bl4k8z0TGWscHegpL8fowsU19xT8D1mi2dHCyksPC4gPj1gdnDZ
FjPvpTt3R8wFTl03kzbbvxs76355waTtAnxvZByaZOzwe7pm09teLlDrrPAl
tG4P/ltjI7SjyQWOHF1T7DjqgKVF2nXq77uAgHibKdO4A7bOV3Xy6HWBRk06
AyNNR3wykSunboLK/8/kgc2oIxa1fbvqyugK9w0OfOIQcsbmHXs5/3K7wlGx
6OrkYGccqNGlUivmCpcOTPQ/ue2M6wSv+G9qucLn2Kl2FjkXbDQXNXDZyxU8
3i4732xywd5eU/MOoa6g+MIv5ecrF3zkpSvDWqwrWC8OJTT+csFP2gzM9ua6
glaLbVyKoSved4zmxo/brqB3JfJ6fIsrTlQpybFmdAPMeLNJqMQNpx+ZGu3k
doOKJmdXmZtuOHdMVVlfzA3y/V451T52w6U5D/sUtNzg/n9pQbK/3HD79BIX
00E3aJ9TdJ9wdMfdRiYBGcFuYOTv+ggHuuNnBTnNa9FuUB0SZSlDcsfju8Q9
vhx1g4DH9fsOXHTHf87vKX920w32nCpju/rZHdOvlHyzaHeD226k9MQ1d8xu
98Gso8cN8g6r2D5iImDx30lTN8bcgI72kfOYIgHLO/Zoyc24wYLaX/kr+gSs
XsORVbHgBpWLw5rLVgRs7lYjf2qHO1wzGB5m9yNg27rvifTs7uD4g6Zy7BAB
O9OYPkkVdAfxe+84FJMJ2L9xKOLwTnfY6V/90bGAgMMZJO5/0neHwxbH7JTK
CTjWO5zdF9xh7zsFtuwaAs5k3W508nCHKwF0dl1tBHwiwJ7miZ87GBQsztR0
E3Bx+1lXFOkOHLdGBnmeEXA51/TltgR3UH7YzsMwRMCXQ9V+ama4w7HH56+m
vyHgGw9INtePu0NsZsIl0hQB3+F/VCpd4g7VtqxSG58I+L+eA8Y8de5w1xc9
PrdCwP0iV08cv+MOZU3vv7X8JuDXscsTO7rcIeD9TnuvPwT8/ompOvmpO5CF
DPSytwn4s2Re+uqwO9g325cY0nngpcThl5Hv3KHtWfluEqMH/t0vIfNxzh0e
+ig6WbF44C25iHivVXcIj168VsHmgZkoLY9e/XWH+j/fCUc4PDD38Da/AxMB
RFRahb9xemBhlb2h//EQILPJZfcMlweWPlLaZiZOAM4eTqEIbg+sPDbNfFeR
APjgcl4GFWtpqB9U1yZACeXXeQUqNs5Jrr9qSoDT8pKOXtR6y8lHfyVsCbCx
fPuvKJXfXpfLqdSFABon1jgi2D2w24mDlzi9CED5vGxuz+qBvaavLueGEGCK
obKgi8kDBxutWGzHEMDry5/tx/QeOKrA7AyJTIClfI5C/x0eOOFz3uz3bAI8
vlnhc/wfAafueqUfXkCAbO/AHMsNAs4ukcz7cJ4ADtxvkot/EnD+t4g3njUE
kHz21zDlOwFbNzQxSDQS4MbVgnHPrwT8N2pDZ7qNAJv79/2YnCXgqKVj+RHP
CbBrZjfjU6q/8rcGO9RfEyB6S1ZOb5iAJ2KEv6y8J4Cz+l92u+cEbL9yzZK8
SgCpR9d3h3USMG3z9xjzv1T9VFPL4lsIuCPesJKW0QPCLtP4SjUQsMrP3rUT
Ih4wI/07KY6aT+a1Tw0V4AFOkTKG4kQC7m5TH/ez94DoSO6siHACTk5OZJIn
eECeekl9iA8Bz23QBzaEeUDN3wPlkbYE3PtXTujBaQ8Q5W94VsZPwOkPDlln
lnmA40OmfZ7U508//U6czWUPsKJ1SurbcMc125b9L+56QBIqj+99546P0gZm
vp/0gP86HguzXHbHJo/qGi9/9oCYnsQfPsXuePXoykTosgdIVoZoR2S540CG
TIPvdPsgY3J7x8UAdwzMVd+2VfeB6ptct0Jxd7zF8d5DJmUfqGXeLDuY44Zb
BxSOfsraB3FW0jet4txwdMHh23Wn9oEFA+nBrLcbfsf9j1Wnah8ke14eOqzr
hjv5xLstn+yD9red88XvXHGKyEHVYIH9EMBXHEpWdMVHbula/JHaD09/TN7L
Z3fFuTYcnsWq+6EqY9o0cNUFl8R153Sj/XD2vFC/0wMXfPuZ4rR45H5Q0lH4
IOPigudSfpx73bUfRKJDel6/dsIe46cYdod7QhKLvWHOT3usXYE/qNw/AE5Z
TALL3pb4S/nZV+yPD0Capnsbr6glvlh+qPf7wAHgmGu+IzRmgVnLhRruzhwA
Md79fqsuFnimLIZkwXoQlp9z/3hlBbikVIrzwIGD4Lr79FMDJzO8VpRhemzt
IIDg5Gevt7r4wTFU+lnXG3Yevp+vGsCGPQ8tdZ3b5Q1l+3uOUI4y4VXHyjm7
3d7QtydLIaCGDivz/TGqP+gNCYldzNITa10lla0TMZneYBSuISv2eNw8slld
ZmPAG3LanuleucyNBCfFGtgifeDd+01m2tOKqKmrb6ST6AMaxNmCH+FKyKE6
5d/hNB9Ieaav+MFSGWWGjjkNFvrA0Y6ttzy/VNDCcvFKSZsPBNhvTo7tUUc9
DKyGkgy+ULb8oNL/rTaK0Vx/qFXlCwMTRvk2jw2R55zRSMsNX2DzDDJpUzBC
lpdSPhvd9YVfSey1rjlGSJDrD6tFny+wRi0Pclsao66lf+6uP31hKany6oEm
E8TZSPc5zs4PAvpaOt1Dd6H1EOv1X25+oFep0fOvfReakaD+We/jB4OaQ8GY
1Ry15jNqZsX7QWBJYebxenPke5glufiCHzQ0rwU6zCDUqMbFemfZD0yOs8eP
8Figc7PO4oZ//MA3WjlrSNcCgZPduXe0/qDy4OU5Tw8LpMp4vC6Awx8Erh2q
2Cq1QFuJrAMRsv7AamDHUcFviX4MqY7VK/mDiOy5yBEdS/RFfe+HRTV/eNAQ
53vGxRINfzq5GmfoD48rn7FcPmGJaj04hMgO/iBhUrqbYcMSVTSpS3e6+kPA
4YDEQ3xWqJDDSWVrnz+8P7q/ZJ+6FSI/Pm2aFeAPljbcs/f9rJCTPrf/iSR/
mG7yNezpskJWRVoR/RR/4JpdOOT82goZLbrEc2b6w63cTPOAb1ZI9mpRdvFJ
fwhnKbzDK2iNfvPz1ZVX+cOeW85LN0OsUc9V7aqsq/5Qz/dUXY5kjQoMXM5F
3vAHukDXKPVj1kjZMz/HpMUf8jpLP9PUWaNfX+pTZe/5Q+tTN9m+dmp9Sh+R
tcsfxrqkfJSfWiOvCqbA8Sf+MDcq6Fb9iVqvpnigp98fCLMqAw9+WKOfndYu
N4b84XmGybeYHTbo9PtMc/KEP8z7E5jPitmgbpm/oqLf/eFHBuPvd/Y26FSz
KC/tT38AUa3/rnnYoANWxixf1/1hwZUgwexvg1aDk9bu0QaAR2xJ8gmiDcK/
SpaqmQKAKGQ2Up9Krc+98+k4ewAMab75GpxjgxSuL7+ivheAY8ui3cWz1Hoj
rucWYgEQJR1WKFlpg7qeqfeoSAeAV31HpEGNDTp50OEej0IAMGRva8/csEGe
3yJvb6gEwOPoNSWlJhskn3r82rRGAJQfuuzA0GaDVtivX3ymGwC5ZJqq1E4q
X2Xv2SajADhewSOb/9AGndD4dOr8rgCoHng9bNBrg/ZhuuxMywB4ayrFR+qz
QXIuspSI3QEwyJOyx3nABi1/gHhXhwDgMr8V1DNkgzrj/CKMXQPgXPfDgMER
G3ScNt1fZl8AhJ2/bZUyRuU7c2E/i1cAZD6lsDx4a4Nk5e87rfgFwEdHuTsV
Ezboe8tbm7fBAUCjwzDP9Y7KZ7Nu9jAiAEIUuz9Kv7dBx0YF9eqiA4BfJa51
gIo9wvR3FhEDgMNEOEBkisq37i6bkhwALgfufqSh4qVj8SIBaQHwLtfOPIf6
/fsiRdx7sgLA4pb+wStU/mM3bjFp5wWAn5GFr/ekDSKYDmwJnwoA538tkS3j
Nkimf+EXTRF1v63CjPo3VD5vtsUvZ6n6mLy+YDFqgzoWVWYHywOA8U5mT9Ir
G5SXbjfRfikATMNKl+0HqXxcYcNVNQHwbONEf1u/DZKuynl2rC4AGiaGrz1+
akN9367pjm0MoL7Pl/9K+I/K97CnzfNOAISf+3D3MbZBuW7TjdAeAFZxtV/a
OmyQ+8ftq8oPAqC38lv+3rs2aIF+V8l6bwAY1/657lhng+6d9Tr54XkAdIf2
SvVcptYrkrOeDlL9v75dN15hg6Ts2mLLxgPA7vaD9bVTNqjk0cXJ+akAECoL
2nbItkHMKNfO9FMAvDRie6JOofqr7yH9/nsAFIdprbWE2aDgJrNTmr+o+2ok
HffysUFv1OTXj2wGgE6E7uHzbtTnQ+7HSzmGQOg93ZE2bGqD9C6NmyayBoJU
cM3EoKYNui7ac62XKxCEnJyEI+VsUBFPUUaEaCB89JtRP8xigwK3NTRvaQbC
+1nR/2oGrdEoWbCCRj8QdtOndFMeWiP73/8Y3UwCQXRz3HelyRrpLva//2kd
CEayjVK3iqwR/UTkaZODgfC09ktvvYM1qm2tXXycHQjVcpTfPE1WSFTn9AGh
E4EwH8ic/7vCCp2+mfg4vCAQsj4KzBzPtUKkGutKtvJAuHy96UnnQStkVzzj
4HorEM5xB0Z7bluir4clGybfBkIzm2+rgLEl8p1nENaYCoQyt2nLBUnqfRq8
eDRjNhB8iBalUfSW6L5Xp5fs90D4wh9sdGbAAp3ac5AtnD4I1IsnxzP8LJC6
QmnkD40gqJ+QKtidAIifN3Jlp14QPE1z+bdnH6DNrV3JwcZBsEsmVYnHCNDT
N59yXlsFwf0IAsPTXwgFntKvbvMMAncR9vcX/5ij0h8jY5SsIFA9KMj5ddUM
bT3ks6EfDYK102bja+VG6KVvkZRAWjDYVku8eLlfA50+ElTyIzMYTjIpFJ/o
VUcOl/VZhnODgUe6J5BLXx09/fR29XRhMIQJXXs0w6OGuqNke5lrgiHQfDPo
eJ8KaibfifrbFwx0UUh2l7ECOlv6+t5H4RCYan970GeXMCK0X9PokQiBVmeD
bk1xIcQ7nnKlSjYE9lrHtKn9EUCnJSTzfdRC4Dp/p7pOBx/KrQn1H0MhMLsn
Y3OawomSm9cYn4eGQMsZoab5uA1zrwERQnNLCNgqZC5kv2TA3eMtuzbvhYAg
McxqVogZK845K1niEHBXFngh7cuKV7dzNoeehcCp32c3JT5x4hPaq1Ur70NA
RJNmf+Q3Ptxe0reoxRIKL9XH/41dEcf8XpS8Wz6hULPl15SVq4jJYYJxa4Gh
wHjyZnUknRL+QGw6iMJDQeGRR97JDCVcf2pO/WV8KKwftzthl6iMLbvcR5by
QkEv4cL34X2qOFZGTUajORSGeupVm5fVcf/cZEcDYxhU+xquqJvoYFaVpOJy
tjCQVWfrYgjTwbsjuSKPcYfBBfKFyagzOrhnwUIkWDQMKorXOOe/6uD2lVqS
mEYYHPhyKfVaiS6+8idW74RHGJycYFO+MqyHP5ixsicfDINTu6sY963rYcn0
Kx9D/MLgZYq9+BkJfVxGM1psEREGqToSlS2h+vg0g+nKemoYvHg+/NDrhz4m
czE0htWEQTxR8ZP2bwPc7nIxx6MuDL4477gSxW+IfxUZ+lg1hkEAw7UbajqG
OJY/kl2qPQxi/7idM4syxKEiLyNHn4eBG135oapxQ1xzMNzyv8EwGBVbe8rw
yxBPV+wQbX4dBswBlOzvnEbYW1LvWf5UGOTFbQi4WBhhV7nzSjY/wiDn3dVU
uyojfDpYZ1tnPQw+PmSWG2w1wv1Xn49K/wuDJ5o05yb6jbCt8lbOX8ZwSM7V
a0hfM8Jm6kGzd0TDoWGV6/myrTEmR/+9Xy0VDppF4g6lB4xx262zZwrkw6HL
+D47PmSMdXSeWh7SCAdKwqdrFaeNsbKherWsJbX+zov5IwPGmCOoYDFldzhY
7pq6k/zeGK+eXjEecgiH/P2PpacWjXHn57vDGfvDwcqc6+Maqwmu5hWWGvMO
h5usRKMbwiY415x8SCMwHK6w3hfvUzDBLqXm9O+iwkFjw/EXwdwE6/dUuejF
h8Ndg9nuh3tMsOgSbeVJEnU+R0+ZiwQTvC0SMj+TGg525jcEv/qa4FmbJ/om
WeFw7/ScQE24CX4Wp5JVlBcONvfq4vvjTHBj5cmBL6fCQaiCtz2EbIKTfzmH
nTsXDmey3/z9etwE+8g031m6EA6mp/T/jhaaYEtHfhrby+Fwrmf1g/Y5E6yU
kuRQeS0cOHmU1P9eMMHsV9+U/WwIh6SRHQLGl03wyqDJp73N4TDAfrTsS60J
Hv17QftKG7Vfx4021noTfF95O22zMxxcJpPjLzWa4CpCQJ9rTzj0B8c71DSZ
4JwjjwTrnoTDy22jbZEWExzZoBBE8yIcfE0lfehbTbDzm7xb+4epfgrJhga1
mWA9+q9/GsfCQaLEWtSw3QSLaDnYMb4LB8emnJQMKt7yaizxmaHyrT3JN6bi
2Tzu6Za5cDh9stUllFr/7E68OvtiOMzO9iixUvkbp0ZSglbDYYhukVeB2r+E
zbC3Yy0cCF/0eNuo86UYnufl/RcOMcXlCt3U+X2D/vhG0EZAPyXonRl1P6sC
n/pupgg4lLOTonHNBCvfx2tCHBHw93niwnmqPhxzMtYxvBGQ6WypnVFpgld5
swt7hSJgg6toz3uqvmPmnyclJCIgiCNQv63IBHdG2qkkykZAYdooG+NJan5K
byT2K0WA/Psen/6j1Pz0sPfIqUfAP6eGs1ypJvjQUjQnRScCxAaL77wkUvMk
OnRw2DAC0gKS2tgPUfMTf/bHEcsI6KqT4N7YT81P5Rp6szsCZAeTv151pOrz
7MApTccIUPv0hf2VJVUPGUmF9/sjQHuCSbVxpwk+43gkTt8nAtQ7W+W9paj5
SZl5cCowAuIHjxfk8FLzMlS7z/RwBNgMVnTvXzPGSv+YrxTHR8BQWWAf47wx
Zlc59H2eFAF9RW59xuPGePSI5rGyLKo+zXf8FO8b40it9nu/zkXArcaccm2S
MX74glFGrzICrlqbrPqEGGPhQx7H4i9HgAZFUpPH3Rg/ubq673tDBGTnXTcV
VTfG8mLqP788jIDLJ6pefpswwqntFC+lJxHwBC60H+k1wq88+npC+iNA2NjZ
7sZtI5xVGFY0M0rdd3nc6/5RIzzFcFlj8lsEJHWoGj+UN8IGV5bPiq5EQE3Y
O5pNNup9A+if5+8IcHmlyN2/aojNKJPPX9NEQtaGyltjbIjLlwUjXgpEwlO+
151G7oaYMHHySg+KhPbr9LUvww1wQ/I46w6bSJDXZeUa2GOA6QRV4pF9JMhd
TnxCVDXAzS690EmIhIagVee2r/qYq5fm/d2ISIjJLF5kCdPHfbcThevORIKy
1X/D7c56GOX65RfMRUK3Y4Nn4Jw2jvZsmCEuRILt0K0rDg+18QXVDUPPlUiw
yGfJpK3QxpsDxTPSfyIhvhGvDjpq41ahXsNmzkNg2EDf8O62FtaoU5sZ0T8E
U6o//JomNLBk/4aBaPYhSGHfnPlTqIL/8ZR8qJGOgm7+yVt8LeJ4ZKDuxqpC
FCSkXdmVuiiGb5zECbAzCqzCt4M+KIphT4ZvzJP6UUB8lECuOC+Cm9cttPn2
RoHLker01HRBHDr1PTMzMQr41c8JcNpz45cNe+V8+6LgkI/L1XMsy121EQGL
9S+joFD4ZZA33deuVEVS28ZIFNAyZx+Z//2xS7Xq8t6zU1Gw9wAjb0HVy67s
MxvE/p9RQKk3fVbO9cHciHztPxOpw+AUQjuleWnbvHo3XahQwmH4WfxqmM+c
D7kYC0mypRwGv5H7x1un+dCW6s7RrbTDIJynalybzY8Ocrrbfs47DMplzldr
nwog3teXFe9WHAZSwGXWe7uFUXag5Zzbo8MQnEhbnigjgcLTMsNP80bDdb70
oRcickgw5qx0llA0sCOjHZm+cug//7o3ieLRkCtN5Ll3WQ7JWA/Z+ShGgw5r
pEqfijwaZ5VRUTOJhqJXkTt26Cggh7Lu+WcB0TBqc5TPWVUJad7ZjmRoigZL
y9+neO+qIhdBGvMPd6Phb2iLLsMXVRSbQsNzvyMaDFY9dQ6J7kTNaEdb7H/U
+rVXaefTdiK9flq6ybFoaBcoyHLbpYaMPjFUNG9FwwKnmddAtTrytGOMzqeL
gcYXj48MPVdHKfWMFuHMMdTf1753Fr/UUUcc05wEbwxsj2yNBdlqILMtZt3j
CjHQeijqWvO0BgIh9ud+DjGQMC1oYf1XE/mT2S+auMZAxvr0FRKnFsp8xx4n
sC8Gbl0PYsqU1EI9VziEnvvFgF3Wl+hbu7SQtRZXkAExBlyZSKFpyVoo+AyX
AU9yDByO/eYel6uFcn5zsSykxkB3t/cl4RIt1NvJfas6NwYev/7nndWohez2
8P5hL4+BJhd/ns4pLRTewDswdzEGrnurqtt/00LHufiqe67EQP8jOHbytxbq
e823O/lmDPAUkA8osWujr0b8ou7NMSARE9KdKaiN2C7wL6q3xYD4bw3FAmlt
5BAocOZjdwwYvhac7NHVRlGPBUK7HseAT7zw4hczbZSvLGh8vi8GQl5LiffY
aKOBJcEpp5EY4F5EI/n7tNF3V6FmlbdUvao9fY74aiPuu0I59O9jwFScRK8Y
qo1cKcI7O+ZigC6EwfN4gjYSfTYdv7UQA8evXVwcpWijGcH6DsvVGAiU1o/q
y9JGN4ITaPPWYuD0y6evgo5ro/jmXfbP/8YA190D8lcKtJHEEbpnTDtiIfuz
4428s9poh9KXhTq6WPjWqxXPU6GNniU06S0xx4Lg/eBq4ava6KZYqWchWyxM
DtxlLq3TRkU95FQdzlh4+OPI5r2b2igxwq9qhDsWepoHbx5t0kYHuK3/S+KL
hXyzL09XW7TRrjblL8KCsZAcfXsvS7s2kvHlYL8vHAtH7VQMnnRoIwaGVU0f
sVi42ed2TO2BNpqvH3XfloiF9Z9qlsaYqpfbfVK1dCzYvdtXtdCtjZo3LlVY
ycXCq9NC12x6tFFpVTb+pBAL+y9yq+9+pI3IuyM+5inHwms2S50VKvZdcmRS
3RkLjmP1rVb/aSPLszo7+9VjAdM4dZhTsaKZkHO0Viz8kEwtn6Z+n/Xjn3hu
3VhgGuROV6XipeMfSpv1Y2FtfKe2BLXfsNbjDoJRLPSiF3fuUedpHat7/9sk
FuK2fjLQUOctTz9Ne35XLPwRvKK03KmN0hWIiqYQC4mu9M3HqfsG9u+3f2cZ
C7912+48a9NGtkSz6AybWHgjeYD9LlUvVVGZYhm7WBDj/Xp/L1VPzocMrY/s
Y6GbI7Inn6r3atjXtyGO1P48b6UoVD9GOV/+Y3KJhXgZ0//4qH513L0jc8Mt
FoJ9pKPcq7TRRe8yGwePWKiwuakEVH+z6NIilvbHgtD49O+3VP/tXW2bdHxi
4R2T5SD/CW2ksa76esQvFpSqD4/fPaqNeC9xbSQFxkJZ0JTTdqo2Gl94A/fD
YuFqBvuRi9Ha6NCxQ4NW8bGg/l7Djt1JG7louvz8lBALDbnWM6LUvOuN6gkf
I8VCAlNt9bipNvort+XXnxoLQ0UOhYeVtdEpXPidkEet53xROPpPC8WGJvKt
HY+FzkMmc9GrWojAcdDw/KlYMLjfeafjsxYS95LLeFcUCzp9GathA1qo4fdd
ztALsSDDuqmsU66F/radV5m4GAsSf8fSDuRrIYeUNGuXauo8Eqw1Zke00MIf
a7JJbSxMBI/NQ4gW2rlj5BPnbWr+w9t2+alpoRtsq51tj2Jh3OvM8qqPJtrs
fz2m1hsL4ipneVPNNJH96Xur1U+pfj5P/V4sqom+cmcqn3oRC5EF/95GvNZA
KoLcJf5jsZApfOfPJRsNdF1a4xDLt1hYKfOv8+dRR+vTPLnpi7Hwvbho4M8X
NWR35VfVj+9Uvx9Wtmp2q6EvCg9G3/2MBUku06u7D6shpZ0Ols1bsXDfz2/m
U89OVKsfKeLFGwfXFa8uf/RSRVfta580GMdBd45x1u+9Ssguc+nCPrM4qPsp
37XFp4QW2gziaVAcTNntXWmaUER6Ck/ECdZxMPbf6bv/IhRRz/Zc3B+nONhN
+0z8Y5YC+tCiIm4fHAcmbLmhVrVySEzqZuzc6Tgws5lUrCZLoaIfd0RkZ+Ng
pH1/stk4B1oKjE/Fn+Pglq2799QQO7If1pryno+DLwNVBSefsSH6pps155bi
gNyvPbvdzoKSo69pcmzEQeyPb38GzjEg3/lym3WOeGCaXLpr3L5prjaVGTdg
GA87/53PYOYc6zruBCOHTOKhl6n/dyXHVNfnB1sGLLvigfba+3L97I9dVRco
f60s4+Eo/7fG/uRvXXwHE/PuOcTD589ifm+qf3VtjoRX1gTEg3hg0d2CElr8
pM/5GflkPCw8HG7vvM+NCwkcct/y4+G0ed/jaUUe7Pm+L9WrMB4aNQMti4t4
8NcVGy2zs/GAKsI5rofwYnYRs3P/LlLnfStS0czEj93ClEOONMdDpU/PCSNd
ISy68qlruSUemJXHgi1KhfBH8hXhgLZ4WD6TW353XQgnnJbst+iMhzLnu8If
7gvjc3f5del648Hw1u/HoaaieJJux47ct/Hwwmci4LyEBL6a33Xw90Q8WDD9
tucmSeBoodSW0PfxcE9a7ebMSwm8rboWtvtjPMj+U1ppzpDEsm6LA8yL8XBZ
LkYpYkwKh1W9vXCShghsqccl3XRlsJbqud9/aIlASXEW7Doog9fvEFyiGIhg
u2k68yJTBp948pLOkZUIJrnHfr8ZkMENS48jOfmJoFL4yfx6sCxeNWs2KlIi
wufC94IP0+Uwp9mIg4EqEbhfuFooX5HDO01/+0+oEeFao9Oc+BM5HGxsclxB
hwgXr/7H28Ihj0f1e97eMyPCwYWYPMpZebyqN7voi4jwyvBHm12rPObSY6Sl
tySCQE+E/dVReWynY6/qtJsIrjH48x8BBdyhMUyecaWefzruIlCggEfVf57O
IxCB92H8b90GBfxDTfCK2n4iZKrqkN4+VcBqOw8+T/ImwvGreiz3aBTxRaUZ
MbYwKp4KsR+KVMQdivRatyOIcAjUixSzFfGYgqK1RxQRDHsL1HdUKmJu+cio
S3FEYPVe8rZ7oYgzpVc7dVOJkDrv0MOvrIQvSvEPvUknwi7RQxbFu5Rwh6TB
p7RMItDSJ+mcdVPCq+Jkjqe5RFhk+BWhRFHCwSK0vt5FROCMYCUn9CrhI8Ly
8TtKiFCruPCe+40SrhSyza0tJULf4yxRrXklPCpwonG5gghV1wcE1liUsR0v
73Z2LRE6FLYfX7NRxsE8enyqdURQKBuaOeiujDO59ym9rCfCe8Rzu9BfGXdw
ljuLNFH9OLAll52ijEc5OoO67hCBGPW+0iJHGf9gf08KaqXu9/LjWmahMlZj
k626eZ8IuUd9HU5epfZjtW5x6yJC1OtXtoRbyjiEJfTpWjcRBulOnrvUroyz
mI9NXnhEBNUyLr3DD5XxRaYbyxa9RNgj7qLf9Yzan7Gffu4pEbQKHSqKh5Tx
GMOS8KnnRJj5QR/69Y0y5qbXsRgdJEJA6qUQuc/KuEzC3cHpFRFKhkscr3xT
xtKGCft7XxOhyXjNu21ZGV93ORto/oYI7U29Z/x+KWPtyNbDreNEqDehW63Y
oPY7Opas8Y4Ix0YaSFH/lLFl5frR2ikiOGU8kh+iUcF9rSIFkjNEiFY/nPuE
TgW7DZqUl84SwW0+67wbowoen/e6yjlHhNiQ52PxzCo4iC7tdu481Y9qWwtl
VhW8IH7x/tY3Ivhe/Pk6nk0FJxjg3qQlIqh5vT7rxq6C/zp/GFpaJoKNwmP6
XirOjtjxLvQHEVws5LhfUDH7Udkv738RQbQvvDCSis9esPqxb50Il/HZnItU
PsnW4K2BTSJ8kbnxPZzar/ZlDsvuf0RYWL468Iw6j8Z8LT/eJsItteOyD6nz
ttI+lTKkTYBajhTGvfQq2Fx8XvUWfQJUbN4Ljdqhgp/osxooMSXA9cw3zxS2
lLGL806LSywJ8PLyiCZpUxm/CXdwEGJPAF7fxjL/38rYP+vw/gLOBIi5E0I/
s6KMv1ScDmTiSYA1NVDeWFDGsXdvHc7gS4DsWzcDa+eU8cbAYPKaQALsiDoY
uzhNzcOXlaMxwgkQG2jrOjChjFlp+QrmRBPgdXEcw57XylhU3+PqmFQCJFXn
zLE9UcaXnZJuO8smwCMujntOWBmrhp+7/0Q+AUYWlWnU25SxacXboTaVBEjs
Pm3ygJrH/1o2JzXVEoD+7hv1mAvK2GFA7Ms1jQSIYtRheFCsjL13+G6d06W+
cp63X5JLV8azohks3AZUvvpDZEuiMo7Sq+I/ZpQA03fbjbfDlHFa2Ixq8q4E
kLg96uruQs3vi9D9nrupWKCrxlNcGSvO5QUO7qHuGyQUFMGpjBtp6g7bOSSA
cVT3lCiNMsa6344auSZA1V+BP14zSvjD+Zjbwl4JoMk7zh52WQmH3ym8X+iT
AOoc/8qyipTwSn9TL7N/Ajjkf8mxOKKEaWl+Tq4HJ8C7vwazF7yVsFxoMsvb
6AQYUtUrkeGh3hftXJet4xLALw8d7fmniGtZr5ncJibAiYIdBLavilj51utD
eckJMPDfLfGah4pYY11nQD8rAfoWTr+ej1LEJicWi4vPJsButa1EnhYFnDqZ
vXPrHFXv/9rUCisU8AMN8f8iyhPAaEP0Yk+WAoZX9r/gElUf/fe3LV0UsK34
9f3fryeAvUil6YU5eezaGCju0En1c934aBmzPC6m2Wxp66Luy0m3j/JNDo+4
FTnKPUwAzzOokm9ADu9bw+mbjxPAadjdPb5YDnuDxPT1lwlgKsakJycsh8OH
x64yfEwAOrf1q55Csjjjt4MmZkkEliMKxU9eSWH+LrssP/ZESHp61Gl/thS+
kWP9epszESqlLWwS9aTwCL8ZBfgTIeuzr6HBGUmsrLvzyUPJRPiVl0bbu1cC
D8ew+P2nmwj0JnqS5+tEseL849PPfKjn5jk9xgoCeGDCfOlVUyKEL79LTtui
xS8fGBvtbkmEcuOuiAeOtHjwkl5WR2simARm5jFU7sDDQaqC1fcTodf19p5G
Uxo8+k3APPpxIiheq+/lW93smvqzkM/8NhEYgt8u6r373rUsVqG+iyYJCBNv
zinuHzNf+XeWdJs2CTLX9s8ebps0X50qfCjHkAT2b5MjPVinzX9eyfVgZU2C
ziyTIdqgz+brO+PTxviSYIsU1F6QuWy+w2zPizilJAhurtBK39w05/Vei6p1
SoLe1kl28VImFHZnX5yTaxKsLDDpLCBm1MnamvjbPQn4M/PqWOeZUei9hHTb
A0mQcKoi850RK7onuFrwOSgJCnvy83lesiP/oYVmxZQkqFQttGyb50Z3lR3a
BihJsO72ie+fIQ9iPVJ/Pyk9CV7dWvj0PIcHtWhE/td7NAkujhB6xaV5EdOp
udehp5Ng/lXcr0UnPtRoO7NeeyUJ/tEkew2UCCC6ixb/nGqTYJ8oY7PRhADy
/FW1Y+16EuhGT3MJyQgi2ho/1t2NSZD8OGNas14Qeex4JzbXTtUHrN0X24XQ
3/tj5koDSTB67qCh8j0R5MpnaPVyMAn84vQIRb9FUG1k6W7SK+p5pWZ1hK4o
chbxcHnyJgnGWEo0rOpF0eWk4YCwj0lwXCLy5PUzYmiP9ovsa+tJgOi4yJdt
JRDrlZ1HZP8kgR1mY+xOkkB9/Ccolf+SgOPx2hOHWgnksG4bf4aWBMwum2YP
6CSRE+72y2AnwW979uP/tUkiLm0pr01OEqj23BIlfJREg5fT9iXykKBNwPcU
gVMKueaaOB4SJMHtj9+qywKlEMGxxWS/NAkygoy2GGmlkQDmNRiWJcE15sgN
ioA0GtWK03ZUIAHvKo1pjbI02s+voWylSoL6It8iTidpdHDimoCmHgn8C+ou
Op2VRn4RFcuMdiTI4pxedheQQdITG98y7Unwtdni7S85GfTBwXPurwMJ7rNd
MNyjI4MCtQTer7qSwNb09WUGJxkUvHb6+XsvEvg2X4keyJRBChGLvQd8SeA5
Nj28mS+DPo/v7RnxJ0H1k6jkN+dlUFgX872+EBKsyFUyX7stgyJzsmpbY0ig
Y1FhcWJcBu1c+1CtHU8C5YHPrWazMmghHFU2JFD1+5N/9tKiDDrs8PfM5RQS
NDndDEjalkEaXQcLJFJJkJ6o4PyVSRYtad47UZZOgkXrj6Wc3LIoli8p8/RR
ElxxVN8RLiWLtHJGUllyScBQwmVTqSiLVn7rJGcfIwHF7+ZKlrosih//Hk3O
J0FZjliOn4ks0nVwivxVQALLD98O7QNZ9PNBQ0hsMQn6T/jQ/7ORRYnVEd6h
50jwKTJRz9uF2n+v+aeR8ySI6MLT/wiyKPw3b7TVBRIg1V0u7gdk0UzV3O+m
iyQIblzM8PaRRd57OzOkq0lAd/vrc+EAWTT6q5C54AoJ9tG7xhwLlkUuVSFF
/66SwJvR1q4hTBb12ZuIRl0ngWDrs33ZkbLI+hfnlfEbVP/4Jsu5D8uirksf
d+65Sd1XMo3fNUYWGdm3t7TdIkHSWMMjmzhZ1Pzz1C7FZhJ8/JzOsBgvi3Ze
CugtaaHmRfv8jF2CLKrZY+BM10aCGqbbFQcSZZHkT9Y3cfeoekQ+0pJKkkVl
F6f8P9wnwdKBV9XnqZh3T8u8Uxc1f6+nlp5S8akfx+IfdJPgxg9++wYqZrzo
82fnIxI8VHE3tKLiI3Y62eWPqf3LJN8UUPk3Vxk5WJ5S+1uQ1Iqp/RMqJ86S
+kjgKOujZ0+k6rn7tuTnfhKUmA1+b6POH76afY3wkgSfCwZ9J6j7TV84oPVo
iAT63NuuzdT9D+7WuKc9Qp1X7gYTOiSLRlZoLatGSSCndSw5K1wWOV0Y6+N8
S4K3+udrUkNk0VPbBve0CRLc03t3Uj1QFlmuHJn89o4Ej9QIGmd9ZVFnhUfI
wQ9Ufy/MbzYflEW3l7eSDD+R4BTb8zucbrJIteLV9tU5ErRvT5FdHKn62Vw/
xv+VBFJP2nTt7ah6lbuWryxR8//yFjlkF1UvG0U5/xUSFHf/upFtSNXr+2b9
wA/q8zRZyeulLYsyrGse1K+TwHR14KOuvCxaX0q2Ff1DzefCfkcDCWo+zzu+
PPaPep47yr4qIItCl35/CKFNhq5HbruKGKn7le2hl2ZPBk8+Wf9c6vPz1FIy
/zRnMuj1T37ZNyGDLBdXBf5xJ0PEs/GdH4ZkkL7lBaVxgWR4rLZlKNMlg8QX
luxLpJJhXf71R/IZGVRa+ugVrWwy1N27HCh/TAZxW5R5x8knAzv7UYeTqTKI
vtQi2kklGWwU/ZtLgmXQN1RSxKybDBs7pddPa8ugdr8XI/X6yYBlNOZpqfdJ
bgajsLNRMlS60Rqr8csgWZx88eyuZLgT8u/nxV/SyNPcp17WLhmy629vr7dI
o14zxcdmPsmwSyqElU9RGpV4+zF/8EuGQ/U3BzZ4pVFAatneo4HJEHX8fJjy
thT1vmcdfhaWDHzXded33JZCuqbf3++LT4bbAqL7D7NJoSrj9vXYvGSolr9g
0FYngaIPrJjyn0iGxq32vr0UCWSaoprRdioZJjzd2MMdJNBo+wWGraJkmBzU
36u6KI44jDJ5T15IBo4+fSVJFXFENrBXu9qUDMxce5jaTooigu6k39uJZFj7
evNIA50QOn2Yv9z5fTL0eq8VCvULoifXHEYef0iGmQxeJZ0SQWQi/sCu+VMy
FBeeDUuVE0TSDBe1T35PBvQrfG7OXAAtjPrR7aJLgYbiC0aKEXzoKPljbZVq
Cuxi3CzFilyo+eHXxbCUFODJnT3JOf/PHMXlzfCmpsDBrplItud/zful5cce
pKfA66Pfc1ca/pjPZfh082WngKb+kjpr7Ia5uPlgMT6dAn66Qt8df/80z+24
ayhUkwLdRUwpP1m+mB+8cySzdyAF7Fwvnci4M9o1FyiRFDeUAqS0QN45nomu
BN6OSPGRFDCvcu6IiJ7qKoj74R7/NgUOu+RbDHLNdv2nGaooOZsCvcfjj2g3
L3RpNOx9nriRAh/ManDt299ddFcFBRTkyYAYXsaultFh+3yVc48UyXBdu6ua
TYAeFyaaiQSqkIEvwvBVUSE9FrcNlLikQYbMjSeGn3IYsMHcTQURYzKcWO1f
eB/BhCNVbAw4nMiQWrUvxYqfDd/m8WyvdyGDWa3/jbpcNry2EWli706GbnFX
p6R1NpzdV2ie50mGbF1t4ve37Ljy0KTtjiAy3L7sXp1ewokHbxL3/yKRIc5o
WDT2BzcWLM19e4ZMhun481X///+PT/p5L500Muj82x25dIAHf3XCfjFZZCA6
aj6Z7eLBdMus4fOnyBCxQ/4PfTYvNtC5nPyumgwhntPa2Zt8OFX07ialhgxG
Hi+bYpT48SPap6mi18jw9TnXvXl3fuzyavHI/gYy1Cge8zlez48jE4yPD7WS
ITTtr1+ehwCubB08//g5GS6J9L9/eEYQu9yb4TUcIEN+6ID7Uqsgpu38efL6
IBkm97KZtrwVxKEPhdNPviZDYGDqEJukENbo9w90nSJDX12EW0u1EP4wED/R
M00GfZXH3OceCuHioWyC3iwZdvWEUDinhfDa6HVboXmqfq/y11skhXH39LLq
u1UymJxRvPi5RBjHz9LWOP0ig7La0/XAJmEsP8cv0b1GhicsBb9iXgjj4wtG
XFf+Us/PnHptSi+C3daO/AhnpMD96cfJV6JE8Cw7T+dPEQrs2Gu97aUsiku5
5PRDxSlwQqFCZWSXKLbj1W8ck6RAVGoex7ibKL4pdKCqQ44CPifcnhdTRHGS
bHX2EXUK0Du2hFc9EcXKCnf+rWhS4Ev78LWjb0XxuNLjpCAdCtRrJFF+fRXF
SH0+3NaQArI/z0amsYthZiNtR3YLCjBWJadJ2ovhDhOr3jQrCmw4mNaGeIrh
qF0e6LsNBSaenjhiFCqGhyxTtIftKRCvPrgn84gYzrY5ecPKkQKKgr1Ga6fE
sIFdpdxdZwo8emH3dr1MDJc7PhQoI1AguKkn9tItMezg8uo0y34K/LNz17Xu
EMNbbp+YKAcowBYZX5bwnxgO8mTZ9PGlQJ6dt33ymBgW9BIjvvSnwBvn7x57
P4jhpz7qCxBEgcTU/27UfRHDakGu7+XCKWCq/GGDZV0M60w84emLpOo7mz9d
uS2GjdzNbWIPU0Ai9qNVHaM4Nn/ekiwYS9VDIYpbjUMcW1vtbOiMp0DPkfF+
eT5xbH+/eiowkQLexc51Z4XFsYuuMB9LMgXIB59fTZcQx/vqT9veIlNA7K1j
z5SMOPaWYyB7pFEAOMe22hXEcWAF5eafDArMb4R6saqI43C+1Q/VWRQQ9Any
HNopjqNPhvPb5VBgv1xVDI+GOE6gm9q9lEf1r4Gptk9THJMpHpSSE1T+tfN/
/mqJ4yM/njea5FPgIv3+2Ova4jj3kOXMhwIKnBoxp39Bxac+tgvkFVMg+TVP
UhgVF3tp7lE/S4Hzimc0Uqn1Za+upr46RwFO27s+bFT+i3vFb6eUU2BMN5lO
QF0c1zwq/ihVSYFf3yekzquK4xumLEK9lygQRv7QfE5JHN++k2EfdZkCi5jS
zy4vjlt3/k7jvUoBEQ/v8n9S4rjzSlRT+zUKdAf+ORUpJo57xD7O+t6gwOwX
zxp3QXH89MwBYYabFMiZS/jQzi2OB9gG99bfokC1r7NFOas4Hjlqm+HaTAFD
m1DTH3TiePxPZ/NaCwUyDL+VPvsrhj8QdT9XtlFAa5pPVPKXGF4Mknb82kmB
/oMu5yxmxfDPidIjhZgCbarBRdwTYnjTnaPFoIcCg9+GLnkOiWFG603Ro08o
cNznw3BYpxhm74x1UumjgMJhS2WtJjHMqzeX+bKfAl/ZpjeTr4phSfmRL2LD
1Pyu3i3MpeZZ/oK9eM8INa/nDto7ZIhhVf6HzuFjFHgmY6l0No6ad/rG1pZJ
qr8f39rfJohhp9m8bMc5Kj4UP7nFL4YJ3lttP+YpMNBqFPSeTgwfHEn4dn6B
Ak0xaIf1qigO/S/A7fMKBcyZb7hUvBDF6TWm0hl/KUB8PZRakS6Ks8Wb3RW2
KaBTbvOhOUIUnyhRznu+IxW0DRK1HAnU+yJbYEmIKRX6GrbUZaj3R2Pw9/u3
eVJhUjmS2adPBEuvBX9W4U+F8NHXvFF3RHDx8XHuK4Kp0PMigF/0gghOanwc
clYsFT6eH//rRr2Pdq1XcJEVUkHmlWarErMI7j9pF2RlnAo+Li8EaDWEsblk
V36naSrkMCa8keQRxrdv67brm6fCDtmH76Z/COGS15IcylapMDd9ttixXQh7
Sf1qZXdMhdOcgTRsu4Tw1+Zq1lH/VKBnCayJNRDE3jZC+s5BqeDaYD0swy+I
B8ZO+T0NSYXGM6TmnBUB3PyX1NIRmQrlGgPHQ+oFcIqtk++lhFRQjd5lGS8m
gJnHN5vCj6VCA00dIi/yYYUdhAN/blH3fU2OtPXlwS79iCe8ORUM9Lt+8+jx
4NRzO5+NtKTCjX3iLDdYePCwOp1x471UmP7+UwxauHH6wWbhgEep8CbFTXKV
kRuP3uF+0zuaCoNCBiBjy4FzQ1/sK/6XCoFK14UcSUz483NbgsreNAgZkTog
G/K7K4T9XG+fYxrYVDOWs5/61TXrMGcU5ZIGyRQbv+Hmn13TL/IkbnmkwZvJ
Pd8Gtle7Jl8+/aznnwaxp3bOJeh+73r1yj4FEtPg7fx1vqcV013dE04X919K
g2e5Wdb/rg2bI/FL3BvVaXDco2Mz9+9r8y7v71nlNWmwwMyWn+P81vz+u4Kw
d3VpYFgnfYBjecq8dWpQK6glDWgS35vYnf5sfvOj26PoZ2mw95VMFOnxinn5
t31fcn6kwZ86X63De7bMs21rXTd/pcHNekG55K0t85jqXx3R62mQcIWLq6d5
29x6f0n+/n9pwGYSGHH8FA363jOko8KUDm1Bi4kZSzuQdblDWr9oOhB2NS5r
XKJHS3aWvHyW6cA4edjhQj0LenOliJJnnQ7ypdPWHuss6NHWh9k/tumQtGiy
kmfNispaMtpm96aDMfFiyMEJVmQl/cC71SMdLOXs14Zp2VHZmuG1AxHpYFfr
IfDWkBMddcvjHjiUDu9fWp76TeFE0TdHUyyj02FWO8I9E3Miq6BEh53EdCjX
uV24Ys2FlgaaV/6mpsNJhtIXIfLcyKpW3ayqMB1EtiKaN0R4ELMx732fM+nw
5qhs2V0THtT//LexWGk6cOr4nWT34kGEFWxYWpEO20wh5SfLeVCwmZvuqdp0
iFQ1UnjLz4uUXxo076lLB71ezZOHdXjRQoCYNlNDOvAm7fMvd+ZFCXmzGllN
6TDHd/J+9zFelD2cpJrcmQ7Bg69cNH/zIrsQrzp9nA67vbJMsrj5EPs6Uv7x
kLo/zejPaFU+VCLBohj9JB0uOwqYMPvwoavhFTLBw+mQqF4aqfmAD/VuYWGX
L+mwME18JR/Bj04U1Zzj+JYOMy/mA1pS+ZGT/HHB54vpcEb73thIAT8a3ePG
b/uDuv/Y0MXnLfxormSWy2wrHWwi7pNTN/hRg9Kz0xs0GfDhuMBSIYsAiu24
ydFGlwH8Sd6cBiICaH0qiU2HJQOSeQck1Q0FEPNOFiZl/gy4bfm/AOYAGf+Y
PNBtFT/Mve2F5RZ/QLD3QGdeehU/kFDSBKMZf0BLrgP6eoYVPxh2mwIeH39A
VCDXV1+dFT/cCICB2yF/QD5z9IknqBU/oJtkAJkkf0AkXbkjfrIVPynBLf4T
Kn9AbhnV3tXFFT/uUxJ90Sx/QNHrKwDXzhU/sub2+44vf0AEYbNOZtcVP3Z5
23pMMn9AZZCHpYPfFT86DMD5CTV/QN31ojIv5xU//p6keMc3f0Do+IX+aO4V
P8IxifeEOn9Ag5kwCTH1FT+GxG12Qj1/QK/XolKH+xU/SldS9f8/f0Bss9za
awEWP8pWXDk=
       "]]},
     Annotation[#, "Charting`Private`Tag$4887426#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwUV3c41u8XViQhyixJRnwlGZlJz3sI2XtTRvbm5eVNS0kqCWVkREJUhISM
x3zt7FEpezTtJMTv/f31ue7rec4597nvc32u5wg4+ho776ShoVmmo6H5/1e7
NDefkWaBIPGse8LwiBCBUSbk60zAEuGf3NswfFiI0Pb6nFDD9ApB1HXWefmQ
EOGuOPeFdMs/hEJ51wfzB4UIOnkzSaHtfwmPsmS3irmFCMwipX0WaJPQX2hQ
fIZTiNCReYtFtmiL4GdT/vIBmxBBRJ9NldS+Ay6n99y9zSxEiGC+ZDdFRwt/
bKpfSOwRIsy0jV82RnRQAf/Fpe0SIuScKyqTKKKHIzeDynr/CRLo6Q8OpH7f
DXVjVr+T/goSXBqvLzEe3QOb1w4ICP8WJIioGJ6YTWCCIwdL0xJ+CBIitsu0
zbqZ4b+2IO7LM4KEmeojbg17WGDA7TiL2LggwSQtuMcA7YNP81csRgYECTcv
Hx+jH94HLOGX0ie7BAlvbEbnqoP3g+heB93iVkECO885ZvEiNti/9aP/ZZUg
4ezfdZ5JPXYYc44pHHwrSCB+KDiW/J0d4uv5FtsKBAl9CVznGI5yQji96gfG
DEHCQ/aZsKkEbjgwpxm3+7ogoXHpcUyKzAFwrO5/eS1YkLDSo5du3H0ArPO+
+NX6CBJMY95W1e7hgZapP8bZtoIEjr23/qRe5oUTrNq8f+UECWo/FelNDx4G
WR1aYutxQUJg+08OptLDMC+txOgqIEjov2N6kjzPB2Hb/Ot7mAUJ2rRxpWJF
/BDD9e37zIgAYWLpx5mIbX7IOXbCj79PgHBpQp0yricAPGHxw6LNAoQXdX/7
kr5T8b9ep5wCAQLjdYdF+qNCcNPzfq12qAChbVNKfDJBGEJC9e++ZBIgfE44
SDP4QxgOe1k+yt3gJ/yS2tnfAiJwSyDbwvMHP2Gfc19owXcREPr84qtpGz/B
/H1QOxmJQuGdqem6W/yE8bQKj30zYjDuwqYYNHOEcPlIZv8THilospM5LWx5
mHDLKwEdUJeCwxrW58nihwnR7+7mxvpKgcazpMxbNIcJ6SbEy+GNUsBWb5PQ
9JyXUH9b7aiHjzQEVIX6dywdIjAszBDl6k+CgQklSvUyD+FR7XH2Dnc5MPfb
z+HpxE2wLtn/KzBWDr69ku2uk+Um8Of+aTr8Tg4Eyk201ui4Ca8eNFzyZZCH
xleSp2myuQiNF2wm2J7Lw96yT09DJzkJK5t3i6ymFMDigta3OzYcBNNT3w1m
LygB7wEhJSu0n8BenBu105QAlwNqmU8y0xO8pJfOTF0iwCKrOsp/tYvQWHh6
nvKUAEGhW+IOersIga87je7MEyC7ilWV+ICO4Gl+iSlSHUB/Q15tNxct4b1J
RjfLOMCizsny25I0hBj9n9a8B1Qh7d5F95XTv5EyS6zM/eOqsGTLYrj6YAV9
fS/HvIVUYY6f59XzqWWkonetetRZFQaumzYeiFlCSzps/M/eqMLaV+/JJ5/m
kamW4vQxg7Pg4pB+MfzVNOJWC/dViFCDEQPjZwYPSpFjge4h/RQ1CNlrOpXc
modeHeBsdipUA5q6Xqvq4LtI9Vc2X9wnNcj0XT13/sxr7JXQ/P6nhDocOXnB
9qFqG679yiieOaQOaeW65PSEEcxo0jdU/lMdOj/6lLqbj2Gz6pSbXTs0wFA6
7jTlwjj+His+vHmcio/u5fFzncQcp/XvWlzXAJkTN6tbzGex+/3Yr8zHzsHN
iliD0/lzuOSP1SMhdA44+07cYbg3j7ccBEHJ5BzEZ+cyLJ9cwI/k3yS6XjkH
e08k0rvvWcR4tF+jvucczHTwfWjJWsIM2mlLH2bOQVXyLZofu5exSYnzk/mN
c5A34sMR676Mv0au/uYV0YTDobOiRNEVzHbyQHbwJU1wzyKMaT36jW1Txwyj
H2hC5I/uwfAfv/Fz+rzNrCxNKPR1nQWVVaw8fMq0t1MTdKId3pz6uopdwm1o
TwhpQfiPsiPiR9dw4ZzQ67OKWqCKXhq4+67hDcuf1tZ6WvB5rFPxv3drOObE
leLbwVrwmPO5vLDmX1w5+MRhol0LtPlzBvlN17EThz0lZlQLCu2e/FJ8sI5Z
jAWOEZa14FYrwypd6zq2f/9sIYVHG9gqcoULFDcwXWPuNTN3bSjma7scwbCJ
83d4TNJe0QYzdeDTOLWJzQnHzxXHaMPtvzcti902cV5FPgtruTYomG1dL2/Y
xPpFxWkt9DpgMh6pctvjH/4zR9wRzKMD6j60HrSx/3CGuJyzsIQOcLAw3IDS
f3j5eZn4DTMdUIt4ff3f5j+cOh0SI+WuA1kXjF2v8G1hDSGllZHLOjCude0M
Rls46UlV5eksHbBU/lXuHLqFVT5fOfK9TAdUvlnITyZu4e8HCTeT2nWghvGn
k+ibLawcX6f9e0kHrryMGdgzs4Wne28UPKPXhciatYm0f1s4ep8amzGPLsSm
FbfOsW/j8XtNHwtUdGFdpdBsW3kb3229fea8mS5YMaysY4NtLLtb6ymTuy6E
+e+T03fYxl/UGHdVXNYF3yu76PL9t3HEjXY3txhd0FXvk2u6vo0la6M6uLJ0
gW1yaL04eht/+KcnRSnThe5Wsm5IyjYOO836iNiuS9WzXIzr+TYWI3f/ERjV
BbmA+Pioom3cVxpr072kC59lWO8PV2zjyyvGNVfp9cCF+cbUWv02FjnJIXSC
Rw9GEBNlrHUbd/kORAyf0IPD8bskX3Zt45D8hO93VPRAiNVf0LJ/Gwv+sNBX
NNODxVd66bND27hd9GDxjJseRPikZFt92saBLp844y/rwYSJtVzB8DY+nJVC
PhujB3uDmDPbqbhp3PbL4jM9sHzxQrqbet/vCJ9KRpkeFDdlKNd/2MYHz49m
6bdT67fN1T8d2Mb1yRkM/0b0ILHkUaNPzzb2+uDg9XJJD/gj4lSOdWxjTi6h
bit6fbjvfciLQtnG2GRKhoFHH3bFShxBeBu7xmYnlp7QB6umMqHCt9t4X5fL
hpOKPtzZW0Y+9Gobv2MWtWM304dHLuIC159uY0ftb/V1bvoQ2sPNMxK/jZki
X4j4XdaHM/pkJ7k727iE4nmXL0YfLjxRjnQL3ca7VeaMQsv0obQn37vHdhvr
H+uL7OrQhzgZF81U7W2csL+8RmhCH9iUT11TUaDqPRF2ooPZAOJG6S7v2LuN
fdpcnPgFDeDUJdkP3Ktb+G2xTkqgggEI+VkYHhjZwmo3OfccdjQA7B38aOjF
Fo7yXCf4BxuAT1CgfcKDLdxnMkqiRBlAYOLgraPELex4NG/Ku8wAsjc6NOgV
tnCtI5+9Hb0hKIi5N3sX/8NTgzGhe/YbguaZI14Z0f8wgw5t4ptDhqAcQVob
cf+HDWS+vt8tbQhd7xharh3+h0doi08X2hjCsQsrWjvIm3gzS517RxH13PmT
bBbdBuY/WH7yZaUhUE6evqzbu47V7ovpmzUZglIL/Vv69HV8L4j1Vt6wIYQ8
vMvHLr+OeTQ+LhnRG8G6sxOdtM1frDjr1ZlpYwT99+4kDd34g4OOPbqlRm8M
luZ9k912y/jq9dHBqn3G4G3LIZrLs4wjhsRE5Q4Zwzu7X3T/DSzhhFt1bcJS
xjBz3jXykNYSLh+fY91tbQyS70XE7okv4o3HWsmt+cZgzWrzJ6b9Fw5j3C7Q
NzOBZYiUfGs1he86aNM025mA38O/5Ka6SRxXHm9E8DCB8v+ELbjEJnGmi/iK
5DUTuMb5stV/Yxw31lud2p9nAp6zmp6c6qN4d2hJQ9+mCRjqPeWQ/TCA7/9w
/2CZZQpcYbnfeGJfYrVXRbsOF5hCEHe4YunpZ3jT6+/J8TJTKP6nl3NuJB57
zUXed283BYbuw405hhFIe/G56qUlU3B7EqoqwvEGMfyZfpUCZuD/OxJnWbai
2rITn+y0zaBenMfBV6MdhYQE7T5qagaakmZa/6Teo9m/dI6vXM1gXNspSPpq
N2raFOKujjYD5Q5Bzwr5fnRzp2PYyGczmPBgkNpnMYyUGvIKMmfMYO0dGDHJ
fEZLNxeHXRbM4EZNycyRvV+Q464w+Xlacwjk4ftYWTmCgCHjx7aYOTC3fj4v
uGMcbe0dMRMgm4PGfVE5Ve4pVNopfHP6hjkIFaytmwdNIZ8H3oV5UebAJDHY
5907hb7s+8d4MsMcFF97/FS/M42q2HlrVZvNoe/orYa332YQ+aC1mBOnBbSf
UpKvDfyGrr+WUdk4YgE+hb+7jZu/oQj1vZZxYhbwikPuz/UD39Ej/9pbtQQL
EMohzLwu/Y4KW0XGeT0s4HPMAa2QiR+ozI5m7U2gBUyc8P01fOwnwr8/suhc
s4Ads2xmfb4/UYfAfWXyIwswLxqiffTnJ5olLycOYAtwKvV6Vvv7F5pjfV/g
1WoB8QLZZ8uk59BKdg6Ftt8CGgtp4k95zaGdvVbL0t8sgP7Oi4wvn+fQHjcZ
xtZlC2DvXbPeZptH+7aYBey3LKCKNun+y3PziE+sVj+a3RIYubU88l7NI+Ha
x87CfJaQhtbZVz/PI3Fz4uUqUUt4F/Ojd3rXAlK6IfLi+xlL8GdmrIs8uYDM
PkXtOudmCa/b7A7T3lxAtn4uvCMBlnB75qKNXvwCcqQHmaArlnB0g1njc84C
8ju5bP8szhJ06pNTG5oXUHBLR7BSmiU47g14dmRoAV29kBPd89wSDgx03qmb
XkBRd62qtqsswe7Tgd+DNIvoIb9MX0KzJagNF9tr7F1EyaXM30/0WoJ1d8PU
xoFF9FR3hobymXreKOjzV2gR5U7UcNvOWsKOsq5NJLGIXoc8llhetIS43LaY
DoVFVMpCVL+7aQl/ktjFMmERVWXp2grstgJjzh+oQnMRNSiJEMv3W0HeIJzi
MVxEbd3bdwx4rSBHSkCLYr6Iul0+ZsyIWIG2UJRPpe0iGtosLrsibQXxBWF5
mw6LaCQuqpND2QoienesR7osomlRl+mXGlYwskf4uZXHIvqJCZuqRlZwMjk8
P9B7ES2bHmT/ZGMF602FFSO+i2j9+9IxfxcrUIjJ60z0X0Q7wjqAwd8Kvv72
+ZYesIgYuHMs0kOtgGWNhukPFbPmX/ORj7ACc3vXqHgq5jprdet9jBWc/3o6
NIwaf/jjyVSnFCvweNOuWEfNf9SX+c1GthVcruOimFLri+2aaY0rpPJnO8yv
TOUnnVIzdqzSCkpyRrSCqfy/Jsf3MVOswE2Ss9bAcRE9SfZsmu+0ggvFQ++i
zy8i02SVd70frKCFrumKsuUiYkzmfvV2gqqfyBiTlfEiqn3860nSTyvY4hZx
mtJZRKTHDbGhq1bQ+iExYkRtEU0k+QarMFoDV09TOqvcIkpKUvc4ymENeZq0
Dbrii0g/6dD53XzWABnWMluCi6gysVn1vbQ1XJ632qhmWUQBiWlyhaetQWB2
h0kH7SISTSSKPlS3hkP2pylqawvoUcIRFisrKpbfdTludAFpJ/ymUb5oDeoT
Gn/9ehcQTUL7Mp+3NSiw+k+0Ni4g7/jgj1PXreGHWinjt+cLSONRV5ZfLvW+
0mp6q+sC2nyYnWhSbA07VRojw80XUPHD0LvyVdbw5mpsVK3aAuJ7+J/fZpc1
1JxOSU8/soD+xF47HfnHGsQ87u47nz6PCmLNJDx32MBFIWPO3UHzyCn2uIA+
kw3Uabp/zdCaR90xQ/QcR2yAeW3aRXZhDuU+kOxN17CBtfsUk8qTc8j6/qhb
WbwNsFTIpfpG/0T77r+1SU63AWUghhLMf6KmqHv6V/Ko8cnGDoaHfyKZKAXZ
s9U2ENOyCnJ5PxDzvQfbnVM28DZhX2RR2XdUHUlImJGxha/u6Wfa3nxFlp5z
OPGMLXD962dv8/+KlvTSZjXP2YLkoW2Hq5JfkSj7huJLa1soe7MRuJE7ix6l
lQ77htnCXe3ZYNGHM8ij+ITA305buEgc5yvTnEJcnw+9YvI4D4ZhzZQy+lHk
K7lWJ5VxAWIEH+o8PkNBlrOK/SUvLkBn2b3Y1Y8NSDWdPKP49gLIW33knSDV
Iy7WDUaVtgvwuj26X+1iDcJz/0yMVi6AfVrWu5ALJYilgHbGX9MO+L3P/DG4
GYQLxFkZ3yzYwePxE66KrhScOGXAq7BhB061aRIuWU0Y9DUTv+y0B72+td6N
0WYsRn8nz2GvPch887mtY9SGt4IYO90F7UHZvod19WAXzjHby31J1x7C9dVm
2Pn7cUrRCf4qI3uYZ1av3Jnfj2P26h/bMrcHU8aN1GeKA/gSJfr0DQd7OHOo
QpxVdxDry+2zv0uyh9srX+nsLn7AqxzseckZ9kAfz2SzpP8Z12dLZ9zItgdJ
0RHu/fgzfiBvmOjxwh4Wa4+/Gzj+BYta3r+lVGIPkzsV8wxpR7BNym7HT832
cP2m96Za5igWFRexqu+wh8zxjCwj2jG8UqVm+KLHHnw8GV50yI7h6JEwdGnY
Hpaquoxy4sdwrcAmD8+8PSSdsK7abTCOo4p52Hau2EMyp/Tqw9BxbHX21J7v
a/awc8yfy+X5OF5yIv15t9MB0kjfuac2x7Fw7kKfFZcDxO9uDDuaPoGXFFnb
VQ45wM/VCwpDlAmMW0/UH+N3ANsdInbtPyaw5Q+Pwr/HHGBH0IlXEXKT+K7E
dNTjMw5gHUkz9blmEpvX0IaHqTqAXd2Fygdjk1jIUDDU/RwVK32oDaOZwlX+
du6njBxAiyO7hxNN4Ts7r9oLmDvAqaC1z2U2U9j8YarFHhsHEO789uhRyBSe
L/mo/tHJATTtGmR2FlLj1deU69wdAGrZs2LbpnDkIJdsng+1n8Tbp62nprDg
mokgOcQBUvM+jiZwTmPT051bB6IcoDpJ9mitzzQW6Pj5mybWAdafH547cHMa
z9ky/foa7wBDS5L+LxKm8e2rmsPl6Q7gc7o7M7iSGs/q2puR5QC38k9lFHVM
Y/6MW62ReQ6gSH73+eiXaVxRV19m+cYBLlRt+ZRtTOMI4/ECKHeANpnGxsE9
M9hkcjtbtNoBBB7ohEhyz2D+QL60ffUOoCBScr5GaAb/pDvzaK3JAUz2xw5F
SM7gd/E298baqX608tjfUZrBESKXbrR0O8CGvtGfJrUZbFyWRC4ccICbT2XT
CPoz+IhmmV/SJweQqms0WjafwY8annz+NuoA+24mPb1pN4MZCBGap6cdYH6K
O/eo6wy+XOFdEvXdAZJ7fPXHvWfwgpwZ/8i8A5yNS616R5zBTkXKUZK/HeCr
yJOl/JAZ/IG69F9fd4C7DwIXqi/PYN1cJqfebQc41nGk9Nu1GVwrtNwltMsR
VO8qvRS5MYNl0z+dDmJ0hKs9Pfo3b87gXJ76502sjiD37PZ+mvAZzJuQx36A
0xGct22WU6nnsftjr7nzOMK+Gf0VK2o8/f2QHxVHqPct7DkUrs/gSwz2FszC
jiD1dlLuvyszeO7muYbzYo7gV3eDXZk8gx23JSRfSzoCi4lgOClwBg9e4kqh
kXMERo/624M+M1h79R+9sRK1Hv1FPlu3GYz9pwOeERzhsCid5m6HGSzzq2Nk
Rc0RYo/XPGqxpPJ1K9HW0HaErz4S6SUGVL5TKaWJBo6ga6RS26E+g+mGPaKV
rB1BYdlII4zqV4i58fo9O0fAxQYvD//fz55TLl+cHGFnRMDjfs4ZPNDCgK77
OoKE/mX7j2vTWFttIa8n0BEuzTFJHPs2jXHNEKfQJUf4VZqZ+OrDNM4pzflF
CXeEvUeftCq9ncY8J6OtuO86wnaZtaNO5jSOzg+iuD1whE/SUqxJ0dM4OEst
jSnZEc4OCWdPO01jzbgJXaPXjhDPXnvtP4ZpXLW3rTyzxBH4wk1keOensNSd
oqMr76h8f5eYmQ9M4YPXr28mNDqCeMN/GuHpU/i7N9+rzx8doaWhOl/z+BS+
8G3XAYlRR/gtXNl+nXkK9zr9unltyhFkOJYyFn5O4kqbKhvBeUewJaddGXg5
iaO0rJnc6C5Cvk53ZqPAJD4hnOCxLHEREk8oHof5cczB5rF4XPYiPNkvPEbf
PI7Xt86EOJ2i4uSDLOpPxnHLh+lbA2cvQvRT/XBWnXHsGCX3tMySev7hwu0L
T8ZwwnL/UOiNi/BoHT91thnBW3Xs6nSDFyGt92WN8cYQniqYbVcevgh8srte
5zwYwu0plcZBYxfh8a9IFSehIZwUdNF+5vtFmG6g6PVrDuKTx96EtmxfhDY7
J1bN6H7sEmNcHHXMCdT6Drh+ou3BXRdij3BecYK2cl9xRG7A0dcvPloOcwKG
1ggpjif1WDdTbk9vhBNMxjEdfFFfh1umPy5FxzjBmauPPAnMtbjWS7CJIcsJ
eGnrObVU3uHiS2+8Ntuc4LWbj+ug5nMcnzDwbvKAM/w9nm7Y2J+PTMufS9Qf
dgYRaZvF6duFiO0T+VmGoDOM5D9x0zpajKIP890/L+4M+e1vz6tZvkURWS72
QwRnsHuiEsCVV4lCiv/Qt7s4w82HHRpNqw3IpvOgaXGJM1j98mR/adaFaj+V
nFl/5wwlWlN5Iru7kciswX+qNc7wK4dgmejYjZa2b633tDqDAclxnou7B92V
XspYHHEG3qS4p8OBvaj8UdsvqT0uwGJ1cICVdgDxPXUeCmFxgSEzF/0LhgMo
PJ+mrpbdBXr5l9UzUgeQQZP8I0M+FzAR6Hi9JT2IZv5kKvnJuMB91+UwC8Mh
xGETevv1eReIWSSyvbb8iC65cvn/cXQBsUFthspHH9EYscia4OYC4eeZS3K7
PqKXUbMnugJcQP2aZjO96iekik365267gO3brqjJA8Mot22uWv6+C/y8Z+X/
RmcYsQzdeX41zgUkzgcikyvD6ON8zSWWNBeonLeN2/llGPkJiAtIFLvAnom0
77LRn9HgiWZGUpkLZJ47++Va2WekrOS4Ul3lAnVkrkMJo5/RbpOkZr1mF/jD
vz10QvwL8rKTKYrvcIEaorp2nuEX1OvZmfylxwV+0LwW+EX8gp6E0/l4f3YB
q7Yf2+9LvyC62HSLt+MucO3aiKDX4Bfkkaak8m/GBSamSSf7V74guVI/jvuL
VH0/2X3/e2IEJdczbfWvusAH18K4Ms0RRNOVM8u76QLtO795KzuOoI7ZzxWv
6F1BpqlOPTl2BDEeI8UlM7nCiiES2pMzgs55sHpE7nOFHbzw3fXdCAp/matC
4nSF8/81J5e2j6D6nyoHnXhcgZnYJ/v7MzW/xPCC0RFXYNx2Khf6NYLO+Aa2
EI66ggbfoWdnNkdQ+WJO8CEJV2g2F+BU5x5FqyfBYI+MK+xK+BMkIzSKZAI/
ivxRcIVvKrtS2SVGkd/bgK0pZVcgWWvfnlYYRQWrTIO9Kq7g7GUSkQ2j6IdC
dn6thit8KLZVNtEcRaJkdKtAxxXMVEjrv/VHkUvFkG2qoSuMcmfU3jcdRc82
/GTvmrlCgPynaB6rUTSmzMgcYu0K+9OOOqfajiK+q88mne1coVLn2ll2u1Fk
U6NcaeLkCvEDwhSi/ShKohmMU3F3hSp2j30dVDyo4ush6eMKl+zP0/JRMftN
BtXDRFfortxOc78wigwbnx5kCnGFamGjsQKbURS96/Ti2mVXUHli1PbLYhR1
aPS3zIS5gojM2fNHTEbRnkjvjP4IV3A8fSTurN4o0milD6m/5wqXOZnsXDVG
UThjhkFhjCsQ6+gb76JRVK9z6r8n8a6gSWCry5cbRdtRvVv3kl3hX/QJ8+7j
o0i503OQnO4KMYWWN5f4R9El1l0FrlmuUL9aqraTcxSVGz65ZZbnCnvYdutw
MYyi37EK588WuMLz+395pddHkB+HB/ORclcYzqYIhQ6PoAIz2inmalfwV023
fNE2gn4kpFau17mCdf/r/YPlI8jlYJfHYLsrFD6cIirEjaAsazfVxm5XsBVl
X7p6ZQSNp+zgKR5wBZZ7Wc8GXEeQLZ9s6/1RVwismM8oPDWCjIQe/6e+7Arp
z+T7f/Z8QdFOJ7dPrrnC0beeDO/efkEd2e2D/P9cwR492khL+oI0RLdubdK7
gWvRjYV7Nl+Q8omLU2943GBwcdFvavAzuuSzWfn0iBtwZHxai3vzGZW9jn/4
4KgbXDGlX9F48BmdPNmi6inhBnVSz4Tl1T4jUYUTTwVV3WD3JO17haxhtPfi
g1/kc27wOCjdLoI0jJaiF0/16LqBb5wQmjs3jKpm3vZes3CDbx7TI3u+fkKG
CYjui5cbFNzO+iV++BMK+W3gmphIxd9OfTh+4QM6L1D8Zi7VDUrN9+m9FPyA
VPU4aDQy3QBxJzcYzAwh5uwPSSuv3CCWPn6/oucQyjB1aDOqd4O3e5oiSV6D
qPVNwAnmX25wg0mu6pVePyoY7SdfXHKDay3y6tv0/egRk0JTxR834OJnulRX
04cuXNy44L7THc4+76G5ItmHltjCY5q43UGB/pOhPEMv4gmIX76u6g5RClpv
nNS6kIdU+bvfie6gr9OwuMpLQXXv6QVk09xB6k70WwlyIzrgaRYZkOkOH1MR
3XB/A2rOXjKff+UOJ1tTstnv1aOjh06sfK1zB3nTb9yr32rQ6K5Mic8/3KG2
rLpr7fpbZDp871k9wQMcd1YoZ+q7o1chnxh3qHsA/7jHMKOSHablOhZA0PYA
zft2+UGyl3GxYRNUmXqA95nUb+UysZi1iWbkrbsHSCVnBnbkZeK2wqADeQ89
oCOtnPWO+BtMiLC7/2DWA95dCFRs/FCPfSxfTRB/esDu3Y9Pp9o04FSxvwqW
ix6gpxcad/lLA17vjJvg3/AA1ZKQ0+YjjbiUu0mhmMUTNnbv55vob8ISeeIT
/XKecMYwf8Anpg2fDyUrvFPyhL2RhD8rO9txlF5TVBrBEw7H8xyzCmzH3xft
FFy0PCH7F1fqXtMOnKP0MOqPrScYjMtHMO3qxHwdf+V5wj0h5cNb67iEbqz3
RCNqK9ITkt4oMJ9r6saX/R6OT9z3hKO7A9eNfnfjTxwnol4mesIcN+99D6Me
nHDeflz5pScMHT94hrKjF1Mk8+UFCj1h1iOrS0K8F6/sWL+3660nKFVtGX81
68XGOQ/lO7EnvIrnF9d53otZ5pvu2fV6wta13w0/VPrwmTr28bNDnmAt/yuv
y6UPez20lxf97Akv5mJObd3tw20K62ML057w62Mwm1ZPH464fkL+xl9PuL+v
SUbNrB+/Nb50z2XLE7S9zemJgf146mjzmDatFwTvefp4Lq4fq7ba32Pf6wVK
7+kelb7vx//2PxrL4vcCj4uZ895KA7i/M+/FkrAXTKBv0pNmA/jFvZpAOO4F
06tbf4P9BrDlrh8Mn+W8IGsz4RDNswEsUU/Td+y0F5hrHwxarhjAu65xpQWD
F+QQm/Ppewdw8ZqKNLuOF1gWcgrG/BvAkW8tNuwNvcDmFrvwTrZBbBfgTSkw
84L+qxmWccKDmPlnkpW2vRfcaCsz36s9iCdyC4SSnL3AvW7Ic816EL9zbvw1
7eEFGsNssTs8B7HL6HxYWJAX9AZ/YvKJHMTKqbt0uy55wc11F4ee+EHMbnWI
6/B1L0idvPvWOHMQf+eUHvO45QXMbKnh8/mDuLZX40X5XWq/u5uJL8sHccID
20D6GC84QmG6GVE/iL11A5BpvBc0aXkUX28fxGp7Ihkyk71gIH5iR3LfIOZp
SuudT/cC7bxA/95Pg3jhxpvUM9lewFQxG3B0fBA3E1pd7r3wgubBKxWJM4P4
yeaI1MfXXpDr0GAr/mMQB75bWRd56wUF1uVWE3ODWIfESAms8IKPdbZF7xYH
saAM/4P6Gi84llh4sXh5EK/Ny1nto3jB5+eK5xpXBnHXKx2hC21e4LvW4LVO
xTnuDr9edlH7T/+kbUbFl0WCy/72e8HBtMvj/UuD1P01KuzcJy+QWsyTIi8M
YrGMTJ34US9oTXFUVP01iGnOl3NOTnlBfqqPv/C3QTx0sHNU6rsXkGset0hN
DeKCwcm8q/Ne8OtVpaHzyCAOf/iX2LHiBYzO/XsahgaxtSEr4ln3gu7ZyWWt
7kEsvVeYwW3bC87IfWdZbx7EDG1KvW/pvCGQN/ttEx7EIxGGqbSM3mDR9E+i
tmQQl5x1cTFi9QZXA2XHr3mD+B7NZal0Dm94VmZvQHgyiBUvPW9UOuINWcI2
FuTwQcyiUB0dedQbjj88vqBHGsTTy72Wg8e8IWjX71FT10Ec573101/WG5p/
ZyXuPDeI3cQ4ympOeUMX8Z5dntwgJsweC9tL8Aa3jFDfW0KD+Ke9GWeeljco
rntG1m4O4PrDnqOr+t4w5fxeVuHrAH786Xqemqk3iFLYCr9T51vD9NWZsQve
cOuCFjtDzgB+eo7WhTuQykfJIXNNdQAbnuLmYyJ7g+mntu/HxAbwltjxwa0r
3qB63tatfN8AtmYx0Zi5Te1XgOnW++F+zDaQKfI2xRtIfg17nnr049qm0pHc
DG+4vnImrEu3H/uUtyWkZntD+xwXn6FEP3UfWqIPf+0NRYeDqlLm+3C4o+qs
cYM37PT6I67t2YdPmpqna7R4wz16ceUKzT48pu5hofTeG6xyP489Fab+b47F
NQsMeUPFjuLvQ1968er8+POF795gcorx0+tzvdjtSphbNJsPlMeh4MmdPZjL
N57/BrcPeOl8fS74oRs32ud9COL1ges/h+jnXnVjAbUezfMiPnBi9mU2nRn1
f8kocExcyQeM0iHqCHRh3aTab60OPsCdKlK0Q70DS77Z9thV5AOjj2Srq9so
2JCLBo299YFO7F8dak/BfmSa/ZUVPvCf+QnP9t+NuJiwo8yvkVpvt/XxCb5G
LNuxk/bzkA/UcfpPKnnVY8XpXSnFWz7QsON3guKvagzczO12ur4QMv7jeNCd
19j+EvMTJSNfWC7sw6Z1+TjsC7M/p7kv3E9kETL/+xLXP9vL3W7nC/Evr9hh
91ysJsV6UZ7oC8aH9w+oaD/FmlpsG8zJvtDCprqzZy8ZG4UeOF4x6wtYpqVA
iT4X8bSOB2z99IXvRMXca8N5aILrZYXqki9wSw35JBe8RAHFZ7TbN30h/HDG
RSP916g1sEh2jsEPxOgejpUqvUHfXg6abB/2g72rgsfkRSpQp3Fl8FN+P+Bx
md64968CFf9NTzkr5AdNRvxPS/oq0aVz7pO3Rf1A5OcxGsXQasQ4uRGwT8YP
tA7lXKu0qUViPAJxApp+4Ok5sSzg14BY6naVNmj7gQfN75rnnQ1oyfX7R2c9
Pwi5+qtXSbwRVbx9I/DC2A8aL9WT3kw1Im0jjaKT5/3gbvzz0AWtJuQZ6dl9
NsAPSPmna99NtiBDScOV6UA/uLWt03vqZCuSHZQ9EBnsB3syFTYeX2tFm0Jb
dh2X/aDrQ0bsOlcbiqqJmTe97Qc5PLTtAYrt6NXqWxaXVD8weSi9VHH2Pdos
e3xs+IkfTJw7ZtAR+h7pkq+oGT71g+qnKVeHi9+jnxtql5RyqPpYjbn0Hu5E
x3f0T7MU+oEFNL9qnOlEl+rLaMKL/aDvqLqyLVcXaruZcuhviR94QwjXx/+/
p+gvGk2+84Na3q0XN550oRdMS1VlDX5gqs5/x1iwG613DAyJN1H5ac3tL5Xr
RtrR75aetvjBC8mjx+9qdqPv+8JEo95T9c9oZgn36kZKvU5nd3T7Qbyl83De
lW5096HmBVKvH9DRSXefje5Gx7j2PbIf8gMiZ8hVSn43ChlaLhj4SMWhywr5
Vd2oJWmoVfuzH5i3bZ2ka+9GbofSt2XH/eBstdA7mpluVP75Bs+LST94Zm9d
mLPUjRieuMgdmfGDP1wxdpVb3SiXX8Jzzw8/IFetTUtx9qC18f0RV3/5Qe7L
49WxR3qQ5rPfGcvzftCef17X4VgPSnL6WOm25AcfHmWvPjnZg74KVw9+WfED
llmuBzqne5DibMai8R8/uMjjftD1bA+KzA1nbvlLvS+RGr+o3YM+uLv9d2bT
D7yOFtL+MOpB/x3XVS3e8gO+jayLJpY9iPRT8vx/O/yhhSxtfOxCD2rKZw9J
pfWH9sgzVt4XexCX75+4/fT+oGfyWlfArQe5SA3nRzBQ8ccIcXWvHlS6iFs2
GP2hg6dx7YNvD6J/kznpt9cf2rhdiz4H9CDzwIitaVZ/ONfta24Y1INy5DwO
2rD5Q3PFdXPJ4B60uqon283hD8Van/C1kB6kUS5toM7tD7kN/9pUyD0ogczp
UXHQH56L/rgURMUzSn/DJXn9oTAks5OHiuU3P6dn8flD4xuhJmlqfER1bcVB
AX+4EjDKVkbqQYNXswaihfxh5L+t4peBPUgEIhdoRaj84i+5cFD5kXZ4MZFF
/YH6SD6x6EPtv95AZE7MH1RSonarelL7D5dRuXiC2t9Jwd/0rtT+1bltP0j6
w/gNzlWCI7V/+g2S3kl/OPQrfXjKltp/y0hsvaw/9IU+MqSx6EHZ2jnNr075
g9z1Y8OpWlR/w+ZSzZX9Qfrs3mmSSg/6WSYfQEPwhzdnnaFQsQfJCjfzmqr5
w66Wqm0pYap/NqxL/zT8wdXkr0M4Tw8KjbNofq7lD4+VTkefZu1B9duz/hv6
/uDA26U2sNqNXOSlzmUb+QNv9Xue19+6EaN3CK+BqT/Izpx9+GO4Gxl9YmjO
tPIHZluj2HTcjcZKjvFqO/mDpaxn8cjlbhT+w39x2cUf8EHS3xWPbiQqWNGU
5u4PaUy5Cpcsu5HvA23/RR9/eM8R9rhHuhttuXs2JZH9wdvpGVmisgtlZrxJ
Ub1MxStLe62iu5D60Ibfz6v+4Msa2+tj34Wi1KIOQbg/sLXpNIru6EKHjuT7
zUb7Q7e4Yd5x+U6EzX6rx8b6w4svTzMaaDqRY9SZQ6cf+cNV6UYNw7b36MXf
95Tox/7wkLtx6pb1e6TYP8cjn+UP1RyXk/7z7UDmd6Qo4e/8oWJo93SxZxta
rwlJlqjyh5uGv/gt/mtDT1ZrfT9gf+C33e/630Qrmr5oxCPe6A/R4nY8TGat
KBAF+PZ1+kNezvW1aOkWFLv85qDglD/QPNlddquJguYcAy7XzPjDN/1vq2HB
FKTdKzVq+80fJtnP7//+HwXRFeVnJc75A+nj+sC/iEYU4vNccu9ffyj91r86
dKYBXfiWrL62NwDMxXr37XtYi8RHw/w7FQLg58uVRwITb1Fzm0HrpXsB8MOk
uDT8XgiOMd0r9ON+AKw+1rjJ8iIMW460XbaJoWKZg7KY6TZ1X1KXUo4PgPw7
W/nZUzGY+aBy4r8nAbD42ntA404KNnYVdb5eHACR5V9FBRRy8WfaHTsiPgaA
o+HA2Wd0pTj7PrZeHQ6AL9fq9RtTSrEP9+USl5EAqDdHITPSZXhb7I/ruckA
cLmsVXvPphwLGv/qZPgVAJSxc4UCmRXYNeNj6j0aItzTl7a/to6xlFji6sZO
ItRf+xfge70Gr70xNfTaRQT2fambd3fW4rvNXbR6jERosNiUPHurFr+ao3iw
cBDhwIitnPDNOrykXKwY+x8RNjOQ7QG7Bsyi3K8rL0aEqSIOysnUBnz89Kr9
sDgRBkZ/9RI/NGCnU0p3hE8SwVxk5s9V/UY8KFf/8Z0yEc7qysJZKQpekp36
dYFAhKEC1sOXXSiYVZZ+J50qEW5xWh+YTKFgzZPaYvrniLDmaK6wTtuEKyR6
L00YESHSmtn0v1bqi/fESvRtUyJ8iNRIkFhrwsviXM/ELajnlMoUVZFmLH7c
up1kSwSKu8VCzLVm/OS/iUNMrkS4Q5IuGhdpwRUidFKF7kRgpCs7pa/fgoeE
RdTMvIhwenrpXl1gC9531MMr3Z8IV4ueQiNuwWH8S1Uyl4ngfT7ckP1cK35y
hKPnw1Ui5Ml/Cnvl0oor+OSnr4QRQcYqdkb3Vite4r20tyWCCP730p49rGnF
LLypAt53iKCjhi7KDbfi44ewHFsUESzZNFgGf7dip4M7L9jGEiHc7/YAl2gb
vn7gaMCOR1R/ip4ylxPacBq3RkROAhGyWfN1zc3b8CDn3YKFFCIUiCTO3rne
hpc4XtXHPyHCf6NBqkcetWFWjs5BpadEeH3V1bQ4pw1rsrFth+cQQeH6qY9d
LW3Yab8su1geER7dHbOz+tCGw/aZ/9f1kgj2KTbuozNt+AlryOnAAiI8LH7x
22GlDVewJBscLCJCZtvPvWM07Xhwb9VF/IYIFx+vTVgxt+Nl5pHgi6VEEL/T
vLeHqx3vY6aJYnhH9e+xVbQ6fzsWZxLMyK8kQmN7gVOZaDvWZFQrMcbU+nzN
MSJS7dh5j0vLn1oiLK09H4iRb8c3GCI/pzYQYStzdPfq6Xb8ZPeLBZUmIvTM
dpZaQzuuoO+gm22h+tEcNIHPtuOhXXMHotqJ0KvSf1dQox2v0O07Id1JhG3z
769vnaPyoTupMthNBAGTVMlpKk46bKKr30eEM5HNd42pmF8h0KJpgAiGRzQc
J9Xbca5hvCP6QASbAwdKE6n5pT1KvUs/EcGWeCbC9//1bw6FSHwhgqlUaa+H
cjtWTVu7mTNKBHWDGyl3FNpxW+nBB3wTRHh/YGqxTrodG3crJSdMEWHXDduV
I8fb8advNtkss0QwiJ2MyRZqxxdprxRGfCNCrga52fhQO/7J+6Ry6wfV/8zD
Sf+xteNA+Zom0hxVr2fdO48ytONNg7GeuQUi3FblYVb914bD3Xd8cVkmgkrR
nFvYYhuOTz27bL5GhPb76WERQ22Yr9Rpq3OdCMkboWd0W9twTtetPef+EUHI
vbABVbTh0p0tRxR2BgLjwN7HyY/bMOL9JvaaLhAOc8bSM0S24WY5Rvn/dgcC
Q6ZpcG5QG/7gpqvLzRwI4Zmpjjf027D9DW+LByyBwMUl8KXyVBv+mhLtuHt/
INBJHERHjrbhv53dIX84AyG+4tpv0mor5pEzyx46Egh9nrHc47GtOFOfVGgg
GAjni0roy0mtWMwtsbL5aCBcN2jP7LJuxadTPvaUHQsEhbNiWxT+Vmy748JW
okwgsCf8kCh41oKneK7t2ScfCMVNiv13b7RgL9kMjkjFQOi9UjZdbN+Cr7hO
iIWcCYR717T0pnla8JP3LhaW5wKhJjS2ID2iGYvM3nbs1gqESp9v9J/smnEB
TZ63pm4gHFjreOmu2IxrZH7cVDQKBLvMrAPk2SY89ti38IBNIASdHNFMPNOE
hVxC9nz0CQSj1izluvZG7FTOmqnmHwiKVVwr9SmNOIfxuVIhMRAWO+I+nfBs
xKKvBzxvhwSC5K89D8kMjVhi7WSn3I1AmFGdg1blBqx091dcXHwgZK6CycX7
ddiowJFXtyoQVjSZDD+WV+Jrq7qSNXuC4BsPbC6F52AOrHnDjjkIHByUiuJs
s/GLW2oD2yxBED/S8emfTBbu51AOBY4gSFVgFtMef4pFZY431/EFAb9Kjvjb
4GTc67vHrlEmCGqbQ/UU069hkW+U6NbzQcByOlnY4kYqqiysG3e3DwJHgwUG
4conyDCkWpbxYhBwd/lcdyRnoNDdbz9puwVBR6KzHsrPRN3CWSIdAdT7VotW
ofTP0SXHG7jzdhA8LeTk+x3yGnUOo7m+oiDYX6yo0hpdhrqqTymeKwkCP9L1
5c2NMtSdLnujojQIHhcNdMq7laPei2JcTyuD4FxULk31mXdo8Acn8qEEAePB
6m63LxVodOPnfYaPQeDycof5zx/VaOzL7FDocBD8rvl7dk4To4maCYH5L9T6
dDzC/VkYTd388HZgIggumb52J1vVoK9MjV8yfwbB5keS5APrWrRwKOXEGRoS
ZFZy7TyZXIcW/8UHF+4kAUHDV/hyTR1aGo2pE9pFAl7epeajU3Vo5VmEGSMj
CR7nke7GHq9Ha8cDrgyxkyA9siH4R3E9+rvXu1mbiwRFxBwVyb56tD7vuh8f
IMHaRE5Hx1I92nxzPjvrMAmE9WlEOKUa0A5lrff+/5Egd/GRynxmA9rJp8Y9
fYwEnP2Du2lwA6KjIThYipMA3DPLXT40IPpG2d9ImgQPz6aYKDE1ot05koRi
GRKcO/7JNk+oETFEit0RlifBuM0xJ8/TjYhRl/8w82kStCaueX11a0RMEodc
r50hwYFnIT7PrjYi5n1cRUsEEuj9YfApetiIWPqZ1D+qkYDx9G7vrspGxGb7
xytHnwS7028/GKKlINc35v76RiSwLHO8f5mTgqoYS4NWTUjgGfym1FSEglze
BV7VsCKBXC5ZLkmdgir39d+YsyHBzwPzd2lNKWifm8zthAskkPQ9NJ/uQEHv
uJYezFwkwZlXw3e9LlEQi4/Ro2gXElT8sjJIvUVBjpTCJHl3EkRm3FvYfEBB
Zbz70kY8SfC60c8n+jEFMQf6Po3wIcFx6z2thpkU5NDemS3hT4KCHPRD9QUF
lQpKvBgkkkDZZF7auYiCmC7dL7hKIkHggXuy78ooyL7nZ7EImQRmq/uXUTUF
vRXVLesMJcHIz5veq3UUxHj9ZSXpKgn2bY49G6VQkN0QYy1fGAlKfoYarrVQ
UImER2PTTRIQO6z+QjsF7YlobfGJIEGY4TPt6g4KuvBF9D3XHWq+EEs17/cU
VCwb2YPvkeCeOnnGkIp3R80OuESTIKJ0l7Qb9b7tpMYnlliqP83h/a/bKKhQ
KWek9CEJYup5pUWp9XbF7Zq8kECtV5wpNtRIQdbfnGbpH5OgLoGrrqqWgl5D
44+CFBKQfUNWPlRS38NJQgvmT0iQptzSeLyUgqzmb6xsZZCgiduRpug1BRVo
TKzlPCMB9/jmQ7dcCqJ9ovJPP4cELOwhFdYZFGT5O2PHn1wSvMrvI95OpKB8
XRr69JckWChkrZ27T0E7s+wYzxWQYJhXPD3mJgVZbGCW+UISfObxFXYLoaBX
xnzsiW+o8+L//nqgFwWZ7fhyaLacmj97AusYU9ALS2X+B5UkOHvj8VMuNQra
ep1yVAGTgE2hgV5AjoJyL1ifuN1A9d/fgn6Cg4L+vX0nLdlEgp2pKVvPqPNo
vPeg/FALCURablq9XGxEm5VD6L9OEngJg8Ld9kZkxK5wtqubBLVk816bskaU
45FwLriPBDKr0Q3umY3I4KCZYfMHEkhJLgp4kBpRJqnXwXWSBD9E/6VNczai
P++lXVhnSNCRelN3e6MB6QrHepR9JYHaQ90mr/EGtNpnQNw9R4J/u3MOnX3R
gLSk34c/XyPB4vdHGmUyDYjx2fHrghtUvffdTIriakBtHHdD0/6RoMqs/kjf
Wj3SXdMIeLgzGMTja8+mVdYj/Zpau2vMwWAeflPwuVI9MtUrUbLgDwaHPWlt
QUfqEGcNm3yvYDA4dq+UVvytRYNS/tJ6wsFQJeZQfLevFllwSIieFQuGmMfB
g+23apH18HNOSdlgODt5MM+itQbZuacs0GsGw729MJDPU434h//+CNMOhr+K
kZzH66rQmK7l7KZuMPyXOCs541KFHKU4R5aMgqFXp3R55nUlcvoT3T5iEwzM
7N+id5+qQB63buSU+gZDnjq7R5dYGQp66m7rkhgM6yVrJQLPCtGcDprufxwM
j2V3c+4/VYjcVtl8zqZS+c+uXHVIe41sdaqu8T+l1tPUsaxfzEdqv1mefXoR
DNp7bkz9jnuB2LRKvunjYNhmngy9VfMMFS5skRSmg4H3lCSRoew2Ekvp286e
DQYaldT8YtVwlKWeG8nxPRjwjvCD57uuo6Rko+TFuWDItLnN5DxERNfUsqpf
rgVDoy6xmjf5AtZP0qLjZw6BeBZPsuWuB/gH4VEsg0wIsHt9+HZrOguX273v
fykXAsdvDwWL1mfjiGv0BwwUQwC/or0dnZaDBWtCnsSfCQFzrknRbMNcbInO
vxTUDIG7f95t1uW+xE3KIhTl8yEwKtHSdoepCD+ytWMYswsBrwaHT8y+Rdjh
cpLOTccQYMge813tKcKblYy9ra4hINJ1NexMfDGWOT0/Yh4QAnKrC4wF+0tw
xqnyNb/bIfBPIWPUeYy6L1otnua4GwJ0Cjl0dPJl+DRZ7FpZVAiwTC68yrpb
hgfLU3dtxYbAl2OySUzS5XivYhjbvdQQuPGh42CH/zv8yaLCTCI9BK48zdh9
vuYdzg1eTup5GgLfkpMC15kqsFqZ85EDz0NgD4/9kZ3UffOSvLZ4dlEILHqc
kJ+rrcSa5jd9NUtCIJVOn359VxXmJFUV/ygNoeo9uj6qVYUL30qcOlkVAsdU
TY2UOqvwrCy7Rk1TCBQ9/vLRvLUal5jq3nFsDYFSSLwnswvjG4G3OnZ1hID0
e9cDYwSM+Ur+GOv2hMA674HkkiKMTWU+230cDgF7qaExrts1ONqbI9lgJARK
zl9O2ldag5uf6/ZTxkLA+fBM9fZkDVbirdYsng6BhgvVkrZ8tZh/1xPpe/Mh
oMJL133frxZbEwY9dyxR/Q61dGy4WYsfkllygldCILd2ZcAroRbTz13lcfpL
1QdPC3BX1OKfg3a0Z2jJsFDTe69zvRaL7E8682YXGZh/tQam7KnDdjrdwccY
yGDp/lb7I3cd7q2Bn5x7yZBo4F79/GQdZl4PEYliJcPdd9LWioQ6rC5bZL+T
jQzzU/QVp3XqcHmuwMAcFxmS88kfHzpQ9/EJK1bng2Q48TSe96tnHT5+OE5r
+BAZHmgth70KqsNOFm03jfjIQMmJ2zN+tQ4/id2Jm/nJsH7ApebW7To81K60
dkaIDK8OyuQlP6jD++iJJ0uEyVDCui/vSGId1oaXXmKiZGDf2MQcT+rwzUuT
ORli1HzDf7+Ts+pwVcmhca4TZHhfRH/C4EUdXp0zOXRfkgzHrwjdevS6Dkse
izKjPUmGtvyDVpolddjtYuMDsixVjzdikV7ldTgzbbN1Xp4MkwZTV3ZU1eHh
IVk6l1Nk0ArXUNpdU4c52LzR59NkOGtoVH2lrg7r62aHGCMydL2h2+3cUIcj
I74UtwBVn2jn4srGOlxXy/kLnSXDy5Bo7jBKHV5f1/vvrToZBv/yFJRTsaxc
hMNxTTL4sDGRHKnYxxenPNUmQ2D9Bd+r1PjneasD3Hpk+LaHK5mZmn9sUmJf
tAEZ2r9KrTJT6/PwuWrTGZPhlgbDg0u4DptapodfMiUDaVlL2qayDt+PG8IL
5mS4UqMoUlhWh5s6WP+6WFH9fdHvTX5Th2l2a8p8sSFDQ8lhhrKCOqykct3b
5AIZaEfYf7vl1WFiaPnzVnsy5MQnukc9q8Ov3i6MEy5S56nqPB9/Wh2emRfl
LXUmg8Y5qb9iCXWYX8zBXNyNDLmyrOuvouuwldPjmEwPMvDeWufPiajDHR/2
7HrgSwYxg9Wxf4F1mJ5dlbArgAxxTn1GptR5IehdIocGkqGU29NQiDpPxXXf
f7mSyRAsfxikqfNG8L89wXaZDN1trU4+iJqP/+hQ9VUyOLvaL7BI1+HZa+dr
2cPJ4Ot1PsGdow4HSq6X4Agy1K6kpEjuqsM7RxPy3O9Q9fheNXv+dy3mRd1x
NdFksOLLMV3uq8V5v7xue8SSYWkLGxvX12L5tD2XOR9R55E/rYirsBYbbao6
ez4mw/8aLvNwKrcvjjdIEYqQKSkpQ1GmUmzrErcJGcqNJlFJ5iTnvO95T6KM
udJAqQyRX2Xq4JzXGTYSbhEhpTSTREVoMKTf++d+9nrW+n4/e+3nWStcw0n1
U0I1PiOsWLswj+l/m+l91y2r8YIAt5X3brKA26rjs1enGmerD+oE3WKBi1mg
bJpMNRZF6cvWFrPArkau6055FR6yzHwZXMkCA7kaV99+jL3KTkbXN7Ng66n2
klpdCf54YFFkWCsLHizaGrO7V4wjlIQBWk9Y8D4t5NtwgRj/GzbiHv6cBRe3
Nqn56IvxfZNDy7V7WCAa3D4grS3CxoVbG4+PsUA/+Iz70Gsaz8xXVdFbxoaD
zkZeMU1leMtZg/Ta5WwYsB36anuiDKcet1Y/YMCGi6WN5yOXlGEtxwOLsozZ
MKpQL+8WwcOWH4v01K3Y8DtiTZPfgrs4wMDBUt6ZDW/IidkZJwrx46Jjnt9P
sMFweUCqSno2Vr105vl5Nht83/05V3A7C++hLnubctiQ8/KBXvHy67jfuWpf
yCk2zDv/l9dZrUw8c0jW/1MyG2KXzLpnJnURW5rmRr3KYcN7k+hVk1ei8TX+
48t1jWw42pu4RK84BW2vfK+0tpnR1+t0s5RORTPEo0n/e8yGXRze+Gn1NHSo
Ro1K6mDD+SNJYQ2dF5Bx0/4Drm/Y8LPveY3Upiuo+t2Q4athNlSykoNiInJR
eM+MPOfvbFAIkVV20ryBln1UXlT9k9H31DjHrOYGSvi8bt6NSTZ4jwWEeMrm
I7efJ0f8pQnYXZ0TdiGtAPXIKYpH1Qlo7r1BlkQUokvzdC0OaRFwaKZDj6Vc
EdqkZFH8TJsAg+9hldm5Raho4a5soS4B3dMvrjrVVIwil+bEnlxFAO/0gSW/
40vRnHVrnOT+IuBkuLmc4V0eEq63r+fYE6CacXvMc4SHAm122A46EOAXcryx
1bwMtdqx1rRtIcDWTEbrVkUZuuJUo5LhQYCScMZh5ZJytNLX9bWuPwHPJoYn
lnD5yLSrQfFhAAEPe81/uAj5aJ07cggNIsDVPbclbZSPNtobFYrDmfgnZT6h
hwRot+4s9g4OAcLW/w0PIxodyCSKJrgE6Psc8yoJp5H/guG3OacIyDDMnZac
T6OImW/+/hpHgIvTnnynOZUouZtWiUsj4EGUv/6Me5Uozdtk86qLBFR3baya
/FKJMtrzyfZ0Am55s74NqwlRXm1a9+JrBHjy+le0HRUi8Y3Au3QBAQ1e8oLj
s0TonmZ3z97bDN/O9v4tBiL03/ldarOKCAhIvCOnuk2EnsQ4cl15BMSH3qtO
TxGhL746Tv1ihufODo7ibDEa7bp0MrWKgPOD+xckLxWjcXf5cst7BBzuMz0z
ZS1G0hvHNWIaCBiPlq7mBYuRnDjU2eAhAaKnUUojp8VIyfxjdEsTAY2rHc2W
XhUj7WVP+jTbCLAwvfbapU6Mll3donXvCQEhMXndTp1iZKhc4+L/jIAxn7t/
W/WL0erktTEKLwhof1QrqzQhRpZSxfzylwRM1Xet7JSVIGtyWb/XGwJYTmNF
SeoSZDd6ZdH09wRMcP/LWLlCgjYFKroW9BBQl+z9TmgmQc49cbFOHwnIVbgW
Y2krQR67pwQjnwg4N+ssN2uzBHk9iRi4/JnxG2bU8d1NgvZvG9CGQQIK3KJi
rbwl6NB9H7febwRI84v6Dx+QoEDrztPJowS8N+xvifGXoPBy50rTnwTEiIJD
U4IkKGpl3efOMQI+Hd7QFBcmQVTeBh3uJAHKq7d3h0RIUKwWz13vDwFSykUV
jpESlHhBP65xOgmTO+7bzD4hQalyWcIwKRJKh34H85n7S7EqXxfOJiF13prF
nscl6Opk0hIsQ8I13h7nT+ESlBsxY4efHAkdz2MmA0Mk6H+fo+Jl55Gw/vQN
g/cBElTsNygqVSThb4cA0V8HmX3hp1+vgTIJlh20gtw+CUpLeDH/hioJg376
5l89JUhKa/sGLXUSjo3SRn0uEhRZXHfwoiYJ1TEB38ccJagPNqQqaJPQqWRz
TteG4ddeKozTIaGpNPixj6kE2fzKnMfWIyEhy3tUjdlPihMV14+sIKHKKGZ/
lhxTf1GcX6AhCW11OnvtpsRIyi68cq8JCbm6WP71azGKfPKx+9kaEta5nNjw
8JEY9R3ao+BqTgJherKtXSRGTUmbfO2tSFBht7g4XxQjpI3PijeQEPxaxbLq
pBiVlprRFoiER0GayW5HxehCh7a8vj0JNocGuA9smP71v7A2x4GE0PjkGUI9
MYoalzmgsYmEkFSNvnY5MfJe/J0v50RCl+vvrphOEWq6G/DutAsJm+a69atL
RAhtfDv3jysJB8LiNRuyRWjpkcb933aSsHvg0q47B0Won5cj+3Q/CWXpelKi
D0K022GhhYsvCU/GR4wLaoWo+Vnyvv8OkhCza5T3KFuIeJMnyoUBzPvKJNU/
+EeIWI7Oe7MiSGhXuBnjXlWJ+jtr49VOkNB8bE+PTHol2n3Uquwci2Tm38Ez
UsGVCFKXzYmlSBCvzTlXr16J5rwYv+sfT0K0WBDl4E8jdmDoy3eJjN+3xip6
62n0eeqDtPdZEqyid4rd59KoRbfV2ymNBD1l2uHkHQG6FFQwy/Qqo68mJUnU
zUd60z12TZSQMI3vcWq1RQXa3mSr6M8jQfjQc1P273JEphs9eFJOgumt9+YJ
deWobdVMq+JKElo9ToY0uJcjyoun5lNLAv/E4Ie6I2Xoadn8zvqnTD0T4UKC
cxedOfRoZ9pvpv9fNR8cybuNehsdPQy2cuCkqpH0QHEqOiiXXv/QiQNomuLl
jMcpqGfbx3WB2znA1/126ItdMnr3KG5RyQ4OiGJs3ibqxaGXLf/1mu/ngLEx
lR/zmoXa25nh8TgHhpef0FfOCcLVXc7XPbM4EERgq4yEdGyrlTV/LIcDtpPp
OlE4A+Pdg6eu5HFgam2v1dzhy1j06t/Dr25xwPti2tYKj6uY/+bxat9yDjz8
0DtOxGbjom632uAHHFgfuubITKV8fGVgZ9/pEQ7EJqcUN4cW4VjHm67j3zlw
u1Wp6EtPEQ7J+S4M/sWBejVpNOhZjDd6Xjjr+ZsDywutFl5ZX4IH77WaGsym
4OhVr1lsVineeGUbp0mDgn/993UKVXjY+HtmLyyiYJ9xuiTakYfVtw+4VCym
QFfeOaogkoe/zkpcen0ZBSsbtb6s6eDhy2ENDSHGFLRflV+5P7EMf91kp7TA
joKXXNu66R3luPPGOSJuIwU9hQWBmyfKce3U254JRwpG7OMmXuhU4IxyrqBn
KwUDJYUtXUcqsL2OZDd/BwV/7pb/DhypwMaEXL3hPxR0W2+fL63Mx2pPvU2y
vCjgLV880W3Gx1+TxqfH76PAfaHnruAwPs74ubZg1xEKktzumLV183GMW9z8
5qMU5L8puHd2itmHi56y7IIpeHVHoJaoJsD2vse3GR2jQC7YO9hliwAb4/sV
WccpWOiikaF0QIDV1JUXK0cxfN6tYy1gCfDXZt63SZKCYY2LPs15AtxpMMM7
jEvBo5o2//hKAa6Ndb3/IZrxm1tcFvtIgDPWD11qPsPw2OIeZDYiwDEXbafZ
J1BgrlS5pUeKxsFDKUcESRRotRq1P1ahsf3NVdbZqRQMXXOk91jQeI6VkmjP
eQo079wuv+lA46bGH1aalyjw5ltUj3nQOHVvF92ZQUFF1ccXO31p7PGtau2l
TAoMG6qlcCiN1WLz+O7XKRA2VduYcGj8UjXBQjGHyV8Xn3w7nsbZt4LKm29Q
MOtX7JDJeRr7WbuZJd+k4JLCkT1VV2ms32LJ23yLglwZi/Z/8mn82UdzzexC
Jv+nPtfJQhqXjv4puV9Mwaqi2Oe3ymgcEddjfOouBde2+mbvq6TxOo0HRbbl
jP+yDV+1MY0nC4tW/uZToFKxl/uphsbVtml3hJUU/O3S5F51n8axbZGGUWIK
wk/FHs2up/Gmg963LKoYPc5x9ckNNJb7Zas/UkPBN68PH7jM+XHisoLS+xR4
Kg6do5j4C4tklgc3UNAmvfpXIpPvn9IveUYPKfDdkK+Wz9TTsm/T/dREgWyJ
y0iThMZvO/i5N1soaPAxiZ/B6M33z1zi10bBgm3pr20YPwET3OwlHRRMfVuw
NoHxa5zit/jNM4bnmeSfH/JoPKyz+frVFxQ4yE7X8WB48ctWLfJ6RUE2GVba
nkZjtqPS1YVvKaAum5r4MbzR8x8aHe8p2Pt03eg4SeP6qSq17X0U6A+ecT7K
vF/iubx0+QEKlBqbuzfuoLHzsgTVxi8UTHsZjc0dafx0s5uy4wgFdZpFaY56
NL7y0vL8zB8U9EaNvw5bQOO9IZpKNb8oWOekdbxyGo0/XuiZZz1FQYD3K+pa
pwAXrniQMjaNC9ee2kyZ1gpwqLBIXjCTC+c1W6VeFQrwrzeRc01luCCtsc09
kyPAc4xkZusrc0Hn7CbVm8oC3CT5cvqDKheGsGke/OLj1O1tUjfUubAhq7dF
uov5n5GZM7QXc8Hu6J1pqtf52KBm1dQCQy6E4ugVmhrMf3VX4rSu5EJLUqa1
9s8KzOv9MZFiwoWKXc3Ld7ZX4PVy1WMyFlyIjjaXtU2owFPX86Ia1nIh+Qed
OM+3At9bk/Azdj0XbNW3Kiy2rsBn7gdF2tlwIfNT/4Ug5Qq8xdPt+x9bLmQf
ztCeGCjH/wdW3u7m
       "]]},
     Annotation[#, "Charting`Private`Tag$4887426#4"]& ], 
    TagBox[
     {RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV13k0Vd8XAHBDMibhyZCSVIaoCFE5O0NRMqdCMoXMw30Kb5BMjxIqyawQ
4oVEhjpNlHnIkGgg4ZtQKqnE7/7+euuzzjr77rP32Xfdt9HF3+o0FwcHx3NO
Do7//x6qLioT4PiKRGQrk1ozKCCgcW5yPGgORfusOlFJuuXuwU3PPv1AaqI9
CddIx29b65hz/BeSPSmiRCV9uHg8Lbz1N3p+680OS9JCW6pfHdNbRHMGRreU
SLfdjBbeVbGE2DfdI5bSKbDFTFQ/pJUTqNY7w7NIxwiFnRpbwQ3PU9bc8CA9
3jJCs9JbAZNeEvJqpAsPVtSoVayEP/yiIeU3KLBypVRf5mdeWPfdfL8Paffn
EXMCCvwgXwvnFEhv2W+hOpEqCIKu75Xi08j4yzWHjnYJQUvaWL426fGHGzyf
8QvDA7PDF0euU8A662y3uZ4IiEtx5SmTvkBT+bBySARYRbUdzakUuGf/fubh
2TXQUZZ35jRpMemDQtsqRAGjyYnkaxQw+P1H+uMRMVj2fNQqTzr4NVsp/bMY
5EOVbPlVCrxKlTjIp0CB3cdXrHp8hQJXxMbPj6WuBUvUJnc/mQLP524kZWhI
gv6brXQl0j+6j+RYdUkCIT5qkp5EAZuk+w2P+aWh6meNZuBlCoiviv6VSVsH
uvrg9OMiBQy/7F5pIyULfEWDxqakidYv4oLVspBRnZSfm0CBXpaNeujseqhU
e1utF0+BQ9wp1coVciB3aoWVRSwFRuem9sUsy0HmbPK7hBgKhI0aNY4c2QhW
4eEjz6IpUPLk96u0zxuh02CrqVIUeT8inL+tVNgE4VsqnjRHkPdjcce2j6mb
IepGeLpzKAWGU6U4+qc2w7/i8uPm5ygwvYOr9yVsAVHm5K/dZykgcvpVOPvz
Fnijrj+8TFDAtp3aGqqnCAzzU5YOARQYyarzEhlXhns63JkW7hSY076lx71H
BdhhJ5oW3SiwoidBdP6yCnyV9X2X70r2e+XJuiGdbSCie2xo0okCPn7L/Lcv
qcI3kSsbwZ4CtA03e7Old8CZ9hX3tplTINonVU/SaAdEurQpph2hQGJtfFGy
/w74YHg7Y/kwBXKsg2lRz3eAf30j7akxBZ7GGip4+e0Ev7bQQ5L6FOD7Oh6s
+VQd9K6nCPDsosDVxypibWc0QWzS5OiUOAXsqtZME8maYEkt+PJXlAJyRb+a
ZGs1YY3O8Gb+NRQovfwszJ9PCySm9SKlVpH9d7QfFb2tBa/3/uAU5SH7vxhf
cWJMG07H3JVx/SEONjqfzSccdeH96fsrE7vEQVq1SykpRhcsbxlKa3aIwwe5
am4dti6IKQnPv24VBx++yJr4f7pwsTJecO0LcYgakNqglrkHcrhkX/k8FIcq
qskMMbgXhgPdOCOKxUGssugilw2C6Cs1SWZMcv/OuX1jYQjmlTZL59DE4Xn5
ntnGPAQUuebqL6HiQNztsGTNIrj69uh2JiEO3rZhgnFGAE8dtIzOnxGHduvc
LuERgKudA0Z/rcQhyeyL3TpJfWj+vvu/rk3isNYwyl87xhB4z07/PP5QDFzY
pjJmGYbwJp02Vl4rBqWSlBdu5YYQ9+h1P0+1GOhPF6xPeWMIt49d7ixki4FP
6ov2L2pGENd18khjjhg8nhTYdnPACMy3ljmHnBeDM5eSJ4WUDkLVf9tcHuiL
QX1/tvNoqwnw1v5+rPtQFHj3z1iG15jB9yuZmwTvrAGq0tVow5VWUFzF2Drh
JgKXps68Pp5vA6scNOLqNgpDqJSdshvlGNhYHB/ZelUQdmbgD0r1JyCxetby
QQsfPIxDqeMaDqCv0rvJW2cl+G9feLIj1xF6/BrusV9ww7y4WHF6rhN8zjJ4
IY44YYNxTUDaG2d4FCQX4SKwhFQ3p3p9V3OFTdf8AhcTf6NOx+QNFLobzDl2
RryN+4nsO6RsKqtOw/Z8t/XnNs6htonhutKVHmC26tsasYJppKitmiev7wmY
pTaXqjqJvHY8qP15/Qzcl8jAHBwfEYo5denyhBdUUmwuHTZ4i/6tufohX84H
WJ1PPyqb9aPejuKSuc0+IC0z6eeh3o9KEjABKj6wc/LxzxqJfnScZ4pvWNMH
6BLag1ff96HKhf07xQ77QNZ1mtK+oD7k/n72/HmqDwh16ND2Z/SiztLDmxxb
fMDtuDrHp789KO8gt/tawhd2ye+tnJjqRBY6a9cLhvqCe+9jvZ+PO9GSskr/
Et0XhgTNHOVTO5GdsPWB8VhfSBnrVxiCTiTad3PL/QxfgNUPgxuvd6AoF/0J
q2e+YHbwrlbQ4XbkST/vmSjqB7SI4xJ9zS1o+71lL54KP3hyKCV7hVwTspDg
0Ptw3w+WQw5cO/CvEQWEcqypr/ODiOLqsVtvGlEl4qwJeO4HHp63HMuvNaJd
bVzcwwN+cOlgPrF6VSPa/Ykno3LJD+x+dg0OcTxHsFao9ZSpPxBBSxvsF58g
y3BJlboJf/C0+Kr2PKIBSTePBC198QejE27xgQYNaFTiTp3+nD9cWXfQ/vjK
BhRUue9Q66I//PXKGu++WI+aiYpdM3wBgD+sPR2YWYf+u9NvvSwbAIvcf9Ya
Nz1AytIbUzYaB0CXZEVDtMF9JPyEp/rZoQBASpLnFVfdR3MenwdPHwkAr2Gm
IOdAFaq7f29jiVUAtE+c/GflXYUOWR6oUD8ZAPuqrm06m3oPecd5dxkEBcCd
Z//9LpyvQKXz94XdMwNgZsja9159GVqsuaE0lB0AcbWZ2N6lDJmG0g0t8gKg
oP6Znz1/Gfry1zBMtzAArPqPKDkdL0UqnL2fhMsDINvIbyH0TwkqEZxrqHkW
AKYQ7txkVoSK5NS8+acC4M32ahmm1i20MLImhjEdADGl0Xa1EzeR8a2fud9n
A2DDQK660Y2baHLzw/63PwJA/BJjweJfHtqqYqpfuRQAfmFbRzSac1GhppeU
vWggSB92/bL0PhMVHCp8UaoTCKb9PApjX68g4/MzmbZ7AyGeU96aZX8FfanR
CuJApLkFf35oSkG7Nr9YZ2MYCCFee9sLcpLR0+WJwL9mgbB2/OW3ucpE9KFK
ad0ht0Dw+yLV1jYUjWQ2lAVMJJLxG0wFjlS7oUdHfxolJwcC92DXZvkaJ+Ry
cZ/MnquBMFmuvUI77AQq+d3emHgjEN7cStxz39kA7e6dkdbKDwQJt98l+R5H
sS1rR2NUbSBYnZb46+1L4OTv96TkxwJBX3Wba4FjHJ5xCaLh8UCYX5GfwKnB
wod6drx3+C8Q+lrqQnRXxuMVFWX512cCYVBSpMqoOAGf87u9fdXvQBB2874x
MJKIHf9LN1pYFQQekl0nWxNT8Lb35wM7tIOg/OmjykCXNMwyg15v3SBYTTEz
U6lPw+MPl7T49wUBHP6UeErsBs7NDF800A+COp9Mps7TG1jMjhpbaxoEXn0B
GQ+lMvCfXs+sfOcgoJV/1bYrz8IvWsybwxKCwFLo9s59KA8n2azaNHUpCJxE
ec5ud87Dx9+10OyTgkBbzGngS2Qe/vzNaMfea6SzbzCaG/OwkNTe6/+ygyBw
2SBc2OQmtvJQPB1RGQR7lE8VThjdwsPcnJwxg0Fwvdyd87VUAS649MhufigI
zjm6qlI1C7DfWlqV+7sgyJ1Q5R+1KMDLyr88Dn4MgqK0yFMqsQVY3mq6g286
CF7GP/OP+FaAPXIHMxM4guFYEJeu9cNCPLe3cnfy1mCwrFKuSVYvwsJ7e021
lINh45qZFHSoCKvsmXca2hYMz+1evqx1LsJuOrqszerBUIG8v4klFeF+zaeD
tXvJ9WMqv10/F+E6tZ6wUUtyPz70KO1aMe5X/ZEYaxMMipkpiXIlxfj7Nolb
244FQ95ulvfZR8V4m4pda4hDMOwZevAzZbwYZ28dlRH0CIYNvFUz0btK8Hm5
uQYNWjC4D3+3iXhRgrM3iHe/ZgQDj8DZh0KDJbhuvdYn+vlg2Hny9CuvzyV4
bl3YqpcxwZD2Va8sU+gOdpPicnRIDoYDY2uzhszuYGNR0eWowmBwRjPWn1vI
9TW7xJSLg4FuODqYP3gHnxex3dp5JxiMXvFlakzewXXC6eZSFcGgIKgU0rGi
FG8TlM8tqw+G7zZu4//2lGKRFer7+7uCoVt6RZ77zVKcJmttavYqGEac6OF3
ykqxnDZxrKkvGEAn3b7tQSne6VXtW/0mGDjToPRmRym26tJNTx0LBodj7XwF
C6X4zX/2BcITwSBywSK+nasMu3LTy2P+C4aPJyVWvxIqw4QWbgqZIfP5uCuX
KleGr2UafLddCIY/7INm6w6U4fXVbksdf4JBebrl2A7zMlzYGc1/8B+Zz5kn
jvLHy3A118sN2lwE3IqVGck9U4Zfe5qarhUiQOawoJRgQhmW1jxaMLCBgPks
bs27L8rwTbOQcnN5AmR1r16o6CjDyp7X618oECC4vqz2Sl8Z3pMx2F2jRMDG
5HVHF0bLsAOn49J1DQK+JQanGC2W4TFpJr+IFgH+41s9DnGxsc+uXPG43QRU
njUR28HHxnSPUeVz+wgYUXjqmS3Gxtnt7seOHyRg5Q+BAwJKbLxlItaly4QA
ymkBcSk1NmZzFPsamxJwwnmmgF+DjbHG1IXdlgRsO5gRn7SXjT/c8C+XtCdA
6rMQa7cZG3veS6pPOklA6mPxouNWbPytraKJz4mA1mpBwt6Wjbk4fgwvuBHQ
DMYx/I5svMn9HP+gHwEK2TG1Aj5s7PZg9U3DQALMuK/6afizcaHAbd3yYAI6
o852QxAbK97t8449R8DY33lBgXNs7MXpu+J7GAH1ocJSTWFsfMd6RZYjnYDS
zd/1POhsrLag3qEZScAN3yR0IpKNAw61uOdFEaDbcMq8JIqNKzKdl4ViCWjK
URr9EMPGu/Yn7RhLIMCY0+LPUjwbh1zZ2myeSEA04Vg1fpGNaz49cq5PIuCv
Z6tdVSIb68ZPp6RcIyD7RHofZwob04ajVJauE1Bx2+Td+Sts/FBt3fMz6QRQ
183tmbzKxksR9xz6MgnI+ZHOp5nKxvDq0E/IIQAP6zl6XmfjyM2jl0rzCNg0
12obmcbGz86GbpHMJ2D82SahCzfYeEWLCL5QSECJtUyaVzobH1hXdGy2iIBX
EuHiOhlsHOeHvtrdIYDn11L6DOnmx/1xTWUEpFnbGiVksrGAmN9G9XICjLgU
VFdnsbHpaZ66rEoC9lsseYeRvlSTacV/nwBlbn+ZdtId/LumiBoCVO2+2/Bm
s7GIQ+uFD7UEvBFe3KlE2pLtss60gQBT2+lWddIpHH+qah4RcHh0/V4F0r1W
yUc2PSFAcXQo4x8Zj1KgOJ74jCC/N1xXYNK2vzDjTyMBBdTxRE/SaSbH1rq/
JODtpwSbP2S+gxkzd7tbyPpF+/gRpKVnoo33tROgz3ftZz95PgeQHSnqJMC3
kIdbnnR2SlWoeA8B52Ur7x4l6/N+7LBoRC8BMRXnxYPI+slpfyyZ6ifAQc38
0Fmyvi6sMINjgwSwJyfPnCbrnz+0ZvjpEFkfLHJxL9mfT6rFhNo7AnatozUv
kv3z7Bko4PlIwJruqoXdZL9LFPz1Aj8R5P8ytsz9JDaeClk5MDxBwIKHUYP0
ZTb2k9Hkq/pCwLCh1OubCWxc7tuWu2GWPG/WhqhGFjkf2FUn4RsB4b9sVvfE
sjHhluLlMk9AhJutQvEFNq6uVuLuWCDnxzzuXfB5Nv7F9yRD5y95/tmq14pM
Ng4rm20T4aBCTP7+aUvy/jPnTbdjfipwih/WukXOj/gj48hTQlTw/VIxHknO
V0m0Yd+yMBUamYXvTM6Q/RHfGw7iVKiz01if6ELOl4bKiyfrqaDx9teW79bk
/f2zRdplIxXCvZxOiViwsdVTeV8uBSrwO1/upJiS7xNLaTEDJSo8z5TsGDRg
4x5//lPPNaigrcobYaLOxh7aPJVuWlTgNjG5d0eVjReXOHh4dKhQE3JQ4Jci
G29NXCgx0qPC/j/b00w2kPNTOjHfZEyFR13cziMC5Pvov8bE5pNUqHjyePDH
2zJcX/5k5IwTmf8uo1fzA2XY4tzDXQKuVNBUra//2F2Gw3nvvznkSYXX/X+a
GY1luGtz/pa2ICq4tKRONdwpw2EukY86YqnwzLcyPpAowx1DejOvKqgQGNnF
G/6rFHc+1Nl9sIoKGyzW8+bNluKunF2RddVUkLg2llczUYp7XJUl8uqpkC7K
XKoeKMX9UxQ9v0Yq9BZX5nHUlOL3f79c4hukwidqfF93UCn+KpOhuo8jBLY2
pV37+/4OFnX45VNoFgKhquoOT66WYI97toFmliEwT7FBj+JKcINANXXeOgT4
+Ox72bQS7F5LMA6cCIEZeY8Ab7cSXCsxd3ncNQT2vVr93UajBDt1f6ncEhoC
qxUWOf91FGP2gdGFwlshkCq67uvepSJssrM96vZCCEh1okWF/bcxNe+Mg/v1
s1CV3tvT2HALT6GryXwa58C7z3qMVy4X22gMnxocOgdc/QZn+wLTcOWTz9Me
oaHA6dlQ6RqejLkLJCibFcJgdJP9cRPRaJxV3XWjsTUMCl8We0j/C8QWtaOi
2h1h4M/RdyesOBBzNfxIKOoKg6adQklCtoHY/YkkI6EvDPgqa0Mb7wZgtTYn
F8v3YRA9w5aTafXDj0e+Kr+dCwPT172n+O6fwWNCaxp+SIWDw5mRt9XFp/A2
V8t3mzzD4U4UUc5bpYnUh16safEKh7n2tdoXInTRbms9owDfcDCP4zNSMEHI
0ECltCEoHF51G9K8PAyRwyaesKP0cJjffODht74j6OLHB5TYlHBY385lQFE5
jqZd5Y58bgiHeHpyVPSCG/oxlBqRhMNhOvvDuSuRp9Ef61VVWk/DIUnu7hsF
IXe00vCP9IUX4RD5T2mgW9YDrVfonZTpCYd/XXJ2NnvOILOx2KgjE+FQmsE7
9tvRF7HdZuvL19Dgd44Oh3t+EJL75TauJE6D993rd199G4RSWG9EbknQQI+3
c/dFiWAUwm48fU2GBpxvm3IGY4PRvoWM1WGbaVBw9MSJzx4EakswdjXQoUHi
yWHWuGwI+lyZJ9DvRIMsDsUIT+dQ5GC0VtPclQaZTwXoA1dCUcfAxVMvT9Og
paehT6QpFFUunq2q86JBoGJ01ahSGAo9YOaYQ9BAbpz4yD0bhvje/KnwjKNB
uZIx0venoc2cNif+3qVB4eFk9fGDTGTRhtZ4VtLA8casy6sgJqJdV2nuraJB
+7jt0qUsJupR5dZh19LA+I5EhvccEzHsKiWdn9HgZ8P12jHTCNR/T+R1Uz8N
vNpXr744G4Fi3NttU/7R4HbZ2a8K8pGoYmet8PIyDZwksubDd0Wi4cX8Jm8u
OkjoJdjVHYhE6ldoWka8dBhbkWA97RWJ3mEViQUROnRrNFduq4xEWlLxfScV
6HDukuJFib0X0HjrARulw3TIGXPsebYvCp0Wut7UcoQOPwefZzmaRaEx04nd
PhZ0uGFr5/TWMQqNtMfK3j1KB6f7YbMxzCg03PlyfJcTHSLsuLQTcBR69epQ
KFDp4Cx7OctJNxpZiWdMjZylgzf/1d3IJBp12UydvBBGhyJWgzPX8WjU0Zeg
38Skw93NL6K1qNGoZaBN0DSeDlJ7jykfY0ejx0Nm2cdy6HDF++n9SJkYhNbl
iPzOo8OqsNExtmIMeuQwG5meT4dWtqnhY80YVP/2ssfbYjqk7v7zMMU8BlW/
79rhWkWH5F9tz3+dj0FlH62e+TXT4SQr53zrSAxKn7KdjP5Oh5VK9vXjl2JR
1IFCyz8/6WBl/lp/8/VY5J/3s85vgQ6xUoUFR3JjkeGxq5eO/aPDAEHZ5FAZ
i2afdqsr8TLgvlgvb2AfuZ5uSm+TZgDXk+aRyLVxSO1nxjjIMsBTBGe4bohD
UhZT5vc3MCDokkOr2tY4NMMTL5+twACjzQuVUVpx6Ebgixf+agxYNG97sN2G
XDfWFxXTZ8AHay27hIQ49PpWcnisIbmunCYpmRKHni19GPt7gAEKf9u+XE6L
Q2lVzJqxwwwISD+7DAVxyEDuoUP1UQaY+Xl9KX5I5hMu1KR8nAEtT1+fTXoW
hyT77bfn2DHgve12b5dm8nkJfzjjTjEg23K58mUvGe+X9u0TZxiQKCL/Oedz
HLpgFSvS4c2A51y3B0Zn45BfWX+ovh8DTvG4R6z5ST7PlWqqEsyAaMVrqurL
ZLyOym+LNAb8JdplI0VZyKBQdW9uEgNC3q/IOq3JQnw6ovUnrzBg1EYi4L0O
C7W1zuvIpDKgYn1TP+ixkM03rJ2awQDj2t/pdQdYyG2vlcbFQgYwrd/dSrBl
IcVOrUqTYgaceTD6wMCOhb44y+zkLSXrbyj55uNJFiJix9QiKxjgVN5DH3Zj
oaieEOVzDQzgfj31ozyQhYxP2xdrYgYo1VVT7hAsJLSAFL8/YUCpHG64dJaF
rsryb/F7wQA1i4U3QnQWOl4+na/SwgAOz5mAYiYLrTPo2fRfG9n/qNIWtUgW
KvDM2OjWw4BeGSPeHzEs5PWXmbuxjwGMJGH+XSwWUkt02/B+gAH5I3Shkwks
VH1PVdbuLQO267vael1mobADoplrPzCgUfFrvVkyC+kNzkv3jZL76RbO666w
UNMSlrSYZMDU8HRxcCoLxSfnX181xQDfbg+ff9dZyEyBJdE6zYA9U2plATdY
SLTG91rcVwZ4iU2Ht6ezUL+JlfiB7wyIYFtMimWyUPqw1hXuebIfiUJchlks
5OgvI/pkgQHnxgZen8xmIXkujmTGXwZs0fCjOeew0MTVsdV7lxgQBpcXzXJZ
qHRrc+JvDiZg3mXPLXksFFBXtqqGmwnzd6K7J0jvOpJykVjJhOQzs0ZXbrLQ
wvsQQXV+JizHCfUr3mKhhiD7+FlBJty0qEguIh3BA/xlwkwQ+XU/TjSfhQzT
FOK81jDB+tp8iztpPhV+XkVxJthKWXsWkG57OB39SYIJm3ffDeggnWTRs+KW
FBM2Oc19HyFt87H6gtM6JrDv8HJ9IC0ZksG1fgMTnF69LXlJepgv4vzQRiY8
kPNYyiCdm+HGcUOBCcZON4TsSLupmTBttzKB3uv7iYu00hPVJTFlJsgrjqSl
kvnOWIvSu7cxod/puxaFdOX4/N/E7UwY6r7dySDPGxI6FGaqzoQqYZ7gV2Q9
dIUe/+bXZMLtt+I7xUgvZeefe6HNhKfKY1J6ZD2f7mT9itJlAvEncp8NWe+Y
574h+vuYYOSwovQo2Y9Dx6x+LiMmtJ9kUPXJfv0PqStjug==
       "]]},
     Annotation[#, "Charting`Private`Tag$4887426#5"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{749.3181818181827, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.884771808051022*^9},
 CellLabel->
  "Out[152]=",ExpressionUUID->"85c8cfd8-306e-42e0-a5f5-a91e8ff1ef76"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"NIntegrate", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"q", " ", 
      RowBox[{"PsiP8He", "[", "q", "]"}]}], ")"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.881205288234173*^9, 3.8812053028843*^9}, 
   3.8812058315934973`*^9, {3.88242123801644*^9, 3.882421243014648*^9}, {
   3.882421297853364*^9, 3.882421331195804*^9}, {3.88242334248276*^9, 
   3.882423344359261*^9}, {3.883473266407168*^9, 3.883473268464554*^9}, {
   3.883479582290578*^9, 3.883479582437002*^9}, {3.883553687495833*^9, 
   3.8835536878555193`*^9}},
 CellLabel->
  "In[153]:=",ExpressionUUID->"73fcd4a8-f07c-4668-a074-8d6edd4e9c5c"],

Cell[BoxData["1.5707961288234409`"], "Output",
 CellChangeTimes->{
  3.881205304037475*^9, {3.881205833323921*^9, 3.881205837282301*^9}, {
   3.881205872114337*^9, 3.881205882012789*^9}, 3.881297116188105*^9, 
   3.882090935330817*^9, 3.882329838140649*^9, 3.8824210281342487`*^9, {
   3.8824212406547403`*^9, 3.882421244266634*^9}, 3.8824212755250263`*^9, {
   3.882421307427759*^9, 3.882421342072089*^9}, {3.8824229850364428`*^9, 
   3.882423043883869*^9}, 3.88242307529848*^9, {3.8824231463273973`*^9, 
   3.882423160190447*^9}, 3.882423346652607*^9, 3.882867355595727*^9, 
   3.88310583295991*^9, 3.8834687277985477`*^9, 3.883472941558489*^9, 
   3.883473278878297*^9, 3.883479294805578*^9, {3.883479582838084*^9, 
   3.8834795862419024`*^9}, {3.883553688800343*^9, 3.883553728335539*^9}, 
   3.883554093692698*^9, 3.883555173707074*^9, 3.883641249162043*^9, 
   3.883644205011154*^9, 3.8837084754117804`*^9, 3.883721115116543*^9, {
   3.883722039492464*^9, 3.883722043643057*^9}, 3.883810884806055*^9, 
   3.884770059187111*^9, 3.884771812950027*^9},
 CellLabel->
  "Out[153]=",ExpressionUUID->"46571530-99d9-419c-a8fb-40a93f7755aa"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"\[IndentingNewLine]", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{"PsiP8He", "[", "q", "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "0", ",", "5"}], "}"}], ",", 
    RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.881038555156019*^9, 3.881038640793738*^9}, {
   3.88120183848323*^9, 3.881201839189108*^9}, {3.881201927015479*^9, 
   3.8812019395020847`*^9}, {3.881205040564049*^9, 3.8812050519065933`*^9}, {
   3.8812052078525248`*^9, 3.8812052105209427`*^9}, {3.8824213624532003`*^9, 
   3.882421379359367*^9}, {3.882423060474876*^9, 3.88242306952956*^9}, 
   3.8834732814449577`*^9, {3.883553735126048*^9, 3.883553735494109*^9}, {
   3.8835540985421658`*^9, 3.883554102218004*^9}},
 CellLabel->
  "In[154]:=",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnc81d8fx3Evca+43DQoK1GRIhLR+5hFKskmSfa8aCgjSbhGIZsyomTc
UvgiHLJCKaNSaZIV2Xv97u+vz+P5+Jz3fp0hZutpaM/GwsKyh8DC8v/v/UBb
Djk7v6PC+snbtqYLoIYuUX1TUXP4YHRyCx+T15tqbomKOkOn3BxlJU0A8cSV
PSP1eEOvRx3HZybfr40WYRe9BicfrCw8ZrLMuN2ddccbkGa6aciJyd94Hqyt
fAqG64rx3UJMlnjEdWhp+TYc6ZLEtakCyE3tsvu8CB3qWhLyTJn8ovtnzoxm
FHwraIn9mSKAllz1eycd7wIvW6ufJZMzWXvp89qx0Khd7fg6WQBpvY3dNfcp
Dla/DplIMXko+VjdjHM8+PAW6/kmCaAou1Wr6eUE2EpK0XqZKIC6lp3iJ0RS
wEnW88yWBAF0pVn4wHhxKlg2rToeiBdAgve628Y00+H45GjkkXsCyHYvIvx1
zICymRvE3bECiG35+rsZ/0ywH6s4xxUjgLp/Gu+Y0c6CQzlBb3vvCCDfQnLF
1KdscP51YNk8SgDpxQ1wTGU+BPpATg0hUgBt960zmnTOgcfRlQ8z6AKoVvPq
xPhyLsRP7PtRFCqANnz9LTUm8gQq3MN9JYIEUE9t9eXRoSdgshaWez5QAOU/
Sq7/W5wPYu3rvNH+AuiU96nzI5qFwH8qoKjGVwAlclUmDjo+hXcr8sEBNAFU
clXP22frMzDe/4jvhIcASh9R2jbt/wxym7+xkt0EkMd7fscp7WJweemx1dZR
APGnv2ab/PQc+KrUn7qfE0DLPGVPaKovIGdG4UO7hQDqv/nQYCLzBRz9djtU
3EwAlTkGPhh3LoFkUUZ2lqEAsjiooPJvuRSWyFqu6zoCKKs1w+uvSAV8DXMd
ObpPAM0kl+79EVUB340o34L2CCAdx7a+zsUK0C4Z8n+xSwCNEuaNK7sqIZr9
98jIDgF0WO2UCj2sCngfPkl8uFEAvX+6wiY1joHFWNRMe2QT4gcu642ytXBX
7eZE4p9N6IhkvEqYXS2QH/T//PxzE7oz82T6ekctmDzbunjw0yakEPvB3rag
DjovSFuo1G9CN1pl9OTO1wPjWd6P1ORNKK/4P8mChHpIQk2vN9zbhDqTNQi7
3tTDu9C/HxyiNyEJR7OqrcoNQK68dm/55ibUSgiRZaE2wrvJnRI3XTahzWpf
+d81NcFw1LoKl/ImxHhK/+om2wr0tmf3rr6hohH+kSi9C61QYugvVttIRVJX
9I7ujm+FuaZj2ms1VJSpSs7qW2yF7tya25bFVBTXEuVg0dgGyxrR7mkJVHSl
7+7kMau3MCYlJ65mRUUZ5LZbfNrvQWV170b33/zIETpSRr27IPDm07zmD3yI
JXuu8mtkF1geulEp8JYPJRO397bmdMG1qnW7cw186HWLg/CTj12g3RSPPz/n
Q7uNVrLtVbph6+Av6fC7fGjISarwO+sHOJ3FOfL6GB9yiQuoeR/zEYQkYg5q
lFCQx589fSWMzyBG/iGdzsKLSGIhUj8O/4QPAc8FtkZzoTuUtr1ZNn0g9NIn
MT+MiGy/GmHCmwEY3WGTXcC1DqS0X+5enwegbev7S239a/DcwmP7j4EBeMTb
doeldg0IX8KuVbIOwjUfm4H8K2uQ01N50EtpEK78mjjA9mcVBj6I5n3PHgR5
vgetrY0r4PJ+NKbi2hC4PAugKiQvgVdjiK2n1AicZB1Slbw1B8L9OhxzB0eg
+XHtqojDHLSxceX7oxHIoV35Ias7B7tQ9CTdfARavulvjuKdg8+VCUE5kSOw
Z0cM1ro/C+rPHj34PD4CJ0iflourZoAv7fUXzfK/8NaMbS6KPA01FRGBrQ1/
4Z6vhPOBySlw7dEXP9PxF45oxWoMf5yCRoEOZ+uRv/C5P3p3WvYUXIv5vOC7
fRSAw6ZqXWUKft0e2cwIGgV29VcBbZ6TUEzjPrtVdwx+y38daeochzep1GtF
JmNwIXloyj5jHAYaBDM07MZgaG1D9yG3cRDctuev240xSEixXnfnGIeQOu1b
daVjkOtNXj2g9g9M+G+8cBH/Bwey73ezlIzC0otJavXyPyhc2336ctMwbPq+
oGzIxYzz+sFxlZRhkOVksRncPA5yj0/F73cbhotWPIV88uOwLFjyO59/GN4Q
pbUcnMaBQvkd9/vCEDwwtrvE+2EcjkCK+TGuQcjycx05YDoBZxQKau39+uFA
LddC2LkJSDIMFmeY9EMtMY/9x8UJuL77ZIqwfD/8jO4XjaZNgOJ17qCrw30g
nHnOdJg+AT0jh7Q2WPRBasPphqyqCShNCfh+R+M3xG1UeMAvPgllqP9n5YGf
IG7YWeC8exIyJZQO/Kb8hOJEWkWt7CRodnS5Wf/+Ae9Firo9jkzCr7+3pS/Z
/QAeeUlym9EkuD1IqRVz+w4RJlt9b4VNwvl9ke9s6L0QnLFyZmZ0Epwf/snW
XOoBgwPlXtLTk+Byq9CttqEHhOt8Ym0XJ2EuOis66G4PVP4eef+efQp+aonL
tO7qgaldn08XCU+B580BpUDjT2BbWHrSwWAK6tdapLTqPoB6hYduz4spONur
77K1pRN49PY681ZOgWHCWFNhWif0fvkTrlM7BUkL4Tw3PDrBd8XqdcmbKRhw
3l7Uu6kTnsGJY7F/piDXbJ/eVbsOEG2S0tbbMg1H52xm2XjfA0vXT1R1fRq+
HNn3zEe0DUKGa7Ku35yGjVGchxbetgIXy3025fBp6LKv1mT1bwX+feYNpQnT
kPNyVSrjcwvsCus49vTZNPANBLmupr4GvSOvTmUPTEPJy+N3vys2wb2HD63C
DWdgsuH8LGdLHWytvFmtYz4DMnsUVI6G1kH6+/PC7DYzcDuOL25Ysw4erQr9
vOk+A8F3rBiZtbVQbhp/0S98Bh75lHBx3sDQS77t4lEzA1Q315uXc1+C5CUH
X6O9s1C1mYf/XlIJ7FP5cTbjwCx8BLHxboUSUGAx2z9yaBauyf33pK3zBWhE
6Q7c0JwFcaf4792UF2CdI2NUYDULXGab7DQSiiGxe2o/291ZoBAu/PwYUAT3
U13JJxNmYdf8hL5+eyHk2PQPJKXNwpHnQt82iRbC89EP9/flzYKiWGJHSnM+
tBMryOZ1s1D48TaHvmQesCveGHw6PQvmS1U8QmIPgXt5/tXS4iwY51/j2h6a
Dfx1tAfaLHMA/wmzW4xmgehJW+Ov3HOg9VwiPKwqE1Tttes5JOeAq0RIgf1T
OlxKIGecM5uDP2o5avfY46F/NsmEXD0HJzQxmnGmQbb6QZ9v9XMQZvd+Mvaj
E5yPbr/7tHUOpPbJnTo/ZgNfJNhbzvbMQefWd2+aPHdBx1nvI+nTc/BD+Ify
gyE3XFOsL7pv7zxEhflMXfe+jf1XB1XXD8xDb7x67WmJMKyse8u8Q2keel6G
n77VEY5LflbEXdaeB4HuXFFR4SiczyvFXmMzD//t4/5OQ7E4yZ115FTSPAh1
LvxgUU7CRhXpHGIP5oG2h7XL4l8S5mc/vHM6Zx7YlGMlErOS8Z10D6uk5/Mw
udlNuJo1FYe0fW3/8XYeyvp808SepGPanrIXNOICqL8wa/Npy8Syl8+81yAv
gEfhn+2/BLLw39rR0U38C7BP94SI6fks7GC2U7JCZAF6282oF8ez8LmwmGTW
IwuQZRwXtpP4EOv9cQmI81qAuIYTDDprLtYJ2Fmo5bsAN1kU7wiq5mINgd4v
c4ELYPfxycGuy7lYRfvkYcuoBbih1SBUN5CL9+bun975eAGe3dRUL6l5hCXV
hsQ+Fi1AY/2MQt7UIyz+IdMgvGQB0sfvurfveowF2fkZo3ULcMHY8EsZ/TEm
2884lfYuwOFD1Q+FjudhztXCJMe+BQA91+bGy3mYmGDftG1kAardMjwLs/Pw
SsPHnYHzC5B30txCYSkPj0pUfNfhX4SIbUMVZzKf4Df9AUY9xxZhh/hj056W
fPza/9CtiFOLICV4UPrn33zcsGm8WNV4EQJUuNUPbyzAVVo2vFm2i/AlN2H9
28kCXJij0eocsAgsv0LExZoLcJ7q8oJQyCJ0TW91edNXgHO6X0i1RyyCo7eZ
V8d6AU4n7rotn7wIZ1IkXMYUC3G03Qa0/HwRkmvw9ejUQhyxgj2KKhbBO/Kh
qtTzQhwa73v/fO0i+OfLL+1sKcSBDcNL9W8XwXni15TebCG+bpW950r3Iuw3
qKRdJRXhKzMWZru/LsJNW4YnWaQIe0i8KY0aWgR59s2uHjpF2KUqpP/o+CL4
HaJkg3kRdjBSo07OLoKyycF3/q5F2DqEQTMmLMG5yarLcKcIn+qPkRYWXoIA
95UHxLdF+I10f7eVxBIMPDtYfuFLET7hoxSYtncJ3ARpCdqDRfg42/f3W5WW
AKLlN+euF+EmXbnrpmpLIL9n4JI4mYG1Y0N2JmouQdnOpY17NzOwhqj0FarB
Ehj9Ezz3dS8D1zoGihiaLMHQLYnXoQoMDE87XsdYLYHVjvBPWI2BVY/6CvE4
L4Fz7get76cYuPJ2W4O+5xL8OBB9ptGEgQ+/FfaIvLwEo4IqNmrWDKxo1VjL
GbwEk/UxPX2uDFzycKvLsfAlyOP8OkL1ZmD5v67U0DtL4PjD0qDnKgM/k8dV
DfFLoMd75atcAAPLXud3IKQx6xdrPicWzMCFdfa8GllLUHpVKu9xKANLc1WU
Bz1egvWL+RGNEQycb8Bti4uW4CN60O13h4F3J58nr71YgqCIKKO2WAZ+9ON5
iWrlEtxfUO4piWfgXVIc1n61zH6lPJJRTmLgHA/zDZVNS/D370Zh8xQGFi8r
fLbwZgm01wauCqQxcObqurlS1xI0hfcTPdMZWET7LOHK5yW4wT17x+E+Az+I
elRY8mMJKic1fqwweXv3ovH0nyVQfKxQI/+AgVOFTq7LjS4B2yu3aU4mb7uY
mUebYvZTuFU7iLk+OX/6zNOFJTBhdfJLYfrfPKWzPLa2BDEqD8yNmfHjlVNz
ZNiXIfcYa24JMz/qzbGTruRliLpqK1bOzD/uNZp/wrcMYrzvY20SGJhCic8c
2rIMZI+EckYcA98xHdSVEl6G/xSOmD68y8AbM1Sm7SWY7BImC1EMHDUQnZ6z
dxmWcgPWgsMZmCT7S7vvwDI0yp8P9Qxh4PDLCuNiSsvArVoQwh7EwBzVYck2
asuwPiP8n7YfAxP0Zf9+012GGYcnBc00Bg6+dzN+u8EyeEt7/yEx58/ytVvN
0mQZCjc2ayzbMfCKs19Mjy1z/TPp0wOmDHy9uF15i/MyrIX0e/42YODFBbE+
Y89lgEW/pDu6DDwX9lqxy28ZhJTOflxUZuBL74R+8AUvQ/7vw+aVcgw8vdkz
3CB8GTrP6lbu28PAE7kCX9/GL4PPyMKf/VsYeKTeNuh10TJkbRO/WDpehEVi
e1zulCxDzNag70r9RdjI+pSx0ctluJjZdNChpwjXLCjv/fl6GbDx7d8tuAjH
7ePrnu9bhrSiF0aNEUW4eSm0pnpkGeo4fPJr/IvwSvNK3q3JZTCP9C508WDu
b9uhAN71ZbDtXid9NyjCR5KwlJTgCgil7TfU5S/CNDtF/jHRFdiWOnpgnLUI
P5IrWHkutQKHdiqePDVZiClvEjuOKq7Av/IBnyPvCnE/i4eficEKTMeJlA+G
FeIol+3vboeuQN2d/teHxgpwnVJcxYnoFUgPWX3R3lOA54icOXzxKyDfQgaZ
hgJskzHtez9rBSpWKNJHUguwQnereGnVClA19L9XaRbgb2rXrvRPrYBJguGD
iah8LMv3cYfm+VWYlZII+beShweiB4IT7FfhaP73BvP+PHyfND846LoKvz8K
yeS25WFu4tbnUb6roLV/2ed7Sh4emTPX+Ri7Cju2mP0dUsjDub3fPJwbVkHu
W45mm/1jvD3vD767Zw0urbVupZTlYhLMXuidXoNDVwPVandn42NjFvPixizo
lqFgRGdjPH6w6VbXDTMWNFtZqKEaGY9njhQ87bVkQbEemimNBvE4M2LZMdGW
BVXaXWRX7r2Hl6TSe7hoLEjspMynpzNxuND2W8VEBAuypd03VZeJxZSe8/41
tSxofumhYoFXJHZYDzMTamBBEQEFHTwckbhK8pmCbzMLenZ6v29bagR2vswy
JtfOgoS3i4YZNtLxK/6sc7lfWRArd0vuE+FwfOnk76NRcyxoF9pYS+wLwT2v
7FgtZFiRjHfNozi3ADyh/kUwYD8rSqV0OGVW+uMNdacVMuVZUbOWyrwDlz8+
hFUcBw6zImGuMVGxJ9dx/EvKW29tVhR45Wi25eRVfLqkKjnSmhWxsD7cRcv1
xk25mw5Ux7Ci6/4uAsFwAX+XiND9eY8V6V883LpCtsGzD9dtCUmsaL7aFPOX
nMMS2SMJuvdZ0eZi9lels2Y4+EHt8ocnrMiq/25og9ppfDTJrfnfK1ZkniiY
bFG8E0rDG6xFZ1nRsUaXjz+FbCFPr21r2AIratPX0S6Ruwip3J2dY8usiGD9
kiNT2w6CYn7ovGRjQ8WPv//Ejg6gn7wka0JhQ4cpPK92JLjA78cH1iOl2ZBa
XpD8Lj0v+OCsVDEly4YaHLuevW30gtfSR33M5dlQ+QbvU8HIG4qenhiUVGZD
5lm5QDnoA77/Obyr02FDbTLZo3Xcl4GnOT1j/gIbelZVNZkW5wus9Ifm1vZs
KD54tEpg3Rdm9PKpjU5siMXzvPADl2vwuf2/sDhPNvTyxNO4r0evQ87HTs99
AWyI+8UpDUqvH6gMcKKLyWxoMLfjXcZwIDiwX/7Z3s6Gjnl15X/bEwyCIi2f
ljvY0GcHIt9/p4Kh/fCOd7s/sKE9IUn7ZHyC4ZBbY3XwVzbkIXvLYKQyGDi6
BNIODTHrqch491L7FuRmlhk/YCWg3+V2p38fDwGzStLJNiIBvZOLYNx1DAHu
bmuthQ0EtN/4omTv7RC4tGHDQUMeAsp9Tzt5ti4EtDxMKRxCBLQ017Sp7uBt
6D+y0OquQEDOypl7OzhCIdlY/1WqEgFF3CxljRYJBX3PzIpmFQJK4bnd/1cp
FEqyj+eJqRNQ1raPX+85hkIIV8rtDycJ6M8lA774V6FweOeYP9sZArpr9/2V
Z08ojKqqX9pvRECNK2eeTIyFghFt2JZuQUAD5iLyfVvCQOKTMlJzJKCWHxu3
3nMMg56JaCUXFwJiO3vBMPN6GESRfssmuRNQ545dG4yjw2BGLWLHpA8BkdJy
SWXFYdCQ82UpJ4iAyuI1Kq3nwsC3Rnaq4xYBqedPsz/jCAeZnuDhtVACGloP
lS7YHA7xZOkes2gCevNV6UimYjhc9PYr5U4loJuNRNY7nuFwSP576Z77BLSj
y6tjyj8cSFOoTCeTgDbwnJHfEBEOz7w4/gt6REBjn593w8NwWKHFls88J6BH
N+vnFzrC4d2BmXK+MgJSVjPN/d0bDtkTJhWyFQTUkR2nGzgYDrq07ZVOmIDI
+64w3iyHQ6Ln45e9bQTEfPmGtIvSwXk/qWqxnYDOPV8MNNhDB9Vxt6rNnQT0
kEVvKFSODn0e8tUGPQQ0YZGsw69OhzLZhGr3rwTUy/DrdTxOh4h/89UR3wmo
ejFY3Oc0HQ54VNc09BMQ9+mThEIrOhBkRfGvQQL6st6IvtjS4eNYMF4bIaCg
DW98sBMd/N2P1x6eJKD+Izpsz3zocHpfQa3xDAGVPhBjq/Klg/jYxjrveQKy
/GGCggLo0OLWVVe4SkD/XNpfyYfSIV3m0KsWFiISlCIXiUXQgTaa/GqAQERv
G+PFWqPpoFm4/IqwgYjcN/zwkYmlw2Y363pREhHJu0bOH4+nw7B0Xb3aRiL6
qunEIppEh6q/OxssKES0/a3n7+IUOtwtCG24SiWiHRrNk2tpdLB1HW6I30xE
1TPVwRse0EFRWr+xeBsRcTq8GW7LoAPnX0Zj+3YiSj1/z08/iw69+XxNf0WI
qHzj1yh6Nh2eulxq4txJRFgwzvvWQzoE7/3UtEuSiETb3txUyaGDyYhys8Ye
IsoQbOB9yuQ9+enN52WIKPxLt9cvJq84rzf77yeil+8DVzuY/G6P7esUeSKy
+HSR8yaTs4cbXpcpEpHPms7QP6b/K0+kWroOE5FNEXlaiMm6zhEtE0eI6Fdj
SSAnM5/te8ZaNgIR9Tdf/FWSSYeJodOtezWI6NWcqZcYs576vOetx7SJyDFw
LOTUfTokOgm02R0novjUdG9VZj+cd/u23TxBRHY1CzF/k5n6GfrS9uAUEb2v
enrIKpEOvHlqb16eIaKyqfDKO/fo8Nsx802PERGxetn53IqhQ6kU4e2sKRGF
7lYpV2HOK3zQ/i2/JRGd37ztZwmdDvsdpdv1LxBRW0+64vRNOnx3FvEssiOi
XdyXncyZeohyo1J4nIio21zV8BpTL8Ney2feeRDRmroT15A7HZIvjU/t9yai
m4LeZUpMvelc7bsXc5mIVCVefNZg6vGhf9uHM/5EVDS3VTPamA6GN/CV5zeY
+e+/4/z2FB1Ygl9sod4iokvin5taj9HhXFiaeTediDYtGAyuHabDljjXbyZJ
RHT26z1u8610aIo/H/hfKhFtucd+6C4vHS4lnRXZ+oCIRpJtBUM56NCRfuTC
5xxm/9nyPv43HQ6Rj8l/LJ8T0UA9xVupLRxU8tdvV5USkVeaQfON2nAYKpyW
3FFBRCVHr5+LKg0H7edfnb5jIuJ1zeKdeRAO61UFozZviahz056fXMzzhIEz
ouveE9GF8KzYINtwsHp1T1a8m4jI69Vc2DgcKpr9aH1fiChJV4mScCQcfDpP
zNgPEZHcycX6YmI4DA7+XXYhsKPRx0fZKczzL3HkR3obBzuCavlWpYAw0Brr
UpMhsaMtespmsu5hkDX18sYYhR0dOnUmmq4fBparkQSaMDvyyU8PJXKFwTt+
GfJlZXZ0Sp6l0P1aKBx1dx9OU2VHefdzveaZ5zmjmdH8CthR6EU5CyuTULjj
LxdC0WFHf3eUz5fLM++DgUOrBYbsqNJmdkvz8G1orVAf/+3KjkzZLwqHnLkN
jTamXQYP2NFdpUKfPq4QeMkITpMhcCBV8xe+NQduAoe+sWASBwcivb774dnm
m3BmWCqFlcSB3IRU78WsBMHgzreJHykciLte+eW210FATdkSFyTMgTYP7fA5
Zx0ErrcKw7uVOdCoG+eBNd4bIGT28bI/jQOdnV0f8cvxAz/WvQZvvnEg1w8J
l0ULLwGp9/pxj5IN6ENVmYPMwjnmu/DJxrv/bUDVzWJBbOgcXODv6XxauQFZ
t2A2o3ArKD+ueG6ydgPyYVn94y5oCQ6l416X3m5Am4ww730tM+Y72S7t+sAG
dO+z2/WfxYbgq37qX+hWTsTr9OHgv16AnF7/F4+FONExm/uOGhpq8O5qge9r
YU70veWVH0e+CkgyOAmkXZwovfHVltEgRegSrN8SLceJPM8dLN2SIgmyM0rq
9/Q4Ub3MnQcCWmL4zyOx+Ax/TjRzZZ/dZ3QMj4b8WiQEcSJV1f1cFf7H8ZRt
1nmnW5zIrKZ+ZKpMF7OIiEnLRXAirY4dvp6S+lgwSfTVqyRO1GRZ3l7sa4AN
wkQm/jznRHuiDZzYhYxxleMOfZlhTrSW3nqRUnEO12t/K44Z5UTykcK73I9Y
49ad97fMjnOinemM+f4qa/zpx/a+6jlOxAifPiVRfR5PmW6/fprIhZ6lD4y4
frbBu48L5XmLcKGNHIO99hW2OH73NmKFMRfSd1f0zBBzwFbWko/7zLiQkU/o
7E8DBywRf1CPx4oLPbiiVPbyhgMuWT8Zc9GWC51r/9Ch2uuAuz8Gb+fx5EKq
kV1U9xhHTL09qnAxnAvlXy3vuv3HCX+pXPwUHcmF+kwXLlnwOOPsCQ6/8jtc
SJCyy/H1IWcsbyVWtzGBC139qHCRFuqMDQ+anCzP4kKHk4zGJkVdcNwvbL/x
JReyF9hW3Kzhii22vOU8XMOF/tlT/JXsXbH4yS8FtnVcaJt36h31MFf8vHxm
8r9mLnRXf/cfiVZX3Hl3T6BtNxcqn77KIn3CDfMdvZf43xgXUo70bNVXccc9
PpnKvye40MnqSWN3E3ec+aSol3uGC+UduTK+x9sdHxB4LW67xIXSbkz2XM1z
xwajKwzuDSTEJz5x24XigWNSHZoviJLQxnKn/LdvPfDVK8E+/jtJKOLqfsOz
fR7Y2vCBSJIkCRVwSJv7LXhgGdLHq29kSAh7/XfwhZgnbrmmvVtJmYRiHOM4
mj098TPjC91nVEnokxbbXbtgT5wsFxDkBiQkeyumPzfeEzsMl/RkaZPQdLlv
xaZyT8xmLkHnNmTa1wf65y154mEFpChlTEIZWV/GFNhp+D3F6pe6GQl5feQ+
NcRNwxmv7ylftSahwLLCiGYhGlY9TBj55UJCQ8UvxlyUaHjnJpHEFXcSUt/1
e2u/Gg2TJlQ0tngx7Rsa3h/QouGex96p+ldJqNau11zbgIYvb/mt998tEir9
EcFh7UDDVtOrcx2hJEQ/z2i94krDWu+2PRylk5CfZyWnHY2G+cPOLIvFkJCU
BJtH1TUaXrR1f6x6j4TuTid1SQXS8M+j9LOmiSQknt+y3ymYhhlztQVR6Uz7
BYcTThE0nNDZa/o4g4TSBkRO7L5Dw/6MBcKrbBLa78LzqjqWhk84HLCazyOh
6J5Xyc7JNCyvoc/JX0hCIjYVKkFpNCwo7FQi85SErpRr97g9oOGhDxnctqUk
VK68Ifr1Qxp+V/yy3L+chM7ZoyGlRzRcFv3JLuklCeU4b24OyKPh+87TlOc1
JMR+YZt+aj4Nh2jzVr+pI6GfZnyp0YU07Com7TzYQEJFnatdpgwaNlzVEWB7
TUJ3tAV2LD6lYZXPtnXb20job0ZDslcxDYuVBrortZPQj9cMl7rnNMwZm7rN
sIOEtMULy4Ze0PCEW1mjWzcJSZBaMwdLaPjT8U6vsE9Mf1Z6J2tKabhG4t+O
7C8k9G82+6dbGQ3nspBaq74x/SsE3JhmclTvriuffpKQpH/pKcP/aNinXF18
qo+EFEotfOhMtog/1849SEKHOov4U5i8/QVJyHWEhLbdu+YfwOQfHf85toyR
EHWyr+Igk7Mn7EqkJknI/KHu8kumfzteftbQGaY+R3S9NjNZUhaf7J9nzr+z
UV+Tmd+wvluqxjIJ3bj+o0aDmX+h67bBzDUSmjRaXNjErM8joungOisZ6XqU
ylQy+3HgiU/QOXYy2ls8Eyn/jIanm0XfvuQko5W9H48HMvtZNvB2myA3GWmc
KUu4z+y3L7ufgy8vGXXoyObGMOehIrH7xUd+MjITo+abMue1qvFhXWEzGXHv
v/xpKpeGg4P2p0xuJ6OjvQLXHmUy9ZnR++e0KBk55Sca4fs0vKGGLs/YyeTE
LVJFqcz+Lfe1uewlo90tHMGc8TR8SjB2a8s+MqJwXfK5EkPDfMpH7aXkyMho
6Nu+yigaTrySvNanREYD9v866kNo2CxB+4TGETLqr1aWjAiiYaGSqaTMo2Sk
V9myVcqfhjMn9eXOaZORceDeZ3+8afiJG6vdR0Mycg8uSPSzpmG3SMYzBRMy
Omh9pXXFjIZl8y1X48zJyC1B3cDkLA0/HyxNPG1DRqaBQvvvHaPhKluXltfu
ZLRRkmSgIkvDgTe3bJbyIiPhlNbdIVI0rJ7ZYHv7EhntrzzLnydKw03fhFfU
/chICYSXAvmZ54VZl+zLcDLKsknJ/z7kieOuBvltiyKjpdbxTyKfPbFx4r7X
V++SUYXYf/9tbfHEX7rCLigkklHT0l6rg3meuP+UanzRQ6b9SPSfrRc98YJW
7mJGDRlZqbTuJL/xwP4vM2411JGR0G2/v6YVHphFPnXjcAMZqR5P2+b2yANv
ELkrJt9GRiyOZOnRGx5486KvbsMnMlpWZ/3P+IAHPliknzI0QUYk3j1Xdoa5
Yw+BmcNyO7lRf21tuAmvG56K/PfKWJIbnRvlWtWfc8WX2Yb1r+/hRhzqlZu2
fHPF/uPfbOr3cyPdFw0VUvmuOLKlOdxYlRsVyKUXaDPvl7yAtJ5rxtxI6J5n
VauLC+77o+H7KowbqdmzGhRlOGGNjPbsvZHc6N8JEQWjG04408zibdwdbnSe
IyXwg7UTtm7zEr+YwI24ntCVnXcw779nmW8ID7mRlKbbn9/JjrjTb01Uu4Yb
XT4omhZJd8Cv+Cpbmme40eP+NgaPsR3OVpMTenthI7rBE7p1j/V5XHT7Mp/j
Ph70SnLvdThyAo+qngu+fYAHHRYPYjN9oYdlZrSmHx7kQVefVO/IktbD+bab
PvxU5kFGXvqSHdt1cR68SLbQ4UG3nA4OVrEewzmLEyKnzvOg8DckQvZHDZzq
7iarGMuDuugm6TkOiviLhFHG2Xge9E7gmeRRRwW8rfcIxTuJB+nMKGheczqI
k/XIU4z7PKg2O4Tjq5scTpDKL92dz4Pu8MXWzy/txTG/BlW31/Ogomr/8si1
zTjM+OIJwiwPevyMTBe1FIfs071W9gs8iJJL5U80lIAqXWOP5mUeZH3ygJ/Q
cUmYUjsWG8nGi6IfXDp4fN9esJKU/kSl8KIvlfyX/4wfAPn5KVsJaV7k9cmq
6pTXYfieHHxd+wIvGnDZbZpsqAmLccuRj+14EZ9tkK8X1oRN0ZfucznxIhGl
mqUyaS3QvelQ+9aDF204WlEWwqYNJc56HCb+vCi4T/qu4BMdiFDhj3NI4kWp
JqMezz/rgmJv1pOwt7zo1KimJl/jaaDIOi08fc+L7srkdQC3AYzekD3W08WL
PuhcmnmqaAA5O1/27/7Ci/4JpARUhhnAJtdukdYBpj/OvtJLu8/Akj/hBAcL
BXk5+fbZWBnCUK6DdyorBR22ZjdOumkIH9tbUmQJFMTnz/ky5JEhPBeNGTLh
oKAwP7m1W+OG4NKwPfQxNwXdMj9ZzRd4Fj6TD9Ud30ZB5SsmRqbRRtCkkDLU
K0hB16yPRUwVGUHJuRVer+0UtD+ly12z3Qhinr6yThGhIOpMCJGDxxiOnz29
MryLgrZfPcyxMcIYylOdlCLlKehkhOexbZdM4FF9m7WIAgWNL8Rzk2JMIH5U
NvSFIgV9eek+/LTABGhHZ7u/HqYgRrZqr+BvE9j9+6a3DFBQwjI4u58wheQ9
aUVvT1BQZ0u8JTvFDGamdXJvnaSgvM4HfIf2mMHpmql05dMUVBHWM8ijYQYc
Z/Wicg0pKIN1cUuFtxlc9l90CTCnoOuDw4UT78zgvU6u7UFLpv2occjFATOQ
4TtjMWzFtHeg9QSumEF/bp6usQ0FiQdxKj6VMgfDd6a79zlSUMvQu+yFa+bA
SCGI9jlR0JOxTtXiaHPgsnu6JcWFgi7X1/7hzzKH2gWODeweFCQUxl3d0WQO
+8XL/vReoiC/DBBCPBYQMXrhW9wVCvolgms1RSxgoGzjh+O+FGT8wvTI5H4L
eHDCvqHEj4Istk6I6RlYAPflTQ+jgimIS354bS7KApygNlUjhIKIgV9j9dMs
oJ7LLW7hNgXZlu2e0n9iAdcf1N+0o1NQ8YJj7qkGCxhu9rZRjaGgQ4cPt5rP
WYBWnLDZVCwFvVK8XMbFZgmZVq2n8+5REMj6JNtvtASzSTHYlERB3WV1P8R2
WkKTYMeO0fsUlB/AwV+sZwnif/wFsjOY/VNOUGs8awkBT3dvNMuioBU9Wmmo
lSUoaAWt1OdQkPl0nAa/uyXE8MjMXHtEQY2Pukp7L1nC355Pf/fnUVBkp4Gc
sb8lZLvv/5pWQEHad2yIZyIsYU3pa+eZIgo6snwSd8dYgjlbWOuGpxR0L0Ba
d0OSJZS8kX9V/YyCJLP0PwylWwIl6XuFz3MKWvxVkHQt2xLcLkQU7ymhIJG0
4YaKx5bwWvrQkx+lFHRhVi/uSaEl3KiNTj5RQUEX22r+JJdawsi32vjFSgra
4qU9EFphCSbL0zGPqyhI50Iu2l1tCXVbpaKNayiolx/tDai1BJlDFnRCLQVZ
SZA+3663hKSz0beL6ygo8FzELY0mS2Dzqr15vp6CpF/02Lx4bQnud6YDNjZS
UOGx+3k9rZbQUyB5/WUTBcm48957/sYSNFvMrzi/pqDjj2bM1NstgTEQ5b2l
lYL2Pso4ePudJQgSaz0a2yjotcG4VeB7S7gtNu3i85Y538qTvPs6LGHiqKSj
2DsKCpB6ejuWyVZW5hffvWfG54pdLmBy87Wo8wGdFPRmdaHQn8nySdhSupuC
fN/6fCQw+X7JlOnnDxQk7LSpVJ3pn7Nzl1HYJ+Z+/+0deogZ/9K4mYHiZwqS
8yoI//3WEn5wR+n3faGgQadzS9rM/PX24uOxvRTUpZgveIFZX9mxKS34TkHp
Fgp7FJj1i9nvUh/7QUH/OQs74EZLiAo2U0v7RUG7WEn8BGb/5jMilXX7KMis
cbPHOrYE2+oaxfl+pl4sfr0sqbKE9i+TcrkDFORjE6y2kzkf5QUJ2bNDzHk7
RyueYM4vR8BsL+sIBR1Y4B2UKWbq4WCk5NO/TP16xyS8Zs57wH1SmDzOjCe5
vCj70BLOREoIVUww9UXTVl66bwlVeaZbHKcoSP/lifCgZEu411fNWz/LXL+q
746jmHpkmSR7zVPQKo9OjG+oJbgIS3CKLFJQu85s79gNS0DmESx+KxR047I2
P4+3JRRcqV7ZvUZBPTcvRFa4WMLm+ImFj+sUpPFW6rT4RUsYazeZlCfwIf4P
p3plmPsnVWvn7xEuPvRay1Ra9oAlsNuafE8m86HH6sICbyQtgXaD/kVnIx8q
OGaVsWeHJRyrHO/MpvCh6Bf5zRJcljCzv6reYgsfKhVo+7bzuwWcFDLObZXg
Q/Ym99gj/C0guV+21lKSD9l23LgjQ7OA/iLOr6NSfChkteFc2kUL8EdVFF5p
PhQsf/TLd10LKLTf6X9Wjg+d5YvIIW6yANKzScNeNT7kfkaee0OGOZhca3N3
Bz7Uf1GtKvquOWRr5IavIT7knZq+0H/DHJQ/mNWIavEhkQva+zlszMFpCe+x
1+NDDOGYk0LC5tCsdYflnwkfMkphe9Eeawb8PE5CN8z4UJnQ+ys3bpiB9Sf1
QxQLPrQk3wrs7mYw5zzrKn+OD31RPMsee8wMJO9afbpykQ+ZVrtcLF4yhZDP
exnrnnzomCknh4m5Kah7NFvy0fmQVr+UsMqSMSz1DOs0RPChRGHbOclfxlCi
yS1/NYoP9YZ4nB5tNgbJbWc4v93lQ8Qvv7nYEoyBu+FLSV4iH2K5uOuU3T5j
6Nn2byPK4UMj76tqzE2NgNa4qdYDM/u54RdHeZwhZGy3lXgzy4eaWqsDg66d
BIn6x4mnLPkR+ZJrXKy2KrTLLOT0WvGjltAeuzdvjoBv4vEXLtb8SMJuqVLQ
6Ai0OQ+/C73Aj9Q5877P2qqAN0WaCzvyIyX7dN26m4cBn2P47b/Ej7p4Pq7c
alAAi4USG0o0PxrNSNse1roXYva92ttZw/R3/dyTQvvBmrzDllzBtfzog1fj
/hv80zVYc2ZQ7hU/UrzCx/HIbanmn7lkbmwjP5qYvs6xLZyIT4RGiJx5w4+i
dynPPwnhwxw/DDe9/8yPuEm1fKI1Itgvpm/17Qw/kj18pkQwYB+OS/PvDZjj
R9JNQUfyTsvi/EcCL/ct8KNh0iEOA7H9uKfqmG/0Mj/SKt+gO2NzAB8aLpjS
Z6MinS3N5aQVOTyhfmmwjZeKxCInzscLKWKHaWJHy14qMtDO5bu/rIKt87Xa
rWSoqElIWUnr9BFsciGkbXwfFdFbkr9fzj6Cdd4RmgTkmP83NBCuHlPFkgVs
Ly8oUdHskJXUn0g1/MeWJXdRk4q8vqlt3LYGuHcbyo7SpqL+vffUtu9CuPv9
jQyRY1RkZOwg/k8P4Yaj6ynaelS0us+/+VMCwjmCa3diDajI84jiz+rd6tiu
c9l3zzkqerey0+O5hga2oh+5UmVNRQJ3Pf912GlgI+Tnc9qGivTnHWSLQzWw
FmPJ/fJFKpLmOejEaNHAEhGLtnXOVFRO/ayRqa+J+9Tn9c2vUFFhCuejYzpa
2LZ4SpR+l4oui8/UzW3QwW7BZ1f0Ypn/DZZYeyR08OWzJZ+471HRdHhfoL26
Dg6fvXwnJpGKxp9vHQi5poMZyovLSfepSLRy7n7XHx28WLf+8VEBsz56vn0u
4xhmu2fz3KmIWV/yVLtm0zHMbVcXvfcpFYl3BldFfzuGhTluaTGeUxHrxUeb
JcjHsZYex/PSCipKODCZbGF7HMd0ckc3NFORYpqD2QSLLk596O4U2kJFF34/
1DpG1cUPL7VrHm+jIpvdA390d+niss0xS23tVDREu+NteFwX91pQnbo+UNGj
EXN+7whdPCB9STPhExXVdd5dk0rVxeMr3cKmn6mImmbAHfFEF7NlJH740ktF
+yL/dBo262Kpvm2av/uoyONRwO7FNV18oOS6cM4fKmpOVFHi59bDKre/LtoP
Mv9ni5J6tuphfan7z4ZHqKjrvds5Fzk9bLKwGlkwSkVK/OcpSmp6+HyLtaP7
PyrqnYsZfXZcD3u7igpPTlLRJKn4TqG1HvZXvbn4fJqK/nFlRMs66+HbG393
X5qlogORrVLWPno4+enDyIUFKuq7nJzXFKqHs4OIjpVLVBRpHte+flcPF5yx
1/BfoSLuoSs8g8l6uES8acfRNSoqFRyg+2fp4ZppycX1dSq6b6NzsfaJHv4f
I6HSdA==
       "]]},
     Annotation[#, "Charting`Private`Tag$4887551#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.881038575677834*^9, 3.881038641420527*^9}, 
   3.881197788955649*^9, 3.881201519419276*^9, 3.8812015971994333`*^9, 
   3.881201840735798*^9, {3.881201924988084*^9, 3.881201940399811*^9}, 
   3.881202351635956*^9, {3.881205038351377*^9, 3.881205052665579*^9}, {
   3.881205205639812*^9, 3.881205211270877*^9}, 3.881205254962636*^9, 
   3.881205886979726*^9, 3.881297133253644*^9, 3.882090937645055*^9, 
   3.8823298400211067`*^9, 3.882421029586155*^9, {3.882421344299646*^9, 
   3.882421379707559*^9}, {3.882423063202887*^9, 3.8824230769352703`*^9}, 
   3.8824231622095547`*^9, 3.8824233533152122`*^9, {3.882423484631295*^9, 
   3.88242349610753*^9}, 3.882867357254532*^9, 3.883105836205462*^9, 
   3.8834687295907087`*^9, 3.883472943923246*^9, 3.8834732821119223`*^9, 
   3.883479296594655*^9, 3.883479589542738*^9, 3.883553736185631*^9, {
   3.883554095989285*^9, 3.883554102616744*^9}, 3.883555175933848*^9, 
   3.8836412513085413`*^9, 3.883644207560411*^9, 3.8837084772159433`*^9, 
   3.883721117066905*^9, 3.883722045873139*^9, 3.883810886735237*^9, 
   3.884770060803801*^9, 3.8847718146294327`*^9},
 CellLabel->
  "Out[154]=",ExpressionUUID->"22293093-5251-40c9-908f-4c2143cc879d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"mom8He", " ", "=", " ", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "mass1", " ", 
    RowBox[{"(", 
     RowBox[{"-", "Esep1"}], ")"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.883473213366879*^9, 3.883473219522561*^9}},
 CellLabel->
  "In[155]:=",ExpressionUUID->"cee43495-67e9-47c2-94dc-2d657d1fab18"],

Cell[BoxData[
 RowBox[{"0.`", "\[VeryThinSpace]", "+", 
  RowBox[{"201.85418856194192`", " ", "\[ImaginaryI]"}]}]], "Output",
 CellChangeTimes->{3.8834732210776253`*^9, 3.883479298313076*^9, 
  3.883479593673148*^9, 3.883553741398889*^9, 3.883555177567884*^9, 
  3.883641253471229*^9, 3.883644214269588*^9, 3.883708479707552*^9, 
  3.883722048284419*^9, 3.8838108885473213`*^9, 3.883816248316956*^9, 
  3.884770062909734*^9, 3.884771817447282*^9},
 CellLabel->
  "Out[155]=",ExpressionUUID->"5725f256-e6b0-498c-9fec-16f7130a939e"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"TMatrix8He", "[", "k_", "]"}], ":=", 
  RowBox[{
   RowBox[{"-", 
    FractionBox[
     RowBox[{"p", " ", "myNorm1", " ", "myU1"}], 
     RowBox[{"k", " ", 
      RowBox[{"Abs", "[", "mom8He", "]"}]}]]}], " ", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{"Sin", "[", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          FractionBox["k", "p"], "-", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
         " ", "range1"}], "]"}], 
      RowBox[{"2", " ", 
       RowBox[{"(", 
        RowBox[{
         FractionBox["k", "p"], "-", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], 
        ")"}]}]], "-", 
     FractionBox[
      RowBox[{"Sin", "[", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          FractionBox["k", "p"], "+", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
         " ", "range1"}], "]"}], 
      RowBox[{"2", " ", 
       RowBox[{"(", 
        RowBox[{
         FractionBox["k", "p"], "+", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], 
        ")"}]}]]}], ")"}], " "}]}]], "Input",
 CellChangeTimes->{{3.883473173562552*^9, 3.8834731982303343`*^9}},
 CellLabel->
  "In[156]:=",ExpressionUUID->"f7780dc9-ccdb-4a12-879b-505da55785a3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"TMatrix8He", "[", "k", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8834732425665007`*^9, 3.883473244893527*^9}},
 CellLabel->
  "In[157]:=",ExpressionUUID->"8bb8b6c3-f74e-4505-9b6f-d5978af920f2"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Xk01dsXAPDLMyUyRNHzzCmeZ44SzjZ/UzRpwEsSuTJkaEDmZMjYVVEh
elGhFHlePE6GkvRKEqGi7vfW7adykbHwO/ePs876rL3WXnudtfc+at5HdvgK
MhiMQnL4t3r2/F9Fynet3u23X3MWOLhOTFsliJmN8kViNfhujrh9bS3zClp1
RFaJ71xT+k/JrOtoftc9Kb4fGYT6iTCr0OrPBxdyiKPlF/9ZLK5BDeJqXL4v
sOytfmbWoYHnI0/5rpLKaJ2JakDC2m2VfD/O6KYm/TDSUC9P4ZuXJPEporwZ
OdQU7uM7prVKe7q4FdV9KNLjW1xwZ+CxvIcoouLWXDY/P0zdnshsR1+XP2nm
WyPu4lhoUge6Ivf9FN93Gi1MeFGdKP7e79Z8d5ifuv/F7zkKeNhamUVcYbE8
dl1VF+o10/Tge2zQ58rR8hcom2IJ8R27SuzDePFL5AJ5VCZx2323X4wKepCz
lh47g1+PW4VmaN4rdKqyO4LvvDwXv9HMPlSTbXc+nfidaXGqXtprlPRVRolv
zd6xm0FJ/ejMyJfCM/z65M5/GYkaRDMtnaw04idnB0O5fkNIekTXOoU4Nf9C
R67hMBKx9ytOJtZlInfjqmGkYF01d5o4TPTsybDy98hfiVmcRLxgb9LEK2aj
ycCYOwnEJfJvXXKUaRTxWpMbT2zHOT2kX0CjF9z+VXynJ/UxjuRx0MmpwNBY
YoXWKNuvmZ/Qfz2m7CjiBpZGT8ZSLroUuHkiktjT+6mPbhoX8SqDFiKIrwko
JwckfUbaWoPCJ4gNofnx56gRlC3h3h9G7NQo6vLRbxSpaHNZ/vz4ovfkCt4o
CjBvX88kzlDd/0zDgoeCFl+9PkR81Lv+mGsbDzncTBT14df7MaSttmcMqZ5T
UPEk/vD17YGIyQkUfdHMbDtxb1Z6bc6G70jMQzZ+K//99DcsuRnzHcUNKbU6
E1eHnrvTLzyJeGbNZk7ECZNOi+YrptAZO8dBG2LV+bqCedMZdLR/01JjYrki
X578yRnUtl9t2oBYDC2308MzaGXj2rd6xKPxwSOejrPIUaA9T4e4SWi1+YM9
c2i4z7pdjXifBKsvMeInSpgzlJIi/k/SdInQPgbk/Ctiy0Ec3L1ZNv9ZNAPE
Y0qufSB+nfZN62IBAxrGdQSGiWnh63Z6bxjgLyReMUD8c35l/F4PAWB8nml+
TqzzbXaq0k0QFCUu//yHOPVZI71rtxBs5P24lkKcJXEpXPW4EJT6hPgkEZ9z
Oi44cl4IVFteKicQX3mkpxr/SghKwC8pivjvpise5a7C0BDTLBtEzLmd0L2w
QwQyLtlZbCe2ybZ/cH2rGFwVzW2RJ453unezO1gMQvGJCRniJmGN3PlMMShh
xKosIzaPZhza+VQMFNeMMkWIjf0bli5SS8DLyqd5yor0v63hnt024iB1+HJq
L7HItNI3oXUSYP9mSwiL2K46vU/fVQIKhw4JZxEnBs09cA+XgJ3VV8+nES+w
+3Lv3JWAl8/irscTT3exNvypJwlSa7pygom55WKna9Ysg19COiM3Efvqz0ka
SkqDT6dl6Q9LDt4ymFKqoCwNWvFbDaeITVLkLRn60hCuf72ORyw0ZBD4fJs0
VKevreEQX83yexJ0ThrGLoX7Pice+tqTXP6rDMho6NWVELtVVi1q6MjC5WUu
UjbEztq+Yysc5WCifFluqAUHz6Ufa3i7Ww46b53WCiC+8e306WuH5ECsjFHr
Qyx0r0zRKFkOVJIEW/cQ11txrZ0fyoG8u+lflsRargGsU7bysO3MgaNixIy4
UGMeWgHHTwy5XdpI+rsn5ljHegVIt3IxqjLn4I2yOlVCcUqgWA/qQes52O8H
q7B0ryootGwtG1jHwUcefTKuclaH6OP3bDWMOfiMu8jq+UBN2CVe+PS1Pgcf
bD95yJCpBTeiinzCdcn+F1XcHuC2Fmb7vE6+WEvmVyb+wuejOhCWZv8gTZOD
vSYsdV0CdSHCFy0xVyX7puih0nSmHjgPiP++7lcOrskyH+zeYQAWySjsmzyZ
73rLbYVbDEF7ZtWaGmkOxk9Kx9M8jGBsfi+3SpyD/R03NPrvNYbHZjtlWoQ4
uOCGYW3AYROYXX7/9/l5Gp+daEwIObEOXOQCXi5M0fhj+bHjzDBTmJh4tVub
R+M2B1Z+YqIZ5CfKuh/m0lhg68CH7Pj10F+/aeO7YRozrP8WKI7cAMxB9i3d
fhqnrpx27k4xh6KQCm5cF41D3A+2TJ/aCAWTVK/CYxq/TzDxQectQDDzwrIb
TTSWy704kFZiCZuSDm+TrKVxmbROZPtlK9jplh7SWUHj5jAV+zUVCBrshx2C
S2hcpFqsZOkK0PqpfTA8j8aN0XMMZhcAY0+J+cFMGqttFv2psccavEu1YrQS
aXzvuXZ6f4814K0eY54naJzxaMFAdZ8NiBt8StkXQOPc8M+Hvd7YwP3pQbXB
/TT5b5Wl1N1sQSOWqbbZlcY3tYWfHB22hc7KyLkQRxqLfBdQbPa0A1OvLYpr
N9L4usHd2KJPdrBL4HZzyh801vYud5kPsgfvM85GvSo0Htx0v3rXiD2Ef+w5
8FiWxt1/Rf2Bwh2g1iV49U4hGs/UbLdQH3cAsPMwSp9i48V/wmqTgx0hpaNW
6SGXjTcbONhHTzpChjYrNLWfjdv36fsHhFMw+oxVId7JxrIHmQ2Fxyj4n9ZS
z44nbOzJLJHsOkHBu1mnpanEU2HLq02iKXBvVNstTKyZOj03n0RBWbjBrcXH
bBxfjTNyLlDgFDrjNfGIjc1Ft92pvU/B+bkDw70tbJwskSbIbaCgJvO3L+eI
X8i0uK5qokBWtGx8BzFTyWQ2toWCN+7KvGfNbJxnqGBDdVJgtPlu5aMHbPzd
Y/jlwBsK4mKTdWub2BgOKGpJDpH8XE1OGHH6oR0R6D0FkROsfANi9dA2pWsc
CrouvRutaGTj7ck3fIO+UTA2u97r6r9sXJD+vu4Kj4IOE7fR/cTcnFXi3eMU
jAc7Rf5GHH8547bpNAX1OcUx+Q1s/LT4IcN/lgKVLuGZXcQryxZ2XP5BgW+T
RdByYu8Ks9L/5imISLF/21XPxrfvhEwvLlLgsEeVyiL+P0QLABs=
       "]]},
     Annotation[#, "Charting`Private`Tag$4887612#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, -0.6138779905034146},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.883473246442443*^9, 3.883479301851737*^9, 
  3.883479597643404*^9, 3.883553745331745*^9, 3.883641257948784*^9, 
  3.88364421837684*^9, 3.883708483353463*^9, 3.883722052005005*^9, 
  3.883810892094482*^9, 3.88477006605026*^9, 3.8847718205626993`*^9},
 CellLabel->
  "Out[157]=",ExpressionUUID->"f2313b4e-798a-454e-9a63-98e6906c7cf8"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
  "\:041c\:043e\:044f", " ", "\:0422", " ", 
   "\:043c\:0430\:0442\:0440\:0438\:0446\:0430"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8810386865704927`*^9, 
  3.881038721338756*^9}},ExpressionUUID->"c6deb938-a60b-48ff-8b90-\
a74d7ae9e157"],

Cell[BoxData[
 RowBox[{
  RowBox[{"TMat0", "[", 
   RowBox[{"k_", ",", "q_"}], "]"}], ":=", " ", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k", "]"}], 
   RowBox[{"PsiP8He", "[", 
    FractionBox["q", "p"], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.881038727412426*^9, 3.8810387512058897`*^9}, {
  3.8810410179467983`*^9, 3.881041059567087*^9}, {3.88120104363904*^9, 
  3.881201051536171*^9}, {3.882421387600008*^9, 3.8824213884247637`*^9}, {
  3.882421456413988*^9, 3.882421457276701*^9}, {3.882423190224491*^9, 
  3.882423191797936*^9}, {3.883473289379211*^9, 3.88347330948389*^9}, {
  3.883553762170773*^9, 3.883553762669324*^9}, {3.8835541121535673`*^9, 
  3.883554125291065*^9}, {3.883721220339574*^9, 3.8837212470604467`*^9}},
 CellLabel->
  "In[158]:=",ExpressionUUID->"6753751b-a669-450c-821a-0e2864446c1a"],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
   RowBox[{
   "\:0421\:0442\:0440\:043e\:0438\:043c", " ", "\:0447\:0442\:043e"}], "-", 
   "\:0442\:043e"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8810387103434973`*^9, 
  3.881038713560375*^9}},ExpressionUUID->"dc4db538-b681-426a-acc4-\
ce255c7c1d15"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"Abs", "[", 
     RowBox[{"TMat0", "[", 
      RowBox[{"k", ",", "q"}], "]"}], "]"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "400"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "200"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8812016720029497`*^9, 3.881201672308652*^9}, {
   3.881201811237808*^9, 3.8812018153670683`*^9}, {3.881205098173345*^9, 
   3.8812051287474194`*^9}, {3.8812052216359177`*^9, 
   3.8812052240790653`*^9}, {3.881205266459221*^9, 3.881205267755148*^9}, {
   3.882090663733816*^9, 3.882090668092326*^9}, {3.882421465308873*^9, 
   3.882421481513883*^9}, {3.88242342662884*^9, 3.882423441925301*^9}, 
   3.882423472576187*^9, {3.882870627902317*^9, 3.882870630365535*^9}, {
   3.8828707355146313`*^9, 3.882870743018765*^9}, 3.883473318302663*^9, {
   3.8834796111372643`*^9, 3.883479616436489*^9}, {3.883553912912874*^9, 
   3.883553930271344*^9}},
 CellLabel->
  "In[159]:=",ExpressionUUID->"c96e0fd9-189c-4e48-b6f8-cbbdb9d07d41"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJyUfXdYVccTKHaN2LBFxYICsdwooFiv3EVA2kUBAanSe+8ajV1jL9hbYjdq
7N3EEmONGk3sYhdbxBijP2yo79xzzsyeWZL3vucf3m/YPbs7s7vTdnbWKibT
P76ymZnZdAszM9OvjWdRoz0zjAbp19qz6ExfrxyzfmOL9AzgvRGeO+KLjAjb
OJ9qeyw9EOGMC89SBxeFI3zDYfL1vOJohM1GtPh0ID0eYdtjm9rVMEtG2Ksu
8/AtSuP9dUrebbTI4uW+2z2yi7N5+3nvr89bncv7X+Savj89H+HrUvmV7oW8
f/nfMBUGPAE/Hfwd4Ru704t3I35QHo7wHlMx4gf14xGuJPeXjLCt/JtG20P8
oL1shOUfxE/HiuX28xGWqyN+Okbxg/HqhV8jwhQ/vYCfXsBPL+CnF/DTC/jp
Bfz0An56AT+9gJ9ewE8v4KcXxuWG+AEM+NHycIQBP1o/HmHAD2DAj7Qn4Ufb
y0YY8AMY8AMY8AMY8KPjFefNKOAZKPw9HGE6f0Zh/ozC/BmF+TMK82cU5s8o
zJ9RmD+jMH9GYf6MwrrwE/rxQ/xoeTjCgB+tH48w4Acw4Efak/Cj7WUjDPgB
DPgBDPgBDPjR8Yr7zCisy0ChPFzAO1qoF48wXZ+BwvoMFNZnoLA+A4X1GSis
z0BhfQYK65PzDWUcIcK6ChHGGYL4AQz40frxCAN+AAN+pD0JP9peNsKAH8CA
H8CAH8CAHx0v8LVwYZ+EC3QPR/xsyTqNFurHIwz42ZLv0mh7En60vWyEAT+A
AT+AAT+AAT86XuDTUcK+jxLWURTiBzDhL1g/HmHCXySY8BdoD/gLtpeNMOEv
Ekz4iwQT/iLBhL/w8RpM/ydo5JjIF8V9RsvDBT4TLdSPF9ZxsjDvaQKdsoR2
shGm/CZa4DfRAr+JFvgNjtcg/Wc9dXWsIGdjEV+AKR+IRXwBpuOKRXwBBnwB
BnxJexK+tL1shAFfgAFfgAFfgAFfYbwG02dbNHpJsSDnAKZ8Lh7xLRbmkdaP
RxjwBRjwJe1J+NL2shEGfItJu/kIA74AA77CeA0e0s/F7omCnpSI+AJM+Xgi
4gswXVeJiC/AgC/AgC9pT8KXtpeNMOALMOALMOALMOBLx7vUYGp3+qckQQ/k
egvAVE4lI74A032TjPgCDPgCDPiS9iR8aXvZCAO+AAO+AAO+AAO+dLygt1sK
eqCloFdYqt+FIEz5niXzIvvEkmUQulqyuSZGcSoF4b2m9sMyaP2yLNrf4RyE
Tf9bT85D2AR6+hcgLA+/xVA6PrSTHAW7x1mwYzwFO8kXYQWvQQgreA1GWMEr
FGEFryG0/cMxCCt4xCGs4JGAsIJHEstYkhH5I86PZP9q5acGPxzXaeuUCzh/
UN+I9and4cjM3nT/OBznV7JviZ7F5x/qe04Jc6+L8w/th9P5Qr3Kkcn2Na6P
M32p3ODrB+pnDP4jbRGuHxhPPNaH9QX1i5bHzb6H6+tMX2pf8PUH9fc+KdvV
Cdffmb7U/uDrE+rL/gRcnyq+Fpr1eXD6p1tlWQJ+2VhedO/y7Cq4fs/0JfqF
af3WaGPdHtfzmb5E3zCtZ5M/Atf3mb5E/6iw3o0G2N//vj6434Hu84p+CLrv
K/olqL6qE/Q7Hc4rbY/7LUR5Ku4PUf6I+0WQLwZx/wj82AD7CeglwpQ/u/0n
HcwEvEU8Kf/TCfxPJ/A/7j+B8dB5Mxf4lrmwj20EPmYu8DFzgY+ZC3zMXOBj
5gpfQj5mLvAxtX5ZFO0P582czSHzpPaP86K2h3iq4ylJRvimCa9NqQjL64xl
0vrjs+h4k7MpvXxyEJbXhUMuHX+TPIRlMr7Po/jcyUfYpPcUHS2g/a0vRFhe
p9OHVpgfZV7sBb7YS+B7TOBrLgLfcqdy75SXIDcHCHLTl/Z32B9hZV4CaP/+
QbS9FsF0PCVczivzEoZwpqm/ggiElXmKpN+Pj6LjT+Z8X5mnGISVeRL0hiZx
CCvzFEfxu8PlgjJPCbS/9VzvUOYpiZndKX7zHPcTyC9dhfmjf7fk7TbaM8MS
9xfIJzf8fo7l6FnLcX+BPPDD8uLNq6854P4C/3AIlsvyrCyKjs+C7zdZfuH+
OtOX8htzRV7h/jrTl/Ifc1bZ5A/H/XWmL+VH5kz2j+N+O9OX6mfmirxKzqbt
l/H9KMsrh1yK32G+Hz1M/vT3XN4pfJ3vP5P/fN5RLu8Uvs73H91vRgOVf+L8
cT2J8tH/0nOdhe+53kT5akW9mPJZSybqUZTvWgry01Lgw5aCPLUU9MuKejfl
05ZM1LM8yToJN4j7j/JxywryV9yPRYTPW1aQx+L+tCZyAOjJ5bO4X0EeFq3e
mx83G+ZD1H+l9djLzMoP503Ud6X9IO233jgvon4rrRfnU23PIt1FfdacZV54
lhqJdBX1V2W/vTkUI7Qfj+Wm8ydnxFvUT5X9NrWEn0dRfRTkN99fpvOpGeP/
S9+U5KO0v3b4/Je+KY3XdD7V5L/0TUk+LnJNL7/Nz7OovinKP1HfNKfzmUz9
Q5y/q/oY8nPFv8D5d7gB+DXsd4BRLxf0n3/Xh0T7zwb3McCwb0VY3LdQDvtU
hMm+kPYplMO+FGGy78ui6PikfSjCVI7H0fFK60uEqVxPwnLQt0SYyvlUgV7D
mDgfVF92FOitF+bJUdCHdAiLfFXkk0BPkV4iPUR8RXxEOUD1MR3CIO/QXiTy
T4f6KJn/siysT+WhDvVTOp85dBwoH7ldRtexXljnKr0l/RHtbJluLsK5nid+
T9e9I+qXaEfLdPYSzhl98Xu6TxxR/1T2da6wfzg9gF4w3/Q8yBHpA+XiOSSh
A+LrVoFOFB9+LgvlMN4iVd9Af4bKHwEGfGA8UB/mB+wHKKf2Cbej6b7Q4/hg
HmC9KXKxQNgnfjhu0A8pHaIQBv2P0iERYdDvKB0yaP2yLNqftB4BhvEBTM8d
PXF8ZL3huYgnjg9gGB/AMD6AYXykflkWwjAfAMP4/nV9S/YQPXf1xfGS9Y3n
Qr7Ufpdgoj9LMNGXJZjwBwkm6wX3ixvyNRgPwDAewvek8QAM/QMM/ZPvpfkC
GPoX2ydySmofYMAXYOgPYMCPlEvzATD0T+WiG+qrgC/AMB6AAR+AoT+xPpGb
0vgBhvEDDOMHGNonctgnB/kV3We9cN4ov4rG+nS/Wwr+B0tsX9Q/gH8BTO19
nWDv6wR7XyfY+zpq72v81NRfayPoZeUG+vdyA+qF8t8bUzpI5VRu8/pKvQ7Y
vlLPSsCz3EDxLDdQvMoNFO9yA8VTLUe/RrmB+jE4TMaPfg91vOjnUPFBP4dK
D/RrlBvkH/R7qP2jn6PcQP0c5YKeq+KLfo9ywc5Sx4N6MC+H8e8lenG5YHeV
C3aV2h/qzWp705MqwNC+TC+0s8oNsr2Rk4yw7NcJSkHYFKNn1iaNzk+fVNp/
1XSE5f32JJ22vz2TjudsBm3PO4uWH+CwzN9XZlP87bJp/41yKL0mclhGOzWX
ztfbHNrfzVzavm8ewrJd0i2fjudIHu1vbT5tv1kBwtdN7X8ooOOZWkDXA9p5
driflH3TFWFl3/RGWNk3PXCfi+XKPnKi9csYwsq+cUVY2Tf9KL/w70/3dwsP
hJV9442wsm88aX8FPggr+2YgxSfZj+I73pe27+NPx+MwiOL3PoD21ySA4nMn
kLZ/NIi2Pz2Y0mM994Mr+4L75ZR9wf3iyr4Ip+PpE0b7qxqBsLIvImj72yPp
eM4Ooe15Rwl6pLBeKvgtRf8/8N9BCCvrJBRhak8BP+X8htpT5QZqTwE/zKTt
J/P9Ke8XB76/ZHTeC/vr6H/sB43/TlzfVC6ZC3o/7Ccm0If7hajcMad6Iu6f
AUL7gZTOh/n6pP482D98vVF/nrngX4fxcj8v9a+bV/Cni/T6d/+HWm7xX/JT
PP8B+TsEYSq/xPMekK//JX/E8x2QjwK/9xH4dxO+PpR9nF8BX6qnmAv6lLmg
P5lTfQn5XwCd7xacH9DzDnM834B2QP+BdQD6D9CL6ENof/dC/ZDYuz4V7X+K
n17A30jph+sSysMRpv5KqM/1B+qPVOV1UZqwfrKE9vj+ln9W8/1dLLcvyEv0
34vnpXpqX0kw9bfo0b4AmLbH41xF+5Tyg3Asp/Fz3H6G+jR+zlmIB+Dx1qL9
DOUwPtEPQflyOMJg30A9Gi/kKcQHeQr04vHSUE7pZxTigTwFf4YQ3432aiDC
NI6Q28ti/DOU03hLX8H/4If9i/HKVE4ZBb9roFAejjDQR7SXaZxhbgV7me6b
cGrPYhwwjxem9m28YE9nVbCXxfhgymf1wnmOEWEYF8BAT9FeFuN/gW+T9aSJ
l6V+6HiEgX4iDPIE5DPAol+L2sfgdwH/Ty+hPUf0zxJ+iPuKxxkRu+4s+GMb
M9DvASZyT9JPqX/Xk9rxWG6D+ibxn5aEUHh8FOVbFfQT8RwR+KMfwnR/Az/9
L/uQ+7dh3PR8F+zlRPq9JG9B3gB94Xt6vgvyndtfII8pXbKE8WRRfA5zeU35
icjvRf2Ox0Uo8rk30pfCFeNe/v/iXHQV5LsYvyfqX2IcjBjPR9cDj4sB+05c
j2CfUHtXiA9Be8pSsH8s6fdSe9T+sESY2pdcL/13f4h4ntVYuL/hKPiH7YXz
EBvER6F/B9RfYD9TOeWOfwd8qdzk5wsAE3pJ9jD11znifoP2qf2iE85/dBh3
QsY7PQlhGB+sPzJ+GM90fp4kr28HHr8nf/c2R6A3h6GcrOvpSZSeeP7SG/GH
/Qz0Usq9BH+lJ+q9ZD1Jdg/AVB7aoP/n3/mF1X+e24G/gZ7b9cJ6VF/WIUz2
Q58wim9ydIV5IudkdtE4XpgvgAm/ktYz0AHsV4DBXgVY6SebwtI+B/oCPQAG
+xZguVvJfgUY1h+sF+gPYGgP+BGsH4Chf7A/oD+AoT2gJ9Qn9kgT4BPVEFbm
qYECV8/EcsKnDqjnHQFJKj3aod9JnpaSXgz8efB3ys94XCmsN+qnV+1vsA/h
/A7sHSjHcxaVX0j2JcBgPxJ4fBatL9mHhB+gHjYA+weY6EkSX4T2AQb7k/BN
GL9kz5PxSzA5RykJwfbAfifl46ME+vHzAaCf4s+MofN5PAlhufqNnH+fz019
KDzdA2G53W6BCMv+q1mhFfxm1B7V4/oW9bd/5cdlvpRvAD4BKv+0aIN8HdaX
DDvAOVUzQd+zQXxhPRM7T9M+5Zf22L6oB1I7i8NUXoUgXlRfMwr83QZ/qf7u
KJx/2aO8Bj5Hx8thmH+gF+BP9SArnD9YRwDD+AjfnpiD+xdg4KfEXy7NCz1n
9kU+SfQTad8CDPQl+j/uwx7COaML7j/gn0TP05y70fZ7IUz1a263wv4GeQAw
zCd8R88t/ZGfAkz4hkQPUS4BvWAe6HkD3898/LePj5oFeh/GpxmoP6axWl4q
/L0am1NiNt4Vz+sg3gv9SuAPEtoBu6OZYJc0YDfme148/qkntgfzBO0VVbWZ
2g33BcSf2mE5PZcoxf5hPRG74FRHwW75gtodkrwxxdPq0E8L8aZO2B89tyg1
mPJB5KOfD+JL+2F9s7/Ty2ug30+Nf8NzCb3hxtriKwfR76vih+ccegPVy0sN
tqb4QvQDq/TCcw29gZ5rSPQwxROW8XhDqtdL9JsS5t4E7RK1PeS/Uv/xFrte
HPLHcnoOos43noOUGuT4RvQzq/TAcw91vvDco9RgypcRiX5ONf4Wzz30BlP8
8veox6nrDc81JPq+6f5xXAm//yPrM3hOos4X2ikqPdCPrdIDz0X0ij8az0Wk
+TXhb4ik+OO5iNT+4D/SWqLeqOJrh/dsDXI85XgePw3nKDj/st4Txft7UrZr
i08MHR/wX8BnYgzWl+M5HWIp/d7y+nOXx81OeM/js2X76kgcn4+6zONikziK
381YTl/TP984Pr+m+NLbPH+Jct6I907V88YErC/jfzSB4j81AevL+E5PovgG
JFH6rk+k9M1K5PQ1/d5LxP5M8eTOOTx+VZZ7vZJ5f6b+NyZjfRn/oBSKf8sU
rH/LhG9rno8ly4Tvw1RK3z6plL6VebmMT14q9pcRuSRjEZ5Pq/Q4jflClPXQ
Nx3hLBP+T3h9Wa5u5eUyvtszKb7DMil9z2ZQ+s7N4PRV9XGcrxptrFO8s+j8
dsb8JQp/Scri9DPF9x7g9eX9s4LXN903c1vJ4/NNze2ekM37N8X3duHl8v5u
yMsVdp6N/cnxxo14PLG8Ht7w+nL/9jlYX44vnsjry78pqE8aTPcHUlL5/QBZ
LA3AfCwG0326Nm+F+OUb/HsZn8a5lB43eXvyfviZtyf/vuP1ZfwH5lH8u+Zh
fdP9hRndePzzJ9O/pvmUvkeE+Ok1/HsZn1t5lB5reXsyv5zC25P7/yUf68v4
Nyug+Jfz+qb7Ezs+8PLZpgbvFlD6ThXuC2bwchmfdQXYH5HPZSDnjYKch3PD
bggrctcB68t0R/8dxNX0QVj+KRHiilr0RFiRowZsj8p9OFfm55qKXGVYn8Yz
qH7O9xxW5CyHFTnqQts72h/bo3oA+Fk96HjWu2N9Gg+h0qeNkeLbx5uOJ8iL
0veJD7ZH9QqIoxlIx3N2AKV/Mvc7y+tspeCHtvOj3x/wpeOZ6I/tKfQZROmZ
KsQRvOX1aTyGSs9ugXT8RwLoeHwDaHvNgrA9qreo4/0QRMczNYjSf3owxed4
MB1PQDAdzz3h3HsjnsMZqL9VjYOaFUrH0xLPbww0HkSNgwrhsCLHwuh48sJo
e30jsD0aL6KOt+0QOp6tvD6NJ1HxeRpJxzMsktKnOocVOSPEgayIou2FdRb8
BeWCPCun/KSgr/p3cybyA0VPdaP0qOpD4Ub+tJ+1QjyPZn0pekcIHe/pcPp9
5yg6ngO+gj1nT+1vXEegH5UKMD9/F/2JNB4hvIK/EGC5+EaOQD9zRvmN7t/j
j2aFor0OdgY9X+uglK8Ce78Z+kvAHqN8u1TIT1cq8LVSIf6gVNj3pUI8QqnK
B8OF7zms8KlohGm8QqnKR+KF9jlM4xdK1X2XhjCNZ1DH+zSTjscii87vwWxh
PNkUn0lcn5B/VnNYpqcfl+eyfpCeX4E+4Deh59buwvkMxIHwvFCwvpRxM0bo
CX4ZTR4eEs+F9yfiEabng3p6X0Yqp+f5TMhP4kn93dL46f0h8Atm0fFDfBic
UxRn/wc+vtQ/Dvc3NOfmSr0oob8oHA89v4f7IYGCv4jnKQJ6QTk9Lx+A4wN/
kVzcYij6seTuMH+ZI56fEz+W1B89t4hF/xQ93+Lx9DBu0Y9Fv+N5s8j5JebF
CsH5gHKAaX6zKPyl9yGi8DwA/E30fFD1M8+F88Fm1I9bwu/dwfoBPgX8jvpv
PYXzJrhfYof14Xvi/0Q/FPAbnQDDOXwbge9aCnGxsF/dEKZxRvbIf0ncgMT3
wa+mrHc/4Xs/2j7qLaVCvECpINdLhfgBlZ+lxiJM17Pa/gfuH6DxA6WqXpOC
MOUHav9tM2h/YRl0PNcF/lmWRfFdlUPxO8xhhZ1we0mm12QOy/zTkdsrsrzw
r2i/yL/+3QW57Ehhn34Ii3GScrs5PG6WrDfQJ7x96XrRxFUqfhyuH4txt3Jz
WVzfFOMuFT8G1wdp/IHa3twhdDwYz+P47/SoECdRKoyrVIgHLhXigUuFeOBS
IR64VIgHLhXigUuFeOBSIR64VIgHLhXiRTg+/3oPRXPPhPJ7K0F/shTgivdM
gJ/T9RRE6a+5F0Ljc8V7H5YVxk/ilHDdlQrrqFRYF6VCPG6pkCenVIi/Vee3
JJnC4/l+pOd7pUK8bakQb8vHD/KLru//x72e/8u9HRpvC3HlfP3D+TasJ+if
3g/k59PAb8n9E0lO0Pt5dsJ5Dc/7BeOncsmT6hHoD9Cjvg3rVbwvCvMM+h+J
2wD6SusXYKAnzC+JMwZ+Ka0TuXvMT+mL59WwngGG76FfQn/pO4BhfcF80HjY
QBwP7AfCDyQY1hd8D/KSxj864/k40BVgkIdU//Cl5+mgJ5Xwe4CwPmB8JB5C
km9Ev8E8gqpeKe0X2L/AzwCG8VP+ys+Bqb0l3HMdz+Ni4Xt6/1S4Zzo+iuI3
PkqIb7TBdULP6YC/64X7fKXCPhX5p5Vgl5YK+7ZU2Lelwr4tFe7PgX0YhjC9
H1cq3I8rFe6/8XLQH2k8aWO0xxW8miEM55n0vlypcB+uFOMjiT6Tk4zt0/jU
xhhvAe3T+3Clwn24UuG+W6lw361UuM9WKtxnKxXuq5UK99VKhftopcJ9tFLh
vplaP6sQ1wnYI0TPaY75zRGG82YqX+0QFu+bwTktXX9wz6ED+nuIPNb4f+g5
L8jffrR/PJcF/7EnHU+B4C8aL+hjPoL/qIngf7zD/Uf0/hfcixT8SX0E/13V
CNrfWUE/8+b+Jrk/u2iKX4W4Yj1tTxNXrPwK/uRiwZ+ruQdC7yPBvY5wYX6j
BH0E8jww6hcCOaWJ16b8KBz1UBqH3ovGg2nyPtP24qkeK/FnwsdQv+H3RaCc
2sPu6B+gci9OuB8STeWxJD9E+Qt4UnudxxOK90NI/8nZFeS96M8h8rqMyxFq
fxkxngz4NIlXw7ibeISBXoSvI/2MSD8oB/pROeX77/fLNfdBoBzoCzDoH+L9
DpAjME4qV4xCOc/jDvIRykE/FmHqN4un8d4S/qQ/zJcTiPSg4wlHfQbmh+ir
Flzfgfkm8ZuSPAH9A+YL9FuAYT/CfFP9N1y4bxaFMNAfYKA/wESPkPYnxMsC
DP4ZjAdS+TfYRyTOczq/L6HgyfMKEP0U+P0BHs9N7SU91ZcOxwj+k2iqP4O+
oIm/gnEReXKA520C/w/IY+BfAJP7EBIM46b2RAekj/J9R4SJvzwZ8i8D/+Gw
op/kYP8AE38Q7DuIX5Tah/MV4BNQDu3C9wCLf1fkI78vCP3DL5TD/qPxcZ50
32OcrS/lG2W+lA+N90V9SWmHny/Q+EjHCvHEJE4S58dKuH9ghfQh8cklyTif
NP+9PY3Xl9aP3E2LociPQR8CmPgbQM4dzkG60Pn1xPmn9w+yBD7JYRLPDfmS
wH8llRfvVuxDgGXwPbfnYH+QcwKQF4f9Bf8+z0cD9cFfDzDIL/ge8AV+LY/P
IRfLgR8BPwP5Sva3BfcnA75QDvSh4+fvgwA9wZ4k7Y/n/mfCTzHvfzjiD/Yb
8BfQrxQ9MAb3N6wHKJf7W19I+dz6QlxPNM8MP98T49VhXxB5Ic0fjI/SU49y
i+o9QUJcdSDeH4H9QOfLCuUZvaeRKPBXe9TXqR+N358F/EEOUntxEMJiHlnQ
q2H/w36B9oD/ETnhw2F6z4nHs4O/FeaPthdD+UEjft8a+qfnuTy+mfi/wB+E
/moj+jNgPsl+hfhvSZ+Dcsqv/AR9cLBwf5i/h0P0FWk8QFdY3+R9GGl9gX4B
/RG/jQST914gnhHk53qeL1xuL6sQ6UzsEFx/6vnMnUCBj6vvzmzPxO9pPrzG
eN8E9Asqj8C/1gvPd6g886T8B/5+mN8vA3tZ1G/IumnB892APIL1CfsJ6CH/
3ODn4yAHYHzU/vHEeaV/DxHkRwzC9PyMCXmq3NEeEu+3EPksrTcCw3rQnF+K
55MivyJ6hSRPRH5F7Usj4gl40/URiOVUzw7C9un5YpQgD6KovwzOhyzaUFiT
rxHmA/RAeZ3k8PyGhK8h3btSfRbvxwRiu5S/2eM+JvxDc29UjHMq0uqrkG98
ZTTyM4CpX4Hnf4V4Wdgv1J+k5g1pm4Ht0fM4Mb+Sei/1Kb/vReMdxPxI5khv
qE/pr+BXJYv7i+RqgzhM6CLJF+DrNP7HEssJn9DEB4n1Yb6hPp1v8wowPZ+D
/OCBtD9N/BCFLYX7ieq92MphdB4qhwn7qrdwP7M36lewv4D/A0z1IH6fherX
oRXsYYChfYCB/4L9CPwdxg38G/xZRI6i/121p1oKeWu9o2h99G+resCKKGG9
6nB9Knh0FPws/ggTeYn2gA1+D/Kd+Nvhniuet7vh38FfSM+/1PHAftPYA0Qu
gXyU+Aa1J5xpe2K8DN5fzKL14bwN/PZlHAZ5RuI6fHKQ/5t+TPl1gR4wXiKX
pe/p/bJsqp/D/daSEHofdjw/f4D1CPweYPil+88G9wX19/I8gMA/QE5DfYCh
PuwTqu/Z4LqC/UjWJegpknyA+SbyXZP3B+I3oH3AB+pTvHkeM6gP+5DwDU3e
IIW+fpRf4rlXY4RJ+9ODKb6bwig9NXmGZHK1Ccf64Neh+lYk5UvbI7G+/HeH
WEo3h1jKJ1NjsT6cnxD96T1/vwPi76A+nK8Q+h9NoPh+SMD6cH4C9el5CsQx
pmB9OF+B+vS8RZWXIWmUngeyKD3xvEW9d3c9C+sr8jgb6wNM5MLBbKwv/6Tm
Yn2AyXxNyqXjwXM7O1zPxP7AuKnOWJ/60y0RJvPo313gA/2wPsCEDj796Hjw
PMUSYbJP77jR8eD5iiXCZN6r+tD6TSrahWQ8GB9jKcijxozG71oK8kfdh525
P4Dg5RCL/ALsPaL/NeLxveAPAf2VxK9o7B8xnkSRE+7KernH7SeQHyI/Aj4B
8gf4JM3n1AH9Z+BfpPk5VTrdg/OOZogvfA/2AMD0fMJeyGel6rNV0+n61Ly7
Au3R+63c3gb7EmCQb/TeP4dBPwH/DMhToBP153H5ScrHV8xPTd5v9cmh9gXm
a45C/wiNz+HnXCCfqH7qiDDIS6Ue95uK8lGUW8SewfjMxrguQN+H8ZJ98iGB
ljfJE/ZZHp0v3zzKn97z+gBDfTg/pvs+n/IVjP9R85s0E/PbQN568GfpECb6
go8/pSfKRR3CxO+0Xs0v3SSO7ufVsYI+IOZJt0e6wjzR8bghTPQHH3/8XvSH
UP2lA/VnYBx1Y1xPVL/oLcyvu0A/N4RBXyHxDBh3DO0b6feSvgL1PdV1T8cb
QutL+gcZD8a5QPvh9Ps24Vgf9g3VwzgM+gddr1yfoPy6MeofUF9Zb/ECfeLp
993iKX36pGI59a81Rn2CjL9qOh1vURr9PiSNjseO6wfUX90Y9QnSfiOe74f6
PxujPkHO225yfUIezupcSv9JubQ+xkt3QBjWKT034foE8XtozmGo35jrEwqe
DGFqp0FeS65PUD0b2nfD+qI+QfVsG1zXZJ9L+gTZjz7+tL7DIAG/QXR8qF/o
Uf4A3jReUyfEezkKerVOOH/l72GDPILvQb7DOGh8kQ36d0C+F8t/5/wW+DGh
G547+VH+oeFXRL/FvB2cPxF9H/3+nB+R7yU9UOQ/1C/jU4HfUD9MSAX+QuyH
qhEV+An120RV4B/EnrhZkV9QP05F/kD9NqkV+AHp/3TF/U/8Yw2zK+x3ov+/
qbi/ib34cy6dH8zDxs+z6f1aS9yPRP9MFt41chhE93/qIMF/YYXrD/Q16btG
e2ZAPNEIJ6VdnodLkRc8f5rcTHfu76Px2TrhfUSevxX4gdJ+NsI0Ptwo6Cdw
zszjKKk+6ye0H0jfP9bkcyH6Idx3kvR76F/MzwnlMA7QJ6EfgKF9KgfjkR8A
/Sm/MQpyNFCA44V40l7oZybxCej3z8D31wC2VvVcgOVmWyTh+RisG7AviHzo
C/KxGto3Sn24/zgUYXm+AzhM+MDKaLrvG8XQfTqRw7tVPYDsk7cxFfY92We+
nC94qHoB6f9IHO1vbTxtvxn3Uyh5ExPoeKYm0P6yEmn79xJp+8eT6HgCkoT3
Cfm9IkX+9cH6cE4CsKeqJxH8NXm3i7XrGPrX8EllnybS8Wv4pJm6Lgk9YB2I
86TBS6lXWGG+Kd8wF97vNBfe6zQX3uc0x/fEQI4r42uG65H0B/fQJXtKWec8
XgPkM8g12H/KPvVCexRgkN8gZ+l56gCUz1BfoWPF/Mk0TxSPxyD+hTKe/xjK
Yf+L+QDF82Cop3yXU+E8gPrvo9GeAj4B/g0SDwL8K5nnI4bxkvMDaF/iR/Q+
5BDUP4A/Ab+C+8nEf4F6iarfdQvE82Gyzs9mVJCPih8P4gm5HwnkN/AvZZ5U
f/J0yHfZg8IThfyhPvz8mNxnksYL58VKux0RJuOazs+TYX4AlqvdyKHjhfwv
0volfgYYH+jdEH8n4Qf1AIZ6RG/T5P+Syn32zBDvf5UL948aC/qjXrjf00HQ
H/XC+zx64d6UXrg3pRfuTemF93T0wns6euHelF7Ih6wX3r/RC+/fqPln1gv5
iXKE/EN9UjXtT/90APnLCCeqDyr9z0NYJ7xXoxfeq9EL79Hohfdo9MJ7M3rh
vRm98J6MXnhPRi+8H6MX3o/h8wf7AWDYF0SOa/KpiPlSIN6QrBdNPhMxH4nC
R3j8OeHTEP8u5gMR83lo8nX8a74NMZ+GmA9je6Tgz+TxFfS8K4rqVxDvrYkv
o/qYm3De6Sf6D+HcW6ZD3Gx8j0X9O9wb/p+y/qeB/CzF95KAfoSfQb5DzXk7
lMO+VfbpMEpnvN8G4wsXxh+NMI1XikYY9A+AQd8AGPQLGi+bjO0A/5DX88po
5J9gP4C9C+sZ6gMMckLRWwX9Cc5NUH/SVYDpeqv4Ln2RKseIvuIv6H8tkoS4
dzuU2zBeWA+EX4I91y0Q64t+C6intMvbB7se/AP0vFGH64TIo5JkGi9Wwt8/
oPnIbQR/lw2uNxg/XV9WOC7gH5T/WArzqZ6fNS+k9jO0C/lm+4L8ssP1AfiC
P5bGU/bD8xbgUwBL7Q3+Iw38liOcTPP+5Rxx/0E+zGq4j0zwZdyncA+/kmnc
ee+vW2F7pnH8yPN4yvvra+5vE/JdNsP2TVB9zb1fBZ+mpP+1in/DuBLP+ZT+
LuD9bZ383X3Mzyn3V6U+niMq8mos3hvSyfLDj7+ra+IX7UNQDij1p2jKYfyw
nrRySqfJk6DI7Q4EvzeYv9OI+Tu1fGoxvwdmUPqV/RLzuuE9L2W+4vGekyJf
e/N3ESX8u988iHJKoc9gTbmZ2ejM+4f6YblpXCPw/pJOllPj+buKEh6r9+bj
vbERTqafungfXifj2YS/syjRx2KuDs9JRziZfo/hPSyFfmf5O43SOgqz9UO5
OcLJtK6eaMplfPAcVcUH4+x0styL5O86SuOX8DMMxPomfEZoyr2KSszGY1y+
Mr++/N0Dme4XOf+Q+i+wOYvnskr/i3g8m7zeWmI8r2k+vpzzPd6bG+Fkmp88
vMejzNcbzE9qWn/+N3ojfxvhZFpWNfi5kDRfh/e8uB1I5usg3lPTyeuqH+qL
Kn6oJ6j4acqLrGt5NcF7eor/6h7el1fkcQI/Z5L0pSUZkXhvb4STiS104u86
yPt7C89br+CD9/5UfPAenbLfppaEUPqi3qLSV1Mu44P3BFV88B6eOl/cL63g
9ySC4qcpl+cH7xmq84P369T5wfypJvreKX7TJZrQ/zZ/L0GmvxX3/0n0+LEo
Ae8tKvvVaBFF6DWDv4si9eezZ8uBKDKeeZpyL1NCYfQvKPhnF0cT/Hegvm+i
53zPixNjCD33a8qLrDtktHwbQ+hT5XAMmX839EPoJD0xx6wf+oVGOJnkYXvU
A3SyHpnyPo7ig34nFZ/VsYS+V5rEUfoOjKP01ZTL+KAfSsUH/TjK/iu/HU/x
Qz+Vit+deDo/UxPo/KAeo87P0QRKf7RfVfrz9zEU+nN/r4JPZiLFB/1K6npZ
n0jpey+R0ldTPteED+aDHeFk0uOroB9KJ+v1bjnJFL+NyRQ/Tbk8P5gvVp2f
kmQ6PxhfpDNkmeiP+WNHOJny8O3HfCU6OS9fOeabVfGpnErxOZWiKZfWS59U
St+8VEpfTbmMD+abVfEpSqPzpbE3K5vov4XbpyY7yIrHVyr0xHyzKj35++MK
Pbdn0vFh/ll1fPw9e2X++XsOynqtztuX1yspX1t8BfPTyuXPvDB/mizPnqV6
c7iSKSF3Iq9fySTANeVzrHuZWa3g5ZK+ZzF3vLbc02LXAQ4X747w3IH5bEc4
mawRW8wvYypPD3NfyeE96aetUxry+pJ87n6zLEtTXtz9YxdeXz4eMfL60s+p
Sna83MyEz2tebmbCpzhbg6/Z6Flo/6v4YX5cFT9NuY2kzbml8HIbk8Lioy0v
Wn2N5ysxmLTIK5gvd4RTuon+mE/HVC7RPzWX4nMjh+JzOEdTbn2q7dscSt/G
uZS+mvIiEz4/8/IiEz6rc+l83cyl+L3LpfhpyuX5wfy76vxgfIs6PwM5/OnT
8/RyzMc7wunTp0+jMt9ryz+NmoX5EVR81uRRfCbnacql9XIkj9L3Vh6lr6bc
pH27TeH9W5vwSc+n87U2n+L3Sz7FT1OuHMfl0/m5k0/nB/M76AyzTfTHfL8j
nGab6H9UWy7R/0MBxSejgOLjry2X1svUAkrfdQWUvppy5Rfy8/J3AUxwpMav
qOjtPJ8wPd9U/Hbfa/JWKX4+Xm76qavJL0ztfcWe6q3JUynbc314uen/5Xgf
1ijkG1byLr/4ROEnaJcZhXzEiv3TT+MXVfRyJ6xv+p+fzyr9J2jyPCl+QmdC
n0Wa/MWK/8IVy2W9VJN3Tsmf60rav4f5jCFfrwuWm+pPXc1h0/BqYLwo5Nfl
7x7IeqjGz6vo3f0p/TF/lkL/N5/4OwmKn5yXy3q2Jj+yjD/mQ1bpqckjKs//
Q2/Sfh7mSzYK+ZIV+rU8ReFFaOcZhXzKelkuJmj81jL9Cni+ZZpfWSl30+Tl
UvLnDiTjP6jJv2wq5vmWFXqnaPL8yf60CX6k/SqYj9ko5GNW8L9SRuF5/D62
kK9Zwb/8EIX3ox1nFPI3K+trhiYPnNzegEFk/O01+Z3Bn6NdHzs0eV7l/fJ5
IGnfiPmejUK+Z4V+VpMpfLsJry/vp2ZBdD78KVwF87cYhfzQKv00edTk9XA3
iIw/W5M/Wjn3DKb0/MTzHMm/G4LpfGA+aaOQT1rZfyktggncHu1Wo5BvWp2P
Egobc3g+app/Wi/DVpq8fXJ7uaFk/Ps1+alpPmplP7hp8vB6y38OJ+3fxnzV
RiFftTr/myic3SeMzkffCDofBRSeV1XIX912CKWfJu+dfD5ZbQgZfxVN/mvl
nluktv0wd02eTPl84bdIOh+YD9so5MNW599A4f1odxuFfNl6Re8bT+FM+u5I
mO0Kes7VW/OujuIH4u/eKH4RgT9r3p1R7GZh/98OpPObI6wvzbsrip5uundq
ehCI24cynhp70DStT0/2xnLT/5Z4n8dkbz3zWoznRLJ+Veyg8aftNflf3nP/
k2kcnTT+Jtk/1Docy2W+Svwxkj22kvsvZL6UrPUfmB4s4va1vA419rxsL4Vw
+0teN2209pdknz3NJOMzauwn2d45yPV9WX9aKdgD33D9VtaXNPq3rC/7cf1O
1tc0+qkJ3emf2hP8/67gb9arfl5TnNipSjXx3E62J4qWa/ydsv8Iz+VU/5HG
Hyj7j/DcTfUfafxltib/F+abVezfGjwuUqFXaiyll4PWPyLZ5x8SSPvzNP4I
2b6dye13mc8Eae1rab7bZpD+22vsX9meuM7tRRuT/n1Aa89J+vYqbu/I+vZE
rb0j6dtpXL/3NOnbvlp7QLIXHLn+K9sLzUT9V6/6gfm7WYpflL9DZZqvqZp3
pxS/mSDfmwjycL0gP/oI/PbsECF+UcdkewTzuY1wameix4eK+rqif/J7yMqf
o8n44vl7jor+jvq1qu+gPqrqh0VGAmfzfE8Kv0yn/KiKmSDfisK19Z95Sfwa
zqvgHJfkG4f4fcDfYRDbbZrvQRx/06nLTYxX1Cl6VzTANzB/LTnv7QvxFp3x
PgY5H0Z6W2J9OP8BmMR/9uXxpfIoNOcdKr6a/WKyY4zifGn2m8kOCCT1d4v+
c40/WfnlsGkdpmj8rTTuTPX/aPyRJF4S/JOfuDyg+fZVf1OR1n+mzJemPUkO
Z9HxaWDTvKcWZwvj0/JXSa6u1vozrDX59mX5ZLErPZ/Od3q+0J56bm6nnFPX
15yfwT4S97dyzgbneXDer8RPfq85D4J4Ac14JLvPT+hfOD/5FEzmz0xzvmD6
303jb1foJfjfNf5oiF/Qtn9F468l96Fk/mvSG1PI/FlrYIiHhvWt6GEZtFwD
m/jvtbIs2p/oXzuUQ/EV/U8af4zpf2vRP6PxV5iKPUVY4n/ieazp9xh/p17I
B67alzzvoZAPXLWXzTj/Vtqn/Nxo4Uv687QQ7LXV3J6C83lte7e7c34P8Xha
/t/+FNfnaT5wld/yvIpCnmg1nqehEvexWHO+TOnA17ty7i3GlSlxqi/QztcJ
dNCpfgZ+nkjxVM8XNedtRQQPdb1qzqMg/lvbn5XmvIbmI1f98ZrzDBLPB/xN
4++n+cpV/mbg+h6NT1fXp8a/LI9f9Ddr/K/yehT9sRr/pEx+0V+p8d8J8fU4
P8o5N/eviXF8yjkwo/OngU3/39P4d8S4PuUckftHxDg/0/9VNHF+II/JftDY
5/KvP7XH52nsW4hHBVjWAwuIfULiBJVzgSj6vSq/L8+2FOglwgq+FzTxCdp7
T5Ga+AHKB1T5qjlfp/tcPb/VnD/TfaxT/U78fJbuU3X9HYoh/ZmJ55ma8z2F
rsJ5n+b8C+KBNOtZskuzaLl4vqI5b4D4WMLfNf54ev9U5e+38+n4Nf5r4M/A
T4D+pp+6aEcCf+WwEqfgQudbAyvn+Nz/p/AVL9LebY3/jMZVqfxV43+iec1U
/qrx39D7q3qDco7I9XOav1PVdxn3H5D7ZQ7w7ks7jFcn8eDNeXwVydcn0Ye+
v9ML9VMF/940XliyT+B72M9Uvx5A6xf4IAzxnkJ8rHhPVsg/zvcbjQfrRdcf
xifR/cnfB9ZjvnIat6oT1oFOmHedEMeqE+JWdcI60AnzrhPiWHVC3KpOyH+u
E/Kf64T3b3XC+7Y6IT86yJNo2t4BQR5OjBHGx/U9mq9DJ7wfqxPehwV8Emh/
Gn8Pfd9VJ7zfqjPQ/B06IR+6Tnh/VSfkR9cJ+ap0wvtxOuG9U6AHh+X9sVJ7
Xmutea9UJ7xHCvTjsLxcNf4Z2V5onEvp+y5XoCfndzT/uk5471MnvOcJ9Nee
r2nf36T+BO0724occEBY/imh/FH7bjfJV4DyUYjjb+IqtM/9FYpc4f5Gedzr
uX6gnK95C+PxpO1r/JNK3LxwT8DOTxgf1Ze171zL/b/lMH0/EvCh/hPtu9cy
PaZSfz9//1Ev5HvXC/ne9cL7jnrh/Ua4V0D9M9p3ren7jHrh/UWgj6C/a/zF
9P1FmN/OAr37Cvi7CeOh/mL+niLcM6D+GZ5/RS+8n6jH9xPp/TDgv70RpvcG
gD9p/b1mmrh+nfD+n054708nvOenE97v0wnv9emE9/l0wnt8YL90QJjuvzbC
+1/An6n9zu8t6PAeAhlfKrXH+T1DnfDelk54X0snvKelE97P0gnvZemE97EE
fPA9LNhf1D+pyZ8ovG8F91Sovcrfr9IL71Xp8X0qa5O+qPG/Kb/lgv9RL/hd
ANbT/jX+RuWX+xupX0Uv+MX0wvsHeuH9Az36VcCfQfLTQL4I5EdqfhM7fs8B
7Gt4H5zcX8e8flZ4X4DmUfBH/U+eB38ery//TOX3Iej7QlZ4nxDwA/0O7CmS
77mE51OC8ZNxNVTvf7SDfJH/w7h5hQ598V6w3M4U9d3E+0lYn8T5S7CyH6MR
lvutmoWwTGenDNrftpwK/cv7rpcn9q/wH1+EZbwfhKI+Cvgo+JrT+WmThnjT
fEhWeP8f9r+yzguxXP7pzmF5vsCegfpgB+N9Rz+EgX/Q/ByQj4a/M0Hv0Xji
/Vpy3wTzMvnRez2rB2F9M3VdQH2Aob7Cr0OxPqwf8C/BOhTXh0LXUvQLUXzU
+Sn4ksF+F2FYT/A9yCvy/Vo3+j3CkEfCB+sr88bfQxFhWK/wPcg3sr4tQ+j4
LHleC5B3pH6bKFq/TRTuB6APlYf8HXSyvjGOSXxfl78bTvZPGx4nQ+MwxPd1
1Xt5IeH4PcBQH/YnbS8ev5fln188fg8w1KfyWH23LT8N6wNMxlf1v97XVcd7
NpuO9+x/vbervl80PxfrA0zWpwW/5wcw3S+xWA6weI+NjO9URzo+vDfD9wPw
A7I+w1rR9SnB//VOPbRP48BKBf2Dv+tO8F/pR9fTv7yDTvjzcR7X8l/vhpPx
POXveVH9Rr0XOikW6wNMxoP6j7ovmydifYChPtWPypW4lB9SsD7AUB/kCZkP
1J/UffqYyx+Ayfi25fz7fGJ+JDWv6R3+niiFIV9DP8ovGvWj49DAIN/IPHX2
pe3dHITtyevmZ36/VoRBHnbMnFHutKoqa3u/+th91fk7aor6xGGqD6jnllbR
eP4J+wNgcm4Icq4hzxsDMOg/IEdg/YK+A/oN7DOARf0Hxgn6D8CzTe3dhe+b
0fuPkr4D+hHA8B3Qkfqv4N57M7o+MG9WNcwzQOg+uRvdT5g3q5rgr4J70s5Y
H/xTUP9f713juzv/Q/8V1BfvYUPcIhlPUCgdj+ZetYzurFCsD/4pss7Ee9Zt
h2B98E8Reh6Iovv7ehQdz8QYOh70Z6nnVKtisL48Pt84rA8w2UdpcVhfpm8z
nm8WYEJPxwSsD/4swqfRv6Xys5PJdD3kpdL1gP4t9V767FSsr+wznj8WYLLP
Q7Mp/e1zKP3Rf6XyYwPXj02fm/xVUB9gMr/WXD7Kf3/H6wNM6Fkzj84v8Af0
P5kjTObdB+DGwvtD5ghDfVlO5fC80NQ/ZY4wmRdvnmdRntf1PG8ZwGSdZLnT
+ug/MkeYzMsNf6xP/UvmCBN81wj5bNE/ZI4wmcdK3D6h/hxzhMm+KIrC/FcK
34jG/CsAw/kmwAre/H0PublB/2Gf4Hs4/oz6k4yCvaDaXfjuCn8HFuwNKFe+
D8dyRT8KFcotKd0wDwnP9wLyAMrhPICOX5XLDoJcXJ9I5+1eIpaDPIFy8L+S
/aB59530j/5SyN/kTceP/lBLIS84yFc/+r2PP13/jfzp+pdg6l9W161fPo4X
YMI/QW/Fd4OjhPmLx3JYT1Cu8Nc8um/T8ug+QX9TueDPVvM4OXJ6AkzkAeYd
G0zpg/4kcwG2RH0CzmNhvSvlesHe7YX6DJ1vS5xvKudthHc6bLA9qh+Y0/UO
6wXzRDdGmNQ/GoT1IV8M1Kf5Y8wZnHcQPnmE5/MFGOrL5LjF5wfyxZB1u5av
HziPoPqPjaBHWDKqZ6j79OwA2q5Gr6PnYpYC3iqeU3k+bWqXWCJM9kMAzwdM
879YIgz1wR8P9Wl+GEuEoT7446E+tXsshTz6al7YYZEU36oRFN+qERTf0+EU
X/TvWyJM8J07hK5LK+6fU9hyNH4PMNSX14VTtJBfLIbmF8d3o5Lofpf4LLRH
/JIafkjkKr7rVUnwazag+xXzi/YQ1psjwqA/Q3uEHpJ9oIyb21Gw/wn/S3bG
7xU9w1MYryftX9KnoT6cOxF8LTgM+jTUB3lD8MXzYXV/4bsx1aj8g/HMCqX4
4jqohnGupP+2Q7A+8DWy38ui6PivR2F9Rc+Jof0fjqH0XBWD9RU9J06YHw6D
vg31lX2dQPv3T6D0dkyg9Mb3IKuhfAZ60vNm0KNSaP8lXF8H/RzaV/gA18/B
nwkw6OdQX5ZPE7KF9ZRN6RuaTec/JYfi55ND58+Qg/XlnwFc35b3qUMunQ/r
XLqfugr8vEkexb9mHtYH+xfKQb4BPen5Mrz/A/ybvz8B8WPE/tfo83Bfkshr
fO+0QQV9Hu5LErlowbC+qM8r+0h4x+VofzpefH9BjSPR6PdwHxD4kahvAUzq
T/Sn+OB7RA0q2AOKXsT1ffouYoMK9gDc5yL4lPC8yKI9APeHSP3xQh7koiik
I+UD/B0e8ZfEzWA8jSXCRB5I64f6V6rR8eA7OzYIk/Y1+jHA8L3CB73we4CJ
/NDozwAT+VwUjvVF+UrzUVqhPKXrAfxVbSrIS+IPBv7iw9+9IPorvuNQSXin
pRzPWQm/1rxjr7Tbr4K8Iv7cHE8sp3ER5XguS/iF5h16+fvKYRXkC7Hv51aU
J8R+QD2byw8oV/ZFRXlB8FtTUT4Qf0dGAh1fS+7fVfZFCpYDPyf+p18r8m8o
l5dDYUV+Tfwh4RX5M5TL659V5MfE3rHJo+3D+VAZz7uuyBGelx34J+EX03ti
OfBLIge3G7Ac+CH5/kN/2v9Ezr8Uuc7tSeBfUK7Ice7fAH4F5YpcDaHjS4qi
4yvg77+Bvkb1R+EdLwcXob7APzT8G/gD2HdUb3HE/Qkw9UdnseubfoxruVU9
jyvORljpNxdhOZ9dej7CafJ+LkRYkXPDEC66/0v6qurZ6m8061izjtnJczkI
79cFFZUuzEPY2+876wYxBWy2Cl/Pf7zbsdNQLD/i2Wf78T87sF3jEpLrVYtm
h1p77/voks7aXGi+YHv36mxZ2fBumxals+d/vhvi87I6+97+4al7Urnf2r9f
DA9pwO4uyV40enE6S2yw5YV7hAu7p8KbVl3ofX2MF7ujwh+alzt3v+CL5R6b
2kw9+Xowwill27c0mBLGPhrrzdh5tBp7uJVtbyHhmzitY3m/pekKv5TmIYHA
RoQh/qClR/tlO6TxwfmxrfqdU0rwwCsSvnNsz3Vcb9uTua1vnmEltR8ypVW9
Agm/eU1nvn11wVZtV8fuVP5yqan/pSr+ZWPaO834wp75nzBLXCnBbi2rLJ2c
4MB2tx0S5yvBUe7NW446143d8lkz1co1ndUMv3V4Q4iBvXmddm7XpCDWofae
rab2gvsvqrxdGp/T9aLUxIZ9DGMvnxqRLuGf1Gx+Df8vexhch5bYfiO11zvi
zaA5J+8bAB+wI8JjfNcmSeVB198uzk9uzl69du7rLOF/42lxWs9mvXA8wbY/
L/qrdne247M2cn+A17ny1qXTpPJaaQNefn3+S9aj3rv0tqMYa3pQofc3tw4x
73Av1mKGfps83tOzzN1PDsDxzxoz/ske/wAst1b35+s+8U1M9AV6x7voZPq9
nxMd97PUX35gM5eUf/og/Ev08uip/p1YwydBbj0k+MtvohuEhLXG9WAdNyNh
VHwAu9JwvYNXYRj2B/MNcQew/ooMbhdDLSOxHOR1/QsP+/7lE43fA1+A+b24
OXDY6tetWX91PThaDovpcScO6wP9IY4+aXB6YPf38UgP6E9p102A1feJpXUK
9Lip/p3C8QgD/g2bemdPjoxB/Nb1mVtlc/s4hLtH3Zz3x4t4rH9qvG371/sl
u6V5t6d7pfGueRy2ufHMqux/Nsu/etdPWk8f/LoEmLsiPGpmwdCHdt4Id2n3
z/oBA4MF+joj/rDfYL2dLkwf/fuAAazTjD6Dd0nlzfdd6dn6gy9+D3YsfA/7
s0z9PnDBsy9db4Uwnfr9+Lkz1r7bEYbfw/6ton4H9JmU8sLcXtpfo9vb52ze
1Y0d3F59Ualpv9e9klTo3RfLp9n2HZs8yhn58211vl9emyPvhw2Dw8MeLxjm
BP3B/nKaMvtzj00RrL06vwoeUdi/W91iu2dJMVgO5/VQPvzim96dpf4n9XJZ
MfXxKeUcVFoXUL5XXbcAA/1rX4+cUO1AAOIPfj7Ab4j+V5u2m/wQv0Npd528
Gac3rM99sh6agfIC9gHtPxphiD/asWt/u+vVufyK8p74nXNNno93nu/10w4t
QC/LxnKQZwCDPAMY5BnAlN7JOP+61XndLn1ng/gaD9ZcWtq6E/sz3jDfW8I3
eUWtpf1/bM2s1fX9w4pGHjWK7ZhudrX1Q98+M4SvWzbACvmR0RCfkyDzI1h/
oJ83HLY9t43UXlhM1Xf7cyJx/Q5qe7vbT/v8kb7bMy51nlUwiC2sfWP239OT
2IgJmUdM9Pr7i+mOV6T6OxddXdp5Lr+fC/Qs7b34SD3p+4Xra+YmTPkc6288
dmnsc6MFq7l/Tt6jhV2Z7q/jv52Xxne++bETsX3/Z6hpaW1XX5K/QI+1BeN0
9SR+fkClx75xPneaX+uD4+vhtsH1kE13rB+/fVGbh9J+BPrd2Liz/52/jFjf
0ntioxknB+L+K7wzyn96VgTOB9AH6AXr5pDansV3pe77avmzddk5VTc1bM8u
tfqh/euq0cw/YdFTZ4l/X+m7zGN5i4Y4nuU7q4wcIO3vEtvmEwv/bMPWFoaP
3myqv23po9gzbdk1FR7l+rd+1cCmWA77BdfX6KmT+3/tzX7zzJgfX53Hn0F5
uv+f0x3vB2B5ZZVfQPm+krpXTtQIx3LYz3T9xiIM8wlweP2QlTmT7NgFFd8z
U8wfjdrcgLmo8sK85Ldzz3TNUH6M/rFZ/S/nR2N/q6r+0K2gfTw7p8LHfJxC
Du1PQnj7Dvd+E/v1YF+q62Fgg4wq1V8wNvOTAoN9mJz6lSJfz/z0aW8PF5TX
9Xql/bJzlTvyo5Se/xzNOOyL8uuPzdc3pJX5Y/m2X5vUrfRgMJY3d/708mPz
UCx/F95n8JxakVi+48nsb09+F4XybvnrLuctmsYyS7X8qoP1Lw0c4rD8ODvy
Kmx9ApaPXvhX+sCjiexh+eJ0E31cVr10qPRTBls788CMNyb9K4kdWzk7hTX9
aDmprQT7fO3wTfPiLIRvrxjezLA6B+G840c3xqbnIVztaR2nSd0LEJ5fb/D5
Hz4VIgzrGfRzgD3VeQf4uiqHAU5X14HjrO1LwvWSvEhre8c/MYp912/1gRkL
Jf2407y12SNiEd4x8FbP+W7xCLvmfXF6f91EhC8vzIq4fSWJ3Q4c8q7fcml/
t6yr354cxc7ddjp/UNo/zRcX37rrGMMi71qkHZDkeaUGzybN/BjLhqjwPMfu
LXaeiEfYOnTUpquzEpnH+v8Z0qX9Hd/h5bQT02IQfuOjb10aGIfw5JwJ2+q3
TkC4xYLfXBwfJ7KwrsZ37fpL9KnnE/znZ9Es6Pavsj5qrdqbjRptGL1J78fq
VRsz/88a0Sx67W+nDNHBCEeo47npdLlt1xgDc5274W6TyvaoX7v6rvkjrtUX
rMG7Han2Etzl2oUrJn7xi13VTbdqXDSAPp3re7V5SV5PFqrq4+Fb69drvaMX
c+jmeylRav/iL3Fd/U7Y4/hAroM+MutNpasdX1sys1EWLS6a9PPFs7JeBFqz
dT1fWvwxIRLHi/RLTeueNNOfjXhQu7NDYCyrr5ZDfzXf3agZ/6I2865qbl/r
x3bMXcXHWvUPgf5I6aXD77/7LOze83k2bHnnb/2HP0rA/sGeA/4C46n0k/eN
n6u5IvzjtpnXN17qz3YbO+i7S+vx4krrhe0nuGO5786PodusgrD8mu7Uvsxh
QeyVqt/YqvO3Sy2/8+vuVm5BLqg/Vvu1xog5IQzbcx2QZRPQ0Rvhyq472zm9
88H6i/7yrbt35QAsn1U5c3Q1YzB7peovf9yoE7RtawiWZ36YNerdjhDUb/zT
xv+24G4Yg/F0uNC9/6yJYdj+Pv/beT1qhrLh1+wuBV3rhetnbkadr16bxr96
bK2bYxxwf8L8Q/mBkgdnR8czYb87s7bu5tOO7nTA9sbVmCvTp/q1o31ccj45
/TH5cNxZCV449ea5tebvDbDuYX5HLayZtU8q/8PzZvPPajE+/ojixCtfeaH+
PTBcd8xmpDtbteKHwvZu6ezdobePLEMvG4AeGftuhP20LwDn6y6z+PAhOgDt
46zD+zutue+P9PPI8uqR+4Ufu63akx+TTg6c18FPwM8P8V9Xp84iw1lfbL/q
lNVW7q+4fb2wlo/vX/lBEj9W8LHIzF71/KQ982rUpWju+hT0B/S/sD694aMs
9BdMeOM3c9iGDPaw0ufJP0rr98rrfz712Mr9DWmW+qLwYdzf8JFNsB7TrwDh
WfG/7V5Tm/sb6P5tjPZySLt3TydU+YIZnOOe35DG1/HzIb+WtLbG+hDnd1D1
T5SN1D14V8+efVb/jFze98i02mXReU6L9yr145bWzb0xp7Eh789d6/RH3Qz7
pzsq8/mqqdURiT8MTvvUYFNmJNLL+tCzypW/jUB6Hj+7/uKSJ/5Ib9DHwZ6G
8YB+d9L51vkf2nbG9XLQpXeO8w1LZrM4q8ZBCQ58d+XU05HN8HvA/w/PpsMv
muzLeQlLhuSa47oGfwWsR7CvgV767v0nPfq1F473zMngTbNCeuJ6me+/95+3
//PBct9aXaLWbB6A+IB9Rv0Delx/Rf3brXbpH4H0GWh5KuXa55G4npTfCKy/
27vSmgG3wnC/K78ROJ6snL9a9p/O361wsPZMPC7h4//W49F1ST6ur5zayTK5
Ps7nbtXPB/wM/H4wnvf5Ybf21g5Ffx31PxiRv77q2dvj3Yj+LOTBzuVjqkWj
/Q3lRzY7p9eL9cdy0HuhvLZzwu4V34RgOfgPoD+YR4DjG3ivXc8sMN4VzrXi
VHuku8eT+ad7dWFbVX8byA34HvwpwH9Ab4HxbEw+9qlZUJSATzyWn90+2Dr2
cSwLVcsrq3YWlL98/8Tjh68S8XuQZ9D/8W4rMnKHuGK5r3HvgWEHeqO9AnwV
1udjt7Spnyc6Yfng+P8t3vk4hZ17b56zqjrvH+zRnyf0Ll8ZkMoudDzY03Jb
FJv4c7Pfzz7OYJO2LYjqJJV3XL7yxAJ9NtvS5HTD1lL5waNPQ36qlsu2qrDv
k26ld37LQ/h+nZEjqy0sQDjf4UT9jtFDEd6rjhfss+TCymm1f/VCe878N5tP
CyYHINyh6d52d1sEI2xxOtF62BoX1qxsrgzfHT/n+oDXvlge8cubbSfS+7IO
kSHfmmDvKC+PjpvDsNxr2B6PIcnRbLgKZx3xTF/3Pg7LKz0q+nT6aALCzhPd
Umua+WB7aYEnRs5fHYiwzcTmm2wnxyM889uQVbe7hyBcuP5GWi6LxPbSPjeU
7f0yCsvvLDMrHusQi+Vzon9vXvlwLJa/f9mmbUGxG8Ju5o6hPhb+CC8Y0DW9
rl0GGzvT4v0yib7bHz090f5UOJZ/1E+adLMsGuE9G2IN3v6JCH++JPvWxr4p
OD/b5N8s9VfSF/s0WuvyVQ6WX42M6JnkkofrIXH82l+nmfP5fvP98/BtlwoR
pv7SZORHY7Mmf9PsXH9WpsLb5gy3T2oVJOgTbgIciPUtw+9FH+8ag/CO0Z1e
/Vkei7DrmryJ9Y7Hs9cqfOXUgc+7zUxkU3Yv5vxVk09szU2LLps2c3/fs8c7
ZxS0iUV9aEydj22WPInD8roO7jsObU9A+LugWW4lw5MYa9uofeZi3n6ty/fH
Nt7I7R2w7z1UewfgYpVvAJym2juAz71VLb/tZeT45Z5MsBvSOB7pWeXZliNj
byVg+fwGbwPWrUtiNQ5UCY6V8P3so9NF16GSvfX75u5RY3hc/q7pYxwcXvH3
WiFec6+l05Ggx5i/mPW979Tu4PH+LOCFvopnCX+fddn3Sys5NcpHOLp7vaG7
23O/wNqazUe1bZmGsKfqnxqd86bbWD84T5f2z/D7m/73NpD9eMD/1+QDFd9f
3TVkVHh8WSCugzs17/vbDAthv17v5J5SJRz9CBDftDkjpuuHDeFYv3dIlU4R
UVHs2ahVHzqOClB/XZmb+6XY5sOyWdOWgTOTS1zYEIvadZuWhqm/3izE3H7H
V7ZJ7FL0qylOt71Yn9Kp8wMrZbHhl4aWfjXAyE7ds2jy3jGf3XpjWy90hzd7
Evv1d2mrotVfP7bCympcn8g05tA/pXHU937MfHnMg5l2fdi+n7/ZMco5kHkn
m5vVLvRiD52M/o8eBrCyg62HTmiTxH7Pnz5IPyOADfdaf+vP92Hsh9G1b57f
GczuOHZ0zCzPZAtWVSu9cSWYPT/rMmfOV+EseIPT4TDzKLZ1zr2rxa2jmcve
TqlmyZEsdH61nmE/5bDoRm42W1tash5/fzP+2x9z2IB+c+cMbdWSLe/V2H3s
lg6s/hBf63WrPJg+6da+vJtdWKsRQdMXz/dgg1/f2Gh7yo712dBkoPWwUHZ/
4XPDvSWJrObPU4qWXOvKfpz/43cRx3NY8B6bF5uGhTg5Zdeo1fEzHm8M66rO
pLw1t4ID2azLv9Tp6on3pXFdfGkzccGABx3YDO/d37f5LIDt+OvyjAX5DaTv
XKf+vqAZi08v3Vrjti9L7bZ85slf+PvK0E/vBK/a2Ts9EJ7Sp3mvgshAVnXO
h5G3F/D3tUBvXBZttXnMpBas4eovpveuksHcZ33b7U/zbuhftcpuc33vsc5s
5vaaZlWW4f1q1qtOWl1HC0/UC9c1P3K38tBgVn9Qs0spsf3YJ9tDrXX+Bazt
gxmr3l53Zt5XTw7/TIJb2lcKTbrhzIbtWFDnxoQh7Pdb0/rs/laa98cOu2+V
JbM1ky6454W5s2zj8NZvT2WxOkcbnCgwerCV04/GLK7fjbnvXnGrx2lfVj3y
/YOBVXqwZNt4Y/ujvmx1SWLbXaF+rEetbTuvrRrI3roe3nLiJ39W60eDb0+X
gezrhzf/euuawS6O67Bvw+uB7M1XF108xuexf/73/Tezavqy+/0f2JQn57Fx
VUM/LPL1ZUlbf7jl+TyYjfzzq549lkr69eiFdfq0CWF/+wUfyZs7iH17rGfZ
54NSWEDXRpsmdh7EloZXt7kq2euH1yz0tHocxFyvBpzMTItjefMm/vUhI4h1
0H/TYdzkLPauWZOyqQ2CWYv+zbyajnFhsTVfbSr3CWVVs7bc6H3SnXnufjN7
nEMoO7Fi6Ngb7XzZkoNN34Q9C2Fzfm2V9Pq0xA/HTHPZ3CuUdXs+MMKnSyw7
W3/ryu3nhzCvaj5uBycnsLkLsmf4bo5gD2ePePRDljPrYr3CzjCvJ5tYo9aO
Y8MGspf3DrVZYWfPqv7PfVzDa1xvhHl919522ZeXJf17Z/a3Vzfw99m+rny9
Tq5HAAs327Ps0tnHhp2VE0tWucawX1L+7tmk1hvDwk3pocNcYlj9xXPj1lt9
MlR33XjqjHUM61Ey9/Xg8qZs0atrbxztYtjWIvvt389ryBw7jZ6SsymJ3XD4
X2TEqleGaSnN136xMYnNWXz7Ud/XldjF4wNnbFmUxOJ2z6jV78smbObm6Vf3
LE1iG/tk1Fr3dSO249NgT4crGaxfQ7MN6V3fGZJu3Tqe0qCQPV/iUmJ/6K7B
7Lf4r3bXL2Q3nw3wNa9Vhb20GTPt+i/V2PHuvw6v3b0PK4wbdK/2qAZsZprX
iLtd+rCgV3+5m3e2ZS9yk5/1etubDTvtPWPqJGuW+t3s+MzKfdiIuL6V3s+u
xCp3cV17Y2wo+3bb2qcxOxqyqyfGRH05lt9vuOg8PqN1dCCz7eq8/Yc2AcL+
NGdl50fVXXwH8wewt829F14Y3ovNC53qOCghAf8O/MBxe9tdPRa7sR0pm+JX
fopDPXfKZ8udGljHon4A/uKOj/5I2j/NlRkWNnsX1yIN64O/1rLjB99dhW7s
5afX+iY/ZWO5d9evasa8z8f2zFS5k1StNNPtSx+UJ1NzL/gt9vVkHVrt3Vqv
YzKeT20xhAxp3ioR5R/4qw3r97Z0TzXie8HW1WbVOt/Ai7FJlQOvzubvBcN3
M36eubioky9rfm78sSEJA9AeBLkWvCZhU+NA/j5wWqH9sClNA3B8X1xv53qh
ZgCbsrZg1w/L+Ht/XWbbJlf/JgG/g/Ftbdhk5PgGgYhv6+h9279pxO+BD/zl
cuzpYYPZ8U1nRuZOqfhecOSifOPMuzyfwKWwJktt/wxl1WNsznU6m4bnhUD/
pndsLj+7zN8P7jVlrn9EL25PFYy4+s1X3SJZfpMWWx2W8feEr/YN7PfiVAab
b/vQM8K+MfLdlXa2Yy8UerBHmYOnL/m6K3PJ+Er3dpwHM+7fGblX0j8M/9z/
621DezZ388MX4yW7yW//4hMNmzgwfc2ZdlMlPW3XmweR9b2s2KEJxvDzDxLZ
xbPfGd9UtWcf6xbm7D3G44NcLnZN7DnUnl0dnP/n5AW92ekhxa1+cf4S82nh
+n8S/qDOfg8258LpoXPNC9lTH/tvUjybsgUfXxxpWreQ6Q+V/LkouiH7u+Xd
ce9/z8DvAqqvfhFxsy0bWjCo/M6oUDZxpPO5l48GoR17rlbHp9XtMtBurfpZ
aofCpRnIn+zmmJu17pfDIlvWKj4Y3otZdNwx/5V7DtuxqNP1Z7/3ZN+Mr5z6
T31Ptr1lz1UBBndm+/6rq+1e9mJjdO9+6B7swZ6aZzLfsz3Y1xsOrW2W5MGO
/ZI77+kcxv75O/zBu9W+rMHOk1sXJQnvI0v75K9rOo9f17ljvKDthk8rdzl+
ycbMM968M60H8898bjavXm/W9NGOHx5Orfg+cpfPY969P9FCjePJYX6WRXu9
I5qwqU9OVZt+mL+PfMJ2zTGLqCTEF8axMW69xwOX3sxxQL3Ujdsz2NftH3e1
qGLFyuxm2PRZn8EeL70S7/2pLWu9/NPcH790YStenQyvfEeSMzm3zi7wd2V7
vh75KuWoO+vyz6EjRysx5rDo6KMt7TzYL5Nyzk1sxdjE6d7Tpll5sKOnOof6
B8WxjTeeX33m5MJ+2PL7XLuiVPZ4XOmPE9Jd2OdXJn/bojiFXfIrPXLS040t
+bX5poLF2az9u5s3PW/3YyNy2ixsuj6Rfdbi0Lnzm7zZyfBO117WSmLjHN9m
frs4gH0xpIO59ZMctnBAYfT1skGs0eC/a9Uamar+hjHn+r0/jvZJY8MiVuwt
rRPG+t3/vHm/ngFsZS+fxsbBVVjYhsftnnUJYJvXTHH642N1tuHnhLiISgGs
uE94pSHfWLDqLnUubricwTYPyje6n/toyNr/8YjjHxls2+Vsh7TK5uzqKn3d
KMsGLM9wZbazxJ9DHt6b90tOEjv/wv5+jR1t2dgR3+rDk5LYZyUvS+72s2Zf
LfcOWBfjwOxrz/7lmwm92S8XfbI/TenGJnTtdfPk4N7s69vf3XnQIoOtXnuq
3vRrDuzliSk5XdMzBPtCzxpsCs871c+DXVtSeUsVhwg2/a+cXgd/78tO/bSx
282P8exa1JTJ9y47sXO3x8ZsqZ3D7l47OyaokRPLiHMqrb16ABt91MWwsKA/
axTkXOPQAj826rcaU+O3ubHLi1c470uPYS0avPvbp6g/O2K/bkLA+XyWv3LQ
+C/f9Gd3tl6YlLE9n5U2TfKyeubOpuw/+/HtlSB20fiP+7RyH7aosq7DxJrB
bHr/hPdHJvuwSyOGFOyyTWBNL+WG9q86gH2fUqPHBtchbOjHxuzbnf7sU97t
tV1nD2Hh5R9qtFzjz3p4HhxpcziXFRXXbTtXstOd9u7dHXE2Xv0NZGOrt6s5
ziyHZT8u//runkA2Mj6j9FiPIOY/ePSkGvEhLMLj0oa008HsQti8DZ7NQ9j2
kV5pGQ2S2ZUTN2btWSXZ9Uc/r/n5iCA2zPxA5t3AKOZ08kLvSS7BrMngm40T
naOYj27F2NcHMiro3zGl4T9OX+bBRkcv9V+nj2E/LEv8LDjrM7bt0qqInyU7
cVrGbzff+NZi51Kinj2X9OsB8wrP+MyvzZovGbR3lsQPW12OHLAm9JPhsW/k
BOP+ZmzxuC621tZ92M59myq1e9+U1drz+7Lpuz3YwSuBQ388ZMF+6/bd7Pl7
JX28y8t6j35vzswPnvx1h6SP9z03P9j6SD12dPWyjNdRgez9y9tZfzg0Zc0y
AtpdGROK77n/mtzcb1hEPdb1/LRm/Vrh+9hslf58U7MRUcgH4L5DYf7CzWey
Hdj1zR2ahKYnVuBX1sdGbW0wwpdNjvjuxFSJH/neKox+t9OS1Tn72Yq4JYOY
ofXR+8Uelqz5kT4eiyX855wb27V4aB22slWR03yJH22416HW89DGqDfUrWrh
tO2DO4sf19WyfSrDe9rOeQuXdx+aJNyDsWffW4x8EjKrN7vm/cJSsvrYrH1n
Lhxp0Q3l/+Q0l2UWXl3Z6J7zUu2WD8Dvqn1wc/zOz5O+fyvJz/Kyl4HOFv1Q
P5hdfdHyIbs82fy3pbU6b8mpwC+n/TJr0MPcUPZu9Zg/faV9Gbyy08UFBaFs
9cbh9ZZL+rD72szlnpE2KI/H1Dh6rFUXG5bxPGTiu3f8HlDnHXcslteOYTOW
PyzJmNeaHY07u/9EtRgWsMt7wbJJbdhfz09HrLrfhtnUzAwdNzoU12GDph8u
GqT5rb7leLu9X+Wwml1WvS106creXx31c6ecHPZwzY0N9by6sSpmAw92WZnD
jJ5ja7nt6shappov7/FDDqtfbd11/QZb9tHK+M2YuVJ5h/Nb7Ly6sIc9QqLf
zMxhT3RrfrYLs2MnO75emDLahXUs7eK4dLovG9rBoZ7bYRfW5M26dyOn+rKI
Nk+WBN9zYt+YnRl57Qdf1MOe3j4Q4ljoyC7W3Fvn2ZL+6m93Nne4sfM/pR7M
o4/VpqOjHdlIQ0fncfeCWEjZAsvevi7sUbNii8kDh7Cfz3v8ZTjghfT+IuvZ
1z1O+rLRtjEHqvzUmS262eGo4aIvG3M3e+veTb3ZV785RHru90V9d9aQul9d
GDOQHRm3b/4t2wBmF5lVdf/NATjfByvbPNm7aBCLnmhvdW9NGHtsl3diiGR/
FW342K3Rthz2MTK407uR1izaITK+v08A6zXgV/+vjzoa3NYeWNHFPYbtnTLh
je/FLgbHe9c379mcxM7opl79ekKWU2bt94e+v5rBzHQHE779EOj0c1bourkS
fPFU7rUFPx4z1O6+ZYXJvl88bPo+l0J7w45Xd29fk/hB3q4ld47vLTOkbFod
PEuyP1weJ7W1vZXr1OFk9G+nmrww3Bl6/OrqHz3Ymhn7vnR5XoXpenuefyTp
R+Ms9rbYvvyBIbzdkh973/VlJ7es9nxQtwarZeN966wkf2okxOQvb3vVsL5a
16lrJHsiIHapg29OLeZ2e83r7hJcffOa7//+rMxw2rbmwBeS/bHgZXt/q378
HfkabeNXf7icgTDoWdNuTnq/pmsfNm7wafeMCTm4vzD/Y5OglAtr7dnU852r
tXfl8e0eI9tOTtpsssdir18OvmPQdYn4NPWHJCwHvbrH8vJjZ+u5sqZtQ0NO
uwRhPLNrWObBx21D2PuTXvlBHyFvcDgb87Jrx4lLvVm/529dQ3oO4fchjrR0
yjdGsfSXTboG52EebeayafmYz0Zwe+uwrtBt8dhQ5EdbvymZPXCJL1vs/vn7
KJckPNfJaL+i6hH/JDZ12hLPkPZfsLubTsSO80tiuz8uW+g/8At2P9hi62/v
/VjNlasvNp3hxjbPGrzRZ4C/YF8NYm8ve3+94Y4rS2lcWqNt3zD2oZfj4v4T
GVt18IsHyy6G4T2Uvc+cHui7xrPM4q9/HZbgjP69qZ5VLvW/LvFJF6vfSg7F
Y33/0zvuLfNMY/VyWnVt6uXM498cPpuYH8jY8B5Os/3WpmH9i2H/nC04ncLC
bQ77h+W4sYWZMxwDz6bgeGsPmPjR/Xg2q/F84qXLE53Rf7j+w+I9wScZe/XZ
BKtWf2dje08eXfOxyAxhde3TcsIq+bBWhgCnlwX4LhLe14ttHR/+eaaRjTS+
trsTG81mHOjxqqS+B/LLleWF5n4p7syu3YHQwZ+ikV/D+njvvyYqoHAAG/rG
5/Sew4GYX7fscdpH2ybx7OuytjNz8gcivead+bPSYLOB7PvJDVzsH8VjfVg/
XwyPu7K+6iDW0avlwEHV1Xuih/2Zfd17G1PPFyAf6j7oRqemewtYWo2Djb9Y
KtkDO642+nlLAatRNmTl5LW90H52GjvgU9JCX6RjgxXBLzZaBCJ/upEX9u73
0QEob6wP53xs1zyYQT7/J+Yrg5dnDsbyWjujk/7YFont96z72nn81iHsouMt
tvpUBur3tTp+376bBDcaf7zGvV2N2ZtGXhPHH8pgDzsG/9FuSwuUYxuehi5v
tNGDva3VtX50n/ZsWWDiPq+1HriPb3uO2rJgmgfrdtqjbmV7OxY1uLhx/DyJ
b4+N/+v+7S+YbfBDp49fhzK332YEHbWT5ErDBftfjuD7x+vv6aPnZPRk9+8Z
7d7u6McuTpkxMe+LnqzaYv97nZu4sg73S6oP/b4HexbZ3LmvxA9PrAvcfi7w
IeYvHOLy/EOexO8+bZ5q+9tPbdiOzYVnp2yT9IF/Tuzef78tS3dPHX54M8/j
Eth9jEtrif/9tWlPm7Jj6ez3nlNbttrRXZKLLhMO98pgr3O++ntvgD37tajz
iFDfDDzfBnkVXCfyZ39nd/aybrS+qMSDvRo0cWCRqzsL8YheXb99f6Zbbedf
cy7mZ2Xr/N2s1uz0ZVeenu5q87iAsRXLoy8ftGN7Dky8tPhWAXM4Vdps+0YH
luh07XJb/wKky9I911s5NC5g+7JmHg0d5spGnDhX7f34GPZPw0eJd+z9mH/e
w4uXLsSwwwOX9dv2mR871853RMnoPPRfbP2uytXZ1nnsZaxvPw8LPxbWY8nN
dAcn1niR0XV7r0A288E/ltbtXNnk/1PWlcdDuX5xErIrqci+r2XLMpY5MbaQ
sQ0jy5CyD8ZWiRZGkiyFm2RJKBUKIbmoCCVZs1V0qdxSIffa8xv3No/P/fz+
ej9n3nmXeeYs3/M8z/meTa8Ut+12gJZN2ErRWGsIS3iidea+PaixEMoIFngQ
ZFJ0vFNkD3Y7eoXP3XAFvyx3Jo9IJzDU3g9Lj91g1TZ5ufKgE9K3uhfqfgxt
BNi+wniqNd0LisUstk65EiA+gCnsQ2ww7JXI4twu6IT0PSk31TDH2Bnqjbl7
To9hgbEo65qruzPsHLsvlbFsDnh2m0uRks7IHjYNv+4YfEWEU+3fzVX+tobo
5pk2hWkiGGmpZGvi7KGzUUSsKZ0IXNqvgmW07UDpw6KLSxkRnjpxRPHWuoAB
89zBgS0kAOvE4nBvd2gJHphneuYOmHz/xSdUT9BdPzK7o/ma75fVlzyCXMHh
a/H1ibdHAKtVMI394greg7+51vf7QFPw0rOkeheYmvB9Ld3jDYW2xhcvK7vC
PN7MVHzWHHyvcVFeF5DQ++eZnJXEnSZB46G2gG2d1iAkcA/nmUKC8qQTe68z
2MN9vpSU5EAScAf8lfKYZAeP2gYFc0NJUM3lF71sYQ8K/J/8hi8PYx1Pf5tq
VvTcyNfzs961inpCxye8I7FSAHruiuyhantCaGJoZ4w2DyQ3SbcqlW3w4W3h
F98hk+2Drnc7HtkkWugDlKznLUfceWBfdilGe2skshsuozXiOt6oWXLlzd2n
jcWYaMnp8EaCRcie2QczrMhfvDpPNRNaxUAM60Bh2nElWJnToti+wgBHP8ui
qKAo8FQPBIgK6qL7uvBtqjxPwxfYuTzP3wj6cLGfRVTWUwdaTU/MlAj9qq+k
85TT4sbTRmIuL5MO0h8TWUaNQQkt8O1mwUnrG6M6QOaOGFGjn25wtd6k+7Yx
Bv6IH882fY94f9E8V5dIHltbti7ynwxTgmllmVrQdv1ry4tL7uj5xP7QF7E1
R6FHJT77czoG1Vfrmx1KfM2kv7H/OaY4rYlXC2a8yyXL5o6i63UfO6e3OhGR
fdPjW7fglSWpEUD13W3wLji53xCcShQ8In0Pw+LEcY4z87hfccYTilWXA7l4
TUAt0yH4iIQXwjv0+mqNI6n2RUJGID7/Nd+N1e+/+ctYOPT/fmzfVS8T+C5T
xLflDgn5NXo+93HUsa8xzwyEtJRWFrf7gibZaeGHvDmqx+zT0Di2/YwpiBKa
yTJK3pBgUCozetISjQf5OzW08akVyHBp3NrzkfZ53QmqoSwe+SV7+empnB/W
KH63dIgx9JyzgZTjxnuSlw6Dn0olm7EPHnaH6Ccm94ciu6HXX8t3Bnzep4H4
ZYE9E1cXbuAAoe85U4r5TUFzivqtjgn1n4SELoZY4R57qMV8su8zsoPnxxSu
tDjZQ1e4/tfs/bRjhV5THsYexF0+LJyXJsBXr7GBKJodXjNp9XWrckI4jD4P
u/S6tDJuxA522l6uLls+ClTlA1KJag7o93v0GI6KnHdAeCE77ZbhjTwnsOSf
avV+RILMm7xbl0Yd4fRabetsmAcUmQ+5EHLo8TsYJuRuMm165ASe+tTUybPB
QO9vsETB75lnCYF49s/ftjk6Ah/fg7lySz8o0voZ38fvAoLpbgRvTV+0b4f+
f8nXTwoH41zgyfjB6qeC/vDffggu8PGhtzA7BwkaFCNrRypIcL8c+2At1h0e
DGQdxdzzADov/p27sf3j44dBIAFj1HjVDRSCGrlLrUkwfVAizuSwJuz+yDdC
OuQNye/fp3as7YNxrdigyF51iOB6nbZ6xgz5h/uH/S5wjNDywRqhNN9cBbA9
eyosZwAPJYV9WgL6spAWMG36YWhjvWLh+BpOz9sZunZiS75xbewj8hYI+4PF
wQO+a598Xhi7F3asnBwWqxSFASrrvb63eDBbzFs1aJSEjLWh7z9GNvhRMDeE
tvyMcYYxXPmPS/FkhNff87cRAihkGGNVlrYfVgR4VfjmRwwZgNNij6qQAvR1
/aVqdYkM9a+gqkJKFvhi69k00sgg5TDv89JGFnyllMakTCjI3qdJS71vFSjw
JGt+8nSULjTlOGbU+JLBtz1015XNyuh7et97Kvg/6sDF9Dzh2WpNqNunMhMv
hQGd6DgRRhNd+OsDC5MUDS/uuBme6XUSAxd6MRZqDTrIbs1GK/ZMEPCwI+iL
kvIbE9Coman9GIgH9YvkkIEHpjBUpGnW64UHVZs7Vu3bLUGC1VKwRBUPjd1q
6TcmzSFjNZeNYolHfBAsS2lDklMyQO8PoO/xfl+01j6wFs76+3MZGc1HNLzK
CU2+QYY/o79dCxWSguvBtzNixXwgkMS+e6FOCXw26WYVnI8AE77B9u1WBrBZ
k43rp1QIaIrXOO2XMYGMFN+MnfJBMJpU9v6a8kEo8tKImhwNgzBzbJvTVyvo
6iWPnPQhgedCTeB1VVu4pjoYdTfBC/kRur/klOOXZKDJzvViNp9d/SGauTJc
PdgWxib3zU4RQuEY1jTblM0OVix3sxHEabih+OLmO7xEwNreUp1Z32810XEi
9iIRit54dg1QQ8DyYUt++QUCvBPwH/aLI0IOj/LIYXUSTIStqdlhjkCTYiA3
u5wbwvkVx3C3/rJygPOPtvUbV1PQ+BT223Qf7vZG+vrEuOVrjbIdOt/UQ0qJ
HrCDC3XWXFuZd8Kj2MU5zjkPGBTuuOmdLwH6zLufZ/kEg9u0RKYh8QDoFbwL
XKSGQ1zpU3N2D3OoZ2b99ncEBeyfRNUUjtjDs3slqc2cnhAtQjVV83HcmIdS
LC7+3cUBTIZjOmu7yeBTXR1/bhsX0r/287sKdN1pODZEWvyuJwXyUxTZPPg1
YdfIJFE8yQf+TMJxzhwTAvttxTGxTRQgMarck4nZ4JE4XjWKD5cwg1vDcpvU
aiigu8t36OJBcRhsnzPlqKfPHwohHqclKkNzjcoe8Krj/ykngfjqoZ57F8Oj
KxHI7rUmzZMLIQTF+X+vD4Evhq53Jm1wQO8HdUx5PO3hktW/+ySXw8AkM49y
Qt0KxbO9kocZbWZtUHwk81XsXqPp0yN3seby8FCUv+ErM1IphUS0/4Uen/1c
spL13jgBR7lIsU/pL/2zJaDn8+0OLRa0I8J0cfWscnEIOk+PP4SttxcfcDuj
+5W1ZH5ZliChfPPGhxfVEvxuaL/mLsIC+52rJKBqVdxuj9GEVhnqmXQLB+gp
Iu+4smODt+1fXjJPiGj7a9FYXBiSesfn5Qq9Yc/BlNEbqeroewJk4deRorqg
nyHwkEeXfj0nrOk6jrIW+yD5sWwex59P7H7phQCM7Jl7IJFsB/le/A0txsKw
rSZaztPBDgYYQKM0Vwzxo4sXlIwkDO0HBSbOiBeREUgv6PlpTvjnoedYU7A2
0/tIWghGeCQAp32oS83nv/XltPgnw4U7fX3ZAp7PcLp8sQlG55uPfkreWxKM
/B69X1LneKDcwSfmaH2UMhYdffa5NWwuD+w+uS0I5e+fZKOYLzmEo/v9czwf
Bicv+BoL0fDIWE9Bac7LsP/rx1MZY2DLFm0DwpILKjMKgTAa95CIXcGj9dXL
DfdPfBiyhY94QzHLr35In85X5nP6coci/PDPeKmFQq3PZ4kMgh2kciZk+stS
0DwFnb9mPHq3YIQMndePAv4G7VWGpvYQolkWo5lHQXwndDx4Ykuh7WkJR+jM
klm8QyCDgnimqN8ELR+6+jidLBiCcAvdfqZSuvE1tQTkP12ZPxp7ebpB6R3H
3iPflaGKdIb3g6MD4Pi6bOKiNMB3EyYx2NoBFGszzxJv6kBYBVvuM39n+Jnv
7xRnrA3W3iV/KJCdgW8yNeKmlwh8ePx2UtLdAeIFfE+c8ZIC1kBXqqTrr9/3
kgxLQ0kFd2Eb/G7JIaTTSY8nG3xVlovs3NR3eHgCaalv3+hCV/lIdpuZGZxj
7bBkadCEPxjVL58JMkPjxc45Zxenrw0nXsYnszlREP4XySlU0VrxRvl7R+4t
RQ5pHzjbJBfjaqwEh3IYk0sxPiAQrfrw56I8UKim+tvTfZD+S2XvlQtvoCD5
tWN2Y/kjMsTq1L6vqxCG7596+F2E9cEvQzFUzcAMZg/kaChOBwAB3+DVzWYA
dz4P/rjZEACanOycO0Ox0GdSOsqSFwBncW1Xm2nwgprKmbc+P/zL32HZf9t5
Y33+d5eyD4t4awvWM/mdcyrKv/TQfMfmP7UE7mtv5E8Jpq7D02edUb3gaOeq
1WQZCYTcfM0TDtgg/hrp2x26XSMBEKg3E+cJNjBx70ZL2L0NXm0xy2ua1tc8
IFwvS8IhSwE0vOJbrl32AH7LW4nnDBRBtadJs4ohEsUVVz7B8cmlCFBrazkh
1isHipXjWBmaPI/Jr2XTkQche++dF1giITdr/7w8LR68q/Ln3M8cCatWj57x
2ksAK1P5s4EiJWC368Js6UR9SuBlBulgIU3Oq3i8+1IZHji/WzMGMu2Fhi+6
yqmOtjBX9r0K3GSBnVdwmoF9Yx893e6q8yssYkelEE5oTpr9A1OgAntDDl9x
9MIjfShrOH2q9bQtyNT7vb3iJ4N49D6pX1hJ/agMRnkyOabJNuDI0/j7PVdF
EAt6Y1tp4Au+jIzXjMftEL7+FNq7EhVh92/d3GoEtN3eVDopJ4ueoyw1rWB7
HwOLWkXtvDyRYG+mQ/QM4wVdgeYvd60V4W3v2M6LRAdg+iK1zH5OBq4aUbLE
afH6FSWS+m5gvV7/4lGVRGmA11VGCvUecAD34ugEsxzK+zKXd6Y/6zMF3N7Y
GRlJQ5hJOieQNm8KlZfCmX+W4qDg0KhF2iNT0Nc8c2h9fcLmKKuG25dAAyUd
nN26PLnaVphvsBsr7VV/Y10f8Q7Mz7IFDhjUZnL8s35hNZ3ivtVGHmvl8rx+
fb3Cv+G9xHNBWazO3YX89fWJm0O5SRyaMqifsQnPMNkdowtBk2SDmCNT2MTm
ALc6mjzPz/bbi8YpbNylraU1NHlTp8pP1Rcm2Li9/PenHplBVveK0bm7RtiM
9FMlFu/xcEmLZ3L0wH5ssLWeUKkHyuewCzjmaq5YZ+DO0KkdYh7GHpWfm2eg
yQvwW/n6+orsveuhIL0Le8qclbBuP0puRvurKFuxSn9Ly4+zRwKje2Jg45Qg
RP2dXF3Bs9H/LiHV/elNVjsYLCc2cy5JQFpzyOq4nA/yt/dfmHW4cG30f0ts
JHa66wbCILdm+9EqXdSfJDt4TcbcTx/4max+Xx+vX3qNPa88+8/6D13GLq0F
cFfawlBeYMq0jjQoskRLfmbe6GehE3RO5QAb7X0d2lsrN4vAXTt9vyviNiCi
cHeHvr4ywjPqP0mpGl6H0Htlz+Qw1o/S8Lzrs9CAiY36MJUgIzxObKNfXKfe
8sDn4gDIfRyO0x11hq1927JfKJGR3fQVV02HjJpC0CoXR+EtEtRx7Zto1sBD
kBGXjupFEmz5MMQroHkAil9LdHEUkGCkSaZD0QAPo6fvrPyZRALTd5kduDZL
CKuVil3JIkHIT1nh2X5jqHTFHv9SSoIDIy93JqzXm9Uxu3mdc4bnVPWU9fof
wi0ekfiPeOiuP4i7nhUI8UJzWsQAbTh+ZLZjvX7ninOfbIuvLqQGdZlvyQ4E
thnGkh1ZeNhFvdeiTpPvNjJEzds7Q5r38JeQSRx89fe6ub7f/n+/x2N2
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnt0V9WVx2/IkPxSk3vz+1XSClQQRaCotFOJwcG2SyuDFmeUAFpbWwJF
p63ykIfKS1FCAhiE8H4kPKQKKArSykMC+IhgZXzgi46dttMZETt2bGWWzPwx
s+b7yf5mjWuxOfue37n7nLPfe99cMG7SyIldkiT5ZnGS6F/y00z/CZZr+IXG
FsEJ4Xs0/kuaJC8Kv0ovjNU4UVBTkSRXCBrLk+QejTMEB4RPSmJNnaBac4MF
CzQ/2XPjBE2CuYL7BbtF/3ei/3Ph3bX2PMGNWv+M5n+v+V9ofqnGPwtWJXGW
n2dxno3CHxPekASNR7Og8wfhj3v++7kkOV/0NJV8oP92aH665n4rfEsWNP9V
+DbhUzX/b8K3C5+WC9rQgg5n2ZrFeXrqjD0EtaJ7oeYvEjyi+cu6Jsmlgq8K
31Ckuwr+LLxFtB4QHNZzlWjs1vr7ND9eMEowWvAd0XtLcI1gudZ8qDXdypJk
hfAlwquEN3Mn4ecI3ym8WfiXhW8qjjP0Ev3egjrBJ6LZLvil4NkknvtoTavG
KyuTZK/O07MQ73AHfofvfXwXxguNn68zfUUwpjz4vicJPhwRvCF4XTDFsuVO
D4r2at9/pc75iOh8Sec8pfEJPc/Q79XnaG/Re+8LWpdPkv8S34YUQlbvfCHk
9bBgjnWFdScFh0TzA40fCnqWJslpjX8UvFwasj7l+UJZrOkhfEMu3s1KkuQF
0XrGd4DOKe81x3o9yXo52XfijJyVd9HBX1pnPknDTrCRUaXx7mzB6TRkg1zm
ml4HLfF8j+Q0S3c8rPWHBG+L5h+0/992CX3YrN9Lzwl5wgN4AV+4xwe+y0ei
/5Ton1cW8ulj2fXS8/Vav100T2putdYs0Pw0yW2qYK9+q9LYrSLWcadh5XGv
qzVXI/wKwSnjW3SG/eWx5lrBr0VzjWg2JnFezo1d/JPm12p+YRL3GoD8RPM3
ml+v+cVJ7PtdzZ9bFHr9ZBa6/b7wdcIXac2t+v0S7/vPmt+Qhfzh929t+8iw
l898r2gOLA+etWk8WB7P/5GGz0JPH9Y4U88HJP+Jwr8mWGk9x89sTOJcVebJ
yZLgD+es9ZqlyLc8bJ45bABb2IwPlN72EC/+JLqt2mdkFnxZ4DXNSdDobjrM
ne95aOFDNiUxQn+Z8B+Ixt40ZHC78MfT0ImfCW8XXtC6ecJfF/56cdhcrf3I
13Xu/oJXkjhnD9OsQWaCYYLleu8ben+N8JvK42zwo7pL0MFH79Ka2iz0E181
Ogv9fE1wCDkL3hW8LDiKbXo8JrhY+98h+FR4Q3mcl5iyUPgXha8Q/o+CNtPa
I/o3ZyH7TZLTw4IX9H6rxvmCI8Jv05pRWehVo6ChJO40SvMTstBR5FZl2d1c
HnyGB9D+Whr0r/e690oibg322dCl6ypC9/AVc3LhZ6D94yz0v4/0dbbm6zX/
HLpcEbq0TLS/rjWrhV+v8Vnb1o+En0mD/4uF/4PwKXp/kfA7hE8WPlewSvTG
Cu7UfEkW/GnkrlpzVPbUILwOHpWGruMb8NkLNP9DHJfmv239Q/fWmh4+YZLm
j6ZxVu7OvfEP2PiHFWHvS7TmQXRM93tE+FvCc8KXCp8vvKwsYvtHgumCJs2/
qfkSzd9dEbTg21TTvNvrTleEzZ72u/Cqxv6Ffe8SnZfT0InpWcR41g9MQ0fR
zydLg9+nhP9Qaw5gY3q3QT70KuFD5VPrNX8rsVz3Gip7vEx6fFZzy/S8tCR0
+gE912rNm/Kltwn/NA17vFf4e2n4tHHCDwm/RfT/Ogu5ItOxwg9iA5qvE/6/
adjvJRpX4PuSiGl3phHXyC9+lkaOQR7x0zRyCfKLn6SRYwyC33regA1mod/o
9qUaV+ITySXgBz5U+CxsoagjPUv+lEZuRPz9OI38iZxnsePPHNvwZMeecY5j
PA8qjhzuriRytEmOeVMkg33288QT/AF5Aj5uN/5A8KhjJrFzh+CAYL8gkx6s
1/k+6xq+jLVPC3aWhvzQOWR4g+U4x3F9seN6k59nJREHFvoei/08yet47xVy
BN1hWJfgSZvptuAP9NtMrRldGvF4ln0Mvua4YF4ubIPcaKPP+JRgaxK85G7r
fLftScj+ccFjSeg/Os3atf59WxI6us3rJvqMs+33iAHoyTXS1d7i0Xc01pD3
Ca7uErkz+TJ83WK+wuse9lvwcrDz6y3eE37v85nI6cjtznNc2uiz8Pten2mv
17X6rjuT0KcnfM/mkrATbKY+Fznr+KKIU5x/s3Vggc9AztJWGvaCPt1v2eCP
B2oc4jORd77kvV/280L7buJlC75VcJFghGy4r/zlxELEFXJJ4gw+DN+Ir3u/
MvKhuwpxp6Omu8x5Nbkm8iPmd+Z3jM8nEQ8HFEWMesXPxKlNjlPEK2LneNvK
br93xLrMyLne17oXiyLGPu054tcAyXaxzrClKHh/zOersZ7Woye5WLPZNAY4
Th/yXdHR4RVx3x8JRorHVcjBcjtkXd7p8SD8FL2N5iP1A7GdGI/PA+dO2Aq5
GnngRc7n4ecKvfuQYH1R8K7OdcNftK5PUewzzr/1No+I568KbrfceB5WiLzz
ao3VpZE/PaffluQiVuKz1lmnoNusufsFa4QvdZxd5RqJfdDTJvMS2ey3zI75
bjXWMfLNi9PwFeS5M5zrkp/2tT8nJ9jvXJFcckAafoactH8a/oW48YZjB7H0
hOMpOWm/NPwPcXi8YzEx5DXHEWLy247L5APY8orP2R62eMB29sTn5PeUbXSb
bXqq9pqSRd2333O8Q00NXeLmNP3+Shr14TGNd5OTVESNe4/r3E5/hH+aZn9O
nCWeP+SY3ma/CN9aS8Jv4oumO1YTR7gza/BjV+md+88JmY4pDd+Kn/2j6D2t
fbvr938Xvkt4j7Kw42bBUOHH8uFfKgtxlv2OL8Q/fOtj5tNqn5s1ezvllQsc
W+C9fZ5HphOcj5GDzHMeQh5LzKJW7al9r9QZ/z4f+rzT9kKeP8I1SHs+/NFf
FcK2kMnTtvvd9h/k18OcY/OM/3vUv2/2M/5hk595f6Of0c37XBOR11M/LPPv
tfbtzIF31hejvQbbHW375V4jvWaLaL6bRr1L72Wh9a3WfqvO9zxuO+3bJewF
ev2KI78fm0RPhvjUmZM3GscmZrlew1Zmu/7ino2OU1/V/JwsYjY8a/WdGG90
DEKPb7IsOnooScQEYuxW69h9hZDFtYWIEZ26cNh87PS7u8xvcvc213cDXetR
E3Em7A662P29rk+x3ZmuK8k5b3Vduccy3Go5jXGMu9l1Hfzv7vPDc2qImx3H
V+kuDYJW+6tW6xa/3+I12DnxdYNteJ2fm9Lo6VDzbreN8hu1xb409PnZNGq/
GucOxH54T3wjzrUk0VdZ5niHH8WfEiezQsTwz/T+Lt1zdy5k3r8s4kTfovDH
1DDdiiLW9yuLeA+di4VfUBT1SLP98zzPkzNRhy0XPJlE3CB+dPR2qGcEz/ls
KxxT8N/EO2LFGq8B3+z5fj4PcYL8bYHpEyuICcSGJUnkeEscR+Z6nnhB7KZO
JEbM9L3IMb/rGo+Y9GXx5Bn99qVC5OL4KvSQXIzfewq/Ih89u3PtM/AlDyXR
p9mfi5oXHabXgo7eIJ+xLxd59GT3c1rzcSfyAO5FDYAvJP/pa1+Iz2HEn+JL
HzL/LyTGuublTqOcK5IzIjfkR4xvMI4c6S+SF5BvjSkEzRsqI25yBng/VPML
pE9NhYjJQ73v8eLgSf/iqLHZ91dJvNdkuUzU+Frx/+fZjMTWM/mIGa/ngw/w
gDpiZD5ynbMaR5cETs7zk1zsN8g5yOXFwc/P8hFv38xHLcJZ8Ev0B4m98zVM
4FzFocOHsnj+JB8+rHdx+Lz+zunIDX7s/AJ/v8vvjbUPTIvDD37seERcej6L
8/1nPuIovVfq6iH5WN+vMvS1xbkOfYkm69sp9+LoMaKrxCriFL9vcu+iuBB5
7sdZ2Fqr+xgPew10OvI3wfPCG42Ty1UVwn67FWJ+pe0LHcAHcdfjuscTubgf
etHgXJCcl37km0nYL33nw7YRarSDRVGngY8oin4a56fXgY2ucY66yPu22DZX
2e89YJp1tuM1tmvutdq6NN/3JecjR6dP9A6+tBC285VCyJl+Aza33vZwofPS
B+1b1to34d82eA3zrbYHbKHTNuAJ/mOBfdQq48wfsf9ifo1p4us4Y73Pic+b
670Od94TG9N4SS7qynad+aXP1ZaM5Eh9HA+IBZ2yRF7waZ55hR+d531Xmz7z
y3xf9lpl34cukWON9j74iXrzZ6nPiW+cbx/azfn2LPtSfBU5Fv4Kn4f/wu+d
WxZr6CEg/5nWAXwV/hF/1bMs/NdbSfjUmaZP7kvvCrteZ37CN+px/AU+gj41
/fezXeMc1C/U+4usU/DkkO/I+c/ab5xwLnZbLr6b1Fn29K/qZYft+J/K8O+z
fce9Wfjv6nzYI/umlhF8wy8xjjFOz6tW+LaSkCd1LDLF/7zkNfStD7snz++H
vabzuTGJXgY9De7FM/k0OR400ZU210A73feAF/gJbG6U9Yc+QYv1BHvnOwU9
FNaQo+MH8YHUFfTe/qZrQM7zyJZvC6stR97FroldVY5fnd8/oMnv4Hw7QP7o
AX0T/M1Cn4FztX+Ob+3Wc/RwoPWf/tRg86TFOLUDesFZ0Q3uTh04wvIfaV7B
d3DiFt9q0Ce+1wzpGjJiH36v9XrODR1iFr2F4aUR74h94OgJvYTrSuP3O5xz
dNSkXYJ2veXD+bGjzj71u44X6xwzWHvU65HtTp+ffa7zXsj/EssXPXzSa077
uxPxkb4v/WhqFHwzeot/Jv4dd9+N7znoaue3LsYvVkaN9d9d475d0HnhN+bD
l+PT6WsQD79ZEvFvUNfIWzgbPIR/dyZhQ4M83y0feJXGHSWxvqd9Mf0YfDM1
Fv6f2up/ZFNtWjNM62vzYdujNL6dhG/gHeIZcY3vHuSa5Jz0XPk+hY6hd8/6
m1G173TW96q2HcA3eMBafhtVEvdFt+E5MkbWxN0Jjun4cuSF3Nbk464nyO/z
wZOFzuO4J+8TH18VXJuETnX0vK235DC8Tw7IfE/r5w7jG70P+96Sj1r/e/mI
WVf6nO22yfmOEfAfHYPGNp+BGPy85Qdfh1hGY6z32Nq5lcGj8fmwIWiih8TG
EsdH+mHURUeS8Ac5+wRynF+5rvu7fNj9xnzYdaPzCnrJg7OoNeglV2dRj9BT
oddAf4Jvcd9ybYJOUI919tgY6VX8II1vQvhCbIw681XnXvtM67jn6XN85P5/
R19BtLemYffUajPcR6WOu9ffDuijX55FXUTdU+3vMtj07bZreiH3uGfKtxre
5XsItNiHupI+wTR/62Sfe/zd4SP/fQL4DMc6YhzfLKb5ewT5H3kgdSvfQ+mJ
d/Qr/E2DuLwtjW886DZ7TfG7d2juhTTq0umOt+xBL4T8nPx7kfMp7oONoRNr
83HWqaZPXV7t3ut13hf+3O3vU6zhjNf4nOx/tc9A/kAPkf4edX2Ne8d8k5nq
NTzTd6YGht5w02Suxt/mDngN+HDvC5+3W7exEeIMOTw6t9S2Rp9hpnNMcgZs
+zPbPnra27pK/G5zfGhyvkzdQV+V3ih5/Z5c5PH9/d5l/jb5G685iR3l4+8g
ripEjkR+SJ44zznvBc6xsQNyRfzASOcA5GPkgWudN863fzmvEHt3L4T83rae
EB/x38Tueufy5GPjnZuS/41N4n51SXyjJrfmbxYmOE/Fn8AnYgK8os7o4R4N
tdEe10f8fcAe15fDzXtk+lYW/H4xizy4t/f9VmX40M35yMNec721vDJ6V80a
5+YjHpFPDXTvBLrMpY5T9IexAfTqQ3/XQ+8u1Ts7yK8Kwfv3zX9w5EEve6V9
Dvrd7hgD75DfLtdir2bhj5/zt96B7sngx/GLR7LIhakHWhzrkRU5w6eOBwet
Y8TgEY7f480HYvVw5wP4R2pRfGmvQuBb8uEf4SG8JH8hHnTkgZUhg/X54N+N
JfHckg98Qz58NnXvXY5H1CHUFPj+FscUcsZ3TBNZn3EMAj9u2cPL455f5jXY
EP4X/0peudN5JHfE7t5z/OLb9Uk/41PA6S3wtzyt7uWiU+RG6BUAP4Z4r2bv
e1M+8qTiyrjv5dYZcplh/l4AP6FDLnHctogNDPYd2Yt6qZdz9d4e6Yttcj+F
Xiy0oN1gGf7FcYI6hnqMWiBzforvOONvUpyT/Rf6DPgA5vEDZ+xzOr/vMtIv
PeGa4tuVEXuJwW8Yjjge/x9z2wsx
          "]], PolygonBox[CompressedData["
1:eJwtlmls1VUQxS8U2z5p/7fvAWUX/GDQyKYiskOQkhhBaSmLRlQgstOyiRQX
xAIKspZ9FRGi0URQjOwIYkWQXRAF/OIWRNFEjOAHjb/j8cPknTMzd+7cufc/
824dVl5SVjOEsAmphbyUCeF4EkIJMigdwgCkGHwMmYntBnwEeEYMoRJ+id+6
NULokxdCBbwoY/wgMi3jNVq7BL854ElIVe0QbkP6FIRQSrwjN4XQmySKwf2Q
anhpdgjdsa9n7VtIe/zP30xexHkN/jK5fgsfB/4ZaZwKYWpuCGexz8LWiRgb
ibUa2Qceh24VuD3SBNwa3X3gWeRTGX1mnf31tPdWDMVaA+8L74h/Y/BY/K4g
jdjvafZ7OO29KvF/CDyeGOfI6wa6YfCuSPOsELoRYx64ToFt15Gh8DHE+glp
SLwpxOvPnlvhd1C/s6wZAO8RfdYK9tiPbSi8CjwYn33wYdF4ELIDPhz+KLhD
nmMVw89lO2YV/G74StY3YM8m5LuDfXtS/xrkVo19DPal2DP5IRTovljbGnsE
t8U+Cvs+YrVEPoaPgOdwP3vhb8IfgG/Msm4C+MPEufTM99qR0b6KsRvbEPhi
9iuB74U/AV8CHwDfA38yGpciu+CPR/sWI7XIaS75NSa/LOG0a32U/edznrXw
duB+6NaDhyN/UfsZ5FaOfy+kecpvYgdxe8KbpawrBSfI29SnCPvn2C+zfkiu
96wGf4KuLNdvuH/a34S+DX0z+nYORb+NTfj/CS8np23ks501DfFdAj+R5RiK
9Rs+T4FboDsO/gMZDW8DPwVulPHa2+EX0z6jzqo1+6O/WX27c8GzdXfYT2Kf
gL0a3UL4sSzHPBj9VrYnvku9mT3RZ9Wd/0KsA9Hfzgb4tbRzUm7vsb6Q+J2J
twu8Hd1EcGvkHfgx/C/g2wXelfj1iTMD/w1p++pOumLrhuzOdY5LC/wG9RYr
WDMf/03qQcTqTH2bgpui25nrb1LfpmqgWryPrgG2dWnftWqq2qoGqoV6lnpX
vYxz1x3oLtST/utN2LtkXGPVWnvcAq+fcWzVTLVTDVXL0+QzGN+VrPsxce9p
wpvZhv2HxL1BPUnfwmfwonx/E0dlQ7eCml5G9wz4K3RzgntaN/AUdF9g64U8
D/5GtcC2AHkOfgn+arCuAv41/BXwXORZ+EX4vGCf6fALiW3SHQSXq2cTew/3
fQQ+GX5/vvcsy7g3q6ert6vmqr16ck3Ofxj/MvTLg2OoJ6o3qsf+jX5S9BmU
u868M3EP0LdfxH6fwsfBl7G+DrrTaX8begN6C19iX4H9Cv3uMjITvgxeSC2z
keE6O3wi/odz6NnwBdG2HKS3zv7/HelNjdKs0HeR4zWLVGt4gNfHv6/eZ8oz
SbNpIfbZ0Tlpz0r48mjfXGSzah29t3IcCX8x+j1oz7PwxfBUynuegFfBa6fs
c175IvVSvrNZ4EXRsbXmlO46uh7KYbrmbvRZpDsDXxh9Vp1BPUy9TGcYCH4k
7X2030Dw9ejerRmkWXQX/E5irAqeAf+AP1KN8jxT2ka/Ub1N3XE7eCv4GvBq
5FrimaNZox79e+Ierd6sHn4P/i0T+2qPidE9W71abyw7+g3q7ekNTAMXRs82
9ZGt4O8Tz0LN2NHKJfGsmowuYD+g95znGfUu/LvENs3Qqbq7xG9H31R7eBv4
OvBa5F7VIzHWmU6m3ds0AzvxFrpjfyzx7NUdtUCXULtq5IW0e5p6m2ZCK2xZ
Bf7v0gF7CbYeBcbqWc24j7pp/9dog9QDzylwLPVI9cpS9uuQuOdpRus/gf4b
aEbVxV6Y9lrNHM2eLZoR+J8h90PBdzc2elbrDlWb8dHflmq0GfxrYt8PkDfg
VxPjLZpL8F8SY/Uk/WfTfzfNwN7gq9GzVTXoyP7/AtVjVrA=
          "]], 
         PolygonBox[{{4735, 3863, 3704, 2233, 4155}, {4669, 2315, 3719, 3971, 
          4740}}]}]}, 
      {RGBColor[
       0.47681049834781497`, 0.47127525501041423`, 0.538775937073489], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNm3mUVdWVxl+9V6+oeq+q3r0XVIQ2vVBbhkRbRhcyOKEmDkxO7YpKMxiV
QYxo1FaJTAJSBc7gEBE1a8W1VBAK7TbdERUHQGZUwP7DAJoYR5BC4wD9/dgf
bf6465x37jnnnrPPHr6993mdRk0cfm0+l8strM7lCirThlyuuZjLbaaxlMut
LudyM/XufJWr9Hxbl8u16v0avRut8na1rdNTKUXbetXvVf/v6qL/dNWTUvS5
R/XnVH9L9TtUv7Uc8x9Q3yVqf1v1u9ReVn2t6nNVPzLRvCr7ZbnckHK0l/R+
Fd9TfRbrdv0rrafG8+xV/T9U/0T19eqzsl5z6DsjtMmOat+g9gVqX1WTy+3R
c7q2O9f1Zj1naP9T1XaDnusac7nf6Bmn+rZUa9b7Oq3nOtFqop7n1fe4WrXr
m3eozzqVU1RO0vPTNrlcNz3Pqk9b0wf6DSvHGjqo7ULN1UdrO11lp7qo9yvE
OMaPVf3XxagzzwXq11t9eok2t2v8p5qnrDWdrPf99FxRlcs90SZ+U1+md3/V
06R5Fqj/d+r/F+19jtqGqc9dKoe2iXpvrXm++nyrPh9VBx05m0aV1frmLNXf
U/tDGvOwnt5az6l6HlH9Ro2tr4nxjN2pcoF+D8n9+I0+qi8rxvhhqvcpxtir
VG8RDR+tifmYmz7D1X5LFmf3vxWdkebcrbU16t101T9XfYu+tV6/e2n+y3PB
YzU673rNPd/tvTTnuELQ5CeiyR3q81k51gvN+ptWn6rPDyp361mp8b31e5DG
FtW3jeZcrHGFcsz/bCno8UU5aDJH9S9Vb6gJmtEfus1TfY/at6vPLPHRokqs
82TxTl89d2n+DvmgT2/TZL/m+I3qPTRHdz0fqn5WQ/ym3l/9j9farlD9dypP
1HO96j9Po/60yoHq070QfHhuGvVWlbVqL+vpqPbNbaLeQfV9el9S/Uvtvd59
6Eu9zn121ES9i+rDVW8pBI1oK7nPr8WXPdXWT+Xv9L0h6vdIGmOYr6vKcTrr
terTQ88p+SiRtfPUd2kh9naRxqwVLaZlcQZ8Bx57X2ueVhV0QE77FEJWr1B5
dz7enanypELQ8DDRu7/ofoLXyhjmOVzn8pXW8YDOpVXvT2sMHpml792gepbF
HtjLb1W/XGWTxk4xf8An7HeZZYvfeX3r3xuDn3rWx3mhc8boOw/WxHkh8+ig
B/Xd5Zr/c71/IQnZ7+n+H1tmd6r/kzXBD1erfpLocaAmeAQd2E79R6q+Dj5X
fax5hnnQIdvaBP8c0Lpf8XpoX1sb32B+vkO9We2dyjHnW5q7t8o+9bF/Sn6j
Ayl7uf6G20/Lh/4/rD7swlvW0ejnr7xW1rk2Ddn+QuWHaXz/XdFss94fpbGT
1OfPqndRvb36bVCfRSr3qtyk9n+qD134geqdVT9C7wapXK7n+mKsn2+nVaEr
u2r/v1T9GGyN2ttWhfwttAxC1wOmbVfr6vvUZ2EhflNfbduGXWMe9kjbCI07
pxA6Hx2DrmFOdBN6Fh27Tk9e5/qM1rJPexgvur9WCbmhDu++Vgx5QAberQ49
u4TzUr8R2CXxRg99t2c59nhMFjwD70AP3kET1nJQt2nMNdIVV+u5X7/f0rsJ
mv8mtXdWeVRV6Ip3zf/3Vwc/7q0NnhytcaP03Kt+vTR3bz03FEPfFrS2TdVh
W9nX2urQjehFDTlIv662U90t25NM5yet0x4x/yKD6FL0qLZxsER3gw32FKOO
Dt9XF5iBNvBJ0hC6dHN1rGexvrFStLpZc9wjmmxQv4m1YYObtJY5es6uChml
nqj+eiV0xr3qP7869o7uwJZsysecrdaZv1DZpDWPqA39/Lc06h+r/KueavU5
XOUzKkeqvb3KT9Oo/7ES+gU6z8sHFtpDXW13V0e9We09tY57OEed7WZ96wW1
90VHZ67rfb986BF0yMAkeGdjGrYIOkKrk5PQc+vV/s8a+0f1P1Vtf6qELW1K
Qr9eXRv90K8l0XCNysFqG6LnRdFnmMa/qbYLVc7OxzvaL9bv9Wq/VOVzDUFf
aIsdhG/f0Z5Sz5OYp7Hn6HZ+M8/P1X+K1rFC72o0z249v1L7l2nYf+rggbfT
wA/ttI+v0ljzikrYa+w4urqb2rrWBt+vEB0uqw1dhw3E/sHn6Eb04mV6fgYG
UPs1qg/NBdYDh4D7Vhn7UZ9rTLjQOpu+yPNYfWOpxm9ENxn/HJ+P/vQBU8Er
8Al4ao7r8P5T5n/ahxp3vV0MPYLMNpUC32zTd84wZhqk8ph8zEMb2LzZfZ62
rT9a9JldCvyxFV5W25Xq/1kh1v+497DIdXQK5ULXn7Js3uR2+oEvOut8X60P
e7rJfdCTv/de6D/MNGLvO1Xuqgn8cCHYVN9v0RrHaY7x1ufQaZ5p+2SboOdG
fasBzFYOHUJfxhyi9zj3QW88aqyIPvu919DcJvhwZj6wxuCasEfoJHAYPgX2
YZBtB/K1yXvhDDeaDtjBZbaJ72i+LW2CV8GEtGPf3yjGN6+xHbzUtg9Msl3P
OVVBJ+anDz7PzrxlHPymZ04+5mvxty5Q2/CGwBXLa2N9rI05qPc1/tph2sKn
+CDwxd/1/W/qw0fDP2CP+As79cwrhE1/uk3gY2wTJfKALGDDqWPHwSZrfY6r
LQucUa+6GEN/eH2D5YWz5bwLhZCZVeZPfrPOLuYrzggsttDyMsIYcqf3cpX2
u6YQclk21gRTXSoMNbsx1tUkmm+0XoZn4AXs2uPmU3gbnYY+Q0d2TKP94TTs
bB9jvh2i8U7btXEN8Rtb+EQx5OaTfNi9He7zYiX0yaAszhK9gR7Zpfcf6nlA
fa5tiN+fw7een7mvdDt9WlRu0/NKPs60r/UP+z7O+uicNGxlTnJzVUPs9TJs
Ob6k1vayfl+o9hUqf1EVvhHnwVmg4wbazi5Rn8V69tbH71Ose3lONe7F98Hv
gaboUWiJ/hyUxtq+077Ptv+wvxL0XmKag/deN/7bq/FbC8Fv4MwD9im6eL/n
VgX9ni3Gu5Fp2MC2ScjE3HzIC74PfAPPoB8HeZ03Gt+z9l4N4Uvt1++BDYEx
wfuXqH5xQ8hXo20rdrW1Enr5jizWgy7Dvj+scfdZJo805sH+1+FXYourg87I
JFi/xefGuvnWTq95onmA8x+j52/5wJmbVN+op6JnbEPw1OVq7yte7lQJ3NKg
Ndyp8od86C5KbGulGGvfb11B+V9VgS0P+rfoDbUv1fO16D9Zc/6kErgPOznf
fR7SPLM1zw7VF6m+oTrWh3xDk6G2I9gQ4jwvV0IO94BhVC4vBoa5SPMfWQn7
dG0SvNpH5QR9f30+ZISYRqtpCvYCgz2aBs4Cb4ENiFEQn2AdYN1DPt/EJHj4
MJ3Rm/ru14XQCWBvbNdnubBl1MHhLdbPn9pPxV/FD1uYBB92UFlfCFwBTz2k
31ugjcqfZGHX8CdWJDHu40rgIXDRbLXfn4ZMNifB01v93W/SwJMzNMeIJHyn
7lnYImzSqfZf1xrrbNXe32sTcnp3Eu3zVK6rDb2MTm4txN6Yn3gRPA4ePUk0
b2oMPQbuR18ekQVuJ8aEniHOhGyDb7dVgk67k4gDfO5YAPGu1/RMKAQuICaB
jitorqc0T3UW9N5nmmMroNWsfPi6+Hz9NecRhcC1x6r9vjR4oHcS+nqNdVdW
G5iPMz/J8RLk+EPrQGRkajFwMLKEbuhiuQIT4POgY/Dl8JfgLWRituXilMbg
dfh8fCGwOXp1iuacUx06sUlrbi9aVCURD/zKMnDAvjP+BnbwD23C5p3lWNvN
WcQaltp2rK1EvOp/KnGOyF9WFX362dY8adsODnhU6xpYiRjPVp8rZ7pctNqu
+iLjXOroOLAJGAI7Uta4KxsD0+83RuB7l9qn7mk7/pVtObTGDjOWOEaL7Rr7
n2O7UNZ8JT3PN0TMo20l7CK88ZhlChtHHdvHw7vr7f8ie+ixbhp3l8YndfH9
LV5Dk/n3bNu1Gwuh58F5YIILkrA/2CFsVmt91LFH+HF7bM92GQMwhpjtXp/l
D/bT8NEuzmL+iVmsd6HX/7n3Q/2A1vjLxtBt6ITdjsmMKoYuJ2ZDnI0SfDWm
GPoe2zGgIUrwbX0WuhG7cXZDxNrAvsSE9jku1E17nKax25PA12cWQzdN1Zg1
jYHlp2bhf07PQk9zDmDIkjEcstZsWkLD0zR2kcbuEg2mV0Lnom9PV71zJXQ6
uLTZtAfn4neBdTs2hq1BhyOj7S2n+BDEINDv2HNkFX6t2DYR51yMf12MWFz/
LHzAO1UenkV8hjjNBvsIYAz49LhK8Cr+9ybbuE/SwPNvpjH3Jq/npFyspY+x
JTYH2Vll3HrQv9GYF7SGASo/t6+HzwdWSI0l6vXNUY0ht8y/wetHhy0phu/9
un1wfHF4D/pA27rG+A0fwn+L3V7rubt6jdANPwufrIPX3D4Lv+D9NM4NXMq4
FZZj+iGP6ENksjoN23NcEu/AMsxDHJ414zOeWxP4HmwPtu1SCdoQ2+50KDeh
9g6NMQa/Z6z9IHTiM7a54MNfNYQenGm/Gx36mWUE/bPTOBYs+pQxODr5qDTq
T6jcnIQtbUlCJmsbg1bgFuJHYD7a6tx+n2MOxB6mORZEDIbcSLtK+BHE79DR
5ETAPs8b/4BnnzOmhS/ZI3zCPqlDH8qObm8pRp6Ac5lnvxH5bLafAU/2a4iY
IrLN2bLO58zjHU1DcBIxB2wJPI6MEuuYjl/rHAG8Mc+2jzlqPc/f1f+L2pD5
/ap/WRu4rZIFTkqy0D1dK6F/kHV0L/F8SnQxGIyYHTksMEU353MOnlFN+ELw
E/4m+mlXLrDqcusf9N8E61j2stT6hLmpMz92Ef0Ehgc7nFAJW4XcHF8J2QEL
LDcm72u9xDrJYXFe2FNifJwnv7HPLxg3Y69bPJb1UAcPL3cf2j8yj3LG+KD4
ovja4M5njY2JZyATnCn0hc7oMfZRts06wjoM/YH9LpmGYGziksjALY49ghUY
u8x0wA9e5jMnBjPHumZ1JXzZlyphh2+3DJNT5Fx2JKFv0CHoBPAauSiwHDFp
YqDwdXXZcbZc2I6Bth/4Mf0bwi/A/yDGh9/fqjXurQvZIkZHPJMYJ7EC+mN3
8GOYZ679mgENP843wH3AhuuM+Yi9bXB+kZwr3yKWyPv1bocOxAWgCbYXG4z8
4nf8UBc8jE3sZ7t4u/O3LxnPp451wzNnmw/JW7Z1O7aRdvQVZ8j+OEfyveR9
yREzL/YXH6q+FL4Zvs2/pYFzib+SizjL8/BN5sePeNXt5HfakVPQM7UqfLfM
fcCTtIMpyePQjzg282TeCxicuAq4qJZ8XCnWBJ2gF+sY5hws8+Mr3VYKPwUf
qMX6B/uw3PXhacTTC+KZC9Lwd4g944+jr/AlGPeC68s8z3DzPb/RX9/XxVnA
S301z/NgiUro1SmliLHD48TZyV/Dm0tsr4nLvuU4FG2L3c44xiPDU7KI7ZJD
Q09P85wt1vmvJPF+jXkG2Z/qsbS97Vz2JPsb4EPaV7v/ao+lD77RWreTe19i
PDfFcXx4gxzFcsffWA+5BGLtxPWRiz3GI+gHbGe9bWxv6wHwPPqKPP8q43vu
AnBXgPsA3A3AH5hrfwAsCSbGBoJ3wblgSOroImIGl1hmF6SRd3woDf/+EscT
sLHYWmwWsQ/yKehYYs7UsWvEEI5wLm+ifR3asRnYDmzKRY5R8C349HDzLf4R
Yx5wPOE617GZEz0PcYgLzcP4BsyFP0Ks8SLPiYzRD/sxQOc6THt5LA3dO8Y6
c4t46wJiu94jMoSewX72sy3ILPu8Y0/tnS9D744x3fDniG3hh0Ij9sW6Rlk/
06dLbfSBbnybdnDLYtP0AeOBq4xhrjSeoT/fhaaHcjJHmrbg9vZu310d9IW2
0Hi669xRIV7Gb+6VcH+FuyX4kug8MEBebVWl4Cnk73vrQ2iHrsD+YnN4D02K
4KtS8BPxobnWacSr663TyPPD84sdf0L3Qxt8urtd5/4Luho9i75Fl9FvgDHw
15XIu8Lb5C/BGjO95k+MycBj5JEOt67jNzgN3qQca57BDhOjwRbDq9f6vK42
rqMPd2+IE/ENzmucZWRXGnGWLWnkOcl7kuuENheYD4lzTvCZImvwZ5Nt/3if
I/hzvPuMNw6lnW/mTf/T04jlP+BcE34x+hQsBiYDq3OW2C/Od7/Pa4bb9rod
XTDS+oH87yj/5hllfIgd3mdbDM+A7aaqfmw5+Ar+OrocdoIxx6Xh3/2LysFp
3AUZonJbEryHL3heGvGs89OY72vPyfzYQdZOG+8Yc77vT03WvoaWg7fQWcPL
tnHk4MqBG+DjBbZzxEn43er1rxR/vtYY/hf8yBycA7lp9gGm2FcfY7D7+FPE
YME4fP87rxN/4aAPK5qPk72YpDWMzUK3EM9Fz0C3Vq8Z3HVTKXK+6G3oSa6W
/DC2AxvS6u+jW8ifbHa+9ZI0cAv+MXdliLnD15PF90PtO8/j/lcp3tXZ38IW
YP8WGUs2l8NG8xu/aaVjXOCR13x3gtjJG45Rv+46OZqT0qBDnzTiMK+7fUw5
cmrERLFJ5BvQT6PU/ttS/Gbf7B/MCR2xt/iQxBCJObya/Pi9sc77IOPo2snl
0K38BpchA2Az4l03e058hBtKgUdvK4eMPGRacqbgTPKbr/j+xnLvF6wETrjF
58JdjxW+79HD/bs7L7rCYxm30rQCX77qO0UT/A48j+7lTgA8uM84lrNe7vsG
rPcBy+9G0WCy6v+q/XROAuPgn4Fz8LNm1Af2xIdrdiwAPLnGsWNihtgm4obI
GfeKiG89nkY7tuth53SOyuIOzLnOkU13vGWAyvlptD9ILiWJeYemYQ+HOCc4
2HX0TB/HtIlrgutn2B/EL2Td2A3OHh4gVzK5FLkT6j9UYj3kmvJJ+NT41uiw
N43N4AN+E3u5tRRxcLAlPMI6eH+gEnkW8i3Y3VbLDngQeuIHzfB6WBt26GCs
LB+xBnDS+OTHdc90/AIsxVjyC9O8F9Yy2HsnXoXsIXfEYO8sRQwB35zYEf44
d9k2O3bMnbsFjiuVs8gRcheSOzjwMLyMD0iJ/cH3usu++vY0/LoTkljXYq+t
q9eJjJMfABviK3LPBVm43n2fd398MHQM/mkv30mhbZDv/uBXs1bawFDfVyL+
RV6L2DfvaOduEftl3xNsp7Bd7ZLwa8lTzShFbAWacGasj7URa6Gdew7rnVcB
4yx0fBX8g/86yPEf8pXEgKAndhh7jP0d53w4cW/uIc53To65Z3h++Iw21obO
RF8uMYa60jiKu5+bnF8BGxP7nmUfHjzJfsE76JP/rApbg8+Dv4P9wQ7dURX4
eagxNHZqsLEUJb/R/xs8Fp3wpuN+DVnYruGek/cH6/YVyFngO2BPTqwNm4I9
Gew5rzZNwNVdnePAp1jl72JD3/VY9C1ld88D/h/ie8L4erTTl/ut3CEjboYP
3d8+9QdpxJ1/lgUvwNuTLDfNvj9ADJJ7q8Rdu9VHnXzAK9ar6NJ3fWcSrIhe
R7+/ZEyOb48uHeq1QVtyd08778BDPIZYGXdsuceG3ND2tO+vEuNlPS+aJt2c
9znOd12o3+z8xZlZ2NnE92qGOBfD2JHlsGHoMObMnKNJfTcHu/yG7zbVaJ7R
ZdvCYtxXHe07q/ASfiFYHbsIX8KTzJP5W1Ptt9IP2o933BJbjk1H/rgnxh0P
8pyHzpuz/v81EbtPQ7+fkQbfFowV4fcu3jtl53+gSWfzGGUX32/DhoJx4Xnu
CI/0PWHiucR1O2i/f0giv/J0Emd4u89xnevYcO5RdvJ9bNomG7sz923G0Kv9
LbA0cnabvwttmnyO3KM4eGc771yu68gS+I7c9CHfFSw9xHelOCdyIonzGuA6
sC9yge91kf0veP9E8z848FhjQTA8v8ERxSziYV+SG3duD92cs78Brk6z4Hfy
YLVZxM2InzEf8+APnuCxdyaBl8HN3Ldsm8WevlX/85LAE9dnceZF3+3BX8eP
aqoOWSTvS06EeyLcVcOOHplFXpj88JpK5DYa1fbTLGJ33C3C52JO7gTgx1U7
LtdsP63JPt+Xjv2C8Y/1+kelcfdxQhZ2n7HgE+7AkqMl1/KdY7/gZHyKo+1X
4KPxe6T9hU7eO/oA2qOj0EXU0Q+cy3vG0pRbXece0FbniPGt3nN/6AXdzk9C
9+yyLjrZdgRfj3uC8M9ltpvof2wn57/NayBv8KTtDuOe9Fhi4k/4rvv7lfBP
RmehI9/3/SX0yTteD/y13Wtmj5vdDl9uMbb/UxK55JeT+E0fePUx5+mQx3GW
X3zAIUnkvv87ifhxF8eQ+a9GUznsKnfq55bD7qFzt1mvbvM9K+q8x2dAx0x0
rnB0Gt/f4nUyHz4D/gJx73d8p2uk9SI6AXlALkpZ2HPsPbaenOduxxaIHdY5
frhU2OniStgH+I+7KeAxbGfRsQLaerqdmBg5Tu6h0cY7YgPECoiLEr/t4f7I
MvGGGs8Db8Lf8Cf2hFgXNqXO8UzkiD31dfxnmG3vAsdPKNEtvD/Zff4iun+s
9o+S8Cvmuw/zIc+p11D0t7D7+ALESYnRMxc0RG8Rx5pn+TrC8RnwQDvHuND1
DY6TsPay11y0HYB+xGjQQeifovNo5NPQqbxDlx6Wht/VLo2cPjYC/I98M3am
YwL7HOtGd5IHYJ3kBL5xPJx+1NEJfJs1cBYH7x6W4vcd9p/RsXyHuwP4OeiV
Oq+/0fGfedY37Av9TRvzoOv2en/wAHeZmIccHLIC/bl7UW/cjD0FW2MzkdmH
7CuyXmzpn41XiX/sd8wKv2Sy/RHosN+xEfRKD/MSe/3a+wW7vue4Eefd2fkF
8rncqybvBu6eZD+UdfdwzIfc3DavDcz6rucZbbyw3fgUOw/mRK7xUfkGsV38
E/AVPIO88318bu68Mi+6tdbyhb9TsE4mn5x4bXcaG/NtMMVs44oP/sH/YC3s
hfXMtW5gz+CIKmPjfpYF4kXIWbVls8l6Av2DT00JtsefWec6/0Ei7nBtFnHs
LcZFxCRutX93s+MkjIGO3JPDN5luPxhf7J1K3P3kPxD/B8D1NvI=
          "]], PolygonBox[CompressedData["
1:eJwtlndsllUUxi/92s8C5XsHBQERg0RQGUqAlqYFpIwgw0IhaCNaBBRNZcUY
NUYjoqioqYMwFC0YTTBxkoKJyCwKEctUIugfBogGBbRM48Lfk4c/TvKcde95
zz3j7T5jXvXcvBBCA5QPXciFUAuVXxFCXSaE7XEILa2Qg5vAlWkIJa1D6A6N
Bp+MQvikIIR3C0PIwGeTELZiWwQVgC+gX4/+A/QR+hFQecZnTAG/zJm74Wej
34LtdPg94BPZEI4mJuFmZLXo9sL3w/5++LPgTcjOw38PNYBvRdYfPJSPusR5
D8aOZRDfthP+KHQW/hi0Ft0I7EuJbzb6SvBf6AfiO4j4JhPfRfgN6BuhCvR9
4eeTnzrs15KjBmTVxLcD/W369sixreP8A+Du0Crs69uEcIQErwYPR3Yc/hjU
nhjque8sPmXc9wX8uYy/Sd/WgG1R5Lvu4s4ziXPVB/0ocBPnPYA+bkd+of6p
c3UM2++QT+CMOdg+DE1F1w9ZW2gWNuX6TvQ9M36DpZyXQbcj57Pu5t23oT+Z
cQ1sBc+HhuNXUxTC45z3Iz4H+f71nDcY3RboIvY74WvAq9A/SixV2LwFXsPZ
ldyxPOscjEpdS+XQY+CpkXOk3NzIHSORTSt0zah2SjjjwwLLPsO2K/xI4pnM
eavB1yO7hH8z/DLoNWJ4mvtL8H8dfACb95DPwf8ieBk0Lusa6AI+hf+n4I+h
wYnfUG85HpsV8MVQkucYSsH5qWs/H5svE7+J3qYMm3/wzXDnLmx3QpPQxal7
oRM2u+CHwsd8exUxJuD3Y9emekC9MD3nN9FbVFADe/BZRSyN6Etj92peZJ16
dgOy0/if4rzDyA9CjRnXqGp1TeJclSIbhm1n9MM4Yyx8LfJqYhhIPK+2DWEA
+hdU38E9sATcClknfB7Bpyu29fDN+NYRz3bkVYl7QW+it3kWm3no9iG7HX5K
4lyoJiYn9pFvE7Lx8O8oh/huRHYNvis4/9uMe1a9OyT1WXuhqfoe9EcynjkL
wU+h74t/CfG9CO6JT03OtTDrck2qNo/D/4R/FpuXwD3wKQB/jn0lsdUj+w19
e/jSnHtFc6cX/jdlXSNl+j740mDZk/C9sH8+515Vjd8QORbFpJqckPhbh8GP
BS/mzjbkuxnZQvAZ9T9zYjfUGdwl9myTTLolnNU7cr2obq5TvvC9l7M/ArfE
fnvJeia2XZdzL8mnWDnNesa1B/+OzRtZv/FmbA9Fnh2N6k90NYlzrR66Azw3
da9qpoznrjcT9/YkaAh8u9S50/cWpZ6Zmp3aAdoFTZrJha5J1aZ6UL2oHqkG
/xd5dt+Mfgz8/sS9K58LiWekZuUh5sMM+CPcuYjctEBjwMXaN3xvSZFn9DnV
CPHUgreh6wadz3m3qebVQ+ol1fAr4IGxZ796QL2gmabZphmxXLsIqi10zXwF
npi4l1Szedguhq7MuCZUGzn1e8ayvvD7uH9a8MydK9vUse3nvE6qhdS1+DV8
29Q7S7tLd/6q3sXniYxrfj18l9S+g/DpDO6TurZl0zv1jNasHgC/QL2U+G01
0w/CV8TW3ck9z2E7WjsOvoLz/r2cS+lko5zOTLxLtLOK8e2YePZpJnZIVJSu
be3gcYlrUrWpnVaFbkHq2aIcKBeasZq1+ofQv8RM7dzWftPD2N8SexZoZmt2
z0n99kvR/xD7zfX2mhErwUdj985D2NRh+3bi2tTO0u7SrizLeRdrZ/6M7ES+
d9Zm8LWpa08ztEfqfx79+8jmF/BEfJ+JPCu/Iea/I8/6DcR4FfZlsbF2onaj
Zrxm/T3IToI3Rsaqid3gq1PnWjXaDfwHNvcVesZr1u+P/G8iWQv8ysS7SG+k
t1qUenZoxv4J3yF1LainO4I3XZ4V6vnT6Funri3NuELw/1MkUmA=
          "]], 
         PolygonBox[{{4749, 3970, 1484, 2314, 4668}, {4636, 3703, 3861, 814, 
          4154}, {4626, 3700, 3882, 2320, 4670}}]}]}, 
      {RGBColor[0.7179833325324133, 0.5560324810816788, 0.39700021346337366`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQVeWZhk9v997ue2/fc66CoLKYCEZxjCwWEmsCRCWKgNFURVC2iKKI
gIgaJSCCW4SJMe5J1WS0MoFmETWJmZoMOwiYRFzjDCoIjaggNDRMVVRU5nt4
X8up6lPn7+/+67e83/KfU66edvnU2iRJXq5LkvhLhsfTKwgj4j02lyQXB/Ga
aB+I9/V1+v87WZIMC9r98d5cSJJp0e9ufismyduNSTKzJkm+W02S5fFbNd5f
xv/74+kZYzbVJ8lTDUmyJ9a4M95/j/5TgvZJjG+J/9uDPj/GLGlOkhnxXhtr
3BXzz472gph/apPGr4n2WzH2xhj7fiVJHoz5/zWNeYK+PfrsCvrheGZ431fG
MyqeUo3OAO3kaA+L/rtjnjkx56BykkwK+i+D3iPm+ifWjfUb4/1azDkt+nwY
9E+jz3reMfa9oO+OddbkdAb2Py/eK+IpR7uFdzydo/1mo84Lfw7E0xZPayL6
W+YDvPptrLM33s/Efg6VkmRnjH0yaIejPbteD/R7a7XGrJh/X41oh92/S+xt
Q+ytzBlDDu1BH1Kjcx6M9sx6PQeifU+txrZ7zqHRvy3aF9bod/qvqlW7zf0X
hHzODL5njTov+zhaozVfjOeWmLu2TmdB7jfFe329+Avt331G3r9ze2JO/zNu
e/B9e/x/Wsj9e9H+z6CfH+8L41kR7UPx7hZn3BhrVWLs2fH/zBh3WcjlQIP2
MCbek2OO1jrxiLl/6/k755OkUzz3oevxXBRPs2WCbDrHnpOYf1ucrzHGDCzp
fST6TY+5b4rnpThPr6ps4Mx4d2oWbQlyCdmV4lka7bYYV4hnTq30fnP0WQzP
U/1+YrznxPxHm7RGz0y62x70GoyzVvZTE3u5Nfr8pV72SB/0+Eex7qfN4l9n
z8nc10Xfa+NZF/2ujvc18aytlywmNkkez8S44SHHX8VZJ5ZkOx1ingXRpzn2
/7foc1WdZD479nB6tJ+Pp7/PSJ9Xo/1g0C6IZ06NxpR99lfKatPnljrx5Moa
6Tt8Qecvir2Ojt/ejnd7pvlfq0gW2Cw2Qv83be8z4nkixu6IOWfGvg81fm0f
vNH/24Pe2qh+Jc/TCUwL+oQ44/ygDy3KHu/0WTkz+0TfsRN0fkO9+m6J9oCS
+q6s1XxXem/358Uj+DO+KP1grl/5XJxvXFE0eAOv/lEvfk2uSqatqeR7W5P6
YEtgwV7LHRr8XED/kNld8b60rD1wvudDZs/Fsy+Rbo+2LMbGmndYhmtCT/8j
3ucHfUlZ9swZW0rCC/piO9jNvKAvKonG2I9jDy8WhRmXFNXeG7SD8WwsCpOw
ufVF2f6yaG+I9m3R3tUoOnMvjnUbYv8tZeHS8HheqBHuDHP7JzGmvll76xJj
To7nlFqNgX53tDvEnr4R735x3nJBY8G3Dxq17kH0Idqbot3eIN3fHe1C8GhH
0NcVpUc3Bv3DovxSOZ5SvfBgaqzzVOhg35j/jqLOeCDGbYvx78YzLPosi/3k
o9/SeG9q0lp3eu8N3j+/5ZqFM7zpj37Oqdf/tJsKwlzwthjvSwqi3WMsRq+Y
/7iQx7gG4R5tsK8l+oyPNR6KPg+FDp2BbaaSZ7UkPP5Z6MPwWs3fIdod4/lD
jeSCTG6tl56j44tqhVP0Q096x+//nFNccGU856L7ifzhSSX5ROTOWujNuLL2
M6pGeniidRHcnFurdcFdfkM/4SU0dHioz8552wIHJkR7ZUVzdDZW07+D94/9
dPI88OVE9znBZ+Qc4O4JbkOjfcRyYSw6g/6MMP5j6xOMkyPgW17+q1Ot2ujb
4Djr+Aada0BeuAamrYs9P0y8FPzvHvz/pFH9FjXIR+Kfugb9o0bZFXrJvtkz
skTG6M/9jq/+FmdfXJK8mYe50Tt8PWPpz/h/S7WHlfF+OMZeEDx6KNPezs0r
BhoZePFO0LcF/cZ4d2uQTwG77svL3olzkCe+6eyi/MQ0P7Qn2c+zPlja5riO
NnjY5vbR2Pea6H9xrNW7KF/D+M8r8t34cPxam/0sunnAsRC2g/1j44PLWpt1
f2y9Qt/X5yUbYqolMXd9SXJ+FWwzj64P+gdF6TU4MbYg2THuUo9dGn3HB71j
vFfH2VflFAewl+HWh48z9flzRTYJnX0ur5N+dnPsxZroMP4NWYDV58W+vpVX
LAqu7y0Kxx9vUuxI3Hh99LmupPZjTYpf6d+9Qfvs5lgZmRyzqWbFGS/HOpOj
fwL+Rv+x8f+YsuwXO14Yz8jof3P02RNzNiHbaH9UlJyHxrnWxtzDM8UJRwuK
B1hvhHUeX7GtXv4OXUQnV8S7R9Cfjadv0PtE31PrhAn4iP0xz+3E+HntkVjo
c2LUemH8lrLo2Av6/KrlBR622xbA5p8Yn4mV2C/nB7/hERgO/qH/2M1LddoT
OQt2y++cn7OCU4zfH3vb16h9nFkrudEf37jfWItf2Bft6fWSHXHQX2slo47R
fjnaPaN9Q5P+755p/4+G3fUI+mjHTv8V5+hVJ7zEJ7BPzvZEJvq5qbB3Z6N8
JXkS+tS1TjEncSCihVevOHYixmlvFJ/QgS2mfxHrfR5PvwbtnTPAt5qYpzae
YtDfjt+35qQP98QeNsU6D6TiAzwYFE+XOtHJ/ZDn5nj6mE8vmVcLUtHnx/uH
VdE/q8ge1xkrwcbFxscung/fQTwDdoAP/xv7/06z4nB8KzHbbPtDznef9aWt
IJ0hpkZ/0aWjsXZTjDs11XrgMrr6dF46Rx9iEsb+NMbtDNqOvGwH2mzr4dCc
4kziWXza6dbhFc4V2OuWTP70YLzfaxRvpzu2fcXxPXEwfSYmiouIG4mRtkff
d92f3GGO8wdktN30PzdIV9ATZD7HOAZG8ttViXDgrJzwinjwqDGWuchNbq4X
Bn9pelPIY2izYqZvx7n75hQ7oR/Y+7WJ8iriGLDybK/FHojzsAds4aOK/Fbv
TNjZybEWPhO/i988qar9H6kIq0YYrzg3e0OHR8Rvy2M/vy7KzmZ6/lcrwpDp
MUfXTHvplin+er1BOIzNHtPhRHnbl64h4EePOjbmfP18xm0x50lBu6Iq/7PK
5/2f0JWbYt5zg35y9Jkd+3mjoBgWzCKOZZ4+OdkCPhJf2SP6L4ozLYxnY/zf
FPPdVZJvgpfrPD/4Cqajo328LjWTfzimhF83FLQn+l+SaWySKhb4sFF8vyjo
qzlnRXOs9jyfBv33Mfcb8Z4bY05D31PtCT+KD70h/l9EPhHveZl4cka0N1VU
g7gx2sMy6em6oD1R1HkHx/8LCzo/Z5+SU3xAznlmjDk+xt6dSc/QXWI4/AI+
gfiQuBh7IzamzrGhTnpyJOboG/u/ItFZ+vjsxFZXO77akaluNCoVj2mzLvKd
ZxmPKSomw49PdD6LnyK+Jpcgxk4zYU0l3tVM+PV6qvVZ90eJYgjG4R8Zt8Rj
p+dk86xHDYSaS7sxflKTfCu+cYPHYqeLjc/4A34nJplfVF1qk+NozrfQ+HxO
0EcmyheIO7Ed2qxF/M96y0wnP1hmOjqG3SKzc9yGn+Rt7J9azLM5xehgLHZ8
tnGDvVArw39OKqlOhc+a0qQ4ADr56HTXMYgjyIXYPzkU+RNx2EmpfODOVDnX
Uudd+NhdPiP8uc51hqmp7Br7BrdaXPvam6mNPpYKynPuzauOcrP3MK8kv4XP
Yn3sDVtD5tdZ7uABuECf3j7vMOMSvMV3TLbsXrTsiAWR36xMNoKt8Ptkyxe+
3OA2NrzbNZyuDepPDgh/JntO2pssd2Lzxc7L4PcU8xb+POY65P5Y99H4/6VM
udYB59fUMIlfqYNs9LzMSU0E2hzHsZwB3iKPg+YJORk6j9wXlpSrg9/k2eRj
rAGtxTn8jY4VX3QsSk2BOhLx/0KPrXcNCh9EDk0Oz3rkEP3zqjVh158Z5/Cr
7+VVRyVew0f+MdpzS5IlMlpvGSxyvA9eHatlFdUHGeNHtzgmnJ8XxhIzNlgf
6EPfuaWvMXiu+7T47GMcc+HL8WXkvy2mcwbOwthTGuRTwdClTaLf5ni7m+lz
vffPXX9AD9CB1ky1m/GpMADZUY96IK/aBHLBDzIXOk/d8WHnB9gquEMOzrvF
beS8xDxPMsU2xDjwiP3g7053vW2U4wQcIv4fW6ixf+ScyBG9ysLGzmtWXoMf
pgPDBmXCj59nqo8hsz9aFvCCeYgbuvi81L9p41vPyus3/MV3M2Hqgkz28rhr
4NTGpjhfaHZth9x6jrEEvKVOgH5SlyAPx6/gU7Y5XuJ/+AufF6eqZRBfEYux
X+p5M+yLZnjsG/aPp1RVy3+/Uet9n3wuJzx8NFP7HOPTxTnlL+O8FrIlVsXf
DTKP4NUrFekhegKPqEMTOyITdKyr62ZV19CQAzTa1N7vcN3oTzXKP9qcg5BT
THJe8buC/Cb+k5oBtQNq2q3OEY7VZ+qEv/hW/DH77IXPLwiT+e008ra8MJna
KOPQhwOu0xEPc+7v++wLLMctFfld/D5690LQp0b7h6l0EDp28XzQb6DO6BrC
FNPx29McM0xxzEDs0JDJ3nKZYlF0iJgDTG0yrhJj4oPnOS/Cht/NdKaO9jWs
M9Vr3RIyfp1cvqo1p3hdYgj2sTqVrXwvJ3v5BbFltB90XQQ6vphceXRZdz1g
OTk22Is/GWKdGWJe0YZfQ1wHIz8lFwDvnitoXubsm1e7d6389fmmT0iFA9SH
iEGJRaup4g74Sb5BHNjVOnNrqhjrtlRybylIvtgYtQJ8E1i9xLFIsao+TVXV
s9/0XRI5Ef2JU3hf7zaxw2LHD+RzzxSU61H75w5gl/Pfic6B0cFd1kPiiEmu
V2Bn2Nss1135/zbXh/eaTsxPjE3cv8ex7u0e+4HtFBrnL7te/VHj13n5HvfH
H33g+cGT3R5LXkIeCU5Sn7/KNfo25/s/9fx7PCd3lPS5yTgFn/Cz7Pdjr0We
2Oax3E1x/0iuwV0XuXpX8wyfDt/wWfgKatfcYXI/yD0geTm6SPz2mXP0a527
gXPgH2thm+Sl+Bywgbk6uk5JnfOvoTePxfi/ZPL7j9n3c75jsVCisfuNLdRK
BroGiw6io+gh2PVVvnuc64rELci0p7HoOft28o5Hcjoj8RXn5H98KzbyiOnU
zdqdg5DHH3KNglrFIePeu657DEhVD6EuT51zc4zd5PGHXd+Azj0s++ccYGE3
4yH62cM6yT0fecIs8qBM2Lkn3usz+d3LU9lVq/3vswXVK6hn7EhVq5mE3aSq
H7dWhAdbfYfCWTgHcTg8eMSy5p4FXwNuEstsNP7gl7APcHef69nk4/+SKQ/p
lEmmHVyL5tyMhW/U0am3UuscZV7DZ+SA3qAz/N7bNVlyypq8cmX2wp7Ie9/P
RH+rovrEFtcoqA1ucT0QGRNrvmwfcVlZPvQHZbUvqJEfIeZ/0PXwtc5pwBPG
cdcwwpg43HlubV77Il/mbAdrld8scz6FbVJLvMn5MPV28h1kftg6Qy4DxqJf
xJXoInpILYDaLPVY9si+2Sf8ec6yQGcG+/7+OfMEOv6GOhc+HbvcbH3r4fol
57grYqVTK/I17ZYNcqGO8s2K4h5om30u1hlk/STP2mz/Qa1poH0KdrHGa1FX
O961MOrY9B3le+ZVXov3are3ev/oIToxuPy1TQ/y/HxrwPzwZo3H0l5uHefM
g1PVVaiv/L0iOfWuygeCS2AC9yHUp8Ca11L5rk8qksOz9nfYX3ffQYB9yz0/
9aqBrlkN9x0c8R61JWpM1Ae4n7zUeoX80QNwd1bw9sJm+XL8JnVk9sV+GU9N
+Jux15Xx+zeqwkHmwa5OdW1ylDHqbNevTq1KZ/kehPW572QP+K9W5ybUKcuO
o7pXZTfUjfAJ+AZ8R8+q9gH/qMGMtR5eXpXe9Av68kz3Kj0yxQhDHFORf+1y
XRdMaLXfZA7Owrcn/RzDnFPVugPsj7grwO9ie1/ZJOcmTyc/pt4LD35gfpL/
Puvzoz/oEzaCn8H34Hd4f+E4pL990kjXE76wT+pnnLnCfuqI29RHz3DuAYYd
sW+YYZxjj43Bu2uaVSNEZ7cai3i/7Tay5N4O2XFHf8jfsYCF71pPiDXOc+wB
bZvp5NaDnV9f4ntS7mHwueRd5Fys847XoqaAzsGfE12P5p4Onl1qfnK/f8Df
wBAvMx5sJJ8dZ785yfHSbuMV2AZmsWaloDtV6v7U//tUdbczzvc72EKz77KR
G/c1yI53Z7e5A+F/YjlwurPvdKh3jXXNq3MmOQ2O9xup8P7NaG+t6PuPP/m7
gvH+tqDNdW9igL6pdBWdpZ4KXoAPhapyhsaq4r+hvvsY7hr+sfv0OrXJYfHh
fGOBH4eX8BRZUKfK+e4bfB/mWv3WVDnMhKru38b4Do751nvOEW6zJvZxu/PQ
6TFfpaKYjlzvdud7nexDB2bCwJ2u51PD7GosAvPxGWAmctzpNvd1Tb5bp05B
H2z5Pd8L0Ie+YCpt5L/DNQ30ulCRbv93qm/bro5zPVnU2uTCyLliWRetm62m
g4XYY5eYo7minAcfgh/Cj1A7vcPfTvCe6buQmabDc3Su7G8b0Llmz4meF70W
97cl19PAl2N7T/R7yffp6/3d2rpUtYG0ovzqhEw4cl6mmmq9v81oqCovzVWV
+za49gLmnetaEHUD6OTFYDcYDiYfw+e8fAnvvm5zLzrA99H9fTdNzQefTX0I
GUAbYPr17sd5jvqel3znKdej6FOxrcEb7od/bPulvk7NndiJ2GWs70aJXZAx
c07z3SD++8RMcfHjmb4FKvvbJ/K5vvZNYxxLjTS+jXabejpY+4tUa4yxj95j
f09eOdr3s/TnN/5H38ATsOwF32V82zkyvuA05/LUlhe4vgzuznP8w3cr8/3t
CjWwha537fE9LPnOmlS2vzZVXesuy3G77zrJQ/DhxAH48cvsX8D2Xo6biJFO
T3VPkK/KfxPDgs9gJxiK34X/4/wtCva7zjVBvqP5jb+l2WU/x7k437cca/b0
eZlnof+HV/jktUXZ3rEcwXE5OdK9zrlWV5Sj/zxVjQEeUrO62XcyYDA85bfB
rnGd5T7zfad5XCb/UrS9UIva7noU9oVtwfP+vmfkjC+7ZkCbu6RL/t/3UcN8
Fwi/59tPkYM/7TtKsP4p6/A79pWcHdrTnh95Up9F3uS7zElODf782tgHb+AR
8QO28IB1CdzAX4D5fDtHrfmrWiNt6palkOVicCremb/X5bvdoZ6T71ThG1gH
xkIb6hgJjGAtcJWaw1D3H2Y+zDI+P+l9rvQ3KitSfWv4pPHzuKpys+Ormu9n
nvMa3/OTexCPgh+/xB82K14nVqfew70RWLoq1fsDcM79iWcvTYU3xGu/z/Q9
6B8y3X8Tl2fclTXL9+B3psX75mbtDb7fZ7mzziKv1d/yOdl5I/njk6l8zTGM
rhHuMhZdIjeqcX5EHrHI94k8zJt4nfvd/ze+c+HuhVgG3QPn/w/Xodyw
          "]], PolygonBox[CompressedData["
1:eJwllmtslUUQhrc9PYfTIufb/QCVS6GFtkTqrRSIYlRQDBQLGDBgIkECBpNW
WrHWH6ZVUH9o0IIICiZiTMQWkRYQMGqhFI3Q4rWosRAJEhTBKEUlghr1eTM/
Juedb2ZnZ3ffmTmFi2vn1GQ75zYgOciF4FxV2rkDSefuBG9BFqac60CfDs6L
nWvB/lHCub7IuUbvXDt4OT57sD+D3Awuw/8K8Kf4tGJvZU1gbeDbQfR8xIOb
kNvxn4D/EHAWksx17gj+E/FvJ/4j+NYhs8EvYC8j4amsWQv+nPjzybuc9c+h
D0QO4VuExOAVxKjPgPG7gAxA30Lsy7EfxD4IvQ19JPon6G/jOwu/V/pzJ8ge
9jyHrQLZDT6FfMdFvYteD36ANYPJZUGecyfQG9GvQS8kx3PE6fGWi3K+hL6E
/S5yvijLuWPoKfTN7D8An49Zewf7j4rsDnr43oh9BfE2c77rsC9GP4qtk9zq
wVVIN/nUs381eCL7VeDfRrwa8GfEmsf97OTbJd018h6xbiCfoeB27JXY12H/
Bb0bfStrm9k7TbxqYjSjj2BNAvtp7GezLKdO9H74vInvZGJ0YTsT7CwtyFnw
Jr7lIcNZX47Pb9oTfC+4I7I70l2NJ96T2E56O0sWZ7yJ2M97852OfR329ciM
lJ3htmCcE/ea0X8i1jT0feD9yH/oU9HfT9qe/6CXEW9b2jiyyttdD4+Mb7rz
H/nWp7fCfhrcynvMxj4iYZz4ErwjYTkolwnecpuGvIgeoz+UYxwRVwpju/th
3FkB+GHibUM2EmsK59rFmmXYa5G78X8dGcP3GvTdwb7Jdoj8Slk/k2+dnGUp
PpXgrmBvpzPpbGPRFyWNY73oubG95WBy7sU211ts7am9PeeZIM5lW01MAs9D
lmLPRm/Dp4HfKvQdwe5iFfaQa3ey2lsuY8FrwHXs9xb2u/B7HPwOa6pTFkOx
xGFx+SI+z2KvzBjWtzeQvmCxdMfnwS8F42op+svgimBvqx6lXjUlWO9QD5is
3hCMC4/hf30wDolLW4kxhPyct96mO5yBfSVSnjIOX4Xt38h6nTgkLonz4n4+
kg2+NVivUU3dAh5F/L1p65HqlRnW12SM63nkMJ6Yxfx2IXPxvTq2t3wK/QT+
f0VmUw8aiC3Ft8KkcWCltx4obiqWw7YmWO/bzrdx2HchPfhfBt+OgF9FmuDa
Yc67CVzG+j+xNbH+PvRZyH7WHifGcfV3b7YnWNMCLkUGJaxHPx2splXb+rYM
243e3uID9hxG7JHqKehfIAXgIvxzkYVp45RyVK7q8aux/x3ZWtWkanODt70X
sH4j+HtvuaunqreKs+KuZk5/9jvgrTZbWH9G3I2tT6p2NTvmYD+ZMM7tDFaT
qk31RPXG+bHV4jH0e8Ad3t5CNb8PvDy23qk3K0f/hj2y+vH2yA/E2qsenraZ
ptlWHFss3XkROAefgqS9YVJc9tbbxDFxbVxsd7UWWYItTYzx8OXKbLszzRjN
GnFqNL4l6NemLKZiD/XGZc3E18CdyMWEcUBcUI7KVW/+NbG3B6tdzWjNas08
1fki4v+s3hgZVs9X77+UsZpULaoH1KnWI1ujudngrbY0AzQLvgrGPd3RKdVb
sNmvmTIpWM2odjQTizULvXFZM6UB23n033NsxvYSr1s9PmX/IfRfojjY7JdP
CfhBb7NFd6K7edTbLBanxe2Zkc1wzW712EZwfmR7qo40MzU71aO/9fYfRv9l
NIOTsXFK3NKd7vf2n0D/DfTmv4Lv9/Z24tiH6BH+f2SsV+oNj3rjsnqwevGY
2GpNNVICHo1/bcZ6v2ZiFOy/kM58GPw/N703pw==
          "]], 
         PolygonBox[{{4626, 2222, 2321, 3884, 4744}, {4734, 3920, 3708, 2258, 
          4724}, {4085, 3858, 3699, 2217, 4620}}]}]}, 
      {RGBColor[0.9094498668877016, 0.6436246672192539, 0.3192945873518749], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmguQltV5x99vv93vst/y7ft+qES0w8UlEZOFBceIF65JWdBEMw73VQLG
KjZFZ2ywIhdBUTFxqi1pOiajZrjppBEFLdqKXFSQW7zEtoIBFUtkccE0lTTQ
ANPnx/+/Y2f2zHv2vM97znOe81z+z3O+fjfeft1tdUmSLMsnSfwlTzUmydPR
bqxPkv4NSXJBtOEx3lZQ/8IgnhiEP4pWyCXJwDrRQZPPkqQS499PRcf41TFe
7JEkpWi7Y2x1PFdFG5PTfC3+tjHGKtE669QvR1sZ/UXFJFke/bujX85EX4rn
t2K8d/R7xfhDDZp/Q/B8KtYuBQ8n4zm1OUmmRGttSpKLq0kyLfpHG/XdudEG
xLovVEUHTVeT+IO3ufH9ozHPzHju6KE9wP95Dfp+gPdViLYCnnOasyURH0WP
TyiJZlK8/zjGh0R/eYznq1prQ/QPx7or2Xs823qIZkednm2mPxJzF6LNi34p
5vlzziP4GxTvO6JNjPl/meps7orn8NjTldF+XU6SUTG2L9rIaAtjjVMhg2LM
tTHkOD/m2RTPNSHP/fF+dLSxnof5Tgbt5pijIegXNOm7/w0eTsf422X9n4u9
rAgePozxJxt0jpvqtR/GR+f0XGka+ss9fl9R+sC+dvfQ2aMDVzZpzRPWmacs
qzvy0o3JOa3RaD050iQaznBtUWd3ebRiveR1VZzLD9Cf2O+ceN4S716u1xkd
jH0uimctnvtjX2cVdFb/FPv6VsjwJ5Uk6Rn0v4jWN+hmp+rviHfDg8crOZfg
57wYeyYvmyjEuTdEuyd4eS/GDtaLz3L0V0cbEvxMyWtdvi14Tc768fjm5rz2
+C/1esf4zODtYPBSjP+vDpqritI39O5q9ycFzYGKvkFPsZPu9/Sxl7sy8XBr
7GNLUe8YR67IFz5viHlOB/8bY/3nQ6bros1ukC6j08htWtB8XJG+T4/+f1Z0
Jptj/uPx/EPM/zmyjTmnxPOzVLa+PeQ2I+i/i24F3Y6y9Pt70X8g5ngi+i9G
f2K8n9AoGSC/jZbh0or0jLXgcZPHpwTt5Ead6xvB52Db3VlVzYEMT5XEL/x3
VOQ7+P+DougfzunZ5v62HrIx7Gt67KsraKuxj8mxp/kxx9wYnx2y+VOj9PXd
GD9SL739s6A7FM8P43kizuO/YnxE7P+cqva9qk7zb43W2kO0rPXzeJ4sSQb0
aa3m55pY59vR1tfLR6w3Ta+q5t0ZdF8LPsr18r08i+5jF89FW4puxfyTorVG
GxRyeMHniz3ttv/d5T72eFG8+0PsYWA8nyhqHfjnu+f97eJMdnJRqjHe3dag
eXbaZrvnpb8S/xBtatAcjtbZoJiSxjxfjX4Wz+8H70ejvzDWWm56ZJ8V9c1z
Qb83p2/xJwsKGmeeL1W0BvPXMsmlZzyfCZpazNGnTu+Yl/iCbb3dKPtaXNQ4
a3FWjLFfbOvHjbIv1vnUPKyzHPAr5wXNquh3xLvLg+6yaOMTrXdJ9Ecm0oUh
5mNeQXTQbMsr1hI/hxQ1/pXoPxx8j4r+W2E7L8a8I6PfD/+RaZ574tk/L5rB
Qf8S8iho7O8zxYu/y+S/4AH/w/Pr5meY+2f8W4P2w36fLKrPvoir59TpW84B
2U5rkA/ZbH80qkl7v75B813iOYeGnv0wrz3iO4d5vKVJOo3PXRL8XRrPr4b+
tNVJbvht5rnUfBbj3YR491TQzsgk/yzGXqkIt+BH5tSS5DfhU26MZxbzvxbj
r0Y7HDzcGnJfUCec8lq0oTHn3THPq9FfkiqmvRVtVr32u8l7/utM/UVBsyfe
vxft9qCZ49hBDFkQrSt04bmg3RLt5aA/1Cw/Dy10Py3JR6Az92bi4XdB89/R
vkwMjDlWhR2Pjf+PBM+v239+bkxVdCw71iy9eCtVPJ7lfSXx7MrLz/4s5rki
6EYGr0tT6daD9kVrCqLrndc4c48J+suDfnWD9PJV28hM5myQjXwa/HdajnNC
5j+J8e9Gf2us8XpZtNvj+UZZ/ryuqifxPanqPfPkm3Re4M1KpvUa43kgE7a8
IdV3R4x5NsZab8acv4q2IfpbGsVTj0x7eDvoN1V01viL9ugviOfN9bLhv6iX
v94V3+8s63/w4OqqMOETqeL046nwzqZo0/Gb8f7SZsX4l5k/xl+N9s0YWxHv
DjcqZr7nuJmm8kFtoXtpk/jcHO2nQXtZfHNZfHuoJL7ghzjBOnPj+UlJsqSP
j/ljRZhgaqPiFnHt7KriGfHtXvxUtAMh2rdK+p9+e9jh/dE/JxHmW1IQPmXs
AY8vKUpv1uWE4dAf/r8/5h7QrPMdU9Sc82wDubwwxh2Z+n3AxiXNOQl7ivH7
on9TKh7GFrU2c9znedAXdAAcCH7FztFnbAJZYBcdjrnEw67Y+/iQYzmnNdgD
ewJLrjBm5v0406A7yB//z1i7x4nN0x2XD+U0/r6f0F0a53K8oNhAjB5d1P7h
eX08X4w2N6/YSQxFhuDCH1c0vieVz8H38P5Z04An8XH4t8+aZZ+7UmEefBb6
vc06jT4z3z9UlF+gw+g9Oo/u00dvsBu+JUeD9memv8p+GJ/Gc4txHfbfM9pL
YJyS+AMbt+W0N3TjJe+xV6LnevfREzA6Nsh3a/3tvzXqG2jwpZu9Frh7rTEG
c7AGNGMtkz054c0tjhfzm7QG84MtkD8+Byy9xmdxluMKfpRcbLvzLnAWeQJn
2l6V7qK3+4qKjV3x7bpMZ3hdKtrZzitGBM3waLMKGuMd2G59Jh+OL2dPFccI
6G8t6B3xbZTjO3H8hH0pvB93TOe8uzEa+zrmvbCnE+4zBqa6yPs95j5Ycrb5
aXMuCPYDq4JjyUNvyYSHDwSf98S++zTLL2+JNiXmuT0v3o57rfYYHxutviR9
x2bwRV+vKafNxXyvRLs76DdkwqTXR7/Djf4E4wHwH9iAXGpyQfkl/EHXO6e1
4YG8hpySOYn9YHawFHgSDMMZDXbet8uY85OiMAvjXdaBM/lUg3QFPQEXHzIu
rjhnJAdIMu2FPdW5FkFNoo/zLnDLauMY+nMzjfcPGf4yE8a/sCbs1N++6bhx
O2e6xPqKn/yhcRt4ZmJJOdEF0Z7OJKvVmc5usPN34gA2PsNxk1hCHEE+5N7E
+LQoXIsPJAak7hN7akXJE5zLOFgXP0pMxZcucP5EjkwevNq5MDqK/YCfwavM
3+mxnh4H8/Y2hq95nLWYO+f5d1jenDOYpaftAn/cbj//rH0+fo+zHVnUORKf
24rCK9jQCNsdMkmNz/l+rP0F/g18wJlDN9p++JTHwQyd+ISi6hXEF3w1sRA5
Mj4uUXyA/+WuN7AfsAd5AesSl8H4YH3GiXFX2X8iP2o01CaIF/cWFUfI66lJ
kffxXOw+8y/yuZCPkPd/lHyBgTgX3t9jGnAKeOUv4/27ZfXBLX/jnJHckfrP
x/Yh3wn6DyvSfeZgDeZBZu2W+adNqiWBIZg/8/mTj9AHA3O2nD2+FD9zMt49
1qh42+rcE37z5hnfz96piSEL3mGD1zYqR8XHnWhWnvnrVLIfafmD3zl34jt5
DPkMY/3ju/1F+YoL3MdX419+63HGPnAff37Qc/KEBqxM3F1WUfzCr5D/4luw
Ob4l94efTvPE+16mwd/0cr5MPDnbmIo4QFzB9/7W68IDPg/f90hO3/A/OeyA
kvqPOAd80r6RdddYPw+ZB/rgR2yfM6LG87j3zpzwx7fM97jnp3azzPF9rOMn
NrLM2INxfBV+E1/EWp/Y7tjzIffJ15bb1rCJxHYBfsKf4G848zrr/Jay8CiY
iZgD5iTuUAOcb9ssl6QfYEjOeYhtnLElHifGYu9d1p/7rEvkGMM9vjRT3NuZ
6QxYC5+J/yJmgZMZO9s8EHvR4Q7HkH3WjYtL2i9yRn/2Wba7jbnB/HOJfyXl
StjTA7apd8rKD2e5BvWg61B7Y7yrpPyN+tZS17h4PuQ6FLp9hfN0dGqXaybr
qA0WFNufzeT7ns+kU+gvPINFNjvXwC9j12DXFsdVcDb2VyrJ/4wvqY9sjzap
7gkmbMsk0yGZzo785YZ61Wnxm+VEsR95In9kSh/ftcc+C381riLceVdO79tN
A5bD3rC1TSXlPLfl5QPwTcjwgUxyaAs/0LsiPosl1auudc1qk/eEr/2Vc3ly
enzCQZ/ZsLLwJbjxmyHPb1SdS+eE2T/q9i110nkwJ/VqcOl4n2/RuomOIj90
eYtlQu6+1/n7Gp8PGOOhiP3fjrUGZzpzaG4Dr2eqfzVnitfE/tHGEOyDeFHy
HQG1RGJs6jj7g5rw+cKa/CsY6WHnHeQc79ue93hf+K399l2dtt+R9nnICr1B
NoeNv6nvEz+ok53REesG+TO50Grqro3Kcbv1fpxpurxvagXExHMrquc0p8rH
/jGeA1PFemp7/5EqVvxVTTLlPNCllpL8ID4QXTvt+wXyHPKd36XySdSAOK+h
IePfV4U9wMnXWDemOc/913rFK+IWNk4OiD5xpudXNF7J6cypYXbX+alhUOfk
PXTUoKjRU28q1pQnzHWOyXeT/e0g91vdeHemDtkkueAz0XN0+J/rVQNCj0+n
kuV4y7PkPnxi09ydRFdx1vVh4i3/E18Y+5NpyAOOub6KLFjv54779FmX/P+U
a+953+Pgh69JhbnvTHX/cL7PFd7BOKWcakzgtgWZ6lzUdpoy1XPwe7fUSzfR
MeIddf0O1/apMeHbPo85hqSaf0emOs84+wp8xjjXXDbah+CXiAltjvvgG3AJ
Z8rZ7LENnpvJlv82051Ju/OUyaEjo6rCgCfi3R0x9maz+LretXvuMMD08zLV
rq6tyg+S53KuYFJqeqftA7EtfA1+hjrQbteC2p1nsxdiBeM31csedpmGO7S7
SqpDYLfYLz4KXX/bNcNxzqt4d9Br9TbtMNPvdg2K+XkyP2dEjRksDg4nP0Pv
Lyt/kf/f5LsgakPgQuyv3v68wTLDhxxOpV/cV6Bfj1nH2uw/4QFeD9sfgEsL
vqvqGzLsEW15SfKd6PsXMAk2Di4h32mxvfM/feIsMjrkeE0NFZkg8xbnRtC8
6VjMXjpcP2qtif+CYw18NHgv7b5HYxydLbsmyd0x98vYPD4Tn4qcueOivgBu
4qxZF19KfCUGYP/tqc7w30M+02JsZ0n1CmqWO1y3xN8gf2IutRbGqbewr3d8
1vhd/C8Ynm+3W392uP4J/anQxylV5SYnfTfdL1Xdmlowvgib2e51yQPe9Zx7
XWcmBm3Ax5aFGQfXxPOgmu5uBld0zwItNoVvpHa433ryvVT1waE1zTGirNhN
zoVONBpPIrPu+N5aVoz/ke0du+cubpL1gXyRtdHVYaEvj1Wl372jPy/6r8cc
vYzrwHfTHY+o7870Hctm47HPHJvYI/sb4zrhVteT0Rf0Bn9Cfk6efiDWOZnJ
Ht9vVo2Uuz9iB7o79//FOmIfPvkd1/bxdeTi1N3Ix8n5iOPUNqlhb/O6xFfq
ZtTDptQkt8k12c07ngd6+FybEx37BifNcX7P+DbXxmdYB8kBwP9gtC3GftC+
ZnyCvUy0zax2PeGZTGd7vmMfOT7YjxyN+gD30NR+j/h3DNgg8jrS9AXWYxxf
wdhRf0udZrjvrxfnlT+DS9HJo8aW/DaCugDrgD8Wm4Y7OnAR9zI8B7pPfjPH
OQ74eIbvecF9o1xDnmabI2/tG3sbEXR9fG/8qOusxAZwGPcmzzg2jnCsZD10
i/tf7p7B5NtS8XZJpj2NsEz4nvjIHj/I1CdmTvI9HvrMXfRM88n5EhepJTI/
d+GvRH9U5nu1TLk0sQw7Je8A24BxyCV3+LciRfepVa5xvQL59rOO4w+/XFPN
7is11YKfdkwHU3I/BsZs9R0x8Zk8fZtz9ZuNwckT0ZGtvqfeahr6yAx/OdJ3
Adg38gfjgJ/AOeQxnBFn1dmsnIw6KHJEnm+mqitQX6AWRN65zHVv7AOdR/cv
SOWfqauR94BFwNYDUtXiqMnxm4SvFVQrPmbszZnOzzTekgrXLHSO2dEo+VPr
POX7ImIKeehC/x6F5wLT/8b5Gj6T/Iv50ZNHMt03DE3lE8Gd1FX4/cs81yfn
ex7qe+An/B54EmxCjg12pZZ1oe8suIMd4/PkNybMzzj3rqN89wp272d7IV4N
NEYll91uPQEf9fa31NOW+I4DH4l/XeWcF8w0xb7xU9d5nvcdO/ez4KsO35UT
E/g9BO/QkTusJ/gP/Ahz3Wk7xUfh798z3Qv27XyLvY60zXbaLvB7Z/KbJtWg
Vhong5VWGbczP7XhfbZ57jam+g6RPAPMA/0K3yFzR0d+PMv3ROwNnSNec9dz
2Lq31nk0+TRjnaah5vOGa62vuXaBLy24vgMGgC/stuK60wRjg5aaYt6Amu6r
+9ju4BFewWa3Oq4QU8jdwF5gA+p/i1w/nGC/DS7aaN/BneAf46zHVZWjdf8m
DBrOjP/P5E0l5T/gbfQKrItuEdOm+jct2EGHfRFY75BzRnDuYOcy4F3+J5/k
vmawMTD5favzmkHOc6DZbrkhB36vg//9n1S5DBiIPZJDUKudYcyDnrGXvjXF
7H412Q8+kLyYHJTvyRGn+3dE8Jxzff6Smu4MiQH4f/zEjSXZ29FM/Q3Nmu9i
z4lNIvt1rrm1GIsSQ8m1Sq59XWw/jL7B81Tfr3X53vGjVGfD/Qln+yWfL/f0
1Bjmp9LZSdZ76qXEPmyqO1dH5tf6dzjkZeTHfV0HWJWqRrA1VU45yOeCnqDj
4FhqBWBrbJ88BozN/5dn8llXZJLP/b5XpbZNDRwMSX0RvUFnxlelW5zF7HgO
qQr3YNN3+m7+Qd/7VzPZM3rE99gceB2eiPPEe/BAT9eGiZXkc+DSBcZid9pX
DDB+JP58EPNfF/zPqsm34gMfJZ5n/p1Kpu/4/gw/FdF3/8aLJ/Vu9HGv6yD8
BgKc8ftm8TzF+o9PARPAH/Yy1XiPO6AzsatOfpF18BX8fqLL2G+M+SXm/h/c
8lUp
          "]], PolygonBox[CompressedData["
1:eJwtlmdsllUYhk/70fYr0Pd7z8sPFIyAbUGBQsHBspQhw+CIRKQR40ATRQQS
lmwZiggONC4gYqJQJ4mCiSQgqCARHChoMCooCQmUIqISIwridef2x5M8+5zz
zNNp/JTRk4tDCC8DLYAnYwi1MCpzITwFfhCYDD6wPISGDJ1CCGOTEO4rDaGu
LIQS6HPQi6AHQ29Hfx74cmy2gPdE3g7YmQ+hDT4+B9+A7Gp0HkVeg8/dyG6B
NyINYSvy8XnrSHcJOleh2xfojvwgvGr8bEWnI7bV0B2BV6An8ID56O/AthVQ
jX4HoAh8OzANWQN3PQscDr7z2Mxvk0/5bo3Ox+hm8gE+FN2/gXvR3QJvA7zb
wMcUhfA2eCf85+E3ArOgy4DKEmKIzqXIPsVnHWdVwStH1hVem5zvuFhnAYvR
3cv970Z2B3QTuvPhpdC9M8t032eh++DvPe5T05oYoleNfHveOVKujgK3Qi/F
fif4Jmyac07uSWxfgN4PvRqd88i7YP8R+BR4h6API9+G7hGgPfgmeBPwNRf5
xuhYDAEaSxyTudFvLwcq0f+NMzpTPzcDX0DvRn5Rzjn9Bfzf1LlQzM6BvwQc
AK8h/kew/Rq6jLPLgTPQ/YAXOa8P8n7A0/gYxrl55H8hewJ6MPRm7jNI9Yb9
3FLX4Dbom1LfU/ethf41dSyUk5Pg78BrLvIb3wXvxVkj8XuyZQizufMN0NdA
N0F/A6xKzBPel/sMRzYMaIY+AbyKbCj05jLbNEKPgC7T+6EPF1w74yq4I7Hf
yplzOPsgMVjPfUaiX4fOPnxP5J6Pwavnrn3QeTi6B9QLb6I/CbwWGADdH3gE
+R/Ydik2b2l0j6nXNvL+/tE9qd7UmR+AX6CYoT8I+nHwldG9rxg/A/4G9xmF
z+daUX9At9R3UU+qN/cWbKscKBcrgHrw9zlvYPQb9dajnPEgtuvgjUVeBUwH
fy26VtRTr4NHdI6XuAfUC6oJ1YZqvApfn6SO1UJgJ/ge9RT2XdH/DHwdvB9z
PkNn/ZT67LXIe0DPiD5bM2EqeD66N9Wz6t02ijH4KGK+HNsEehe67YAK8A7A
QOR1wMXRPaneFK9jdO1cnjjXqqEIr1uJc6hcDojOhe7cFnxAwTNSs7Ee6Anv
euz/Aebz3sHYNJS6RztDV0F3h26Hj/Pg9wNti82bp16I7gXN8AvBH1JNIztF
LZ1Ct1d0L6jmj/3fW30LrmX1WH107lQTqo2W0bNQPhZGzzTNNsVkmfod+2sT
1+qCYsdMsVPPrwAvROdGMUg1f1PnbhGwC/xLzp6ad82odvYDQ3LmnQFvj/wt
/D9P7c3OeXaPSjz7FPfxxOQH7j2Z8w/IX2rfmkG/Y9sD+Z68Z6Jm47TMtaya
Xg5+hXYIftbAmw5+XcE1r1rXmerlNYlzo55+AJ1V5PUsspngDciLgKzMM7k2
8+xewR1u5y7fI5uVd02qNlUzqh3lVLmdmHpXKYfK5bfRu1A2Z8FPw1uW8xt6
Zp7Zmt3qkTu1fzLvQsVMsbsx8Y7WblaeZ6ae7QvxPwP8ktSzWjtuDvpfpa5t
zYzTqgP8Necd0+9SzxTNFs1UzVbNXM1ezWjN6iy1b9nIdoL6vaV3yM+pa1S1
2h4I+PpTPlr4TXpbBf4mJZ612uF3wVuZs86H0bHtnbi2FOMrM/tSzpS7fal3
hXo2i5616xPPYs1c7UDtQv0xxqE7CxiT8xmz9T9Af0Tiv8MxdEan3nVLsNmB
7YLMtaGaUe1o1q9OvIs081UDqoVm7JuwnZf6n6Cdo90zKPEfSX8j/Zk0gzSL
RmN7CPk9qc/SH0B/AfWoelU7W7v7OHCihXd2Qbsx8+zXH+Ky1Dtau1o7dK3m
Veq7yEa2jalrUW8errcl7in1kv5k/wEh90Th
          "]], PolygonBox[{{4733, 3835, 3652, 955, 4545}}]}]}, 
      {RGBColor[0.9479758787382764, 0.7399396968456909, 0.4387252240886568], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnuQVdWVxk/3fXX3vZc+tyMqVTHSIEQF0arMXzMqSDdIBseZ2CJ0q5OQ
wKQyWhEQaRHjTGWilTI1f0nk3Yg8FGmRpnk0DZKJQU2peWh81Yh082gwOAWY
yaA8hPl+rM/Sqj519t1nP9bee61vfWvtbvz+fbf9uDpJkp9mkkR/SXNNkgyU
kmRsVZLk9eHBfJKcVvnaNEmGqMGjlSTZXYkydXyf7zapfrerz3f1/cqc+meT
5HqN+Yy+r9Nzkcqd+jZD5ef1rtb3QXqOqv57bjOGeTXOZI3T2pAkOzTPI6p/
T/V9ZcmlcW/Tt/+qRP10te0pJsmv6pLksL61arwjes9Tm9Nq/w/6PUvlqdn4
/oDKW9V+ndoP6PdZtflHfZuj+rLGmq33nRq7pzZJttfGeC/QV/XL2Q99+6bm
bUyjH2PQ95jKI1VfkLzbNP5G9X2+NvaJPfo7rfEitbtS5etU/qXq56h8Uut6
VmPerfIzej+n8WapXK/vG/T7+yo3a64P9PsHKt+g9/R81LOf1E13PQ/7mNWY
73o/+c0eM/6kTNRPd9/PNe6lmu+c3ms1V5vqm1RuVHmc6q/Re6jq7tBzo/q2
aq+m6flPjb+8kCTL9HRoTU256DtRbdaoT0Hf12icK/VUVFdQ3UN6rlabYaob
pfdVegarb0+93up/Jo29ucr7w/tql4/l49swledJJ5bq7O7Vu7oU57hWz7Pa
62dq40w+1P4/obqs+gxXm3Eqf03lImenuUp6d2XjO/KXra+D9N6rvr9X+4y+
bcrGe4XazCjFGK+q3K02qzXX03rqJPd9qvtI7wHZzm7V3aV+PXpyar9K3/rV
/g918XuH1vtn7UmX2l+lNbysPneo/Fp1yHI7tqb6k+r/V9U/pra71eZa1e/P
R/tPq8KGXlJ5tr7/OY09YW/u1Tq61Xem6g/o++RsyDda5zaqHDo8Xmu5Qmf3
I7W9Sf1Oq91GtdtRjHGwn7lfnKPev9ZYIzTf19X3frX5pb5PUfvPkFfvuXpv
0rpfqI3fh2riO/UHVb5N5ftVPlcOO8QG60ths7s5P/VbUxu2ukHv5/R8R+Um
zbUgF/23qm5LbfRvycR3xtyuNt2q3+z+/bmw92GcPY90pr0StjlP7/v0XK7y
j/VuzLud2mzNx+/BKu/ORBsAEVtqdJstmuvFupjj/kqMf7n2/pJcYAL6PFtt
FuZi3weVov0uPTurA0vApa2FwMS3NPYs29jsSujj/mzowXDbyQLVf2R9Qpdm
asy91udRmut6lf81F7g9gXOsCqxCd9Fb9KrLY04sBq49rPZ/r37frgtdaSqF
3qAz6Og9uZgLPWHsGarfpPLVxfh9Vr87sVnNtVPj9eq5MxvYtT4XmAa2bXAZ
P0I9GEjdc65vK0QZrMPO0EdkvqYY8iFTTybWjzzoKViMDo/WvvxCYxyUPd2e
ifkfVP3N6jexLtbMeljfStU/Kd1r13w3qM8Ovefp2ZdE3YN6HlB9UhO/KS8v
RT269BO9Hy6ET8TmkAm7e6sQ39pVP7wQ+4RMe3R2Z1R+We/l5WhD3wE981XO
6P1QIco3Uqe5FhTCj5zR+Fssc3MxcA0baFX557n4dqgUdb1qc1lt6BJ4fpI9
13Otyms13kE9a/S8WxXy9yWBTZw/+ogMzIvOZGriN+Ul5SgjG5h2l/d2QjH6
8rtZe9xUF3qGD8zYDx5NQ8cHpeGnx6v+FOuVzNlcYEa2ED4Df7FA9afq4tvp
usARyqmeip4xkvmy6vhN+esuwyuwu4tzYZuf5sMHs/YTmvsbavdv0pEOjX+R
5L4jF2fyf2pzWu/VmcBY8PV9MBmfnAZHmGqesEp9L1bfafr9VCne6NrkNM76
wzSwYIoxB3kbLOeKUswJVl1SDDuh/+BiYBzfTqXR/rM08JX+rA/MYV34u7nF
wD4wF91fkQv7PlKKug9VbiuG3n+hH7yxe2wDfVym8X9WjL6M8Wgxzo/f+0uB
V3vV/luVsM+/qYSf22hbw3+OrYvfe8oxP3Y6pxjYTf+P7AeLPnd4GnvKOY93
Ga5xic9r6CCtrxDteMa5zfF8tAFLP1F5ZC7O8uM09vUVram3GH72xdr4PiIX
PAHfPtJl7IB69OGlfGABvGWqxnlFOn21fOWd9q97KsEht3Eu2eA1jWqzVO/q
mrAN7AL/w1m8YDu+8K0qzmGrfROcEYydp/rvadx9kv283jvMJ6epzb5y+GP2
kTG3ue9xPeslT5oJjoDfBRvBydZCYOhEydynunV657LBL8FVsL/acj6nb4fg
j2nsEXvVprbjtOZvqHxTQ3AyuFlNJfgXPg/uurIcMo+rCjzBpqjHBmmP3Z3I
h4zsLZjwotfLPrAOdHJoTezh41Wx7h3m0nCMHd6HV82pafMXfLqeY9XhT7CX
nOp3ad079fwmHxxhnf18i9qdrYrYAf1b6/rz3vNFafhr2t+SDdvbaT8Fpu3y
nrSYl+Ff+8sRY1xeE89Qy48eUB5SFe/LXcZ+Njk2ABd7vEawE51BR8ZUYuw+
ydOhsVeUI776oX7/UW2+pbP4Z5XfUPm6hlj7LssJ/wOjTqaxDrDmwhoL4avw
U23lsHV4Y5c5WEs2eNpm6yo8ilhkblVgA77xNXMz4hT4FeVOlf8pGzx6vbk0
/Ta6Hr413vOeK0QZH1FVE/wDHwcv2eizJZb6oDp8bqd5HeNUm6vQD47YbL2F
N8Ll4I7I3u21IM+zln+9ef6t2bCbLbZZxu40b8Q3Pmv5wdkNrn8yDXnO6Uya
amIfWQvraPK6Gn3unDl+6Hbz3IztizMljoMbgs/4T74jP++5Lg94j9gfuMb5
r/ANzm6e8aPKGPKu95E9pO05tyeWJqauSPYJX4lLWPth29ti6cAidNc+dtNX
eHiX95CYd733jb1iT6o9F2tnPnSHvgXbFLqGX6C+y2PuMt/DdogBX7X97k2D
i/6wIeRgn/EHcETs9G81ZsG/KW93jE+sv0h7+U5V8JN3vBd9zgmQD8AfLlGb
xXoOVwW3gdfAn0fZXh/3PEM8PngBL2IO4jTitW9nQw/QdXR5nH3PL7z3zJvx
gxzEAnCtg6WwEWR52/VHKuE7xjSEr0ZG/NqBQpw97cAzbOBP5pzITRn9Y3/u
rkSMhmzEC0MdZ6Nbb1uOwcb2ZusKtoj82NEW2zFcEWwEA5+33iED+vO2dZGx
ulW/mW/4Ve3biHLwusl1wTvhyufLEafBW/EF8ET43BH1eb0m9h8dAEPBKLC2
3f6CdbAe9vljtX9T5YVay81pxLDXNARekUdAZtqu8rlMb4jyO2nEUE97Ldgy
dgzXhXciDzIv0xhL9RzQ2WzLR/xGjEwsM6IQMcw6x5Xg/3JzNrjbw84TMdb7
5dgLyuANNoO9tDUEtx6r97+kka+5s+FL/4EMu70P2AL8cGUpuOPn5cgrLTHW
Nxvn4MBwfbjyLd7zzfgdyd6XD56Mfsw2ZpKHolxKA1OJf/CXXZYTezxTjjwX
8U2ndQMdx88jP3EBNnHqKzZIPEa+Dp52yjYDX2CNnBfY12Kfgg0xDnbEXo+3
7Yx33uD57JdYM9fcPlMIzgcHJo6a4pwE613pWBAZiAGfyEQZ2drTiK0ebgib
Rj5kG++cH/yQ/BOy4fex9xa3YYyCx4HfF7xGYrh2x3Hk4WgHX/q5c1PkqLod
LxA3vKbnvOr/J42czw9KEZPDRU+YUx41H4KPPuIYkHhhkjkmsk1y/umLOJR1
822NYw8wb3gl+PEVleC95LnAErANuwVv4IMVz5fNRnxwvXMU4AS+CJl4w3s/
rg/5WUeXZB9djDj6cCliBrgZMQ35F3IvrI01dlg/F9iHYPvv2y6IWYih8Bfk
bOqt5+Q24Fi3+GzBkc0uo9/g00iPAz6QtxjuPBox3wLbwip9f8p4BJ4w9zzb
5kr3xd74Tqx9OB/tqb/XuQz0izV22OYY+yGPj+zkYnbZf5Lf+5HlH2T9HGEZ
wEbWPNLYyHqJDeAY8Fb4K/kxcgyTnGcgDp7gWBh+dbPrsQ/shJhrsvMt7M98
4zPcoNrxL3ISY93kOAtu2ewx+X667kvfTrlg7t1r/g12kQuDO4FL1IOX5POQ
Gb69vxwcF58Jf2BdcAj4L/lJMBPeuN3cEV9DLvs29yVmaTGf3GZOSf4VbnGr
Y0XGxhevMq5yRpzJYeveX6SfGbX9fRr2hF1he8RrJ50/J+YgnsfOiOc+sd1R
f9L5DdbROCj4OjE2mAR/w+ccMo4RY9KmxRgCLoF34C3lib7PIIa6znHVQCa4
xnL7QewajveQ8zPEkuR+yEcRO/eXwneTOwCf3nM+Ct1BV4mTTniNxOCPOg5n
/qxlAAOyxkx07Ij90wjrY7t574B94V0NsUbiPNbPOuEx5x1fsM83OHcJR6Wu
w/X4CnwGvI54DUxAZ/alEacQr0yxLYHnVdnAWXgbfA+sgPN9py5ipx77vlXO
j8BHz3muRZ4L30SsP9RnUe8cEbmixDwcPrza9xxPp2Erk23XcKIPfL+xNg1c
31UJHOg2n+nMh86gG9w9kLv+7/rgLH3mjZwr90ncJWFDp2xH2Cl2hy/DjrkD
ACfIdexznM79AxjLfoJt+4qBb2AA9w1gPdyjy7nU0e7LeuECcAI4DDEo+SBi
W3Sz320oD7U+M9YTxmb8IHX4P2x6gu16osvE3WA8897juIe8IbHSUs8LD8Fe
m2zL5HU3Obc7ypjAPLz3Wx5w64NiYBf9mp2Lb/Y4jM/5c7cBfqCXZ71G/Msl
zpvB9eB8cIl659OmOl8IF8KmwONLS4HJYPVg5+vggd3mgsjyM8vT6DsuuDEx
ymnrM3Ne7L0Fz4Z4T+DIbeaccEJ8FrE0dov9EqdwxqN9PwKnmGaZsTvwDdvD
f1OPf3/SvGuW27a6PVjBuj4zL2/1fdl8+6PP7FtW2d/trMT96a8qYafnzb3/
vRLYV1eJHCC4TCy/3eUpjvHn+j4GfTlZDJ3B1tBdcnT4PPwcPpoc1VyPg27u
8VkP890HNnPK92nYBW/w/VbneNfZT5HnmGjdO2eZsXf8+jj7r6e8RvD/Ut8d
cL7o7ETnkeEf+Fd8K7Lvtc732zfjlzlP2nGm+CraT7WesDY4ScX5YrjREHMe
zv1dx3HEPlf5DpG8InlLdIv4gnww9xlwxt5C5J/g4KNtC9gHsm+yfhK3Ed/C
z9GdPusP8fRgc6RBzjkj/03OnYItzDnH90PsZbX5SafzaZc5zgLXiKm4o8NW
iVuw7ybr8wb7SfCImG+O17LEcQc2dcrjc4bIPt7yExsxzoW7Ee8DdjA/DWx8
MA0sZg9YIzH3GvNVuC6+DX9ETq7XMXivc3TsHblT/MTjzqUscxm/sdz3xR1u
h71wR3HA8XyvY2TG5L7iTd9Z9KaRH9yZRh70DT3TjPtv+v5ljceBN99oXwFW
w7MOOJdC7EIMA+9CVuJz1kl8T5wPdh3wvQntGfstj/8Tl5Fruu/VmeN1y0Oe
9q5KjHm6EnEHvAROApYRk7U4h0EMjj/iXp6YATyhrtv1cyphkw9U4g5/SyFi
gc8d8yLnG84J1zteIm7aXx8xAnuDLdB2mduzV5u9n2u9139yLmWH10usx90k
c9LvoPeEs1rq8wIbKRNzbfG5IRsx1pPGw4M+R8bkvnKGYyjabvH58t7q8jzL
gDwXcpGl4HO/9v6yRv4HAQ7A2e7JR16YHM+xNPLmx9PwT4ecqyFvutq+nn1q
8ziLHH+RK+Dusc159TU+G9q/aEwGm/c4z0O+ByxZ5L6rbRfvufyY68GKUb4n
XWwuSRvw6TLHbuQJHnHMiF49Yh2Dcw2Yd3FW9O9zzpA9wh7Rl9mOM8HLmd7b
Ps+F/gyY5/CbvZ/pmKvHOTdyb4u9F4x/2P9nwv+boDuvW3+4c2zzvSNncsDn
kvgcsK9h/l8R/mck65gVvww/ajVHAht2GR84s50+9xnm0pOc/7vWfRf6Xgpc
2mqdQSf5/4d+/58J2Esb/D65E/IIxP5/rY//O/pjGrE+9eQZyJH2u/1C5zq+
yD8sdBk9QFfID8BdyPWAd2crkWN6pxI5IPrOTIPD9ztvM8K4DCbj+8BwbA6/
gn+BPx/Nx1zMyX0xfnqFbfl1Y9orabSfpvex+ogbyE+QGzhu/9WWxv363Q2B
M+RYwBb8DeVZ5t7YIzpzIRdiGdhvYhj0hzaLzZ3Y+63+/wfiLnwS+vq7NP5P
65P6GHuF5yKGIzZgzJfzgc+cL7EC9WDamUrU9/o+HBng7vigl/y/MdgZeRli
MPw6toFdME+H71DZJ/aLPO1Y/75wz+644kJMWhP4Tu7zCrdnb/8jDRz5qd61
lcin/LY+/Odu+1B873r7X/anx/HdW/ZBYP6njjHYG/zoFR6/w3vC3p9xHp79
bPV5okvoxon8l3eRrH+mdYBx8O/MAV8h/09Mdthx2T322cgDp+jwXPCORT5f
dIc1YrONzoUWHHt2el541CrnbZY6JsAPkm9Ct7Bl7qPI235qn7jM+VVi3yXm
FeSW2IMxxjFiP2yEObd5XvLA3eYV4Ntyx9FXOseFDq9yX+Th/9247wSf37Rf
B5eYe6nl7LPtIxv3t/uNA0edO6Uev/Ab5/xPuQ+YAPbwDf3sN47QHkzh/+HI
kfL9ZbeZ7np8PHgMLx/rOOsa59Oe8Vzg2Apz9rHmOTMcI4MBF/hclX27y9xv
H3euD3/NPS56Am7xGx+BDVXbjtCjrNuAYdgs58//4GRsg6z1qHHwsUqM+b/1
cZ5HvV5y8NucJ+e+8Yh5ZrtlHWeM+tg4hV9a6fP9f6tVsgM=
          "]], PolygonBox[CompressedData["
1:eJwllUls1VUUxm/f63ulBfru/QcCLJhaZAYJQ9iQCA6ocYUJiJUSiiBolCIi
bSEBAgRNXKuJulECDsBCFqQNWtHQxoRBXCBEBMOgWKolFgFtq/L78i2+vPOd
c/73numeN35149MbciGEzaAcfBf5RSiCv0oh/AxvRf4NjEauBycHhXCjGMKV
FMIh+C95/MBi5GezEJ7iwNGVIdQhn0QXsY1B18N5R+A34f+DbvhgeCO2i+Ad
5F3ga2xdoA17C3dM4a5poBbbOfhR5HZieBz+EbiI7zJ0+7Ddg6dCCA/AxyH/
yRk5Yi8Dp+AHomNVDsplPJiE7wi+GUC+K+B7viyEO8hbOHMi9h50f0SfqbMV
427kavkQ+w2+X4nvWHgt9hqwCb5TPFj3GvwVEPh2LLwReUOy3I5uB759oCLv
O5uwXQAniq5pK7bD8DXwJ/A5gPwxqIdXE18F9t+jazuTa7qR/wZZwTVRbZaC
jfh/Bp/Ntx3wfvz7yHc/8qNgNfYG+WDfllz74dz/IrbHwPNF13wf8lHqOyz4
m1/xnQAe4ewudBew3cLnVrlnQLPQD4YXnKNyXcWMPIn9Q+alAbkebOKst7G/
gH09fEmVZ/BydI7KVT09Hd0T9UYzpdmaxv0vcf4CvvkpemY1u63Ym5B/JKaK
Ms/QAL634YVyz7xmfzkYwPcO/HZ0zspdM9KcXHPVXjX/BLkG+9SiZ1SzOiPz
bO7F5zlsM9AtJJ63uHM6chu6jqJ7qt6ei879Kt/M59tqdJMVP/V7A9sQ+CT4
LPge+H9gZMEzpdm6BNbknbNyP19y7XVnDXye3mjBOXVGn6GzFPNW9QpeV3TP
auFfgRb4KPzbkd/FfjnnGS9FvxG9FcXwr94aaMrZZxX+n0e/Xc2YZq0P3RJ4
L+hPnjnN3kEwJ/lN6m3mQS+xH4v2VY1Uq1nRsahHe/F/P7qWyvkD5EHoEvKn
oBL5ZWr4Hr1fjv8P0TVULeXzZvRMa7Y1w5rlM9F3q0aq1RD4qznHvAI+NzlW
zWRd9BvXW9cdXfBF3Dem0m9Ab+Eguut8+z39XI98NnqXqqdD+bZK+6Tgng5O
3qHapafwX6ndJB28E/5M9Bk6qxvdNb315F2pGIdim8P9Z7HfoybbFTv2cUXv
GO2aL5Lftnr6JfLrybtJb2Bz8oxr1rUDTiDPzDy72oEPZt6B2oXb+eY4/g/D
F+c9M/uTd652r+7ciNxZ8u7RzvkH3x3Ju18570RuRteW93+G/jsaos+WrgX5
Sslv9Rtympw5Z+WuHNdh/7bkXmun9Gg+MtdOMxij35Dekv5TquBro3eJerIC
29TMtVUOykV36C7t1EPJNVQtO9BNwbYsWlZP1JuHMv+3qecLM+9s7W7ttFZi
uw/UPP04
          "]]}]}, 
      {RGBColor[0.9865018905888512, 0.8362547264721281, 0.5581558608254387], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnmQ1OWZx7t7eqa7p7tnfr9hs6ARkJCtBASTlSjKPYjrsSIwrDGmTCnu
YkgMN0jMVulGBDWJ3AzDkYig68Fhkj8S8EiiVijUaJatFZBjUElSW0arssgw
HAL7fOb7ndKq/tX7/p7fez7vc3yf5+1+d85smZHLZDJ7ajKZ+GXaSpnMmniu
yWcyJ+ozmY54aoN+Y1Mmc2nQF0R5PGgfxxNNur7TjkaT4tsl2UymvTGT2RIf
TxUzmfUx+Nfi+8moPxm0Turx5KL9+bLGORv0jSXR62KoZSWNybyj6jXOs0xW
0Xzno/4fJa0DMmNQPxcvm6N8Ip5xnmuzxzxSK3o2yvuj7w/juSLaTI81PBD1
Z2Ld2Yr6dLdhDsa/PfZ1b9T/J8lk+kc5LJ47glkzC5nMjHimxR5vbhL9hmjz
TFntvxqdvxn0MVG/tUn76/R6xsT7QzHG6CifjTHWxDMpxhke30fWi3/wCL7c
YF5Chw+PR7kpnmF58eNx8+pwrejw51CiMS5JM5kraRvPM/H+WEljsgbGG+4x
GR9eb436ohjnKre/PMqh8TydF8/gy+VRnxC8uimegfF+Ltp/McqeWZX9Xb+k
JJl5I+rHgycHYpz26Dsx9tkRtF7xHGmUzCA7n8Q4E+LbxKzkjL7F2Mf4qN8Q
9Nqo76jT+PD/z9H3fc4tvpcLmo+5bmhS/Z+j7Ih5D8a87+Yl12st2+csQ8hA
W/RdG8/D0Xd4Xnz8Tsy3NfrujL6H4EdeJWe9rSw+02578OC5eKZF/b143ucg
Ypw/ub416rfFGRyNeiXW/+Wy2n+7VjzNxn7W5tT2qPvujzZv1usbsrQx6gfj
29roty6eiTUaY7vHuTrGaY/yezm9b6tozPkF9aH9mijb4mmJ75M9Fu0541zM
sy6nfoz5rzXiETozPeitBX2D/vNYzwv1mq9a0J5HxJp/UZZ+0edPWdHZyztB
X1HvOWKM9fH8S3xrKqvOWnbUi89XxpxJWe+fZMRv6JOifL5e847Nqy/v56PN
6eDp38X3M4n4Bd/gwb7g+UsIecjAbfGMjbOeGm3KeekjutdcEr029nhNQe/U
ry6p/mC0aS9K7i83j1kDa14StO2xjlFBXxptzgdtcey3b0FyjAw/jvGINbTm
tNd13u/b0W95vb71KUr+kL21RckNMsN4Zz1mm+1DS9T7RNnbc/Ad3UPXpqau
J2pz1nRswfyK5Bm+r491Xxu0KU2yBXdEeSLad8YzO6t6RzyHYnmzozwdz6x4
Rhb1jTanTH82K/tH3+kF0U8yd/SdUZZtxa5+ErQz8RwO+uii2tH3v7JqPzyr
OU657xb3HWr7zFgrYu2LSqoz5rsxzvJ4Hx1t/jMv/9KWkx/Cf4zhXEqqI4rU
l5s+t6A1sZ6vYpOj76agz4yxZ8WzslYl71tirs15tVkT4z9nenPQVpfUjjbI
PHtEF5qLGn9u1G+J798oy6ZODvqF8TwS9MUl2RdknD1usR9C3qGjC9gYbA12
fnRZ8vZotHmkJDr2Z2FJfeHVypLW1+y9UF9Rkv3AjuCP7qjI1qHvY0NW2kPG
B4YMNMf3X8bz02h/pCj5RrYPVcP2xHNRUWd8wrKxN9rejM7ntafPe1/Qvh7P
g7XiwVnz4UBZvMC/HM1KxoZFubqgvqsKGueCeP43xj8Xz6D43iPKM/EU4/vF
Uf4hK3osuctX0B5dm9c9F3srSc6xD/CLvYwwT+AH59UUundZvWSHs0UO2MvA
KAfVS3eHRPmP9cItg6P8Sr1kgZL3Te77Fdex0RuNZ9j/JR4H24jfAZPgJy71
OBtKWus/Rf0t7wve7olycFbyiQ1nb9hqzuZnbv9eUfXr8jo7vs3Jir7BbRh7
g/UdeUFukKUNsYYr7NPZ3xDzIQ2efDHqP7M+gduecn2I+XBXMP4foj41yv71
qtP+3hjz4ZL8J/M85LkesrxCb41yVUk2fLRleVZWtNU+F2TvJz6vH5VUH2k7
utz4Af2kPX6Pvq2uc7YrbRPwU62eC1sBHb1Ya3w7znigzXzDNix1325bg89H
Tx8sSR/xYSuMJdjXw14/PvXHXifr/dFn1g8dX8YYi4wzqS/2+GDXx4xj8TXo
M7r8g1qtDT+MXVhoH0RbZAxdxk4s9trmFGTnT+RU3uP6AtfxA7Nty9E7MB04
A58JNsRPs79Hq2pHG2z8bNtqdBRdRcfBb+gregpmxTeB5ZCXfWXJDHgB3AAO
+V1VfSdZ31s9DnjzgG1CfSKcOzTk6nOJZGpY1N/Myu6gFzPsZ66yn724IP/4
UlXv2IELYw+Do34BvrVB860yRp/hvpQz7cvQ+722Y53G89CxAfjpLv9dUXvG
OGpfddb+cc5nfNlc+xT4Dx2fyxr7xfNKTtihagyAHEMHGxyLZ1DUr88J29AG
fANtsOnsh/dcTj6iUhEuejno+4P2bzlhJ+g7HJ8RXz3mGI7YqTtuyFgewEcv
1glD4xPwDb/POQaqKHY6a/sz1zZ2vuvgx/m2S/Nsd/Hjy6p6p/6ExyGe+muc
6Ucx54dR5sFY0eZYVhgL7AWtn8+01XhsnOkfZ9V+UEblONexB8QV8PL52McL
3suysurEAuDBnsbJ4NWGgvAV+KiPcdR7/gadmGZ8PPUFPaWC/A/xR73r2PdK
QTwHizEOWIu2xCH4pp5VxSC8c0a074j2v65TH9ozN3X8GOtqBEtFfXnwpFBQ
jNMj2nxYJ99H7AN9RI1imi9U5Mf4/lE8PczDYRXJW22NvkFfWdUewSdF74t1
gp27+tZqftYB5j9nn0ubrL9Bv72i8eE5e2FNrGeC93Y8xv9+fB9V+bQfdfZV
MS/g286Qg/+Lfi8kkl/oT2fVZmRFvJpXUf2szxdZPR3r2Vmnd+rQkOOpOWGD
naa/4Trrf8Ht3zDP+9pu9KrqnDhvbNafc8KQ7Im9cEbIY1/LJO2RD+JVYtAd
bgNtgunEwzd9Rn4Yu+QzgXf4WPAUNgk7uhisiQ7UCB+2GAMRK99uPqObbcZs
+IZ3iPPiuStRrPKtJvklYl18U69E8cNdqeIObArYf51jL+LBaqJY41vRJi3L
T+HHvpzK3nwpVbyITYG+P2LtccT5QV8d6z8c33Zit1LtYXAqLDvJMfIax5oT
atS23e3xa9TBLdsdNxNXwoOaqmKcfFV1ckf4hrzrlLXx7I76b6PMxrMrJxuJ
3Wfd4K5cVfacOZibBBd+DhuAP6Jfzn3bHQ9jx4ipic9ZU4+yMCT8qrH9zVkv
eke9H3qRVR2MOiX63ml9RDepcxZ3JtLnf4/ym4ns3deCVy9Xdabs95Gg3YO/
inFujjb3xfsvEukNukQeCBu+wHYb2z7PeoF+UCefgZ+nDQEPNvz71sFXq+Id
fGuO91vrJG/YDzAwa4Z/F3gNm1PtbVOidV1oOnvt473PchvaXhzt6mK8zkQy
s8a+aYr5gU8ZZtl/xX6qzW36VYQ5U/tZ+k5wbq3V9btjjovi+/dSnSvnt8bn
mHEd//vHrPzyvui3N57v5oQfsAvYBOQO+UMOx5aFr3gfUxaWA8MS8+xz3xUx
9oGoH4j6qNDJdyrya8Q3YHtkDUxJm7tzKg+6/dKqxtlh+jtuM6KotYGv9lc0
J23wafg88g/Ej2OKiiexx1XbXrAP+wHDbLR/RwYGlBVTILf4YXjBOrvWUtEa
8e1T7N/nGNeBT66JM2sJHj+bKsZnfcRm77oPNoc4g9jwOuN81g2f0CF4sMt2
CdyMbQKfH/S8yAtyg6w05OQ/+9q3oEv4tS/Z5uQT7ftQRX5qR6Nk7f6gfyGV
7O5rlG5NsX6Rt4aOPOPH8Gf4O+wosgEm5Bz2+yzIH4DDWSt26yHb34VlxUQb
HPsTX7CPIan08bJUtoc4Hj3CrhyybUGfFnsNYNvVxr1N2CbvlxwAOVX6g2HA
NMd8RsxzwPuHD99J5Y9YCz4JHEUMSczSHSeDvcGTxDnEOAPCB7wU898XY/wg
EXbYFmVrjeiNMc4p/E5V8g9P4e2MmGtj1H8Vbd5tVCxAHPCM40FwODpL//uj
zUn7RGj4UPwu/vtp506PV8XnufbrF0V5U1Vygdwy/2qvAR5Sh48HohxY1X6X
RNlRVSyyPJ7OqnAltoQ4FRkmLjpZ/dSn8E79uPuyhhPuC29fLWqPrJex+IbN
PxXrezLouxoVQ55we7AT9CZjJ+ZCB1c4F9wt5/ShPW3r3B7M94ZzFEfi+9s1
4he5R/KOxPe/TCSnHyWSCfi925jnY99lLEglz+Q4tyfSnw8ahWv+4PHJOWAD
wFTgjKIxaq5JuGdvKjsGH7FBv07lb24jl57KN+GjjqQ636/b/+CnwN7ox177
Z/QVnIjObimIhv8C/zEmPoIz4wywLfidV+zLwa3MRVtsBnmRXfbjv7EdP5pK
Xqcl4tGiGuVBwD+cOTlSzuGUz32V65wP/CKXD25EB8EUxJgL6uTDWB84jlgR
LEceAJ0iX838L9lW4GfO1Sgm+1Xw+taQm+Ym2WEwLDECcRjfwQOsD/uJfQPD
dlgXsKfQxyXyva+aD9he4nJiRvw0+cgT9mW/NR/SBq0J/vzGdOr4gZWWw1Xe
N3YSHr9s7IQeEW93x9rUsUU9GtQOGcuY5+y3xmfU4jwz42DzX/GaaY9+rvJc
5AuvtR3on6p+deyxb4Nyhcw7oKo6OUPKw6bPTOUPpqfChuRLun09JXE3fcDH
YGPWfsA2YYPvS6gPNJ0xud/inuuw10DMT398ITk25GCg18C6wFLkGThL4lH0
Fl1HnrmHw4Z/3nlabG2nsc3JRPh3j/fPuOAOZIw4GEw913HlJ87bv+ZYDb0g
DmMedAcbwZj4BvL/vYvKoQzyncDjtnFtlnn8Z5fuZaQf2GJwArELMQlxx7G8
+LDecpnk5HcO265Ocn7xLedUyb914533HQMj2+Qe8CvkH6Zalk97nEPm4Y1V
4RDo3efBWjscl9Cne5+sgW/0Yy/ksMnHPuqc36rSp3aXEpvMPSl3lJzVKONf
zmuZc3ToDLltcnrk/NAfaOArcn3Nrtfab5ErYF3jq1obvGnw2sg3wgPw3gdR
/neN5sJn3m9eI5sj3ebHzu+NdD6z3T6ANdxtvX7Pd2AjnCsiZwTeu882lXP/
o3NG5IvwJfhI1kguF392nf0bfg19P2lcB74lx8v3rrimInyw2Xdv4H3ag9fA
bT91Lnyd88BDfa+ILp31OpAHYs0DxuFHLSfk3Gb6PqTZudDuu1D8z5tuQ56Q
u5tZ1oNrvbajifzSnERyTSyL7d1szAn25Jy5h0InBxvDw5NxxsKcHecGf8AP
yN5418G2K+zXwFI5nyk5CPAVGAksA07swrF5+WN8Mf8X4P4Xv4E+k8fEpoEt
DzomIh4i9uvju3ViL/wa8eYg5xgv9V0AtobYqyvXVive3Oh14g+Huy/3iuD8
B21D6IcducdxG3IERlhknEAOqad1/BbfIxETD3JcA//JN2AHxjt3RXswCDK4
x/wc6RgRHeWuf6ttBXxij/Cv0TwYZP5f7fwb/8VA91gfMSWxJTqJjBy1TCYN
slucL3ciT3hf2MDdBZ3JR8Y896Q67w9sh1lDh8+rl+uDfL9z3HQwyDGvebnx
Bra1w2dN+xrbPvbCnDUeG9x9pf/PkPd3dJASeaFea+zWZbca1BaZucx3QODO
v9WIp9xr3+w7LvZJLDjQdz1nzHd43mHd54yILS73ncuLzkeRq8R+QsNHEwf3
933KA2X5vKfsC5gfO8pdzFOuP20Zww4TN7c6piZngQ6ii8jVfOcNONte5tUA
+2dsMnEc+IO98B+EBUXtER8xxn6i1jkE5Ob1gvJj8P9MqvanU9n20b4TB/Ny
L44fJCbBng4JHPWXVJgKbIWcU0fWx7gv9ynE4mNcx441O/bEBhKHE9uSpxng
XA007pWxvcT0xPbc6dBvrO3pWI8zxzinj30u95kjHfMS+1IHh+CT+5g/2P0R
pqNfZedPu/tg27nrbHbMfoHzeOArdKDFd6NgRrAl/gcZ+Zt1HN0B8+0y7gKr
gcNeS9R+dyLZStyGvCl9OSPkFHndbbyEPHXFng0aBzpj8Y4872yUvD+QCAMy
L9gXvDPZuUfemQtdxjeRz8OOdcXWtYobn3M8QlyCzCF707zXyd7vIssNMgPm
bPEd+s5UuPz5VPMnXgN3jMg3sk6+iFx2u/OE25zDJ+6/w7H/QOMRdIG8AfwH
g83wO3V88ijLBmeKzPcyzuzt80X+WhxrTDdGnZ3K9ux2rD7LGBF8iF/FB3PH
+hf/B+mp4MMtiTADsRSxNPHmvET5aeLPqcYgNxqHHDNOw2bho8k5nrcdY178
DuVrrjM3GBVfhf69bru6xtgVDA8mIScALuE/aNz7EyPyXyruRYhLX/eYx41R
XzdOxfcONh5gvC0ec4dz9ftT2aWFtk3c9T3g+z7s2U7n2MmBk/vmzoSc22Hn
eyvOJyMv1zc5V94kWuo8M3YL3nKG0PjG/SlYD2zH/ey3ndcgXmS9Wa8ZDIId
wE5Mc5stiXQSeQCP9XSOF1mCb70tD+BHxkdelvg/ENzhgvOoYwPwueBw4m7m
GeW50Ano6AX4kf/xbLVvOeMc11v2k6yTXNQ+59DIzfdwfh5smXq/xLLcB4MJ
ufulzv0vbZssJ1Xn9slfo+tNthvcoeJf30703wT8MTiDe3hwDFikZGwGRnvY
9/XDndcA36HLCx37kN/lznCT/2u4yHfiV3mN5P5YJ3iK/weydv6Twrq5u57u
/+8MtQxwf8kdJVjkCvcll7nRd+HfTZVznpZK5pA97ouwTWAC8AC2B/mCv73t
j/jG/wWR9QlN8nfoCue7x3csvIMZJnocckVLnC/CJkx0+077BnKulzkHSG6e
WABZwBdssB241nl47q7IxfzE8oPskOsdYfl50fdU+OvllmfkbqJ1AZ3AZyP7
2K6bjHXhzw8tA/ALu0JujbE6nG8h70JO44hzYcTBxMPEfcTDvBPP8h9K+Pbz
RLh5lGWe/Az3WeQNO50fW+aYr69janwOOSx8FnEZd3vEG6ecHyMfQc6hj+fl
7rjrf1AF3T1xZzzZ940f+s6RmKOf7wawne3OLaxLhCH+PsoNifDf+kT5Cmwx
OLDTeS3yb+SzH3XeaanPFN6D7ff43Om3133ZO33BEtucL70+EW2Z6dRXeHzs
exdea1TOknwIeRH+QwueJvZuTaT/5US4ljp24MlU++L/VsQe7Atc9NdG4WFy
gax3qeWQccfYBnKXznqIi9kP7cAb91qPab/E5w8du7LUe/9/iyT5QQ==
          "]], PolygonBox[CompressedData["
1:eJwllElIllEUhq/+/pJDeb+vkRDBNEitCGxlizIFUytFaHBqwqEJtQElg4Im
aVUtChqoKNrkotrkhKugaVeUCpWCloQWlKtKtJ63s3jhPffce+Zz0/c1VzTF
Oud2gjgwkeLcPA48eOGd+xM41zbHubGoczXw9aFzHRHnNiQ4VwXPBf3I10Aj
9zu98SjvH8J79T7euYucdcFbwXx0C7DXBu8E59FV4mMc3o69smTnsrFfDt8E
MuGz3K9H34J8Ocm51Zxthvfiw8VYjNPoS5GnSGQAm7fgs5xdR/dWMSJvB6cj
FnMW7/ND8/0/J/hr9NGIxThJLXZxtgZ7J/C3Gz7tLfZ03HajL+UsB10OMYwg
bw0t9hLeb4Gn47+S/PN5swxeBT7A69AnYOskuIK/PaAdvhb9OfgpkAt/5823
3ujtE2+6Vfjvwd9x5KfIz8ihHB6Dz1Fi6cNnLPwqZ2/QF/J+iPt5nN0mn+WJ
zjXAF6F/j36Esy/wPvAzYjVVbZO81W4C/Vf4TW+17cDeGPYKkSsi1kP1Uj1X
7zcScw32B1Msd8WgWD5pRuKsR+qVYlbs/cQ7GNjMafZmuf8KXuNtdlSjbvSL
vc3CjGqIXIBchG4YPED+hvw9znqoXmYGlrvuZMCTvc3yKKhG/oUcr7fgt7ec
lNsFsBL9frCU2FpBGvos5CniKwYr4AcC47pzEN4U2GykITfDs0OLTTO3w1uN
VWv1YCG8gTt/8XWJGszAUzkbirWe3oXXh9arDFAHHwist9oB7UIt8ueozbhm
/aW32qVy51BgNmVbPb6hXoMSfN+hP3t5fziwu8pJuTVyti7RevRR/r31Mh9U
a1dC2/0k9PHoykLbRe1ACbwIZCTYzmp372kmY2xG7nuroWqpP6EHf4+97Yr+
nEfa5dBmQTM8Ti+ep1hv1NNJ9MXediUP+9tC66F6qRrMlS1vOsWgWLqQf0Rs
prvhR73tnmp8zFsOykV3dPeMt93STJz1NmOaNfVoibcaqBYFoAH5SGC9Vo4t
8NrQdNrhKm87o91RzRNlO7DZ0p+gv2E4xf4O/Xn6+/4B0im58w==
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmmuUlVUZx8+ZOeM577nAmZMCFndJhTRNUC5mn1TuiCJpwAADzMAwiAIC
hhhYmooXwMsHHTTMypa1Vpl5iVr1IRMw0ZIBBPPCWnlD7hcrEOv5nf9/Fq11
3rWfd5+9n/3sZz/3/faZceM182tSqdTLtalU/FIt2VTqaHT8LJ1KrQ74xVIq
tTbeX4r2d/G8HPCD0b8h4IcD7hftffGcFc+9hoekT70vCaT3RLsqnh0x/vcl
zb0qxpQ6CS84TxSF/3i07UWN3xrtLbXCA07GQs+4tMa9ZPhISWuAf30mleoU
eP9Zo3WAoXNbwN0DbgzaZ2QFD4q5h0uaz9zvRrsnnuu9X+h70bgZc3c8p2c0
pj3GFDtpDPQvi75PS8LBHP6Db49mBDMGWjqbth7Rbi+JBtodhi+IfV0Yz7dj
zNsxd0pReHbmU6mpRfX9qahxjHk15nw94M2eC/x2nOO+Gr0DL4x2UTyfx9z/
xDM/4Enx/2uBs0vATXWpVENR+MunpVLTsxpzpEZ9DV53TVb0/LZGbYNh9gI/
4fHt8CaebdH/pZz6NgZtJ4s6e869r/fbxw/7Z2xfz4UPjP1DSbxqKaRST8Uz
IxH/fu/+tUH3tsB7ftD2RVHjWWd8TvIxzniYs8Fn+6nP7oKMzp5zbws8/43x
P8oIB7jAT/tfw8/H0zv++060t0W7PJ5eJc1h3EPR/+carc8ekWVkmnO/x7Iz
OPrXZdT/oPGf9NwfBA2fF/X/MsvRRWnRu8w0H4j2B/Ar4B9Ge1c8LwTcFOfy
/YCnBfy3ov67JOZuLGoueA6V1P+Cde1z0/b3ovAwb07guTPg6dG/pai1Lk5r
3p3GSd/33f96jLmjdGrsHaYNHsGb1rR41ds0TMlqX+jXwZJogp79Je2NufCJ
c5lZI5wHvN45Gc1hPLQcNJ1fzWg+c1dEuy+e73mvh0w38/ebP3s95rkajeMd
XTgzI5j+Q3npywmf1XGfV2tW9EHbDsst8vt82KjR6L3t4WjbK/g/qnRKdkaZ
D9i1eywP2Mt+Ht9cI7t5Y1r4+1oXOvDyP3pF/5QazcU2nuV3aJmblg7d7rlX
hlytKornDVnBo4Pe+6N9IJ4xAc/M6h14RJ3gBvSLfTM++ubFmIfQqRjzx6Js
EPbnF9H+Mp7mGLO3Rv/Rv9r4wce8hz337ILGY3OwVX+07coXNIfxzAMeGfCo
eNYUdXZDcpJT5BBewl/4iQzT3xhjBmT0Drwm5r4R8FkZrfkLr3uB6Wd9cLPP
sUFbsaD9sua90d4Xz/CAr/IeOPfmrOYw/kHPZTw6xLrI5zNea0at1uMdHzTa
Z8153hL938gIXlon+Wbu6oB7Z3TOd1jf0S/2gqwj59hnbPNPYu+5oPnZkNcj
YeeXxJhKRvK2yn4LWdsa/Qei7138ZvzfN6P5d1lP4N3UeL8kJ5yP2JZhxw5k
xXd4zv+DPYbzfARbW6eWd/jUqaD3Ks+y2jt8QFd62Edg6/CL2B/sJL4WHbvV
to5zbbf8w4cH6uR3sYGPlW1n68XvN81zeAjM+bN3Yghs+xPBm58GTWfj98J/
/KygMZcWBN8Qfc3x/CTgtwLH83nB/WJMS6K5O6P/smifiee2RDzPFcX3RfH+
dEE+6Ll4TyzDfQN+syB7/mLABfPke4nwDIr+ntH/94CP12nMzwP+ekZ2Z0FR
9u2maG8sym8Tm9FPfIZ9Wlg8NXah+6E/b5k8kNd85hI/9LZ/by2I5oWJcDMG
uViSiIZdPkdofiEvPUAfsCVnx/vWgvwe+sJav42+3+TFE8ZwjpuKOi/azYbr
M3q/LuC/RvtqPJN9vozh/0E59Q+0vCH7+BrmbfRc/A56vd068rphzoBznxHw
sJxkHxtL31b3zzc/kf/uGdEBDdiI160H/WMv7bG3E9gedKug+Ad+ngy4LS8f
8UXAj+clY8AnjGOL8azzePiPzNxn/iyO57Wi1l9l3mKTV5ZEDz4ImrdZhul7
zf1jKortbqqonznwa5P1Bx5xFo/Hel8K/FfFmT4RcNeAB0e7Pp5vR9/oRGO2
BS1NyGk8l0ffymhvLygmuslrba/X2bIH6Of8V1oGbok53wp4fvD5ikR4OMcJ
0V5bkK5fl2hd9ntNwD8KeHud+APcLfpnRzunIPv3ZEHvvaJ/bkHx30/Tktt5
BcV9tFU5jv7OBcnrf8IGjkKfiRfToqXJ9KCLE6yPze5nzOJEuMBDH/8hj08b
PzLVlIiOKg0BlwL+LKXYGX+GjR8a7bCCbPA3C7Iv89KyMZfa5nAOQ30W8GOw
eUI7pCC5uDoRPCctG3Is5PixjGzGZbYbC9DbeL6WUUx/U8DnZdQHTB43xPjB
8y3P5YygBfqwl+yj6L3gfwsF+Vx0mv5RtgPwFztPH3OIB7AN/IdNQy6Sgnwl
9g9c2MA5idaCD9cmGoOfghZowgfemgg/ZwcvzykolnjK545e0sJ/fCA4csbT
Ya+h87B1kr2jpwfzsmnoJf3oJrrIf+gj/wOT+6Lf2Ed0fJdtMfuanmgcY7CD
9Fftc51ypybzh/+gHzsIPf1sG3mHtzvq5BvgCfqGfqJHHbYD3wSNj5t+/M0T
pvlZ21Z0+bOc7C9616E/7OWcvGzWetuoNtO8Lyt/vTerPsaja+j2uR5/3DaO
vc8KfX8cea9I7pA/9AWfgG9g7+hzj7z89zs5+TNkkvF98pJVzq83dJDLJDpj
+NM9L5/HXPwocy/KSLYYM9CyfNh8uMz+FrmFP/R/7nWXey74l3suvIFH7AFa
epke/l/m8dNib0sDnhrtzYn0H91HFrFlxGTYF/rJERmzxDD4+nhf9N1snuBH
F1kfwX2Laf5HTv3YkFb726fdv8Dj0dkF1l/yo+XOEdpjTAndyGg9+EsOsiPa
cdF/BjIQ8IiAywFfH+2keHpmpMNjA+4S8JhE44HHJ7Iv2ATw4BuwRdg77CYx
Fva3IVEMin/ATyB74BjjdUfafzCe+Ig4CRleap0nlp2dCEb359LG0z/6384J
PpeYJODJiew8uo2dJcad5ZgM+MpEe6w4ZrvBOGnnGw9rtXhd2tmmh3Xmegw2
q9U00AeMbk5LpOfoC3sa6f3ip+AX+rLCOSUxCb52heGZiewUNoqccoXzR+pL
5F8NzklXun9aVngmuV50q/P6qYHnxwXZiV6uLUzOKme8rXSq7zbLBjx70v5x
QiLbij2cmOj9yxn5+OsMIxfIR4+A38qpH7/T4W/O9FlM8hh4gDzgH/HP15gP
gx07ID/w5hrPJab8jmUPHwA9XzFtEw2z7kTT05iI732Q+UT7R96w15wF+ck3
0IlEueSI0NXGMAjDK5L5TtHfXif+78oJDzxhD9CPvFxpvUBnqAfdFTR3jfbq
eLrEszvwXRBjltYqlyCnaK7Xf4yndjTe45lLbnsR+6lRnHSFdXOb6WGtDvkm
90Q2gZE9bAA6j75j87Bf2KKBtmXk9UfivC8N+HBWtoDxxKvX2w60O0673OfC
ukX3L6uItnc7i3fwhPgT/g1MRDvxMPip63bEx8CsB0ycDL3QPcA44C+yTUwz
3DrIetgm4nBa+EB8Nb6sWu3NZdXpZvp8yaXQ5X7G2eh++ma5H1lo9LnThx0g
1sLvzzB8vfcbYPXMnsopNqUPXtAPnxjHufS0TFMXORh7HJpTLtvoOsINabVD
DbOPds/FLmIfsXUdskuOULHNZe/YU8ZQ6+L86UcGaiqiLV2RnjEXmYdm6KUe
OzXoeCctG8L5XOQzIlcmZ6ZWQJ16Szw7Y/wZOdXiqe1Mdj+1td3Oz8nN50b7
Rlb4qc+DB7n9JJ61AX+UUg2U/8jru+UEMwZ8rxvnrKz4tSuleegMc7tab4Dh
BXlaS1rtxYaZd8Bz92TV/0lWtLOHB7KKRcjryOn4j/nw4f208I/zvcMa7xf9
62odhF7o7qCrm/tPzwk/46lLM3et7TD7gpcTnIsQz1CzRj6QjUcdA1XH18rX
YjPWO87jLPC969x/Rln12g/KioO650/V+GnB09uxR5tjNuI15sCTT3ym73j/
7J264t+yOkNkg7jtaEr+Yr/7uEfhfKkN7jMfGUN8xzs1mTeMp2PMfvcjM3u8
LjxcaxngfOhvcW320+ypsZ+6H/tEfIeNokZ/uvnMWR/KSndeCru5OHzAlODJ
omhvjufjtGpOvFN3os6HjFPre6xW/Yxpjbn/Dro2xdy5AX8l+lui7VZWHWpW
vXJx4u0TvqfA33CG1LUYzzrIDPKF/Ewzz+AtPJhmPqAvswP+V0o8n2deUdPl
HRtInY9+an2vWq/QqRfrta8N9aq3UIuhPnM0q7o5tpT6Cn4Q+qg7z7Fu0rZ4
DPBs9zeZh+gcuBebJ8jGVJ8v/Ibvx1LyEUf/D89R42Lfp3sM9STieWSamhv1
NuYz7oj3js076LOj77D7X7U/gA/4iiNei/us1eYtesp6rDUm1qgLOI6qKj8N
lhlq/LxX7y+ygun/Xb3OqmdZdQ/GU5feYrlDPpd7Lu/vpYUf+WEOc+dY1laY
V2ODhtOyp2g5zePJJ4j58bHUnQdahi9z3olMV3PQRO9nOqciNiPuJefa5lye
OHapa5D0QfO9rg1Tt6EGTHxJTRh6oAWZhhbeoWdAWv3wihya+JM5xFfkZdtd
9yUGJG4kHiRn5J16DPlam+tkxOvEjdRXsEHYtaJ9X7v3xp6oLRMTk08iq/hi
8tO3XEumpa7+luvswOQ55MDIP7E9eSjztxs3vo+7I9as3gW7VsBeHnDNnnsE
cnrOgNzuYdeJOYddrqeDnzvDHr6H/aVrKeSOr6Rl3/AR/eO8x1HvifZXwbyP
A8evo03KytUmRf+5HsPY9zor7hldkb1osg2nHg9ubDw1Bmw07/B3hHm+2rWL
ka4zEMdyxuAe6zP9MPA/GbxIVVRvRi6oP1NvIZYmpqYORLxE3ERNhVwMnI+4
ZjLe9T/Gkhd0dYxF3Z76E7E3Z9zL+Rg1cGpj5GW8cz/GOcFD6kLElOTJ8OMf
GZ37fa7XQT+24G37JmIwYjriQ+o8yAN1Cuqhfd3f5NgMGfnCMkBtosU1mOr8
omom2LoP7BO7lFVLPuDaC7q11HQhv+e45kDtEFnGL1LHPuS8nloL8f9xyyz1
D+SWe3PmcY7oCTUP9HS68wjoXhZrb4izvbWsWjj4qIff6No2+yNXIy4lpoSn
6BvnPtt1R/hNjYEaBPPRZ2J6YsZW55L9bQOutB2gNkJdCLmmXkvtgJot9Sr4
2HEHRUuNmnogMTb5K3fL8IH7ZWqQ1BzWWta22m7gz1vtpy513Y74nPokeQU1
Be42OSv0FxmZ4nyK+LeX45w5zouxB6xD7QIZanU99Xzzi9yD/AAeUJs4zznN
APOBuh/7peZFjnK+xx/0HS3nRY477f9im7n2Kfi6Jvsd9KFan6iVv8U2sEd0
o8Nmc9fGGTB+uHPAUWXZmv4+H3I44m3i60Vl3cUuLOuuDZh71fXxvjPg7mXF
SMRS+PT3a4WTGJl7VPKXJX6WegzfDGD3Oeuhru92dexPS/yPflMb6dhPF/eD
b7fxravVeqyF3SE2xBbhx5BbfFlTvegh3+VOFlzE5MTyjCXWPWl/QT2P/e30
Hjd4DfBs9n0AeRkx3iDH4cgCco889HKNAfzECMTIfKfB3SZ8R5bWOHbHboxw
jkMOREy9xXH1R7XybUF69ZyJIThrZJ67EGwFesF9BrLCXfUSn/WTzsPhEzFh
W63yi3WG2ct7jhfpJ2YERi9u990g+ovfud/3bsQ2Q5zrtZknnzivwa/gU/r6
3h4+tDh+Q27hN+cGT652/Ye4YJTrQsgBvn6N79e457nEuXajaxHVu1V/w3C3
v1/Y728Qljv3R76Ja4lvu5Z1J3yW7/ehlX7ic75b6eRvVxY7RsFfYN8W+O7v
kL+FIN6c55oDuoFdwWZiW/imhe9gTto+offYKO7Qe/v7BM6amJrYHpve03nS
AtcusAP48Yd8j7nS9S7qYfgcZBG/w13yENdAuHMb5joGcRK59GT7YnJdfHNz
RTnSsIp8O/KELCHPH/r88hn9Rz+yxhh8Me1Jw8Nd80E+J1akayPL8uETXIPi
+44z7Tu4fyE/p56V850ZtfaNZeHc01m1HtZmXWoD6BPxD998Ff1tGPkIOSf+
lTvs8a7T9vHdDXqOLznP9pWYF14QD+OboYv3511fAD/nRD0Kn9rk+yjW7uRa
B3EYd1vULKgHXe2aFfnzdOc77PEM52vE6/2dPyETR50LkBNQe9vh2BP6OCti
/uq3XzXKm/Y7JyUnoUa6zbFwN+fm5JPUczriyp7OPx61jYMf2K6qTa+R7lM/
32VZxMe9YT9BHrTIOR3fwfGtBnWTia6lwC98+nzfayN/g1yfofZL3IAfGuca
DraYb6iw49/1/Si8hs/YRHKtna4dtZu3xParfFd7nmsz1CH3+Xsh/BvzXvZc
cqfNtoH4t2b7uFdsd6iHYJ+w6dgrbEGT41tqFDNth7GrMwxj34CJjYmTZ9je
NjlfZC48mO6zxnY3Oofi/Kc75z1smwyN5KbUgdHtwb5vpA5MLsdeyE34LoZc
nW9j0LVN3hfv4MEn7nY/+yK3ZO0OHBvNk794/4zh3Lpb98H5F/fvtU0mzz3q
OWXjecf9vV3/xi5vtm6iozPNK/j5inEedQ672fsdG3bgwtjvuIp8KLWPh12D
QLfZF/4EH4NPIa/hey9qPR/aX69zfNLqmsCOevkr6p2bnNexF3SM3Jgcudnn
hA8l/93jfBY9r8pp2t9Q2t4SB/ItIPEwuoQPwP5TX99uu48MTjTtDc6piUnI
KaEBG7jRMnnMvBxgfhInYY9vcF4/zHVm9J+zpBYx3jXkZY6zHrEvgn/YQNZu
sy/FFw9ynoE+1zlXZ61NrrPA//dcLzjmXLjOeTp26n3jed8+HviA6YGfbY4J
iAF2Ox4jbiDfI59oN/9Zh3McVdGdwVUV5VZ/9fcVk3wvgMwTr6H7yBK5G98P
Ede+bNmBfmLUg9axPq6dcEbU2fD1e73XYx7/PyzN+aU=
          "]], PolygonBox[CompressedData["
1:eJwlkssrhGEUxs9cTDNS835vuRQbK5Qyw0b+gxmMS42VkqmZ3KJcIhb+CNko
RRZWLhthtjasiZRckiElO9kov9NZPPU857znec/zfl9zYW54NiwibSAKWgKR
/iqRHGiFVzmRahqpBHUvcoNOo5fRY+g4egSDVA01dBFs0/+Ji5Tgn0mRv4jI
Ozjk7CO6k9kuMOStpr0PcAQPUdtjtoP+G2cz6HzYZga9zehsO3iif8uOX2Gb
CdOrw2MDfQG24MfOvDWDZrkEv2I7XcF7vXmlQRZexm8xJvLN/Dk8w5lnzlbA
AXzA21nNrNl7vGXVO2vRM4G9nd4xDX+l9hC1N0vAc97eUjNptlJgu26CBvpC
bRe/Fe67012c8e4QeyTtjfWtNXMfvIn+Pf0TsACfZKaR/a/ZIYqeCCyL1qbg
o9SWYpbxFJ1Fj0csY95bRs1aBqvOvoF+ixf0vjNP9dZ/RP+VAno9Zp5nge2o
u+pOO/TqnWXTO4r0553tqm+ib6Oe6q2ZK8yuObtbPdX7H6RXWb0=
          "]]}]}}, {{}, {}, 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz81KAmEUgOFjFNiqH7BahNAqu4VuoDQrE9xEFIhJaVhkENiduGrXqnJX
dgPVPnKXQtSiewh8ZvHwzvnmzDCzUj0vt1IRUeZwPuKIj9mI/bmIaf3mkjbL
3DKaibjSEgN74ZlfZ3fmH02ZJ/h070KLXJN2f1cLbDG0u6df2tESeXbYZsp+
j0ce+LP3qu+80fT+M9bIscqk81NtcELW3NcXnjgwP2tVb+hwT55K8m26oZsc
21s013RJ6/pP1/VC8q9kWLdbT/apMQZwkiuj
          "]]},
        "6"],
       Annotation[#, 6, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzzsvg1EcwOFjMbjE5RMoFrdFJUb3ySZBlCZIKIOWhY2Ez8DCRCztxECx
G+yiAzE0EQlmtIl4zvDkd/7nvD1938RybipbE0JYZ7E1hCUem0MY1Dp9p54j
/lpCSNNoPa8NuqAVqtya77ihZC7qNbXMuS/FEMOMcNUUwpvnCox7Jq8TesZp
rHmTLTbIkWXPWdFvq1phx942X9aXfDh70M+45t78qz9808YB+/FdnV3oNP3u
SDJAypz2jqvxW3UlfqvmtcAaZc9lNGl/V7t0Rl/tz2q3eVTPzWPaoZ2U/Oeh
+UnbzQn66KVs79jZCZO80GP/WTPu+wc8RT8d
          "]]},
        "5"],
       Annotation[#, 5, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0LkuRFEcwOGjGusMepGh0TAar0Cvkoi1IhES+5ZQ2N7AC4yhoFJaiyES
a0OhIFMJhZ1qLN8tvvzO+Z9z585MsneodbAghDDOTXkIA5XWPFp3VoQQ1ycS
rPJn1k2FdZeWa6P7nZqz79AMzWwyyRQ9HDr/0m8+SXmugQfzLO1m9fYtem2f
5zYRQto+bT3KGMNUm43ovP7yQ55k9E7zfp3R2uj9WqPTuqClWkJx9DxzvJpv
8+x9p/oSrTmxL3JeSIw6sxWWiduXcRX9Hvcu9UOXzBqtFzWl+3rADnvssmZ+
RDZ6hjaOaXJ2oe8+50zf9FxjrDvbIMMWm9H38X/l3JnVCXequKfB2Z32mf8D
rDRJog==
          "]]},
        "4"],
       Annotation[#, 4, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{4311, 4706, 4725, 4312, 4664, 4114, 4324, 4213, 4214, 4174, 
          4574, 4647, 4646, 4161, 4382, 4383, 4384, 4244, 4658, 4195, 4546, 
          4196, 4547, 4178, 4530, 4531, 4527, 4529, 4528, 4221, 4534, 4072, 
          4401, 4400, 4177, 4220, 4071, 4545, 4733, 4399, 4745}], 
         LineBox[CompressedData["
1:eJwVzzsvQ3EYwOG3Ohh7MSAWTdrBZalgIFH9Cl2wdpESDIxIXBK0tNj1k/gC
LiGYm5BYxaqTPh2e/N7znvM/JydX3alsJyJijVo24jMdsZ6J+NIx2tzxnYrI
u1+g4/6qrvRn+3HN8WHf5cWuoUuUGOGSV/srXabMKE1azPjGtd5yw59n3+y6
+q5ZuyHq5gZFHlz/cO+ZZ87MCywyzDmPPJEiTYYLZ091Sk90Wrf67/OOQf8x
YT6yn9Rj/bU/0ILrAU2yad5g35zXf8I873xC53SWPQ7ZpU4PTUovhw==
          "]]},
        "3"],
       Annotation[#, 3, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{4059, 4707, 4313, 4394, 4314, 4168, 4249, 4248, 4066, 4264, 
          4265, 4192, 4578, 4191, 4657, 4053, 4581, 4054, 4580, 4564, 4307, 
          4276, 4289, 4288, 4073, 4290, 4291, 4327, 4326, 4286, 4287, 4185, 
          4576, 4652, 4651, 4180, 4532, 4179, 4533, 4257, 4225, 4358, 4357, 
          4356, 4134, 4204, 4039, 4586, 4585, 4550, 4614, 4613, 4080, 4618, 
          4619, 4569, 4617, 4616, 4042, 4026, 4587, 4551, 4621, 4620, 4085, 
          4736, 4747}], LineBox[CompressedData["
1:eJwVzb9KQmEYwOG3K0itRZtU6gbMMoIGK0ozBLsDxwTDu2iJgv6Nzi5tNSVB
c4WNgVMXICW0ZFSPw8PvO+/7nXOyzaNGeyYi6hymIlq8JyLWNa1jMnTpc0+d
m2TEIkt8en6bjbjTW/LezdGz2+XXbkf/tKJf7BHuVnWfGo/2p2ZnrPJi9jH9
Pq92l1pmkwxXXFNyd6hruuC/E3e3PP/oto55cD6xv3Au6rmuaJuBXcd7BeeG
LuuBfpvP6TxP7o/omz2TNNsgxTH/z/wubg==
          "]]},
        "2"],
       Annotation[#, 2, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzj0vg2EYhuG7qbmtj1L1kZhMjGjDQnViEZEY1axvYmKxkZDGrP6IQSIM
EkkjxKh+gKFiIDo1cXQ4c9739V7P87wztWSrnoqIXbRzEQdDEbXBiBIP2/fM
I7zPiWwHm/ZD3uA6f2QjjnkdR6hiFdtYQwU3OgvuWOzfhzxG8YlHDOik0dFb
sn9xiWe9ccKnfIZ5vNvnOKPf0rtFR/aEnCyLP9myvcsrfIFzNJy7k32bn/v/
oJtHIh/nItryAo/hUv6g/yt7xbRsCtfmCfR8q3ITV3iz3+PH/IKy85P6KW7w
P9GcLxw=
          "]], 
         LineBox[{4743, 4156, 4735, 4155, 4209, 4731, 4208, 4510, 4157, 4507, 
          4509, 4508, 4241, 4036, 4435, 4436, 4433, 4099, 4434, 4599, 4562, 
          4160, 4639, 4514, 4381, 4098, 4432, 4159, 4513, 4052, 4512, 4380, 
          4431, 4430, 4511, 4051, 4035, 4598, 4561, 4158, 4243, 4242, 4037, 
          4440, 4441, 4438, 4669, 4740, 4738, 4439, 4741, 4600, 4739, 4437, 
          4737, 4742, 4668, 4749}]},
        "1"],
       Annotation[#, 1, "Tooltip"]& ], {}, {}}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{{0, 400}, {0, 200}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8812016741687727`*^9, 3.881201681426653*^9}, {
   3.88120179576785*^9, 3.8812018165476017`*^9}, 3.8812019447978497`*^9, 
   3.881202355582611*^9, 3.881205077570566*^9, 3.8812051323915243`*^9, {
   3.8812052173330383`*^9, 3.8812052281200438`*^9}, {3.88120526043569*^9, 
   3.881205278430188*^9}, 3.881205894002941*^9, 3.881297138875347*^9, 
   3.882090943711823*^9, 3.882329885496758*^9, 3.882421034632209*^9, 
   3.882421401528021*^9, {3.882421461734281*^9, 3.88242148255756*^9}, 
   3.88242320022744*^9, {3.882423423470827*^9, 3.8824235021245623`*^9}, 
   3.882867362506558*^9, 3.882870635149312*^9, {3.8828707388345947`*^9, 
   3.882870746086486*^9}, 3.883105841551421*^9, 3.883468736591202*^9, 
   3.8834729545325327`*^9, 3.883473321237029*^9, 3.883479308265284*^9, {
   3.883479602697464*^9, 3.883479618083232*^9}, {3.883553754291521*^9, 
   3.883553769974609*^9}, {3.883553917370013*^9, 3.883553934357111*^9}, 
   3.883554131017263*^9, 3.883555193506072*^9, 3.883641264814374*^9, 
   3.883644226842902*^9, 3.8837084914788513`*^9, 3.883810900507043*^9, 
   3.8847700744883957`*^9, 3.8847718280876913`*^9},
 CellLabel->
  "Out[159]=",ExpressionUUID->"5d1c7ad5-f000-4562-8efa-d8dd85a7bd4b"]
}, Open  ]],

Cell[BoxData[{
 RowBox[{
  RowBox[{"Ms", " ", "=", " ", "6567.18"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mb", " ", "=", " ", "7482.538"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mp", " ", "=", " ", "938.272"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mt", " ", "=", " ", "1875.612"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mtp", " ", "=", " ", 
   FractionBox[
    RowBox[{"Mt", " ", "Mp"}], 
    RowBox[{"Mt", " ", "+", " ", "Mp"}]]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mbt", " ", "=", " ", 
   FractionBox[
    RowBox[{"Mb", " ", "Mt"}], 
    RowBox[{"Mb", "+", "Mt"}]]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mstp", " ", "=", " ", 
    FractionBox[
     RowBox[{"Ms", "*", 
      RowBox[{"(", 
       RowBox[{"Mt", "+", "Mp"}], ")"}]}], 
     RowBox[{"Ms", "+", "Mt", "+", "Mp"}]]}], ";"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"K", " ", "=", " ", "357.789"}], ";"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Kin", " ", "=", " ", "1785.15"}], ";"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{"8", "He", " ", "lab", " ", "momentum"}], " ", 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"K", " ", "=", " ", 
    RowBox[{
     FractionBox["Mt", 
      RowBox[{"Mt", "+", "Mb"}]], "Kin"}]}], ";"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{"8", "He", " ", "CM", " ", "momentum"}], " ", "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"Q", " ", "=", " ", 
     RowBox[{"-", "19.320"}]}], ";"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"Ek", " ", "=", " ", "42.682"}], ";"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Ek", " ", "=", " ", 
   RowBox[{
    FractionBox[
     SuperscriptBox["K", "2"], 
     RowBox[{"2", " "}]], "*", 
    FractionBox[
     RowBox[{"(", 
      RowBox[{"Mb", "+", "Mt"}], ")"}], 
     RowBox[{"Mb", " ", "*", " ", "Mt"}]]}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"K1", "[", "Et_", "]"}], ":=", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "Mstp", "*", 
    RowBox[{"(", 
     RowBox[{"Ek", "+", "Q", "-", "Et"}], ")"}]}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"q1", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", 
   RowBox[{"Sqrt", "[", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{"K1", "[", "Et", "]"}], " ", 
        RowBox[{"Sin", "[", "thetaCM", "]"}]}], ")"}], "2"], "+", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         RowBox[{"K1", "[", "Et", "]"}], 
         RowBox[{"Cos", "[", "thetaCM", "]"}]}], "-", 
        RowBox[{
         FractionBox["Ms", "Mb"], "K"}]}], ")"}], "2"]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"q2", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", 
   RowBox[{"Sqrt", "[", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["Mt", 
         RowBox[{"Mt", "+", "Mp"}]], 
        RowBox[{"K1", "[", "Et", "]"}], 
        RowBox[{"Sin", "[", "thetaCM", "]"}]}], ")"}], "2"], "+", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         FractionBox["Mt", 
          RowBox[{"Mt", "+", "Mp"}]], 
         RowBox[{"K1", "[", "Et", "]"}], 
         RowBox[{"Cos", "[", "thetaCM", "]"}]}], "-", "K"}], ")"}], "2"]}], 
    "]"}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Q", " ", "=", " ", 
   RowBox[{
   "Mt", "+", "Mb", " ", "-", " ", "Ms", " ", "-", " ", "2808.391"}]}], 
  ";"}]}], "Input",
 CellChangeTimes->{{3.882091312621718*^9, 3.882091348288534*^9}, {
   3.88232991081483*^9, 3.882329919604697*^9}, {3.8823319216797667`*^9, 
   3.88233201456453*^9}, {3.8823484912461452`*^9, 3.88234854305412*^9}, {
   3.88234898266772*^9, 3.8823489898957872`*^9}, {3.882349772876965*^9, 
   3.8823498106492987`*^9}, {3.882349913536356*^9, 3.882349979845536*^9}, {
   3.882352244776806*^9, 3.8823524071554003`*^9}, {3.882352594851074*^9, 
   3.882352731832546*^9}, {3.8828688105676928`*^9, 3.882868840593659*^9}, {
   3.882868887770948*^9, 3.882868888029558*^9}, 3.882871253722013*^9, 
   3.8828713085253267`*^9, {3.882871565786625*^9, 3.882871576449739*^9}, {
   3.882871918409689*^9, 3.8828719208484297`*^9}, {3.882871973713027*^9, 
   3.882872001651335*^9}, {3.8828720383238163`*^9, 3.8828720426995068`*^9}, {
   3.882872105260539*^9, 3.8828721107614803`*^9}, {3.882872153212983*^9, 
   3.88287215561561*^9}, {3.8828723524483433`*^9, 3.882872353733099*^9}, {
   3.882872433267592*^9, 3.8828724360180187`*^9}, {3.88287250645798*^9, 
   3.882872525155952*^9}, 3.882873101207119*^9, {3.882873447844775*^9, 
   3.882873449878912*^9}, {3.8828735880216618`*^9, 3.882873685105521*^9}, {
   3.882873806379032*^9, 3.882873813764441*^9}, {3.882873908395335*^9, 
   3.88287400978014*^9}, 3.8828740620249243`*^9, {3.882874508786339*^9, 
   3.882874547407318*^9}, {3.882874595693122*^9, 3.88287465716861*^9}, {
   3.8828760380462523`*^9, 3.882876043224813*^9}, {3.883108967760708*^9, 
   3.883109039464776*^9}, {3.883109804553647*^9, 3.8831098760612164`*^9}, {
   3.883109930009103*^9, 3.88310993701444*^9}, {3.883110127559908*^9, 
   3.883110192018957*^9}, {3.883110418738605*^9, 3.883110433183064*^9}, {
   3.88311050393731*^9, 3.883110560164444*^9}, {3.883110867241228*^9, 
   3.88311086800945*^9}, {3.883468935877015*^9, 3.8834689360719337`*^9}, {
   3.88355381408307*^9, 3.883553815239447*^9}, {3.883554138115094*^9, 
   3.883554138381898*^9}, {3.8836451071242228`*^9, 3.883645126745316*^9}, 
   3.883816252897749*^9},
 CellLabel->
  "In[160]:=",ExpressionUUID->"e57ddf1c-67e2-47a7-9bb7-4c7dc728e854"],

Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"dSigma", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiP8He", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"PsiP3He", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut5", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He5", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He5", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut8", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He8", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He8", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut10", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He10", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He10", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut14", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He14", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He14", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut18", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He18", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He18", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"dSigmaCut20", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"factor8He20", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"factor3He20", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"]}]}], 
  " "}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"dSigma1", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{
      FractionBox["1", "100"], 
      FractionBox[
       RowBox[{"Mstp", " ", "Mbt"}], 
       SuperscriptBox["p", "2"]], " ", 
      FractionBox[
       RowBox[{"2", " ", 
        RowBox[{"K1", "[", "Et", "]"}]}], 
       RowBox[{"3", " ", "K"}]], "  ", 
      SuperscriptBox[
       RowBox[{"Abs", "[", 
        RowBox[{
         RowBox[{"PsiP3He", "[", 
          FractionBox[
           RowBox[{"q2", "[", 
            RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
         RowBox[{"TMatrix8He", "[", 
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"], " ", 
      "\[IndentingNewLine]", 
      RowBox[{"dSigma2", "[", 
       RowBox[{"Et_", ",", "thetaCM_"}], "]"}]}], ":=", " ", 
     RowBox[{
      RowBox[{
       FractionBox["1", "100"], 
       FractionBox[
        RowBox[{"Mstp", " ", "Mbt"}], 
        SuperscriptBox["p", "2"]], " ", 
       FractionBox[
        RowBox[{"2", " ", 
         RowBox[{"K1", "[", "Et", "]"}]}], 
        RowBox[{"3", " ", "K"}]], "  ", 
       SuperscriptBox[
        RowBox[{"Abs", "[", 
         RowBox[{
          RowBox[{"PsiP8He", "[", 
           FractionBox[
            RowBox[{"q1", "[", 
             RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
          RowBox[{"TMatrix3He", "[", 
           RowBox[{"q2", "[", 
            RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"], 
       "\[IndentingNewLine]", 
       RowBox[{"dSigmaCut1", "[", 
        RowBox[{"Et_", ",", "thetaCM_"}], "]"}]}], ":=", " ", 
      RowBox[{
       RowBox[{
        FractionBox["1", "100"], 
        FractionBox[
         RowBox[{"Mstp", " ", "Mbt"}], 
         SuperscriptBox["p", "2"]], " ", 
        FractionBox[
         RowBox[{"2", " ", 
          RowBox[{"K1", "[", "Et", "]"}]}], 
         RowBox[{"3", " ", "K"}]], "  ", 
        SuperscriptBox[
         RowBox[{"Abs", "[", 
          RowBox[{
           RowBox[{"factor3He", "[", 
            FractionBox[
             RowBox[{"q2", "[", 
              RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
           RowBox[{"TMatrix8He", "[", 
            RowBox[{"q1", "[", 
             RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"], " ",
         "\[IndentingNewLine]", 
        RowBox[{"dSigmaCut2", "[", 
         RowBox[{"Et_", ",", "thetaCM_"}], "]"}]}], ":=", " ", 
       RowBox[{
        FractionBox["1", "100"], 
        FractionBox[
         RowBox[{"Mstp", " ", "Mbt"}], 
         SuperscriptBox["p", "2"]], " ", 
        FractionBox[
         RowBox[{"2", " ", 
          RowBox[{"K1", "[", "Et", "]"}]}], 
         RowBox[{"3", " ", "K"}]], "  ", 
        SuperscriptBox[
         RowBox[{"Abs", "[", 
          RowBox[{
           RowBox[{"factor8He", "[", 
            FractionBox[
             RowBox[{"q1", "[", 
              RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
           RowBox[{"TMatrix3He", "[", 
            RowBox[{"q2", "[", 
             RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], 
         "2"]}]}]}]}]}], "*)"}]}]}], "Input",
 CellChangeTimes->{{3.882090997305991*^9, 3.88209102661145*^9}, 
   3.882091291583541*^9, 3.882329912486802*^9, {3.8823527019837103`*^9, 
   3.882352892273625*^9}, {3.882353295227895*^9, 3.882353301831737*^9}, 
   3.882353477290258*^9, {3.8823535186184273`*^9, 3.882353550044425*^9}, {
   3.882353641795863*^9, 3.882353733531116*^9}, {3.882422382967881*^9, 
   3.8824224035610743`*^9}, {3.882867414865664*^9, 3.8828674825331783`*^9}, {
   3.882867643493663*^9, 3.8828677025473022`*^9}, {3.882867777115178*^9, 
   3.882867783996613*^9}, 3.88286840596602*^9, 3.882868453251996*^9, {
   3.8828720610865173`*^9, 3.8828720628706512`*^9}, {3.8834793555873117`*^9, 
   3.883479373369842*^9}, {3.883554183332094*^9, 3.8835541842134523`*^9}, {
   3.883644872973219*^9, 3.883644882406493*^9}, {3.883644922872542*^9, 
   3.88364496459529*^9}, {3.88364499803763*^9, 3.883645012409073*^9}, 
   3.8836451376497602`*^9, {3.883645322434209*^9, 3.8836453237777367`*^9}, {
   3.883645393762494*^9, 3.883645396831551*^9}, {3.883645474664419*^9, 
   3.883645475125362*^9}, 3.883645590071661*^9, {3.8836464316198483`*^9, 
   3.883646433916037*^9}, {3.883646514623619*^9, 3.883646532032226*^9}, {
   3.883646668153685*^9, 3.883646747837582*^9}, {3.8837212677594957`*^9, 
   3.883721271815209*^9}, {3.8837214164470053`*^9, 3.883721427297271*^9}, {
   3.8837217956422*^9, 3.8837218164328737`*^9}, {3.883723526071858*^9, 
   3.883723606093458*^9}, {3.8837236376549063`*^9, 3.883723709394614*^9}, 
   3.883811370427373*^9, {3.883812010693878*^9, 3.883812073282518*^9}, {
   3.883812115252078*^9, 3.883812134801704*^9}, {3.883812170848184*^9, 
   3.8838122159852*^9}, {3.883812942153407*^9, 3.883812948755904*^9}, {
   3.883813620817871*^9, 3.8838136214219437`*^9}, 3.8838139573201942`*^9, {
   3.883814017170335*^9, 3.883814018913117*^9}, {3.8838144598792143`*^9, 
   3.883814460235263*^9}, {3.883816283810004*^9, 3.883816400277882*^9}, {
   3.883816470226842*^9, 3.883816524255149*^9}, {3.8847718738211718`*^9, 
   3.8847719515370607`*^9}},
 CellLabel->
  "In[188]:=",ExpressionUUID->"7d563751-9dd5-4e27-9845-46f525c48682"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{"tmp", " ", "DRAw"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"factor8He5", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor8He6", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor8He7", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor8He8", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}]}], "}"}], 
      ",", 
      RowBox[{"{", 
       RowBox[{"thetaCM", ",", "0", ",", "35"}], "}"}], ",", 
      RowBox[{"PlotRange", "->", "All"}]}], "]"}], "\[IndentingNewLine]", 
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"factor3He5", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor3He6", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor3He7", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}], ",", 
        RowBox[{"factor3He8", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"2.2", ",", 
           RowBox[{
            FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "]"}]}], "}"}], 
      ",", 
      RowBox[{"{", 
       RowBox[{"thetaCM", ",", "0", ",", "35"}], "}"}], ",", 
      RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "*)"}]}]], "Input",
 CellChangeTimes->{{3.8838165554131603`*^9, 3.883816608574444*^9}, {
  3.883816662551721*^9, 3.883816721165989*^9}, {3.8838179828793907`*^9, 
  3.883817985064273*^9}},ExpressionUUID->"8d9835d3-d38e-4b8f-aeda-\
dab1a09c92c0"],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"ContourPlot", "[", 
   RowBox[{
    RowBox[{"dSigmaCut10", "[", 
     RowBox[{"Et", ",", 
      RowBox[{
       FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"Et", ",", "0", ",", "18"}], "}"}], ",", 
    RowBox[{"{", 
     RowBox[{"thetaCM", ",", "0", ",", "50"}], "}"}], ",", 
    RowBox[{"Contours", "\[Rule]", "20"}], ",", 
    RowBox[{"PlotRange", "->", "All"}]}], "]"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"ContourPlot", "[", 
     RowBox[{
      RowBox[{"dSigmaCut6", "[", 
       RowBox[{"Et", ",", 
        RowBox[{
         FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
      RowBox[{"{", 
       RowBox[{"Et", ",", "0", ",", "18"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"thetaCM", ",", "0", ",", "50"}], "}"}], ",", 
      RowBox[{"Contours", "\[Rule]", "20"}], ",", 
      RowBox[{"PlotRange", "->", "All"}]}], "]"}], "\[IndentingNewLine]", 
    RowBox[{"ContourPlot", "[", 
     RowBox[{
      RowBox[{"dSigmaCut7", "[", 
       RowBox[{"Et", ",", 
        RowBox[{
         FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
      RowBox[{"{", 
       RowBox[{"Et", ",", "0", ",", "18"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"thetaCM", ",", "0", ",", "50"}], "}"}], ",", 
      RowBox[{"Contours", "\[Rule]", "20"}], ",", 
      RowBox[{"PlotRange", "->", "All"}]}], "]"}], "\[IndentingNewLine]", 
    RowBox[{"ContourPlot", "[", 
     RowBox[{
      RowBox[{"dSigmaCut8", "[", 
       RowBox[{"Et", ",", 
        RowBox[{
         FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
      RowBox[{"{", 
       RowBox[{"Et", ",", "0", ",", "18"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"thetaCM", ",", "0", ",", "50"}], "}"}], ",", 
      RowBox[{"Contours", "\[Rule]", "20"}], ",", 
      RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"dSigmaCut5", "[", 
        RowBox[{"2.2", ",", 
         RowBox[{
          FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
       RowBox[{"dSigmaCut8", "[", 
        RowBox[{"2.2", ",", 
         RowBox[{
          FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
       RowBox[{"dSigmaCut7", "[", 
        RowBox[{"2.2", ",", 
         RowBox[{
          FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
       RowBox[{"dSigmaCut8", "[", 
        RowBox[{"2.2", ",", 
         RowBox[{
          FractionBox["thetaCM", "180"], "Pi"}]}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"thetaCM", ",", "0", ",", "35"}], "}"}], ",", 
     RowBox[{"PlotRange", "->", "All"}]}], "]"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"dSigmaCut10", "[", 
     RowBox[{"2.2", ",", 
      RowBox[{
       FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "35"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input",
 CellChangeTimes->{{3.881038678218144*^9, 3.881038680662716*^9}, {
   3.881039279562653*^9, 3.881039296173547*^9}, 3.881041219395603*^9, {
   3.8823529105519114`*^9, 3.8823529134836397`*^9}, {3.882353343127562*^9, 
   3.8823533556969*^9}, {3.8823533902298393`*^9, 3.882353390544724*^9}, {
   3.882353435880719*^9, 3.8823534363079357`*^9}, {3.882353570888076*^9, 
   3.882353586436214*^9}, {3.8824210727864113`*^9, 3.8824211221991568`*^9}, {
   3.882423533149107*^9, 3.882423575038761*^9}, {3.882423824742895*^9, 
   3.8824238585635357`*^9}, {3.8828673718287573`*^9, 3.882867377573691*^9}, {
   3.8828684945911217`*^9, 3.882868532676189*^9}, {3.882871786428021*^9, 
   3.8828717864951677`*^9}, {3.882871818799327*^9, 3.8828718490775127`*^9}, {
   3.882872378262281*^9, 3.882872378276483*^9}, {3.8831099503149633`*^9, 
   3.88310996786453*^9}, 3.883110450535862*^9, {3.883553953533923*^9, 
   3.883553968210348*^9}, {3.883554198187389*^9, 3.883554227725945*^9}, {
   3.88364537792879*^9, 3.88364538004762*^9}, {3.8836454653957787`*^9, 
   3.883645570468872*^9}, {3.883645624428377*^9, 3.8836456596437483`*^9}, {
   3.883646044863072*^9, 3.883646045013956*^9}, {3.88364629695015*^9, 
   3.883646297124249*^9}, {3.883646497820653*^9, 3.883646507509572*^9}, {
   3.8836465444485893`*^9, 3.8836465444999323`*^9}, {3.88372175612717*^9, 
   3.883721776578678*^9}, {3.883721821325859*^9, 3.8837218418257513`*^9}, {
   3.883723611845113*^9, 3.8837236210905933`*^9}, {3.883723694374988*^9, 
   3.8837237339415493`*^9}, {3.883810917681551*^9, 3.883810941614428*^9}, {
   3.883813327881988*^9, 3.883813337311658*^9}, {3.883813547794777*^9, 
   3.883813578134081*^9}, {3.883816408797614*^9, 3.883816419143138*^9}, {
   3.883816485836542*^9, 3.883816488290515*^9}, 3.883817132091394*^9, 
   3.883817194597436*^9, {3.883817516141509*^9, 3.8838175680897617`*^9}, {
   3.8838178455608997`*^9, 3.8838178483525457`*^9}, 3.884771913519845*^9, {
   3.88477197204001*^9, 3.884772036298699*^9}},
 CellLabel->
  "In[207]:=",ExpressionUUID->"b0bf33f5-97ee-414f-b509-6dfa628674e2"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxsXXVcVM3XJwWkYemlWTqWZql7KAVbUVBRwS5QbFGxwAYRAwwUG8TuDpRU
QUVQLEQEVLpD6t2fMHOfubz7h3y+nqkzcWrmzujOWjphrpCAgEC3pIDA//4y
fxy//QZ++1soEosAwvfCvtwJ+yIDJJ2F8ZL/ke+oYXz3X3otjPt/eoz8BhiP
+AeNMF76rzwTjA/+j+xnjvH9f+VbMsq3YWBUjxQg/kgsAggj/kg6C2PEH8KI
P4QRf2R+A4wRfwgj/hBG/CGM+CPLt2FgxB+bwR+bwR+bwR+bwR+bwR+bwR+b
wR+bwR+bwR+bwR+bwR+bwR+bwR8b8/f1f8WEcTB/JBYBhBF/JJ2FMeIPYcQf
wog/Mr8Bxog/hBF/CCP+EEb8kem5jPpsGBiNpzljPM0Z42nOGE9zxniaM8bT
nDGe5phfMr8BxuR4mjPG05wxnuaM8TTH/JL12TAwkhPWmF8SiwDCiF+SzsIY
8Ysw4hdhxC+Z3wBjxC/CiF+EEb8IO1T6q50tsWSk5zLqs2FgNJ/tGfPZnjGf
7Rnz2Z4xn+0Z89meMZ/tGfPZnjGf7Rnz2Z4xf+0Z89eeMX/tMX8kFhAQ/Pcv
D/ODMOKHpLMwRvwgjNpPpjfAGLUfYTReCCN+EEb8kOm5jPpsGFhAwPBfva54
vEgsAggj/kg6C2PEH8JovBBG/JL5DTBG/CKM+EUY8Ysw4pdMz2XUZ8PAA/JH
AUj5g/GA/OFjQv5gOgtjQv7wMSF/+JiQPzi/AcaE/OFjQv7wMSF/+JiQPzg9
l1GfDQMj+ePBkD8emF+ESfnjgflFmJQ3Hgx544H5Q5iUNx4MeePBkDcemD8y
PZdRnw0DCwj8q/asF+aPxCKAMOKPpLMwRuOJMOIXYcQvmd8AY8QvwohfhBG/
CCN+yfRcRn02DCwg8C9ZmA/ml8QigDDil6SzMEb8Ioz4RRjxS+Y3wBjxizDi
F2HEL8KIXzI9l1GfDQMLCPzL5jAc80tiEUAY8UvSWRgjfhFG/CKM+CXzG2CM
+EUY8Ysw4hdhxC+Znsuoz4aB8azG/JIY+St+QPorfphfhEl/xQ/zizDil8xv
gDHpr/gB6a/4Aemv+AHpr/hhfsn6bDDur698wP7rZvhl3dQ//oKQHYPoNhij
/P+mi4Yv7j+EUX4mZtaP8pF01I5y3P+oflReP71woB01/XbOZdTeGgrR/3VD
rC8gOsJkPXR+8v8LB9WP8pN09LPB9aP/YdaPyuufP724//vniwTu3/7xV8H4
H/RjA5leh0HXB2L8vnAw7rejjDHu99HNBo1nfzol3D6EUfsQ7udDAWPUXoRR
e8n8Ogy6PpD1cTBG7UUYtRdh1N7+daWL24swai/CqL0Io/YijNpL5tdh0PWB
rI+DMWovwuT8NcHtQxi1D2HUPoRR+8j0Ohij9pDlczBG7UGYWO8KXHL+8TEx
/xSQ3FDAmJiPfEzMR5xfh0HXB7I+DsbEfFTg4vb9q+esLW4fwqg9CKP2IIza
gzBqD0nXB7J8DjDr+5fPwRH3B8KofoRR/Qij+sn8Ohgj/v7J7VxnXB/CqD6E
UX0Io/oQRvUhjMrvl6PuuHyE++kZA+v8K4UwKe9aKKY86P8rheVd/7iJMuYz
Hc8j5U8vzk/OdxTPQ/JOijHfUbxOBdMRv4hOykMpxvpA5esw8usz8utjOrl+
UDySg+nkekJ+tjGmI/mE6KR8peODTPnV/5cZj0J0EWDKY5Se9NdpeYzopP+u
RK7f/8TfmPKaLN9gkLxGdNK/VyLX93/ic0x5TpbfQjHlJTNeRcpbGWDKd2Y8
jinvmfE5pvxHdHJ+IXmsN0gfMON3TP3AjOcx9QWik/qN5hfVT9qbJozxN2fY
nyak/P5PvI7kRwHTSXuU5pcsT4dRngGmk/PBnDH+5ozxZsQb/yPvmfErko7i
AVyGfqfjdUz9xdQXzPgdU58x43lM/caM7zH1HTPex9R/zPgfUx8y45Oo/ah/
SP0zIBexvpIBMj2Lof/UBulLZjyPqT+Z8T2mPmXG+8j6WyhS34lg/YfaS9JZ
g/QrM16H6Ki9TH1Lxu9aKFJ/DuzrYP0oAkz9y4yvkelZQOpnNQa9BetXVB+p
f+uwviT9FaQf67D/Qso/lD5jALfi9MQ6wfqjZoBeMki/M+kCjB+qjxx/Dl5P
5Pwsx/FkVB7ZvpKB9SmI28/EpH1RyMifP5C+kSLb18rgG/F3ayB/BcYoP8Jk
/2YMoveX2skoD9UnBKS9g/of+fVCgHB//yli3J9PFeN/5P2aJL1WH+N/83iz
Icb/5qWCCcao/v71pg8H/hU4YDfxMaofYVQ/wv/4DtIl6bX6GKP6EUb8/Ss3
1xTXhzCqD2FUPsKofIRR+//NqzYuLh9hVD7CqP0Io/5DGNVHpOfXhzDiB2FU
/796dtnh8hFG5SOMykcY8fuvHA0nnB5hxM+3/5V72WVg/XTi+YfoCCM6ml/9
8lkM0xFmyo/++SuP+UEYlYcwqg9hVB6ZXwlj1B9kfo1BGM3Hfj2mA0T9DhyM
Uf8j/K8fc40wRvObaE+QKcaEvFTQwRjNT6J/FQb8rDtyuF1ovBBG/DIxOd81
MP1fdWf1MEbzi6jPgYMx4hdhxC+z/f35jPB4IIzajzBqH8JkvUa4fQgT8x+V
58Ah86P627i4//r73RLPF4RR+xBG7SPTa+D1RfRrkCXZ3jYubi9RngMHY9Rf
RH4UX3tmg9uLMCFv+Rj1FxOj9UvM32c2GCM6ai+iE+PIp6P2E+1x4Ayq71++
CQ7kfOJjYh7wMerPf/1czsPpEUb8/vOjVrsBqc9eU6Q/SesnpF9J+UPrW9If
LafI9YbiARJA2gvIbxca+Ev7+6h+Ur51U6Q8Y7ZHCttfzHgCU16R6euw/4za
wZR3/68/jOUD0tu0fibTawzCyF9F6xvRkfwi/fVCxvmRcoqUL8i/oeUB6f+y
Bulz0n9UGoQJf7KWjk+S8lcX10/Kl168/kl7hI4XkvJCjdS/yB5v45Lxrzba
P2LmR+sJ+SOEvuWXR+pbNsaoPBL/wfZlf7ubMCbtYXr+IzrKT9qT5YPyk/Pz
ycB4NmN7tb/eTob9Tcf/mfYvKq+//k/YHkUYlYdwf33COH3//BEY4LcM0wn5
wKej9iGM6Cg9Qcf9k8GwhwsHtY9pryPcT8/F/dNfTgHGpPz6SqH+7G9fA8b/
v32O4nF1WH4IED8JUj/gnxCWH0ieIAqy3wj7B68fJA9bBtlbzPWL5AmShyg9
YX/sZ2N58//aE/+RLwiT8RI6rsm0/9F6RvWR9gTDTkP28n/sBeb5NkRH5ZP6
mIXp/a0ZbH+g9IS/9Iw+N0nYC/z+ItPLACGPkP/Ez4/GC2HED2mP0PYFoqP0
KF6B6Ki/SXuHaX+0UGT+QoqwF1B8DdsnahgT483X90S87T/8kPaCHpkfyeP/
tJ9ZH8qPxp+0J5qw/ibP66H9QFWsv8nze90Uah/pfxiQ+fH8ESXjW3w6qS9F
Gef7uilSf9L1I32F6if1IVoX9PnBfv5M8Hj++2++v4nGp3/+c8n10UbHC8l4
lwLGiE6eB1NhxJvKKfL81R9G/KBskPwl7aE/jLhGIUM+5uP4Bil/aYzsQWK+
Yf2jgTEx3/5DJ8YXy7UaLHcQnZRXA/4r8n/4mJRfNB3lJ/whPh2NP8KITujb
IFNMR5i0N/Ww/fUvGbLP/xNvYfpnhHzLNRqE0fxB84Xp/5D2x4De5/v/hL/E
x4Q/+p/1iTCy31B6NP7M+AG5noXw+kb1IUzEg8p5uHyEiXhQOQ/Xh/wLJK9J
nM/wNzLw/CPtH7Tf9gfLG7Q+EEbpkf1BxsdofSxA/ND8lWLE4+UZ81WKYb+i
c2l6DH2sPyg+QbTfgd7vI+NvAgLk/JVizE8phv2hhjHTPyD1eznDfigfZF+Q
5yc6cX5y/1UNjzcTk/tzqB1sLM9QenJ/n45vEPw4cAatN1Qe6h+UnlzPSkD2
L2o/Z1B60l4yZvBTxzjfIYf1A8LM/UFmfIXcb1NgxH8USHsGx8N0Sf2O98s0
sLxA/YHKI+cfvX/IjM8Q7Xegz5Og/OT+JB2vRf3FxER9DhyGfUfXh+QHaj9p
H5vg/kJ0JF+YdIRJf90c9z/KjzCSp0geMstD+dF4oPxIPhD6HcX5/oNReYT9
h/xZBR1G+3TI9jlwBmGUH40Hc7xReWh8SP2hT+oPB3p/FI0H0b+5Roz2dQ6K
1yF7hpAffHuQiCe2ccnxUKDzk/unvbh8NL5k+SKM/UMxhv6TY9hTA/MB2/sK
mI4w2V4VjNH4ov4i9TcdX0DpUf8z9wNQemJ8/rNfi/KT8VwuY71a4/Fj7icQ
5aH4ahuXsX6t8fgy9x/I/WmkdxyxvGfaAyg9Gh/U/8hfYu5PMP0T5n4Hcz8Y
2SOov5n7wYT/gvePbDE/ZHtbMO7nTohh34hgTPiX/7GXmJjsH9YgOvk9hQKm
I37J9mgMwig/4hfREX9Me4yJmfvNyH4i/QHm/qEE7i/SHm/C9j/CyJ/oH69f
A3b1gN3Hx8ieQulRO8h4CR3fIuM1f3D9hP2B6y/D9h/CpP1XgumkP0L7LyR/
ZYz4jMag/RcynsEepK/Q+iX0O44nDNhXKN7O54eM/5cx4lm5g+JP/en+kPEp
vF+XO2h/uv+H7LKz/edwc/9i3M9POy4P0Ul/TQrzj0ok5B+K1/8nDkT6Y1IM
fTXwnRT2x6QY9tnAd0cK9PehyJ79/+cPfT6t/8eMdyE9K8RoJ4q/MeJffEzy
R8e7+vOZ4PVCxqvrcHwdyQ/SPlJknK9SHWTPITqSZwiT8QoOqQ+xflfEmOx/
cyDXjzkpH/8TT2LGx5C+IO1N+jwSUx8SdH77meenmPIexTNQfvL8DosRfxIQ
QPKN0P/l9Pd1pP/IYuxXqTHoLdif7C8dnT9D519kMCbHUxSfp0Tzi/x+SRf7
Z8T5Bn5/IXuKnF/mjPlhT+p3fJ5IH9PR/GV+X8jUX8zzSkz9wzyfhPoXjT8Z
P0L2sTvG5PdzCpiOMElH8rWTsZ8wMC/wfEbynsUYDyVMJ/1HUYY/Qu9/ofWO
6OT+jhjjPIQckPyjeP8PivQv6PPBpP5UwvKKPM8mypAfarj/SH8X+TdqGJP+
cS/D/2YBWZ4OKa+wnKPj7KS/b8Coj/aPyfPBbIb8VcOY2T7yfFbnoPMQzPO0
pPyUYehTFSwf++tF+oc+D4rSI37I/EYMugjD3+ukmJiUj72YjtqHMHle2RyP
P5leiWzvZu3+eVhugtuL0qP5wbTHmf4O038izz/KMeSt3iD7A8kTRCfkca0+
47zBQDzxgiNDX6HvCwbsBhdaHqP1g9YLuZ5kMEbyjkxfM8h+JOKzfl8HcBEj
PszB/UGeByykSHmJ9jsbsf1D7v+dxfZnP77F2C9UwOsbtR/F68jz9SaM7+FM
sDxizmcy3sDG+F/22oF9N7AixxOdN0X+JLYnRRjyVwiIeGkQHYcg5C2O99bh
eC7ST6i9CCN+CHmIz5fUYfuW3P+jvzchz7fWUeR51UKGPVLOOP+Dvj9C8lcO
6wNSP9uT+pDfH4iO+oOMv9DyE2HUf0h+IHnA3O9h2m9M+UDIFwctvP6R/Ef9
R9hn/P7r15vSeP0R+4nYP2zC64/8/oyDx5uUrxw8Hkj+IEzYi/z6UftR/xH+
LR+j+U/G42WwPiD1pRrJLzo/ut8CpyfvX1CCkf/62QynR/YP6c/qYUz4/9ge
5OD5QMS3/sMfeb5aCfOD6mfG55G9hOwJVB/iB9krJB6Qg7XmuDxSP9D3CTHP
HyL9S+5HMv0DWr4x4x3M/Rnm/Quo/wwJPYP2P7mkfg+yZthXXGzvIjph/yL+
Fbhk+f/5vg7pLzR/EUZ0ND8RHWFUPjF/+ekRPyg9+T2aPp6/KD3ChL3RBozz
QsCItwFer/3r15Pc7+Bjcn17kvKLj8n4oicZ3yqn7w8h578i7n/y+xg1hr5R
I8cfn7c2xvIAzTfS/qHP/yF5wPxeBbUP9Q+53nqxP4Xai/q/f71o9I/bch4p
33E8qxfPV9R/5H6iCqN+YVxef3oBBh6Ib8U6kec7/xP/Q+mRPGHKV6K9CjqM
+vVxejS/0Tok15MUXh8Ik3Q2g85m0On7h5jrA61/JD8RnZSv9pgf1B/IPmau
H+b9K2h9RG+abPneC8Wj6ftJSH9QDa8PNF7985S+HwTRUX+T66kFrx+B//74
mFgPGLMwRvKQ8GfReV8kDxXo713R/CTPT7Tj8e7XX90YI/uS9LeVGP41XR8R
D+L397/sEgPyOpaON6Pykb4i7SMOWV8QfX8AEX9hxuPxeizB9SP9h9IT54tQ
PKB2QJ8HOOPxRe0hvr9A+/W1igx5VT6ofsTfxHb1k1vYdByodpP+4/Q9XFKf
fbGE73V3Tqw8ZwFuSTOOP3FC94XQ8ztpnGPd6mv0ea2JF+WXZlc6geuuZPHD
kprwdY3qplVD6PuR6tKP7+q54ABXeu3njTptAgYXbq7ZcckeAqpPs+7xzAb0
BLJ3W6hLWmU5N2yRPhcBztQ5s7eo8+D2gH3z50qn81A3RGeBmHHCxw/ePDy/
rz3bclaBousfeVwj3FrMDeyHnN9StX4g3v+f+3HMAm/lVK2h7+OpaAsOWXyS
vn+mwD9oX7KDJ0iZ2c4L28oFG6vVGp9+i8O2lg6tPxtNICD4V6+fiz1ckZHV
/htuBhPeyVSu97AD6YMPC+69aKaiau59nfjTCdIKWiqXyBrAxYWhaZ4jnECk
a8nT+zL88RTzP3/ptDtIH1Lf/WGSGrytTXb4me0BroJ5q6vea4LRWNnpdZs8
YOy0z+ffv9OBqhYzsQQJD1jCixn3/oUajFyVr/i0zgPePPX+2OhuDfumvLHV
ei6A9YOTWegIRQW+vZQmLWDtKgcmXAfJ2XE8kKk5YBE+Rx0EFuz/vHstDxbM
rNST+6gA51/Eh005xIOlOxWap9UXUSfYVq6jegfkK39+Td0X8UXtMX89PRoj
vjS8ldKzPrmJU+YEc60TdRT8xeFYb9qKXet5YFlUWeXhJAmFPaJv3m3jQXzW
snrZ+UpQujO84fkBHqjULX71eJIybNyrlHuK355iLaXO69V8/SI1P2f4bh7k
ff3ad6Q6neqz0/RfluSE54ft54nnPH84QeiA/7Hih5/MFQ/6fPzTBkMqQYe2
t+ZctTjClUH6Qgpqa876P3Kgz7sc2qvj2WbPg4xZ6dOvmFRSodFGvqnSPLCr
Tr0TkM8Bk8sphyX8HAfqNwCnOUd/3H7qCPu+2a3f/lYHVrRuWTlUitZHD/ZV
ZyZtcQLWm+W1RjFcSPo9vW18yjcqXPSdg+k6Lsybq/5CeqscbKkb56srZg19
lZlLpiurAXQMuTjxNxf2q9wd0ntXC+a3j+UYnrKCR3pxlssn8e2DaX4XJBZb
gMIXCW2lL7ZgzNZnDfugD7Y1D0Z9/+sIxi90FarGmYDYe53Lx8vtYYyQrnh2
Ft/+tohSe+ruDnL3N67tOqgDgqVjXSd9Bwj+MmJhY9VzKn7c3jTRcC+4YK80
d5TbX6rETi3uuKEXZJZNudy7TgJkDeRi5rz0hNpv1qfu71SAxv1iqdv3eUJA
e278GSu+XVTQbWzT4wFj2hLq2w7LgoPgunNv+OOxvbmgV22hMEQtLZvBnc8D
XcOo7FmdApCx//46qyD+fAg69sNrxFAoEJxab8lf7zonjJZ2r1eBWM2tM2+5
8uCR4DbluR9qKOOqZyO/5dPjvfvxEI7uQR50VzmcuL5aD87cv/mME+SEx3ep
Z9xiq108KBkY32/hVlMX7uRBEbfjkK1XA5V+wvPQRP78uDJT0HqRqja8eCwV
acqvL+wXSyL8iA58nbgr8qc8D9ak9M69P18fFmt5LfjOdoLZ21KXf+SPp8Yw
i8dnQtdRR8YFffdsp+0H3vH6kd1pXHD78PrWq3P6wJ2+dL0J336YW5klfimW
A8+Li1dqyHNBryY469JEM6zvhyeUWIxqsYevVdnZJ3daDLIfbprdMKmssgOO
gntq5ZQGytT005/NBU7gv7z+8F11c5B8HO584LIjFE15ev/NQVOsr+4MyEu7
d33jI/nra/GAfbCpe93G1o08CNq/oHVNogmolQgnbTZ0we2RbVwW+3KpKzyY
eKTW9CgHLN4sdq0MdYe1F1adshtvCDVeky5XLHIH3wH74vT1M5pDuz3g8T0f
HQlPHRBeXRC2qRVA/aWS+0ltXdhZxpm0vJW+ry3YftbS89mesHhURtILPUl4
38zJW/TIEybPyLrGMteFT7JZuc3tTtieUPB2tClrdILhsdtHblTUhs29EVr2
1U7w7njBmfhEHbjA4hT+fOyE7YmaFtbtCz48iKvbmjB1vgLEz2gXyRrOg8Zh
E36OOtFBbTsofk8aePDx6XGX11Jd1NacERGOvrR9YfNkUvd8Dg9KK7Ldl1aJ
QWvtTe11xrS9kaH8iyfiyYMjerbzprazIFdcdLfVMB7kH/Ez1RqtDPeE7qZX
etL66eUcjzq/RB6whkaU3E3ThRVpew7H7nKCLa+yZWO9rQfS1VDjTyolCHjQ
9ykhflYJP3vFPsyDmp7uU6Pzf1Azct3MLt3h90eg85ragi/URsPR5xZddcLy
qUts0nhhPScY80fntVyjIphFqb6r5dd/Nc0i9lKZBfh2nU6p30Kft7hnPfGd
WCJt79euV9cYuYW299Wl3Nh7+PPnwvBF9RMs2WC9JyYvma9PQrXFVvtMshpo
vzm8iG0b5lbOgVlnzxipejlCe93SsZGnOBBeGi+amu4IbWac44nxbDig0caN
C+FB1mOBgzV8/n/8TWhJlS2kOl6Ub0repwH3sgJtZ4bxYG3EyXqJZiFofBK1
t2wWDzIDhHZ9zjOETxb543t8HEGO/WlETpkBjH52fE2dqBMkPedcudnNhW4P
tx93HdSh1qRv1et4K/DUnnpq1F4rMHaI2ze+0QxUiiyjhr+0hS1XJaZcXGIE
wUvMXyd3OAD1LGuGkwgbfKg5P8IX8GBO2rJ5j816qQotF+k143lQ9k18u7ur
AGx93hrqGcjXD5qK7MoYPTg3XW3uqctOEO0/7phioSAEa9696MPn77BmoNQf
C2uwOvxyQ+t9WTCv2+Kdka4LIjUrcs99cYIbL35Fjt82BDYtstmdt4IHntI3
0zd4WoNYpWTJZOF2SrH5Bs9yowiwzhh+Kg3lwR5Rf98LAoYwfrFE0qnjjlB/
4liOhZ4FbIuXn7HqmDX06LiVZPToQUpakauWsxME1V97YWekDh9fGfNi+fPX
R9v4hJqpLtxebT7H9awTOPQ6LWfbXKPutLF55xOdIDffIXrSIg0IWXNJKoLN
A4kxEjYfNwnBWHPTxwv58lDLM/FznZ0efLWOzJy82Amc9Kc9l1tpCRPGGJ9Y
4GYFExvejPnpYAzfYte87VZ0ALm9M969vW4GvvmPWYmT+P6r9x3xvVxDSJEZ
Va+k5whB68MO3/QShT/ns7vttHigpjXxav4mXWBXfdu174AT9Iz8OsFg9Ucq
+pjG0Lo0JzDlLHq4aCLfTn1tsUR4vSOMOX7pCjWXC9GByyY8O6QKM9eUTX8/
0wwqzH7+uP/EEdam6bpKvjSGyM+3vof4uWB/qvRXUPKxTGpgPWuBqrHAnjWz
6PsXtTedV1Oa44Xtz5rQrVSTphfotUUPDbXhgkz05FttsXqQqbF2ZbTcJ2rd
ie3Pz8d5wcGr3zwDNbqoFnZ1m+FoL+g6OqrCaoMENDyo7RD76wlCf1tn9Obq
w+TD+hK7OAAjXQssK2PNocx+jsKNUgfYNElbvVbUFE48jq7mnnUGlZ+t4rvG
G8HRPi03sy1ucGj74c4aRz047qk22zAVIEqquiOuhQWeQVzF5GBPOLMiT8G2
2goEdL27o1UtQK/AOSR0uBVwuhcteHaFCx8K+gqi8ywgSEBZWn61HRgm3HMe
Z2EBf79lTph4wx4iD3NvvOCYw++WV7+OLXWADG2NIbVHTPjy2r1k9FhnKHv1
5pnHVWOYkCUb8MzCFc4kX20baWIM57XCcvbdcoUlN72/hFCKILs8zG//Vk94
kJ+xnJKygKqdFgdvPrCDjzF9nKk/jGCm9dZ5fiNcoSPurdjpEVz449S694Sk
DrwaKxg9bZMCbL403ONniCcMfX5m3aeFBvD5y0WlxiAKPJW3PU4L0YJ2iVen
2E4esDPDIYIzvJka3XRqnbGbF+yOdfmiHikMH5N/Vu7s8ARxC7FZj2ZyIfhI
V5d+qTpsHdvZZtGtB+/9T5zfZgrQ/v6eZdlxZZjh+udwqoQn9Nie+mE8rYPq
rh3zRs3cC1QtHsw20rpBGbFjLx1b7gXc+5uXc3aIQVr46gfDP3tCc3KjmNwd
LvAMNwk1pWyh+sx2vN4laIr9pUtbTT1e7VTH/oZPgWPgjfNaUH5SacyTWtpf
fDUm8MOh7gF9x/dXzwVpf3PQ40GvoHtORUoylbRJdaRIlRO8vdO+5Q2fn+l1
vHl3bYygQ2XDj47nJnBwVM00x6P2sPDCmsKkFHmo/9EbOPaUJ/y53SyZHaMG
9lqUWVaLBxRt88vriNcC3vq64D4vHhTOsNpzOUEedq49PPcj3x7f/ur78BRD
eZj05decgGG0PT2yt2iSBF8+Zcy8NlXlmgbMHnPPwm8RD+R6Lkems2Tgxb3t
4WF7eLBsxCmh0Wxp6JFNef7IiQfj9oz/a7RsKOyYIvB8cxRffv/4c0E0SA3i
jp3fWsbXLzOS3Te4lKrCpJbfq+bw7b9rIzMbn+5Qge87s2Y58su7X1Vc8fVx
JTVHMqix9pkT3A+6oCrtIwetmeNWXOHr1z2CAhLXzfj89j69v5TfftfE0cNu
zJWE+YlqCqfseDBqWtXk3aOkwbR2y/3NfH/ifkxn+0URVZDb+q2Ux2/fDP8g
zb/tqtDoXOW+N5oHF/+U23sZ64G7hcQSVo4TvNze1uCe3Ey5PVWOyefyBuxP
HYjnFR4Avn+wQE3z6/YMfbgUc2SEX4gTKAhHL/+8iY43/ea1qfvk0PHZL0uP
OH9I5EK+90vWzHQDeKJ2rHTtFyswuD53bJOdMVydXnz6hCUXWMtHWS08bgIl
nwKPfjxrAu/iralTavbYPrM3fdPFXeVAx5vsPo1ftwzFB5solRmVJmnFdPxM
2Hg/aJrR/rC++RznR5qOoLQgdsOPaeY4HpP38Nu9Aw/MoGpoRF0PzwnqS3Ud
XWpNYWjbeWrCEh5EzJob1momAweWzJ1Qy7eXNyfnthakysKwnJjJkvt4YFW8
MNxpmRrfv4r/HMTvr0vxRcoTxqkD91r1j74IHvSldsjfrDDB8QxP1XT932M4
cGnmvZL9jnx5fC/y1Le5BlAT+C26tJLC/tSv3WLFtyfQ8a7jlzZ7/73mBu8O
ZkhEx6nBz1+pFbeeeWB7ReYh74SCpSff312gqLNSB/Y32V76oEv7+2m5/r7h
twG2lX8XVfvVTs3YDL93T/WCQuna9N2uO6mrrvc0pvP9/7mqRk+qvMThTFSN
8zwBL7g5pzWte64czD28iVt71xMuVc2+dnQXus+4mxqzX9vb29EaNLmJC0qT
xGHtYxfTrYsUIMa1KC/5EP299uu1cb/e1jth3JD/ht3GX48RCmPOOCe0UvsP
pf9ay18PG2YXp/5W66EClTJSho7hwa1K35f+n0WhIfo8/FrGg8/pwqkuYhJQ
XCk3Uz6Stk832J8ct4bvHx0RuPr79mNl2C10cvawfXQ87k+oic/MIjoexzoc
afDGiNd/zyl/fneyYw7kPXAa8B/qKKnsAJ3MN07QeKIz5sQEXfCJlC580ewE
Yi+/W32+qwhJfnNCHPj2s9SFc6L3TVlgubTauppvb9+PvFj0posFZ8oPKnEO
0vHdm+ukm1vynEBax5n9c74u9NzY7XujzgkiFCuXmflYw4HlGRO9qvKpG0KK
orfAGkSHTiqKrGvH8batYz0PnqtxAu/YS61TPytAYNOMxSx+/fEjEyOEHypC
4JMRRzfy+3tn/vhNBxdwQIH9eMWMD44w7PXvO0pnB+7j0nCCtKSTfteMWHBJ
Ri7k+SEejm+c1MvTD+XbOzI+f1fba/2khHPLbEr56/3GyinD97iZwp7pHusu
nbKDs9RtCeE3vdS0hY/ige9vta5a84MyNoOlkpYuEV9tQduws15sJhuUBM1z
EuR4MG9d4v55x+QhLl/Z/6sP6m81cNY2O7vZnAemw7SvRdlIwP1Rm143W/DX
a9Vn/xWZylDp6TxbxpO2z/0pDcUPlrR9LtvoKKrqxoO767zax+Wrw4FpyRc2
8/WHV0lEUV6xIDRMKVVKkqbjE5uvJqQfM+CPL7eT4kpZgfajgM8P1Cywvym9
ZJ9C6F8uXNe2Co47Yg43itU3ao2kz2snl6c+OOjNg3M5Q8OvPxwCovN8ohcZ
8GC3wAnZvMVK4Dr1iMhpvv64lnMtYe9vHVhpam9WwfdP/C7lSm3zFYG1DhJ/
k9R4MHLvZM2113Whu7Q7a9NOJ/jw4nt1CdsAduy7VVlY4Yjjr19cqso6vR0H
2feIrv/qRKl0miPsrU7Re/SWDQsO3wSTGXx7esIys4c+dLwzcJ+ikGWSBogl
xPqu4tvTsm5Lji9WF4bUxnBxOb5/obrl1O6uKkMsD29X3kppVOPAEUnLCJ9m
RwhLFC8J0rMG1+2zeceaFWCqDhg6XrIC1+VZr6gPliD+du1YQzk6/m//iHdw
2xBjWJJ1+8XOFAccj3szbmvw9jkoXtlLPbu+e3HrBB7YT/3Q+zNMAEwnRTs3
T+ZBi6Hs6e98e0V51VUxhQR6v0Ro/uerZ/j+hcDQFMkrNtYDfp8UHFmXUvCt
mQv3rr+UVDHQhJFzt6836KX9M6WOtlP7y3RBy3Vuj85H+nu0ndvt2F/X0PHW
59JK61r4/fNgTIyRNd8/uzf3wvQkuypq1d/Aj81sQ9CzuP/+a7wjmBRsurKs
mX6PYNNK1gGRTD0QrO/hbfR1grJFiecftKjBqdn3VrWb8iBWJyL3hbouNAdx
l3LPO+Fx6auYPmXiQSc4kMtav9ZcAzJ6rv/8wfcHnMaOH/XeRAjktYvebJOh
5cfBU/kuP9Y5wZGa29N/GKN7RLjArTnEask1gi2cPVMW+jvAuVE+5SGz6f3M
qJOK2XZd9P77EqmIj0ZlInDTNTDmoQaK7+uC4Ju8JIVjyJ8upBx9Gyx9LjjB
mY2iL5T5/uaHUOfK6+f4+jN/uatjjxpM+TpUUfYOfV+6cfeGK38tHCB8YL9I
zFpQMtjQGcqVNYu8SiQg9emWVR+zBvZLvsjAgkNRt62PeYKSWaz3lx3msObM
b8l3GfZgvUwgSbDeFOrNZ+r8CHeCGIHClXIGplAmHmN3OZGH7YGwjGSxqhsu
cFteVfXoJCOYKJ5jP+uDK44H/AoZWyTrQsHy8c+DIwP14VyAR6OuDEBfe4iO
z2JDuEKxgzOvuGF/qKVg5Jtvph7w1MY7Tq5PBzItxXatTwfwT91yt8tJEdi7
Pnj5+3uCSNHtlr087oCe0IVJKek9nopcMPjx62f8Ig64hrtYarGaqPiEcdnm
YV6wdsz69IddgsCeNit6j7UXrNgx5ktz9lDIyBpyYGE931/Y0ZK/WJq+f7/c
mPPbucIcuArxezYPc4DxsWHByyNM4cMC41AvGWc4fKL51d5TRiAxKv9xKeUG
m0c8qn18Xg9ijdiGrO0AztOT9U0/KsEV1o4PLqM8IS5vXs2sJiu4XRXADs4w
h+LI7OZfEVZ4/mh07rk5t94C1PUbj5dz7KBdW6mvaSK9fxfIrhzbdZfe/3a0
evs6ypG2Z3hvv59y0DAB/eO/OJoPXODziuufTf3Q/Yb0ewyLk0xdD8z3hMot
d95JXaPfu6gMb1s5IZl+XyFw47B0QU8uuCj6RYk360DdcWnZIw7yYG4umCi/
zhPy8613Z+kZwNHVH3k3dlGw6FuqIDtYE4p2Fe4LDvSAb3ajX++f1EC1i6yP
XzjMCzZGbclU1BCEL6nWr3cP9YKqQvm7epPRvVlsqBxnpNA0Xw8meBQHrZ0K
ULbs6bmwuUqgklbX+NjAE8ffc73g0l5n+r77UV/cY26t8hqgi4DbV+fbfU2e
MCxmsmqsFTrXJQXZ4vlpZbcaBt3PMMQpZsyQzqFwRmOq2pdDHfg8qoZqVlkp
rw3jid7RTkEsYWxfTzs0Yqc1/s5XQMDYp7ugaAd9nqP12HYPxQL6/Pz7wJyV
Mdfp8+3hM0q/P59Kn2dH/n/q+UzBpYtloUxIZNnLmc2DzrfvNNPWu7eQxoXD
K850XlPH+4nm+txujcNyeLzHJlyN8zCWAaETai/q5tLvHZXXJN733UWfdx8y
MnGabRN93v2xbfm+scH0+0a/r5zYc7SYvv/BarxltuM5+nwKan+QfJzzx8/0
u1cjf88ZEuxFn/uvkjiiYDzEAHS3wPcjs+j3hVLczeZ/kqTfF0LxWmW9FWVL
bhtifiqPui8UVTeEZLPUhbU36PPu2+OEvCXT6gfd17n25ZaMHe/o93SmGWhf
dzGywOU3G03Zt7nHAiZaO/3wbdQcdH5ya/M37crVFtj+fySsmZ5dQr9HNNpf
48X+cbbQYNbTHLZKetD5deOQic7fhtlA+Nuo8+9i6PPuy2blZG9Wo9+reXAq
31P7hy4jvwHsH14UNmGrDbyRcUnK/USf30H225heKS9JVfr89q7k+m9sGzeQ
dZpZ8eVMM8WaNo2rP1wSxHL0JNlxwuA9MV956nMJkAyo0JdQFILu0ENBiadF
oVQ8pEdAWA0+vf/9Vu2iODxe9Er2kkALVf2oeripBRvyW79Ud2s0UXcuKjoc
/KoO3zfXZI92bKC2HnUx6N2jBu6hyY9dRwpDeSeA9Gt1mP2h6jx3NQs2vFss
4O7NhltXh58L5/u7LxMMRu/fqA7ZF9LSp/lqQalxyK2MTnU4nef79m6oAYxp
sNl1IF0DDn7qbjhRbQinGofmlk/SgLGcIZxpF0wgd1mr1ujhbGgTf1te+q6R
cpd89EMnwgCOS3jpDJWQBiG2gkeRiQFUz/qgP26XIjg+WTD1Ro8+mDtLj7NY
pgoBKwIjZl7QhwnnlO8tXaMLiz46t89o0of9ewqbo1YawAYHzzIRDQ5s32/0
LoZlBJ+kVv+09+DAnzzlReJeQqClcnL79XZTqPiRJ9+iLA3eDifY8pPNICmH
zXPQYYG8rcPOT81mwJlFzR5mZQASFwMiPTaZwTxq0zax1Cbqz0q3PeO2W4PZ
FduYSHMh+L2mWXfMEGvYNeL7nHFmaqDqZyK9fZ01jPZklUpu1YLLAcExQcet
QbDs/UP5/bow+8gDl6ee1lBon89ed1sGVgrPmrUrxB6mn0n5+/SsIrSOX+Lz
PMcOzFI3f3k/Qw02nLpodIjL1x+ie63nH9WCyNb2zL1gD06RW56ntuiCo6D7
wbbp9lC/OWfB90lCYORz9aM73/+OvWO+WjNLEXZfze5zWO4EhldjwxyHi4Dw
H3d/p7Wu0LayZJ/PDinYW34n1O+FC8xWKm43MSynDgc4F2t2d1FiLh7pk0b9
oToXzZt/QbCNij3lHnQu5ycFYotGBKb1UDGpZxXH3TmA75t4d3z+Z1GpX1je
HlE7JL9xbBF10mjz6U17qimNv9eKlr76QMvjZ3O7L3ztpqLmj8zdKNZOjX6S
Z+F++C+VeTS91OFhA5Xv8TNLfo8gqG888Ca9oIH6e9TTbtnYPsreLTBuyLgu
Sm1/ht9Bjy7q6CRRp0g/Ycgy8OFYbxWDDWq9Lz3GN1BPbHLVYoYNheThcz8L
ruykxiyvK961SwVOr5guvITbQf0oaZk4M0wDhN7prV8n3kxJGGTITtXQgOzb
H6KeF4lAkSb762IXHQi5W7XZ+0sjlbG4bs3L5/rQ57+8u1eoiQqqFbhfOpED
Zh4by7zLG6i4epNTp5w5oCy3dES2lyjUVR/8e/m7MSRpN6nfv9xE9TXLry9o
+EmNPOK257y9EsQfOFo1gvpBJUiMFnMZxoJh84bd2q7xjSqLmBb1JkARFp4L
PLDm3kfKompx3+z5ClAmNzJxjW8P1TRlq8+PSSzoXliRUsDqoozDDItX5SuA
jBR7jaWBIIy98XzeQylFEKz98HwFJQZ1EanjX/D9rnFnXkd4uyrDzdz8htDf
CvDb8JKmUaAq3MhIDldTVwCxhd8XT2Oz4dflpt7xjSzIejn7el+BBixcc2hB
+W1lSH6WWaXlrA/VpVPZnupKkPjrmqOCpT4sXP+wgC2iDMK32/19tAzhZyMn
YMZfRShKLN33bLUx5A6bWb3ZRQn+PHV/5JRbRvHWc9MVY3Th+QMN2SM+JZRW
2eEvn/7owK3W++eedXyghP0E25KH60CBtmWFx4tuKjtCWsZTVxf2GekUT6mR
A6edBqaHpumA8PwUNRBUgdn68drBaXw/cHzYjDZ3ZbjR+GnDRHV9WCafGdjR
zIYT3/YbmNXpgMyr2BEzAzhg3xcf9mmhDvQ1uvE8vhlByqOAFsMROlDpPrdK
rfkDZX889sKtxUbQa/EnrCFfDATmUGJml40gZLn3nPFa8jDqoURkbJYRmDzK
lXswURmMHzy47v/dCF6wXu26bq8DtX59ox2OGMGsnVqm4d4cWJDsK3ZomhE8
dCtN/WVlDCUiay6NmWgM1W/ej0new/ffHm+1WSLChbybNg6bEwTgTFmZy9oA
K1iwsvOb4D0xeDL0x8636ZZQpDt1orK4Aoyf1rvwohQX/kaHx5701oGssyeo
hmtc8HYOzEhq4vtP1Z822ttZwctxxRPnJnyifq7//vNhuw0IbV5W6u6mDONv
KZQ6+NjBt1ivtW8tNcAqb37M1lIb2PL5p8OCeDEoEepccqbVEZL/+n8XeCAP
07YOSaSGOMLxh7dPzVirADNSOkK8fzrAsIMFotUuytC0X1cstNgRVmUuW//a
QgMiT7YZqCx3gEAlH++umTpw5vjQsM5nDiA9dqSb7ZRSSv5r1fVuQxe4yQno
SE3ooRZoqi16vs8ZhAu5sUv9BWByc05ZSIQzbKuV8hwxTQy2H3opXd3Og0S9
J/PNtslD+Y/Vqsu0XOCySsi8Sh1lCHsj9uItyxl+3phmlLC5mBqyc3PMztNu
MCtmTGeR4xPqSKrbLY3uQmp3y1vfsT75VPoRtwBf23xqNvew8oEt9P0iSP/+
NjuwoXZXLxVQdy/Ac28Tlm960WaLLoxvwLhMY/qP7bfp+w9n35qX99WzHeOK
UeH3bd7S7x24ZGUbXYz7ie3Xaz2Oq0N3lGBctaQ0aWt90aD7E7efWGtxxE0S
4w+t8x9E2snBOFbsZrnoHMpP503jtXHi/P5w3WJ9+R31e8XRrtmhIvBgAeV9
4uZXKlJK1XoeiMOuF3YN87kfqSDdIRpzA4bARI87lrxsQWxnzc1Vulk3TADI
/hCBi7ZTGt2DBWB0JceEVUnfvzhP/Vf7bRX6/sV9a0+6+ebR7zP8skmzuXGI
fp+hreeiTXpE16D7GbfLGox1S5GENInOg4teDqXtZIvUHUOSxLH9Pc6JOrry
Ov1+A6/q0oKzJcqDvtfKS1Fvjg0Ug1Xzly6/nEvf1xLqc/5ASoUxgz++P/JQ
Yf2CG6rY/lK5+fJzXZ4SeAlNrRjb1YjvR3HNsXvBDe7A+JXdPI6ZUCvGnsNG
qRwa9QPb+5I2GdFTFD8Muo9lx1ONN4JLNTCu6W48kOpB389yLPA9L7xVG2NB
0RWZG9Loe2v+3pIMVzyhCF6aeu8edxfg+p9mbzZU4b2g7690n3Q1zXwJ434Y
EbgmvuSYUrkKGMbV9cnG0/dZ3ucqGoh/E8XYuSrA2VumZ9B9MBdCMnnuqhrQ
sCRo7ft4+jyzpNESt23F9H0w/a1VgDsuwySX5tDvRTzZK1sQo64Mz33KtOwK
6fcjQu52RklEKGN/BI3nFevtrjtHq+HzeQavt7xYvFIZ1vtPuOkkqo3zH9bw
9Z/6ln5PYm/TpBide3qM8oyAraP4SldZBZrk6wLX8ej7YzQernsQdW7w/TGW
8s6pGnZq8HL3geH3Ouj7OIFtYHGDPfi9CU7MpI1jl+uDepJZ59ToJvy93FWh
MdkCt+nv5+JMHK4+21g06D7PCaInOjfaGWDcHbzuSYUvfY+QIy/sisx/79v0
G3FiKF9/tuW7Pb1s8IbxXpEMXL5vm5L9TQ/GXF77I0l28P01+0/eF5i8lfbP
zDcpHvpspAdXytW2cB8Nfu8ipfeGp/1Svp5/V1W0a/zg9y7eaKi6evBQe/Wg
oMJlRfBfXVgfFGvXN2TwfTX1w177Z882BN2WcYoSavT9NOOkYE/M38H303gn
eqnkmhrAY4OaqrNn6ftoZGskarKuDr6PhmV5JCwz1gDHuzJrnylO/kX3p5zp
rAcdN4zx+qj38xpjn2YCs9cHBPfdQfEBE/BrLdUXPM18H6OXWht5zJcdRb+X
wRa57b9G1xS4277cvO5G31+D+nusi/mc9kgL0LGIXj33FP19IZrfzfHORiYz
TGDrWU9uIE8b00ev8juR20LfNyMpIekqfWzwfTMyzYv+qk2g39M4vyLhQ5WG
KSQcvHpQs2Tw+xqH/9zeqE9ZQseDCSrZswffH5O3pvbJgQJTiKq4tfeoXMOg
+2FMmy2dTkbZ4P6btKrn0bHxXJgl3XI2OAjd+8YFpUnhn1p3MN/X6KWuFGuu
8H1rDX+6ZmU/fyHP8N8VIEfucJZPtzWeX1I71T7f7LTG8XCu9Y3m5RvR/oIe
nBNJlBTO5IL97KZhnw8Mvp9lTWtfXLeODTT9aj5z2Zt+T8PxWSNLrnzw/Swd
84LOD5tlDbOHNEYv0WvC96UcS9L/edh+A8YRzubBrBuD7z/5nJnx5/pbexhV
f2e9Y/Xg+08O71t5Q5DlgOfP3aetddbhjvAonPfoLFt+0P0jngZ2BX0FTqAo
lJu8JoH+nhPNn9NTri94vcwRwmzMtims1Gacl2dDwrKdh1Mm0N8XBZbc/Tr3
gzPsfX/mzyP/tkHvRwm/W/6r6CP9foXdzDfFD3e74PXzNkHqcX2eG8yJvHX3
U2wt9UTwN0tuuwh4pvGevV5QRU2J9G7vCxCC7L0XxQVjG6kzt9+actYLwf0l
pk8v8YqxfSR+q+Bu4aFGSvaX5KGOhFJKTOzZ32PKjVTwSwu9BRVNlMC70my3
LXXU7fzo3heJ1dTHwr/VBtlVVEGraONGN6R3y6kSnXU3QjiiUKt8Qk9oIf3e
xUVHqTHN3qUYX+Oevaj2IIuaUec/dLxFG3XjiEV3wl363o3rKQfc3bj1GHtK
XP5mG4DuK6mhzn9smpo5shLjQ3p7d6YplVClBx8qNYV+pvJGOnY8G/kK01sm
ftikKpqO68/R2fBGPmE7xt3Pus+N9KS/hxULV1ffaE1/D6v73fHIq52fKDK+
VE6Vv3e1nv/ZDmZ0K7+5lPSF4iyoCcgzb6bSZDZ97Pr2g5r66WfIpaFNVOmS
Td8kTb9Qdoax167qC4PIoxPl8xy+Uaten9Z28xOEuPYeynnnDypMatr8ueOF
4fnFLz57fR5Q70qvTG/dJwB5K+KGTst6TYVOP6xWtATdN5lBTZiwtGIEq5Oy
heSxe13f4+9vz6tIz3KY8JIqitu22dm3gdoV/rsw5s4Dquvknutn4n5Rf18/
qNwmfpuSnnvrXmVWI9V3cOh9wzP3cH99zm4c/SWCvg9lc+KCmxuc0qjLV7Jd
595qp/YbSK779U4Ayp3CLeMMhaB219Oc50Z9VNPNyPLx83ooHzmbiff1hIB9
vmyYp7QoKGWOi5wgV0tpckVjEkJUofxZmPGI3j9U5qGM7tSxKnDj0e73HjWV
VFhXVNhDvh+5asx1CJwoCKM8204ekleFQ21iOpNu9lFXdojmnBNWhniBq/ce
9yhAhnRZR4ylKgRsZW8ONVSA0nHvdsQasaH6vIhM4HEVaJi5KNPysTK8ubWG
3SNkCEGcEPONfspQHiA/Mm2FMVRZqczJ2qsEPuumdweG1lAH15cmz3XSh2s/
xmXX835R3xQEQkPH68GnyI+rNUcrwANT/UU7h+mBa/bP2z4bVGHP+vtqU/fp
w7hZkzZpJOpDVneped9NPVjsabbAhmsIGSM2L6rI0gMBrY5D6/b2UTNTe+I0
J5qD2sMGv/pdQ+EC1/jXwf0mkJKQZTBhiQK4vVO05R0xgdu3K3K6A3VhKWfr
nkNPTWFM+tXvb+fow21xzRMlo0xg78N2rc+1v6ltKou3aK/ggl9vcbWUkwDA
iMhh5oesIVPmyGOBxqGgNOus/fRNXDBW6BSZd5cN01x7OZ9ncOHFOh/x3Bwd
uHDrcqKVGRekqzzjbXP0wXb0re3pz7nQpNkSqadkCDqvn/9cMosL4/e9H9ai
V0MFTRGcfnWUHTjsmRZ2PE4FJJ0eu/+us4X6CO+8Fd/YsCqrZ9E+STtQUxS5
9oJvF0lvcD43rNoW7M1nXJs2QwHO3Nm2be0TJ5DPefn1d7AmfMvMbVvW4QhH
fIeur3fUAtUl00vmpDpCme+181endlB7eruOCIhUUKVil69t0G2jLs2+y9rv
/46C5K0XV53qod4lbBiv7PGKstu4OMLvzV/qcafd3sANlZRK9fzbEqXt1IIx
06d0zmmmRIVr4ieWtFAb69+1SD3toqrfT9ZeskQY3p9Yknt50idqQ/PqJJaF
MBie39n+5l0LdaLA5n5piiC82pUWZfj0NzWBZ1ye5CIAruqjVbZ/f0d92Ph3
f9XNNmq14yWjNUkSMKq7KyFsVwfVsvkpS+6VMOz3zG95eq6N+ukok+hnJgif
dp6coPC8hTr/7b7NEJUeKnu4wtvkS71U+bWapOHjpSD1vkDx7IRu6sOzhhS/
xRKwy6z+u9Hmv1TO25YbI7cNgW2GLdaCs0UhNXNjg41WARWv91o344AYyAzh
tuU++UWNCwrZcuujCJTsLZ2SLNdFrR5zYOaWOlGo03T2FHolDvdl3zl9OD4E
Hlidjl/RLgxDon2nGTzn+yOXtq82Suqheoz2GEa2i4P4pd0StzcOBfmX1bG5
EQVU6bYZgX4b5SHikWrO0a8vqSPJpYIKJ+TgbfmUlaczn1HnlmdOvr1eFo7a
hW5NfZBGqZ7PvTzsoTSMVjGfIZr8g1L1mLIk64QMvJW9nvMnZz91bVX+i508
Jdi8rCVQWqSR0gidWUqly8G8uMBeZf1m6vtth4S7S1hwNLv6uXRkI6W9WLbl
tJ8iJPX1yUhcqaeCdX6P32ugAP7zKhz8LtRQwTy7DW6q8mC9qjuTevSHCg38
GWbMkgPZaMVJDm8qqaYqg6eGOjJgseJjRKloJ/Xdd3Ps9hB50G+LM5awbafe
nZE5NJEtB6oRvh+tQ1qpbT08ns81abA+NrXvpFMvlWKXuXbuSmlICdn+dlpZ
K/X3+a+v/tEseKF6rPzDUmHo830jN/6zIqizXibwCgRhtN1Dg8/H5EG5ZlFU
Q7wAaJ0d/0T0iSycu2X2WM5eFJRz4w+sCJABq/Sqgw/niEH1luN547bKQ3pU
5CylcyzYKVD57u5fKbh7Oq2+864y7D0cviOxVga2r1P5qDpHFX46emTfeSYP
ByuMPzVFqUNqxML5H7fKQeHNq/YBlWpwNmHLgfd/WHA+Vzo57pUa6HGDj/NS
lIDrFWQrF6ABi8xT98rVq0HGvZJt19K04W5yimHJTjloeWzbUaysDTse5s24
kMMCoYbu1xxRDkiVGuV4ZcvB8rmbtBsqDeBbyodtoYmKIED5XTH0NIQ/U5YX
FkTJwZ0xE+KalxrByKnZoz5+lAWhzJHvvSkjUDnubj33Ewvi9raNXXzRGOJV
isdWULKQb9PmYaRnCt88HZNdjssBqznkSfQQUzAribpgeFMR1lU6jb9+5y0l
ZXrJUzNCG3bHrUg9U5dJHQs78ystQgtczlZNy/1+izK5fjTGaR3frpvUE2W7
cjK12XrYyDGfdGGF0ghOtewTynyiXPrNLAMY8ePmqjH38qhZru0rznP0oWqy
/I41Nx5Ttodczi7crAdzP+TZv+sspY5J7+T8yTOAtSsmNsuqfKRGde1M2f1V
H/KqNo607e6gRjVJfm06rQ1RNmPnh8xuo1LEItq8ijRhbfCiXu2hLFgTErd3
q5QWmBt1ha8KVYRdT1R+T/LSgQU+DqOviimAzLujJadS+HJ42d0D1g+V4JTp
2Stir7TBPO68V7GOEqyWui65REkXHt2XmvQgjQVjD4/yCOnh+x0Vro/W1ShB
693jb+GRPixtXXTaZ5U6SLpa+zie0YJTaotMfqzSgx0fzw8119WGisQFoQfk
9UAooGjcsTRd6H0i7HqEZwA887T2no1asJGjEyEy1ACEQk58/hWiA7e1hH3e
buHAHrbkcU60FsyWvnF53EVDONpkGl1nqw3FZvBC5aAhvOsKCVYboQMhy3va
yxuMoFE998mD4dqQyDuzUMM9g6r6rf3+1BhDeKY1JNU3PZu6OG+opUyHEfhs
PfEgM10WdLcNLbkkbQj+rGPbvfJYcG/99KKTTznw52+g/6o4PfCN2XjevtsQ
zv/WjysVNYCXXSNqHjUbwoqal4eSmvSh2P+44GpvIxBsX3ZneCgHzMt1nq06
bQgdS6KiH3aepGQbtnd+emEN43a98xz1u5hyPHq9QtzIGtZqVN4RvNtBWTQV
rEgUsoQNbX2yrZZCsDfq9CWJDZawdJTudGdxvh1YNyKVW24OUpnqHoerZWGK
yRq3EWMt4E7Y7pihFerw536A+kEJazCcW2C7XUIDnLfVJK/t4YLnn7MyjSXa
IPeycMW9vxYg+pCbWiKhAzX5I5XNqrkw4c6fMbamerBhg8akrWIWMKtQ6vgs
MQ546ApXxH20gNDrC4epWxuB/KMlPNXb5hB+bfaUZgO+vNI85HXxvA0U6eie
3lapCHdyNTbcnmADHaNUFpraKUCRtG9SSp81pM9vypSRUYJnLW+SZ1rbADte
OlzglzKEzjdbZjXEBiafWWSae04JPA3Hscpn28HlEetvJ0WqQ02ktVyMui3s
1Onqjk9SB1WlhnZuvh1MaOzNiOZoQP3jbzE2Z+yAdfN1IVdWBw5etYu/+dAG
+iKCW2p1dcDItfG5T5oNzJwTPVqoSBteHhkiOPeZHTz5tFTnjKYOWH7vTv19
2A4WliwLzFmgByPydjxpDbWB9FChn9cKDeCjn/vaVEcbMJ9wYO36VCW4Urpb
7LelA1iNfX3tpLcyTNFarugi4QAhfstnXYhVhw6x3a1XTzmAw+R1QmXJ7VTG
K9VXf9XcYMoofeMRNd2UTMKvcdRvV9haNM1jSe8TarjP8Gcy1o/wezqqv0sM
ZvqLQ1TLnNevdZqx/b8+749C1KsG2j+42hMfq9mB8YPtpa+yYloxvuLmVKo1
pQb7T9bsZUF9Fr8Hvf/nf+llok6uIGzIVCtfs7wb09H5UamoysZ5G7sp7uM6
xanjX+H4bM7NeZf2Zdwe9D4vO36PzRpBcYzTouMcjKrkML73qCnr6ghp7J+c
Zr0e/amChfHKOpGs06cUQGy839MZsT/w+xcyeyrFP9Z9wjil6H73Z9NqjGPH
jOhyg0qMbd0KKkcX3KF8Fdd8/LJADOQ0E54L+W2kdDvX12YlioLN5jzRNWZv
qdp5aSPFJCWhuyng85DSTCokYW99A08CRu+sWx1W9ZMSXKV2866mFGzqPO4T
qfODaixuC6y1GAo3ortSj+3+SA3pWF/vu1sStB3Tdph4lVMhL4Z7XDgrCumJ
3zaO2SKM/eDDSWs6XZXp94ryoq/IrVej3/dTLVO8wl02BOO+q9woMy56t6Wb
WtC7flKbSx8eH3S+TtrRfU3onb/U/Ans9DnbO/B4+KZ9q5TNacUYjWezVuJa
kWfiGPNsOeN/hMphf7569Zm3SYV9VOTBh7EdiwRwe6ZWH9M4dLUHz6/iLdeP
svP+YozyK4vse1A8SwEej1SzlP/Uhcdj5M9Jn9NvC+L7T7RmOmbHT+uj6fW+
dypWoHvUpODDJ462rgr93lLzlpOL9W7+ZrwPX0etCZ+e4y1H45nu7ywDNylg
rL2gZPPJWHpfYFm75chVT+Uxll1xpm3nRFnoXWw7bHXLW9ye4d+DQ2I2PcM4
YEhyk6+aACN+LQQZ17llQyKV4fT5lOh4dfpeeP+w6+tHuNDvPbnNavC+8YF+
n17dsylqrQT9Pn38l5VbNxeo43hxfz4NCDpvWXdjvwY87/XztZah33+6vEPr
bM9K+n16tL6kjufN+9ytj/Hsq66rlCLp+PHVrt6LHUl6MJN944B58m98f8iH
JxKp1/B7P/S+SNCsM++PNmpj3JwUZaltoQVOU275poVm4/vq3vfknFPyLmXc
/1ZImfiPdeu9rofxFO6Vyv1bafoXCyeFRWE68OFo4sblD+n3I8eFew89FqOA
47f98SlFyEo+26C2XQfGSvnZJvH1B6IXfR91IKKdxYjvKsGCJaPMfIr1IX6o
yvnUTPp9KnT/iduXz0Frh+jC4jt6gocC6Peq0H0IN+cVfgh+Sd97+mfs9Tte
GYZ4vi972jxCp9UK3N0vWj5aR79fhcpPlPFY2BRghPtfRy6qbO9dLrj/7bPq
0yod9L7Vnf0R0erB9P2bG9fNcCheaw2rXn6Xm96lje97Q/G68kMvb66P5UJG
84hRO7To9/BQPHOSoq6eojtdfujOxpfFyvY4/ljicyHruRT9/pWakQ7PzNAe
l6+Vk//pEWUHkdErTO3CNRj3b+tAkWiCwhQlO7gyLPXzfkv6fSz7r66JMPwX
lehVdWqGqQBM65CPjFCtpuZLKs39WiEA4SnDZxVtaabuNLl3jGnm+7WBz7Vn
v2ykQuPbZ7XvE4TwNZzjP9UaqB0bhA7GhPdSh9YonXwmXo7lX+vcbMcZEqUM
fVZC2R+5PjZKCcnJQupa/RO/zhZB6BKQSwh5lYvf15oYty7/6qmvGPtOmV7a
fo1+n0v2ee/HwLZKasT1d4Fn9r2k4i13KsrWVVEPEw+pzX5XRI0tkh27YHMl
RZXuvnLf/hfVFXl/+Z7VlTj/op3yMj+nlGHsfzmtYtHCYoa8LKGCvbMX250f
Ak5zgpqzftyiOirS05z/NFKPrVq4InPeUcNNZA0Lpv2lLjWteKiQW0BNjbNT
5l1so+I3lq5yLvuK42Gv6nVduI5FGNNxysV/u1t6qU2BR82L7t/C7dF3fLL6
7IK3g977jQ5qjxDo5uutiuDZe7WKqNmK7qoak2qpibG7oo6v/kqJxs0fu6ii
nvIIKGHfOPOJCj5ksHaMdCe1tfj17oaLnygln7Eaizs6KM+m8AD31EJKXfFE
tPRPQai8VJd2JOAzFSSXfEniqzBQvIR9yyZ+pDTc9f0vbeilTAusou+nF1L6
J3qqWl4KgkLoxStaq8op3ocLb1dNEYVFYZny+d9Kqc5rf6JUl4jANTuzFTt2
x1LFP6Os5zv0UOk/eyJFtZ9Rq28+Ufymyed3bGlh3fc86sARFy0qr4+awP1S
+DzyIHWzOOLx9y4RuL7t00zr0ZepUbv8RwvoCoPk5FyrLK3nFO/YhpWZAqIQ
PGdhsOjqt4z5lU/delU83DO9lxLIvlcfcWbwe2WT8+fMXPy5gUo0G2YSMoF+
v6zr2HPukLrPjPuvP1FamsmCIZ86qNZ9Fs0h3tmYrt+wb86RoTlUT9SLVB9e
CzV53TrW/LM51FqT9xOH+TRTMtQFA/d17ylWb0G428UWKvX7OLlqj0Lq2YIa
b7f/K+vM46l+ov9v3/c1+y5b9n2bkywphFIhUpGlHUVIhChJUkSFJERRttBC
EYpKsqfsa/YlVPj5/n7fO+/H7+PP1+POfc+8Z+bOnHPm3HlyzqKoHVNsp2Jf
4/uwb3i4pqowlyI5x77ltNoJdIGTc8R4luAVWwgZGcepVuB5cyxB09ckYxzb
Dzt07flz2Ef+cz4/ieRu0e45GEKPNZ1/+tiPAFa8Xko87hz0GaEGsthe3Zor
Ofj+cY6nTXMtJSu4vuMxwTXN3H+x/uj+480/LnJsD5D229xlulo9DhqsUb4B
LTcLOxg9rnwmUkLw1YTmbeXOfRSEab1BgTIXVriW2upMHygByy+bxB6/YsHn
G7Pt7YJxHRywEnM6cb5uFu/39vkXXXeurz8krS4iWZ4Tv0Twbc2ocmLjF7Bu
O3KgpbVkDm0KdnDUixWDsGXLqaLNM+joZnB6mysKokzpdjWPJ1Daz2CWM+Ui
UPCm5ovZ6igKb7E/q+srDMZnfpl/sB1Cng3qXZSKQvA09vC1svPNSNzE0f3V
300wOtZ6dKHmM4JAv2+ZfJvAv2SkyC+5Gjk9j0dxWrzASrVAPf+9CAUO5+cG
2vFApRvnNq6DLuiOUAPvUR9uuOKv8DSSvh9daKqNGF23O0LPvD9Lwd+Dvh3i
K1mkEoDZ5ldBf/Z0ItkZryFqMn6406cSryhB8OSOVJjcCWbmwPbJP7GdIU8D
+cC4cFVK/4oYvK/JfspPuwkmO/eKRNOK4P4tuflwIkFbDK7I7nvk+WQW2wtH
y7f1l3EvbeDLHburSHtoVBzumftlkke9wPbI3blbLFuUmSEq5Ne/nW2bge/k
39xbfgzA5D3QfG1OCg7qyQYZpHMC39/M88kFm0FWnre3yJ4DaMhbIqzGpPD+
1/nQbUf8/Lr9oLG200yQH9trhlNtk0PLYrCfYaiQdUoGNhl+TMv8IQpfySsj
zndIwZ37Aa5pogSf7oy/sPmJ48ygeE4mulhKCbYeLCtKOcEAjl/eW6mzbwHb
h++DowcJHt7/e7t1/zr5h9fLHzJwLLvzLlsIwa8LJ1uWXzomCT1CjZIS5Uog
zBG+due2BMRUZq1mH90CkjLBGaW35lAup9jba/5qIBnAQqcsP4q8TjLxJm5V
BZpi19MjRwl+bpfa3LVVW4JnR5Uw9FvTnQ+6vlk82HZCDYrHHFsbt/GCrmri
NtEZFah7tDX/SoQw6OjwNI17qIGF1A0lvh5BWEuNACNjVTj+tWZRPlgMGsw9
l6deKkLp85fV5Y8I/p1F0mlqm6dicGIBil6qqEGPpId3T7MosDz+ai9CTfDj
jLd9MiU3VILgmwHdD74TPDy3j39OamRLA1pouC1crwgyejZq198RfDzSfGqJ
C98SbqMGbNlHhzj2LGH+yE6tPcj/rztqSv2kk5WpBlRs8dcaD/SiYZ2PM+7S
Gnj8owtVnA33q4Gdn8e+CDc+SKi0e3RwVRMyRlUp3aJ54Q25ZaRwsQa2hy44
XNndbKIGFw52J2xmIPgdl44K+7ePC8Kmrc433Lo18PiWyRnJ0LepwteyBoo0
bnFc/p+So+M+GUm4ccFX4gS7GkBal7PRoY08PTq/03EnBzWB70zA2OXlGcR9
PyaYYpEOrua8SPF1XreHeNcqOF/RQEOKwVDQ+Aza21XzkE+AHmS25tVXBfJi
f9FdRdZtlzvB27vzTbo81UEA6957L8jCTvLCXeWX2u21a6jiTKP2tB0fTKyU
3711hAx8Vkw/jEcJ4fJCapX3u41EsT5wP2N7obkQeGgEW53rpASzweGxFiEh
qMk+W5M9Tws21SaBLx5L4PLLTcNqw9uksI6fLID3ORIwKVZNOxhBAePfL5/p
TZCArY9z90Wp0oOFaWJtVbA0Lt+q4igwl0nw/ViNnM/+Pi0Nn295KKTXUEHp
8dBR5+PrWqtQ7qsZDSywsJDv6JbB5ckZy3SfOsth/XaK9zDbVxlwNhO2ok2i
gD/vG3kYK2RgnuOw3gMGevhzvONvdZkg9gc+XdOuuRgrCM4v+EylDMSxfRzV
nlmwVi8HwUlVvjm2pLwRWejYNUD+i1UGa3O15q5P4tLgSFe4uK1GFop+15nm
U5H4wOv2fFXmrNq6fvVOeY86tzJoZycc5lGg28AD9H+t6rA/kOAFvr3KrbeX
jtA2FOetVJY1wUW+05iqed2ushis6jfTxt8vMggX//xJC9v/+5sFdDsfamH/
pPOUkG0wvx7W135osT25YQArl4cKtA5NIraPda/fDU4gf76PkrTN4wgJFNoP
Vi4jV5s+f23fUXTeorRLln0BlSRZ5LykH0K0/vm/79hOI1qFw+EPa7uRF9cb
Vtt1e22yZ/aw668+lFeukF5ZTAZHX9R56aa8xfaWrp/2kxKOX9geqHbgHbd+
/QnbM+VPZKUtj7Zi3eq/OH98sAE5KpP387EPIMZjZTrLDg3ocH925Hm5YbTL
ckq4ffYH2vLQ8KzDpm7kK7B11yuBH6iWldLrguS6Xe/Ce+ibQSvyvjb4YTa5
B8WVLtm2VbaiSZbcj/KGpcj00fbQes+fiEb8jvLh8niUOfKO/fqlVuTVXxz3
TqkNnaRheEmXzAfZtw0vb6IqQrMB58a/n+YD66wzUZFRy0jr3m3b37m8cJ7F
nds5tA2FuQ4xDAcJwL9c0Ywn5b1I7c0T+d83hcCLcobLOGwcpZXZfu5b1wem
m3tSU8dRN6UxlSuHACQ52If2faOGdrvH89/Q+j5W8TFPKWcAhV/6ytbLJAql
16mCPzymhjsT7oLjLKLA2knXum87NZirGljI1UiA7Dfn8mtFgwjuW3UW7pOC
m5a5Ry/8HEKchRM9rdHSkLzMdYI3fAy1SR16/OuqNAgsnnqf4TeJIhun5l7q
SAFb/NDZvBhqYKh45t6ZtxmisskedpKPIMv0yCdXnmyGk0+80r5UTyNdtTam
pH4ZmAz4SW3iN4BeCFJp6EVvBnWWd8MpQnSw5OHsr5G0GQLt882F7CnheQXs
NN4vB/vCp4ffUY+jgZn585Tr+lEdrSyb3ARijRlhaUJyUC3m5eyfRgNqCt/D
YkzkYP5R17HMACrQOSrfMv5DHPqKE4seGPJDgp9FepuHEFhxXjzh81wEmtgm
zVjGpeGbj8O7QgZpCDsVoNyZJg0K7E1sQjc3g4mn9vYlh83wZ67h65a/8rCY
8XN6Z9FmiP5JlaQfKweZ7J4xpxg419e3yk47KkUwUjtrMkDOCof4xkYdXTQg
pkV27k4UO5jYKr6u59cAs1XhQzo9i8hWa4Gq77Q2lKg17UjX/osevRF7LnRQ
G5yuCrUlf6GB71UMYhMrWiBQlORUUMoJScJVM5WpmkCvt9teLZ8bPMOGF0r+
acG+pOz+xAfvERWK/WO9VQ8yi81WPwtTQgI6dUhmuy7ULzDVjzTQwO+VAH8K
Sl1Y+5EcGBfOCOTbS1as03SAak2mfMsebrgXmFYabKQLL530mM3+8ELHdKuq
xy0dMOVTfVkR/Bm57aPqpygwAOHCvPYg7WlUeY7LLGu3ATBfqqfYXz2B/nz2
in7gbABZ0rvN/ll/RpwdP4tL2evR0ejA3rRCEgd0EBW9GY9SCHuJdWKbW9VD
t2FU28EiwuhKC7tTKpqfuE6gDw8fWzFcZ4Qb9lRcygfH0MR4kM+gLz24Mc1b
plgMYX/hCYvLpVSKPqxHJI3uT5jXoZ9hTlMZIRSwcsksYvNdUryNjOwBs9PT
PalEXuzx58vp26v4/+NPCIBfn9GugV20eD2vJJugF4/khG4/4PKJIHiPZ5Oi
c5c6RPD3SflfdH6V8XtVuEAj1W1s3pXgO/7z793JHEvkETJsKRB/KEzwHUn3
dbK2LvEbOtMA7Vl/IdELBN+RL7Je/6sywXc0Cf0gOrXuJ95nvfXx1tF1f0Dz
2nJk22+UYSpwyJGcF66PWzWJtsyjJxfSF8XucUN+DOtb7ZUV9LSoumB5UQC4
vrht9zD+i94y/Ujk5OIHLadjqlxs/3A8lRQPDlg+wDl0iRdr5md8dfO0XPBv
ECX9Gaj+T75yMzrC5fGZso8f68leIeeVT8JY+wb0XEj8QuQ3T1T5JN7i4YW3
ptcvvtn9C/MyOJTrQ2O2D2Jda+OqDO7dG/iUFF2d3CX6YrCPNs5H918/9h+a
s5xPChzswHp/4u43TvIER/Z0gurZMvd+/L43lYUtT3d0of/GTx0zZp8//b0J
6yFTlV1n6HixPsO9d18KN1H+Vo2NgS4TJzhTzThe/LqI+4fUf715V2I+cQlg
TWdGY2a+Kozjh3M9F02KM3mgliZve0gJKb9+3S5V6ltL2vsPv//pA4Yrz9y4
QTAxvGqulBfeBZ52ki/lgbo7oSDvJoDjnRan6zolDxC8zfPv23+4bRUB3uNL
Z9TUN/I2labe6LI7i0Hgt4ulZtUEf7M50iIZvZWEvQ9oLFO8eSBTdSXNo1AK
du31IpsvFMD3LY9XTi+2hAiBa0jiHlONzWB9bevjSx+5Qei1i7mNsgzE8oRZ
qRgIQI9SglfiT4K3Scq3hfp4XjoGHrix2D/nZUHwNv2nqBcLP4z+J195Ej2V
TNuawUfon2QFe7bXiYMBz2aWsYus4GkplZJlKQ6ZoUwM34XYwSXy7mKqmiTm
Z+zvu0ARWiUKH2asgw+n0WH/64qCjeM+G4LPSSrvLJ4x19hCyotd9yelOl1+
fxQHHabRzNEAdhyvfmQtavh9XZOetzt2r2eHPD+2/1IV+91YbvFD05G1m2wH
5WFGYPz5OXd+eJE2f9x8QRakEk54T24XgGtxpypOKcpD4aDrKgOVOKyedyvI
HhKDPYObhKj5JMDrtqgkw4gkHHSdych0I3ieR/arrGn+koQyo9uqvk3iYOVh
HphZIQXJfO0nY0Sl8HrT5dDQIihH8D1XbqoaVxRLQz6LU2G0O8H3nJf0jWQP
2Qx74y+aJXSIY37XryHtnLuNonDpbnudKZ00Ll+58wU1LQc1OEmde1i8XxYy
cxvJj32lBSXNjA6FrfIED/I+jweHuAycemqtJFjACgfUqpK5b8sCM2+SL506
O5Q0pMasnZOHWYk/CvxnGHH/kXgD1zNmtBh8ZfD4yN5eGFyxk4Gom7XT+2+S
4pgKuD6bYdvNbdny2P69lf/KuXWTHJxMOSVvnECH70fPyDGlot9Jh/3NaJmg
4wPVHLh+0vkDVV36gKGaDGhk1EbvO0LwQknt6XqU1yYuSPBDva3HWl+vr+PP
aB1HPe+w4/rm99FMXN8tBM61NMHU3nKgb2SuEsMlDPJ5Cy1aXHJQPrjQnvtY
FCLanCKzTyjg36WHLeujECoZfH/lAYqxCp0XBPfDti+qO+vlFoigTMvJ2SOG
67vVO+ctViEJVf/MXscFyYKpZL/ARJIUHGBcybPrksfzw2OStaFr3R6iNhFi
vdogDilLf2XltOUhs8Lp+eoegjdKmj+nksY6C/Pk8X54eUCZzf6xLIjqhj71
niZ4pZv4rbaroI08Up+KV1/a5bfAgzK7qdEfBI/UXpY/8Yw2wSOVku5SfPBw
CSnmiG/irFUGPtqqA8Glqyju8jUmpxYVSHaanBUVJ/GTCN5oLt+r0hOPlMHj
sN3Pkp09OF6gmD7feGSRCrZrZiq6aigDmVPIv/JLdCDdtpJ7+rQKnj8qSqH3
TvEo4ed5nLl1nzFOFdRF395x7GbE/htpft4YDZ+u6FLC+e6HGSmmJfLUoX8m
w3PTS0qc353B80Y5QZwaLrG+47+npwE2D9t9fD+zQ/zfpefUZSpgcKmsQucH
OzCbmLTEzxH57s92FT/cI6AMzgvBzb9j2PF5j7fMdsuqPcIQ9dlc5oqnEhiI
/gu+GUfwS/9v89b9id9rR0+QresPC2zXU67/L29pvT+GqNoZn5mKQ/lbh6vn
fNeft1j3y1NQAoxfB9NZ3VeBN846T250i+Lnkebf5V9buCuYlfB8mPxlYq30
Rwmff/07a5ZFf43gm5pV/E7SllKFtGaN36H3Cb6pPSRxb0EE35R0/rZMPmgs
bKwEfVnJVOznpeA+tdvlRlsVsP2J1hJYCd4paT4tSsa8KMwg+Kc31M76sz5X
hvQ+pz6PvI081KsnK6IcOEl8RjIypqr+GidaLSCTFw4cUfyKaJGmIedWbfj7
2pfJ0aQDnZUKkHm0i7hfr936jdZOfjWc/+55+9fIpkMaEK9v3eiSxQEju6Nf
BSwTPFTPbQ6fJR+oQ/32y/v7qbg38FFXv5WFiZWq4fFiURNMDalVg/fWqg8y
I/83fmOrCT89dERmlQgeKmk8tp+v2ksVpAYDRmWDwi/H0PtWCh0RPyKff+bu
zI4YH20IUrv8buUyOahmOu7iMyHuq7+Ud+R7tag2lA506DbNELzUU/McB9nF
GGHv7Oup1CItqKQPlu78xA7aD1O+KfzQBroxxvecFQQvFa+Hg/1lntoEP1Xu
JbXCvvX+XEQHQ73lCP78if8tz57uce8llw58yl6WHYvjBXb5NL2Pl7TgsWFd
YnGGAMRNGrl8idEGyRXvlr/0/P/5/4PAup/TLXOiXBuq503qk0cInmpIbqLV
r8JhFDsz+aicheCnqnINnkLPdEHxE+2UG90EPg8j8SXe/JkR7Y2mBNs4Tbuo
3zPY/4Abm00TdaewFlz7qn65YAxrW1BmpU6Yw+dx+k+GWv3cZ7BuyRSlpTVa
wlrqqQ9NeM8C1j+Ki6/59s8hnby0XwYOb5BVaOhE7OM5JBNqc98lYhhdai5W
Ppcxg2wu5QeoJLWjSuXOI/5bplCjrGjYnaB76P4Wsuznv2YRua3G2WP/FlH+
nigy55vTiHNE3uOA2zI6aqb4qdxhDqnfpY+Iz5lBY2P3d+R9HkZrkjTvyipp
wOf+60dD04OIofO69ehnCuB+Invt8+IIOuFt4MgwSgW9uRciE0bncHyG9HsK
a60WLhTpQ9Y11bXb+8dwfMb9gMQHxQczWDM8765B5FMb+LDfOf0HL6cvI++j
aKHxUC8+D7MOvLZW6z6KtUpSTxyTwyDW6XVnL9v7TeL+K/kq/O7unjGsSeMp
KZyv95diDk2avNqmOtKH60dGp5SZu4awrnNY5A1m7Uf2cSHZhR8q0UottWje
vz7UTP998lf1NzR0Qyqr5HYfanCTr7vNPIx0Bc7115f1oY9WjTP3PPtRmxQj
tdFugk/7NLfpDgf9T/x85eAHh8p5+nH/rT7wUaIuEQB5BZMklweSYPi69tOn
Bn4oCe50qZyShmINffkMC35QGIrxWlSSwf7qMa9l2guvxeG68GEm3jmCZzt8
IFnkpgoNUMfFz6QeI3i1e1tqPqf2KsP+e7R1x/0Jfu11D2vfT00N6Fyem3o7
syZsXQ4JH5Qawfzak9R0J2dHetGEyEcez5czSKbpd5Jl/EdkHmTZHxg9heJT
KpXF7ctQ4LEb1/NHxzCv9lDvNYYznjPorP2OkTm1THxeatFDqToedg9ZPNky
4G33F9Ey7Lf7qv4AvVsObz0Q/AcFx/Vw6wrkIYaU6B1Lh3+j7ON69kFW75BT
3qLTYt1fzK9t/1oUzuvLDsci3mY9DSf4tWzcd87emxDE/rNzn8rtUGPinMmH
nGpwJZLg1w5UhLy+6kDcY1OkuPPizr0Ev3Y7+dWdlMUyWM/1BuR2txN82o6Q
6nzLgeH//B92El1I41Q9EEfoHOsrV3cy8WM9xKj7YGAbkV9T0VG8V3BpE9b6
50for2oT+UvlmwReL/pzA92maJ8sl2bsHypKe1YYq1ZjXUxG8dzqFxnINlQ9
M80QBvtB/kb7QdJ5Kim/iAKOFXDZpbkSfNxwW7YvfexCeP+R/fioePc1YeAf
v1p1YGgYMVyTmMwgl4bZIPM9uWNj6P/Pt5lEYn5lvnvHJeH28fsF/+wYN/Bs
TX5SslJWS0LEMZYonUccG/i5b6/c3STrKgkZ6eMFkR68QDW2f5KvQQrOpYtb
no7lxeVJ7bXMFMk3zZeABXNXn710BE+XtB++k+mI8HKXhFwqw9ZEcUZsT5La
o0f+aXS5TR7XL8HOZONzcgtM9J88lttO8HVJ9ozNxWO3h6wUwI6jLn8qZRZN
jG7NVfJTwvtrSLvvhTNsSrD7kuw560uLG3i7ujtZrAJGVICxnXH6Tjkvtl9I
7yN2fjj2eBGR//Mliza6flURHlm8Ngq5LLKBxxtmjbJ1KVTX/bQXog3/RDfw
eYuOf63sCCDuSzpV/kphOEsN13dgk9/F/nMEn1fy4M7S4TTifqM8wbIxrjOa
0PG2oZiJixvbH6TnRYdOaJ+3IfiQJvZRtr6Kuvj7ziHeVAs+unBfet92l90M
+Pwlys1IYrMoA0iXb+be9n0VXQycprhqTPB1L/yY2StBLgt5YTuOTPuu25Hm
5xbu9MvAUixZg5G0JB6vZlVPqaQudex/mEcXq7awquP5TdlA1v7CkOD1LKSz
PrZwMMDr4aZoZ4ExNoJvy5pL3iHNrAdMjXeyd671oJT6F5Z+dxfRu9RzA5Hb
epCw+K1AG8+/yEir9fLSsZ94/dYLSyYPr2AAi6cnWi2WW5GcZ4N7OuLG7zvg
x0k5HMQND8341YucBlDc2sSrbce54YhUo5WF4BxabbF7ZFrKBdXkAjd1KxjB
K7pDhEeeG17dKhWnTyaHH9y81+9N8MAT2tmlORdGENni5/NMUwLn/43TGxqF
3pOFdxdVfuRLCsHZO6dytjjLQl0A9za+QVHIO+2ly2omDp80lbZRM2qAqxZr
k8gLcfCeqJUaTVeHJXfW0CBmaoh1+7gc6q4PA5GfFW6fpwM6t8IlYUl9mDcY
jyvbyQYKvgYiNkf04FsxZTaV4yuUt2eI63/2vcERLdvMxldoUp0mcESqF5H6
t0ZKsiGnigLclm/3yV8geLrb3nxVTX3ChdfTy/XONcX6G3m6J/9QXoh5IgC+
Sg2lN7QIvm6uUantp5ZprNUqReIomZawls1O910+Qw3fdH+numbwYH+OaemP
/c8tHDj+ZmbfHVYoIQp9j0rq7jGvbeDvXqys+PG1XgAsUiZPm8mR8j75QEyA
wtn4nzBQFL/KnawjeLumv9r0u4v5YE/s0esr9wn+7pUtTxeeMRH83Rq6x41/
JmSBk27Eey6VB+QFspT7vBaRKv/FRc92cWyfbvU23NXSKQah7MOn12Q6ME9X
Q4Q1orCFGe/3kl3MA6z3eXA8iOe6eWbIDTH8Oal9VoITBpFxksAdvWB1qWoj
T1fw6JdGmV5JyLGP0zZwIvi6DHOW8QP3KAi+NROfqWTlKnLJi8z4EqWA25tR
fPFu1qctwBmj/z72JzMuX83fe3JalxsKaGzyDMZkcXzycK/De60kGZhO9rpf
RykCicqC55m0ZcFD5FWT9+GN/NzGmPH6pB0qsG2ouOW6+OIGni65WI8tSK3b
N1If7tvto8D2jZ8033nuZjGs/984iMO4h9/UmI0GuHgeF5/zkYDXOYJhND1q
UPZ08YioCytE57h8mnTVgm251cvNhWzQG6RnuKBN8HINH9rdnTXSgnLu/ntr
TfMoS77tuUuzLl4PmW+bitN668Og71+qh/2MwCNukrLQqAfs95gqk22YMR+3
SnTmyykTDqhJfNZ3YFkXlnQZhQOif6Ho39kNceW0cEuKv2Eb1TgSE9zlTUNL
CwssZvwW2SPYXwny0bHks/iJ+pJVe2PzvmB+rtbcoZdGm6Xx/Belnfbm6yP4
uY93bfv2u0ADUm7oZHFoPkcmarUKB9vnkVftr9Udp55t4OXeq9j3hVN+FsX+
cvQxri/A/Fy+xV032X5wAkdyULLtOU6oOy/qmp4iAw9lE32SF6TA707LPdr1
/WUf7dt0gXX/3jRCpdV+3X+1vqzOy86tCcKVrJGp3GTgdE3OJaFBH8ItRb/n
dtHD+dUuofYAYn+yp7DaEu8lh/fv93KyUt3pWnj8NVPntyes9x/p84FqtyEX
Pw24daXyHDcSBhmqAru1KVn4ftmk+BQFC9CPMKSprfuX1mX6PUnmzOBZTfZi
OFYLchNPDDxdX29cw3Zd7m7XhanTMu3UztOobyB4rmtWF77ucnP8KkvwPIva
+vanFMhssD/8nMgik0cJfmf3d9/RG+VakDFYJcvGVYH5iKT9irmrbjwoQx9+
Tk9ztNNu5ENealePSRnnAUst0VGriI18SMP9+i22LALAMv43tfQrwYvUs2PI
5+qbw/lUO/wc+lYObuRF7hsXeWYxIQdNVyPMHTM28iNvPv400+itCerWtf3n
uwieZKo+WaPGA4InSbKXrsfc1j9hqQZhiw9e76Dj/A+vkxNivbOOVb0k7hOo
D5fPb4vUBfZmX1RlTIf5c8MOJ2qP1/JgLbzIzbrr+Ahq4nq/l/qMNnxBRv6F
4TPo8KrXsJW/NhRp0lHtPj2LCi6V52gGaMOpwVFKMh4RoKzXkYg6qIXjpRIq
EXQUi5q4PVERU8raMYS9QLtSsji//jyaxTPyMTq9yH3/BDS4aUPCYNt0mhoX
7LkDWR7r7T3NWy/k4M4JW+M6mOWKdMFy2pRXsYsPnjGsPvdn1oEcxUfvrfxa
EIv1wWMdZqR4ywDyW6M9s+ShDXOasyOjoWwwlB1uRS2iA0efF0ksfmEDnbvf
GRpYdWCq5F1o+zI9fNy7gyz3rQ6U0FTmKQbxQTlnK0eFjA6sHtutOmvOC2XZ
ioxD7wge2ZBNZgZXLHE//OMDX6Y+rdf3pdlAQDSaHva/V3ds+KgDDddvzXSw
8IJpDm/A+ybiPnBRF/bt+rXEfeDSqbZ6Yw06sNU54Yb3Fz74zr8nlZNdB68n
K9+uLOaZasPViwe6lJNYoXv/Wuf/8Lp43h7Q2OrCB3T7T5SXKOtAnV/8vgui
m0CvezEs4ooODGQGHfqf+wZzc5U0Qtb1/wEvGx0e
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmUVtWxhW/T996/+7/qS9RgIFkrqElMotFoFEFf3qACJlFCVIxxbBk0
gzIJKCBzMwgoSjMJggoyI+LAoKIgYRBBBEQGMYBjhJiILx3zoj58+6N2L7IW
tU795575VO3ap5qTO3S9okujJEnOqkwS/Uu6pknSRnKe9K0qp0pul95R0l3S
TfI31U2X3C19lcrLJH9W52qVd0qaqf7hiiQ5XVIj/QtN8La+P6Hfs0tJ0kvl
XeUkeVBtb9b3KyS/LpLkcdX/SeVnar9f7RdVxHyDJAM9/2D/XqxvLSRDpE9W
n1M01txSjNFccqfqT06j/kLpp6bx+3h9a6Pfv5JcLVlTGfW06STp4XkOqq6f
ytsk7f2NM+jPviV9k1jf+exF+gOqu0bSR/pYraOJ9PuKmKOz+7P/lpKh0u+V
PCSZ6nKhZIFkmuRx/x4tmSJ5UNJT490hGe6zGCu5j/V4rDFJrGOkZATnz3ys
MYk13eNvb2iMR9MY+5E06tnLWskSyVLqOV/3n+p1zfc65knmSm5S3091dsOk
t5VeL71W+iTJHMlsyUSXsyR/VJt5kple+3TvdYznYJ+PSp703FM85zzvc5rP
abLnZ441kme87j9Invbvd7SWzyUnSB+iOyg0b2/dSTkN/XAS32mXsb80vn1L
enVF2DE23K+IMW4r4nu12wxXeazKb3Dm7suYH0r2slfJiao7QXKa9N7+fjzz
So6RNJV8pvlTfdO/5H3p31PZXLJK+kpJldYyXh+/qbofSC63r52t+j5pzP99
SY30v6t9b+lDsU1JXhFjsgbGPT+JkvbdtZ8P9O16lRPTGLul5JaK2D97b6H6
RmmMOcB3gJ2trQyf+ara9VT/XtxREfv9mue91BjSRHrrNPbUKom1nNjQhjk8
7++KuIfZue43Df/Eb35TxBlV6u5a+2zYx7uVPjvpV0ku8finVoR+ZRIYg6//
UPrHGuewJvisCL9nfObvpQH+URlY0cg6+92UBjYxDhgGPoFT+HB7r+0kfW8s
OSMJ/6aOsZmTeubtofluUjmzCD/BX/Bf5vnUcz2mvS1W+9fVpofK7sbSQfp2
v30FjBsneUCyQfuYqnOaIP0V6Q9Jf1N95lcJs4Wb81S+rPopefg2mEM9uLNG
9RNVP1Pt10qfJH1WGjh2bqPAsnWqn6z62apfL/1B6Ruk/0H6hDww43rpaR5Y
skn6dOlvSd8ofZr0PcZa7ITz2FUKe1pQBO5zN3NU17Mi7OgCrXNCGnf7/eSo
vXLf2Cl2TDwarrErJY+p7RCVjSSjkog5d9nHejsGHbYv32obeElrq8tjnrnS
K9y3VuXn+v2w6heqHOA2j0sfmBsLs5iP9ozR320o6YNeqLzb9/Kk9KHSp6l+
hfT78sDpJ6QPlj4DrJI+LA8svklncbHW2V53t1L1D6i+QxJ+3Mf+u0j1g/LA
yH5qfw3+p/Y1OtOPdD53FIH1L0pekFRg75Ku0kerXVPdb1Gtfqr7Mov4Sow+
q1HYeFeN/bzqu6j9U1mcC2cyQmWeB3aXfc7g4Gq1Ga/68eCV9HF58IG6NO4Q
bALDqn3+NeXAl/Fa+71a69fVboz0ccaxY42rTY2P+BdtwMBOafxG536/TAKj
duMP+IFko+R5yQrO2e3xzc0+k5WSXZKX3WenZL1/0/859+9ZinjwahGYSlwD
4/Bf7pb9zkhDx5d3p2GPxL1af69LIsbX2W9vwGfSiDeT0sCsVsatq4xXH0je
9j7edWwiXqxLIiYvk9xeRNz6bRG2SDye7P086z2sd9vlknZp+A8xiPuv1fk1
lXRJw6eae23vGkvHVQSGgneXeL3Ev/cqow3rqSvFPXKf7RzjGAsbBLfAuz9V
xrz47Jg0fp/ns17utRIfiA2cAXEAPAaXd3jP7OM139sqyT7f46uSLa57SfJG
EtyFPtuT4AT8fj0JTsBvfOs9r589t/b5g7esu0b6Nslq99nqsfn9gmx7rGx7
Wxr+DAeEk8JN4ChwF86Lc+Mev61zHuxz3KqxT0/jzMH8lmnEmqUqf5EGJhPr
X6oMXkHcAC+xW7jER5LjksBIsBSOusWxF/3HRfQ9pwj7OWgbOiDZ7zMjdrQw
55xvm+5YhK28YtuhzztJ+BPtWFet+zMOePK+f7/qe9jn+iFa8+A0uCl+2tFx
8Y3qmPci2cvLaXAieAzlXuvXqv46n08LrWmd1nZ+EXZ6retZC/yS9eCL6Pgj
PAg+hL0xBu232O7a2SbhvXBy+G13/T6gseoqwrZbGUew2cs8zvu6uxX0r4jv
tMP+8QP0433G7/jMVqvutjT6s2/wDqzb6bjTwCUpuV+4E3vkfi/VPrdJ/2kR
d77G9ZRrrfOGWOv7xl/gVfgRPsce8evFrodrMf+qyqM8dqV1cG1jchQn37b+
F9sKdzvPfol/znUJjjxjH8IvOK/ePgdiLHqzJDg+GAUPx87hVfAb3iy9bPNL
7JeM9Ynn3eS5D9ieZrkdc4JRXb3fpfbvtV4XOAI+8EZa4f0tcIld825ZaTt9
yn6MPz/pclUSft/DXOtp72+1z2CD51jmeZh7vsfm+4fgqu+eGIDt8+bC75uY
gx5Kwofx3zkea6nnAZvAG7gea6jxPMSkHV4H38EhfKu535ic3Xb3X+e24N+g
NMaq8bp3eSzOAAzd7LN7w/1f8tjgaBufM1jMHHBA/Ga5fi9Jgxfi4z19jw33
yr4/SmOP+PRfk/ANcOgj7/09r22gpFsa577Fa/oft3+T/hXxPscPsE1wqAGb
dns/L3of4A+2SuwDf1l7F68f/wcH4JNwF7gPbxfey+gNuQRK3vj1aeQyeOsP
SONtD17wvufd38/zEGtHJ0d9Y57vcrbvdobtDPvalQa/5q092POQU5ifRo6A
8/1QPr9M+p4i+AEY3cAXKBt4BCW8g/cd723wj7jR1rGDvMoTzoOQM1nk3Adz
Eqc62e7meN09XNc5OYqnjD+qFJxpWxH+N8t7m+J980bHJx/zN97hvAUb3uWU
DW96St4tU92PdrwNeE/UeS1wJXgLfkqe4pEk/LchF8J7hncJZ7PQddO8h8m+
k8ddx5wTfE7Dk6N5h0m+j0d9P/jufM/zrO+Q3/j+TO+tAUcacGWh51nt+6Vt
A448ZZnh/ou9D+bDVhd5f6v8jT4rXcfvHWnwyBE+r0G2F85voH/jH/gVPtKH
NzKxrAi8BEP3J6GD42ApPgfuEF/bmmMQKx8pgocsLwUPhfPp35Hx4EXwo/8q
+b1fxLz4J3Gutf0L3oQf81bgLTzTb9tP8oh9xH74ObGSOXjPw3+us19e4rHg
Xf3SiGHkAU5y38bmAvRp6nch/fDlxo6vxFbiehfHBdpuMS+6zHhMboS4utX1
TRw7mf+GIrjojfCmcnCC1eV4J4N5fX2XT/tuu/ouwBDeaf1t06+n8Q4GH/Dz
u9yfd8Ao2+h9yVHsgXvPMP/GH/r72x3GXGyglzEWfJ3nvEp9HnHqHGM7GAAW
kDeAj3OPnHeqsX9ZEeeJHT/jPeDf9ME34C/Eb2I3bzjiN9wEPlhjbGEM8lO8
wT51X+aCF7XzNzhFR981b0f4FDbxoi78/jzyfF1UPpfFG3axfQDbv0f1I7LI
8ZBTJrfMe/MF3UEXjbuiHBwNnbfICY0iV/BD+zPnO9n3AhcHxy8ogm/t1dir
1L8bubNyYAcYQs4E3JltPIHXLfRZJHm8dYkV8PXBjt3Pqm60vr2G7RbBs97S
7+VF9F9fRO6BPAL3TcypdR5jcxHj9ykFhs8x7rHP6d439z3DMZR9MA94/Uka
OffbbW/bbHO03ZkGzrGPN70XcnevpJG/402205yT+LPD2EJugpwG+RTOfWMa
76wpaeS5eLNgx9gz9j/ac4+xbc/0OKyDc8JuN2q8pbqbBeL4u7Xfp1W/S+WO
IvzvwlLkz15NAyuwX9qQbwAv56bhZwh5BWwWrjHf8ZG8VMss7q+7yuvy4Brj
pV+fxzlNkH5DHu/nidJvzONvEeSuLsjinP6u8grJZupV1uTB3civ9HCOZbbq
75D+UBr5jO7OaWxPI48GNtyksiqPt/510u/MAwP+mUWuhzssqezjHMgc6b3y
uG/yIr1dT96OPBH3eLXKnnnYxVnSj80jFzJWevs83kyNpffIgl89ovI3efCo
adI755FLmC79ljzO+SHpnfJ4lzws/dY87vnqqnjHkM8mF/XrLO7zKt7tfq+u
IZclfVp12AL7Z+8L1LZw3mmG9N/lgbMjVf4qD3u6X/XXSP+9MQvs2pRHrvF2
5xtHO0e8VeW5WeS5OP8plGozGv9Pg8fAYR5T/W158FpySuQgySuRD+dseD/y
1mYPrL+97Zs8bAv7Brll3vqTHHewLTgYWM2baYzjyFX2B3zha+XgVR2KyEeN
SAMP+YZN89ZnLRO8ni+qAx//rzowAqxYkgeXHJYGl6y1zvmAZ390bnoPecUs
uPZ675NcGD493n59isYanAWXXpeGjZAr26G6f8/Cl06sijHfy2O9wz3OOfa5
GmPhHuPhEq+zm/b4RB62ccRGNN68LPgT9nhMFvN9kxgvfa/070kfJv1QGnHn
3xw3GvYJb/5Y38/J4g6qGgU2NVP92aobnsXeDqlsm8VdNdGYP5O+Jg07amZb
Yi8jff59fBf/miskTziwOt7aLYvIl9KetjdrvG554C+4xvrAOfh9f9cNrYoc
9KxSxDJiB/FsQxG5heeL4Dy8YThD/rbCXlkPcWqcc2XEReIj6+E8PnA8Bo/w
RbgJvoW9jnO8rHNfcvPkg+Dz5Id4F/A3zD1+I7xZBE/gHQhX4D22xDi5No05
eMPusR3xHRs/cpa2l/U+N/yKcXjHbdee5xA3Ze/7y+F/+8pxfiPSo3nnPrZz
OFtf1/1HVXBG8tYjXc+ZwOn6uU1f63ASznuA7X+Yz79Br7WPkK9nTPjJ/izy
1PttW0M9DmMO9VzE72tsV5znQN8RHIr3asOZDfF+yZXTvnd1YCjtwczuvl/q
7tWcV+axJmznwizsh7+lVDsWvKv72K+617X3fWnoxDza8c6pc3yDBxHfzlS/
v2QxJnZ9MIu9kz/Y576czV6fCX71Z/tRvXX4wPO2yZ1F1B10m7OLyPnUqvyF
xq/PglcdyR+mgRvg9QeeCx+gL/HoarW/PAu8GVoEp/uW9tVGdQeywOJL8vBb
fJYz6JfHORBn/tuxhtjbKgtb/Dk+nYdtnliOv9PvLkXs/U/H325ZxBLWRYz8
m/fI/xE4z2/aUfreLg9b/6705o4R/aW3zAPXOYd6n8VBj3O36z/xmHCEC80T
blTfvnm80fG/A/bB00rBNTuWY4x6971L7S9wnG1WCiz7UHZUq/qf5cHV2ubB
M+AYnasCE29RuVl1xznGXao2b9k/O5RjHMbDtsEK8OPL6tAPq/y0iFhYX4Q9
nmn7gZNemQVfJCd9bRYcsUkW/o/vf0dzf0weRfM8k8XfzODNS7L4Ww5867Us
sB6c/63/pvB7lUuziOvE9GVZ8HVi6nJ4bh4clbhIfGxcjjP43yzOAVwD3+DR
+NmRPar9MXnEKnzikPfF/ojXy/wW2K7yn2nEAuy3uW2YukOOEX3LcUfcVUfn
sXsVwUHaZbHmW/1m4L0AJ4Db8P7j79LcCxjC3/TmZ/FW5+9p8Bu4DX+Xq8mC
n55Rin4bquNdAa8eq7laYztZ8NQJpZiP+EPcJf5O5I1ejnnTcsTJn+fh06P8
Nzj+FtfSGA8uEQ8vy8O/fppFLAS74UTYPTZ/lvSTssDrziq/ngd2wI/OyALD
sPEv0rBzMI47KFcFBzzTPJC1nOb18De9n2RhD/W+l70qL1b96VngIX72WRq+
Bt/EH/CFzyW/zILfw09PzYOj3pMFBnF38IhSHjZWBVfP4g2DHXH32NKP4PhZ
8J6yynIe+aAxefByOHm5OvIBTbSXr6iudxa4913bOfYOl+9iPk8+grzEK77n
6jzuGk59nHk1vLuruTd/I22fxZvy3jy4O5gEZ4fTgydwn5PzwGg4+ACfz/Hl
uEf+71KHLHgSbeDjXzq+wN3a5IHDP84CvzhPeB+4ACZwn52yuFPGvtg8/3Aa
d8+9D1R9qzywjbh47r/k+xY5P4wtXGTOPCgLe8VWuf8zbAPY0d22Je5tXBZ3
t6mIfNGKIvKJYDC5SN55cCN45Mgs8A6s4x1/ufHh/wGqaR96
          "]], PolygonBox[CompressedData["
1:eJwtl3mwj1UYx99773t+93d/r5Stuv4xZNRMjKS40aqEokVqKrKFmkiEW5a0
0IzliuzKli5ZY0ZJda3Zt+y0kCIRWqepXF19vr73j++8z3Oe5zznnOecZ3lr
dn2hbe/sKIr2gRhUT0VR9xBF38GcBL9DNwT3ImsMquRGURnfBNkbCV/0lyKf
w9h74BB0NTAXuhi0hq4PxqO/CfRD/zH43sima0HoA8G0xn5IvPY5sJe1diMr
g/4gK4p+BefgrwC90B3O+M3Q94ON0Gdyougg9msgWwfdEFtH4OvCb4IvgM/A
L0F/NmOzQBZ8JfjR0KNALnxV+CnQk8Fp5kyB78T439B/QO8HBchagM2MNWft
KtBL0ekI/xNrFTG2BbpR8Bl1tncZuxadV+HPQP8GFsCXoP8jl3AhL4oOI0uB
t5EtBDcmPsta0AD6FvAMfjgEmkDnMf/DYN/rTJPTUVQbW4vBBmRVMlF0HrpE
66H/fcZ+lD/349/CXN9lBryO/C74RsiWgMroXsR2PrgJG8fYQ8BmZd03+gfB
lehcQFaA/oE83+Uu0LX8fmuwn9PI+jJ3HbrNUr4z3VVf5EWseRXfpWAUa59C
P429x5kzGL4xuu3BPuSDsTkXeX3kK8D2lPesvS8C/dGvyNiV6B9BdwtjzXK9
t2WgKuvHyJfLX8gOgIfgXwv29cegceK3shE0gv4F2Q1gArLNoJCxbL4F4DC2
Z2CzXY59Lt8fzdi3oxk7Bp2D/WXBb6uYOQNTPpPOMgScha4HhiJ7PHbsfBn8
9hRDg9EvgB8BPVLxxfpt0GvAGgeha6ccI5diI/Zb7hB8Nr3pf6BHBr+9PWB4
4reURn8Y9NPssUq239QkzvMnupeBaejuAKXQWeAFxQt8Re1Fdxz7jlthYy/2
mkIXcf498FX1zuF3Q3dgf8OD1/4dtIYfG3w3E0ExOjfyPYuNzonffiuwIXYM
JLyp6uyvOvvLQD+FbCuYJF8grxB8R7ob5Zh+iW11Qv5i4jvUXeYjG8v5VoLr
5QvGWiB7QL6Tv2PH9A72N4Dvgzo/8vuC70h3oz39DD0mOPf0RC8/7b3J5mz0
PwUtoZfpbKy1LeW96M62InuYuTNBF8Z2MnYBzIJ/h287xmbkOXbHY3M69EBs
LI6dY1Yyvwn2JgXrTtGe4SfDr42dA5vDTwz2tXJMHvu7GNnGLua/ldgXlbBf
B9tt0L0n5bvYBq6HLw6OzT7gos4VTGvPi/Ice7OYvxD6POMzgveiGjFEZwl+
/4qD5srtYH3sPSonKjfKR/JVIbLrUs6FyumLleOg/2Z+N+i2yj3l+URvrgfn
iVm/GvQI9v8kOsfRPQHaQ5eCFsE5T7nvNPSx4Nylsf/ynGtLsbceugP6J3Oc
s5+CfkL5OuW3/grkRNbokeWc1BV7TZBvA18jnweeTzknKhe+Dz7X+4CfWV7P
PoMvSjkX6gzDoD9VjMtvoCn0DvCtahy4BXo7+AZ6buxYLI39VhSTbzJ/FWN7
Y+ewKey5Jt9rVEt0n8hXyAb8VOW34JqlWqWxB4Nrumr50JR9LF8rp93J/Lop
5wDFvt5kSeJYWAEOyd/ISoJ9oz18q9wWnDtXgnHM/xh+AfQR8Aj0SvB05DPr
zent9Vf+4S4fRfZvsC+UY9LM/yg4V34FbgvuKYoj2/yA+QOynLMGcR93od9H
/UDsN9YevhY4odwKf0fKPY16mVPSybgWTcDGaugBnO+vHMd8f+h6jF2e4zfW
nf2V8UZOZntMMs3R3D6qydBHE9dW1UzVzgXMuRn975HvYt19iXNBPvK6yAfB
B/i74W9Hdyc6DUCZ8hCyfegci90DqRdqmutcr7Hj8JPV02TZB/OQrcl4L6qJ
qo2Ppm27rLxX25rntc8iDxm/eb19neki9NjEvYTe+IRc50TlRuX0lolzkHJR
b/hVqmfonM9xzCn2eiXufUrhn4fuiDyOrfNs4h5OdUn1qQ57+4uzFkb2+cLE
MavYlU8GqpanXfuVs5S74oz3rhqrWrsoce29ZEN3n7jWKIb7Jva5fK+epBr6
JRnvXT2IepFuwTXzXLmP1dN1Kr8D3cXexL2Iekb1jqppqm21FE/I5uearlke
ezPR2RScCxTDk+BfBvuVNxXDqk2qWbF7CMWoYlV3WBXb09Bdp3oWW2cI/Hr4
iZFrXBH6V8fukdQrPYd8avBb1pufDr8xOFcoJ70E/0Xw2uqZBsFvCM5Nh0GN
XNd+2RyTOIcql6pmj07ci3QFR2P3JONVC4JjST1Vz8R3rTT5nHrdxL3iJ4qv
xDlCuUIxsDDt3qVj8NrqYdRbdwqObfXYOxP3burZ1bt/ndiWaoBqwRrG5mS7
BxiFvc7MrcDY/Nj/HKpBqkXLlS/USyB/LOVappreF7pLcG6VT2vCjwuu3Trj
APi1wb2Ycvat0KuDc5fWUK+bDu411PMeTryWehb1Lv8DlRrXsA==
          "]], PolygonBox[{{2783, 907, 1590, 1431, 3049}}]}]}, 
      {RGBColor[0.237770147032177, 0.379872303906765, 0.6240704551571181], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1l32Ql1UVx3/ub3+/5/k9N5QEzZcStcBwygFXeQlikpwpnKbSKc1WDRDR
TMBEqMVkhDUnlt1lGwWdFENb4nWsiV5ATAlUwIBFSdQSDKhxzV6WXZ0yRPt8
93v64845z7nnnnvueX/OmTrripl1pVKp8YRSqQzcmUqltvpS6bkqtKJUGgrx
GuDSrFQaDn49+E3wTIT/Omg9wHWsBtba3PhL0FuQcQz8KtY0+C8Grgd2cNl/
wb/KGgDP3uAZidwrgd/h7P3wzQVfDf4xZHaC7wUfzf2zwS9Cz7F89yFrAOdu
YJ3H3hTgJdDfgX4QGZuS+XcAL4D2Q/DzWc/VoPH9EPyfgP9N8H3wTE7e7wSO
TNbnQuAf4GlF/iH4P1xn3cajwwK+x0FvAk6H/g/oD7N2w38n9D3QP1Tz3mnA
e/m+i/1fs38+bz8MvlD2qzP9s8j8aODnsh6r2l5zOFuwrgVPwEbgmaHHUOAy
4CTO/ireeLnwwviz3LWNM9vYexq4BfosdHsS2M1+R/D/nXf+pYLtgHdwZhL8
3bnvlJ7NrFnsD0Gn1zg/Hp632DsROY/xlhfZn8JaDP4++1PBry4MF8E7EHwt
+NeQfyHnfqr44d5hufEX4PkzPC2cPRhxJ5k6Lx/L138C3sb5EnfMBt7Mehe+
bwFvZ50AfQ5wBrAXehtraW6bPsjbR9U7XqVHQ2bbPYrMztzxsQae9rJj+Hau
+QqyNkBfBX1kvf27XPFdOCa7kDE4tx/WgK8GX6k4h78HOYvK/paOlwLfRube
ZHs9D1xbs8/WAZv5/gD0u4F7kvOihrwG8C7w/dj99dx4lnsJ/wK6fIO1H/xE
aDNZ08Db0Kctd7x2IP8X9ba74nNUMs/osJnscVHcp3sL4Fm542Mzsk8BHwR+
J/hDNcfrcuD3k3P4HuCRqvPyceBA+Av4jwPHJOt2oOol/IVkXYX3Af9Ws30m
o/NUVobM74U9sjrn4X+A60PP7YV9Jx+2wnc9tFbwo8g6GfpC4OCa46uHO/+t
WAF/IzknuiPmFUfLoyYMyZ1zTyB7YXKNGoTMLxeuY4PBK+Dbkb8T2YPAzyUf
jsFbDvoO6EcivsfBPwGZb3N2XjK8BPpbXPu55LzfmPlNDXWuj82h/7DMfmuM
HJ+P/PvB5yP/Fu6cwJv+iu6bIoflq5aItRGsOYVr5VLdC+9oeNeBX1bYnrfm
liWZ9wDbkulDIu9rdfaf8rkMfjo6b4VvK/hx4A25aZ9E3rTcPGdydnbus7cB
Dyfn9T7o97LOQIclooGfDb4MfFfYZ1zuGOyJPrKi5pq2E97xwSNe+VI+3Ql8
OLmG/hi4OFnXH2SubR1RP7ty2/xq6O2ZY175obrypTqfuRF7jq86n39Wdd/a
jrzfFo5zxfuDhWuIaskryTmr3P1i4d41D9nPRN15Frggub/Nhf4ifF3wnwrv
3aoz6D+tcP2VrlsL9w/1kWbgo7nfqPjdEHVSPl2Wuz8sL/w+6aM3/qRmvz/P
XfuT8/wl4OOFa5pq25TojzcCV+aO/acKx754FP/vh3/l5+boK+opLbnhU9jm
geS+05p7FlD8qC78vObaVo8OX0+O8bLiAdsO49xG+GZWHLuK25tqztnF8DQF
Ltp7ET+Ko4nwXszZPXxvrtpust8bkcuvFfZhOfyouqa8k+1aa7bRM8hfkdy/
Tufs5JrnlrHgu6uWo9og/4+IGLg8t+/mcHZjsn+bMuvSEPq05+7/dxWuC/1z
Tu4arZq8W/OO4r3sfvK7wr5SjVEPmV+27fcWxruA13JmILRrku26vew3T2Xv
4+D3Zbb9lWXXjkcK4ys0exTOV9XdUwr3rj1Vx7n6sXrokcL67M/cjxbVu+Yq
No/J5pxZm1wrVDNE6yibviH8Kz/viJnqOuCPws6y9+DCZyZGTZMc1eq+6MPS
Sb1mVPQb+W1z2XXk1eS8/zRnP5X89rHJPVx2lA23Z67dmmvOJjZOrXrO0/3K
I8X0+pgz/6h5ILMflYsTMsvXPd9Onk9uTZ6JtkZ9W12zTx6o2UeagRVTW5L1
P8y9v8k8m2mOU39Xzb05ep56X13h/FSe1hfuWQfLtsemzHm1BPmb670n+5xc
+B2aW3sjXmSrS5UrFfeGo8n8Hyys7xHNgfC8WzNcU/VcJbueBM9H+J7O2UPc
82rZc5r8qDlMsbBANTVZj77kWNGda6C/Uwv5UadVlxTrVyTXZNVmzTrqS5rT
exUv9Z4J/xkyJbv/XNn1oTFqgmrDK+jVxPplveNIs7dsN68w/6rQUT5SPkiX
AWW/cy48Y8Afgee7mecC/Teo7qsGTEf/Q8gezjoatlTMy/efyRwb+heZwToO
/Rbg01X7S/VVNVK5plxSvzovclCxdk7FfjoAvKpivw6veibW21+OuJ8b+TE6
9BccE7hiZ13U7f5YjtqrPqoYfK/m2bM9dNb80f+vlNteG2NOaMli5kl+56KI
Q/3TaA7Re0TTnuqV/sck94nk2XRl9I3fV5036glvxln5Qv45qeo7pfOOkNkX
/j0QOdEbsbqwsJ81J3ZHTLyenN/bIr8+HzOPZh/1AM3z0k1yVCNUh6RzT7xF
MdsVcSt7Hw+bXxCzkWbbXfqfRNYudN1SdZyqNmuOEF1v1qyj2eaOms83xByp
HqZ6OgkZFWSfxflvljx7aQZrh/6v6DXqFS2hm2yneO8Nf5xRcZ8TPqNiWZKj
/BtadQ42Rfw3Ri/aV3YtOK3iPJdO+l9Uvx8R86Bs31/LCsvrq3oW2PD/Hhf1
R/ydmWNO/7tLYs7RjN8Z/7MvJ/8/q7/p3+W+ZD9rZleudEe+aO5WXqjW639M
92mOW5XsmwPxHyb/SafLkt/yZNWz9MiYp/8HfCoptw==
          "]], PolygonBox[CompressedData["
1:eJwtlnuQzmUUx3/7vu++v/f9/ZKiEl2IKE2ZUKlIpczENN3GZUQuaxFFN1al
xKpmWOyakEmkyG0bNUnRqpB7ZUmIXCqMnUqRNF1In+98f3+cmXOec57znOdc
vs9zWdFjDwxLBUGwGcpAz4RB0L0gCLZCW+IgKEPuD78T6hMFwXesLWfD7xjX
wD8HhfAn2bs0HwSXZoPgEugH1gaz1gx+ZCH6jPf9gX091kax9id8f+g6fLdB
vxj+ELp27Cth7bxcECxi7QZ0BdBw+IlJPCG+JiFHOcc6BbmE8xeG3nsR8gz0
m/E3ib1HWTsOnwkd653IP2F/a+jzF0PncL8vsanA/hjyH/BV+JhdYB+b4J+K
nairWOsL/2ySr3+h+9j/Mmu1Ml67B3k48eWJpRM0CttNnLkB/mfoauSNibwR
2qz42X89+39PB8EO9DdD1+LrbWghvqahb4PuOsKYCt80Z/18qBl8CfZd4f+B
StFX4PPilHO6ivuMSPTV0BHsV6Nfg/5zEfwL0KvwzTljGrZruMNj8I2xXw3/
NNQWuRExzkc/AvuKlH3ej7/WnDGM2h5Gv4X1tXn7rmJPM+LZAE1I8rNcd4GK
k/66Eb4m51xFyI3wfyLrPlI/HVK+oZOqjXoVvj36oYW20ZmtWOuW3K81/MjQ
svqlM7FfSDwDU67pXM7ay1pT9h+CfsE+Rv8Q+nHoy9BvQf982jlWLYZhczrt
ni9CnoV9JfZ3cP5a9T32ExN71WZS6PvVweY4cl/0V6BvwP5X0G0LXdvxrC3A
9zrkCuQaaAW23+C/WnOjGqJbj81Q9k7CflXs2WrOuQfSnrEjsWdTcg/NKntK
8fUjNAd5e+heaYW/g8iV+F8Gfz/xf4Gf7jn3chYf/dSv0HTdBZsNkWdWs/sj
dAx+ROzZ1Axplh+BTqU9Y4Phu+bcix3Z3wdfLyf91QJ9Fec1hQbha16BazyX
PS0znrEn4Ruib4T+75TvdBh+N/QB+tas1c/5bqpZhO+arOWr0M9mf5OcZ181
r4e+FvIO3QdfPSNjgvQtk7P3Zq1fgrwVeXrsXtf8CJuUU8WheOqwfz13moJ9
C+SPke+O3HvquadD51C5VM+od8rz7q3tyJ2Vy9h65bwbsZXH7g3lZz/nLWJt
OHylMCpnTBA2qAfWYTuQtX7o6mMzAH4fa1VJPYRt22LfRTZl6t1k3gVjp+Az
kXtXGFQI/3XsWRTGTmD/LuT3M54XYeGovGdJ+mfgz47cm3uJqTv6XVnjsTDw
pdgzq7qqvperVpF7Vz2t3n49MvaNQf8R592ETYdkvlPIMXQw5ZiFVUX4O5F2
Ts5n76PJPCqHyuWTCd7qPXiPWNrmjBfqv73wvYXhwnr1DPxuzRv7/0V/Hv5u
QW6Nrpy1g8g7Q/PCZGFzZey36h1svkV3EZRm773Qb/j/NOvaqgfVi6dzxjLF
9B98l2QehJlL0DcMnc+z8Dkudg+oF4SR76r+effWLOF/3pilWvTm/m/BXxP6
resJhXm/WXq79Gbq7WwbetZVw53Ij0NniK8MeVnWM6pZVQ6HwveKnRvZPBEb
s4XdumMx59Uwex0Kje3HWX8xduzq95bwY7EpSvLbVPUU5qc983pbSnPGwgeh
LPLk2LIwsjx0z6v3tedmdEehPYXGaGG1YlbsmlHNaofQtVM/7cDfVOQr08ZY
YW2n2PkRBt4VG9M1f504YwL8W5GxTWsr2Ps8ct0CxzsavioyFmvGN4TuKfWW
ely9rj+HZNVXb/0evd8F/uvorzQj79qNJp6t+PosMtbqTV0F3ysyFilnPeD/
y3uW1e9n4Eti95p83sb5F0S+q2ZAs/Bh6NlpwtpMdAvYszTlN+sr9WboWdJM
PYz9EfK4D9qP/q+UMVxY3hiqy/753Gl8xhg+JPYbrP5VTovQ74cmpP3GfYPu
jdhYq/zORrc97944Ad2EflzyX1BOS+FrR/5racbaoz/NuRcWGssV08rYWKc/
2JfwKyP/PfTGfqL/Z2Tfeu/3wH8b+y+mN2x37BgUSzd8vQk/JzKvHtCsnEpy
oLsfh6/NfRsUul56U4qxqZU25vzNXc6NbCtM/RX7r2Lju/47w7FdALVL+476
G72JfGPaf7QRyMWR+1n9OAB+TOS3RPZj9RcInRv5eDbyzGh25KMEeVPWs66a
duHsmXnXWn+E1+AHJf8J1WggfA/2354y5rXL+c3tmMjtc8ZAycIgYZEwQ9ih
P2ILbFOR/5Z6D9KqZ+y/qjBznv7ekf+Gilmxn8j5vdD8TkaujtzrelP19u6L
/LdRT6g3DiAPCdxD30fGTGGn5llvcyrpV92hGvnt0FghjBiH/D/jO7d/
          "]], 
         PolygonBox[{{1999, 420, 1584, 1498, 3053}, {3038, 761, 1313, 1559, 
          3060}, {3066, 1505, 1009, 106, 3055}}]}]}, 
      {RGBColor[
       0.30333370920076275`, 0.41030897128461313`, 0.6407559025784654], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJwtl3uwV1UVx8/9nd/5nd/vnNREMJXpQRE+CTUn34A6Gpoa94oREjkgCFfK
RibEpCQUibIwJywVunK58vI1NZAkJGoXkUi6XPHBIEgBmZBCqEGaNn2+fNcf
e9ba66y19trruU+fMd9pubGSJMmXm5IkBc5pJMlc8BfyJMnBe4P3B7++SJKT
YRgPrEE/Gd7b60myle8jUHATcDf0zeBvAnuwRsGzr5YkI5HJ+H4Y/MNYR0Lf
ChyI3gPwH8H3PSFbhdYfOLZiO55BvgP853z/BzJDwCfD8z3294JPlRx8V4NP
AGYN21MFToOvNza3oP8T7E/k++fQ0VJNkrtZS9jvYZ8Ae8H7Arx7kJ3EfhD7
g+DbyiRZg/zXYesJfhb87/H9HGAn9EnIrIN3PrwTwfvw7fPsj2Q/HZ7HZS/0
vtDHsK+wvw54CvCG1Db9Gb2zsWc9sJJb/9nwfBP9/eAZBfwS9H8hU4KPh/Yt
1lBserLwuc/x/Su6J/gVwFty45eDv4OuZmTfA7ZXbLPsWVlYz1p4fw/eCt4J
vgqfz4NvJj7bV3fsekOvZknyIWsC5z5ecxwVz/uhja75Dr8AvwZ8N/g94CNq
9uNy1tKKbf4p9Bboq+GZC34d+Nuc3Q7eCj4enuGpbZWdy6H1gzaNs2bDM4z9
s8gOAT/I6gTvxtb+0Avu0VF3Dh0D7Sp8+lvwh8DXs45B3zpgJ+sDdD4LPAId
B1gb0fNEzXl1K/SpqWUHNDlWsl/xWtKI+wD/V3fufQRsY/8Y+IPAB1gPK4eB
vVjjwI8G/jJ3nk6Bfz9rKPSfQftV0G+GtqLic0dFncjP5wIPIr8D+n+U49zz
M9j0jcI+/lRmPy+M+lUdL2OtgvZ9fPBizfhyaLuqzqUNrN9A74P+Seg/reKz
de5d6Gvm20p4dwN3orMdPZtT57TqYS5nt7B/AtuvBl7Dugz6o+xvgX8WZ30S
3sGp9/dBbwVOh355atkL4T+1Yl/Lz1uw431gD3h7Qj8ptcws4AzWF8BHpj5P
venNms9cDbwI+16H9nfwO5tss3hei/xRHpVR76p76ftR6nxWvuu8KXx7NXwi
3xwW+a866IraV42OK2zbWOCiwnf/Q+4zR4ZtG6NGHgLug3ZHnPV0afyVwv1R
/l4H3ID8POQW45+XCtfBO9CvjT5wF983gL8Fz2exZUHuXvXjuvul6Ir9LvTv
Bb5bc79TznYhN71wLH5Y2E8DU9+3o8n88m1H6LwJntsK8/wAuJc8WAr9emw6
ser4KXaCV6SuqxMiZhPgn5lap3Q/X7gH/onvfytdZ38FTgTuDb9I/wHW6U3u
98obxXA4MoPA19fdL1T3mhnba+77H9Ydb93n/tK9sTX68NbC8X27dL//d8U9
f0DVfOpF3aqbqs8/KubZFOS+nZpHelT3rwb/VanvrPvKlqfCntm5e+y7ddeW
akzx03f1wm2qjdI97e6Ga0M1cSG04+rOG9WZ7NwRts4p7Nvl6D6v9H23R02u
jnPnxyxZhL5FddfS1yL+s6Jezsld239B34LojeqRiufe8PkbyOwDX1vY1p7R
t+Uf8SjuA3LHZUbhvvvP6L3qc5p/yoczkDu95t4yLnJSOX0w4itdh+IdtXAj
517M99Ho/mPu2CyA9lLDdu3grGsb7gktdb9B5Af1hP3wL2Xfq3RfXAl+JfRl
7Aepx+X2ve6yLfqW6Opdkwu/WdrhGYver4L3Q66jcN6tgj61cH08At4N/jSy
2+EZUfUbQrl0CfsudF9cOnf0hlD9qH+fUXVP012/WHW/WRp2aK61R+wUwzNz
x2pz4dqTDtW3ZuPxmefj4tI6u6EvKX3+K7ntlv1r8NPzuXN3FTr2Q79EM7t0
fLqiZheVtmchcFPhuan52RnvopaIVUvkRmfU6hrg4ejYVfF5mmGaWZpdO6vO
S+Xtc2Hby9A/XbVf5Os7S/dV9deVuf0sf6/IXVfzCs8GxfZceG9nf4H6Q+Gc
VW9TL5tTWu+9wBnI9gD/ifpK4Vq9L+bestS5tSx3z/q15ErTF2NDW+nZoRnS
XEaNAx/OHXfF/+zcMdyEzidzv0sWFH7f6U6aK+2F51EbcGPDcVQ8h6Fri/pe
zfLSsw2e9xvO07G534PypWbMluibr0lf6d75sej30qM6Uu1olqi+lPPSo3fM
mNx3VT39Tr0IngcKx0CxUL6MDp7hdb97JFfqTqV7weHhb/VS9aazIid1J+XC
iMiH83JD1ejN4Qu9eacV7v+aAx/Buylz32gL/zxY+r7KId25b2pZ+bBv3T1L
s+uCzH1Ed9S/h2bpfHQMZR2LzK2538Hqsy8D+6TWe+idqt6cesbrTTcs3nXK
Eb2XdNbAzG9Z9Z+TgC9mvt/rwBMy+/dS9B4NHFK4/s6MN6r8qlrSXNBbT/1c
OdQS7xa9X+6A/9Kae7/k+oes3sU94208EZ4bMs+JHtAmZO77+n5PvOX+23Ct
fQC8LOyZklvu/JplW8GPqrn+vgs+OXMf1zs6zTyDJtb9v7YiaIPjjS0/HRu+
km/kxyz61YzozzsL1/T5nLs45ovmzJJ4L2q2vFV6zmrepoX/oSrA5vDJ5HiT
nhLvZ8X+0L3Qf2VhO2aWntPS04XOi7BzZ+aeqzzqjlySXwdl9q16pM7SLH4q
ZqxmourktHjH6j9jcOZ5+Uz07rWl79s38kHnH5e6NzUXxm9T7kfu6T9YefFG
5MbCwnNQ81A1emr8I7TVfab+fT9eOIb6j/w/Ix8EFg==
          "]], PolygonBox[CompressedData["
1:eJxFl3uwVXMUx/c9+5yzz9mbVO4l7lCXO2aURBnDSM+pMQ29ozxGJSrXY2Su
t95FKYxCL9Xt9pZmTHnd9OCWHooKlfKaSgjpoRIxPl/fM+OPNWd991rr91u/
9VuP3ynr/2D3B1JBEGyB0tAjuSAYVBQEZfCV8GPzQTADhUf5NhT+RagaPAY8
EflpaFeRbV6JgqAB8qbILwWfCz8oDoJi8GDwFOQrwPeHrA++ENtx0BD4BlAT
5F8gP4z+QPb/HP4P1tgL/hO8Cv4W9DugG0DF6I9G5wLkj4GXgOuAF8E3h1qC
zwBXw18OXQOehf0M+DtYYib8J8ivTPnbFuTnsMfdBSzdfkkQ/Iq/TbNB8Bm6
t0ONwBnkt8FXId9X5HjUYN+db6Wh/Uuw3wMeG9qHM3U2vnVl/SaoVMBPZ7/F
4HbglxVv1msQOv5j4BchX468K3gu8qf4tiLlGPSPfAfau1RnBM9H/zLk08Hz
4NdCXYocv1r4qdh/U+T7XKx48O0N9Dshf5W1bkZ+Rcr+9oJ/FJ+/KvIdVUc+
g2TNoGvBm7BpjX497LcSoxL5jP/lyBshi2PHri50FNlAcJPQ+dAP/iO+9SHx
FoLXwX/Jt9HIW/BtPng4uE3oO36e9UbmHDvF8Aj808hbhT5TCfhjfHoy9BkW
gF+PfFbl4DB0V0SOl9abB94cOVa/6P7Bx9izBF+fyATBcfgWkc9SyZrrkW8A
D4Gvkj/Erh7fGqLbETqS2Ea230KH4D9B/xD6FZynFvwR+D7wQOgtbHvz7Wv4
k6xXN/Yd666lUwPeGHnvpchns9+OyLE6Dt6H/Fr0fwePB/dFXoX8IXA98CPI
D+BHW2gL+DfW2Q5/A1SLP92hYdhfEthmOPwobNqGrqfH4YfknIuq74fhexKb
UdivxPYDaETOe5VjM4692yW21X20h5+CT4tSzuGFecdMsVPOzcz7TDrbLuy7
J46ZYqeYKrZt+H0+471WQWez/3PgGvh90NGse4VqVLXaDTwhY13pnIb/JuOz
D0LvLvxNsV8ZeAz+9i7Uc310R4Pn4s+bKeeQculnbFPQC2nH7KvE655ApxXy
w1DrtM9QlXcNqZZuxX4+a9ciH1y47+Xg77H/Af3V0Dbwa+BL067/H/B9Jfq3
he4p57PW+5HX6gXNQn8O+s3SzpFf0B+f2Hfd4R7wd+Ctae+hvd5WT8L2RmiS
+infKtC7mDOti92D1YsrkL8HXheZn815JnCe5pHlOsO7yNeC7w3dY6qwXQ6+
qbD+S8hnx+5F8rcqdk/T2eTD9Ng9Xr1eNpNj9wjVl2qqVusnrpVR4NWJz6iz
7gR3A++N3dvVM9aAi6Hege9gGfxC9GtCz4yT+N+7MC+W8a0h8gVZ8+qh26UL
bQ7d4/bB5zVPiE05tF3+Y9Mw7fqojH1HOs+n2HRE1iExr3hNZL+NyHeH7ieH
5Xti31UDU5Fv4/xXpZ1j1eB5iXudeoR6xYK8Z4/W6KneELvXymaB9kLnmdA9
cieyreBn4Q+hU65ZHHvWSa5euiN2LFX/2/O+U/mqmTMN/rrEvVgzvGXiO9Rd
KieXRe4Bqmf14BGxe7b0G4Pvjt2T1Uv1JliT9RtB/VY9eWjsN4T6x/m6P/DQ
yLxmXBfwgNhrqT+Pznmma3aex7eusWtGtaOc/zByj1GvUc32QTYv696nHniN
aptvB1O+U92tarysoK9a/zT220T3sTV2z9Pd9gFn8p5RmlXKAeXCqqzrWT2r
E7JbWa8P1BK766EnIvuq83RGvy84hN+F/sG8Z5J6oXrqSORnxe4d6vnq/Y1Z
v3HGvfhE2jmh3HgHWgJft/C+0sy8J3aOKleVk5Oxvy7n2asZvFk+RZ4NNYVe
pRxULg7gWzHrzc1a/xTf7tRbgTXrhO6J/bH/G+qV8p7au5L1bkhZv1vOM0Cz
QDr/wF+U8/p6M5WwXv3IurI5gOxY1rmpN9Bu9krnHWud4eyca0J3oZ6i3rIh
67eZYtAD/3sSm9Ks+5n6WnP4Cr7tT/+f0/rVm/HqyDWh3FdNqDZ0Zp1db9I5
eqtgOwn6Ke0ZVpm3v4rJUtZukvWd6C5OQqUZfxO/TXOgML9uUb+MXPOqp26a
5+CSQv6q56j3tMF2esbzSXNqkOZa1ne0N+3ZUj9rXjPmeviqjHV1xiTy260z
651ir9LIb0+96QbkPHM0e/TmOhI5Vu0zni+KmXJIuaQ37kL0DxLT6oxngGbB
j3nnqnK2kd43efdn1VAY29fBGc9a+aw3uPzZD/+X+Lx55ZByaU7s2Kin6+00
K/EsUA3NTDyD1F96QO9EfgOpvvWfYD14WuxYauZo9mjmyV4zUbPxvx6R8n+S
Ffg2I/Za8nlT3j1Ftag3+DD0/wWGBK/U
          "]], PolygonBox[CompressedData["
1:eJwtkMsrhGEUxh/M5xvvlFkxGymRPUu5bMetsBGFshqbGYrc/gALmZ2FtX+A
yMbCig1FVjaS1MilyEzJzu90vsXTubzP85xz3o7F0lSxXlIOROAqSF8paY3i
ELxnpFJaKoK9WJqA/E1eAXnyV2IM0uASbSeaA1DG4xrtUpNUALtouxukeTgf
9NvgrEY+q0I9gL4f3IAhfKfhn6I7Jz8hHoFj0Md7rU66Jc7AmQVb9PfhbSaz
bOYfnoP4F7hph7mf1DU0k/DKsd9jd42zT473DXo95L3B59i8FL0H+G/k9/S7
8MuCO3Z+zvjNdvtY4jFKXKFeBtvJTmeN0iPcX/J2tC3UVeo83FY0I8H5ppsL
/kcLxGbqLHiCe8G8l8j/zP7OdrRd12P3GA7ONU01ufGH+A8upTzS
          "]]}]}, 
      {RGBColor[
       0.37766719609568655`, 0.43643256092819654`, 0.5970582617201077], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVmlsVlUQfd/3Pt5yH0pliyIuVDEQCiI0xg1EjEbTaNksLauFxGA14q4x
hVZDqSURYilLCUuLtKD4B6hoEYRSIGXTsGhK+KGYAEIVsMGIionn9Ezij5eZ
N3fu3LmznLkDZs2d8Era87zbUp7ngzY6z7sHghWR53ULPe8U+I7Y805A/j4U
ihPPWwd+IfR3Yn031lqgswc0hS8B/y72PgK9Nug/DHoU+qXgj0B/ZVrye3FW
A/S34r8R9HXo5EK+FjojffE9cMZDvv7J7wp1Ls9/AHwn9nYH/yG+UdApBW0N
PG8T/YfNw9BZBf0N4BvT8mEQ/vMT/S+DfD2+WsiqQetAy6CzDPQy1st9yc4k
4o/Dfi30lkA2DrIruGcAvbmgFyGrwVeEew1ISycf/EToncLeNvi1A/LT+HpD
3uQrthB3+ZuNbzH2LIfPk8Bfh82OlPbyDh/h3DLQJ2DvFqzPBz8Se0sy2A+d
b/CfB//+hSyK9JE/B1oD/Sx8z0MnJ6U70c+hoPX4pni6X5nd95NQcX8H9irA
z4RsNuwUONlYCFk++Cng54OvDCXn+ppI8WRcZ6V1B/6PxloI2h+6PwfyvRl0
b6h7N2H9Lqf4XMLeN3H+8IxykQudwZCvhu0Z0FkM/kXorIQ8B3pzIOsRyf50
8CNCxXMV+CGJ9Eug/4GvGuadJ2KtP/hJoL9jfT1kUz3Fkue+4asH2AvrsHdg
SrWXB50c7LkZ9O9Ytfmgr/ushf4Q6oPegXOvQ78wku3xGdnn2fSBeeC5Fb7W
mYMcy0uvSPWegf2CjHJL+b5QdcUaPA86x1fs+kK/N2gF/LrTarEPzi8LlSPm
6mWr1XnY2+qkQ91c6O2FnS3IxbGUeO454pS7AdBpzigfzMVvge5xAPRLJx+2
g9bH8vMKzvw1kH/rYbs79p/k/aCzEt846NeCHo9Vfz+A3xipxtmvpwPpL8Le
l8xn9lkSyb8J0H8LvIP8bdAT0L8d/mwGTUHW7Cs3f8K+Yz4D+XXRYjgvkT73
ncd3BvI1kLXb/S/AZgv8eAF2tsHAa5H0nwJfnNa9mIOt2DMacbkM3Y5Avb4X
tDpRLbDGy2PhXRVofaR9zOEh2JoGnUvQmW09wvtXQm8N/j+O5etAq4tbsbc/
+I3Yd8qpZtpB7wuFNUux/jn4sZAvYM2HwogqyA/i/wj472JhN2uvM9Ae7r0x
Vr+x74JQ9c4659mnfWEsfc0KhScjib2RZkVDINusY9bE/aFyyty2OclYL8PA
Z2FDOc7f7HSnT0HHJ4on62V/oN66CbKORDX3Y6I+Z/++B1roK+bUC80+z3nV
qQ+XQv/JRDllbu/OaC6M8oRZxKj5kbCE8ea9xjvVEmuKmJHvC2eJwZxlnFNV
Tv3FPjubCCd/SoQf3Mt+WeG0dznot6F6ugE6sdMs6UyEAZMzFqNAc2BjoPnB
Or8aCXs2Wa9xjtKH7FC4SXy7FmnOME9d9QH5GM7JSDlmPiInnMmx+rmWqH8v
gvaJNQOzI/1TfsAJR1mrvOcM6FSBnw76tOVuhFPcZlvsiHPEd2L7TNPfgLsc
Npv7nfq4xuYO/ymnL9utZ9lbj/N9APnYRLl61JcPxD3OIsaBMWPsGFPOuwKb
C7TLuUasvBBrvm4hDuHbA/4aaEWkHHrgF9gsKyTmh8IF4laJ1dhjxEWrecax
xqmP2E9LItVRJWRfOdUK5wzzyvw6J79KDK85E7iXWNBiud/Fu8bKCfvguUQ9
VpDIb/rfFMtHYhlxjHjWYjxnCWdKH5y7LVGd9AbtmQgfiBN1FjviR3mk+JSB
FkWqt2ynfSUWw6KUbHKt6x1nZ82KRDnr+E7ZYW+V4ki+9YMPrYlywnrvFwk3
+EYjxrMH2Ue7E+VvXyK8Kba30Wrrw8NOuEXc4x0KrZ79SDam2Vun2ok2hcof
Y8S3SQP4Iuz/GnxjImwkRjbbG6MSdiabzVGRcsscs/c3OGFKL+zbFv5/Dvu7
2eJTam/LRaDHbO2s5bzOemxqpDjOC3XGGOvLdnuDETvZC8+m5XenvVX4Zjnp
9C75nrPbKca/xLJFm1Ns7uWl9V9qcp6Za71JfP3LMIRz/otQseebMSejO+bZ
W5D+9MT6P9Yj7JXhNt/55qEu48lcdL3N05ptOwP1EfvpnOEzcbra3s+HYHNt
LGxaDDrYaf5eZV2H8qMe+t1i1SRrkzOW9olHC53whzNzmMWQtcB7X7c6ZfxS
FsMyJ6zYHOo8ntsWqo6OGub/YXfcBbrJaY0ztiXQ+hJ7r9H/QfYG5XuqNRTe
MbbPgB60eTcU9LNQc6WW2B6rPiM7f6C9MdaZ3b6Q3xArfnwj/AczH6tC
          "]], PolygonBox[CompressedData["
1:eJwtlllsllUQhr///+v/baisBgkurWgwgMRQFRdQMRpNo6yiIIpAYrxyjxpF
CwZoy4VGLW0habVAC6I3loqKIBSQYAuGIhqwF8iFS0tCpcGIitHn9f0uJnnn
zJw5M2eWc0oXPz3rqXwQBE1QCbQtCYInC0HwSy4ILouCoAvqhA4Xg6AbakmD
YD2ylei0gndCM9k4gbVv4iCog97M2cansgWNBw9nbWwYBM3oj0e/grN6sbca
+ZRMXgNei3wM8inIf0Leir02HJwO/z5+DEP+MPqj0R8K/gKb8wpe28D++6HB
4H/QrwCXIU/ZPxf6l/3vsmcS8knI3wEvS61/Ofxr4LXsmQFfif014H2sPVTi
mPeCE9b6sTUevhvfIviD8I+wPwRPDO2bfGqBn8ueHvAC5K2cv4K1aZn/0n0J
/hb4i+GHIT8Cv6zgM2LwVugJ+LHIb0B/Dvxo+PnwL3P+OWg3uiwHf4C/A7yB
vBl5Cl7I+X0F+/g1fDVnvI5sgezH9km+rWNtE/j7xLlUzLtS25Atrd3I+fuL
jlU570B+nj1zsDWRtRPIhqTO7VTkbeD+0Fj52YitSzhzXN7xjAB3sXZt3j50
gutZ25x3DamWThctUwyKZQs6V+d8xlfInk2cT93hBs56mz2NeddPB/JXVI95
53cb/LHEtXuGtZvQvzexTDVwH7gq8V7VZLVsJ64lycvBH7Ln9oLlr8LXEn9Z
3j7vLbrGVcvSqUT+Iz5XFpzTk+DV0FHkC6EV6C6JjEdyxmJwL9St+oGWIj+B
/uclttGNvfmRZcPRnwc+DT2Qt81B4D6oIm8bKfjOxPGH8FPBNdxHQ5avHfi7
n7UXCj7jZ87aG/ruFdNnyA7A18L3qf7hO+HXgk9BB+E/xsaegs87Bm4PXV+X
sr82cc0q19rTiD8fKIbAOVQuZ7M2C/oB6oEuwr/SrN8vBFdn+VTPfIStNarZ
vHuiA35W4rPVD5Xwy7P4NHMalAti2gx+Htqn2tF9gnPoLFIvQI/n3H9jQs8c
5f8QOnehOy01lg/y5XDsXhqAJqP/IvuTbL7Uw5+FL2b3PQDemfVnB7QLfAD7
xwu+v37wxti9p7XZqXtasehOy1P3lHJ1AP42+FtTY8WoWOcnzr1iqOL8Nta2
IzsOXQC/Hrq54B5Rr9Rm96eZ2hI7ZsVejvw55O+xdk3eOW8Cl0XO31LkhzTr
QmPZkK11iWtF8/ITZKWRY1vC2jDkI1LXzpfQGc27yPNYM6NOtRI6Xt3hzMQz
VbN1OWd8m3jmqxbeYq0ZPFC0TDPuKPLdse9WOVVuT8WOvR3+SvgJ7AEGd7D/
ush3Lv8WozMU3btT+34Suif1m6e3bxHyIfIf/87n3FPqrTrOnF5wzOp9vRHa
r7V68KDEtaGZ/2DqN1GzUzV/CPxb6LtQTW5Ffi5yrahm/gSXhr4LzfjZehsi
+64YJoM3Fd378ukK9o8KXcuaAZoFQex60R3nwCWx8ztY9QCujIxrdUfYGhk5
dr15DZzXFLoWVC/PJH6jNWtXoTMK3R2hsWqkFflfsWeXavxv8MrE80/1uSpx
T6g35I9yfzb2WyX931VfiePpgb8KXAyNVcOq5V8hXPif7wXvKboeVH/T9RdJ
nS/NrD2hZ7pmu3pUvbop8Vur/t0Mbkwdr2bU1tB/Br1N+pNsD/1HkL/KgXLR
nvWTfDzC2VHst1M2dHeqEdWKZtb1oWtKtaU3rilyD6gX9MaVh34z9Hboj7MF
vibyrFSPqldnpK51xTQT/Gji+tAMf0zvT9HvlfhxqXNYm83/HnBV5L+N4tNb
35l69mnGd4H/A2q6OzU=
          "]], 
         PolygonBox[{{1745, 1744, 1700, 649, 2398}, {2429, 518, 2155, 1719, 
          1720}, {2267, 2266, 1810, 253, 2264}, {2397, 649, 2399, 2130, 
          2131}, {2051, 320, 1879, 2250, 2251}}]}]}, 
      {RGBColor[0.45200068299061036`, 0.46255615057178, 0.5533606208617499], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1VmtolmUYfr/v/Xzf93nelU2LjcCxzS3nZKto+5kyWgXlAbKwzB00goYw
pcLm2CQ6+G2WNFfuJFk/zJUd3IFSpI9aUZDTQaBh+qP9EKGyBZ3IoMN1cd39
eLif937u03Pf130/b8W2HQ90ZoMguIIVYg1ngqAdm1tAG+MgqMXhtA+CkSQI
VmA/CroRqwnnLS4IWrHOYv91FAS7oDcLmT58z0B3P+hBJ3vbzOYVrMexfxl0
VRoEBezfhW4J9HaCV4L1AfwtAz0D3Y5cEByFTAHfg/BbDrn10DuVys4kZFea
nRWg46CXM5I/jbPdjAm0CvEshu4e2Jh1sn8beIegcxP4K7FfBbkiyNeC9oKf
wPezoA7ypbwXdF/Avge6E5CvAe8x+uWdYsnvSXU3xlkOujfR3V5y8kFfA6ly
eRxrJCN762GnCfnvw1k16EXkJAOdTSwO6ICXTeagDLQ7ozs8h7NRfD9vuXoo
p/xXwM69oCedctAVytdWJz7PnwlVs/9rTrrWMEA73M8mqm8I2pZV/Xi/C/hu
xvelRPeosbs0GjYeZb5Ze/BvAL3OSf960IWsfNPPEqvZUtByrHvA+5E5hv59
kPuefrEC7NsT1TZvcbZbPMTZSeRrCN+9ThhsDZUH5qw3o1rkwLuYlY9HYOtv
0M2J7lowm53weyPk1njFt8vsHPSq0SjoES/5nyFbn1PuqHskq9owvircZS3o
r04xfhMqztcS1XmI2MS+EvuroL9Dbh66v4F+gnUN/ALoPsMbcTeB87eIf5yd
wPcfoB+Cfh7JJm1fY39C5k/QIifZH3B+CTYeBn9HRn1GPLPXnvLCJ3HK+/VY
D7aFugcxVhmqd4jL0MlO1mk2TFg8zPG4Yf49L/3jXj1MG+y5QeSkDPl6FbQh
Vt8sdcIKMbMhUY5qzWYF+Cm+/02US+aHeSHeB7PKHfuPOaGtupzq3hIKY6wf
Zw7vfsjmy3Ske/TA5uuJfHHO3R4r9mInPFCXdWfPM1d50EWxcj7lhEfOinUZ
9TT7dDv2DbhzMfh3eMXN+Cuh95MT9q6CbkiFh88iYZF82mW+iR/mi/OSM4Lx
L8BODvRmzqtEvTYG+qRXXTjb2Hs1loe/DAOD4M9ZPxTgs9FiewL8E171GnLq
g0Wh5sKU4SqKlQvmZBnsnYP+JPJy3mbXiOV2IFGtiDUXqz6nsF/uZbMSdAw6
uyH7fmz4Muzt9MLj4Vg4YOwVsDcWK5d3prJFmx68Lqe6Pwi9Ka/5z3egxfDD
2VOdqiafQnYvZO6CzIug32W0ZxzHvDDyDug8avAt6w7dJYmw8rTXnNliPcBe
v2zz4W0v/jjofi/cT8bCTIfNEb5XHTaHz1r+WQfKzmfUq6xzc6g5PmyzhTNm
xCs3pZxLfAfB78edZiLNlwNOdes1O7EX1hPruXqb29SnncTpbeYM5yxnLVnT
j7zyyzyvBv3K641oS9VHR23uDZm/YadYOAvYP/P2bjEG9gJzToyus/dvAvb6
se6G/D7QV7x0ShL1aJ3lp88rD3kvn+S3WE+fC4Ut1rwuVC/dCv1fOBMi9XSp
9XVZqDgYw/JQsXJ/IdKcmOR7am/Z+UR9Q+zxLp1eNt5AHbfg7B/GyZ61PXl8
i7inrY1esXA+8T681wGv2Ub80C79l1kM9RZzHeibsXzRZxSq99h3zcjbHP9z
EOcM9q2w9WWk/wDGOG3/V+QTT6u93qkm0K2J8k/sV5ndatAvIuXymNWBPUC8
Fdk84Vw5g7NunJ1GXIezmmXskXysPG5mr8XCG/G+JlW/sG8aUtWGfZm3N4PY
S0PNas5s4om4WoD8x5F89DvNEsZDX6wtbTKnrHu3/VORt934lJ2zfplKhZVi
vrGpcHJ/qpnUZf+Z/wFJOj7j
          "]], PolygonBox[CompressedData["
1:eJwtlV1sVVUQhfc9t9yzzzkogpEalYZWEcWAmvCMGqsmWkqioojSVoxPJkLQ
CCWtMRC4FDW0EKUURWNANIpQjKKJiNX4A4i+gBF5gBhDoqU18YfEB3++5ToP
k8zas2b27NmzZzcvXXb340kIYS3SgOzJQ+iqhjAH8HEawsFaCN+AT1dCOIv+
C9IO7zhrbUUINTjnwXdgH89CmIF/rWr8MPhT+N+Bz4JH0beytpsNb8HnM/BL
MYRBbDORucQ6BW6VHXwP+lr428At8LvBU6NzuY2YfdoLWV1xjq3kcy94M/xC
/uiXEbMBfb7ywfdZ4jVi7wFvzHwmxRvmvMfxH2BtJ/Y6a3X0K6Jz72JtEvgL
+B1wn2K/sZrPrLNOAF/JfheCO+E+x9oWfC/K7Ps8eADckpv7N/gBcD97XoL9
MfBQ6pqr9p1w3ob7PjK94podQI/IOPrVrH2beQ/tJc6N+N6HfZpyQergLuwB
fhN4DXhx9N5trPWCfwbfWdb3e87zq+4c++vw95Pb5dh/0v7gKeAniX8KvBx5
FW4fOezAvxv8jO4KezvcRvAg+mus7cM+C3mZWDvwWYZtEngF9oPEPJq4piPo
W5CmBnOW6y7x35U4hmLtSb2XarYdbkvqu1b9VhH/dzht6H9xngxbnlrX/Z9X
fnBm4ruUHA9hmww+iW02eBv4S2qwNzFnENuPNZ9XOW0u3MPqB93xBap/md8j
+H+C/w3ItIp7Ur15ghjHKu7nJdh6wDOCz9eL/iacJfh2IG/lzkm56Q3qLe5G
Hqr6DnQXOoPOMpG167Cth99S9Z3r7nWnutt/4DwYHVOxVeNj+J4o3Ouq4RD6
h5xne+Iz6qx7c/eezvCOcsucu87QgT6vcK1Vs5vQz0X3jvYbQ7+4cK+oh3bi
vzLze9QbXoM+Gp2fenBqapGumXEV/MbUscQRdyF4HvpvrF2vWiI3J86nEv1G
9VZVozfwT8CLyvNMia6xaq21KrajcLqrnjmaPQuiz6eZczK6B9QLylm5B+T+
xP22Dvu+3O/tUb0P9OHcunpCs6IObgU3wd8U3ZOql2JUiNVOfaaX82E++qLU
59H55kS/0abyPhfm7in11jXqd+wv5p6demNb0dcht5bzWbNRM0azRjO6P/pN
6q7FWQ+3p5yXynED+qzcvaQZ0Qn/rsKzXT2t3p5ceBaoRz+veeZp9q1Evspd
E9VGM+CjmntO96eZ0kPu46ytqrrmR+A/Hf321bPqXcVQLM20FL05+i9YzdrX
4COpdeWjWXAO+QG9gbVm7HX4lybuYfXyKPbbK/6TJmiWZX7/Z7D/if5HZr3A
/1rVt3xP4hxC7ytce73RDeiLc89S/SETdf+p/44zyCZsH5TzX/sdQK+W7113
qruNmWehcswyz2zNbtXkMP7v5p6NurMR+MM1vyf131z2nx3dG3oDh9GH4fRW
3EP9+A7kzkVr+7G9kDmW/twF+P9bs///bwb/9zLnqhqOZe5R9ar+vBG4r6Se
7fojnyD2UHTvaSZqNm7M/feqh9RL/wHP/Arx
          "]], 
         PolygonBox[{{2157, 2156, 2429, 662, 2428}, {2265, 580, 2264, 1808, 
          1809}, {1748, 1747, 1707, 957, 2857}, {1821, 1820, 2296, 595, 
          2298}, {1896, 785, 2612, 2606, 2607}, {1809, 1808, 2611, 785, 
          2613}, {1938, 595, 2297, 2156, 2157}, {2411, 2410, 2625, 788, 
          1902}, {2623, 788, 2622, 1820, 1821}, {2942, 1032, 2941, 1747, 
          1748}, {2855, 957, 2859, 2410, 2411}, {2607, 2606, 2944, 1032, 
          1893}}]}]}, 
      {RGBColor[0.5263341698855342, 0.4886797402153635, 0.509662980003392], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVktolUcUntx7uTP//Gk0QnygrUiNCQqSBuLOR2mJiUlUCuLCJmpIr6ht
s2hBfIGPRTU3tEnd1IRiwa2vBEwEkygVI9GFYBJBEIsLxVdqa6F02e/zO+Ji
7pz/zDlnzvnOY+6S9s4vvs04565iZbEu42cUjArQ3wTnvipx7mfv3A+pc9tA
HwW9JTrXCvoY6HrIP8cah06H0eug+wn2D8Arg9wFyD3D9++wsRu6K0GXgd4a
JXMA9/ydODcCegj7d+DXQeYM9Nrx3Q1+NXhzguxlwHsEXoAMSDdjupexd+H8
I6y1Tv4WLZYCzv7D92bYqIuiy73OKVdSonsYVxZrMCqeS9gHIdcEuhf0gyDd
TUExrbd4r0F3DGse6O4oXMZS2es2/j3QX9pdf5g8/d9jOPfgnlnQKQU9joOH
GcXlKQNeaUZnh4kD6EPYT0GuCF4T9NrAe1IiDBpz2okD8aBMC+hz8O0k6DEY
nbRYmrGXQv8sfJ6d6owy5yGbx5qB3RovvChPDPYl8uk0eDcT+fUx6N+wVsHO
99D7JejOW3lhQUyK4Den8vNFXtjfM0yIZ3VOmFZF5WG+V03VG84822D0g7x0
78LeQuhNgF+B7z58L8P3dCoMnlhN/AibDZC56GWX9jtT5ZZ25+J7EqvNamBn
ovqohN5T3LUGd45i7wOv0eSXROXnFWR/iuJfAuME7JbDh5PYe6J8HgC/Jqve
YB0vi6rNv6DbArlp8Dem6jHi0gb8BvC9Gnb+pL+J8s78r4DuY9D/gvcrzmqh
2xmFwUrDgXexj2qdcsmcXvOKtcH8Z65qzJ+lUXmY61VrrFXmtdVwISaM/Y7Z
XAvfboNek+pe0jXgf5iTTcp8mkp+XapeJ7a8azirnmFfVOaUH+K7CLEtBj0Q
lbei5Y71vCGns37YqgJ93mvu8Ix1zn6lDHnEYML8ue5lh71SyOmM8swt5x1z
sD8o5uOQOWL4c+axHhusPpifDqu9nYw3I0zpX6X5sDijmqOfF6LkLsb3PUk+
a5P+VxhNXcbeE6TfG9Qz7J2+oJiaTJezhNgRN85NYnrQ9Nrs7jr4fQMyg3n1
zTPz+WVQfuchvqlUd7Ku99pM5mweymrusKZ35eTf257y6rGeVP7xvtnA6lYi
vL9m7WWEBf2+ktWM43x7m3N7C1ph5zPQ00GzgzOkHHR/UI6uW+21WP3NShQ3
66Lfq7Z64cNUkJ372GeC5F8FzdRHdu+bd++EF/+x1Rt7hnT06gfm8HQQxsS6
w97AEXs7+M6xB3YE9fSk9USzzU++La1Bsuxp5rNg9cAaIS7EhDtnKXF3Ubgc
98JswvhXE/XFCPbhRH5cwb49yPfl1se3zWYXzs6ALibK1S6rJ/p4yvqN/cy8
M//klRn/udXzu34pWK4/T+UnZ/+hRG8T/wuM25znvOdbscfmQ+KV63+Mz3nF
vuNs5cxYgHPvVVevE/lYMD9p46z1acH8pw/H7H3hO8OcNFpfM1bOoFp7T1nn
rBPOP/I50/4HN+v6Uw==
          "]], PolygonBox[CompressedData["
1:eJwtlFtMznEYx3/vW3v/p7cctjQzWkLFRmy5o2zmlFzYcJFyNhV1wY0xzGmS
Q3KDsmxuHbNyChsbUw4bdcEMXdjMyvGOCz5fz//iuz3n5/n9nkP++sblDUnn
XC3IBAcD584h6ABHoQsi525mOHcMfj38WM+5jIRzNcCFzvUhe4quFzyDvoZs
I/YDoBJfh/3flHPPfedegF0gC9uZ6NvRVWDTTKxPYCl0I/6z0I2Bn4q+Ab4E
fja4AH8KviLW5xLrS8p8a4iZJv+huH7FOI/9ZrAJ7CH2XrAjtFjZ+IzGvwv7
HuzvgZvyRVbprKY26Dn4PMV+HJ9zzrMYitVP3gGwLa5vPPo29Lkgge9qAf8C
+HTMJ7DdSo560IC8EXTH+d8Bz7OYil1MjqmgFtkWMEN5QD6yLvI1Y78O32z4
6fAl1JwFXRRar9SjQugQ30H4++AO9veIPRfbYfj5yoFNrjObacrhmU49VW+/
gxxnNf6A9tG/j+Pdht8A72eY7Cf8AZCGriP//sBmQrOxDpsrofVMvVsMfxK+
Fb6c+EvgW+CbA5u9WcgOo7vumW4hOI5+cmhv1x9Pgh7lWy69/2PKZkCzkAda
0A0F/0fwf/3D0GuRVSfszWugb+BzGt1rZG+hv2I8h15eJF86sj9VbMmuRzbD
muUESILZoBRU4bcaXAaF2E7RvGBfDJ+TMFkb/Er4FeonPiWgXT1D91n/gzwZ
2Gxmq4fQd9BXZNpOdWp+wGN0ZdRUB/0wMt8F2lH4kVFcOzFGQF8N7e+b4C9B
D0RWm2agP7IeqpcPwF3o3b7l1p/ob8rxKQPjqW0CuOZZ77RjuhXaUfVzEbIT
2J2KbBfUv8GUQXQf+nmRzaDyfQABvkXICiPbCe1GeWS2iq9dPuDZrdHNWEX8
ueh7M2wntZvqufojWVlkPVQvR1HDEfiewN6mG6ZbdiuwXdcO5cc7VhzXoFq0
Y9q1TfHtGBnYLOXpP6GXRXbbNLOtcQ/VS904DZp2XLv+CJtSbL8Fttvd8BPh
fwX29lvwk9Qfz/5OM6BZ6EyZ7ytivElZj9Vr7Xh9aD1QL36T8w9oiew2acY0
a0O6X0nbwZ2+3SDVI9mw9im0t2imNFu6wbrFumG6ZS8jy10F9qFrDm22NHNP
tFu+6XQTqqGbIvtr7dQKbDvwKY3j6Xaf9W32dFPP+HbzdPs0U5ot7bR2Wze9
07Od17woxnZ0/wBM2cJT
          "]], 
         PolygonBox[{{1884, 1883, 2127, 504, 2259}, {2128, 504, 2613, 1896, 
          1897}, {2299, 2298, 1938, 357, 2154}, {2050, 2049, 2261, 579, 
          2260}, {2262, 579, 1885, 2101, 2102}}]}]}, 
      {RGBColor[0.6006676567804581, 0.514803329858947, 0.4659653391450343], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVDtoVFEQvftx7773zKdaEIKiEYxpjIUgWBgtxHUbyYoWfmATNLpudiFg
tYWCWCmCtdppqaKIEEwlK3ZR/BQKFqnUxm+xATF6jueIxWXum5k7nzNn3sbp
zlQ7H0I4h1PA+VUK4Qfkw3IIv3MhRCirkG2cChy3w3YlDeF0MYQnWQjH7XcC
chHyqX1uxBDm8N2FfiEJYQW6MnSncKagn0CMt8g1Cv2DknK8x9t+0MGzUMG5
hfwnkasF+1yqmIw9ADkI/Wb4tPBdx/d8Ivu7nOxH8b0bciuCbcHbFLHGIKfx
bggnD9u+suqZRYwd6OcTasilysnc7OlDXr6s547fsu5nieq6DP+zONvg34S8
GYXXJdjfoLcl3M9nwpTY5mC/XRBWjL9clk8RchP89uP+BW+X7B/gn/eduuWS
erwG31ai3sdwj1HYPYIuKahu1rwe+jW4T6K28Uy5WBdneAinS0wzyXvwHY+a
dQf+d+N/+0AmTAYz5W8b50ZRuTiL166T9XI+tBMr2j/aJ6S6r0Psl/Dbi/sL
yF5e/uTPUCaMhjPpORfGmS2rlz7kt0Sc+Qq5WlBM5iEfySfO7GqqXtjTd/gd
gG4mylb1TInVqvGqGxPOdW2m+XyO0tWN1Yi50XL/bdd8IYofz/GullPcivnM
mZLT3CfWXPWu9LwvrH1DQfhc9+6Q7x1zu+Udqng3muZbK1VNrI1xhovqn/3t
TIUVMZs3T5pRvuQ3e2PMmnE4kqqGi87P3ljPdCKf0Uzv6saHe8TZc857zAly
k/sx7P2aKGsHDzvv4r/5FvWeb/kv4A6eieppxPG5r8SwZht9DiLeY2Ox4Hmu
GBNi2jdGP80Tcn8m0VvuesN58/5/NPwPGXIt5FjR+7gLdb0yP49F7TNnPZmJ
U133ct97wf0ghxqOT/x65i3/KX85HIUje1pEvKbrZL1/AFAqmlw=
          "]], PolygonBox[CompressedData["
1:eJwlkjkshGEQhmdd338IKiGRiBAWBY0jUaATR4NERaHYdaz9e1sgCgWRqEVH
iVBobBRi6egIiUJH4yxoHM+Y4k1m5p3vneurmYyG03ki0gwKwGogkoqJjOKc
hCJDnsggSPgiSdADX8iDEXIiJ3IDdw3aQQfYJ5aBKydnndzDIpFadJ/w29CL
EwvyRQbImUSvhNg2fhX1puE83n+R3w//Dt+IZjf2B7FvtHLEztDKgXPth/dp
+DvQi73M+2r0HnUo9OqBw/+FH0drxlnvOkMnXAW+n289NeCvoFFKL7tgEa7W
We//NalX6Uz7h/yI3CNin5S6J/bmW0w51VTtDDXnqFdHzjz2Avwl/jBIONux
7noKrFH/BY2+mGk6+FfftHUGnUWc7UJ30ope0pmWaj54VkNr6Q7GyN8IbTfa
wya5zyAbs50fwC3hlxXYzDr7VWiz681ui+wmepsW8mcD27nufge/lNwJz3ar
GqoVBXZ7vckWfldgvenOU/jx0GyNNWGnAtPWP3eBdta3v6F/4Bi7LLRa2nMx
9mlou9I/tofeH89eVcQ=
          "]], 
         PolygonBox[{{1793, 243, 2260, 2262, 2263}, {2103, 2102, 1884, 578, 
          2258}, {2407, 2406, 2128, 338, 2403}, {2256, 578, 2259, 2124, 
          2125}, {2295, 517, 2154, 1936, 1937}}]}]}, 
      {RGBColor[0.6750011436753819, 0.5409269195025304, 0.4222676982866765], 
       EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2263, 499, 1793}, {2403, 653, 2407}, {2223, 499, 
          2097}, {1937, 594, 2295}, {2103, 499, 2263}, {2229, 569, 1865}, {
          2258, 499, 2103}, {2273, 582, 1895}, {1706, 653, 2404}, {2271, 582, 
          2269}, {2098, 499, 2223}}], 
         PolygonBox[{{2257, 2256, 2125, 2126}, {2617, 2616, 2151, 2152}, {
          2396, 2395, 2089, 2090}, {1901, 1900, 2418, 2419}, {2419, 2418, 
          1898, 1899}, {2090, 2089, 1789, 1790}, {1899, 1898, 2616, 2617}, {
          1865, 569, 499, 2098}, {2620, 2619, 1900, 1901}, {2053, 2052, 2619, 
          2620}, {1793, 499, 569, 2228}}], 
         PolygonBox[{{1790, 1789, 2228, 569, 2229}, {2269, 582, 2273, 2052, 
          2053}, {2097, 499, 2258, 2256, 2257}, {2404, 653, 2403, 2118, 
          2119}, {2126, 2125, 2407, 653, 1706}, {2119, 2118, 1895, 582, 
          2271}, {2152, 2151, 2295, 594, 2293}}]}]}, 
      {RGBColor[0.7493346305703057, 0.5670505091461138, 0.37857005742831873`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{1743, 16, 1695}, {1901, 787, 2620}, {2617, 786, 1899}, {
          2126, 16, 2257}, {1695, 16, 2117}, {2615, 786, 2614}, {2795, 497, 
          2091}, {2618, 787, 2621}, {2229, 497, 1790}, {2257, 16, 2097}, {
          1706, 16, 2126}, {2087, 497, 2795}, {1790, 497, 2090}, {2220, 16, 
          1743}}], 
         PolygonBox[{{2405, 2404, 2119, 2120}, {2120, 2119, 2271, 2272}, {
          1698, 648, 497, 2087}, {2270, 2269, 2053, 2054}, {2099, 2098, 2223, 
          2224}, {2090, 497, 648, 2396}, {2153, 2152, 2293, 2294}, {1866, 
          1865, 2098, 2099}, {2272, 2271, 2269, 2270}}], 
         PolygonBox[{{2224, 2223, 2097, 16, 2220}, {2117, 16, 1706, 2404, 
          2405}, {2054, 2053, 2620, 787, 2618}, {2614, 786, 2617, 2152, 
          2153}, {2091, 497, 2229, 1865, 1866}, {2621, 787, 1901, 2419, 
          2420}, {2420, 2419, 1899, 786, 2615}}]}]}, 
      {RGBColor[0.8236681174652297, 0.5931740987896973, 0.33487241656996086`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2628, 655, 2413}, {1804, 252, 2626}, {2413, 655, 
          2863}, {2120, 503, 2405}, {2220, 567, 2224}, {2121, 503, 2239}, {
          2790, 697, 2479}, {1862, 567, 2331}, {2272, 503, 2120}, {2235, 252, 
          1804}, {2618, 252, 2054}, {2294, 29, 2153}, {2477, 697, 2790}, {
          2405, 503, 2117}, {2153, 29, 2614}, {2392, 503, 2121}, {2331, 567, 
          2221}, {2054, 252, 2270}, {2420, 655, 2621}, {2615, 655, 2420}}], 
         PolygonBox[{{2621, 655, 252, 2618}, {2863, 655, 29, 1708}, {1699, 
          1698, 2087, 2088}, {2239, 503, 252, 2235}, {2614, 29, 655, 2615}, {
          2088, 2087, 2795, 2796}, {1867, 1866, 2099, 2100}, {1743, 697, 567, 
          2220}, {2270, 252, 503, 2272}, {2796, 2795, 2091, 2092}, {2221, 567,
           697, 2477}, {2092, 2091, 1866, 1867}, {2626, 252, 655, 2628}}], 
         PolygonBox[{{2100, 2099, 2224, 567, 1862}, {2479, 697, 1743, 1695, 
          1696}, {1696, 1695, 2117, 503, 2392}}]}]}, 
      {RGBColor[0.8980016043601533, 0.6192976884332807, 0.29117477571160316`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2088, 2, 1699}, {1862, 316, 2100}, {2793, 915, 2803}, {
          1867, 316, 2092}, {2798, 915, 2793}, {2391, 646, 2587}, {2587, 646, 
          2389}, {2332, 616, 2012}, {2392, 646, 1696}, {2807, 2, 2797}, {1696,
           646, 2479}, {2100, 316, 1867}, {2801, 316, 1863}}], 
         PolygonBox[{{2796, 915, 2, 2088}, {2797, 2, 915, 2798}, {1863, 316, 
          616, 2332}, {2803, 915, 316, 2801}, {2236, 2235, 1804, 1805}, {2627,
           2626, 2628, 2629}, {1805, 1804, 2626, 2627}, {2092, 316, 915, 
          2796}, {2629, 2628, 2413, 2414}, {2864, 2863, 1708, 1709}, {2222, 
          2221, 2477, 2478}, {2478, 2477, 2790, 2791}, {2122, 2121, 2239, 
          2240}, {2414, 2413, 2863, 2864}, {2331, 616, 316, 1862}, {2240, 
          2239, 2235, 2236}}], 
         PolygonBox[{{2389, 646, 2392, 2121, 2122}, {2791, 2790, 2479, 646, 
          2391}, {2012, 616, 2331, 2221, 2222}}]}]}, 
      {RGBColor[0.9115551263985746, 0.6488878159964366, 0.3258208918355814], 
       EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2798, 916, 2797}, {2227, 433, 2010}, {2236, 571, 
          2240}, {2629, 789, 2627}, {2630, 789, 1905}, {914, 1082, 433}, {
          2990, 1082, 2989}, {2478, 433, 2222}, {1872, 571, 2237}, {2010, 433,
           2788}, {1709, 958, 2864}, {2391, 914, 2791}, {2801, 917, 2803}, {
          2222, 433, 2012}, {2015, 917, 2802}, {2810, 916, 2014}, {2799, 916, 
          2810}}], 
         PolygonBox[{{2791, 914, 433, 2478}, {2022, 920, 916, 2799}, {2588, 
          2587, 2389, 2390}, {2390, 2389, 2122, 2123}, {2989, 1082, 914, 
          2792}, {1864, 1863, 2332, 2333}, {2788, 433, 1082, 2990}, {2797, 
          916, 920, 2807}}], 
         PolygonBox[{{2123, 2122, 2240, 571, 1872}, {2333, 2332, 2012, 433, 
          2227}, {2237, 571, 2236, 1805, 1806}, {2792, 914, 2391, 2587, 
          2588}, {2794, 2793, 2803, 917, 2015}, {1806, 1805, 2627, 789, 
          2630}, {2802, 917, 2801, 1863, 1864}, {1905, 789, 2629, 2414, 
          2415}, {2014, 916, 2798, 2793, 2794}, {2415, 2414, 2864, 958, 
          2860}}]}]}, 
      {RGBColor[0.9234294853274762, 0.6785737133186904, 0.36263140451517617`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2588, 768, 2792}, {2816, 435, 2518}, {2227, 568, 
          2333}, {2123, 317, 2390}, {2586, 768, 2589}, {2015, 435, 2794}, {
          2806, 913, 2991}, {2333, 568, 1864}, {1871, 317, 2245}, {2519, 568, 
          2225}, {2016, 435, 2816}, {2245, 317, 1868}, {2792, 768, 2989}, {
          1868, 317, 2115}, {2990, 913, 2788}, {1872, 317, 2123}, {2225, 568, 
          2330}, {2808, 435, 2016}, {2991, 913, 2804}, {2789, 913, 2806}, {
          1864, 568, 2802}, {2794, 435, 2014}}], 
         PolygonBox[{{2416, 2415, 2860, 2861}, {2989, 768, 913, 2990}, {1807, 
          1806, 2630, 2631}, {2631, 2630, 1905, 1906}, {2589, 768, 317, 
          1871}, {1906, 1905, 2415, 2416}, {2800, 2799, 2810, 2811}, {2390, 
          317, 768, 2588}, {2238, 2237, 1806, 1807}, {2023, 2022, 2799, 
          2800}, {2802, 568, 435, 2015}, {2518, 435, 568, 2519}, {2804, 913, 
          768, 2586}}], 
         PolygonBox[{{2115, 317, 1872, 2237, 2238}, {2330, 568, 2227, 2010, 
          2011}, {2011, 2010, 2788, 913, 2789}, {2811, 2810, 2014, 435, 
          2808}}]}]}, 
      {RGBColor[0.9353038442563778, 0.7082596106409444, 0.39944191719477107`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2019, 436, 2248}, {2365, 436, 2019}, {918, 769, 436}, {
          1083, 918, 436}, {2276, 502, 2116}, {2238, 502, 2115}, {919, 1083, 
          436}, {2800, 438, 2023}, {2111, 502, 2276}, {2018, 436, 2365}, {
          2520, 720, 2814}, {1871, 769, 2589}, {2233, 502, 2111}, {2818, 720, 
          2520}, {2631, 502, 1807}, {2011, 615, 2330}, {2329, 615, 2344}, {
          2586, 918, 2804}, {2789, 615, 2011}, {2519, 720, 2518}, {2808, 921, 
          2811}, {2814, 720, 1783}, {1807, 502, 2238}, {2525, 438, 2342}}], 
         PolygonBox[{{2417, 2416, 2861, 2862}, {2589, 769, 918, 2586}, {2991, 
          1083, 919, 2806}, {2248, 436, 769, 2590}, {2804, 918, 1083, 2991}, {
          2342, 438, 921, 2809}, {2806, 919, 615, 2789}, {1907, 1906, 2416, 
          2417}, {2246, 2245, 1868, 1869}, {2017, 2016, 2816, 2817}, {2811, 
          921, 438, 2800}, {2805, 919, 436, 2018}, {2344, 615, 919, 2805}}], 
         PolygonBox[{{1869, 1868, 2115, 502, 2233}, {1783, 720, 2519, 2225, 
          2226}, {2809, 921, 2808, 2016, 2017}, {2116, 502, 2631, 1906, 
          1907}, {2590, 769, 1871, 2245, 2246}, {2817, 2816, 2518, 720, 
          2818}, {2226, 2225, 2330, 615, 2329}}]}]}, 
      {RGBColor[0.9471782031852793, 0.7379455079631982, 0.43625242987436585`],
        EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2334, 219, 1784}, {2341, 619, 2820}, {2417, 340, 
          1907}, {2017, 619, 2809}, {2018, 620, 2805}, {2246, 573, 2590}, {
          2226, 219, 1783}, {1907, 340, 2116}, {2818, 923, 2817}, {1782, 219, 
          2334}, {2038, 631, 2366}, {2809, 619, 2342}, {2812, 219, 1782}, {
          2862, 340, 2417}, {2523, 620, 2345}, {2820, 619, 2343}, {1875, 573, 
          2247}, {2329, 219, 2226}, {2590, 573, 2248}, {2347, 573, 1875}, {
          2805, 620, 2344}}], 
         PolygonBox[{{1870, 1869, 2233, 2234}, {2342, 619, 723, 2525}, {2343, 
          619, 923, 2025}, {2365, 631, 620, 2018}, {1786, 723, 619, 2341}, {
          2112, 2111, 2276, 2277}, {2817, 923, 619, 2017}, {2234, 2233, 2111, 
          2112}, {2345, 620, 631, 2038}, {1784, 219, 620, 2523}, {2521, 2520, 
          2814, 2815}, {2344, 620, 219, 2329}}], 
         PolygonBox[{{2025, 923, 2818, 2520, 2521}, {2366, 631, 2365, 2019, 
          2020}, {2277, 2276, 2116, 340, 1904}, {2020, 2019, 2248, 573, 
          2347}, {2815, 2814, 1783, 219, 2812}, {2247, 573, 2246, 1869, 
          1870}}]}]}, 
      {RGBColor[0.9590525621141809, 0.7676314052854523, 0.4730629425539608], 
       EdgeForm[None], 
       GraphicsGroupBox[{
         PolygonBox[{{2339, 448, 2036}, {2823, 439, 2024}, {2838, 938, 
          2035}, {2025, 439, 2343}, {2917, 1016, 2918}, {2812, 922, 2815}, {
          2523, 721, 1784}, {922, 938, 439}, {2336, 448, 2037}, {2020, 621, 
          2366}, {2827, 227, 2821}, {1904, 583, 2277}, {1870, 570, 2247}, {
          2822, 924, 2819}, {2347, 621, 2020}, {2819, 924, 2824}, {2521, 439, 
          2025}, {2234, 570, 1870}, {2341, 227, 1786}, {2362, 621, 2346}, {
          2037, 448, 2339}, {2038, 448, 2345}, {2232, 570, 2243}, {2243, 570, 
          2230}}], 
         PolygonBox[{{2522, 721, 448, 2336}, {2366, 621, 448, 2038}, {1782, 
          1016, 922, 2812}, {2820, 924, 227, 2341}, {2024, 439, 938, 2838}, {
          2815, 922, 439, 2521}, {2821, 227, 924, 2822}, {2036, 448, 621, 
          2362}, {2035, 938, 922, 2813}, {2813, 922, 1016, 2917}, {2345, 448, 
          721, 2523}, {2824, 924, 439, 2823}, {2343, 439, 924, 2820}}], 
         PolygonBox[{{2346, 621, 2347, 1875, 1876}, {2918, 1016, 1782, 2334, 
          2335}, {1876, 1875, 2247, 570, 2232}, {2113, 2112, 2277, 583, 
          2274}, {2230, 570, 2234, 2112, 2113}, {2335, 2334, 1784, 721, 
          2522}}]}]}, 
      {RGBColor[0.9709269210430824, 0.7973173026077062, 0.5098734552335555], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1j7GOQVEQhocbzr339DrZ1WoUEsSKB7DV3uwTSBANCrwNEk+gFM2+h5JE
RLm0Et9kjmLyz5n5/nP+U+lPs0leRMpURJ0TkRmDGvpNzelbaNGLrAAK6Doy
Zp+jYpEu+uuMU76J/nP+Y96jvzljU7xfnJcwHXScN165krc7r7Btdgv6B/2I
+YH9hdnAG/tMRbaR5dFdJbEMmbMc2leZuZA19uZR7539JnjfmVRP8B8h09Db
/zVPA62H+3+c+Tbh3WPg1ZeFd5VNvDE79DMwyr4AwQ0sBA==
          "]], PolygonBox[CompressedData["
1:eJwtjr0OQUEQhcf1szZbStS0HoAgkVDSeQQJiQYF3gaJJ1AhGgWvobk3EVES
vW8yt/iSszPnzNnqaD6cRSJSghyciiJH6EIPJkFkiuGaERkHm+kuhgTucEsz
mq17kUXq/ziRLJkzepMVKaBjb2/1JOgGLCPreOB/Odtt8Tv8fW+31DNAN2GF
7jCroovBvHpTu2reduppob/O8nqzzP7J7MJ7R8YH69TuNbTZ/ZxpnVV454P9
fQ8BfQiW1b433j+afSk5
          "]], 
         PolygonBox[{{2340, 2339, 2036, 629, 2361}, {1873, 318, 2232, 2243, 
          2244}, {2364, 630, 2037, 2339, 2340}}]}]}, 
      {RGBColor[0.9828012799719841, 0.8270031999299601, 0.5466839679131505], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJwtULsOAVEUPKy4e7KFL1BsoqUSIrYhiEfhUSqVChJbKfgWnyAatfANVBrr
kYhKJTTm5NxiMnPnnjtncv3RdDCJE1EacIAQhyWwjxGNwXNgA11h1R9DdDbq
FeHVgBn8F7wnECSI1h5R3vpy3wQW0C1wmfWtZEQuUQo7q65C9NbV2dB2yNr5
OvgGnOA/WLNkrgdu2G7S0WftXQJHwBH6At4hN4AesnZcOZrVZd3zRZ+30b0F
1rP4OeiDfds3miv5GfDV5v+SROxp3p31TmYCcIf1P9vgP15xL/U=
          "]], PolygonBox[CompressedData["
1:eJwtkL1OQlEQhJcj8XKgsLUj2GMDBBNuqyFYgJSUNCQWmFwqCngWfANCY230
GbQkMf4khsoKEwq+yd5iktnZnTm7pzZ+GE6DmZ2DIviIZm8IqxOzcsVsl5hl
1Cl4LrmmXsrwL70B8wt6LwWzPvwC3FMHZqpls230eWV+wr/BO/wfbUJWm3pT
cP8V/DI6l1aHP/Hmmfn7r/Bh4tl6o0b/cOpZyvyiHkWfleeRXprvo7wOfI9/
HlzTruuK3yJ/hN8l7tfNDfrX+X7y3MB/8v11k25rgVnwP+jCe2AZXPtLPCPL
/0O760/EpTWj36x75bmFHwHlwjE2
          "]], 
         PolygonBox[{{1787, 726, 2531, 2351, 2352}, {2352, 2351, 2358, 627, 
          2357}}]}]}, 
      {RGBColor[0.9946756389008856, 0.856689097252214, 0.5834944805927453], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFkb1OAlEQhccl8eayD7DaaLCXbIz2RvmxAY2lJQ/A9lColc+xL+A7QHyE
pSMBEwmFhSUQIOs3mZtQnD3nzj3zc2drvey5H4nIBaiAnM+EwBJ9441T+AcU
xGfw3JvnpEoeenQksnYi9+gB8Tv4EmToOtwFb+gO/OusRxKLLJx52sRfI/N8
UavFeYhuwlMwJnYLX4de51WbQ+dZhj7qV18aZt4ei7xHVldrnsV2r/X0rDOo
L8f3geeF+MaZR70rZ72uvPVTrW9dgD/yduQlxPfkNpzNolrv9B2fFetzGpsu
8Tz4w17VWwb/o7dZn7ztVHf7HXZchH/xD4OnQH4=
          "]], PolygonBox[CompressedData["
1:eJwtkEFOAlEQRJvBOLQeYOLSA8CCeACJoJIoEI7AAWCPC+EoXsA7aDyCbo0m
klkAYYkyMfAqPYtKqqr7V/fv89FkOE7MLANHoOVmrxWzB8xr+G9q9lIJT7U1
eiWvhgc+8d7p/QBf8OzU7Klq9kZ/Qd8Ab56E7sIbYIJ+BDvqxbFZbpHxQ62D
t4f/g+wEjn4mb4bueWQqS94Zs/Jy/oaMhccM1ZV56zFDs7RDH91OI1tvtPu9
R7Z67uBNj/9O0VcenmraecHbtkdNPRfwm/I/us8f9W+PW+gGS/RleU/1b9Ed
j9vqTR1+AMTZPDk=
          "]], 
         PolygonBox[{{2370, 634, 2372, 2028, 2029}, {2242, 2241, 2394, 647, 
          2393}}]}]}, 
      {RGBColor[1., 0.890959993055319, 0.6392999869787231], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFULtOQlEQXLgmh8P5ABSlsKSlhMZ4NTZqArGh9QM0VlDYyd8AiSGiMXaW
SMUHGCisjLUxPmcym1jsndm5s6+zfXreOSuaWR2RIcb4jBD3BbMJcIGfT+BD
8FlBOrXrTHo3mj0AH0tmA+hXRfm2kjybSTl11r4G4Qp17+B96DvgG0kzPqE9
I2/Cswf+gbiE5yBqrx/vkwd52lE1rK0kzRn7/vmaGY+bg0+TsAb8Cuq1Dt6J
qvkOuoG3vPlM3jdF3KT/HodR2hHwBNHi25Tknbt/6fvzDvaZ+FtVyvLvB+01
8LfiPM7dhf82ae87oHnfapJ/5v37yDN4esDjKP036G2oc3YO/QJ5A/gSVMfd
uSN7Mf8D8ZlLPQ==
          "]], PolygonBox[CompressedData["
1:eJwtkTtKQ2EQhefmBm9+7wKS+AJ7G1NqoXgDVgrGHbgAxcoUdrqbGBDxgbgD
kyp1Ci2sXIAEfOQ7HIsDM3Pmn3Nm/vWTs95pLSKWQR00y4hBHvGcRXwWEa3F
iF8atsjfEn3wt/ATarMFOHqG5FfkPfgd0Cc+B5vE++CS+IH3H/R2C8/aBk1m
rzHvLnfPDO4PvGb20IZ7AhXGxtTuifeY95J5fpXsQV6kKe3V0r0jEI2IaTIv
DWltkGthzXwkP0j2Js1D4ha1m9w7abdBw17luSK/gM/rvkkb/0fJnGr90jVx
mvFN/zH8dc2a0v4pfCvVxC2V9qqbrhDv/t9PnuW9k7yral+8fU/+G2nob+bC
qzuD
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJwtj00OAUEQhWvGRBt9Ab8Lexub2WKcwLiBA7BkLXEaC5EIJ2DMHdzACSSI
9/J6UamqV/W+rh4s18UqNrMeoobI0OwQ9whNw+wEse8xRxxRd5DfdbMnxl2v
OfUb9sepdM7JKCNxssAj8gLPA8UQuz9nVqFuQRsFLxmccWeBnCd6g/yZE+uA
uz5O/HbTrEjFIY++CTwvU54m8m69bpqn4nLv6+QnZ+O1Sw9n59BfvdjUyKSW
Byb/VAaduQr1Ptad/O8f3dUw7g==
          "]], 
         PolygonBox[{{2843, 220, 943, 2844}, {2045, 456, 457, 2386}, {2935, 
          455, 642, 2936}, {2845, 945, 1090, 2997}, {2999, 1089, 456, 2998}, {
          2997, 1090, 1089, 2996}, {2219, 566, 645, 2388}, {2385, 642, 566, 
          1859}, {2842, 943, 945, 2048}, {2840, 457, 455, 
          2044}}]}]}}, {{}, {}, 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2353, 2367, 1785, 2843, 2844, 2842, 2048, 2845, 2997, 2996, 
          2999, 2998, 2348, 2387, 2045, 2386, 2046, 2840, 2044, 2585, 2935, 
          2936, 2385, 1859, 2219, 2388}]},
        "0.000144`"],
       Annotation[#, 0.000144, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1861, 2583, 1860, 2526, 2528, 2584, 2529, 2027, 2839, 2043, 
          2841, 2047, 2382, 2381, 2380, 2021, 2375, 2041, 2846, 2524, 2368, 
          2039, 2354, 2371, 2370, 2029, 2242, 2393}]},
        "0.0001368`"],
       Annotation[#, 0.0001368, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1697, 2394, 2241, 2028, 2372, 2356, 2591, 2338, 2040, 2369, 
          2374, 2373, 2349, 2350, 2042, 2383, 2384, 2377, 2376, 2357, 2352, 
          1787, 2532, 2527, 2535, 2533, 1788}]},
        "0.0001296`"],
       Annotation[#, 0.0001296, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2919, 2534, 2825, 2992, 2026, 2826, 2530, 2531, 2351, 2358, 
          2034, 2378, 2379, 2360, 2359, 2013, 2363, 2364, 2340, 2361, 2337, 
          1874, 2355, 1873, 2244, 2231, 2114, 2275}]},
        "0.0001224`"],
       Annotation[#, 0.0001224, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2274, 2113, 2230, 2243, 2232, 1876, 2346, 2362, 2036, 2339, 
          2037, 2336, 2522, 2335, 2918, 2917, 2813, 2035, 2838, 2024, 2823, 
          2824, 2819, 2822, 2821, 2827}]},
        "0.0001152`"],
       Annotation[#, 0.0001152, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1786, 2341, 2820, 2343, 2025, 2521, 2815, 2812, 1782, 2334, 
          1784, 2523, 2345, 2038, 2366, 2020, 2347, 1875, 2247, 1870, 2234, 
          2112, 2277, 1904}]},
        "0.000108`"],
       Annotation[#, 0.000108, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2525, 2342, 2809, 2017, 2817, 2818, 2520, 2814, 1783, 2226, 
          2329, 2344, 2805, 2018, 2365, 2019, 2248, 2590, 2246, 1869, 2233, 
          2111, 2276, 2116, 1907, 2417, 2862}]},
        "0.0001008`"],
       Annotation[#, 0.0001008, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2023, 2800, 2811, 2808, 2016, 2816, 2518, 2519, 2225, 2330, 
          2011, 2789, 2806, 2991, 2804, 2586, 2589, 1871, 2245, 1868, 2115, 
          2238, 1807, 2631, 1906, 2416, 2861}]},
        "0.0000936`"],
       Annotation[#, 0.0000936, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2860, 2415, 1905, 2630, 1806, 2237, 1872, 2123, 2390, 2588, 
          2792, 2989, 2990, 2788, 2010, 2227, 2333, 1864, 2802, 2015, 2794, 
          2014, 2810, 2799, 2022}]},
        "0.0000864`"],
       Annotation[#, 0.0000864, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2807, 2797, 2798, 2793, 2803, 2801, 1863, 2332, 2012, 2222, 
          2478, 2791, 2391, 2587, 2389, 2122, 2240, 2236, 1805, 2627, 2629, 
          2414, 2864, 1709}]},
        "0.0000792`"],
       Annotation[#, 0.0000792, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1699, 2088, 2796, 2092, 1867, 2100, 1862, 2331, 2221, 2477, 
          2790, 2479, 1696, 2392, 2121, 2239, 2235, 1804, 2626, 2628, 2413, 
          2863, 1708}]},
        "0.000072`"],
       Annotation[#, 0.000072, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1698, 2087, 2795, 2091, 1866, 2099, 2224, 2220, 1743, 1695, 
          2117, 2405, 2120, 2272, 2270, 2054, 2618, 2621, 2420, 2615, 2614, 
          2153, 2294}]},
        "0.0000648`"],
       Annotation[#, 0.0000648, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2293, 2152, 2617, 1899, 2419, 1901, 2620, 2053, 2269, 2271, 
          2119, 2404, 1706, 2126, 2257, 2097, 2223, 2098, 1865, 2229, 1790, 
          2090, 2396}]},
        "0.0000576`"],
       Annotation[#, 0.0000576, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1937, 2295, 2151, 2616, 1898, 2418, 1900, 2619, 2052, 2273, 
          1895, 2118, 2403, 2407, 2125, 2256, 2258, 2103, 2263, 1793, 2228, 
          1789, 2089, 2395}]},
        "0.0000504`"],
       Annotation[#, 0.0000504, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1878, 2096, 1792, 2254, 2050, 2260, 2262, 2102, 1884, 2259, 
          2124, 2406, 2128, 1897, 2608, 1894, 2943, 1749, 2858, 2856, 2412, 
          1903, 2624, 1822, 2299, 2154, 1936}], 
         LineBox[{1891, 2546, 1800, 2489, 2491, 2492, 2851, 2402, 2600, 2599, 
          1816, 2927, 1817, 2560, 1923, 2647, 2170, 2171, 1948, 2669, 1947, 
          2961, 1761, 2881, 2880, 2437, 1949, 2671, 1834, 2702, 1967, 2972, 
          1966, 3010, 2700, 3006, 2699, 2503, 2668, 2666, 2667, 2665, 2830, 
          2829, 2993, 2030, 2828, 2832, 2831, 2502, 2501, 1827, 2561, 2869, 
          1714, 1753, 3023, 1920, 2951, 1921, 2142, 2141, 2598, 2544, 2545, 
          2486, 1799, 2543, 2850}]},
        "0.0000432`"],
       Annotation[#, 0.0000432, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2428, 2157, 1938, 2298, 1821, 2623, 1902, 2411, 2855, 2857, 
          1748, 2942, 1893, 2607, 1896, 2613, 1809, 2265, 2127, 1883, 2101, 
          1885, 2261, 2049, 2253, 1791, 2095, 1877}], LineBox[CompressedData["
1:eJwVzrsvg3EUh/EfktKSuAy6WJrUgMU/gMXmMkhsEpdZaiARCUuJuES0LL0M
/AGKVoQ0cdkMjCwmk4F2kph9DE+ec77n/M77JhaWplINIYRFJGIh1KIh1HGN
G9wi0RrCPPeaJ9HdHMJ3SwhxnuE6aljDpr00VpE375R9REIYcWMYQyjIM9zH
RS5xgd/wik/7dxhVR3xv0PzZvRec6y9whnt5iR847zs5PHlX4CIe5cfejLkz
ji+zNn3GLIsOdTt61GV3qnYqfIkJ9SSOzDL6slsHXOEsx+WH/7v6LTf2sI9t
+bL8RJ7iU17hLnmjeRM21Ou48j/v2PGdXUzbS9ufM5tFv34Av97E5FWO8g8n
7f8BhBw7+w==
          "]]},
        "0.000036`"],
       Annotation[#, 0.000036, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2249, 2093, 2094, 1880, 2051, 2251, 1745, 2398, 2397, 2131, 
          2267, 2264, 1808, 2611, 2612, 2606, 2944, 2941, 1747, 1707, 2859, 
          2410, 2625, 2622, 1820, 2296, 2297, 2156, 2429, 1720}], 
         LineBox[CompressedData["
1:eJwV0EsrhVEUxvFt4HDcCiWRclwGhorPoZByDMQHQEYGyAAHE7kcl8JAym2E
IkVukbupsZmECWN+7+Dfs9aznr32ft9Ed29zT0YIYRR1OSH8xEP4xSnOcI7a
3BC6skMoywrhi+YhKZvSt9FxOsyrof36NdpH55ybxVsshGOkZCYQtzMbpeol
uWWksYgFzPOv5BdlFnDEO0QFv1Bfb/+cukCdjw/ZSzS5K62/MD+Qb6Srcuu8
WdzrH/kJXrG+Qb+ifuDd48uOTjvu1C/RG2kWbvFpdoML81M8mz9h12wbO7g2
LzTbx7fdG7xidRHK3bOp34r+m3Mz0Tvlp/kp3gQGMYVJlPDHon+LEdlJnMiP
8YM6AwPqKvf80QRtkW3FQPRt7tyTf8W7+aB5Bx2iSdoenZWtjr5bPsbfp5n0
g1Y6/w9/Y0jI
          "]]},
        "0.0000288`"],
       Annotation[#, 0.0000288, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1701, 2104, 2106, 1882, 2109, 1879, 2250, 1744, 1700, 2399, 
          2130, 2266, 1810, 2278, 2056, 2635, 2637, 2610, 2633, 2632, 2161, 
          1718, 2426, 2409, 2654, 2653, 2063, 2290, 2292, 2159, 2288, 2155, 
          1719}], LineBox[CompressedData["
1:eJwVzbsvA2AUhvFP4tbWRNhZmQz4B5hdQqxqRkxGBgYSi3QhcSvFrhITiZaI
IuoWYsCABInEomHx6/DkOec95ztffXyke7gkhDCErfIQfiIhFLCHP/yiKRpC
vDKEQUxVhNCvn+SZWAgP3qQxbjaBMvulqFGP2VuzN8pJnpY1ckKf5jne5kV3
3tzo4HbMer8jXzBv5l3OcJoPOGnn034Xd2Lefla+6v4KNvQpJHAqP/OuQV6r
r8OyegnV6i93jtHjzro+Z3+zeAN9sl5Ued8mvzBv5Tv9PTbMUjiXZTiLfdya
XdptkcfUN7jGt38GzK/UefNoMdNHivt4Vj/hBXn9I3/gFUf6dy7gUJ3jE/wD
2wRHfQ==
          "]], 
         LineBox[{2592, 2536, 2537, 2481, 2484, 1746, 1703, 2847, 2136, 1813, 
          2282, 2059, 2642, 1919, 2639, 1918, 2641, 2165, 2166, 1943, 2167, 
          1942, 2300, 1759, 2876, 2875, 2433, 1944, 2664, 1832, 2687, 1963, 
          2683, 1962, 2969, 1765, 2883, 2882, 2440, 1964, 2692, 1839, 2725, 
          1979, 2723, 1978, 2977, 1769, 2074, 1981, 2719, 1980, 2726, 2199, 
          2463, 2462, 2446, 1992, 2755, 2080, 2837, 2033, 2465, 2032, 2995, 
          2836, 2756}]},
        "0.0000216`"],
       Annotation[#, 0.0000216, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1888, 2538, 1796, 2480, 2483, 2940, 1890, 2926, 1889, 2135, 
          1812, 2640, 1914, 2638, 2950, 2949, 1751, 1712, 2162, 2163, 2302, 
          2301, 2064, 2662, 2663, 2657, 2661, 2660, 2180, 1723, 2438, 2430, 
          2686, 2685, 2069, 2690, 2691, 2681, 2689, 2688, 2190, 1728, 2448, 
          2189, 1838, 2311, 1837, 2720, 2721, 2718, 2975, 2974, 1768, 1726, 
          2890, 2447, 1977, 2722, 1843, 2759, 1993, 2464, 2898}], 
         LineBox[CompressedData["
1:eJwVzj1LgnEUhvFTQW/iFiQEQWR9h/oYUUPUFM026d4YtFkQ2ZIFGrRWqJP0
YgWV0RD0MtVoGDS59XuGi+uc+5z/eZ6ptY2FXF9ELGF9KKI3EpHiJl/iCrMp
s+GICXmX01gZjVjFMrbkm7IZLugPOc+73u3gazCijn7ZAG7dvMeB+sJukc+5
lLxxp2S2j21cy2vySXmDW/ozvuE6H8tP7FWxh7bsCdPycX0GR+oyxtS//uMO
i/6ron9w59H+PFftnCb7eNZX7Hyavejn9Gn1O97w58a3edabttlr8l3+kX2o
O9zDP4YhNuQ=
          "]], 
         LineBox[{2310, 2178, 2289, 1933, 2158, 1934, 2291, 2062, 2655, 1931, 
          2408, 2425, 2427, 2160, 2634, 1911, 2609, 1912, 2636, 2055, 2279, 
          1909, 2129, 2421, 1710, 2132, 2268, 2107, 2252, 2108, 1881, 2255, 
          1794, 2105, 2400}], 
         LineBox[{2903, 2574, 1852, 2516, 2786, 3008, 3014, 3013, 2005, 2984, 
          2006, 2787, 1853, 3036, 1854, 2575, 2904, 2576, 1855, 3037, 3059, 
          3061, 3054, 2577, 3057, 3068}]},
        "0.0000144`"],
       Annotation[#, 0.0000144, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{1702, 2922, 2923, 2921, 2925, 2924, 2939, 2134, 1711, 3015, 
          3000, 1913, 3022, 2057, 2058, 2422, 2164, 1915, 2280, 1824, 2658, 
          1940, 2656, 1939, 2959, 1758, 2874, 2873, 2431, 1941, 2659, 1831, 
          2682, 1959, 2680, 1958, 2966, 1764, 2068, 1961, 2967, 1960, 2968, 
          2188, 2889, 2888, 2887, 1976, 2976, 2073, 2314, 2315, 2187, 2186, 
          1727}], LineBox[{1705, 2556, 2557, 2498, 2559, 2558, 2605, 2149, 
          2150, 1928, 2955, 3025, 3024, 1756, 1717, 2928, 2929, 2908, 2909, 
          2910, 3016, 3001, 1956, 3027, 1836, 2505, 2565, 2564, 2717, 2198, 
          1732, 2461, 2460, 2749, 2748, 2079, 2753, 2754, 2750, 2752, 2751, 
          2213, 1739, 2475, 2474, 3033, 3032, 2980, 2912, 2931, 2930, 2979, 
          1777, 1738, 3017, 3003, 3031, 3030, 1851, 3043, 2003, 3042, 2002, 
          2086, 2085, 2785, 2004, 2782, 2784, 2783, 3049, 3063, 1741, 3055, 
          3066}], LineBox[{1886, 2920, 1795, 2906, 2907, 2937, 2938, 2110, 
          1887, 2133, 1811, 2946, 1910, 2945, 1908, 3021, 1750, 2867, 2866, 
          2865, 2948, 2947, 1823, 2957, 1932, 2956, 1930, 3026, 1757, 2872, 
          2871, 2870, 1935, 2958, 1830, 2179, 1957}], 
         LineBox[{2009, 2580, 1858, 2517, 2582, 2914, 2581, 1742, 2217, 2218, 
          2007, 3004, 3020, 1740, 1780, 2985, 2932, 2933, 2915, 2986, 1781, 
          2987, 2008, 2934, 1856, 2916, 2988, 3034, 3035, 3048, 3047, 2905, 
          2578, 1857, 3038, 3060, 3062, 3056, 2579, 3067}]},
        "7.2`*^-6"],
       Annotation[#, 7.2*^-6, "Tooltip"]& ], {}, {}}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImageSize->{490.22727272727315`, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882353399904924*^9, 3.8823534398663683`*^9}, {
   3.882353647633873*^9, 3.882353676356699*^9}, {3.882353716623851*^9, 
   3.8823537457144423`*^9}, 3.8824210398498096`*^9, {3.882421077045025*^9, 
   3.882421130976942*^9}, 3.882421498359668*^9, {3.882423516943931*^9, 
   3.882423544762652*^9}, 3.8824238627130337`*^9, {3.882867369847785*^9, 
   3.8828673785810738`*^9}, 3.882867789674388*^9, 3.882868457679789*^9, {
   3.882868501901722*^9, 3.882868537046026*^9}, 3.882871597629115*^9, {
   3.882871796046742*^9, 3.8828718459066563`*^9}, {3.882872047392091*^9, 
   3.882872060079914*^9}, 3.882872119085088*^9, 3.8828723702076797`*^9, 
   3.8828725321746187`*^9, 3.8828731175750513`*^9, 3.8828734590819807`*^9, 
   3.8828736561246853`*^9, 3.882873954433775*^9, 3.88287456216481*^9, {
   3.882874637267109*^9, 3.882874666371213*^9}, 3.883105852540347*^9, {
   3.8831099456410217`*^9, 3.88310997067447*^9}, 3.8831102017788877`*^9, {
   3.8831104450617456`*^9, 3.8831104559385633`*^9}, 3.883110761739184*^9, 
   3.883468947545887*^9, 3.8834729621780567`*^9, 3.883473331608038*^9, 
   3.8834793142932043`*^9, 3.883479383393044*^9, 3.883479635710585*^9, 
   3.883553790022189*^9, 3.883553832771365*^9, {3.883553959810821*^9, 
   3.883553971165102*^9}, {3.883554191053564*^9, 3.883554231527503*^9}, 
   3.883641272608241*^9, 3.8836442336554947`*^9, 3.883644890056961*^9, 
   3.883645019112156*^9, 3.883645345502302*^9, {3.883645505438012*^9, 
   3.883645662312215*^9}, 3.883646046958832*^9, 3.8836462988537083`*^9, 
   3.883646449238927*^9, {3.8836465002949743`*^9, 3.8836465090191307`*^9}, 
   3.883646558778575*^9, 3.8836467423032207`*^9, 3.883708497991164*^9, {
   3.883721760669757*^9, 3.883721778716421*^9}, {3.883721824346439*^9, 
   3.883721843470553*^9}, 3.883722064861602*^9, 3.883722205655966*^9, {
   3.88372361563008*^9, 3.8837236224509163`*^9}, {3.883723690790511*^9, 
   3.883723736011222*^9}, {3.88372377710293*^9, 3.8837237852408237`*^9}, {
   3.883810934040372*^9, 3.8838109437708883`*^9}, {3.8838133311891823`*^9, 
   3.883813339359695*^9}, 3.883813581669477*^9, 3.883813626072631*^9, 
   3.883814022179655*^9, {3.8838144259231567`*^9, 3.88381444549296*^9}, {
   3.883816303560357*^9, 3.883816338769309*^9}, 3.88381642097686*^9, {
   3.8838164893247766`*^9, 3.883816532283369*^9}, 3.883816634102497*^9, 
   3.8838167811442823`*^9, 3.883817132812429*^9, 3.883817196977854*^9, {
   3.88381751923562*^9, 3.883817569995205*^9}, 3.8838178496095877`*^9, 
   3.8838180008730087`*^9, {3.8847700946825523`*^9, 3.884770096817354*^9}, 
   3.884771902380024*^9, {3.884771966375272*^9, 3.884772037453115*^9}},
 CellLabel->
  "Out[207]=",ExpressionUUID->"95939756-e714-40f1-9b2a-26d3eb5c8ab4"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1nk8lF8XAPBQ2hQpESXLICLbkDDnOWMpVJZC9lAqkZCEZOeHSlFZiqxR
ES3IXskSieySkOxbdmKGd95/Zj7fz33unTPnnHufK2h79ZQd87p169QZH///
rj0UPfByMQOGB07k3VFjIU4UxtueoAUTOeypimEMC0wevbaX9ogwVxoo8mH4
24dEs823kojVED61KwyHb4q/uZ72jNgeebrOkOFjBrHxa16ZhJN5kqkCw8wn
a63o3q+JEya8o9sZtnbR+uul+o54eann1m8qC/HhUZXv0koeAZ2cXK8Y5i/S
4HAvLiD2XvyV48Kwd3d50qxXMbGgcEVXmuFOZqqsi3IZcbB9fmoAWYj4Bz3W
i94fie+ar2MeMfz1Gb94ftcngm+gUw0YXn5vOe2m+pmY9i2c6SFYCNOun/4z
K5VEVmOJzXaGQyd5dd6YVxP23EGCT4CFKFhnxulc/IXgvaYxJMDwbpGOlAmv
rwRXrkwIN4WF0DzM7ZDVWUeki0pYh6qyEG7axvIOyvXE4cr31BkVFmJEcdRm
zvs78drdbt8bZRZi3cfNVc2SjQR32y0eVoZ5tMUl3nU1EtfnefcZHmEhtMwv
zbioNhNhvts1fx5mIdJ9BwP+rrQS9bwyAtFkFqJsE+tQfWYb8Svu6Y138ixE
a6TI8WzzdiKJ3eVXjRwLsT7t/M4rxR1EHR9X+28ZFuLcl77UUa+fRKWsekyZ
JAvhZcC8qVaiiziO0e5pB1mIqE5BxxedXYTkWa/LgRIsRPm4NfmScjdhzub0
QPIAC3E/9GrfjHcvkeNszyIpzELsPen7sK+ll2h1/C+pU5CFeL7j3tEmyd/E
xfSXpgECjPo9zn75pus34WDFSyrdx0JMZk24Oqv+IQaVtrH2crMQJxsdWCZX
BojCyiJy1xYWom3ASlPdfJCQJc9uX9zEQlgtG/wXWzRIdIVtGdq8kYVwFlba
qu45RCxJDsZwszDivb5+Z+zCMFFQoSDdvMxMtO1JEFKbHiPurRb31g0zE1aH
7p+P0R8nSkONvC4NMhNDaoHp4znjREbuOlnaH2ZiycFeIsZpghCWUFzd2sNM
8JUpyI2PTRINH/iMv7UwEzKyQwLHZ6eIrOWQtY4yZsKtuPfTvNA0kTf/xmux
mJko0Oy0TTo1TSwL6yttL2QmqGbf0ubfTBNHDLYGk94xE6cC3x1Icp4hWj+0
k+fSGfNbfWXmJ2aJq0+j44TvMhOFnjyYOLxAZN1azGs8zUxEfD+hIsi1SJDM
uVxAn5mwFfNXTKUuEg+uJX5MO8FMsLWOSGY8XiRW1crErDSZCWuZ4j05J5YI
9VQ2qSBFZmLTkOVs2et/xLs3XVNPuZkJE8PU9G4PGlFxcoOJVCsTIZXZnmz9
jEbQVNfMmr4zEczMbAl9jTQiKZrZ2KWOicjKcXswKEEneponMeEzE7Fu61G/
yS46QZGaUM16w0RkfBo2XcU14kFTr2X2HSbiJncM6731TOio6DNoCUzEx28x
6ta8TFj7W2PJ5ggTwRoU6ycrw4T7uHbkW5OZiPtTccvN5kxY8ztNXVeCiUir
iZ/keceExl9ebRrlYiLqbqa0pdgwY/j0dwOx8XUEf++r9PwyFvwQ2fa94eE6
4tPziqPdHqz48tOd9pCcNWCVLxsKvc+KB2l29J0pa6BT+j5U/jkrGteHr495
uAZNjS9rQ9tZ0bfgVa+P5xr0L9/XlVfciJk9orRWNcb8k5bGobMbUY1UaZTV
vAo60/N2ck6bcaDz2THrSTo0HxELDjnHhpN5OfkRW2hwK9tlw905DtwzZXxv
J2UJFonLxwJnduKEvW6O859ZqJQku/v37UYL7pBftQp/IaHvpdZ84h7c4+Ii
XPJgCMx5VB8/it2Lda8sciN29oIxx46ZV6l7kW/4i9Ou2R44tWlQuyp7L5Kd
g6wlP/SA1tK9fwsVe3GNr8Pjw5keIHf8MTGZ3ou/J0uir4d3w/bY29x8Ovsw
pmRgq+xCF3zk/vkwaWUfBlc+zhse+gHF7K/HC1j50aT3yGaFgh+QvzFYo3EH
P/oLkjA99AdkLR6aYzrAj55HgkoWxX9AXHvA6XOG/Fh9LCbL1KkDXGMkOEVf
8eOyq1OG1GobkLi97mVa7UdlSdNzLsotcMeQeeMd+/240sWvYcHRAvOR4T6O
bvsxpI690HGwGarYnlyRCt+PTGEtX5keNMMl5pLjOXn7kcpfx75+sgnaFlYD
TVkF8PV7K0WvzEbY04doaSmAZw/u7T0TVg/16zZ4f7MVwMJEA+MjRD0E7K95
T7kkgE8fB6xdmf8GoxYG0vzXBLBJc/lao+03KGq34e8JFUA/Yc+NvtQ6sPgW
QLPOFUAxmvOvzO21kFRQUXB+qyDW1eWN6o9UgiHbfyeP7xDEeE2V295plbDJ
WrtPllsQc/0u3GC3rgTnjfVb14QE8YWpXalDRwWgcbtVnLIgzl0K/8BU/xl6
Z0fW19sLYtL7IunLdZ/g4bGsuNyrgrh0qGF4e8Qn0HridOjJdUH0LVJq3qf/
CV6rzZ655C+IRte6srxaP4JfJO0lc5wg7t5f8u9C7QcQkGY3OPxFEM8+LSm2
lS2BloDGgX31jPW/sndtKS+G0LYHXutbBJFZu418+3QxTN3iSWvsYax/+ro2
l2cRfKwTXHRYFMTJdPHl0/UFYH2ZnJAkKoRx6ddGHiXnQfIz05HNwUKYMZP7
VP1HDgyfOmd/O1wI881v7LqpmgOH1l0ZYbsvhLlEVyE5ORuKzPxG2J8IIZNH
B0pffQVN7BkjXG+EMPuCcZvmvkxg9pobEfwlhMF8Rdmc5emgJbZqn9onhCtP
zfVuUdIhomXjKGlYCH++mtp6pegZ8ErzjYrNCuGpj7Rz+QVpIN9PHZXaLIyr
vwpzHKpT4LzuvdEjCsJ4krNUxcHiKbxcib1crCyMzrT5ya7ABJh6njKqisJo
kyzLdDY7HrxZ8keJ48IovSnJ5SHbE3hU0DWqaSOMXiYNXpUTMdBlN3i5+oIw
1u+IPVAsFQNCO6dGtRyFUTdyt9Mn52jIvsIydvyGMJYo239aW3sIVUISYwZ3
hfEd9yBVXT0K2L7LOzRHCWOSza+rpU8i4dQtyphhrDDWWm31oizeh+52/bEz
qcJI1uT42+x0Dxbu3BizLBTGV0bM7VgYDqrK/g49ZcKop5ZtovgkDAKGwses
K4RRy45bVS8wFLarPR071yCM+RbhT0bsQkBssWLMfkAYD9H/aea5BYDjj7oK
mzFhvPqpeIHPzR/eFrckmE4LY5T31qVcLz8Av349bbowGhipiiuo3IIg2/ED
VBYStv6LMSq7dhNqNeaYjmwm4acLndHxRZ5gvHl97gEuErbEO/w2uuYO8WNb
7wrwkXDQ488T6QE36Pu28wIP42ywH3/0zdzuGjhFCfNskiJhxi9y6vP7zpDr
dnB6TY6EK9s6rt274QTLxvK1i0okdC8YMXMcdYAQPnXvIQ0SzkPP9RWRi1BH
1zHq0SGhhHYL58vJ88DZe+pQuz5jfl+UylSzLZiUm21sMCbhTpMa+tdWa3ia
ZttbZUHC2vj7KpRhS+gPuVxYZkvC992JJ8YtzUDC3jUq/xIJ+0Qrn3xnOwN5
UgEa6W4krFHa/3qEywCW2cP3PfUiocqQ7KWrPScAZyIXHvmRMPieE8VrgxaE
tMQ13A0hYWlu5Po/CepQl5/8PPgOCS3sLDVlDQjgjHvhfyuKhEfcCrx2HlcC
k5tvzK7HktD5d9B1bXE5eGpZKH/lKQm57ieznm0Xh37iE5tdGgml5TcPqpEE
QUKoZsDiJQmz/qycHnXZBc7rG8sMX5OQRyz8xyvD9ZA/2BFzIp+E+rfviGWE
jVFoX3qdNUpImDvFO5Tj9YailjmsrVpOQjnbN46P6BWU0LtTQuQvjHptOBRd
bjZDqb+6tHKwnoSrp8I6BIU3wc5T61qFW0gYIhxRPcDNDSbkTdl8nSQUc2yp
CGgRgqe7Of7b2UvCKom6Y0J9B6F/idt66yAJy/Qu6VPM5EHi5/4jLOOM+qfN
rH/87Ag4l4pxrkyT8EbtV+db9gj5idJjM4skTIz4FrTHRQNo/ocrRukkHCit
iQwf0QK180RCH4sI9ktUZhU2nYTQo8fcOzeLoEzwsbZj0QZQf0BPr4ldBJnm
hh963TSEXVvPHKjlEsE7slHESOwZMJuwYirnE8G9gnf7/5s0g6SGC52FgiI4
IBkoaOxtBYNvnN69ERPBlKc3RgUEbcDF3ccuWV4EzTkTL+9WsYN8kxCIOyKC
j1JpkptdLwJNOYI7khBB201dIxMV9hC6llDjd1wEe6qmfruWOUFSaKmU9TkR
tMzOkGxfc4P4bYm7Ve1FUOeBy2bbQHeIi/Jb474qgtpKf3h0dnlAVLx6Y4OX
CKItXCRZ3YSg1zVuRJQI0hrsTZq1/MFPIdOSL1YEOUgPg7qJALhVdOfoYoII
/hNwdwmnBIJ7hR5PzgsR1NJTtC49EQz2Ha3F/J8Yz88aRlkUhcEFy/dpy1Ui
mDh18ZfyYDjY9sXebasTwXcxduRMnjtgMW5+NqJDBB9P/LRXjowA3XV9zKt/
RfBJxyDzxHAkyB2Y1P7FL4pbwkXZt1fFwKFXDXKFJFE8WK67qHw/Fg7KveF7
JCGK7geffnpqGQckVbeJE4qiOHvi9wFW5iewW3/5fslJURz+tyVJyuUpLN9g
7XjiLYqnnCr3TcymwAJt6OONAFEsP0Iqc3ZNhVn/mhenQ0XxtoLhSvBMKozf
vnNz60PG+m/p72wX06A7kXP/zUxRHPJMlG/ZmQGfq/kvmHWKIpcN6+JqdCac
Sj+m3NjD+L3hmt3bSVnQG+S8XWtAFCO3V7G6vM2CVWp5vsKUKIbf5Nom0/wK
lErsNu5gFcPDyXYaVM7XkP0663m1rBjKre4VXQ14C7FxymPkMDEs7hO+1tP7
HkQ9zn3IjBDDjW+W1faqFkCe8Z0HQg/FMDfP3XcppgCadnarcCSKocvl5l93
DQphW4T/nbFcMaQsa3sL1RVBQMAXqZReMXz+O21vencpODoYO7MrHUBLt+Zk
DZVyWPa5lUCjHEC9PoqR7I1yCItKqx1RZ4ynElNu78ohvXCGVKF3AC+qP+5f
k2TcDzbe++Fx8QBmJtyZ3keqgNNp1Wp90QewOyDzkbtQFSj/UuLKmz+APaMT
tKOWtbBJj6/I7J04pj89kDrS1QgHSsKa+grE8flFvqubmZtAW3xp9HKZOPr/
HlHSEWuCcJZWvps14tiRlJkg69oEbAURt570iCOp9+m0zeZm4BBkpnZtlcDx
/772SlJagGd2uNryvAQmr4pLhhW2gXhMfqs110HcotGv/2T1J1D298jQH0qi
pQqf7muiH1YMnQMSth1C1543Ao2NowB/258tOUpj93web13gFBSfv7B+3k0G
bfI7Z7Z9noU96+v4v4rK4nm2pEtD4Qsw4yDkGyQui7JE3UmJRwtQ2+zRQ5GU
xf5zP29fTFwA71SRpNeyshi848vC93cL0KvmKxitKou37rf8s+xagHR/OZLN
KVkcvRTUaiG5CHJrseKLt2RRsNB13/fqRTixbEcWbpXFloDYCY+xJXjmrfKJ
u4MxX6Cq6PfcEqyucuiy/ZTFB30KumqrS5DDUnJxvlcWfXcnvhzl+Aec2zif
VI/L4tY1a6d2hX/Qvr+MyXG9HD7erNnB4/MPbDV3N+TKy2Ho0bVH4puWobh6
zPyFohyWd6+l+HAswy6dT8MJR+Sw825zQS3PMlTqOjL/R8hhYIn+wDHxZThg
Uq5gelwOR/3z77VqL8PkZad4uq0c9o7EaRwOWwbP+1X2R6PksCOq5O7KuhV4
/IFw3PRIDn8/P9eQtXEFSiYLnGpj5HD6KKXEaPsKrDuZeU03QQ45L9YER/Ct
QMjm+7eMn8thC0nH8onCCjwMMI28UCaHjVrvTPgvrcBrt/GCkFE5zD5bzp9Z
tQJNqXbFWhNyeLzE44RO3QrMNXWXbpmSw5NNAmm9jStwWLaxPGJeDreupPyb
6VqBsom8uuh18rj5M9PbnJkVqLvg25u+Wx6rt1wZ9d9Lg2ETzk3VavJoK6XY
4WRPg/CULYcrNOVxgFvqtYETDQ6OM1/4pCWP/7FxT4pfo4GT7+znYl15PPXq
z50ibxrMP2vxfW0mjyET9wpN79GAeTZ6Mc5VHvOncyKevKVBmuo90Zjr8nhh
UqyhOZ8GmiH/GT30kMfD/fynmIppELrH412EjzyyL1Zyqn6mATuaXg0Ml8dX
m+nCh5ppsPcu35BjijzyTQSOsE3ToKxt5+7Lz+TxtI2WcuwcDc4KsGlefC6P
IjfWCniWaJDyjpZiky2Ptc/TFP6t0kC885eVcZE8Fo3d41Jko0OtcNvd06Xy
SIkI23SZnQ6OV+pL9D/K4+33+6QfcNLh9boPvMer5LGf7fa2Sh46KIoltRFN
8uh8hdSSTqJDh3PsBkqrPPaeZDsYJEYHr6L7ZOUOebxY0pxiLEGH0pP+UeRu
ecZ9zWe8U5oOGm62uuKj8mg16sVzVpkOBp9IVZzMZOSoeCVscZIOul2b6Uwb
yDjJ2lzup0cHncVJ+emNZAwQXuh7bMCYL1WY3LCNjJcPCSflGNFBKe7krTt7
yLgl0DvR1JIOCrlyuTf3kvFFl/Y98bN0kGvgHru8n4xus5Fsf63pILmhz0Rb
hIz3FTxfmp2ng4CLO5lVloydBfEGuZfpsO+OucO8PBlzU1luyzjSgTcDU/oV
yVhG9dBKuUKHXb+2cHxWJaPfmfPHLzjTYcfS36NvCTJK3WCTKXChw/adrbeS
1ciYbVN7b82VDpu0E8d8tcioVMnK7HSdDhvOBwldPU7GPa/FjB+504HZ197U
SpeM/zx/qL+9QQdarny1qiEZlU0+DNd50uFfA8/qwTNkzKRdeVrrRYeFUTqZ
z4yMp5NTRktv0mFK4EvKv7NkPHFjQD34Fh0mVF79GLYlY9fBl3qmPnQYNY7i
6LAjY/uQzV8hXzoMudw4Vn2JjGqZXkJ9DPffsfDJdyCj9YL9cLQfHX5nUPOe
OZHRtCYLqf506C4XHX/oQsaqtGqJ3wx3LE2ZXrvBeF7kswZTIB1ad7bdt/Ui
Y/2cHNWf4aZDxdUGt8jokCvVv8Bwg3bSKvqRUWbKQso2iA5154MVZALJ+Dve
Ze9nhmt8LzvuDyFjDA/pzZ5gOlQ91kvdHsaohwR5zI7hz3nkTvptMh5db1+b
wfDH73t2TESQ8TVE6vYwXDq2eqwrkoyuvwJusIXQoYi13+frQ0b/nODTlGb4
vWBNXlEMGUttiffHGM5VzR5/8ZiMoZY/vxkx/ObMA+G4BDJyDvSFmjKc7eph
FppExg+bDYZPMZx51zLyRioZOzQOjFMZfv5c7cuFdDJKerg+FGX42WexNaMX
ZOw395RbZcST0s2mqJlFxrXSe/CV4cR/047kHDLaJj/WjmA4fld7qvBbRv0a
Sk4fYzhOuqSTM4+M4dwClguMfETrJO9gLiBjhd683ROGo+xCtKaLyLh62s1J
keF7fg6+vaVkPLuhy72akV8jrbmDCR/J+CdddtaYYT6OWx2mn8nInVZf8iuA
Uc/2DcG7q8hoFrLQbM5wRmKEbPMXMhqLzig1Mup55SJ3972vZBzKZB+nMCwv
nRR+op6MS3dTJpIZ/fCh7M2fymYyen29/0uP0S/BIcr3A9rIKB7/qi6O0V/H
dT+rEj/IaHHYVOQXo//af7U8KugmY/zfCh0dbzr8pS0eyxwh408XP/cCDzrk
VfjNXRwn414nUZ9SRr/fvLM5mfSXjPP/XgYXMvbDxr18ywlzjPVOdEZHu9Fh
vwpk3V8jY+T5lpb+q3QYYK42OcmsgCnqOpPJToz61Opt2LJBAaOHNbYZM/bn
YTMbq8AtCrid7zUlmbGf9TyDONy5FNBIR0T1C2O/c1G3lcrxMLwcflflHB1+
boq2/8urgP6HW6npNnS4GJtRfklAAffpdrbZWNHB932tm/lBBeQ0E6h3OUMH
Td/TgjyHFDBRec0giXH+bD3W9a1FRgFX7L5j1Wk6xLRNiOoqKqB47LtzS4zz
K2ee4wdSFdDwccGVuWN0uF4aF0xXV8A/pvOc3Zp0UAkWkis6qoAPevJVP6jT
oXoX+bb8CQXcdqhe6BJBhx75MxTRMwrIKxZtaahIB3bXhOStVxRQilNQMEaI
DoaGz7xYnBXwcz/oftxPh8eKr06vuCogi4NEds9eOoiulGwY81BA+18XtzNx
0wGCuuxrgxTwYreCUMMWOjhF88mFxSug4GlP65gpGuR6CG/1T1TAax4X9EkT
NFg2O9jvkaKAgToOaRkjNAjZrxJ96bkC+sifD4jso0HCc7PlY7kK2PpT1HyG
8X6qK4orZ61TQAEm1dbRXBpwJiQ/Wa1n5Gt9ZkjPaxqY+L5wW2hk5GPDtuLa
LBr0qxeKDrYrYL7cloKgNBqs1HWEV/5h5C95PjLgAQ0kerhPB60ooETvFd/U
qzQIY4n+w3RQESHV+5iMIA1io6hy1VKKKJSpLWDKeH+nC0743ZFRxH06AaNe
3DSoIDT4uRUVUa99VeH5Nhqs854xkaQyxnM9l178WwGPOd164zOKeHzKvV/7
+wpcGthYmBmoiDlqP/n5PVbgaLVnhFGXIl7w1D83/HYZXotxDrD1KOKz+KAi
16xl4A19qVLxWxE9/S+vLDxbhr9aP4flhhTxbLO01kTsMsTWqqpzzCiif3Oi
dqTPMox+W1us3XgYB5yn+gq1luFeS7ANyh9GGSA/COv4Bx2/I8kHww+j8gm7
RtXhJTgX77z89agSds1EB3Mz7peyYcritQtKCGPiF23U52CJ6+uNB3lH0EbH
+5B11DQwtx6VLrqojLlhyPWSfRJ+jy78tt2tgs8cY826ZEegMOlKbluzCipv
SWr+pNAPLaENfzOCVPFqpG+N+mgPjHAs6WhoUHCsV/+OVVU7nA8yqCAfo2Ag
Sehwy/N26F18SRHRoSC17ftxq9vt0NFtKcOqT8HLl9IaX+m3Q1XWZ64v5hSU
/mBnqNzVBmla93qPX6NghIG+9ubFVrDyE3U/nULBOOmzZ9RUWqD5r2Gy7TrA
LvalU1/WvgMPx6n7AiyAh0yFLnUPfwcLGT3f7g2AyawTGqxN32HQWdvSbCtg
ZpWo9u2077A0TdlzajegkfyXYQed78A/JxpJlQQkZ62vm5drAPulJT8BE0Ae
D8O+LWF1kM2zcLXbDNDfqi/r8dk6mFGatYq3BHTI+dx+UrEOvD0nVHnOAb5o
PHGQv/8rRCz/XmJ3AqQMJTbaUb9CLq3WeS0QsKJt8WkYcy2srUuw7s4B5ByX
c/B9Wg0VKnu8298CNin9FjzuXg2h7o9ivucBXmor+kDoVgPn+N368mLAMvu8
G6mrVUBq91HNqAb815d39LRNFWi9suZx7gEUzb4eKHWoEqJMSd+Z2An8vXWo
s3GgHIwfJo0t7yDwk0/mq+TycuBr2LtxbheB7hF2AnGJ5ZCmwQWDvAQ2b72e
vGpaDu+lWbNqRQkUnJSVT/n+Cbo2DP/3AAhkzrq4trnyI4i8zSREnAhcf9zy
qmR0KbyN+/p9zJlADeKkVoBlKSNRYzZvrxFYbzlE4RUpBQv9g0GEJ4EbbH6t
48grgajJl19MgwjcaO7lP9teDKsSLw0iHhO4/bQ4X6t4EXSkPj+3WEXgsxze
R7ar+XDh9pe50hoCJXyWjWu+5cOs63BwUB3BeD8/en81IR+2qx14vqOJMa5d
a+tJyQfN3ozxg78I1I+Y/afulwdv92Zct54lMHMpyjd6Ry5U1TZ97mdH9D8t
a2do+waUxUw5qDsQU+4Ol0oqv4GcwB6LBE5EHp0HyxTONxCrOj5vxIWYeNPo
v4Xy13A5e8OBal7EY9ulgFPsNWyPUrrzQgRRZoOfyZfZV2Bs+tTQSQXxacGp
pk+RL6A2j5Rcq4oouMuySkrvBRCcmROigLj3WUXyAtsLOPD1fUgPIt4+ohRd
E/YcllUbC/SPIn6YmM1zCM2ApwLr98kbMOLjTVywjnsGA0P2A4sXEBUl7/x5
sTEFHjdKf3G5hKhZIqUB35JBt3j+5Zg9YuyljW1HHyRDfoS/c48jYgaP5vhb
gWQIVYhbqXJFfHnTLWgMk0Ay8MuOaB9EqbGgLdukEqDXMWKO3Q/x50mdUxZV
8fDI2LA9zB8xqsi6IcQ6HlbFe+NvBSGaT35QuxzzBBq+L4rZhSNKXEvZYcT+
GFz5xYAcjThxyGIkSjQGRDdNCGTHIPb2HtAU/xYNP6ffshyIQ2TeKep53y0a
NCqhhi8esSh1Uqy+8hHsdjQ2ZElB7MutGP3r8hAKC4MvN71C9Mvh6tkzFQnr
jPqjnSsRs+vPHf+xEg57uLzJjVWI2x+UfioOCAe51p1Nsl8QPbK+POzdEg7n
jdS3zdYilnq9Yh3jD4MvRimB178jpnbtrug2+g/uGVs7e/1E1IrvAMHVQHi+
e2nbzy7EczFxUmGxgfCx7V6mSjeiT8W2h/zkQJgx/jBI60XclXrhfYFTABif
4bf0HUSs+HOdI3XaD/hNurSDphHXDjkaDll4w2Eet6H+GcQvBwgepfyboN+x
NVhzDlFgKinkw46bEGCi8pF1kRGvvJ/4pQZPGDR5rBhGQ2xfv+7h7/M3YI1H
rmWEjmjDZdeR3OAOPD9qXHTWEPMPXxUOUnUHHdN/WVuZqah9srUxbe91yDY1
EY7YSMX9aL1+x4IrVO+Z+ji5iYrpicci7rq4Qu+P/6z0tlAxwdEyZW3SBTjN
3sdxbKPiJ1mqLceUM7ib7eZ4wEnFaNFrAcDlBBTzFlrMPioebtwxZw4XQZSz
Jl5wPxWtlH3OtVpegO01paqZAlQ8e6HHijPADroVM7zLhKm4rB4eU9xxDnw4
vWj94lR02H9DZluZNVyocYp3OkjFicPUQ0PM1qDrd051SZKKSuxj009irWD/
5AnvrTJUHJi+9kL3hzl8rNlPk1Wk4vD6I3nXKozhud+u+OLDVDxv7tdx9JER
3D+8WVXzCBX1c2/+a3EyBOtnMzdNVKnYpNKZN6ZyCrQshvj6KFSM0RU5ZCpt
ADI7u4odCEb8+uOWxw/qA5N/5YqPGhWnM73lOTxPwOjhoiebNKj4zm5GxT1V
B5oms1WiNKlY58eb7dmtBSkWsTefaVHxlpdB/ESwJoTvvMsnrUPF9a1C9uIz
6uBa619ccJyRv6KpmlgnNVBTclj5qktFYF9fdFqaAIm/Z58Y6VNxQ0qikHSo
KnCmG6r0GFAx9iOlOHmdMvTthJszhlS8XdJt76OnALW1cnzexlT8QQvs9xeR
h7f+YsUbTKiM81rfRI9XFgL/cqzwmFMxV21S+G6pBDimb3iSYkFF94D9K8UW
YmBouawsaUVFnUzPb/xKJFDd9bcz7yzj/7ed9tDSEwTS1z9ehA0VU5df305W
3wdsAR28NbZU3MJxpSzRigfmlL4VnTrPiFdyNrZkcid0/f1k1mXHqPdsaOPp
QXaoSM9ftrtIRd2PS87ktk2QZZn5+O8lKn4uYUr0z2SGh7uSlD0vU1FrS23V
0ZplivfXh53MjlQ8yOvqzbpuhmIXEOZ15woVzQJFEmSmBii6R3x4d1+l4rz6
GwfDwjaK4pRrUaIzFa0jlGwqaR8p/BkXzcRdGflRMiY5yURRWK0slt9eo2LH
qyKnKZNAyuQug8eq16k4E5Iu9/J8MaXtq6ZylTsVxQqUpTIbmyllAcqdeh5U
xMdtc+tK/lDSj0h7/fBk5IvLhXfl6hQlYkqY99xNKra1uiycyFiiuGfwFI17
U3Hucnb8dWQCK6ttZu4+VLzz3nJhkMYKx7iYl9d8qXjOOn/lxn/b4H/Jm9jU

       "]]},
     Annotation[#, "Charting`Private`Tag$4888396#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{490.22727272727315`, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882353399904924*^9, 3.8823534398663683`*^9}, {
   3.882353647633873*^9, 3.882353676356699*^9}, {3.882353716623851*^9, 
   3.8823537457144423`*^9}, 3.8824210398498096`*^9, {3.882421077045025*^9, 
   3.882421130976942*^9}, 3.882421498359668*^9, {3.882423516943931*^9, 
   3.882423544762652*^9}, 3.8824238627130337`*^9, {3.882867369847785*^9, 
   3.8828673785810738`*^9}, 3.882867789674388*^9, 3.882868457679789*^9, {
   3.882868501901722*^9, 3.882868537046026*^9}, 3.882871597629115*^9, {
   3.882871796046742*^9, 3.8828718459066563`*^9}, {3.882872047392091*^9, 
   3.882872060079914*^9}, 3.882872119085088*^9, 3.8828723702076797`*^9, 
   3.8828725321746187`*^9, 3.8828731175750513`*^9, 3.8828734590819807`*^9, 
   3.8828736561246853`*^9, 3.882873954433775*^9, 3.88287456216481*^9, {
   3.882874637267109*^9, 3.882874666371213*^9}, 3.883105852540347*^9, {
   3.8831099456410217`*^9, 3.88310997067447*^9}, 3.8831102017788877`*^9, {
   3.8831104450617456`*^9, 3.8831104559385633`*^9}, 3.883110761739184*^9, 
   3.883468947545887*^9, 3.8834729621780567`*^9, 3.883473331608038*^9, 
   3.8834793142932043`*^9, 3.883479383393044*^9, 3.883479635710585*^9, 
   3.883553790022189*^9, 3.883553832771365*^9, {3.883553959810821*^9, 
   3.883553971165102*^9}, {3.883554191053564*^9, 3.883554231527503*^9}, 
   3.883641272608241*^9, 3.8836442336554947`*^9, 3.883644890056961*^9, 
   3.883645019112156*^9, 3.883645345502302*^9, {3.883645505438012*^9, 
   3.883645662312215*^9}, 3.883646046958832*^9, 3.8836462988537083`*^9, 
   3.883646449238927*^9, {3.8836465002949743`*^9, 3.8836465090191307`*^9}, 
   3.883646558778575*^9, 3.8836467423032207`*^9, 3.883708497991164*^9, {
   3.883721760669757*^9, 3.883721778716421*^9}, {3.883721824346439*^9, 
   3.883721843470553*^9}, 3.883722064861602*^9, 3.883722205655966*^9, {
   3.88372361563008*^9, 3.8837236224509163`*^9}, {3.883723690790511*^9, 
   3.883723736011222*^9}, {3.88372377710293*^9, 3.8837237852408237`*^9}, {
   3.883810934040372*^9, 3.8838109437708883`*^9}, {3.8838133311891823`*^9, 
   3.883813339359695*^9}, 3.883813581669477*^9, 3.883813626072631*^9, 
   3.883814022179655*^9, {3.8838144259231567`*^9, 3.88381444549296*^9}, {
   3.883816303560357*^9, 3.883816338769309*^9}, 3.88381642097686*^9, {
   3.8838164893247766`*^9, 3.883816532283369*^9}, 3.883816634102497*^9, 
   3.8838167811442823`*^9, 3.883817132812429*^9, 3.883817196977854*^9, {
   3.88381751923562*^9, 3.883817569995205*^9}, 3.8838178496095877`*^9, 
   3.8838180008730087`*^9, {3.8847700946825523`*^9, 3.884770096817354*^9}, 
   3.884771902380024*^9, {3.884771966375272*^9, 3.884772037627095*^9}},
 CellLabel->
  "Out[208]=",ExpressionUUID->"dfe6e270-29f9-45b6-a74f-fd587b12e238"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{" ", 
   RowBox[{"1", "-", 
    RowBox[{"Dit", " ", "Cross", " ", "section", "*"}]}], " ", 
   ")"}]}]], "Input",
 CellChangeTimes->{
  3.8828685894781933`*^9, {3.882868629623494*^9, 3.882868663328025*^9}, 
   3.882868893434067*^9, {3.883811382175132*^9, 
   3.8838113971152773`*^9}},ExpressionUUID->"50a3db6b-50c1-4c63-a4b6-\
e0a5ab5b7a7c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   RowBox[{"q1", "[", 
    RowBox[{"Et", ",", 
     RowBox[{
      FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "180"}], " ", "}"}], ",", 
   RowBox[{"PlotPoints", "\[Rule]", "50"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}], ",", 
   RowBox[{"ContourLabels", "->", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882869907389391*^9, 3.882869920654478*^9}, {
   3.882870073759598*^9, 3.882870106317532*^9}, 3.882875871368724*^9, {
   3.882875931589867*^9, 3.8828759690473146`*^9}, {3.882876164781519*^9, 
   3.882876168127355*^9}, {3.883109980792049*^9, 3.8831099947433577`*^9}, {
   3.883110327898386*^9, 3.883110328405862*^9}, {3.8831104617016497`*^9, 
   3.883110461779323*^9}},
 CellLabel->
  "In[114]:=",ExpressionUUID->"c36da682-78eb-4479-a88a-6d8ffe69fdb8"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxknQV0FUcXx4M7BAvWQAguIcmLAyFDgkNICO4hwV2KFC9Q3D6kSPEWChRK
oRQrUCgUintxl+LuRb73NvndZQYO53B+3Nl9u/MfuTN3ZrZwQo+4dind3Nx8
crq5uf41/+TeOm/ErPqPI3R2U7BX/ntRiUPSK93uLmyZO+YSLmT9R17hojWn
Of9+YVzvJTy7/uPeGVt5Cxew7ldUeIHr6XoXFy5s3b+k8A9rKwX+M6a0cAnr
98oKr7xyM9fWeeWEPazf9xM+PWbP26NN/I3ncQg3tV4owHjfQOHzG7o5/wYJ
W7nZO1i4Zd2dB0oNCBEuaN0gVFj/nSwKPXR2UzB66HZ3YfSA0QNGD/16L2H0
gNEDRg8YPWD0gNEDRg8YPWD00J/HIYwe+vsGCqMHjB4wesDoAet6eBp6eBp6
eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6
eBp6eBp6eBp6eBp6eBp6eBp6eBp6eIoeI12XZSwueujspmD00O3uwugBoweM
Hvr1XsLoAaMHjB4wesDoAaMHjB4wesDooT+PQxg99PcNFEYPGD1g9IDRA9br
h49RP3yM+uFj1A8fo374GPXDx6gfPkb98DHqh49RP3yM+uFj1A8fo374GPXD
x6gfPkb98DHqh49RP3yM+uFj1A8fo374GPXDx6gfPkb98DHqh89n/RZ66Owm
z4Ueut1dGD1g9IDRQ7/eSxg9YPSA0QNGDxg9YPSA0QNGDxg99OdxGLoEGO8b
KIweMHrA6AGjh+k3JNWXYKO9Cjbaq2CjvQo22qtgo70KNtqrYKO9Cjbaq2Cj
vQo22qtgo70KNtqrYKO9Cjbaq2CjvQo22qtgo70KNtqrYKO9Cjbaq2CjvQo2
2qtgo70KNtor2w/rbt0oTPTQ2U3B6KHb3YXRA0YPGD30672E0QNGDxg9YPSA
0QNGDxg9YPSA0UN/HocweujvGyiMHjB6wOgBowes9x/hRv8RbvQf4Ub/EW70
H+FG/xFu9B/hRv8RbvQf4Ub/EW70H+FG/xFu9B/hRv8RbvQf4Ub/EW70H+FG
/xFutFPhRv8RbvQf4Ub/EW70H+FG/xFu9B/hoscS6z2U6KGzm4LRQ7e7C6MH
jB4weujXewmjB4weMHrA6AGjB4weMHrA6AGjh/48DmH00N83UBg9YPSA0QNG
D1jvzyON/jzS6M8jjf480ujPI43+PNLozyON/jzS6M8jjf480ujPI43+PNLo
zyON/jzS6M8jjf480ujPI43+PFL0gPX+PNLozyON/jzS6M8jjf480ujPI0WP
yS8WO9+kiuihs5uC0UO3uwujB4weMHro13sJoweMHjB6wOgBoweMHjB6wOgB
o4f+PA5h9NDfN1AYPWD0gNEDRg8YPUZZ/Xs10UNnNwWjh253F0YPGD1g9NCv
9xJGDxg9YPSA0QNGDxg9YPSA0QNGD/15HMLoob9voDB6wOgBoweMHjB6DAxL
4/vjleqih85uCkYP3e4ujB4wesDooV/vJYweMHrA6AGjB4weMHrA6AGjB4we
+vM4hNFDf99AYfSA0QNGDxg9YPToad2opuihs5uC0UO3uwujB4weMHro13sJ
oweMHjB6wOgBoweMHjB6wOgBo4f+PA5h9NDfN1AYPWD0gNEDRg8YPdoP6bgq
26TaoofObgpGD93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrz
OITRQ3/fQGH0gNEDRg8YPWD0aGH9TrToobObgtFDt7sLoweMHjB66Nd7CaMH
jB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQGD1g9IDRA0YPGD3iXMnCYkQP
nd0UjB663V0YPWD0gNFDv95LGD1g9IDRA0YPGD1g9IDRA0YPGD3053EIo4f+
voHC6AGjB4weMHrA6JH0HrGih85uCkYP3e4ujB4wesDooV/vJYweMHrA6AGj
B4weMHrA6AGjB4we+vM4hNFDf99AYfSA0QNGDxg9YPRYaF1XT/TQ2U3B6KHb
3YXRA0YPGD30672E0QNGDxg9YPSA0QNGDxg9YPSA0UN/HocweujvGyiMHjB6
wOgBoweMHnOt340TPXR2UzB66HZ3YfSA0QNGD/16L2H0gNEDRg8YPWD0gNED
Rg8YPWD00J/HIYwe+vsGCqMHjB4wesDoAaPHTCuj6oseOrspGD10u7swesDo
AaOHfr2XMHrA6AGjB4weMHrA6AGjB4weMHroz+MQRg/9fQOF0QNGDxg9YPSA
0WOqNV5vIHro7KZg9NDt7sLoAaMHjB769V7C6AGjB4weMHrA6AGjB4weMHrA
6KE/j0MYPfT3DRRGDxg9YPSA0QNGjwmuxyjUUPTQ2U3B6KHb3YXRA0YPGD30
672E0QNGDxg9YPSA0QNGDxg9YPSA0UN/HocweujvGyiMHjB6wOgBoweMHqOt
+ZNGoofObgpGD93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrz
OITRQ3/fQGH0gNEDRg8YPWD0+No1PHxh66Gzm4LRQ7e7C6MHjB4weujXewmj
B4weMHrA6AGjB4weMHrA6AGjh/48DmH00N83UBg9YPSA0QNGDxg9BlvzWY1F
D53dFIweut1dGD1g9IDRQ7/eSxg9YPSA0QNGDxg9YPSA0QNGDxg99OdxCKOH
/r6BwugBoweMHjB6wOjRP2MrZ8omoofObgpGD93uLoweMHrA6KFf7yWMHjB6
wOgBoweMHjB6wOgBoweMHvrzOITRQ3/fQGH0gNEDRg8YPWD06G3dqKnoobOb
gtFDt7sLoweMHjB66Nd7CaMHjB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQ
GD1g9IDRA0YPGD26uZqvxc1ED53dFIweut1dGD1g9IDRQ7/eSxg9YPSA0QNG
Dxg9YPSA0QNGDxg99OdxCKOH/r6BwugBoweMHjB6wOjR0ZrvbS566OymYPTQ
7e7C6AGjB4we+vVewugBoweMHjB6wOgBoweMHjB6wOihP49DGD309w0URg8Y
PWD0gNEDRo9EK10L0UNnNwWjh253F0YPGD1g9NCv9xJGDxg9YPSA0QNGDxg9
YPSA0QNGD/15HMLoob9voDB6wOgBoweMHjB6tLJ+p6XoobObgtFDt7sLoweM
HjB66Nd7CaMHjB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQGD1g9IDRA0YP
GD2aun62bit7PZzGbgqW9XCa3V0YPWBZD5fMsh5Ou95LWNbDJbOsh0tmWQ+X
zLIeLpllPVwyy3q4ZJb1cMks6+GSWdbDac/jEJb1cNr7BgrLerhkRg9Y1sMl
s6yHS2b0aGDFQ1qLHjq7KRg9dLu7MHrA6AGjh369lzB6wOgBoweMHjB6wOgB
oweMHjB66M/jEEYP/X0DhdEDRg8YPWD0gNHDeu4c8aKHzm4KRg/d7i6MHjB6
wOihX+8ljB4wesDoAaMHjB4wesDoAaMHjB768ziE0UN/30Bh9IDRA0YPGD1g
PT5o66Ez8cF4Iz5o6wGjB6zHB+ON+KCtB6zHB+ON+GC8ER+09YD1+KCtB6zH
B+ON+GC8ER+09YD1+KCtB6zHB+ON+GC8ER+MN+KDth7We7239dDZTcHoodvd
hdEDRg8YPfTrvYTRA0YPGD1g9IDRA0YPGD1g9IDRQ38ehzB66O8bKIweMHrA
6AGjB4weSe/ZRvTQ2U3B6KHb3YXRA0YPGD30672E0QNGDxg9YPSA0QNGDxg9
YPSA0UN/HocweujvGyiMHjB6wOgBoweMHtZ737b10NlNweih292F0QNGDxg9
9Ou9hNEDRg8YPWD0gNEDRg8YPWD0gNFDfx6HMHro7xsojB4wesDoAaMHjB5J
v5tgrG9PED1gfX17gugBowesr29PMNa3J4gesL6+PcFY355grG9PMNa3Jxjr
2xOM9e0Jxvr2BGN9e4Kxvj1B9ID19e0Jogesr29PMNa3Jxjr2xOM9e0JooeV
LydsPXR2UzB66HZ3YfSA0QNGD/16L2H0gNEDRg8YPWD0gNEDRg8YPWD00J/H
IYwe+vsGCqMHjB4wesDoAaPHNCujEkUPnd0UjB663V0YPWD0gNFDv95LGD1g
9IDRA0YPGD1g9IDRA0YPGD3053EIo4f+voHC6AGjB4weMHrA6OGaXVy73dZD
ZzcFo4dudxdGDxg9YPTQr/cSRg8YPWD0gNEDRg8YPWD0gNEDRg/9eRzC6KG/
b6AwesDoAaMHjB4weky01je0FT10dlMweuh2d2H0gNEDRg/9ei9h9IDRA0YP
GD1g9IDRA0YPGD1g9NCfxyGMHvr7BgqjB4weMHrA6AGjRwZXeGqFrYfObgpG
D93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrzOITRQ3/fQGH0
gNEDRg8YPWD0GG2tN2lnry/R2E3Bsr5Es7sLowcs60uSWdaXaNd7Ccv6kmSW
9SXJLOtLklnWlySzrC9JZllfksyyviSZZX1JMsv6Eu15HMKyvkR730BhWV+S
zOgBy/qSZJb1JcmMHql8f7xyc4ath85uCkYP3e4ujB4wesDooV/vJYweMHrA
6AGjB4weMHrA6AGjB4we+vM4hNFDf99AYfSA0QNGDxg9YPQYbq3/aS966Oym
YPTQ7e7C6AGjB4we+vVewugBoweMHjB6wOgBoweMHjB6wOihP49DGD309w0U
Rg8YPWD0gNEDdvv0z3BbD52TzyMbbuuh292F0QNGDxg99Ou9hNED1s4jG27r
AWvnkQ239YC188iG23rA2nlkw2099OdxCKOH/r6BwugBowesnUc23NZDz48r
yecxvI9Iyu/Xwkm/l1rBHz66/oQq0550/oaHKma9f2Zh0ptMvsNJ50WUEk7a
H+8nnLQfOFB4gLVeKUS4rRV/riBsvXZYhPB8K18qC0+3CkaU8Dir/a4qPMxa
n1ZNuK+1HqdG8u86VBdr/UEtscPY21gPUEeVd+HNAGHXr+S/FyjM9TDXN7bi
U3Xlepjr4aTqEyTM/czri1vz+bFyPcz18GDrvYOFMzb98XJQljA1P8e1L9ul
ta/3tuS3r4e5Hub6edfLzxj2xE7/hTU/VE/Swy7V97wNEeb66eun/zrngp0+
rzV+jpP0MOnHf3P/+K97bXsOazxR37Y3qvr00DqbR5RYkP32/AaSf+mt/qOh
cGqrvjQS/uDKhy6Nhd+6imejJsLPXdlfuanwY1c1KdtM+K6zVRiRp7nwLVcz
kbKF8BVXdXhg8wVXO3GmpfA/Lhl2tRI+5iztada0Frb2P0bHC19z3f9Pm+Nd
5S20jX1/1++ttrmZq34XSbB/z/X7s21u4CpfWROFrWIxMlGvf29s3u96vh5t
hWu4mokbNu92Faxm7YQjndm16ojNO1zVuardXrkZf8z2if/X26ssSmdPo30q
bth9jPbKYaQPNtqvMOP6cKM9U8b9Io32rYow++1h9nvD7DfW9J5UW5j9lpTv
WR/yNmjvHSNcPbZdzejBdv2MKLy9Y4cO9n4os/6ppx5jv46z9+OY9S1oV48f
vwu394eY9c13xt97fivZwOZ2hW8dyWnXL9ZnX3aV0xFhar+zPKT7pL6xXhhm
vSrMekmY9Xow68Vg1ivBrJeBWa8heiavF5DynxyvhomXwsTrYOJFMPEKmPly
vXzY9Y35Qpj5Kpj5EpjxOsx4UfI7ebwC4y/Duv96JYL6R72Ctfo23Kifn/h3
1E9Z35LM+Cv0FzDlj/JIeevq1LV2ZJg65mpviqcVdvlVef7KJ+xq71pUKCq8
yVkafGaUEXa9/rB+/sLrnHL96x0k7HqO2COhwmOdF2waVFHYVfzccylhV/ZV
uVtZ2OUHfbUjStil7+pvqwpnd+p1tWt14XTOG+SOqin83qlOrXy1hZ85S8PQ
R3VUdVcxc/IlZ/Hu93sjq92s7uQ/XXo8ux9BelfpORyTQ653ZeOm4V7CruIz
7mwJYav5dfgKd3bWjplVA4Rd7f2HJ8HCylm62y8oL1za2bwfqVVJOJOzvH33
n50/KZzF4eixSOFXzuKZenkV4QeuVmNoNeHrTv26NqghfNbZ/ywqXUv4iPN1
T7nVEf7L+f4ZTkcL/+7UO3x1jPAZ5/WbdsYKn3SWnxOr6gkfdt7vwSy7fFnt
z8j6KqtVr0JVPas/qy/23U4s3L2BWpPY9EYVJ0+f9MvkTdEN1UlXP1k5zGp/
d1VppDyd5TrKaXe1V/19G8v1vzgr7Lj8TYRXOccJP6RpKrzMWXu3P7Z5ibM8
njnfzC6fzlrydE9z4dkur3tdC+FpzscuPr+l8GTnY6mxrezy7Kxmzfq0Fq7s
1LO8b7zwNmcF2PuDzRWc5b1B/jbCG535e3WKzUFOB6F7mgRhV/P330CbXfVj
7GObf3K+f+72icIu9+D78zYvdeaHX722wkWc5XXbHpsXOn+gVsV2wq58Pr3W
5u+c+dW2RHupH7RbsEvWSmXeR8Duzv/o9S63pHc1lxkaewu73Mhza0oJu3qf
hqP8hJ8469t2v0BhV/dT/GKI8F7nv1PGVRB25c+roAjhWGf58utVWbia0/9p
Wz1KuKLzB2d7VhV2OPPz4LNqwiWd+ZNifw3hgs72JmhRLeFczvfr1M+uL4wP
YPx9mPYYpj2GzfbY7O+vlQmZuPST+pLV6n8aSH3Av4bxp6U9SvanYfxpad+S
/WkYfxrGn4bxp2H8aRh/WvqXZH8axp/+tH9x+dMw/rTcP9mfhvGn5feS/elP
21eXPw3jT3/afrv8aWmfkv1pGH9a2qdkfxrGn4Z1f/pocv/8QPoP/GWdPYXx
l3W7j90eJfvLenq7/8Bf1q8Pt9u7ZH9Zv5/df+Avw/jLMP4yjL+s6TnJ7l/x
l2HOx4A5n0HaH8tPsesD+9PpL85a+tr1g/3S2E9a+tr1g/27jFepL/jTMOnZ
X+ry0xxOxn+G8ZdJj78M4y/D+Msw/jKMvwzjL8P4y6Jnsr8s5TvZX4bxl/X8
tRl/GcZf/tSfcvnLevmw6xP+svSHyf4yjL8M4y/D+Msw/jKMvwzr/vLRCGva
L6G92PX5u9RSv5jfZH7sfPJ8njnfY573Ys7nmOeNmPM72Jk/gbFTnrGbbJ7H
YM7XYIcp77C+//+1jN+T8uO5tD/kD/YkXVMq7HBSfqWV9zfPKyL/YDM/yM+D
VjsfZPmTadbY+Uv/Z5WL9cGWPzrvT5svWe17vaR2eXOI1Hfqt3W/Hg2E61jt
M+9/W95Xn399IPnyaXt8PjhENbf6jzj5PbicsxjmqhiqGln9h92+wNjxX9EP
lvH7H5lPn+5uj8+vv5vy0x83Gkh51sdzR+U5eT7yg98jP/g9GDvtH3aY+1J/
yB/qh55fWaQ8Ydfnr7PIfLQ+v51eOGleOK2UJ8of89N6feV7CDk+m+/W1jHJ
ed4exu97qruW3xKU9L676gq3s/yLWGU1u/7BwtQfyi/j4U/9NVf+m9cn+SN2
/aQ8c/2n/p3retJjN8sXTHuAvweb54OY5U8/f+R5BPnNfAD5Rf0mn/X8y5Ls
F2QUu9WNrQhU5yx/LlqY+kz9pv7SXtB+Ud9h0lOeyT/aQ+ofdtoT/GHaX5j2
gvJP/pJ/3I/yT/tAPYDJr6T8ePcZkx+UZ9oPOMnfyqeWWxUrq+QfjJ3yQH7B
n/ozLkZfmOdHb9o/7OQv7wsn+cEh1vjmShq7vJF/tGfwt67nXhCqQlwXPrb7
G8YTlD+Y6/db/rB9HoreXtyOMMsb+U95Iz/19anekt9J6bzkeehfeV8zP+kv
eV/6xxuucUxjOz+WufRpYb8vz0n7pXOWpPxskl3S6f/a7ROM/jw/9Zn+E/7U
H3Y9P/WL9yU9THren/T683rK8/L71A/qV5KfXkbel/oGW+OwEaWk/SA9THrY
aucGlJD353qY9LA1jutWTOKTXA+THub9iF8mtQcewkn/5hf+0cr/gsJJ+VFY
2Bo3JhYR5nlg2jOY54HpD4mf0p/BlHeY54e5v8nEX4kvEn/FDhPPJB5Levil
67b/+El81jVP2+28vzDXw/T/xG95P5j3g3k/mPeD0QdGHxh9YPSB0QdGH5jy
AlPeYMorfNtlnuUjnBRX9hUmv2Dyg/gx+QHz/tRP3h/m/WHeH+b9Yd4X/4P3
hXlfmPeFeT/8D94P5v1gygNM+aH/oL20xvsqTvKD/pXywPiZ/IDJD5j3p//g
/WHen3gw78v8FXoyf8X7MX+FPsxX8XwwejBfxfvCPA/zV9Q35q+o/8xXwcxX
oQfzVdhh2nvmq9CL+SrsMHbmr7DDvB/zWdhh8of5LewwejHfRXqY9Kad+TDs
MHozP4Ydxs58GeURJj1MeubTSA+THsYfxJ/GP6G/k3h5sr/C9aSnf4Wfu37P
wy7/9M8w5RF/Ru9Ps4j+2PX+1f6+H/0n5Yf+W09vf4+O/pP6wXyh3h/b30+j
/6Q9YT5Rv7+P1G/6N5j+Sffb/GR9GKz7Q/b3rrCzXky/v5dxvbew/r0SP+N7
IHb/rO0rke9JBMr4B8a/1O3un/W/zKfC5vd76H9pP8zvy9D/0r+a30Ohv6U8
M//Ke+j98WPpf8l/vX9yU3p/nd7ov9yV3n/nEkYfGH30672M/t1bGH1gyhtM
eYUp7zDr+WDW88Gs59Of57H0v+QHTHtoMv0r+QOTP/p8Vi5h8gcmf2D8FZPp
j8kvmPyCyS+Y/IJpT0ymvyb/YPIPJv9gyh9M+TSZ/p/yDFP+YcZXtK+MD2H6
Y/wF9IKx4x9QnmH00u3uwvTnJuNPoB+MfjB6mYz/gX4w7afJ+CfoCdOem4z/
Qn2A6e9Nxr9BX5j2w2Tid7TfJuMPoQd2/EGTSU/909lN7PgTJhMvpHxhh7HT
f5hs+mvYYfM8I9Ljb5qMf8f1MOUDpjyYjD9I/2D6i8Rn8GdJDxP/JD1MeTLZ
9Dexw8R78AdID+Of6vEK2181/VfiQ6SHsRN/xQ7TPpmMv4u/hR3W93dfiSA9
jD9MeTX9Z5OJV3F/ff/za7kfjD/N9cS3uF7fn5r6M/+b+BfXm/64vp8ytfjf
+NOmv078jOth6pPpvxNf43qY62HS46+Tnngc6fX9Vjk+8++J13G96e/r+4Ny
SDyP9on0MHau1/ez5JD4H+lh0uv7LXJIPJD0MOlhyq8Zf6O/ZfzA/D92+kvs
zO8zv834wcqGc/Z8oxa/WhMjzPwlzHw48Qbux/y3GT8w53/5Pav5KBAqTH3S
/WW3z/wl8/sqpn9jfp/D9E/M7zuY/oX5/QXTHzDPKzf7d/M8bLP/Ns9fNvtr
87xfs382z5c1+2PzPFOz/9XP97wSYZ7naPav5nmWZv9pnjdo9p/meYtm/2me
h4cd/8jsH1lvQP9onjdn9ofm+WHY8Z/M/o/1CvR/5nlcZv9nnreEXfu+0if9
nXk+kdm/sd6B+m+ez2L2X+b5HNj1+mSfj6D3X48/62/M8yDM/sfsL8z95PQX
lBezPzD3A5vtvbm/k/YYPYgHwbSPxK+XNVj85cqf7fbL3M9Sb9CKpj0+ac+o
/7SftCfaep1dNtO+cL/3Pi8vVd1t22lf8jUb3bB5iTC19q+2PwTNrCvtH89L
/Iv5Gpj2k3gmTLwYprzBtMfmegTio8wvwfyea71x/gN2PM6Mj5Lf/D735/fM
9R/EZ/Tvz76P4HmIp5Ge+SX9e84e8vy0E6Sn3urnm3hLejMex/yS/n3iUpI+
qZ0qIemZv9G/1+on6ZPmT3wlPfMz+vcrAyV90vxAgKQnfkJ6mPRDk/0A0jOf
Q3qY9J0sIcpLeuZ3SA+T3qrPdStJeuZzSA+T3qrH75WkZ76D9DDprXp7IlLS
s7+O9DDpM1vlvIqkZ/8d6WHSp7T6y2qSnv15pIdJ/9rqH2tIevbrkR4m/UOr
nNeS9PgfpIdJf8Pqr2wmPg8TX4eTykdR4bbJ7TiclP/+wmOt/AoS7mO9X6hw
K+t5KgpbcuRQwtZj37b1dLf+tfVKa/knth7vLH+juvBTy3+oKWz1A3lq6/PX
D+qIP0l7RnsHk5/Mv5Ce9gc293/gH1rvMTZElXVVmFd2/IfrSQ+T3ipfZ+up
Xa5qkKa06GEt7H5bQvTYZnWHxUSPpHYqp+hB+we79j34lgiU/LeKaeEAyf9b
Vj75S/5b/x8XLPlB//A6/9c9R6erm9TvXU5e73knRtgq71fs/iShVqv/2q2I
Fq6X3F9Z/fKKkKT1Zrns9Sb83jdWuSwj7al1X7dS0l4m1bPi0h5a5eBeUWnv
GD/AxO9p3+ivaI9quZ7jhwBpb6xyvNAh7UlSufOT9oL1HdtdOky119/o44Oj
EeQ/6zf4fdYPUR5Zn0F/l+T/ekl/vtHybwvLeIf8YTzlWoe/KltZGf/w/Iyn
0JvyzHoNrfx1fB7BejvW67A+Jql/zS3rA5PKUR6J//C81a14U0N53r+seFIj
0SfSlU9bGkn53WG5TY1F33BX/i1tLOX/d2vc1SRpXJLLR4W6snlqE7XPcqjK
qQ2ujE/bVPQJcCUb3FTK81qXvE+aih7lXAWmQzPRw7WfZeuFZupv1/3m+ivs
1nqTLxwKO+trSln1ormsR/nR9f97m0t+Yye/sVP+ilrhjRZSX137ZR6vayHl
D7t1+xH5VCHL7W6pLHknFVDzrXLXUuozTP7nd71nzlaS/7OtDVStpLxj/8qq
N94qt6td/NAqeXxSxNqPU+nL1tJ+wOjnbtX31qKfVe5846W+Yad+WuW0c7y0
X5auS+NF76T2Il70tu47tY34azDl3XqOA22kvFvPnSZB4pXY0dt6T5Ugelv5
MihByhN2yr+VjxsSpPxbj/04Qeqr1Z+VSZTyZxWL9olSf615hAuJarzVQfha
+9vqLk6U8mPJ4tFWyk9Jl45720r56OB68RTtkscBftb+oq0V20n5tvqR/u1k
vIU/Tftrjfe/tNvj3VZ+xyZlv7vdnjMeMa+nfYFpT+CcVnmpK/2Va//dC3+7
f1iz7lFQP2f7hX78HvONtIcw9U3fj/wggvFK8MqwOoHNc8j45UmL615dRnsJ
772xokDFyyXs/ftde3pkCfUVLj/wu/Q9agQIe23/8M3p58HC2VImpFLO9h9+
UfWv4cujKwk/rJJrWHpn+w/fuvXXtorO9h++PLb/u55OfxA+XbpUhaXDqgnv
P3juq7MNawhv6z5xUxanvwZvcK/0qrLTH4Nf/Xsia7izPac+4V9UsdrVIOlf
+rny1Yv9KBcj0IfxHmztN+ls68d4T98fnlb0y9Lj9C3vFBmM/eL5xB6693XH
AEcBYz94UbF3uxe55u6TosZ5F2XEHtUnw8rfa5U1zrvwF/uE9x3i9hzzFzv+
JPYhlQ8cKTc0SOz4l9jbfFMuelZpe387/g72uH3/2//xn4pix//BvmD02yLr
K9v73/GHsE8vuSrhdh57Pzz+KfaJ+1su/uKhfV4H/ir2gV2zXYndbZ/fgf+K
/cusOwt+M9feP48/i73LL71bbu5p76fHv8XeNq7ovAfV7P31+Bfy/s9PnSvs
aftjJzv83H/dNXfh4f0rdGswo5DwrKi2/v95l7D1PVC67MFB5YQXrxgwve5d
h/CYB+fdN34bLNzPP2Jyoajywi37Lsk09lG4ff2FEVVeH7Lzf+7QwJFlf4i0
89vr1s74gVWEx/85y21mbDX7edvWjNhXvIZw77T/DXn/zs6vzstXbfU/UVvq
S1J5fxkh92u3ckaBQqkk/ez7u702nMhpP3/ktT98K+cVLvKhZKZVkYWFM6/Y
eK7jV0WE33zzKM2Q70oKX/MbeirseGnhA1k2uNV97ivcvIV3x29y2+X/eK3t
Q6YsCxCuveibmw92Bgr/Nrnwf6/iQoT9b9xOaNTdLv/Lj48aEP/Rzm+vknWu
bM9vl/8JHrdf/P1TJeG0Xde0LLE3Qjhs9dLNecva5f1943EP9m622T+m8es6
Ke3y/uJN+bLvpthc6kn6kK/P2Hpd++5+Z7/2dvkvMn1L399+tvU7G75gRduK
dvn3COq6/s4oW89Tl2Nuz85h65nhtOczz+a1hA9+naLEods2p/jqiH+cv13e
txT5tV2KP2xmvZDOnsKs99HtPnb5SJ431tPb5Z31Lfr1dnln/Yp+P7u8s18Q
Zr+gtB/J+wVh9gvC7BeEiT9Y45rJdv/BeJT+3/JDqtv9+SLXc3awGf+K+bPU
rnbtpN2/Ew+C6b/4PcbL/J7V7N+1x3/WdO10+3riLYxPYHO9BHarG9hn38/y
bzKFyvib/i/JX7X7Q+ZbGY/yvjDPy3wjdvwn4i/414yvyA/z/AgY/4j+l3gM
83Ew5Y14AnYYO+stscPY8RexM18K4+/T3xJPYb4M1tdX5ZD5MX09dhV5fuz6
+1WR58euv18VeX7s+vtVkXgJdhg78RHsMHbiIdhh7MQ/sMPYiX9gh7ET78AO
Yyfeoa+fuhJBfSW+oa+3ei128ovyC+P/kV/YYey8D/EEPd5jr4fGDmMnPkd9
hKkPlBfssB6vvGKsV7oSoX+POIfEI2HilbwP8UiYeCV6E4+EiVcSvyF+COvf
40st8T2Y+CC/RzwOJn5HfcNOfYOpb4y/aS+Ir9FewLQXjJcpT6yHJt4GM562
xuEN7fUh2Lk/zP1JT34QT5Pv8SQz41/Gw8x/YZfv5yQz633N9MTfSP/peQKu
9IyftXjBGzv9p+cNuNIzvqa8sN6a+B3M+NvSYWJbKb/YiefBjMdJz/Ng53k+
Pe/A9Tzm/Ykfcn+Y+zP+5/7Yuf+n5ye47m+mJ/5I+k/PV3ClZ/6A9KwPJ/2n
5y+40rdxlbMHdnrWh5MeJj37YfXx6fsI3f/2EDvxMJh4F0w8C6a/golHwcSb
YOJJMPEimP4Npr2GiefAxGtg4jEw8RaYeQ78sTp3d4QXcrfH2/+M6jZj7WZ7
fF2x1vvdK4Ls8XSO47v+GDjZHj8/L1v14tI+9njhRs/lzbJ62ePj/esznel3
0B4PbH7dveHlT8e/BTvd+f6T8W71HflLnvlkfKsSDrbP/Iftz/umHrpUzbT9
9+LLfG98+cl4tWCNq94rPhmf5r07rc3FT8ajaSdWWZT9YR2jPDyQ82yYv3C4
ipcf5eNWBPsF8B9h/LFfXMWiuO2P4X/R31gy7w+U6/X9AO8j5Htwycz8Is8H
45/RPmLX17fb5yHA+L+0QzDzKfp6e2/jexnekp54B8x8i76evpRcD5Oe+AjM
fAzz+cy/MN8MW/PnszyF8a+4v6xXSR4fMf9MvIX5Z5j+l+thrmc+mvTMR8P4
P+Z+Qfxb5m+JrzB/C9N/6/stUot/zPwu6ZnP1e+XWa7X99M7ZH6X9PQvMP09
zHog2i/W+8CUZ+LrMPNdxCuYn8J/Mvcf4q8zH078ivlwnV/L9Xr+Rkr+kp78
hclPrtfzN1Lyl/Tkr36/zHK9nr+Rkr+kJ39h5s+Zj6N8w5RvmPINU35hyiMs
8Y9kJr4BE8+AaT9g1iPxfvr62kiJR/A++Fcw/hjXw1xPvIH0+BMw+jMfiJ4w
+W3ux9THGxklPkn+w7RzXA9zPfqQnvgXzPiQ62GuR0/SE3+E0Zd4KfrCtDfm
/lDGQ+hN/IP2B2Z8yPUw11M+SE98DKa8EK+lvMCUB3P/KeMtygfxGMoHTHng
epjrKR+kp3zAxJeIF9O+wLRX5v5WxnPEL5n/ID4JU/6IL9M+mPtf9fFfSjmf
gfYCpnxyPcz1lFfSU15hyiPxbMbP5v5axpuUL+LdxGNhyhvxb8oT8W7G1+Z+
XMajlA/i4cRLYcZ75v5d1tfS3hAvJz4Koz/xcdp3xr+w/v3z5xIfp72H0Yd4
N/WV8TKsfx86t8S7qb8w629ZP8v6WpjyZcbLiY+T/8S36W+Jf+Mvsb4VfwnG
PzLj2cSv8f+IXzO+tnTKb4+fYcb/rF9lvA0zn2rGr4lHoy/rXVkPC9MemPFs
4tcy/5Ccnt+H+T2uh7me9oX4N+M7mPLCeJ31tzDlg/g4zHie+2GnvWM8z3wD
TPk14+uM97kfduq76/zOxfXs8TVMetNOPB47TPvCeJr5BJj2hHg9zHib+2Hn
foy3uR/M9d6udOtsZjxO+0565hNg2nOuh7me58HO8+jnLboL8/tWXKCEzYz3
eR7S8zwwv8/18Kfnz7meBzvlkXhAqFVP7PEe6WF9/JZF6iPjb+oz8R6YeA/r
5Rmf0J8zXoIZr9D/Y9fv7yP7LRg/0d7B7BeAZX1PMrN/Dra6h8WFhKnfjD/4
fez6+NFPxg/Ep9g/wfgBvfAv0Qc7jL/JfBZ21kvB5Dv+J/4e/jD5A5M/MPkD
kz8w+QOTPzD7K2DGozDjbBh/D6Y8wPhzMPslYPprmP0SMP0FzPwDTH8NMz7D
P2f/A0x+4N+SHzDPg3/J88Csj8O/ozzA9K/035Qn9o9QP9nPQf/D/g3sMO0/
+zFov9mPQXvCfgqY/WuUPxg7+9Www9jZn4YdJv5HfhBP5P1ZPw2z3nO4NT9u
c2Wrv7fXAxN/xI5/TP9rrjcmPfVFP0/hqMxf6OcJ2fMbevlwk/Ue1AfKA/XB
ZMYLjH8ZrzC/A1N+yS/Kr8mMD2iPGV/gz8C0F+Qv7ZjJzOexvpLxBP6ivj/+
towvqC8w7Q/+Pu2PycSb8Ffx7/FnYfIXf5/8NBl/n/xlPSz5C9P+MF6g/YHx
T/Dfaa9Nxp+nvLP+lfYaZjyF/87+J5Px5xlPsZ4VfwFGD9oLWV+urXe1GTv3
Jz/x38k/k4mfkZ/49+Sn6e/TXjEeYH0q/j+Mnf1wlFfaL9pn/HP8cRg7/j3+
Me0d9ZX4F/UVxk68jPylPcSfJd6DfwZjJz7EfgfmK2jvvrXyx/7+Eoyd9mGL
dfsw1c/1fF3s8z+pbzD10/UrOzPZ6z0SrHbBZj0/vY3vU3tL+8J8N/P1+GP0
XzD9G/Pb1F/aT+o77SX+EvOr6A/zPsy3Mr+Bv8R8BvsFKO/m+XGs96F8s5+A
+DfxKJj1QLSH7DfQz8msbJwHZM936vO36WX+jPpNf0D/Rn/E+n/2L1Ae9fmU
d9J+Ml9mni9GvJ35Dtoz/CPaP/wn2jP0Zz4D/Vn/z3iC/cKMB2HGp+wHID37
ifEv2B9Af6DPd9yW/QDkL/uBYeL95DftHeWN9ovyRvvGegDmL/DPYPw35i9o
r7ATD4Apf6Tn/uwnlnhN/aT9ANwPO/4/duoj+3Xpr1lvz3ic/bm0dzDtHevt
WV/A/fD/uB/tobmfV28vbxvr9V/LfmDmo5ivQG/mMygfMOVDX8+f+bP9vjD1
hfkJ7m/6q8xXcD/8V/pH5h/ob5m/oH+G6c+ZvyA97T39N/MF+N+0Z/SXpn9m
+le015RP03+hvvI8pn9AeSc9/Svx3RMBE56sD7LXk7O+jnhu0u8eiijq6PvC
Fe99+HpvSM1HKcWelG9uCnvJzL3+V61UXrEntcceYr+VZVjUl92KiD2p/fMW
+9aZVStV3VNa7Pet+l5a7H9nHf3FhGz+Yr9q5Zef2DfG3Znz7PdAsVv53iNQ
7Au+rZOnRcdQsW9MXpeIfeK5NTN256qov9/eCmLvUzBnDp+dEWK36smXEWJ3
+P++d/+GymK3is3UymIvfaJr2o8To8S+ziqPUWLP37dg1YDEqmK3ykHFqmLP
lufoyA5h1cVu1dcc1cWecfPXf36XrabYZ7j0vlND7CmaB6Q4erOW2K168Uct
sT99dyMi9dY6YrfGSzPt70kSb6f/hfX5mLTGebqe0j4RP9fP0y0u8RTi48yv
M/8BMz+jrxcMtP3H5HEH/ir9O+Nh9hOQjv6c8Qn7CWg/WU8Cm+v/WD8Cs36X
8R/7dRl/MF6DiT8xH8X4Cyb+Q3uGvwbjD9Df0F5Y7d64QFlfy/Oxvx7mvHSe
l/O1aR/xF2DiKcRX8A9g/Anaf/pXmP4Y/4zxAM8P09+Z4wHW01H+YMof8/uU
F9bH4X/ClDfm+8kP8zwL/TymoxHM9+OP4u8zPwDTfzLfTnyM9WX0XzD9D/PZ
+Hv0B8xnwMxPsF+X9dOsl+b98bdg4k3UT85rgfG/6M/wp2Dz/BbsxBuJL+Ef
oz9snt+CnfpHf0X94PwUGH+I+s54D+b8FMYl2PFv2Q+J/0v8CGa8yfgdO/PH
xJeon5Q/vb7Gi/+MnfigWT45T4zxEOtDKX+UJ/wt/byt57K/kfaV8Rflm/EV
/ifxN/w/3b+7LeUb/wt/DX8C/wl/A39JO0/K+Yfyz3or5oNpr5kvxh/Cv8aO
f63Pn3mJHX9GXx+US9pr/CXOe+D3sfP72Pl97Pw+dn4fO7+PnfKGnflq7JQn
7MwXYae8YGe8hZ32CzvlBTvjMez4k9jx/7Gjv/5+j4316rcjWJ/B+BI740vs
5B/9G/mHf8vz07/x/LRntCf0b8xv6+sPHkfo52Helv3t5C/jUfKX+Dvlk/pG
+aT9pz/lPCLGC9Qv1s8ynmD+l/qAnfEEdnM8wflzjA9o77keO9dj53rOM+J6
4ptcj53rTTvjE+yMT7AzP4+d+CJ25uexE+/Tz9t5L/tZ2a+n71d9GaGfX+Ih
81dJ9TuXsT81l3E+j7ekT2qXChv7UQsb56GUkvRJ6+9KGvtPSxrn+fhJ+qLJ
7Zy+39TPOF8lUNInxX8CjP2lAcb5PyGS/j+rvNrfl4f181oqSPqkemF/fx7W
zwuKkPTW92t3VbK/353M+vkvlSW91S6GVtb334ba57mw3pr0Sf2RvV8WJj3t
DektP/yG/f1pmPSs1ya9VQG32N+nhknPem7SB1vzSTUkPUx6/HXSW/5Sh1qS
HiY983Gkt9qv8DqSHmY9NOWb8VNS+Xsj4+db3sExC+/llPFV0n6t3DL+qjGn
zZJFdQuLPamZKyz2goVLzu/1Y0mxW81x5VJi/6rBq9qF3fzEbrXD0fb4uN3s
ZvvGrQoQe4w1nxEg9toXtlV72iRE7FY7ujRE7BW8Cu9ulqaC2K1+IM4eHxdu
O6ryrrWVxG6V/w+VxJ76ZJ/LuX0r6/MDDe3x8bu+xQrWSmOPj7+05tft8fHz
PKdbDD1fRezW+oEU9vj4/uax361bW03slp91pprYrzYvf+7WmBpit74v9LM9
Pj75/l7eAq3s8bEVXxplj48PLpzfOCbQHh9b86HN6kh/Qv/Ffkjmz2HWv9P/
sf4Af4H4P/6XGV9nfh//gPgd/hjxN+IJxMfoj4lv0X8TL2K8YZ7vCTPe4DwC
xluczwbL+XjJ4xHen/dlfhj/g/lf+jPmc2Hme/EHsMOMN5gv0853+cKhz38V
Dvhs/RrzscSj2M8FMx5FH+ww4wlZf5Acj4IZLxCfgNGP9Wkw4wPyB/8bvfA3
0Jf+m/Eo+5nRg3gI8Q39/HqbyS/iEdyP8RfM/jjZH5E8Pse/Yrykf//R9rd4
P8abjI9g/DPGM/hn+B/MD8P4a/gj+nkvOWS+Fsa/Ih6Af8XzUp7Zr7LFyn97
v7TJ5n5qyjv3g1n/xHoBxiP4y5RH/GXGA/jLlA/8ZeajaW+o/7q/7C7zN5QX
5o/x15m/oX1gPhl/n/E55Y/6xHkmrIfAv2e+gfrO+lXGH8w3UL6J71A/iT+T
P5Q/WX+VHP+gPjFe537EG3he/HXeH/+X+TzGCzDzI7S/PD/jA9LDpGe8QHrm
w/T4e355P/Kb9oh4EOlh0hMfIj3zYaSHSc/8Gel5P+a/YOI9rP8x4z3Mh8HM
hzH/wHwB+UE8SN/fYI+n9PYsszLj5ejFfBjtHeMf4j0w4y3pP5LHW/hrrFuC
zfFJUruYR+njFXs8ktQ+FjHuZ48/kuLJpYXN8UZSPNgeT5jji0zJOunjH5ut
92wUqvTntccPVvwjZUVhc7xgTQOssccD5vggSV/b/zfHA8et/I4y8sNma96v
me3fm/6+FZ/2qy5s+vfrrfpfU9j056244AXbXzf990VW+bb9c/x14gvkN+0T
TPtk7m/Tv0/nLUx/z3wT7bv+/T2bWb+KP0d9IH+Id8K0N8zHMD/OfD1Mf0N/
TH9Fe0z/xPwh5UX/vm2wzJfSv8DEG+iP6V9g4g34EzwfzPMxX0v/AhMf4Pdo
T2H2U9AeED+Had/4PdZTMH+M/0J/jL9trWO+GSz9L/qgP/OjpGd+ifM00N88
r9E8n5Hr6a/M8xRZP0F/xHoD9mOjJ+e7oCfrpU0m//FXrPNnN9jM/fT9sz4y
P2yWf/xC5ssp75Rf4l+055RX4jc8D/nJ7xOPw05+Yae/p7yQf/gj1EfKC/nJ
/B7+DuVFvjea3P9RX2mf9fNdfMQ/Nfer6vXnsTDlA/+a/KM+8bwwz4v/Rv9L
/cI/gilf5veDqL/0v+bvU3/Rz/w96i/9Pffn+/F3nOnW/VVX2HU+0bPoWGHX
eDtLmJ3e1S6UKBon7KoPlbPVF3bt/2v+1mbXeLvfzQbK0/m4UU52xRPHHm0o
7Kr/25Y1lvSu+nLpf02EKzlf6/XgpsKu8WOOjs2EA52vVbZ+c2HXeLF6pRbC
pZ353KZUS2FX/RuUq5WwlzMXZ3602bV+cc3d1sKu573hHK/B6Zz52OuKza5x
y4eGbYRTuGIhB2x29X/5KicIu+b7lm2w2aVbQNlEYVex3LHYZtd8ZXSetsKP
nKXs3ESbXcWsQ8p2tp7OYvK8v82u9YZfP7DZqiWJ7VWptpsGRETZ3+87nyXu
8so39vf30lXomWONe0mJ15Pu3MQtp5dXd6h9reJf/l0/p7Ef29l+3Bs5Ze8z
X5mfT4wfF9fhKx/VZM2Wgv81svc/UL8Od/CJL9DH/h7Hpaon51Wc6JB46YFl
7dfsneqQ+p523LJfLw5xqL+Hex+u4WaPf2mPDsxxezGmb3lpf443uh19uESE
/G6Z5qWjJ6Wyvy9Xesxvmd03RcrvT3k3Nf2rW/b6vAkN7yy/lsP+nty8TJmf
DKhgf6+tcZdGz165299ry/T0wZfH50eqvDtmdu08Ip3SzwdKr8ZNSD8gvlu0
3C+iaZE0q3ZGSzxrXdzhl2s86kp+jnhZrv7AfjGSnwfSZlr2+7EYaT96BbU/
UuhH+/tnY/cGnz98Jlbev1tLz1qvl9rr4xdnTrh2cUY9Nb7Z8NhFIz7K+T28
f70Dm6pfCLW/PzZk+q2CzwY1kPb6+YygfWUaNZTnq5PzxCv/+o3U/PDjleP/
tr8vwni274sRq37N01iFnVpa+u/spWX8RPwq25HzHj+9a6xmNDsWE7TS/r4I
77PySt40e7I3VbfHPqt7qsV92e+Ifntbj/zpqzXNJD+9nw8Ymsethbpaa3Fo
mzK5Pvs+1vFVtXc+G9ZCTcw8KGb7W/t7H0NuVl5atKi9/o7xctbOPW62XdhS
ylfrH+rtid3XUoX0TH2vcUCQxJ+fHfHe+jjIjjcdiag1KM/g0jLe2rLyQ+p/
egd/9r2NLi2GJt7r10aljq1ec8Cfn39vY2O6tulK9mmjBnQYuNMz/pqsr+P9
px2Zn2nNrAQ1pNS6KlP2299vmjf5SYexM8vJ+OqNY9gR3yx2POvXxve+aP5j
2s++r9ElZl+5E9GJaqtvxPSIonZ8i/JQfHT1/EsfJaoOP1WIuf63/b2lQLdr
dyuG2PGsjumKl75eLqvEp64tHd2gawE7nrU2xblp3avZ8aszA9NFr69qr6cb
dNXPLVOcHb+S/U4XVu0/HNtOHVlfbHL5Znb86urgvzPma23Hqx78dP6PDfEh
sn+kvPfeYjH+pdXrmttiqjzPr6rXDnk8r05Jlflau1IXmhVTM+I2pZ7fNJd6
cH3p3WWxDnV1Vzr3M4Xyqjff9Hx1NoNDfajSIdWSvwqobKl+6X5uqb8qlmH2
x8YtglSP3I92fl3IoYoOHHl+vp+/2pbuUrefczv900I78xZ9VERt/WHaw3R7
o1TdxG1jO70upt70Xjnj9V9R6vvzCZXyzHgfUXzG7z9szBitRnr+fTN9WS+V
Yk5E8KXcMepPrwsR1xuVVpnGV612pFesmjTjh1VpWjrUoCJei9M4+/NFXz7P
+O2lnOp67Zip9dwaqvqhjkoX83mpU30fbxzwuKHaNfV/aQfU81OVU1yp9XR9
U/VoW8nrSwPSqx5h91/tGtVc5QrMvnrL3ULq5Opg91dFWqmB82v/NyShtPo5
ZG+1cZ3bqIXNnxU64ix/X53ekXDVWV4PjznWt8//yqk2LdcunlstUbXx+6ZD
zaohavvI9ntvTWurpj2OXj8oyk9NGDU+f7687VSa1dvO/VIvRH3T+P7+9Fnb
Ka9Lk35p4tSrboajbweOaaf+GTxj6EinXqnTzolu/rGdetqg5tHENiHqZcqM
I3b0ba/+Pf93UM2iYcpz8auK6S9VUV+sqVCgtleYur0nS9Wuv1dTzzbOydWw
QJhq+seaKZPn1lCewdNP58zt7O/Wps2QZnAtNfj1tp3ps4SpdSVDl/waX0fV
jTq/qVPKMOXTv0DRtLXqqsKll/zX6U6o8ugVUHvgkxjVMj5l8b03QlXqiS8L
7CsdqxLzf9/6bMYwtankxqIxD2qrKZUOxJ99HKpKVd/YcaVfjLoeUjHXBJ8w
FTtxdI/qx1KpbJ6nlo92ct98tZr/2zS9unw/71c9nRy28cHEPbPzOv2Sttnb
Oznt9UzxMVfyq4atWi0Kd/LOt/tL7vm+iFIds6f0cfKKvrubDdpfVF3ZvaTz
k7JhauiHId16vy2teh/rHHzOybMH7Ow2pFhZ1fZMDs/xTk5b5IujPiX91eOE
kH1dnNzh7g/x83f4q5O/p6uRxsmj2zcusOl4oJrxqkrey2XC1Pt3xWdd6x6k
NlwMX9zayXMb11IHB4eqLaPvzPVz8sFRB+vP9QxTRz8GHJpR2ulPrCkypVnx
iurGDwHLmju5RZ9pHU4erKgK+v7kvrBUmCqw4FC7ukciVMCuux7NnFwqQ/kj
cZWU6jm9+OV+JZ3+2R8rau/5vbJ6eu7cySJO9qzxbt0Mj0iVte7gPr0CwtSc
gafaNU77b4RnxH87hzvf/+uzuyPcgrOrI/3fejdz8oYKnf749mYhtfTenb/z
O9mt/+9pH9UsoWa2d9Tc6Xy/NR9/H9RmUTnll67vtNpOHpNlQcuM/znUqWIJ
hzY43ydfQpk/By4NVtW6Bfl+dD7/q9pFc/SNKa+2Pq2wqZCTz1Zp3vL263A1
xzH1VHbn87+YsaHc5aNK/R3/7PTBEmFqa9+Rx+//EKkOtjs86Ufn76f+MeeZ
udHvI0aEd9o+xcnph9X9NkcaD1X0VKXvWjs584gKddo291YvGv+cy8PJjese
/bbK+lLqY5GDw9c6n+9d2YOVZ472U8Uicoz0dXKJtBVrZAoIVBvbp7o90fm8
WzNmXj/qcoiqcGxwz7+cz+f9pvvLFBMrqBrZU44+4Xy+kHuNfxgZGqGqFex0
aI0zP3vVfqi+6V1ZTZl4enSs83kvVe+x70CNKPWw0N0Fy4uFqVtvnufzcK1P
2ZWz8rIiYarj8SJe7V5UU543233rV9iZf4czldhyoIbKdPj5jZE+9nmrIblr
1I73sc9bLfSkcr6iPvZ5qw+qjXp1qKx93uq8He/vNi9rn7eaMCkq5EAZ+7zV
kPr5A/KWsc9bLXb+aoZKpe3zVseGTGoTXMo+b/XnMZdPv/7kvNULh/5+/9Om
EFW5yo1SE73t709snTRw+pfl4pzlYOvzvdcD1ZVJwUVyPbK/L5T5zmpvj3TO
8ee6doW3hpVR363ZN7B/qucRy5vePF6yQBm1fcCDtsfypVFZvN4W83oepFbv
ObKi59h3EfO2ft+z/Z0gdfPvxEm/LcutWuXcuav17SAVfG/e2ZeDPdTFAdOi
HQ1KqQez/l37ZENhFfbheKuHJ53+aPaAygdmF1ZVeg268/uhILX3j8eNCzQu
ol7n/rvNIa8SanrUkXHNB5dUlfuNnpRtY5AqM/14sQn5S6rCB4N371nuqer2
z+bXPtFf9WxTo1VoXGE1qmvJ9S8H+ansA4ocKNm2sDo2d3+jLn38VPP2E4eV
v+etcn97c+j41r5qzZp7Zx+dCFTHnucOipwUovyPbi/9YUWgiq6473imA6Hq
XqbDGd7/6a8qH7zW+OGCyupq/xvLltZ/F5Gu1o7h35+LVLeerToT/jylKhmf
P2fii0jV4YuKflvnp1Fr6vwv49RUUSpi04qjkY8yqenzUzTtVzRKTV5Y61qB
L7Io7+ztnxcu7bSf25U5sn4OlTA5aseH6CjVMeWT3s8KeajsP/nsHtw9Sq3+
plPE4ef51OSfIifVnRClit38u0PTE55q58x3ZXd/H6Uu/5Auy9FLXqrX+KxB
TzdEqUUdLpYclKuUCvL4b1/kqij1IOuBUQ2jneOV9ONjho2IUtnV3Bl9Jvio
Y2tLV6pVyVne03+T/+5yH/W8Rq7FA8Oi1JzfPBYdUr6qZ7V5//z6JFLtr/Ci
38YsFyKqn3g+ufqcOur+3J5FDt17HlHL40juJ5fqqAWlHi/6Jk9O1T24+Lxb
b6PV3NH3J7yM8VDjZ3/8Z1GluqptueIlqk3wUN9v7b2gc1RdtcDjj1K/vM+n
1k1p/efYiXVVuHvKTOXOF1HDwsq/WbopRk3+s+/cJ+WLqbBUl3deeRmjGmZ4
tyXH1GIqww+vPx5PGavGzt68/HFUCVVusnflfaVi1a2H7dy/T19OVfzpUrZB
+2NV3J6/Ejd97av8Mm9rfPVhrNrwekpdv42+6tCrjItOPYtV6Wv2T9dnnZ+a
dvR4yf951lOz16/vvv+nANWkRw+/4PX1VPDUr8cdzxSoFqWLv9FoTz3VflFY
x9Q1QlT3+S3m/OaIU3O+utTtvxvnIlR3jz+7nqivxrxtcSlHisxqXpmgZX3n
NFANAn5st/lqZnUn2PfB+UUN1NmnezKenp5dLbwy/ptapxuo0F0PN/W7m0+9
d/zmP6RXQzXgzyWFXpzKr3pful4wbmRDtbZetZ7jLnqqOblrX777R0N17uak
LSvii6i1tzLtK/N1I5UisGWuVO+LqwavF+RbE9BYlTo55nji0hKq7c/rUu5o
1Fhd+jB64aIsZVTGUnUun/+iiUpx45vFZ9aWUYcD/Ocvq9pEBZ3P/7HkAF+V
79i9+Z4NmqqF32/uE/LubcR/KzINnP6smVrgPr/r/pyp1LAs17b/E95c7Vv6
17SIOx6qZcNU5fOeaOH063f8MvxMgCp8oXPXHW9aKPeMF5deTyioGt+bfOXk
zZaqdPHXy88/D1Svm/SrV+T3VqrcsIABbdYFqWEem0b5+serD8Hv/8h8LEj9
t3HWDu/m8cprVXDa1FmCVckc/bf9+lu8ujn7X0ezFaVUvlvHWvb2baNicv4Q
1uvPYPVz1dRLo8onqPqxld938/JR3xUY+jjN0AT1ZGmTAge6+KjAfwdn/3FJ
glpf7fbUjBeDVY+qD7/cNylB/bGy9zu368Eqzd2080stTlDl//JJKOQsL+eb
h/0v3YsEdb3I8D6xH4OVI9uW2DcZEtWyLfXGr3mRStXaXO9+3yGJKt77rHe7
uqlVgefbLyZ8k6hGdFg7LzpPiMpya8W5LV8mqsIdjh+YN8RX3d19d1atJ4kq
689nW2ea5Ku2Rbc6V/ZDosrVrs/2a2VCVI95TQ6nvpqoik86+OzBnMxq6ppO
JWZ1b6v2VB6eO/apr0qs8Ne5xy3aqrrzNj39pX92leGbi43+/K2dWhNQsO7F
1dlV70Xdaw693k6NqLKvqMfD7OpLt9a+i0Pbq5PduvjPfZVdtX/6+7o/Ytur
0LAKQ7csC1ZZ3rXI1903Tg3qX21Ns93BqvaMGSN2+dvfe4pIc8GnbKY4VXLr
484V0oeorMcyZswVaM+XDm4xdPWQgDhVIHLM151eBMk8xo3dP1VI9ThI+jvm
1weNDT2fLjazjM/KngtfXfErD5VhT7VlflNLS7yI+dVV2X9JE33ZS3X8cPDv
15fs8yqIP3RsnqfLsfVF1bSFsZUKly4l42bWA5daX3LYlnklVD/3Vd/+uNM+
34Lxc/SCfPm+fFVKlezZOeO8acVlPpP1xwsmDtq24or93aVu37/4MKSzQ9av
XqlUsNO0a36q2tb56RYHFZZ4Bf1jwukvam8p56/S/FtjathX9vkTxBf9D3QO
eLovWPUfX3DV2uBAiTdFda3bodM/AdJ/E6840eLqvm2FwlXVzKFTPFoFSPyp
xu5LLZb86ZD+nfn8P6ePfLW/tVI5fsz4dtKuz8+ruHfOJ2hiXKTKXfPG6vNP
/SVe1etqmXFeh7NLfIrxfb+pmeu2jrfPoyjnyLjyv+H2+ROHP278feY8+7yJ
YtU7LG24zj7/oeK9g9ce/Gqf99Cuxw/5M8yIkvmWzWPc1t1sHaVuPdi3588K
PvL7jMendNtZ+tHeOvb5ACdmX03sV0e550hVYVyqWRHEq2R9dOdBa3Z1rat6
/K/DsrrueWS9Lfqv73rgsFeeWFXUc0iFDuHFZf0Az7s6YEdIVDV7fYDHvA4r
qmWqpxyrQipnzeIn89Grlx8furdxqDpaL1e7H5z9gd+b0BE1Otvfq+d5c6zz
OZB2S321NX38lvGvfpXv0zK/MmBQ9TrDdzZQHRaMKr7yfhY5f4v8rThwxJ5z
Sxuq4F2dz/+5uYCsR/DLd6y5T7MiMt//25fT+/+eppTy6v+mVp3vG6sUeX6P
PV3eV9YL+LZ53uaHW36q4oc+ped7NlOZG037udizoxHz56dY+LhtM5UyON/C
Kv/5qy9Xbzxw7m0zmb8qPzN9u7N5m6st03skfgizv8/evty5hzfTZFUF5m2u
ffhMc/Vb74fvY1451L7ZF1KEPmyusoc3CCr+S3a1O2TC9a2lWqi5Bct6zc5a
UNYjrOwetf38xMJq97Yd54etaqUizp8q032T/b1z6sv3bX4p8nR5K1V76dlj
U/cVUdvj04e+G95aVR48/fGcG8WUb9tle2Mc8Srtgy+qnj5XQiXm9vm346p4
Fda4zerTj+zvk9Me1b9TdOHksfEq/NjFiFdu9vfJaX+m/zY39lSRNmpY0YwL
Mzr9o/5F/2lbcGsbFbFmc0KOrGXV1iyDbldMm6CeR74Jy/3v8Yj6b8bkS10x
QfRenPdegVn5ElTPWX0aXT31m+zv3H9vwMvgw/Z5INuPdUn1sv5/ES83rtjw
8I39vfHsMcV+zLI5QWUP2zgg6on9vXDiLY3/zVmv6vUE9Xrmf/+bXck+P2Tr
nJQhH05m/Oz73LVjr3X6rpv9vdZVN5+1uuzeVvXKEDHy6jH7/JAWv/kNWPXR
Pi9kUIscZb++FKp+Pnb7/C+dYlW+qN8atdhmf391dN7z23otCFXnYzPn82tY
T7XIWbfQjZ9DVZYZpf95XKqeWpM715FKs4JUX/Ws6KUscWrKiX92bL4doorl
ThGaJmec8o/ePz31kVA19XiFNfd+jVV/rdt03sM/WLU6+7TAzk++T32jQ4rc
RcrEqbP521e94Pj8+wcXF95f1etqPfXj1mU78uUMVTUOOq63+VBPZexx+/7I
BZeM71NfiRj9q9fQca0dsp9ozMn80buiotXlU8/K/vjeS/aTEU/tXO14rfI1
Y1SOhEbhpaqV+Sy+2+90lftjJseqU08q1vqnjeOz+G6KkT9MLjzRXn8/Zmlc
4fqv7e9T9z3SfFL3vA3UwUaHN+Senlv2hxHv/TXzprJTfRuqDL+fGfF+g9dn
8d8mxZr9fLSYfV7GudyD2t5Ya3+f+sz+tR+uXbe/T5292KLLjb5prB5ndniv
Sf3596p/yzMk569/2N+rnpOz46/nhjVRI7vniZ78tMxn36/uOTb3svF7mqgz
+S7PbNLg8+9VX3qVY0/GIfZ+pzH+qy8O/rKZul92WEyvt/b6xNFv7gWu/J/9
/Wr2Ox3pm6bG3MvNVPWLjV/t3J9e9j9Rvjde6Tu8zy57P9SC8VWz3G7QXOXx
GZPLv4D9fev/Nv581m+2/X1r9LnbcP7daf80V+X2nv47V6fPv3cdmaXSV2Uj
7PVUBd7MrnwuQ0vVt70j/MKaPJ9979rtysgCV+Ps710/950y6kqmlqrzzk4H
Zvf3kvat74SDxSr0/vz71jsfftzT61UrtdP3a8/YI4Vl/eTuCRdXf+1uf+9a
zhO+nHNOg6b2967/3bBkY6mdrdWB3UFrEyra37/O7LvxjHcD+/vXlA/3aj6l
7+Wx9wOmr5MvbatNrVWpbnePf9/p8+9jH5wX1Deofrxa6PvL7ftN7O9lD2iR
uf2/te3vZeOP7e29eZrHdPv72aMatY2MOxOvonv2ahFUzv6e9u5OsV+lL1bm
s+9lPy3/dbcyJ53t8bN73h8mfP697OpRrRZXamSfR7Lw5vs3M8ITVHC5uveH
NLDPIwmu8vTg637297Mvbs756nTgK/l+NvUxdFfC9ImXE9Qp93or4vq8N/aL
pVap5m97cmVMokp1qHqXLx/Y38/+37JyVVuds7+fvaH4lOvXp2aT80gyLdx0
1KuR/X3smlXHFK98P1R91/fk6nuffP96zPKQOQPexKrEhkM6jncLU9MXfekx
dUJdderSxJU5XoSqj2mX5PPYXVe+x9Ji58/dB5aKU30rrV5bOU2Yuhnhd373
mWi1f1CV7N6niqnpJ8b6li5TRjV+lnbzptpOfzfHRLeMVUqr43cfzonyCFQN
C95eoypUVAeyX9z39RcB6rQj5K8B6ZXqF1Wz+9dX/NQNv1Ujh9WOVHdnnfeL
dwSrPe0Hej1yts/fz+tSqFKXYNWge9b8/qXj1I/Xy20s5vz90q1enL1/KVql
GtX1buhd137LmnF7zseo8wXz5rq0L1TFzDvk/dPBWFXs/PGH+9KFqYHrCuco
1itapc7WcFcr5/VXx2ZZ0uR4tCr1v/b5W6QME//N80j60tvPllY//7KkavOP
7qpB1KWhHb51jifyhmecuji3yjxq5dkU3YqqCZeflBvTx0d1n5Lv1P3JQepi
p0dFEuLKqQIf55TsMzhIbb0Sem9fnJ9K2LNGPejrrrK7fxfyZLBDhYx/uGtp
TA71z9hMKz84/f1LMRfehg8OVLNWZS316n2Y2rqo/wX/xQGqUdFjXwRHVlJf
xHb4Pt1Yhyoz4OftnU8opx8Uuy5/Dz+VLn+g79Qpkapj/p0PS44PVbk3PEnb
Y2g9NferzvNPpw6V9ax+pxpUSPHTrIilD8o32VbDoeqnfLx96bNHEVnaLs0T
3tuhfooYM2xCmysRHwv415nn7K/ih1wf/7hDCpW9Q3hNj2LR6rr/svG9t6dS
19O3HJgiPFp1Lnhrc4/G6ZUjU8m7h7pEqx0zbq/Y2d1LFax9smuawjFq08Tp
eQYV81ZfVF44s3XXGLW8dtCgad0LqxaV3m3IHB2jqiakLdp/eWlVcsmTNiW+
ilUpzo/N5Ne0rOrY6M7NMYtj1cPFnQp+XFhGDer4dFLzqbGqzKtMazc429sU
GW7Wbejs7zI0e1XZPShABQTOD/1mXj3lkbL7qROpA1S5kBZ3hk6vpx4V3F/j
5ZxnEW4d15TySNNAvXw++HrtEy8icrQMmnElSwP1bFa9PzYEuKnFnebuPRnS
QP2bYn2zJb/kUsGTv67jma2hWr/8n9ATe/KoqOk5unWt0VDtu/Y6z5uLHupd
jdLvu4U0VOfnJJYa6XzfLb/mXNfwQ0PVJmWjjXfvFFarThXrsr5SI5WvfNsS
Yb8XVo13Hur8e3AjtefWniZdjjv7S/cDb6/+1Uh9/KVk7+cli6mVT2+9+e6f
RqpToVanDlZyjg9OXe6eKktj1frtb1ebPiqphseU+DVhQWNV0LNi/Y6tS6tv
fHMuPvO0sfq3xMKwr9+VVeWXDb30/LsmqtMUn/pHvvJRB9avPJG4vYn6zn9w
jROVyqlM7ZutTPWyiepeY2aqe87xxfhdPatNdfaXj+Mz5rjyw6GIBY08++9u
00xVSXfj0NNmjyLcBqZeGv1TMzUs5Ypml/r4qyWnd22YN66ZmnZr1YxH36ZX
KX+Ju+47vrn6t9fW8hUruqsj3Ue0a/6+ufrrzaNRo5zlOuJwxyOLezVXS/8p
sWhCXC71/vi5/fmGtFAnV5682qZLgKoccmvR+Z4t1Mf+8/oV/TKfWnq09tnt
ZVqqgJtdntf6M596Xato4rFgZ//1slFWj6cFVLmq6zvFjGmp5naYMHZ4pUC1
aWbx61nGtVTLE9XL8wleatvaIxWHVW+lplTa6V9nfqBaMqGj5+mCrVTB9m/z
thgaqN60GHVs2P2Wqvjqo9Fha7xVhYO3rjzK1VrdyJbVEVQ1SB3IeOr8/Zat
VbYnN2efbB+k5u7e73dieWs1ttjd5kPOF1WdW/Wpc/yxM336D0fHOet3xicr
j4xMFa9avqxxdsSN4irgf7t61Oger+ZnKlO1wt6S6uOGihf/uh+vnuTxOnhm
eGnl5ujyZMSXbVT5oBze553+ZcZhOS++6d1G+Y3I3uNchrJq5tMVHf+XOkFV
bTT51xzzg1W/pVdHjTnVRr1sdndRy2nBKk27sErnf2+jKs7dl29Y2TsRG+ss
i3s1IEGdzXkk4/M/yyq/sw0deeonqGz3lpYNLvw8Yle1xb2DNiWoAX+9Gbcv
4EnEv03+9i20MEH1vxzdOF3uFKrN3k25oiolqh4Tv13Sa1Y5tXl/h7iGtRLV
7n3xVRvFpFNvx1wpteZIojqWseEFlc9XvR03uPnqJYmq27/dXq7I6aseP7vY
dfWCRFV3yb6afXJnVENO/zqrlmdbNfLbQ8ULhmRQw2u/WHU3VVvls2KW3/YT
WdXASxdveexuq/Y9P11wVMZsqlbNhMvND7VVa0JrZf2ppbv67bz7guCC7VTB
jkdiOlX3U3f+6pniZNF2qk1xnyUv2vipme3Obuo+uZ1acafCrd7O/iznvDMD
Oja390+Eb2p5079AnDrs55NlsI+9frBwm/J3yj0KVePu703xrnGMupBl7ZOs
D0PVjGxp3/83OkY9bT8tcd3JUFX0Qu01338XK+M/n6bH0wx9XE+NHNl13ssD
9v79uiVjzzd8GqrWDTyRfWCWGFX/56etNz1ztreLp2bZfqOuOpNYa2+qkSFq
zboa+dP7xKmj//1ZvfPUEOVzN3jiidL2+sURqTJtPVXEPn8wZGCH1fNqN1NT
H1f/2qNYmCqfvt6hnI1yqAYJPxc8VzRM7X2UteXVkV7q2Q8pl33l5M6N1a9b
L5RQvf6cdP1pkTD19tzOYvOCfNWmOsd/jHTya3/3tKp6gJrTpei3bb3D1P8i
C/VY/yxYjb465kJc4TB1enCGBWUWlVde/ZYcSOMVpv4K6fxuaZ1Kynu1v+pT
MEw13/53xmnvlHI8nrJn0hdhqvjDsvVOHI9U36efVS8qf5g6MLVTdJ4VVdTE
vimjBuUJU9uGL13ealg1tSD6cWzOXGHq5Niv6q5sWEO1vDil17lsYer6pX+m
/Femllp/JapLo4xhqsAlxyXPbHXUik5T4r919sflhrfqXyNlHTXQt9uqP66G
qg4nTmfOER2r3oys9236HUFqzvpxeZ47x28vzkbt/OtmkKr8/dWo3fni1Lkp
Eas8nOPFzTV8L83oEquWbfh3xrQz9vdWf+59xornjp6Vc2ahlBnVq95drPht
hundHmb8pYDqsKaAFa99P3Jn6KhyxVT4uf5WfPZlW+9XL0eWVSHdqlnx2EuF
5rwtet9fTUvf0Iq/fj3pzrVfZgapHW3eWPHWO2NuHppYKUwF7axsxVfP7ezd
bdGtiupe+P/LOvN4qP7vj1sKRWXPmuw7YxhjhDmMLfu+7/sSWSKEkrImfSqF
CpEshUKKUChL2UIqSpS1LNmXLL9bj8fH/T0+3z9fj3Nn7sz73vN+n/NeznP5
73qqVwTr+JgmgLXr17/rp7qx1C4L7GqwNfsixkuIAJ3hTfL7X5Dg3HbCuy3k
+eMlV0OSf5FA1Ilibh9iZw8z54mbJoFsyOqjdeR5upLnJcmnacANlv1c7oi+
2xvmJtKhAXR1h/RvIpowfnLxar0GDK99HWhEnidWRZbB2VcLvF6duLjITYAX
SrfbtR5owS92jk1HxK5terqrPFULFOnYyuLZCcA7ak1MVD0OB9krIt3YCPDl
Q/QX1+TjcK9zvVwUsS+U0EdkOx4H5u2wijlGAhQ/ojleelgXEl+pDRozEMDq
LnU21l8XDjv1BmUjdueSguQFSV0ocvtnKhh5/vISUyudM3rgZF5fy0VDgMI9
TbguM314Ym0XDYidvuriJP2GHohsr/xdTxZxNDtQ5kIPmLyFv+vJx8Vv+YQc
5gHdyaG/68nGweMneSaEgKtd4O96sv/imdDrJCl4nef+dz15fmG18GY3FoYp
Tf6uJ/NrQDvVOXmwGRT8u54cu/7dVRyjCFmXpf6uJ8fd0D/NM6IMl9bi/q4n
z50tzTnfBkDd8OvverJZg+bWnjw1uA1vjykjz4uQGlmfGaoO9U3cS9cQ/+xu
pVFxPqsOg89EP9xB/O3UV2E3G01N6O6mZG/gIUBwnKGiuoMmkIoyWSSR56FF
y7B8j1kbXCuHLWuQ9r1mC/7GRG3oLnPgfoD4V6qOWxHNyHH4mjfKzIq0Z5CB
8YImvw6cXvUgr6EngMRtDd6hYl1QnKEdLETaY3Qe/16De5FITnXJPhzRkQWf
NLPPMMGB+IgiPUQPHI0+8+0wL4ReoJ+lQnQtb3BCUZAI5EzoZ9xH2uvG13I2
TKc0uDu99BVFtIBcjSQpTRbG60Ut/qxvKyTRSIyQ8PBqOkvrLdJe9xuvFpMt
KsKFdx/HhpH22t9lNVuZqwJUlHwMTH/Ou877kcZWVMCTNt/6H2nkfU01KPM6
R4SQ752CzYg/OHPxFyWLqsKqmEi7FnK/Pe7rVQaqquCG/3nxBHK/Z5r3LqsV
qsKrN08qA5H2xxh7VQhQkMAodPJCEaJ3Ph5ru0NJggia9bV2xF9oPfdN/75M
gis1JjStiN678GSr+AoJeqwSfpQi/eOX2aDQ0XfqMDSpmnIB0YzdH7y0HDWA
1b4izB7Rv0d8xWd8NIA4asUzj/jHbSuKkdRsTXg2380Uizy/ZoP5dg0pLeDu
GbkkjOiXH4LKj2pqwebovQh25Pk9alVaJfpqI/3bjvI1pL8c+G0ncPO3NvR1
RwxMIHYGJur7qXzH4ckqaacD8Zf6BWK9iZwOMHUoLHoi/afIU7WiR806QGNL
rqbGRICyfjHbAjJdcO7Vyk6hIwBJ5rNR42U9oA9jEyhC/KWucXrs0IgeRJWT
79wWRHmmZO7R1WR8KM80Yu+8RSo3yjNl+nq6hIoN5ZmqTm2372FAeaY8rw+n
LVCjPNPyrmVWkwQc3Mrl6TKmRfe7c+ZurpTJmECEbaCphiYeFJtJwy1YEzg+
069E6YOH6aI4BTKMCQi5HDQU8sDDIxm3jwGIdmHFHZUYlYd8w57lCSx6/q4w
cBv/QhY9nypNdtY9ngHlmd6nXbKLYjOB0IUj9zzm8NAvFG/DTW8CV0fsHn2I
lIcTl9PrJSVMYKRVWGwTrwABidzxHaMoz1TEOMbZfN0YxuWC8iRMUZ5p1B3y
K5s1eNjKn7Id5zWBDzUH3vu8wwO+3UjVH4kvUuN0Bm1GFeBh8MincawRbJZI
xihPKEC49g1DZXojePRPYVBiFh56GtJ/eYsg7dG9Rn73CcrP+rtvrwgP3+0T
m3FCJqD0WJ18exGtx2XA8srkN6LNg2kOdOK2if/Ox1GSehOzJFAeqUn7q8OP
3sjsnjf75PbLa1ZJBgojdE4XSKF8UY+w1FrTIzgoqfKoLJiWg6Gjti52B3AQ
w8C2w52K8kZNM6R/3ElE613C3doFLwPS7nxgqQantX4gaff+3x/YbV1MJe3e
/96NSJJJIWl3fjB8R+xrfQ1pd76I98nZG9dfk3bnf06XbW0TW0i78zW3rQSe
l9aRducDpzlrs7juk3bnY2buUnq0RJJ251+cVcINJbP1dudPdH8duy41r7f7
+6Tro8sc0g12fx/VjQURtV8Gu/ebBb/NYimUr1lQMCao5IDyNSelMCc+C6D8
TJWPs+P2Vmg9rmvp1Jz7Ppnuthf3kcmjkWNmu/dToZzyDu5C63XyWbZwFsag
/EuRMPnpU84o7/LD/vYiDSOUb6na7BJMN2cPF0o0tqTW0fpazLTbJP29OEAy
1fizgw5Q4OAQOMONQ8ata+vVtI6QEyn+no8Z5Vc28PZ/5eCTB6szivKUn5yA
63w8zXMReag6q3aBfNQJZIoXZ3Rfi+6eLzwesLZ9mlUMmLnn3zwwdoabbDTT
p8xRXqVGp2yQn608zLxu0alXcwZvywzaFVmUT+mUfIH3uLEU/Nx3e8KSxxVG
/9F6uZcM5VFGctPmpZHjYWOpSa+VyRW2XNlz62nx4F4h80WY6AoFPflHiewo
j7KYJVl0ghsPgilN+Uw3XKGmf7yZgg8PB0IMPpcVu0KwgunTY1Ioj5I/Lici
Vw4PwbeqPQZZ3ODNy09u84iWX6qYf3rYDbp+SuznuEOH8iUp7nCq36ODdnsx
AZoAN9hmWO/JeXEA+Nt0T3xMd4PZTUfTS+Qoj9JXm74y8SAGXK8s1z1LQq4P
MEhpP4SBTZnCpbgUN6jeRwzWJaI8yrZ1BstRZJyEUMmRpDjk88qefEexKH+y
QO9IR588BhQZ8DGx825w8sTorYd6KG8ypKy2stwQ6Y/o9IdbVtzg+dl0h8sW
KF+yf40/4bwVHgpaPnTbe7mDTRu+gNEe5UmK7RmqN3fAw8fTj/p0B91hgXLJ
09AJ5UeGsKdTCTjjodEisjjN0AMYFRhKmZHx9PQ2RzxDCgnooo5btCDjiTct
/VmpKXUQDPu9FIpoATa6KhkTDdA6lilZi4yXd3pNtX73acLVpjCni4huiXlc
PcikBWw1ZIBD4p9wSx3y0dfasCSvelAM0VJrVoYi77Th+s+S/D/5xL/nA7Ur
uvdr0qM8Rw2f7AvFkijPcVv6y4HEP/v19LZarFmoIAI7GOL7Zz9bx7SpWi07
VBJwF3CIvijA/XxcXgB2vHmox5F4Yvxcw+j9VHFQS26VOoPoxDPOuZhTMvAt
9WrQAhJfzDEvFSYdxcFQx2lvbUR3zdeLjrQrwLjTyJUwJL7huZpdLBuuBG99
ojcikfimvT/y9Uukm7woYfheH4lfGn9c+T06qQqa5DvNRcj9WRdi7H7gZ4iz
yfLmxZIobzHctvjvfsl5zq6nGduju7xFqaSDlVxyJnBj8gaZhQDyPg9Xyc4h
4x9v1v7FRyJ4MKLA20wg+g6xfuz2C5S3+O95YTUN4bEbf8Y3b6XLQ9Liu+OJ
ynvGkg4Qh9CTX+mCRUaI5t03SxxZxOHNpuhmUwEVDCwnKbouI/mV38APHYVy
YslpTHXfJMpTjG0/5UqG5NdJCwUSOScOgMyYo7/1MA4s2l9kykRxgX2IoI7t
O5Sf2PFE6hD7FxzgY/e6ioQdgZTrOzbiLcj4vRKw78g3ASgRNr9b/hDlJX58
KXOkthoH0+vt1uevCYNgia4ldzYODmMPKaXtIM+r/Ns9g3uI3VSObYYoDtUV
Tw+/CmcGJZPnlNEGWNhhTZrNAFaoD7r5uBaDhUb5EFWxBTboIQgv/1qSgWdO
jwN/r7DDet3+1QdIP44zyGQ8ncwNMlWMAuxeKF/RrRHT9CIMA4vBqu/jeflA
08SH7ScHZrf//soi8cirQwp6D17+x7ODD+4Jf73WFC0NFXIMnnkOAtAVeYf+
eZwkLFYUvJMo4wcuSl27pFNSu+OTgUlCx+HzWOD9dqS6o/IXUeR2x8epYCzc
7HxIYfJtlbiV9M5s9hwW3rc4RUcN7RDDSiPcsMlYoA7NSGPlWycyLnNj2WPR
9cOMxgNBKv9g4RsVeSBlLRkcVPN5R52CBS5JcTeGNUp4rJYQdPcKFjILbnQ+
pqMB3vjEypeI/sJxKGF9YA9EpbJxpyKf/3c9i+fC9+3QJOTzl/a2pMzQAKti
7UYscv1YQWOlqxQd2KYORG8j9q2DDcJm0vQgqTR1uiQaC1RnGy+aL9LBPYVw
36pELOgpx8O8Pg7clZz9fJF8a+XAknKnCg7mfv8scUyWhUgdAimuFeUtpt2O
GPyCvL+ez1zDKRB/03/72IHhkgwoSwdRy3ShPEXJAU+eG9lqEDaEmUgTqyaK
athzWCarweesldriwI/ESbmrDoIZasCUFzvZtfOD+DvFJuNUmRpw91F43fEa
I75gUJEiFKC8xZA62d9futTA9GaAYUXHIvHz8vVrko1qsCHJcD58YokopvLC
yuC1GiiGns6g/rpJXOa+Ukv4jPIWrxyYPGO8pQZ7vN41J38jh8c6dV1Oc2qw
llXGpHyKGoZEcjfOHCDttm+pSVZnljAJiE+aGRJt98FXs3++iBwmgUmbR+tF
LD0kFEdtqymSgGee/6RLDjOwLPnd03UhgdsH2WhRCnZ4ER4rMXqBBDl2+2io
LLhBoEblKuEuEm+p6c0ydRyF+z9kFyOqSEDhnfXUeJAPmMt8U6KbSEATbRyo
Mc6H5E299C8RHZD3RIBpRAAKu2anniLx1/hoMr3qsgBsHVEu7UP0F50i6swF
IeC7LC5q3UCCu2ZHHT3WhKCVmYFSDdFu24oZvLMi4PXxy4PbpSSgr7gq5dAn
BgOCv633XkZ5i8bej7TtlZD74Qvv7/OWAk26sLQ7HKTd+AfXbjCVg7TnfYty
LG5aCjDxp1fvkJNATTvwcAAfBqKTVDIvVKmBbwdZ3vF9GHhN2sK6N6nBDcY+
oZzSReKUWd9qx0eUlzjZch4CbupDv270e+5KGnihPKh7/aQ+DA42Dnl10sLi
TZyzRao+5GwdFstRPwS1BeSh+yv0oVU0wyf54QEwCCukbs5FeYqVOK5PLNP6
cDVMf77HhAGkT1UVHenXh5LQRzkU9gwgURTbP4NofHSvltg7JqgX1A/U2G+w
Gy9z1Oc1RqoawCbLsGXOO2ZQob9meJDHABxGb0/pd7PBooA8TWmwAZRmbS47
+nODX6XImF+/AUyuT3rw9XHDtxfj5LJfUV7iLxmu8pU8Q+B7dGB05zEfZF5v
V6O5aAgD9/CuoWT8IN6mY+l21RDoyeTWZpf5IZXW9XxYHVqfdsjWJL19xxC+
pFBc6XgiAL4ZjGZbQ4bwMqPM+uQ5IUg1NZqwZTOC3/spO7JXROCgiU2TlrER
kMnx9dsfFIW3zOIVcaboeVTKeZPR4RdGMMp/2s/lhwQ8LMmXOlNmBCe4Tn7b
LyMJ9M+1ziw8MYK2zOyc8zgpiNJK75rrROvh4rSEfabmjaD6SG+D9LAUkCdX
dNF8NQJ8xsP3Jz2Rfvf6w8vEQ8bw89O79ZYEGRDmGVB8rWUMtwfuGzc9kQHC
dqX4fmOUj5ikc2L+9AtjoE2u7GHPkYUti+yvtY+N4aXOM25ZEznAqmrW+/UZ
7/rv09iDS0I2ZpCI01PPukQG1Od6DhQpmsH2VoY4zpUSPoTrZuUZm0G5YjuZ
5BUqGL/bin3uawZ3V5+aX1KhgmvdnE5HvVEeYs0VnVtaWWZg2bt5zahmHyis
j6kKxJlB6a/wjOs/6CGKHypevUX5htq2U3Fnoszh4v2QdH1Ddgjs6ntZ7G4O
O8GtOAkqbgh/Xb26Vmq+m6/Q0ibnnNC3hCRm3uRexD95uS6Hp8ig9WC7l6tG
0pSsIEaS0ylxnzjsw9u+6+e02u3vDhHW+Au+24BtU17A9e154r6w+5Ib1Tbw
2nPTVcF6mahWcfCKTJcNTAcMxvV7k8EhC3l9Sg60nuv+h+rPnjbZAeWFiF83
njHDW0x8snSSHQyG1a47ZrOAy9ba16YCxN7K9YqpC+UHji56Na2ly0LEwN2G
s4V2IJNJZ9SbKws8LJKZ5yvtgEdI755iM8oDpAwKl6x5hIPrXZEtE1JO8ELr
ccndOSQ+ic4RiIt3AimxIrJ2NXmovrxP/gCTM6Su2Ptx6suD0G2bm/zCzjD3
6ZkVVzXK+xu554ufLZWHGklMQCSlC7zdXJqIeyQPq6r8y5eoXeDpP3S0ei3I
5z0KtwjHXeBS4e+AO5aSu/WKNqfNw5jYJeEal9nBqAgXOKz9ZnvtK8rzE//o
44DvlYda6piuKD8XuCJkVf78lzz4ZlGePfHOBRqyDbJ2ZiWhOkasX3PCBYLL
6AJsVPbs5jcpDztzSM8ogPVXT9YpZ1c4xXWyMZIeD8u2Nbkkc1fgaJ947B4v
vZvfsOFjz70ykwbVJeehQ91IfjWYWDYtigc3Tz16Ur8rBNn7JX7sk4aNfspX
j4luwLy+YTyghAcTChq1OQM3+MhnPXJNGQ841huihWZugBkN39YSwMDN/NU5
lhduEBex41kmjoENz9V9d3qQfOR9zKC4DpJfxO+hjq53A7LImoV1XTy8G9da
Kut2g+UN2oKbX1Ee387VaZrPbvTAscx6VIfXHXpZhFcTX9ND2J3KB/r67hBz
0pYviJcBFHm1teui3MGdiz/YZy8DeJaHlxz1dwdKLTLmCDM80Cg/+O4p7Q6i
vsnCYUi+c3T2Z+eyjjsY6UxIb9xk2M1vjk1hlVJPMoBk9G3+mjJ3yPzGT32h
kQHevNnpXlxzh0EOxlYLP5TPtyLK97zeDQOnco7P3LntDoJGuK+tvhg4VqPg
3vYKse+9y3AsGAMHSeL88pvI9y/58+BPYmDaRS2X47M7OF78ufXWFsmvbkQ8
KrrrDiFFNngbJN8K3uFsv9XkDhj1WPzkIsNufrXRc5n92yADvG50jjjM7gGk
wFP+OdsMwE9fzqge4gGeNaL0Y2Eory881DdGKBQD17IwrGQcHiB55pavCGJP
bTQ69FrOAyIb3t33isCAQ5LB8QR/DzAKkfbsDMeAQY/va18LDxgYzfA/guR3
LjMqA+osHiASEmA/gOhblDxHaxVRvp9b6qmR+xgT8NAU7silxIMtbdSeDSS/
OGRaK3VrWWx3P/W/9byiKcUGmbZowE/2dpq/gCC4hjfMBdlKQEtiozpTGMrn
+7fesrHK3jszlRJQUj/84XgWyusb0CePLkz7X17fYhb22BNDLGjFrE6El7GC
+2xGzmVh7O7+J0EdqV9zZFjo7hSc2qfOCebVcVWFlSiv70gzX8Nikgyk/Xw0
HquC8tOvM8emW2vzwOvmMXsdPhlgy95+co35KOD1bANJ6xh4uscwiPE0kl+0
eZvGFWFAvK/E/lA8yuv7N79qij91NgaJT//dT0Yv7197a1UVPi1EM7CfQHl+
ugF7vC68w4CbpEldprnabn2jxoWwqL0RamDAwt/84bsMaDzSzWU5j/L6Dj57
pOgTpwb8QkZJr3wY4WKoZ9WQAQk4/Nz3Fisww3DoUdZiBxKwtuULTfWwwnf7
z0lmp0hIvpDQrrGPDcgxFDTuUSQozzHV/SXJCcJXGGO/XyPBj2n3xpffOKFk
omieN50EPvhbHlIRPLBn4QD+7UMSbE/c3f7SzAOfkuE9CxLPXdK4dfX9AC9w
306oFKknQfYF786dP/WQGe2EpP4fv4/wpWVeBIkH9xZvBPktoHy/TW4ukR+f
+aF1ZbqksRnl+YU6nJt/gMSX6aST+SKTgvC4qfcMbTPK8xP3nF07+IoELW6z
9w8sC0Pds3nl5GoSHBc4cZ+HXAT8b/lT/X5GAr4S/T3m30WBnfZ4LyaHBJ3j
egFnJcVgRnhfUVAmCc7fthKefSkOV4FXrvc0CWzsM2nPhUjA2zDbRjpXEgzf
fTNtnPmdaPDd9IxlgR48XaUTCPn1k5iJ67m/v1YPBs9Hzlw25oRHDZ32AkUG
ENotYC5bxQl0HVsDno9R3l/bOYmmuSYDyFvp38f4//h/TdlWdEItwtAsmafa
hzMC71PRnUHcIlB9zds6RNkIJMRpk41aUR7gsaeiL4wOygDTBr/xd2ljYMSp
3UrhloGem9rnqrEoH3Cz2mc9UsUY/B90Ke8ooLzA8V8nTvkFovXX6mSyx4wy
0fpq/86fR1mcfFsk4QRPs51qku6h/ED3/DVKx0G0/tq/9UX6XnXWJIW5wNbX
6JGVDPLd8+b/1uWaulI+02SN8lkafhhhZAtcQSdpPTDEiX73vPeiXOYtfm2G
/+EHKlwFJ1yOO/jWPB0yckX5gme0h8S6TqE8Qc12kSfZEf/LD9x/Mecoj7sR
uNy865FdgPICPcnurROzFODkDw6lOnNjyDFPfDBaqwDZY+W8FDtIvHom9m3a
KFrPzxyb5DeQivKZ/q2XWXHhjArRwni3PuFzq1xRSz4TeHKdQ3Jec5h4wmG5
MdQRC8mi4+MOQ7+JBK1XXkvkaL1tjqeDJ5U49EF5eA+PohAPPJG7R5vxG+X/
bZFRGJ/jMoRX2v1zUjq8EOm0PzNP0xDeWszSveoShWP5RVxH3P8f78/es0E5
1AimfGPa+s+JQ2z4oqxFihHobkaOjS3KwAQn1ZUfdii/z40kbyOP/J/G1c7w
jTYs2FlqX7GKN4ZX8ksVj/XGiHG3BdfOfjOF/cqZxJ+WP4gWfT8SeaZNYbPK
tJOYjfL7CnQbimn4mWC2wXcP1SLK62MWsq6l2m8O1sq0ymlKrGCWeKDqmrg5
PI18bWTqwANdEae4RodQHp+n/QeGn+vmUDbCT9siwQts0k049SMWyPiTrR/p
zQ+Yn8+vtp+3gJD15odYDgGwpbqocCzPAmqzYsdf3UR5fNvvWbWyaTBwz9bb
qeUCyt8L4lJvtKqyBjWOVuuFOxhwzuXji5pC+XsvTvBG1TDYQH65m6ZvEcrb
ubLEEvvgw14QKPL79tIV5e/Jnd+f25ZgC5Fl3IPtRrQwRv7wlOJjWyhUTyca
fUX5e6faa5dksbJQ8d2r4pUUyttL1CB8MfW0A5fW8cQtFZS/98DkqB/f/v/w
93hlIWzuyIkqLjuwemJtLXaDB3RK8vtUWFH+HolcFi6oOYCAleNy29pRoFyP
8LgejvL3jtmoDgdlOiDvWbRBphDK43vPcmS80wcHidTBbbmPHcFrtVQo5DzK
30u+4hOz6C0Bhz93SVtKuAChjUbPLeN/+Xoe911FR6lcoFoybGrxzTbxRLPi
RCMnytO7WzzJGyPlCt0qH0lFMv/L1yt6kdo4vNcVsDo+GfnvDsFpKhw+7Zfb
7nmUyXOrG3wc7hAqp6UZfhjl62XUFR86vqIATZWHTj69bwBDouk1vWQEuGVW
GOmeaABk9d+dxSgJkBp+v4bezACy+sfeEskJEPqe4ddoHMrPu7OqJk69aQza
o+2vj6/IQeSmxsPLC8YgDnfqbDlwwJLw+VDtmjHk75SYcRnjoOOzRdExChPQ
Chvo09bCQR7Z5uMSMhN4W32NJr4VGX9Ywh4U2PCAI4nL7meNMBj0ezq83hCC
j1SfhPR9GWF66VTpujcWoi6fY6zbkAORwm+X65C8RbJWrodVVw4GFNNpFPiP
gfGFbr4eJ6T/bm60eoAhwoYPh8p3PBb0Nb/bkKRUoe1zR/67k/Tw+T2xK0CJ
BHson9BSDu8BqRKyIEdtfXiLD1ZZDlKAa+9i+k3vIf5P9eQSO+UGsciD/4PJ
ETOYuSUUOZ7PB8VXC1qLHC3gRcyanEGiIOBSWlL4pizAifHpg+AKUfhC2/b5
4RtLCMqWvVeTJQkmRK/HMa1W0Bg/AEWfpcCuQW1/koA1/OP8QrJy/jtxvTwo
eSreBnJuPrAlt6WHSmHaZ/NkdtDLQyn5iIIJcpmiOI+Y2sGP03U/6yo5wLa9
21nU2h4yg6iG3OnkYFbJqjcd7MGmgmAjJsENoqSJGJkqe/Dw6Xjb7S8HummH
Y3l67cFpQq/WdFIMJIzxlOTpzqBRFtSwWioOx6kSHD4PO0MIpSxtQoI8jNR6
uuzkOUNA6Fn6RNcR4jWL+mC8jQsYf845lOHxizgr38WnjeRrkQe3DiY8l4R4
boOyyLcuEKRDadv4fi/otfW8FCx2hc8Tyi8HP0lBep2Dk1ioKxDs9WUqamgg
wS9Qfe+KK3Tq875MaJCGvJuW6/ySbhAWW4cbMcfARz9c62Frd7i9j+HA8jjK
42J57lr1Z77/wxvRMj/ZNuKFetO/Grvza29KWzcx5/St+nRJAkh8DjCnYqYE
/vxTHCcRO3t3h52QKhkoWJ076I/oGi36LztDZKDMvTQVhVx/S1JsqfYYG9C1
pWrZI3YK65wOXC8rSNooqNkh+ngnhcUYz2GI5JPM00Gub968T2gO5YfPjQ91
FBH7+QiJt55NfJDrbWhKQPRJZv/NSxN8YBkg0bolQYDyqW9m1V1iYNIa6rQX
se8dLG58wi0Gx/Z+id6D6D4pBaEEFSTuurmWkYZc38bMe9yOWQYMPTOs67AE
YArJLdasRfrhM5I3ahHt1qXQc+INBuL+OZR3CLmeszj/wreXcgCueYlOiD29
ZURry1sOxApLZxwRTQ+2BoQQOXiFIf7j9Wc95nkDe4CfAsxuJ5dMyxAgXDXj
CxWbAijUxJL+6K5y2uhsHgXgeBmxfUuMALejQimoOJQgZmGs2QGxm479xPo3
H4M+ho7MP9p+XZPtatsx4Ji6xntPFNFVd+Lzm4lAeWaaywhDgG+adIYfA4lA
3LhpGy5CANZ8KcnCalXITGnBuUoRYGj8skRRsir0lAo9//N/FBwuXi6xR+LZ
UDWSCvJ9WXK3RbqkNEDfxre2U5AAOGU31b5tTfAXSCJc50We3+j4hm+HNkhb
GZRS/8IBs3dPabXNAVD5jvMITRGDPmlmqyUsK2BT2tW13otA/zxnaFAmP/Bh
sm8WfpGFPTMleiUaykD+bmZWuQ8LHo1awmcDAcjAlT2d0pe4wyT79l6o3m69
o8/P3h7x/mgMP7mCWFxOy8GwJccKyyASD4jKX3S7JwfqcxvhOd+NYfJJdPDZ
5CtEO3vt/LUaU2BYtKVfaZMDhmeJj2VOOAC1v4DryhwOQpi8BckSnGBO+LFe
OkEUGKyk6N8dcIaXVyS+2g7mE2cM/FesjrjAU685jv55ebieVh9Aeu8C7rqB
Tx440oKCD8tilIYbXBuO72usUwB27HvLS5tGsIwPlTZ+JgM+K9yKqQ02EKhT
41FXgwW+2QfDUmW2wInz4DqhzA/8xvIlZ3UcIbDDe1rcWRC+XrHO5GRxgp22
0pgxJ2FQ/HzegTHFCQa+VXbrmYjAMzbyGwbtTkBTpXCm6/Uq8exLVfWGjy7Q
PEDFZiVAgCr1Tw/9PqnDHiUFuaCjBCit+DDU+0gTGHk7FO5yIu/b9zWB8wna
YNYZ1JfOQoANVbOxVCcdwP9wW3KmIYDiWJ7rGRo9yJ976zV+gADm9nLqRwl6
sCT+4VOhJMoXsCGaCgYg/vMjh3kmSW6D2HHkxV89JPOhGiezTtQj3R/5s1+R
DqfyHfOJCVizJv2cELtbuELPb2UWmNOb8XZENJl644nWJWaoPD3cbv2n3krc
J09zDV4YVN6TRUTs3H6HcVsrvCCHKSpUQbSCnNMZqz5e6DCyiGBCrh/83SFC
nSUCl/6h2aFD7L08N8uTDERBrrqM54+OWa0b+iElCmu1JLNy5P0OijEkK1mR
hn3LFAEtiH8+PXo5rcsEA+TXz5Q2I3quR7CCUQMD9m1dLHLI9RShhJXcAlno
4gg190Ps+hwJEmzbsvCpSrrmBKK3fafFaRdlAUOyL0xD/HtiP7PWpCkeRITp
YzYR/5Rd1BRiK8ID9VkLlj/aKD0wwesuHmr9JeZ7EP+eE/ZPFCQ7BgxNMQeD
EHs3k7VGs+kx6N94/TkQ0Z30ntl4o2NAc3ElYRzxx947YknWD1WAzNlV8yLi
31fbw3KtyIjwUOmcaRvi3z/jrtuoSqjCo/vzRzIQ/+5Mig/ot1aFiTrGiT/7
zZ7YVoYbUpDAc1wST0L+n/bMzpSKHAmUDvlV+iDfn8QYHHH1kAa889/RnUH8
/WBu7ODBaU1gOnEpPhPx95Rvd7Rp32jv8gTwMY4TQlIm4BpT/K1YnQ00vOTl
Rz0NAPNS1HefjxAEljTd12E1goN9oVF0WhgQzVqUKqExhtylIsfDlPRgLrOW
NvncDAqfRzc/s+ECBhcFO4+75mAyRT1yQZcMck5Ucfqy2cLzvFwBJwsR0KTq
NS2MtITiqpuaMlYSoPumNc0qwAoMRR5eXZGUgR8ZzIPrJjbAq6LjXqqEhfcN
e4oScLaQ1uI2icWwQVDi3l/MO3ZARhgl28vDB5kytMJaww4gc06gLdNUAHj1
qbC+zxxhLNByu8ZdCERjMOE0Rk679VwZo/mEUrD/e/7kv+vP/+2//nse+b/n
Ff7b3/wfuUYnYg==
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNl1tTllUUx7coj/CC78vzXkJ5yAMqigdQEVBsbLIZ5SAiSNlBy0wU6AOk
HPwGqHCnpl3JjM0400zqV6jbpsN0ZY1ddFfN1FX9f6z/G1zs2WvvZ++1/uu8
n00XJwcnqlJKw6tSWq25M0vpSnVKL9ak9Ex029qUrmq/oZzSAdFdpZSKdSnd
qUlpn9ZD2v9d84L274jeIXpDMaXnutsu+prutmreq3FJ9EudaxF9SHNZfPK6
ONeguVQX8p5mwXtM56dED2i8IvqO5tsapzVGNUY0Dmr/i5rgOSJ6m+aHWvek
+D7vM4NZ3OfuvHDu17lNwvl1FvSsznxsrOBEJ+gp0ZnOF4RtjebtxTj7t/A3
i54RfTGXXNHTot8VfUY8GzV+lQ1vGutvop9kYR9wToge9/6M5rMaL0Vf813o
MevepPO7Ne8yz63iMScdv9R6azEwnpPczaInRf8lbEcK4a9xrW+Yzy+6e11z
Xxb+bdG80/td7MnvrdVhe/yLbbaLvlUT2NvFq1/zgRT8+o3tlnlCg73VOMeq
g8Z3jzQPa3TAw74ZSHFmt88jv8vYiEFikdhkr9P7zKzByflu0QrdpbjAv2uw
RRZ2x7b4fdr74JzT6M1CJrKJefww6/O7fB48+GTG8dNk+qV9ioxDlsXd9aKH
HG/ot8sy4N9qn2KH+5rv2RYL9jv8+3y/37F6xhheGgc2Z49vrzoXBq0XdsH+
jdbltPFgwxb7Fx5D5tOWwgb4E52ajGHaMQZP5DZaVqPxQMNrp/Wa8F322Wux
v/psY/DgozftL/KSeCI3id1ta5fz9IHjgTz+KoscOa4Yvpwirz6xjbDPiUKs
yT1q02lsliLWz2DHFHVn0Ota5W6P7gwTS5rPgt25Ts6TP+QKNQselRoE788d
s8hYsH+xI1iwH/akflErkYk+W6lD2N940Qs9eq0D+UVuUd9OFuLcrL+3me9R
jS3m1a3xmsZmjcMaGzQ2atwVj8zr7eLTrFG07HqNdY5bfImPZh23xDl19apz
mFiEB3p2mvemFPgGrDsxJRcuxRV5QxysNqZajYLvSLVUY7w1/jbtWF2qXVrX
GR9yMt/ZYh58W1eO3lDUfMQy+H7DOUseUQOJoWb7ucO2GXZ+bbB97jkXMq/R
ARvcz5bP3vX55kpcpojHxSz8/6Fq6ymBu5BH3d1m2f+Uond0liK/Fhwb98x/
vfk8dK0YcDxhz0XHPPvzvnvQ+B95f9R3R4zjkWNx0XRlb9HnH5on598T1reE
+bzm1bLjTtHH8oj9LsfUkP3NmhwlV1c5p546Pod9Fj+Qu/SBpZz1HnFKDp1y
/J6xH+DbbZ57qiM3njmn6C37nQM/N0TelYRxVPjeEM4RzZ9lUeupG7fLYfP1
xcjP5841+tKOFZiYjzpu4X3FOKkn6EHtpwc02bY3bbc+71OzugvRO8ete4/r
BXlFfpFT1J4Trk1v51Gf6P/sYXPWzKypUe/nMfNegMdSrmr9WPj/rYm30ZJf
CuGTo4XAMeFcbvZ57u00zfuE+9SwVQ1Rw3gL7DD/ovl1WxdscdJ1ExsfN85D
fo91aG4rhY9/KkecDTr3efNRH7tLUQduO4/2liIP/9Q8XwpMvAfhjYwpx8GQ
4+JsHu8T3inHCmHbSdv4mPXl7cJedTn2Xvc+2E/ZntgdGcTdUB5nfiiGrl0+
/53foMQXcY/dvtVeoRzvzMli9AXedZOOEdb4vKMQb9xKnZ5dYb8Z+7/ed7l3
wra8bF1qzfNwId619JP6crx1Py1Gv4CuvK/BQ74t2IZVDZEzL/wOB88+9yR4
trnf9FpmJf+Yebv2GeNlx8C4ffBRHrrwhu2xnc7az9ec913e4zz2RudZ+2/c
59C71ro/dvwSh8ftc3AQQ8RSeynqxMiKWjJsGU/c58nZftsY3HscVz+WI/6u
puVeNOZzh0vhg7XlwEzvoeecc10nr/8oRa5UlZd79v/vH9sMGcgilqkl/EuA
iT7VY2zzrqlgfOC6C5YvXXfIUfKCtxd9lnnCdLv9gbxZn6EvXHVfBs8Wy8FO
9CHqJ/nX5F5NX5hzr4YfdQodeF9Vei3602s3e02/PW0MBcvg213LJ39b3U/p
ywesP/9w5907PuBfJo88HM6jDqErNXCPYxMM3xejZg3m0cvBslFjXynqNvU7
8x768V9zxW+Ietuv8i7YugLrEccLfW20UqvzyIH+PN6l/C/xHsA2c67tyOm0
HbHfqHsr/yzIRi7n8UHlX2bK9m0xtir7aMr82Rszf87f8P51n2efnn9uhX+v
2ccX/H64lEdvoza+k4efutNy/HYZd5PjB+yHnXtLOWrMFTzIxgen8qgRvXn4
84Z1/Mb9oCePXkpPrbzPr1uXTr9h+CfutQ2Jsf8ASgd5uw==
          "]], PolygonBox[CompressedData["
1:eJwlkskuRFEQhkubrqud2+fujQm6WXRMCYkxsbBo8xBDDDHs6PYGhkcgvABr
Owu8AguJGMKajR0LVnyVWtTNX/XX8J+qW79emMonRCSLlWAuFokrRTrLRSa8
SDl+Ev+yTOQ9EnlLiVyDPbFkbDmae0Ps0YlUEHNw3aFIDm7XWa72rIJbJ3bA
nBz8BngAy4BJk2o+o95qr+j3yqwott5dzEiBu9HQCj4PRB6caVJtGvsAd2Jp
8Bn8PXw//dKhzbh1VqO1GXK6yH3C74PrxSbJrcFvgjsiZxu8gx0H1rMjsp7a
W3Pa8BNo/ATvob8IXIrGAjjkvWXgPPknge1Ed7PMjH34EeatgOe91Q7jL4Ab
yM/jD+HP4L84w4PYNP6Wt90dkrPpTaNqbURDFj2ChovANJ3iF+AjZqewythM
cQ89xqifwvpDm6mzS2LTrjfviewGegvtEcKNe6vVf0D/Bd2Z7k57PFP/E5m2
dub/gte8vVVvvgpe8vZW3cEiuI6av8A0q/Z6Z7W6M93dd2Rva4b+At8Rawnt
pnrbRGycxorBc952pTeYBdc6u7XeUG/ZG9m/pDfX2/8D+5lNiA==
          "]]}]}, 
      {RGBColor[0.4904290523370268, 0.4760613282973577, 0.5307701417571472], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmXe01MUVxwdQHuwuu/wWTawRsITyALFgV1CKXR6IR1AQ0SQniQqCKJDE
FEGwxEIUuyAIGulgMBGJBXM8KoL0KioKCCoiegKJGvP9vPvd8/xj9t6Z38yd
O3fu3LYtBg3udUP9lNIc/TQQvDqX0v8Et6qdWEppQcOUVhVTOqBJSj8tRP89
4YsEx2nO1EYpVVel9E/3gXcIni06J1XFvFHqvyw4UvC5fEpvCF/MnFLgnwge
JdrzhffVeMdS4Mu17z3q36Q2XK0mS+klja/V+IHioXUh+r2z2Ge9xnPllMY3
Tmlj0+BlSAp+PlR/ifoH6fsMrZ2udozWzxQ/b2p8o+Z0KwW+Q/DkquAZ3ifr
jC3Vn6N+e32bJbhB9M7Rt9ZqbTiLWiv3J4pmF8F+ai0LsY5+N7W2atVqXb2O
/v1qt6iNUHtE7TXNfzRFWyz8sRTtdeGPC54iXv4lfLzwr9TeFr5H8M9qwyyv
8aaHzCc0ijWcZ6/O/WrD2Oc+tZu9972WMf3u5rEd96X5QwXvUitIdg9Itpua
hrxehVfOoTPOyMedrlVbhB6orVF7yf3Vagvd36D2itdfqLu7TbCxaF8sfLTw
vPDlgi+o/V1tXTHumftfZ9ovqw2Qjl2l9p3wbdZd9HZ4FuObtW63+YCv0yWD
i3Ih0/WmAR9rTf903e01WcwZJLjC+/9DbZXaiz7DSo/R/1jtLe7Abwa4RO1U
7dUtF7Lerv47akvN5xL3+2Yx53LBFjrzJfAnHtZqTU/h+9XT2/C6ZWo7DN9V
22mInAZo/Xmi01/wtKrA0aEvLHfOf3eKe0Q/PlJ703x/luKcnOlT06O/y2dm
/ef+Tr+H9aI9UPtUq3VIoePoP3p+uM5ykfi4QGdZ1TDwejrLEdyx8AtLIcen
1CZbjpPcX6n5F2pO0vzn/QYes7wnel617utrwW9F59ByzD+/FLoFvSkp7EMn
jY8VfmkWeMti2AnsEraqjfqvC/5Xa9sK3yT8m1LYia5V8bYWmd7TagdJxx9p
FN/aaf63GrtRtP9mHh+3vjxpXhvrDBtFq5HgNr2ZNcJbluNewRsIbtX4auHN
yyEjzs/Zd2p8g/BqjW8RvkL4IcKfFw/z89GHLnOqBHdoznrhbcrRB28o+GwK
G3qv39MT5m+B+aU/PYUNwmY8k8KOsIb160Rnf8Fp1iG+zdRYC8lAoqr9hr5y
JuwLdgY6f/We2JjnDCt2rj86m8LWXOk+EBuKTR3h71elsF/AgWpHVoXt/VEK
ezzTOneidPAEtauFX2EdhNZTktOkfPgSdLaZ2gEp7K7ElXR1qbls1xGFoLm+
adBfWgxbeIX5Yh/Oyl5tvU5irrX1JdOq9lgzvw32OZCz5cJOYaOwy/1MlzPh
D7C12KMzqkKH5qewzeg9Nv7MqrifZiLeW3R+qc13S7e/UHvRtpw3z5qh+tZP
c4YILm0SNujhFLYA2wfNXU1i7rwUesd7rF8v5AsvPSz7ruavv++EPrajr88w
OR84NuVp4VPyERt01P7Hqp2r8evFx2XCfy04Jx/vijf1UdPQ88PKIZv+jjkG
5cKGf498tOZ84QMFr1W7WPjPBLdJ4A/oDVZp7eHF0MOzNN5T7VTNKWq8p+b0
0XhNKWIEbAF2ABsAjq0nliGmuRE5iE4nrT1PNNYUgw705lpeyGqW4Ga1mWr1
xP9s8VBfcJnmt9f8czT/gHLYiAMFV2j8OI13507Uugu/QrBPFrHRZVnIDB6Q
W+ti3PUHonmG44+sHO/zL43jzaLj6DoxSe988NChKnwyc/CdG6zD6PLthfg2
xm/9/sZBj/gIHL+Lv5prfcAfzHH//aahf5ubhg9CR7BP+5pEDIFcsKfItFcW
MeFmy3mCaI/T3g82DvxB88AZwLGNfOfb7SnkPcFzRheCP86yyLEmNJE7OHYb
/V/YJHR7nPa+SevvykLP0LfBgmeVQp4PlYOvWaYDnG38PfF/peYPy8KvsAc+
aLP3mukYk/mtCiEb3hzy2am1Q7V2rNb+Se064bcJ/gE+hP9R8EPNuVb4SOHv
Cx8o/OYseIfOQynub6Fx9oA/eNkkuLFJxF/EqjOsq+jtDMeuxGHc7yVZxLvI
7aIsbMNuy2efbcXD5v0L8w/c53uE/ibvtdE4e+31HNYuNM2Kzdnrcfhg/Z0p
GjTuMv/TTadCF1uBTcI2cW5syEbPgf5S0/yqFDH316Xgb69t1hLrKTbyHUNi
hKWG+OFOfiP4AnwsMRV+Fr3okwufPbYQ+ofuYU+xqxuL4WtO8Pu6IYu5+HnW
sf6bFPFe31zEUMS++Fd8HTEBsQGxODEEsUQXwRpsSS5sOPkMvuiEUsTKrMM3
7nDecY7gzlLQGVqMvIj8qLPtAXE8PhYb39c+ZVMx7Cr5DXtxFmKarfY98Lul
GPECccRHxbC92OCPixGffSx8azH8AfEIdvga22Ts8SDj1xrHPo/IYs4HfkP9
zE9f48iO99fLZ/+F5l8i/OeCjfJxT9wRsRf8lssROzAHu0Oe2NNnYT04soJe
Ta5urMZz8J/PNIoc6T+lwPcJ/rsU99moHLEzOkLs867hC/Z51fZZwHbG2xsn
vu3gb/j2CaJ5q2Ct428aePOi53pt1yzwd4vRxyeyz5JixBNnZuFzj7UcgB2N
H6c5eensd6XwIR1NE3i851Tl4xvjV1tvodcjizkrbW8G+O7I0fGb5MPkPVNT
xHTEj72rImbcbt+KjyU3e8b6TZxNvN21FLEzOT+5ddtyrL1Y4zcUw5+0KEa9
AJ92ssbbac6l3GspYtJeVXVxZU1VxI/Xa/7lWntEMfKxad77OvU7C/6kGDnf
0+b7xlz490p8DX1i4Q7lGMf/t5F8Wudjj2rBtvnYG1uAnuPP8A3oKL6XN8Bb
+InGDtPcQ/Lxlsmh2Af6w3Lha3L1QsboMbJnbLjHf6z1h2q8u3i4M4t75D7v
yGLOp8IbaM7+mlNf8Fe5yPWIofEh8Iicziv5zWp+r3z4e2wmMRf1BWIwbMkk
x2Hwe7B5xv9wbmTc3zkxOjDMPH4pfGQhahPQwtbCDzH1Hs/70m8Z+8G7Zpzc
m7wZX90sH/bzTNumvaVYBw+cuWk55pQEm5TDtw8pBn/M2WO5sYb5B1vm4Lwb
9Bvdho/BucjjtxdDX8mNPinG3X8qfEgu5nA2cPSjsc+51nzjq4d4zmDjzOlj
W/6tZXioeUDmNfl42zxzcgbifWL/tu63KET+MMs5/rx85PfkZ+DkcSWvI3cg
P6j2enIObAk5ArlCbT6dIg/hG+Pc/3zTYR3xeTfboR4/WNPD39p7LbYK+4Kd
eacYNMgbvzeP840Tk891XM57QP+J8ZqZLnuSr5G3kb8dXA4feF0WPuow6xs1
NWicW4o8nHx8VBa1DPzv74QfrTmtNP+ocuT/5B2/zaJGQH3gN5ltvOtIvAvm
97Tt4I2PcWyzyzEMet7Gb5z4gHiA+IA3xHtH/1uVA7+pGPOwCbw1bBa2a7Rj
t2rbB2pPxJ6DNb+h8LzG9y9H3oLuU7siZid2J27h3pEZd0QsQ0xDnNPH8cKW
FG+QN8Rbmp0PWhv8Bnm/nf3W0EF0cVQh6qHQaidYXYj4YGeKPLtBvbq4hziI
WH5qPuwvNhJbSd2CWJY6C/UVakes456p82B3oTXPulCpnwHp4yeXeQ94fMp8
rrMt4G1RE6I2RA2JOhG2slI32uVvK/ydPSt1K3ihJrXba/iOT4Cn5Z670/L+
yvtV6l/kIsienPNyv+8vTestyxgZLvGZKjW5rf72pr9vsey2ex4yn2KaS73P
9lQXa0KPHGqBZUMu/by/LzIflXrnmlRX71yd6mqHq1Jd7XClZUP8sdyywefh
d19J4Xdfc3+ax152W+97QMb4JXw3OoJuUZfFP6O3+HzqqugF/vmUUoztV454
iLjo/Cz0ZZ3PcEw53siwYthJbCSybVuIOi/x6BSfuVJve8lnneizUQOb5DPT
n+O7QfZzfR/051mu9J/0uhesN5wJnXjM8kbWT/g7d4CtwE4QExJHL/6BvJAB
72uq5cX5Zlg2zEFOc/wOX/Hc9akuLlxmXlb4bnhb0/y+iC/powvQgBaxEb6i
l3009h07Tc2kvmu4lfcHRLePrcRr5hc68IEt2W79G2f58o5nOR9FruQv5IrI
m9rPa67nj3HOjSzxB9CnzsR/HLP8Pwf2eLVrj9jgVbb92OCVtv9zLR/ORe2n
Up/rZnqV+tAAf4M2e5DzkAe97TrPbYWoSzxhGWKnkBux+uv+X6PGMiP/pb5E
fbFSqwaSS2KjkAk2drrzVHLNk37wvxN5KP/zEN9SZ7vHtDr5PyjyfXJPcldy
TOph1N0e9Tze3jTvh95gR+80RN/vMOQ+KjVN9I5chVyEmid+crq/sf+zpnu3
aUP3Xq/jG35yheu9w/2NddjbiY7rzrbsqRlSQzrNZ6BOgnyRKXWeMZY1ee1Y
60GHUths4ujjS2HbiLWpGyEL5E6N7XTrEDrOPXE31NvOsIwqskA2S117Ye1U
j3E+6v/Ej8Q5xGTEZu3LdbJj/WzXYdDdLlnUc6tLcYfYpSGW7zivmel6D/q/
rRj5PHV07Df+dYtlQx15uPV8hvUQewDOe8eWYFOwl9gU/M3n/j7TdgE7hy/C
1mFTmUu/i2VPvD3YcTEx5AVZ1BnOzcKP8qYrfhX4mdcNtz5Watkj/GZuMd/9
/L1SWx1m3ccXTXaMUeP8ANrkedAZ6Pc3wrSIn4ml95jufdanW7OIpX6fRWzY
3PEhMWtz171r623WJWwEvgSZEItNz4fNr60XFurqkeCjfU+8vdr7zcda7Abx
y9H+T7e3cxru4UjnHZ1NB73FXrGunddy9lGOf3gLI52nsO5I/5+KL8IncddH
O15Cv5kz0vRZz3hf8zPKc1r5XXG3Fbrg5I7oLbqAbFpYVm94v8XWYWqC2BNy
AOwgNpK6zHjfMWeqfZPJcrKsqOeSK5EzIVfkS+3iAb9h5EGcu8H/7bTyW77d
utrG5yUmXuP/XEb8wPb0cs6Hjrc2X5wTPwGtSSlq361N80HLHz6pK3KPvMHW
9i+1+/p/f/SQ2h++/CGvHWsftMD1dNb+H3p+X0U=
          "]], PolygonBox[CompressedData["
1:eJwtlVlsVlUUhQ8Vesv/13t7L04BBCsUaqdfQIpMMrVAkYK2BREREHAIIpQK
DqgoMjg+mVpFnzQOD0bUSHjSBxVjTHAICNIJNA4IPopTFPVbWT7sZK+zh3PO
PnuvU75mU8vGohDC08hAZEcawp25EI4Xh/BTWQhFyFslIbTmQ3guCaEjDmEv
+BLwBVkIq/FfgP+H+K9Avx9ZB/6XXFfi249PbWkIn2JvJP5Z8CvEHgBPBH+O
zz70UVEIs4i9FVlE/Ees3YJ+EzIX/AH4BvTfibka323k/w39btZWYD8HriNX
G/lbyL8d3IX9IvBQ8HBknmIT792OfRL6Z8S8Cb6cnDPJ1c99uwaHMIWcx7Bt
RrpKvOd0/OfgU4etQHwteCl4Nvh9crRKR2pz9vmC2Jn4fILtDfZ/PvMe2msQ
+DzwICSP/ip7/IpvUWbby+BfwKPIMSnyHkuIPQFehb4S2ZL6DDpLOTXuJnZO
4lrvI8de8ECkJvIexegvIO+gnyWmhlwF5B/0teS7j3zfxNbXIPeC68lXgv8E
8DzwOOy5ASFsBT8B/jm2vgV5HDwe/wj/ArgBfFo1RG9H9oDLwTvZ7zV8ujjL
CNUI/BK4Ezyf+EPFPqPOOp+YicTWI0fx7Y5d63ru1IZtJHhZcE+pt+5g7Xp8
W5AebMNZO4J/M/6XojfqDtjGI4exD2XtMPaF2Iehv4jsz3utKXGNVevVyMnY
NVFt1OPfxp4JzYZ6Tr13T2pf1VS11QxoFpRTuePMvbWbtfMz10S16UDOxK6B
avEu+48jdzv25Tn3eL/ysfa25oX37lEu8EHw6/TLn+jnkDzvM4wcF2P/I7Ft
OverJL6XtYpS12xC4p5R72gG68Bj8ZkWeaZXsfdo8OTIM6BZqECmROaEAcxK
RHxniXtsMvFjsE+NPLPLiV+PNER+0z5sLanf7j3w8dhn0tk08+v0duRYErln
1DtXqH+5ywbwo6nvrLurZwqaf/lgr0LGZu559X4f9mpsZxPPkmqm2o3GXol9
Pfm2k68G3IOtjT1r0bel7gX1zHfEP5C6d74Cfw9+LPVbaQY0CztTn60b+2nq
cWFmbtSddXfNvGb/IOepwr8h8eyJE8WNs5L/zwruA09LXJs9rE1FX0yOTvho
F3gR+lOpZ01v/KTmlT2vYa+PiTmJPkMzFpnTDrHfg+JT8FHwD+Bm8DODPYML
0XchrZFrcAr7Q+DF4GPgH8FXJe5F9Yx6Z3fqWvXqf4jNWeIucZS4qi6zTW9Y
QJ+betbECeKGBam5WzN9bWpOFjfrTzmDfiQ212hGNasJOYbkzcni5ptZa8q5
x9RrqplqJ46dnfgP0l8kn5XoWebat4KHZP4j9FeIQ7diX4Y05tzT6u2HU/fG
16oH+43I/Paq4UjdJ/Fs6U/R33JZ5tqqZuXom4hfSvzf7LEx9Z+lv0t73Cju
z1zb61SvzH+s/tpq8lWCN+DzV3COu9A3p84lDujQ28f21UxoNtpjc4l6pDQz
p4pbxQniBs2EZkN/+iOp76S7aWbG6Lyxe0s9kQM3peZacb64XxwqLlWPzQBX
Ze519Uw1+pexuV5/nv6+3ti1FgeLi29TP+XMIeIS/bn6e8UZpxL/8frrm/FZ
K25NrYuDxEUnytzbynF76pnQbKgnyjLXULXUTFeg/wc30Ayg
          "]]}]}, 
      {RGBColor[0.7390484205617114, 0.5634355471622627, 0.38461690292857864`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHeYVdXVxu/IMHPuzO1jN4AIgiUiXSlGUBOKDRBpglIFUUAUsGFDQOkg
vQpKVdQkxhqToMaGxho1yRcVoyY21GAsmES/98d67xP/2M9eZ5/dzi6rvHvt
03j4hD7j90ulUvnqVKqe4vb1U6nBSSp1r+ib0qnUTIWM0s6sTaVmiH5X+Vrp
/c2i3xY9LR35yNOolEo1Ub6Gio/TuxNqUqkHq1KpAflUapSeD61Lpb7MpVIf
KO3zQir1QCnqma+0E0UvVP7bi6nUwxWp1CLRDym+tSboV0SvUbu3pKP991Rn
Z8Wvq571imen4/lKxVcpnKQ2SoqvULhc9FOFSP+P2qpTfF063jdXPYeqb6lS
9HG+2rpfbf2+EGXn6/30dHznRL3/UyHaekPxmqpoj7ZeKsQ4LFb+1RqDuaL/
qXpmJ1GW8XlaeUYq77O5aGeu21qvb54n+gulLxS9VGntRF+r+FqlT1V8XU3Q
y0RfrfiqmshHzPMS8ijcWBPl1ijMEb1a8c2Kb1G4T/QNNVEX9ZDGu1+JnlYT
ZZeLnl4Tz8vd/nVui/7OcZ/XULfC56IfUVhaE/O2V/3+RN+4R9+6pCbm7xXP
J/TL7tdct0s8z/QbFVHn64q3aRyWi/5a9a2gvwqvKv3i6nh+1W0uc/3Ey39A
L3WeqvoxF/STeJ7px9W/k/VupuJK5e2r9E8rNb+ZVOpc0Z+J3qF3JynPDYqf
UnoPpX+o9O8V9zT9X62b00WvV55vS5HnNtFrXT/tHKa0MQqt9bxazz9R/Jji
75TWXeHvqucJ1d/NdBPFl6RjLzZWfLFCO/aX4rEKbUXXV5/7uZ+HKB7NvlD6
o6r330o7RuP3f6qzP9+r5yrlH2D661K0tU55Gyi+SKGNyv5Wz50UX614nsrO
VzhMY3Ws3l+q0FHvmiser3Ci6N8pX2fF1yo+WmkTFDro+dlMjMlHaitTF+O5
SXlS6sMZTl+oeIFCSyW30Bz30LxeXozn+XyL4mmZyHOQ6Rsz8a5pdZQnb4es
5l303aK/0L5bwR4U/WPV+TPlW6VvXZmO9O1KH6s2+qofB5Qi//61Uf5Y5T9F
+Vcqfbb3C2vyeKX3VPoUlXtC39BF3zdL8WvqyzleM6+I7i16t+h0XaRvVJ7n
lX6m6I+VXk/19XGelqrzdNV5leqsqouydyh/hfKc5fyPeZ3cpHg/pfdS+idK
T9VFnRuUXk/02aJvF/1iJmjy5Oti3jcX/rf/V3mP3+S9f67CBIXxCscpdFP4
mcJk8aspCttE91O41Pn6Ou84hT4Kl7AXFc5xGs8TKKt4iEITtVNPY9tA3zlQ
z5crXKbQ2+XGKvRXmOg23taYvCS+MUlj8o7ol0VfUYxxGqW6DlaeN5X+otIv
hV8Wg+8tUjxK35lljhWPVsiLXqP4QoWc6FWKB7h92uumOs+ribpG6l1GeZYp
Plz9vVDph5C3GHkmKm6q9DE1sReaib5I9I9EHyF6tOhDRX+kvv1V9c1U/sEV
MQ6TFc5zPElhmMI18G+FlpqvKxVfoNDV+QY57wKF+fQhCXqKy5M2z98xFz5q
fs98wvNPVxilMFLhY9U/U+UvT2Ls57nMV1ofsz0OPZ13hMIZChe6fHeF4e7v
+6pnuuoYl8T6GOo+n6UwRmG0wgfKM0PvL1Xo5bm9yN8zyXN/SRLr4jSFU71G
GKczXQdtn+I0xqKH+0U/znZ9Y7xOh7kfH3rMe0vm/kPzt0XzeL3G/wPR20Tf
KLpxbcwTc3RbOp6hG5SC/pHij8VDPlG4RturUW2sA9bA2nQ8Q68W3UB0VvS6
mpB/yBHK7XbZburHT7W2DlSdP3edU5V+WCnqOVTxL5yf9/vrOcN86jsOMC+C
dyHvkeusldVu6zPP9TTP9/Ji7OXPVPaC6pDZyOtjFVfVBs+k3FqXrVNbBym9
pLhFPnjon0vR7oEKO6qCD9KHJSq7NYn8J1dH2gHOgw5VWRs6T0Up9vgxqu+e
YrT1rfqzQOlr+BbFn+j5beX9RHPSLx99PUT86clC6E7PKO6Rj32+Wvn/ovxP
Kf8YZIHqGK86G6v/0/TcSPHRyvOhytyF3qm0FsozTnkOZ42rnjP0fLby3KB3
DZXWXPR1ohuIbir6n6r/PdX/qeo4QumJyr6m9HGi+4u+RHF71XOM+tND9POF
0H17KU9rpTdX+s+U3iET64A1gO6IDnmU3nevjnpeUBubNYbZ2tCFT9G7ror/
qrxNVT6NniP6p0o/Velvim6m9BqlvyF6t/q5S3XsVvtHKb1W6X9Set+8x1Pv
ixrHgRqHbcpTrfeD0Dm1v3epb+8o7BF9XjroWmSG1tx6hb/p+eIk4rGKxyi8
LXp0EvW9JbpG8V8yoUOgM6xVuTUKf9Xzbdlog/qRM+RJK16djTLkT7v88CTa
Jj/t3K/xeEBhEOOr+EGFyfqeI1R2YCbsi6WKl2Vivvsr7kc/KmJ/LxG92Xoc
c8D4j0qiXyMV35mO8uWyAxR2qc6XS6H/bNVYzU2irdlq9/3qyEf9K6qirWGO
+7ssPOZ40UcggzIxPowzY8Qz7fPtqxT+rOc7FP9d8b8qg749G3z0jUzol+hs
i5V2q8IfrCOgK1Qqfi4TNDoAPIDxgg+MT6IO+DDjRzo6f78k6jg3CZ0L3ate
OuQhfaAc8T/cH9bAu6K/qIz4PdPIyQ9FT0xCHr7rNcJcr8vG+mAu+b5hSayH
Nz0OlEEGwP83ZaOeL5W+RfTmbMgi0jdmI9+kJNKQTeT9yPmR25/4fSd9WwvR
nSti7Ft4/O/PxnMT0X+AfzJepdCHc5nQiV8qBf1iKfSumkzoXjtLQT9bCl2r
KhP61tN6TkQ/pXi7npdngp9gF1A/tsFDXqv/qgh9jPzoZOi0lZnQa39fijqf
UPxYKdJ3KF6gPj+TCb3313pOiX6kFPo/NDYA7591Htpf4T7U87teScg09sVW
xb9V+f1E/0bxQ9RF/0phm5COfZKrifT9zde/sHxBF/7Cei/fxLdh27KvFmWC
V2403V70HaIXir49HWGB6HYVsdfoawfRs9hPmZCVa9Lx3BpZabosT8nDe/R4
9PmDU6ELtbI+NNS6ETrGVu/lEyviPelXVQT/a2WauLXLLtI4L1TYmYl25yhu
o/T16bBn2laEPTHNdsTiTPAT5MRmP59QEd99q8dhUzpoxmO96zzUfVvssnwH
dSJz0THmun3GiXFDV6TcXJfd6Hekb0iHnbXefHegefg5SXxHnyS+6znzBOay
kea1QvEt4mXtFf9G8QyFtqJ/jU0meXGZxminZMQ0Pbdm/RbimfQ+orsWQ1d4
QWmvKPxK6T9V2ix4sdJrZXu8qPRf6PkUdOF82N6HSea8lgtcp3sx9Hzyow+g
FzQ1fU423qH/ozuzhtCf+dYNphkb0hkHxpixLo/5RqcfZ13l1GLkvd1ly/PK
nNJmE7fLM3lYn6+Uwu59SP09Us+rlN6sIuxR+AV8GF1+k9tibTAmzOP1GqOW
er6/EHu7iM6fjn1VQOdPx/6vQ/dIBx8piW6YDtsbG3wOdl4xcLCexdAh6QM6
3yOq92vlOboYvGl/xtGyGpmNbD1G5buAd+g76uoifXsh+NEByt80HTL/YNHH
pEO+HST6qHToNOg2j+RiTaEfsK7QOdA9fq30q1TXj/Xu3kLoHOgej+ZCpjNu
yPE/lqLsw7nQP9BDfpMLPnug6Gbp6Bdt0Wd4WR57TfFU1dtC8S8L8Z187+xc
zA3zC2/BfmI9HOq9sN50leKX2Q9J2LXYt/XhB1pXSxReygRNHmzqv2mdrAB3
K4U9jU1OHcuNUYBV3J0O/g5fpV7qGJAEr73L6fQBDPMw6/YfW4ennVfc1nKl
LVN4NRNy/IVM2N2k/zETmEB1OmiwVN6/6DysPXSAJB3fwztk+Inmp/BSylD3
eUlgCWAN1HcBeKfo85Oo+zW3RV3oFrxfqT6syEY+6Desb/B91I9ehAzZZpoY
XgYfw/aFf8Gr4dNrTZf5eBvrYJu9T8m7znnoJ/KS/mCvUxabHaxltdd8e/NZ
eGwrywnqhi/e5nk/KRv5s5YXa1xPWTeCL67KxFxiF2Af3GsaO+BuzyNp9zgd
Hr/F33iCeTfjzVizHjrSl0yUQcdAH0M/gN+yltAhmHfyUSe6CWsSPYA5BUtD
loPdoYOhEyDHwQKRx+CEPdXvx9RGjyQwVfBU7Dz0OPS8fbpcJvRN9M/pCsMV
kvqBFwy13XuxnqsV/mzbEMwUHbhtVWCdf2IcqgNDxe67RGk1CnsqQj8Dozm/
Ing6vP2lXNhqYNbg5AuSkAHdqgI/+0NVzMWAmsBNsGtKev5Gn7lX4a2qmFv4
a17hS6V9lYr3bym8jXxX+oEKB3neiZlTxuPKJMakUBHlvk6FfjlU4Z1U6PQj
FL5NRV+oP6e8xYrISztgfPS1u3jAFPWzP/ZUVazhWdY34O3IfDBDQk+FHgpP
uo/0FfmHHHwVvp1EHnDIpxR2OR/8+BnleVP0IOV5WvE9qdiv1yWxZ+n7Xpdp
K3pLVeBp4Is7/Q3glU+77iFJ5OW5od7vB79irLCxwWVFHy66nugdFYFtg7mD
b4+ujnMScPVFxuDBwL9Q+m6VeU30W6KHiH5cdPckvgm968LqOIt5gHVSHbj9
HyuizK8VHlX4p9I/VPqD7F3F5yPn60e+R5zvdef9jUILhf0VDvC+nmNd6Hin
HWhZv8g6FdgWmA94EHgPuE9P6wnzrBdtqY3xespjdLfHfJvSt9YGXsC4D/K5
FZhRd9eFjrvkB2Wgl6aC7/dXWJYKDIw2T/c+A+cCZxrltDI2Rnym+wtWBY4F
JgUWBkYFzgXWCe4FtnmSwk8qYr086TU2xOVOc96TFbp4b3dzv8G/uroN7D2w
s5+63i5+N9p9oW0wa9bWqfnQFVijXfIhJ1hbz3hfvek+7PVaZs2hgy2wbo9O
NzwVWBZyb0QqZB86aG+FkaKPqYi9yv472nueZ7CDCxXqRB/r9/AJ+HnnbOg9
nbKxd5srHFURNOWRVdcn0d8R3pfsvbP1fBZ2rejRxbBb3ioEdjbV87jTe/Er
f9OTP9iv5fXyfDZwN/Crnt7/7AH4X0u3x74n5vvPSGL/t06FXd0Xnu1ziYNd
Fp7FXjokFXjsAM/n2x7fMv/7xmN/VRLnP3wLZ4JTqgL32FsZuOwm9kdd6GZN
9K0H1YWu1Vz0gXWhmx0pemoSZ0Gs26FVIQ/g7d9UBh68USGVDf0WXeO7TMhl
5HM750d2fFsZmPBmhdsVblGYpbClItLBmrc6BoO+TWGGwkz2SHVgaCu87yl/
R0WcMdygcKPCfzIhN5Gf613u5oo4l5ymcJPL0CZ49DqF6W5jg/PSp7XOyzvO
JTifWGi+s8Ftf5sJWYxMPlXvt1fF+O7WHjgF3CQfNhNyGrupfVXIRcbtYZ8X
cG7wgM8LODeAl59QP/bOz31GwFnBnkzIeur6VybkO3Ie/JvzmitU530+j+Bc
4tokzvHgS99kQq9Av/gqE3oC+gJrn/O0d5R0UxL6Kvsd3J3zR+T1zUmcPSFH
wE05e+YseVoSZ3Y/VvoHmpd/VMe3gf1z/shY3ZjE2R17E3nLOSFr+5okzhJZ
2/+mn6wthRuSOMdD5l6dxNkge/8/lbG+4PMPe00wty3Vj/9Wxhr+kejvKmNd
bayKNfRYRdju8NarvKY4FyifdRBP8bq73O84p2BfsaZ3VwcWih4ED4Cnb08F
fsQZCWPOHrrM5VlPnClxxgE2xp5hHy+xDEAW/MIY/BLzumu89+Fz8Bb4EPYB
84es+H0m9jC8AZmDTILXgMlz7g72/nQmxqvMt0aYjyFn7jG/6uG6aQu+stQ8
FrwbOfZ/ubD7mRv47oDqwDsYN/RGznnA/+83hrrvjMB7jn31gPcY+2alwvXe
k+wfzmU4e/u+Mvb5Du+ti/zuQZdjLw6rjv2Mz8Ajnmf2G2f31I8PwEPOyzrg
jJF+cGb6mcq+XxXtv2n+B3+e4fYvMT8gHue9Tsz5ImOJPB5l3jDBc4mOjL6M
3rzC+a73dyMLx/iZcshqxgWZOtzjMsbfyfiNcBs3OC/lpzrvCPOd8W7750ms
P8aadYkMLp/pEQ92H/j2Ve7DSveRb0Y2IuPgB+O9t280tgDGcJ1tZGzla2yP
Y5df5j3AGkbmls/N4E8TzRfgSRd7/4Oxj/E+P9p50R8uSqIsMhm5i+6ADtG0
InQTdBR095P9jP6GDoIuAvZ2p20ldHh0JHQq9uQ3Pkf8lfbOfdnAaVdnAqfF
PuJsAV7G+cLKTNhN2E9HuV/043jXR3vN3C/6QXnOpzlznm78ChxrtseE9tnv
e02DkfayfE1sJ8O74SffWr5eAK5l3bWRbSVsp01OYy/gH0I6fjvgK0emA2M5
ryrKoJe3UdzauvhgxY1Ng4XgGwEeApaDDwd4Ducgw83fwWbwkzjKtn8/81/w
G3wswHCQRZMsS+7wOMNzbza+B84H5oRfCLgTuBQ+HGBTYASDLW/AovAXAY8C
BxlovQE7+hzzdM4vRpnXd/R4c57PXPbzHDD3nPf39vpAz+nvuWIvDPReZL3D
A/f3GsKn4ADPMc+cHyCr0BOLXo+sa2wzbELsQXgDPAJedaDXHOXRK8mPPllw
Odb4WOeFh5V5ygzv9Wnel6O8J6/zXr/Bz+O9z+E9yCVkCzwWXsM6g/cssI0C
XjXSdZT5BzE8o8y/aHu40+A9F7lf9GOC66O90e4X/Sjbw3znPOvg4JezbDOB
jdA2tgV6PvhJLz+Du283XnSy54G5WezzAXCOfraDOStp6zqwGdo4xp45yfPJ
fLd2GjZPB6+FPu4jaez/E7wW6Af6Z5OqwCOwucEC4Cvo+vAUcAF0f/R+9jdn
dOgi2PR5zyH8YI7tPPqFXQhGxLfiE4RPCGuhu7EH1hfypOi1gG8OviKMJTgB
awT9G6wC/w7WIDo46ZTJuc3mnut+/v6zCqE7LZKuOMnfBW5yhseFvnH2hW4E
PoENn3d95TFt63Fq5TI9vH7LvLOl37HP2G/wOXTRplWBt/fyHDPG8MQWLn+W
62YtoG9jb5dtdGJscXAC0tHN8KO80Hb7r5Kw4cEJGppXgRGhp6EHgDNg04MP
/MVrq537AW6B7oYOd7j5JLYD+AMYAzrgstrQGcE5WplHwlfBIsAk0BEecR/B
K0paC8VsnJef43XW0eusjMmxjn/idc38dPY6Bcdb7PUxzuuz7JdEDL+6xHXx
bqzXKet1oueZurtW/M8GneBytHOx81L+Io8F5eF1zVzmFJc72n1kvbPWwQ9X
W85xRolcRBYie+FXx7qdTv4e5OtxnuPennO+H2xzpfc2uPRyy+BT3SZ1gd8u
9T4/2e3TP2Qt8h5bAJnc1OOGryu+rPi7fqRxn1MVZ9/YgontIM408FPkXAPe
hC6DHoOe+L31eXB9fA3B9tED0fXQe9AH0TvRCdED73P527xGWAOD1F4D2wbo
mA+6zMyasCfRF3+ZhO6I7tna63OH1zT2BTgY9lxX20KXus79jJGxB8iLvNxr
e6Sd5T7fOcJ7DRpbhr10h/PzDD3bZ2qcrU3g3N99ftR5qH+T+0M53n/r8Xnd
fWD9r/N3853YqJRnv673fmBcsI92eIxX20+HOlq6zd/6O2gHPWc/9etM22/f
lPtbEToLGDDtrqoJLA/sD1sX3Lml3j+QBCYINgyuDMb8RUX4UuPHDUbY1rwc
/WeidRuev/VYokfNc3/53jJGwPMMzzff/Wkm7FXs9Q3+7kc8ZuX5ucXjwvuZ
HhfKT/N6Yl3N8vyQb7rrZu3c7HKUuclplAEboD/YlC28H8Hz8SnYnYnzJzD+
Nd6npPFun/2fhH7C3sEfAb8EdO2OmfAzwd8E+Yyc5mzoXx5L5ozxXOkxhY+u
MC/FbwJ9nnpXOA/p85Kw30+rH1g7NGeX4P/kwxcFn3FwIs7lF+TClsenGD8O
/DmwJ/DdwE9jn/9iNnRVcAv8dNAly7L2RuNy+ANwfsx6wFcFPRR5VmfegLyD
h9xkvHGYsQBwAGQieTgj4HypmXEL+kc/wbL+XQpM5D+KvykFVrK3FHLhUu9T
xhE9m3No6qQ+1htrjTWHbGprmrU32VgOa3VrVcgkcGzGbJbHsInrop5uTkee
zkmCz00xD5juvc99Ae4KwAcftO/DZH/fJMt9cJYtxi+wETZb/p1vGrlIvMn0
RtM7nH/jD2QnNHsEnyN8j971Gc9kf9dpSeBW9PW7UmBD3yuen8Q7+jnc/Wf9
7PuuJO4UEM8xnsiaxb8G+/AK7z/wn88ysSdJw07AXkD/x4YkL/gS8aWmwWIm
GFchgLGQxrkrNs21zkce8OyrXS91sjbxU8LWXeCy9AFMhHwjjSeDb4A7dbc8
4ewMbAWMZR9Gmo108KrxWvcnKh5XCJzqgHRgVWA6YDtgofhSYQ/xPD8b/aG9
xjWB/bHu8Q3BHrrGmA7fca+xXNoBE8MHA78mbKMzbFft81c3f+GbuqTjPXYT
5/X4tmF/g0fN9Pfi94S9NtPzAD9kTW3NhnzhGb85fOSwEU+2rYidiI8emAD7
sGs66sau/0k67Fts27med9YAMhvZjf3LecF0zw/zOcPzCJ/D5wrbEl5yhfu5
1d9F3y71XYUlubA/JyX/m//LnX+SadLx52pt7BMfNzCNfW0nwRveSUUf53pt
c0YDf3omFePN/CLLKuoCG91P8fhinDVOUPz3XPhnXCv63VycT18t+r1c+A1c
I7qyLvDf+oqr6wJ3TupCzo/w/prnPQReih472Hrw+7nwTZlaDP5DOvptTV3g
5rWKt1UF3xliDOA886jhrr+sVwx3W+hUQ827vsrFHZgtxcCkuzkP/Io86F0r
LS/gBz3sCznM/OoC73fi802vdFvQDbJRlr5tcx54zvkuC79CP0GPQX7vycXd
hnXFuGeFnXBHMewq7CVspRVJnCVh33DeeqrpPxbirhZ3tq4sht3F3YiLCyE/
LimErUY6thjnMvi7gv/h20o9p8m2mlwMu447Hw1rw1e2u2010rH1snVxhpGr
C59rznY5g8avGv/qn+XDfhlkPampxxaev7IYOuWqYuiG5MHGaei5QwahF6yx
bvBBLnwIZhTD1xkMdt9ZXVW0hQ17cj7S8U2eXYwz5jmKP83Ffaqlov+aC18H
7pewthp7nUz3XDJf+BRzzgT2i08w523gzkO8xpBrm3LBs05UPR2L4dvUqRg6
4QR/L/W3tqxBR27tb1yYxPk9aw2dsK1lIu/b/GAc2nj9o6sim9/wmtnmtYSP
M2djYNVbnf5YWR6aZmyR6eio+AxxPsU5FX5FnGFxloWfEGdYnGXhh4SP0P51
4Y+Ff1GhLuTWdu8LfIzwNSrVhe80Y8SZ3S+z4b+4w/uqib+L9lu5D4xNS69z
5vxH/l7Gq4HzMPcNnM64kQc9drD5AnufPXO4x7ba81hOP8I066ih57fG/dlj
3aOpvwW+0NTp6L0t3Ycq44+UbeN6fme+0c78hHbauS30oLbOj58dug26Yv9C
6DDcg7yrGHr/9mK02d7t/jsXPur3FuPbG3mu0eeP91hhi7f33vnO6YwJcvhQ
y5S52aBJ62kbEZ+WUdYv0Q/7GivF/weZBlYy3NjiKOcBgxlhXXSEy0Lj38rZ
CRgu995OSgeGybsLjelwB65zOjBM9APOVzhboczZ1hnGpUNGIh+R4eBN5bZp
D1wI+dPUeYiPNI3PxjDnHW76HZ/lDnU6vlSv28/qHadzzozMHu60SYXAftfk
ou+jbVNcYLmI7BvpcybOgY71N5IHuxf7F7u7TS58guqrvvdsn8EfGqHDZMNm
61kbMgOfobutV6IPdM6Fn/J3+ciLnKA8OtN7rqdXbejB4AH4yOPrji88+MwH
PkPkvm0rl0H/4j22yWCVPa82cCX89mcYVzhXaX1r47yEe4qd0oFvgz2RF1u4
v973q43v5M7iidYB0IfQi7DrOWuhDjBZbCzsVnAudCl0KvSX8daZGHvuL3a0
/sk9yw5et8PUztDaKI/uTR/RQ8Z4XlhflxUCJ1+RCzvpGOtaYOR9rK+28fNI
n+H1tc451fN4reM+pvtaNyUP9tNR1hXxX9tpHzb89/AZAq/v5/yUZbz6me5v
PRUdtVzvVJ9h9nc6Pi/neV1NLsR6XpcLv4dBTsdXE3sNP8DBzk/Zcnnqw3eU
fuLzia8jZ5+cGQx0H/gWdLpmHnPi5qanFIJen4v9MMR7gb060GWp+2iPAzr6
4d7LlxfiLGNVLsZ9jOdlou+mLsuFjVu+s4Jdij8MuBp1NHY9+OLyjD8eewkc
jL2Frt/Q6xAfXWj8+ogbOX2Zx5O5RZfnrGKM27jIbV7hO66358LnlnWCPy3+
m5wx9/NY8+2MPTzlgh+kne8x4azuYu934rHJ//o71m3hD4ydhc8hcRPzQ+yV
I0x/ko99eqviPtxB1jo/qxT7FhwbucTe2s/7C1sSPRh7GR9ZfGXnlwK3vysJ
feegUtD/zYfOdWcSOmCrXJwl3Cw5ki0E5tEpF/u7vscQnXFbEnof2Ah4E3sX
HgQv6l2KfwnAp/bxqHScSzF3a/NR5oJS2MELrcMQL3Kf8b1lXVJmgfOQTj6e
y3b/Aqef5rLUhzyp9rjhM8ve4xk/XHg6NhX557vsPNPYDPjtMsd85x8K0f+j
1d/PqwOvHGa++qX5JL71YBsLS5G21+kra8N2BSsf4LOGj/PhmwKm+c982Mzj
vAYmFAJrvVXjfE4heO/CfNhMh3hOwUDoK3YNvH+ux7amENh7B/uPc5cPH7T+
/g/DBu6o5gP3GKJ4T3WcE8CnqwuB356QC9mDDGorulchvufsQpyR0H++g7uD
6GroZtyRfzITa+5c3/VbobYG+e7AncW45/54JrBJbPIK41F7lCfF2lRbn+dD
DnDfmn8l8H39ClE3fhhgoPhd4X91sHWBs82fGRfeY8uzR481P7+yEPTGXLw/
w3naek6QiSNcF/UgJ1g76KfYt9i52MT71qPXCTg05bGdh5gvYXejl+A/hk6C
HOplmvvxXcq4QT7m9LN8/NMC2wpZy9jgFwtuuw+PTAfPYIx6/uC7e7j/p/tb
TrdfWnen93Qe8pfz8R77HDsd7Ad9vq2/nTFob3ql1/fAUtxFQ25VWq7Ws2zF
tluehH03MRf3ipoqXu31NLgUa3+N1z+yd733FLYgdiZ2JXK70rL7M48J6527
UOiFtIfPxPjyvkgC17jC4z3OY97bGBFYEfPCnmI9oS+Rjt5CPxhjdCEwpC/9
zdzJ5Hu65mN+F5pvcLbV1fWAxbRwX/gG1gBrBLqz9+Ai33vl/msXrw/WBuPU
xbbwP3Lhpz69GHoe5x6cnaOrgtuig4Czcbdht+9y3ub7d7QPNsR9PeQhNP0C
ZybPHuveq30PEUyYOwno5Oit4LbIcGQx+O+++x2ZyIMugj68zPlfdfnrvAbX
uX76Ac3aZH/RZ+QgNsK8bNgFYGZgcOBm2ApznQ7vAtcD62Mfk45Nge5PfvA6
9jj1/N7zz925pz02a90Wuv1a30VFJiz1fRBk4xKPG3uItsCZ0FX4dvQf0ua4
D4wR44COxvuVzsP9g5Pss8r5NTT4A1gLujRrqU827jhxv4n7iAdm45z9K839
5+gPrGH7vmadv3c27Kxyvc1sf/X2eSh+Zfg0b0+FrdfH+Ttm4x3pYLnUz/0i
MDxw3X3/a8jGO9Kfy0ZZ+nZ3Ie7ncH+IO1L0mbr57tVeA6yjDV5XdxbivhB3
i7cU4i4Q/5Po7XNb+oMuwPdyL7YuGzbDobYd6mw/FJ2OPoJ9WTSNvGWcX7cc
YC4e8/wv8JpBRwarRXdbmQvd7kmN62nFwCa4h32b7yC9oPS1ubA/nysFvkIe
sItuxcBcuM+NDzB4AnjLvbnAVZcU4n4297N4tygXePTDqmdpLvDf34lenAu7
91HRy3OhRz4uenUudLVnSoHl0BbYzgL/m4J/VDyTDR0KPwH+Z4Gvwq5c3Fnk
7iK+fchnsKfyvQJifIfB0ciPbwy4GPgaafwjA/qtXNhI+Ebiu8Ide+prWQrd
DT5L2/hMgPGB7xHA2qgPfQu9a10+/sfEXYD2pbDT8B3gfHZzMf7bs7EYcoC7
iOX5gUaXRv8Ff0evx/4YZ5t6ZSHkDP/RAT/bap9JAv6TT6VibfMPF57Zw+xf
9Fz084WuH72e+tHtiRebRi+Dpv2l/ncN/7CBv7NPwbKwGzkLxf/gHO8L1v+S
YvzX6NZi8F/8mfFfOikfsgyZxvczJpxrry3GP2FWF+PfAeRvXYp6uTeBb8OG
XNhR3DW/w3bCq6XA0rjDiK85/1yA5l4j+3Sn9z//S6KeDnr/bCH27k7msxD/
r9lVCH6BLw1+CNj1jcyL4D/4HHDmyfc95zp3ZcMPAb4En+DsATsbexi7mHHh
TICzCmzrnS5L28i+5fbtIOYZObjC6dDrrLfnLHPJgz6B7j/Mdjf2OvVz9kq8
xTRnVdwJ57wKbA+Mb99/J7LBy+Bj9P/tbPgy4K9LHvRM/CdIw7eBb+YbSQM/
2OqynHfQFt/HOQVtccccPW6jac4suJ/PvXjOraDf9xkaedD7enuO4G+73Q94
CG3e77FlTtjn7PFelmfoo+i2j1uXg89B/933wp6ynoy8g0Y+wv/mW96Rf7Z5
I74g+ISU75+BX3cyTTp33Lj3tsp5ueuH78idfr/KeZCrT7qtctvowgTkLXok
57HcBQNfnVeKeUY358yW9Mv8fo3pW0tR5rlc8JpnLO9YIyu9fkh71umMwRMe
B3zon7AtQN/mWu4zb8wf64S7mE19H7Oz6+nktfALrxnkHmuGNc4ccW8T3250
6u61gZWBUYF5fWSbGRn1QiGwMzA0zlweNJ6GvXpGKcqOLUQ7z3vewbHAvuCP
YFhgWehwq6wzJ8jMUqRPgQeUIv8VubAX+xv7op2e5bZM7zKmd7rT6TP42rvG
r6A/MhbH3ue7CPCCMs9raJ4AT4W3bjev5fnuVPjOd3D6WcYN5ubDJrjdewG8
BX3gbx7XrR7bZ73OGX/wObA+ZM+5paAn58Jf+lxjgMjU571nj6+N/7mU1+rx
po/HP0B0C8V98uHvPlc8tp2e28FPSrGej6uNe53ELcp0Ker5cSnWAXMOhjOk
FPztSu422h6pLcTe5huxgfiPDPdfJ+XCJ4Q+cB6EjOpoeXRsKdo7RnFnhQ6i
O5Xivnjz2rgD+7b5LHyAcyf6PNT29GBjpGDzlMUv5z7zNHyzmpSiniNKwU92
mdfhs/m26+TO+5G1cT+9cSnow0thq3JvAX2DtGbOw/9uuOd6eS7wGOwaMBnk
EPLoLu6P+xz9XP4tU4o7wPwzCZ0O3W6fHpsPu/7rfNhyjCFjCaYAtrBJc9Ss
FPdq+ffSnbnAdBZYjmHvIxP5HxZ6Iv9qQt4wBshM/iNAHrCB143zIqvRfdCF
0BHAWcBbvs9H35Bz1MV/gvhfEP9Ra1WKNcPaYS1CowuBY3F+t88n1fbphcUY
d9KOtG5FPehX24xnzS/E3sZ/EvnPd4OL8M23FGNuPlbeeoVY65WF8PMabXx7
lXF8bLtZxRhP8DPKgbXR/uZcYHNzCvEvJHAS8JJ5ubCXP82HfkE6OslducCw
FhZiXVAX9WA/M7fcMwCvAbdZUww+RB/us33JekTHwZ7nHbxqSy7s+bmq8yP/
t4r/V71SCL7zaiH++dfV+MnWXNjq88CE/E/Ml0XfkwtMY3Eh/u8JvgTOhN4E
je50QinGcyBzVAqfqndK8Y9L7nMsVp/vzgWef2sh/KcHGf8/0nuEvdLWZyLz
OU/PxVnPIuX/f+/wqbY=
          "]], PolygonBox[CompressedData["
1:eJwtmHm8TuUWx7fhnPe85xz73Xu/SsOlzDIllYxJypgIIRrUvRUhoVDd3IrM
U4bMUzJPkWi6zWlGqjtWqGQomckQ9/u7v/5Yn71+z1rPeob9PGt4yt7Tt/2D
RYMg6F4kCIrzPZQEwY+FQVCYDoIXoyA4EAbB0PwgeBp6Lg6C12m7CtkJlF+D
vwfKB18HrUb3z+AC+CbQGvBBaBh970oFQadMEMwFV0R2Hm21sXcp41UsCIKF
tO2SbfDV4OHIZyB/DRwwn7OaD33rg3tjqx46DeG70acYsnrQEuTz6DOWvuOh
o+DnocuQlQJfhewFcDXwBeCrwe9hIxf7RcAvITsM3g0ugc5L2J6EzhBkT0K/
ht4D7YXWpLU9hk6DnCCojv7j8Efov4/+IXgDeCh0LfLa4GHwbyBvBV8UnTfh
u0CdWcu6POaB/F3wzWnP6f3Ea9Ba7mXNXdi/VyLbOsb+b4SP0TmP/pPZpkbI
24JvAu9Afwy4HbgN+AfwBPAj2OsIvhXqhOxlbNTC3lHsrYdfxPq+4CxMYszF
8N1py0N+LbSSvnWh9cjHIZ+P/BA2r2fu17HGg/CP0taasb7IDYKd6A4EtwJv
BW8HHwndV/9I/2oA1BL5FuTfItvOnOqx9vrQDvgOUDvm+gzjb4s8Z839RcYs
Bp5N/5eYz0jszYH/e+K9PYf+WuztR2dH7h9rRnY3OI2sMbQK+VZoLfLKzOEG
+t+JPBdZQ2g5stn02UDfKYxxJfhJ5I1yvGdPwb+l/YYvzpjvwK+JfBYOs5+r
4ddBNcFHwGvh306sGzDfddofqFOBz4DOwiF09jKfbuCu4MnMaWoRn8Ep8AeQ
78r9ow/yJ8ANczzGEPi7oBR8I2gFtjeD97C2bAnOfJZ5gPfTvzv976D/oNBj
3Q51S0zi17O/aXQHh9a9G7oTWVfaimK7LrQY2XBw4xz7hBHwt0Kn6TtDZ47z
8Cf6lIWfh/wHZBFzyGUtnXVfwR/o/8LnsScfwq9ijbORz4VOY38p+Dn46dBv
4MnozMbeANYwCX5T4r5Fka9HPiWy73kI+jC0T5Fv6YF8F3gic9rFftRljrcg
Wwp1SXtO27CVML8U/G36/8heiH0XpkDHZR+6GFkEroHsSvp0T9lnXQ1fmf6f
sNelafuY/iugrmnb/Ep3FeoIX8g/LQlfEv08cDedR/kb7F8In6GtOvarMN+L
UrYp2xORn5f2HndE/9nId7MP9D6ySZHP9oPQB/IdjDGduQX8o3Hw/6VtE3vX
GJs9sT+HtleQH2U+DZHtpP+stOf4DfhTzRdcyB5/Dv8R1B6cD/4E/uPEfDH0
X0b/S/kH7FfFfnP9S3B59EsivwL8k3wMuCf4J2Tfg+eA7wV/D/4utK+QT3gE
/TrY3wO+D3wNfJ/I/247eDR7MyHyXe0Fvav/G/ns94be03mJHJv6QpvAR7Gx
n/lmwK8iGy//Df8A9A7yMZHP9v3Qm8LMYSBz+5Y5jIQfh7y+5g+9jXxs5NjT
A3oL/CN4gfrT50dwC+bYjLmWZo8vYOwtUMj4Ocg3It8R2lfKRw7GfoPEsW0m
8hXgPOwdTNnHpeBHRfa1dRhjNPyr6LdIO0a+Dn8H4/VL+Z/q316DjZLIz4Jf
AY9F3hq+FdRG+tjISXsPljGXjYl1Q8avRt8HkLcAj0D+FfzOxL55nHwM8ttp
K572nixVfIRKw8f0r6n/p7YiziGmgfehv0rnFbwb2c/gNTqv4D3gEHyU+R+g
Twn4+bRVRn4+8ivl3yOv/TT+9A3lGtDhlGNWPvwtic+y1tge/mH6XwJeRp8q
ugusv2vKPl2+fXxs3/4Y9ifEPlM6W1rzTchnxY4to6HDoWOqYmsX9mAv8qaK
f+DpnMm98NeJwNPAe+A3o9Mp7X++Fb4WtJ3/3QWdK+BHhI4NyrmUe80El0U/
y3i1GPvn0GevE/qjwLWVn+Xa58j3tGOMcsz/CuZ7udan9dI/of/l6NdMLNMe
a6/bol9LulANZJ8lvtvF0d8Qek1am3zkTnT7YqMLss2M2Qu+KvIa9F2Bvb3Y
O4HOYtZ6Pm3Xwn9H23RkM6Dt8N+hX7vQa+6IvHrisXUGdBZupq1mgW1WQ/Zv
2iYgmwj9B74Z8huZywrGKJU4pii2TIPGaP9i78032N/H/EeGzmWUwymX0x3T
XQvwnyWyPpM6m4rZU0PvkfZKOde00HuuvVdMmgFeHDlWKWdQ7tAUeYWUc4Yt
oX2afJt84izwR4qZ8H9B/mHkPdXenmU++Yzfm7as/Cd3uA38XKg5+BJ06sTO
CZQbHFfOy/znIW+ZdsxV7FVOo9zmKPLTyOfT1jrtHFi5sHywfPEZ5CnGW0Bb
m7TvqO6qYqRi5Sn986x9knyTfL58/2blx/n+B/oXLZjTRtZyDW2t4c8gfzTt
NX6g+5bx3usM6izqjuqu6szPC53jK9dXDJkDbhk7Nsjm1+BmsXMvxYxt4AWx
c135/GOhc3bl7orRC0L7ZPlmxci+jN+KMS9l/pdAFyeOgYqFqjEeiRwDFAsU
gx6Wfuy1lEA/L3HMUOzQnRsQuQZQLfCbagL2Zzn6vZjPL8znJLKLEo+lmKXY
tSxyrqAaSLXQqNC5uWoA1QIrI8d21USqjabHroV0hw8pv4wci1QjzIJ/Xnc0
bZ8s39w/dK6gO7CPtfZQPMD2AegY9seE9oVqO67aCPudmX8Z5nih/Fto3z0S
+lq5cOS7uZJjdhmyfuh3Q7859muEvuO667LRB/6f6I9Gfz737yPVO7Tdl+89
1943EdF3GfLT8PfFrkXkA+6PHSMUK/pjs2HsMTSWfMqD4H8ofud5jH9prNC1
pWK0YvXjsWNpOcZrjf0ByMuwH0vQr5TYR8hX6E7WRD4VGg4eCm2NXOOp1lMO
tpC+NyBviu5yxjyTcQ6kXKgU9rOJcwDlAvKh/SPneMr1VLNNDp2TKTdTzH0W
vEg5b9o1kmqlmZFrP9UIM5Q/Qh3SzsmVm0+PXFsqZ58G/1zkWls15NTINZ3O
TwFjVGGshbpjadckqk1Uo8m/5SOvFDvnUO6hnPQhZJMzXvvT0JbI/1z/fjbr
HYduknitS8GnMq5JFH/S2KsQ24fLl6umVG2pHEe5jmJ6P3R7QoPynPNPCF3j
qNZRDluO/m01/zznqMpVPwUPSdvn9VK+hf1BabdJVpC1b9QepeFzsvZNugPF
4KfGrr2VQyiXUM6i3EU17riM74DuguakuYVZ+3r9k0L4CvJv9K2MfkXlP6Fz
YdWs++nfKbKv1hnsHLlGUq2knLtyxjFcsVxn/Hr4J2LnrpWUP4HHxo7lqjH3
y3fSVrzAPnIT9j6JXAsUo60I4/+ecSzrTFtt9OfGzi1UU6u2XhK71tgGrg/+
W+yzrjUMiR3zFPuU03+Pradi5za6E0/Cn0R+uNAx5QT8rxn/+5PQDvifod0p
14S/aG3oLCv4oyYAn4NW5fkO6S7NjP0Wo5pTtadilmKXbNwc2YfIl8iGbJVL
vNfK8ZXrq2ZU7bgBm4W6q4l9gWq4Z+Efil37ywf1hz+XOPYppv2uWj5rX6wY
FmS959p7vRmVVS0d+S1AOZ1yuzOJY6Ni5in4obFzFeWATyufzjo2/v9OwX8Z
+W1BbySfqZ6KnQuq5p4I/0zs3FQ5k3KnYbFzV+Usyl10x3TXhkFTwF9E5pWD
3w6ulzh26M1Kb1c30VaBvuUVs8ALsTcx3zW/av+64LL5ztmVu6tmUe2iN6xB
yMsk7qsaQ7WGzojOyjT6LIv9xqO3Hv3Dz1Wb0FZedxuqr/oiNq8zqrNaMbYv
kU9R7qQcRLmI5rBIuXdsXySfpNimGKBYoDcZvc18GroW151+P3LNrdpbb2yD
I7/Z6e1OZ/K3xDWpalPl9AMj13yq/fRm1JL5lI/ti+STlBur5lftrxjcLeMc
W7m2fPiN8B2gwUWcYyrXvC3jWlF7WjfxmdPZU00xB9mJ0HulNwW9LSimKLbo
jaK03m9ivz3oDUpvUdWR5xY4J2oSO2Yodqimqx46h1AuoRz4OLKVsWs3vbHo
rUVvKHpLUY0yK+M7r7uvmnI0un+N/TahM6Gz0SB07TOHttXIToXm9Sait5Gq
GfsS/VP9W91p3W353HaRfbp8u2qQqqHfFPW2qBpyRsYxWrFaNUu10G8yeptR
TP8B/D8QVeBK
          "]]}]}, 
      {RGBColor[0.9140044391032581, 0.6550110977581454, 0.3334137612201002], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHe4VNXVxm87c8u0M3NVlCYktsQWRQRExRJ7ASxYsQAi2I2JImhQsRfs
IiBVLCCKIFWK2LEBdpMvKoqxETUWmoB874/13of8sZ+zZp99dt+rvGvtadvr
4uMuqqqoqOhbW1FRrWefpKLiaaVdlXoVKyquUv6zpYqKs0QPED1L9DjRa0Sf
U1ZZ0TV1FRVtGysq9i1UVPxF+aOUf40q7at0rtK1fvZTOk+pm1J3pYf17a8q
30/lZ4quUz2/Uz37qJ7zlP+Y2rrO3/VXekxlNii/RarfSml9RcVKfXtXpqLi
TqWTVWaqyiSq51vlPym6SvRFomeJrhe9QvQX+YqK5UoL89GXvZU6KF2qMuNV
/3KVuU10O5XvKvoCvTtO6XilS5R6KJ2kdKHzTlC6WOlEvzvf4+Obi/yed9ep
zudU/1eqs53G+L3oh0Sv03OV+t9bZeZmKyqOrAqacR+r1NXzd4x/M69H+/d/
Vedo9fNHPftUxbdHKV2tOo/Qs5dSg+Zqhspk9bxZ7WzQ2q5Pol/7KHV2/3ju
6zF18rtaffOMvq3Ts5V+VyvVKJ3jdujH6Wp7tsq8rTKXi56str/QuC7R8y3N
8fdqc0pDfPN3pQUa4zW10d/Brosx5fX9LNVTSGO9u3qvbK3fzyl/Gz2LSnNE
p/RH6UXRrfU8RukX0RekMfesZ0evQUePp7X7niht62dGqaVSlcd2uNJuSrtX
xfzx/JPSavX3Z41jF9ETG6LMYUpXKn9XPQ/1XOyp1M7rwHd7eJ728Du+20Jp
S6VbNVdbaQ9fmEY75G3Ft2rncK1PKYk6yGumNE/l+qr8fD076Gy0UT86lmKe
2nsf76XUXKmF+7GNf7d3Xkv3hfq2dp+2drlj/A113KQ+DFTqy9kqxFnjzD2j
dKbon7S+c0T3Fv0LfEB0T9E/lmOP7uU2Zyr/bOX/XI4zs5/S/u5ThVKl0rMq
00dl5qYxv2WlRqUJDUHvXBVz3Oi5m6P9c5nmPRU9VmVKev5RaaXy/qv+FlkP
7YVDlHZTauN1rvUcVHq9P9fe/ExpptJTavt09WGKnjcVYiy/19xO1e8zRE9L
Y442Vka/D1C9A9TWFUq3s15KhyaxVutVZkNl9Gu1nmsqY77J+01plurqpTpn
pzH35FHvR+rHDarnwiTGzXdrK2PMv+q5TunmQsz/9qXYL+TR3nTVdZbyZ6Qx
T3zHN7cUYv53VPn79e4g0Q+kwaf29Xp0Mk9oVDpQfRgpQXCd0iR9/7TKP6Hn
1Pqg7xb9pOq8SWXPVj2v1AWPXVwVMgBZMEX7emht0OTfIrpS9PSq4HlTRZ+m
523aEx1EL1f5J1TnDarzTNU5WfSNos8SvUTffKP0tdJrdVEndcM3htQGP9lP
ebsr1Ys+SN9ezf5KQ7bAB+GBv6uKvfD7qpA3vJugdndUO0fXaN/XBE+CF8N7
36OvSt8pLVX61v24W/VfpG920Xy+rd8r/O5dl/2P0jt+8i6jfkzTnJ2sNk/N
Bi/tpTbqlb9U+acpf6nmvL/yvq0M+jmlfvzOhBxcofw+2eCNF+n3xFLkIye/
1rtntS7f6JlTnd/reYbqHKsyfVSmo8q8rryZKvOGnl9mIv8t0T9oHLsr/0o9
P9NzmdJRmoe31f7z+Whrd58h5naJ8nor7019+7nqOUP0FNF/5TxmY433Vdsd
Re+j50PaQzOVZii1TYIepbQzOobaGabUqxz8HL5+qPr6DLxZ9Dvqy9tK01V+
WCna2pu9nw1ZxvzQn/n5mM9vakMG7aB+tRD9pdLBSfCtQ5WGJiFvrvH6bpPE
+r5vXsE4G0TvkMReaK40x+vKelarT/dqrD3U39nOY/2f9V6h3CilWfA8pdFV
UY7fL6rPL2RjbA/5/Qz2ktraU+0epOdI53FGkGkb1c8blcZURT+oa677S3uf
aEwfK+1ZE3oY+th47eeX62IdOHN99Xut5qNezyfVxqdKf1T6phy6DTrO1knU
Oa8q6kCeIctaNoa+h943y2PlHCADyd/Z4yBvifkz3+7icZDH2V+rvJWZkKtj
PV+M5y5km/pwoJ6vaH03qExebd2vtELfbNTzFsahMe6vd/dr7S9R2d1U9h3N
5dtK7bU3tlXqpNSxOvgQ46bd97VeicoPRZe0jvVIMfpGGeaZfqHfIsdvq4+2
OteFDju5LvbROM87/W6ZRFttlC7Mx/oMZ782hl6Kfjrec8k3o+pifev13d/T
OGtX67m/+vQHvZ+qsdwr+mL0bdHNkvj2YaVWjdE3dPD1ddE/+vZZbawddbb2
uDtUh64Cr2OeWzlvb6VZ9XH2p2rvjlTbh4h+SM9hSgeLfhC5pj5sqbnopTq3
Fr2F6LNFNxPdKPos0eOU3qVNpfFK7yltq/Qw+0epjdJYpXeUWilNUPogiXM/
AHtA63WlnvsrdRbdRc8xevd2EvM6WmmpUgulLdVuCf4iegt0D9E9kU+ii6JP
Fz1GczBS6QXOuNYij35ZH/vqxSTW/h6ll5XySveyzyhLvtoerT7cq2dv/Z4C
P1cqqJ5cQ+g0d+jdCJUZqufjavc6vT9dc7WV6LL6cKb1sz9kQp8ZJXqJUnPG
oDLNMmFLNRe9VSbaaSl6G9HnontrXU/Ren1Sjr3CPhvvfTbWvzknY/x7tnnK
GJ+tGT5/7OUZPmvzXAf7Z7Xq/TGn81cOfgAfmG4Z9a55yLc+v01y7G3zNfjS
S0nssaVuBx6A3KVtZPGjeveR0u+VHlP6h9J2So8ofaj0O6WJSv+XBE99XOmf
Stsn0c4sjwkdblVl6EnvefxzLWuXuH/vO4/x7adzsr3W6LNyjGOOv3nH9fGb
ffxUEnJmH429g8aeqwq9Crqo50at9aokZMRf6uNsIg9/U/7KJHjy5crrgO4q
eoPyf0mCX12mvD2U/sse0JrmVeep1KP98ZWezyvvCtH/Yc+JHiD6O9Gviv6r
6G/Yo6IvFf2l6IWiLxP9tegXRF8uegV7l/Jqpx16tX5fovx/6/lcIWz0z5Ow
09m/n3kPJ3pXqf4cK7pOdI3o7qJrRVeL7ib6b6qvPTq86CeUPlbaiXVU/VUa
Zyrec7HoL5S3QN9N0vNfSehKTyo/ozJbqMwk0TWiy40x38s8579qbX7W3luv
599U5lv2k+ppo/3zg/owQunPmdA70TnRPTvZfh+ZCRv1D16nnfTcXvn9M2EX
8XuE8t9Mgl/ybUfXA89CziHj4B2T3OcjXKZLVfCRid6TZ3r8jB0eN5nzrHSp
5mZXpe9Fj1R6Kwk5OVzpDaWtlKo0nkV6lpXuT4KmnftYZ+eXVaagdk+jvHjJ
VapzEPxXvxcnoYN8qPk7Nh9zck4m9Je8+jlM715X2iIJeYQs4t0D+v1aEuPF
5tjR5ZGVN9fFfh+uOf+z2hmh5watwUqtxUY9c1qnjaILjWFr/MP2xjGmC0nY
QthE6Ms3ZqIc54Y+fujyH5imz3z3kb9FX12XDz2W8v/MR90/Kf2q9KPrxu5C
n1zrfPTJf7g89VP3B6bfN835vbg2dFP0UvRT6Lqq0JeXut1Zrp9xoLd+5rae
BrcS35heCuwDWxS+3dt6JDpkB7dHW+jjS62Hj6sNWdq1OvTNJe7z/vmQs92U
7qsNnlUluqY6eCs8tbo68vk9pCpwDTAwsJa2VTHP1zsP3OhHrdlcrd3D6ueD
xbCXapT3QxqyfEQpcJk2/n5f14Fdg/2PfQ9OA96xrct1cB74x34uu11V4CKt
XY61YT2wC34Gb1Fbk9XWSuWth/cp1VaH/EBvHpCPcaJrZKrD3uHdZ8bN0DGT
6pgD3r2Wxv7fUXvvwdqYl5bVocNQD2XXuS3WEX1hserJ1UXbvMMO2tZlM9bD
eNKvhcb0mBNwHL4B61nvb/mN/YAdcb/GdYPnG2zvlqrA78D2HtTeOFppS6Vb
nXep5S7f3Kh0c1Xgehf7N3WABV6UD10fvfCmpjzLY9qgPuT6Ta5jvJ+8e9zY
JrrkWNdLudHeH7Sd0bt1Or91jZvtTGRgtX6vVX6iZz26qOisnhVKq0VXNYZt
MsR1IXtHue6L84GxYn9gm1zncjP9m3ILs2FrY3NfkA88d4TSMw2B8w73nnjP
svqJYtgvbdTu2caNsSd+NS/g7PD82fQ85/+7Ms7tcp9rnl+Y7mRdnzXnvK9S
WpAPe3at65nvOqlvUC7sBOwKyrGP2Rcr/S17bL3zoXsb60bvft7tLnSfOBtf
6tla+2at9vC2erZUWiW6VSlsO+YP/WrG/8xlG3iNyrQthZ7e2mNort8/K7+F
ntVKH4muKcX8rDWf3Eq/v1N+s1LYOq2sz2PPY7+PLgXvaeV6f8kGfwBr+Epp
dn1gA3dqjeaIXlwZ+/RG76ULvb/4/YjqHKz9vncpzsQN3if76Pe2aqtTKfjT
9d4b7AfW/sGq0E1aih6UxF6/2fWiH7VQ/sAkzsktfneJzwG/wcIzStvUhP7V
vCGwCPBx3g3hTKit9UoldC714zK9f0j93VP0X0WPLoS9cZztwOvT6NMQPV9T
mQrVUyqG3Yj9+IDK7y76UtEPiv6T6L+IHiF6lzRsym6FwGVpEz3wCz2XK/Wp
Cb1gG/VzQBI6VCvRV3numMPRaeiMrZV/dRLryR6Fr/5dv48xbwH36lQXeuUx
1imYl5PKsY7we3S5Y/2umcrtpT29XHU9rrZW6Lla73dQO2vqAgPrbPmP/Hqy
FLj7r4XA4GcZh/93fYyHsbRXmStU9wS3gz4Frxqj/K9U9mflz8jF2M9R+aPc
d/hhF+tixf/hleRPy0X94EhgrgvqA3etKcT36DMttSZ3o8+hV8GXc9HeqmzI
HTCsU8shB5GH6IrVhSi/Sb/IhCzYS/28XHnjC6HD0UewPHxC4D790rCrsa/v
K4RPAt/EFcXA78Dx7lH+XLX/U33gUeg852ZCn7kpjTW+MY3v2Etgo/iH8BP9
pRgyCr8Sch+5ljONLoZOBnaxj3UzdLXB9UGTv1RrNwP5jo9NfZjjfqCD/r0m
xnO9+jdFz/56zstFX1fWh4/rNWOh850HpkYZ+NIDNcE//gPmIPo55a8R/Zro
ncG11cYsjWNr8btr4Q8a44Jc1EW5A62DY+MOKUR95xainz+7zv1E75sLzL3J
z4c8wJ+DrACbPd68psmHdoHl7gmWjbzDX4CvizpOtFzl3THOwzfU3d/Bh/B3
9Pc37TSWv6mPYwvhA4S/nOT3QyzPuvm7pm+uc1/7ur/09Wj/pu+LS7EmW2h9
53p9KjTePsXw09XoORxdtC7WHH8W/i1wZ/xUYE3gjF9pH1TWxLfYrJxVzmkP
80HGOb8uMDKwG/yYW/h8HeW+NPn0eDb5B8GzwXvAqL60bQB+ub8xTPxu+xmz
ZZ9+WBc67Kf1gRuCGVZovg5JAhvZPY0yu6XB6+H5f9QYW9eGTbKjMdWDXf7d
+sBnwWaxo8kHKzhC9OH5wCWhaQvePiUXeeCq8Iep5ildbR9cqfqfzgUGTd8m
50ImTjem97JxvYPz0S5n8Ilc4MNgy52xi+F9YP56rjLuhn2OHEIGDYYPquwJ
en5eH23Bo9Dhu1q20i8wcHjIT+bv8Hb6NsXv8CuwzgcXAusEDwULnZ0PnxD+
IPBrsN7DVOYA5XdRWqxvX9HavZwNLGZ1Gnupv87gRI3tY337uJ7XptHna/AP
6LkEPqa+XVOOMnspv1sa2OmyYryj7v56/qa8EUqH1UW7fMvYkGPgGsgy5vCg
fMzdfPVlXjb60TGN+TlJfT6/HPsYvysY3/XKP786ZBbyCgzknGLohBOLgTmC
pYKj4ldhT7Oft0pjrx6oOl8S3UX5b4humYbucIjoabbLsM/Oq462hig1poFD
H1AIPxtzm9Xvx/T7WrV/Whq+oFfsY3pU+dco/1TlH10O+Y1/FUwEngdvvKsQ
fe+axnwNsZ+rWX2UZ36Y4629Fuh68MJF+raUBmYLdovPHrsM+wwf8rz6kHXk
4dfCT8DzdKUnRU/2b2j0wXXsP9U5XOOeD49W/lP2qeBPOTgTeAV4Apj83LrA
1rfR3HfMhez/KA28+gM/b7H8Z+8381gWGaegng6WQ5zlB0qhR/ygd7/q3WHG
K+AfXcxDxrk+dIme5ZDL2IXY/D8YTwO7BMM8vhjvkfXfVYZM4zxO1/PlNMqv
xw9VF3IL/BBMCqwUu+GEJHQ49Ld6lTvO735JQ7acpXZutV51Sxr8gfP/obE5
8tG1Ps5G3uLqiCMhnmRGMWzzOrc7SfVfDz6URjvgzdiPxyeBQ2NfgJV1M+YD
htbdWE03P7FxwN0+r4m9lS3EGPi+oRB1Ue+J6vczzAmYmfK7Wsd6NBfrzlyx
Jz7LxPpPVJkhet8zjbK0D+YJDj3G+mKTfws+fG0h5PA5er6SBr62s8Z7XiH2
7G9a50Fp6KwD09Cv8WWjY2/iEUof1wZ2P+p/zh40vjv2wue1sR/A1NCP0EvO
ws7Ox7slafje7i2GHMA/gSw4phz07ZYjKyxLlqZB4+dp0TTf1SGv1tgPh7yd
Yfm5qBC60ofEfuQD48eXh97dx/yZer8xPrZvNvYe3+fzxvI93hHmIcQrkH9r
IeTEKvvgEttn2FN8P919eC8NHnoemG4x6llRDJ0M3ewXeFghdFF00jcaQl9E
TmErEFeAvYDe9JN1s9V1wa/p1zlex+WlwFXARaotq+DJ8GbsWXQO3o0qho6M
v5c4COIeiHkAa0mMp5xdjvwxKvtJNs4G46nNR2zDrUnEakAT7/C7UvSTOAj8
KhuU7lSZHUoRV0B8wfBi2Jf4tIn/IA6BeIRzrR9+q7InpeGv6pEGD1lvPrJd
KfYe8RRN2A1z3asQtsinel+fjzpvU7vdCyHb9iCeJ401uqsYdlVfn/carxU2
MLII/ASdE/xlo31zYITghmAI+CfQx75W+T8XQgYhi54SfbPe9UoDs+DbScWw
m9Cl0KOIaQOH7an8d9LYk8eXA/tDbiFP8GVc5rWYbT8iexJ9HP2cvfJUKfrT
uRD2Db77JZrT14jhqA9f/RUNEW9BrMUN2Ajo9pVhx8+2LT8+F/n49ZDzi60n
jM7Ft/dURtzGtPqQP2NzwYuQTTynuQx1THf9AxriHfkTctEefRtVCFsbm3uK
6FtE92ZdrBcwfmz9s6xr4ff81TrY26XQoQdr3h4uhL2J3XlCGrIYmYysRebS
f/x5I7330G/Qc75H7y7H2b+tEHxwjH1/yJZxllPEf602TzuuEPrjm6XwWdJP
MILB5WjrNdWZzUdszO1JxCdBEy/zfw2BP6C7osestV91ZTbWjLiN+4rBc+B/
3xWjz7cX4tyMdv8/KEU9xP3dUQifJH7pnUoR/0McEFjpKPtzwULm2tYAU6EM
uErXbNho8K639M01ou8shi0JDX9Fn0CvQCYtzIWescg0th/v2uQjJgp+/jS6
l+p+VuOeStyF6PnlwJS6G9MGP6c8ePEB5lX0YYbKz0KvKsd8H+Y5v7EQ/Tif
WB7LIGQRdhg4IpgYtvJbdSGTp+vdTNXzSjn8hUscL4KPGr8XPi/0e/KR6fg0
8L2h1/Obcwx/xuZebLsbuTrPOhVytWdtyNZnwDL03Ytqq73SXprTduUY36Ge
k2nsGZVZWA45RD5zcKxjC4kxvM7jAOMDOx1hW3JmLrAS7G3o74yxVBZCv8Lv
PMiYCTb1MOMgYBrY3WvNH+a4DuTs1fVhi22fCbyE8tiH4AesOboc75H76GUd
bKuByaxJwr6jXXC70V4D9KDXrQs1YdBg0mB+Y1wOTHCsf7fMhU98YRLY73Db
zK1z4XN/Pgks72HXdZPr4/uOPnPsp5mah9kq+yb4lug5rHc5sC2+BT86Pw2d
4o001r6d939R5bP4B5OIWcBfi6+WuB58mdhq+zmmAj2dGF/22exi+F1qLE+H
FwLrA/PDt7er5TKxwuil0xwjzN5kL40sBN4I7tgtH/Yq/jv8OZRhDvtpH52b
jfjQamNAfIu+Th42Imd3kM8vPm0wG2wWzkGd23vDYx9aDGw/Yz8HPhP2AXsA
3wm/d1KZynLkv55G34e6P/tkA5dAV6DPV/nbC5V/QTZ4GftnsPkGY6Hf9Jlv
HrSOcWwhsFAwUfS9X3zGwcCwV7Gb8GHjy76LOMCGwBqwN8cUApMBmyE+4Guf
YXz/xFUhg4lDxM/KOuAXxz9+Xxp1jHM9YADo8+hA8NTLre9/qHF8kI1ywwqB
5YLp4n+qtU+oufV67At8z/ig70a3KQb/rrcNiOxB7uBrx+d+j/IPywfvhw/j
v8ePf28acSvYhxM9B497HvD34/cfmob/Hj/+nWn4zvGh35aGjx9f/x2i3ysF
r99afXmjFLoicdOsW86YEj5+fP23q3wqOqc1PCUJXQpbD1uuoPwG5Z8ED9WY
lil9qtQuG7L8HvtZfrQfo0c+9Af8A+1z4dMAl37Z331SGfYc+ge6x6vwUNdL
G9gJ2AjoKsuxVytDX/nCv/G7QBNnuMjv+Z5z29Y2Bmf5ZNfFeOD78HzGeIrL
4bvHbw9eRAwSvnnw3TP9BJ8hD5wUjJR4Ib7Bp098zpn+Ht8u2Du+IeIzfm8Z
85LH+nFlxG+c6n48nAt9DL9Jz2z4fomr3BSbmQk/0aZ4TOPPL7qOfzHGbPiQ
GfuaQpR53HGLy23Xj8tFLNbrtvcXeY7b5YKmzCh9c4vm/6FS6G2veH1OyIee
xtz/VIhxjSyFjsd7xkT8A3YasuOXQmDqYPnEHoGDgIEQg0T8EfZrHz+xYYlZ
6uNyk1wf4/tvIfoPZvCk+0ufZpcj/pw49DG5wDfoL/L2c9uzzNu9DTF3qwrx
nECfS2H7di5HjDQx3OjOrBdjZ2xgQuQT1w2Ogiyn/UdLUecjpYhHpq/s1VG5
0GmZj3WF8HXgA9lQCAwBLIH6qBc5gQ/tK/tliHk72/vp+0L0/55SxLZUK81V
fl0+bKf5ScS/JPgZk5DbC4yZk8DPmed8Y8g4ZB069Vj3j/iaSqVnk6ivzvYY
sWfYq8hZ5G3BNDKW+DbkLM+iacoWbN82NIZsRcai0+as16LbYyewb9h37L+p
xqJYM2yBZfYz4m9E7zjHNj6yAJsT/ylY7dH2R6BfgV/Mc33jXSf1jXWd2A3Y
D7Ntr3CumuKUobEpeE4wDW70SC72xDzT4GnT3QbnhRjFXt7f2IkNthV58ntB
EnGB29vGQ/Yil8Fnucdwk+OIwNL6WV6vKYcOjC5MnGFPf/9bOfTAac7bwXKL
+EPawI5knw9uiL1CnM9p5i/s1UENsV/vLAU9tBTvt7MsvK8U395birVizZ7T
u3Xl0MPRx7+2zgu/Ajtv7hh1xvaVdd+MbQVkFTKr0nHL7EH2JPokmHU7+8Uq
G0MHRhfGPlhou4CEjQAfACNYbL26pjH0c/T02sbQ+dH9a4yLVNivRD3o+mtc
DzRrRSwYmBExkL39e3gp9ste1r3By7EvuKvAPQfuLnCngbsN/OZuA3cq+M2d
Bt5zN6J3Odb3ykLckyAPXvJMKXhGl0Lsf/R82tszG3IRmdjO+v+e2DtKe4ve
uxwxm08nm/lgH/PGvOqq17seScRyEm/HeIhZpE14V2fiqrARK+N+CPdbuC/C
XZMW/s2dk5b+TSxCK//Oqf4Tk8BAiVlp7XebYsGSiO/iPBDLQ6wOcREzHetC
7CTtgzlwv4R7JswXd0q4W8Jv7pbQF34T00A9+GSb7kHRHu1jJ6Ov71GO+fpT
Odast2UH91xGZcL3S8wjMaBNsvNUy1bi3YgHbToPp3nP9/O3h/ocnO5zSpzv
JMt8Yo2JwTvL8vtMy3riv0YYc97Wtg46LXG4T7gcvPtsy76meD74FVjInl73
HdwO54Fz3tPnGhmITMR2Hmyf3/ul8M+CJ4IFdmSviD6lGPyNPQPv4tnBNHHK
E10v4/jE/drHdyI6lSN++XGPnzjrJ5PNcruXzwux2E/5N/yWb+GNLzaEfg9v
RvYh85B37M8eXj/0MPYB54a4MOLDOvtcEaO/i8/Vbv49wTK25HPFe/xZnMn9
/D33rcZabnIfjHzix4grwy+Lf5WYNHy6x1dtvk/I707Ow/fLfTB8t/h79/Z3
/G66p9fdbeK/7eF9zP037sadWQw5jjxvure2h89YO//mjO3l3y3cHr/Rk9Ff
8WW1dNu8G6r67sC3lIkz0NFjauPx0HfupoCjgutt6b7s5nO1h/vX1mPex+ep
k+tq5fpo73OvCbxtX4/vRPcVPzf+5+3tHwZz7JWNOEfOKXgh+gwY5sn5kJGc
XeQkshPe8KX5Dme9Qy74yArr5r95T6CrwrNWWaeH5661jr7Ovz91HjwVm2Gj
v/+Xv1tp3XmN69rL68kYsCvgd/SDmCv4Hfoz9yUP9X5D/iJ7sY8HGgshDpMY
Wu484ofa0/NxlOca7A3fIjoEdVZWbb5XeWTV5ruamzA6x/rBX4n9BL/hHAxw
TAf7tof3Apggsa3gJdt7LY90XdN8vuAb433feYs0+AkYK+fveZ3navC1csQM
Et9DLAzx9pfZz4sv9ELb3X3LYYMPRN/Qd425wNx5Rz4+1K2Ut2UusPLXi4FV
glm+DqaBbNXzVaVa0S/r+RLYhegX9HxLKSv6De6UKeVFLy7H/Tp8tyeCMZjm
7t0E379ulobtOTgb9ifxVtyhwGfcyTgrfl/uUhA3gEwixhnfIuvVXO1skwu8
knsDxASAZ15QjnkYVIi7F2Bh4FF3K3+U8u8qh2//r747dkU5+nB5Ofy6V2TD
/39JOeiLwW7VTrNcYM34i6gHvyUx0cQIERdNjDaxU2BLxG7jz9t0zykJ+xPb
E7/3fMdSPJeNGA78+u9mI24Q7GMgsQn5iL/jLgs2KvYpPvxXfJ+Luw7YkMhA
7kOgCyL3uMuCLxAfF/dC8GuCSRD3jU8RPyJ3X/Ad4jfkbg18HB7O3Rp4FnuU
OHd8h/gNP/C9J2IVXnAsAX0g5vQlx51eis8iH+8vdTwqGCXvX3T5l30fjXhF
4viI5yMGhvEydvAf5uM539Pm/fOOAeX9u46rBH/5wP2BNxMLhB7Cvn/Z9RMX
Q13Er1AHdeF34Z4Qeg86D3HuxIeBbXIvB78ja3qiY97wTXxpzAIegw8cHgd/
w4Yjfgw77iTHkuEfwWblW2xqzhnnDXuN9+1dHhu9o+v5wjGZxGbC59Dn4HWM
qbPH1dnxTuh5p9gXD84Mr6U/8ORlvvf+aTl4CfE6m+7hZyO+Db8dvjh8cuBa
xPoRu4l9BuaAjwF8Cl36afuX31NdZWQ99yKJbRP9uGO0qRMZUMpFGWxVfBTU
g73FOeY843vAhwnNuea5wfkrHddKfGsxF/Vjn4Jp0Dd8fmu8JuDii4xZbMIi
jFWjt4BxEsuTNb+90jy3r20w+Dz75UOfr7eN40EPchn4MJjfx54f8PJBzgeL
bpELv++cfMTc4NNAV8GO2M7PAaavNE1/wKtb5cJ3ONB1Ins+9XpNKUW91I9P
mSftYYPDa+A5+LZ4woOwN/HpDXNsCXutnfcbPJ09B7aMPcVYsKlWOGa4pX2h
8Hl88fBN+CdYN7Z/S4+RvtJnfJ08GcMm278h6L7+Dv6L/Uh9yA8wCu7QcJeG
Oy/czcJ23c58jz1JLBl4/oXG9HkSvw4PwceBbwO/BrwEeqTpS+3zuMjfQsNL
LnEZeMxFzgcf7e8Ym+vtJ0TmVhg3xT/OffMhjjcYYH7b0j5sfoNNv2heRjuj
HKNAfReb19HWnmnISmRm0/2QWutyC20rgc8RIw5Gx3Oe6fPto8D2Ie6bb9G1
htivS7/JW+g6wQWJQUe3udbziE8EXWuesdYq60DoIZRd4PLEp9M2mCRx6LwD
VySeYo73M7FZzMcMnxHmBB83/In4S84ciVhQ/O7sKeI+VzpvnvObfg+zX4lv
iTPAT4WPqo9jRGfa50SdlOM8o/uMtv6Dnvmo8Rn6RuwNvtWVxrvAGfiees8x
PcdtzfTasm7LXYZ2iREmFpA8MK3UsR2cI2Kd4fmMe4DHjtwZmN88HwO9T8A3
iNsjlu9D922G2yIf+5FYP2L4KAuWQiwfcYb4F4glavpusse1zGXaOXbxaZen
vmluCxu4v/15s2yPs2fOs++0u3Eb4iGxMfEd4Y/Z3nyRuEd4IzGSxEo2lT3C
vgd4CZgvPJa7VMf4W/JO9PxgCyCHkEHMG/l8B86PLEQOIu+g21tm8g1yCtnF
t+RhT5zsetr7e+Qsdvaxbhc/Ev2Hx2MLYhOCOxzpedihKuxTbFN0A2IK52U3
x6zOs64F1oRMw9bmvhf1c89ro+9KcGeCup/Nhs1Fe8xd05x1dX/YD+CT7AF0
dfDHyZbX+1lGUwd1YbcSH9HN5xlMsofnh3OHfwvfFnEUxE1SlphNaPxQTb+7
mffAs+BfxFFCb4qVykcsaTe/5x38Db8Z9ePba2OZhYyCH7FnsE2+9x5i/3B3
DZqYk9nmCfQN//ts0/DdC8z3wEhP8H4gNvZg8w/SQe4bdbT1t/QDGn83+Fsb
96fSGGKFn4d7H7Y1T6I89R3scXFmZhijZI9t7flkDrp43ogl4Df6IfUd5rPw
lu+8cPeFfbiN994S8zx4xoGWX8SgP9IQOAW4BH4w7hjjKyJGjvuZ6PbcLXjQ
9hf3jMFzwXiINSNOoymOmSd4GvcduEeKXs0dZXxI4EMD6yOehLgS7mVw5xM7
gtg/7m2itxPfx9119Hb0rJ7WtcDCwatZk+4ePz7wpnuM2Jqs7VteX2IGuTO/
6f5KEnfgsReIN+Q+OfbCacXQU/Ep8b8X+FSQP+B144z5HJWJc8gZ5B4wvhzw
y1/9jnzu5oLDgudRlnzs7ZOLoUPjL9rJ9WzSi5LA3MGlviuEP/H2Uvx/CX4a
ZCkxlMRSPpxGPC5xuWPTwFr4XwDsLGzt8ba34UM9zIuI0yVed0wa9+q5Xz8u
jTvN+KjA5IiDJB5yfBrxDEd47ZbZB4Uvam0Sd26JsQDH4cl4N3o/sC/A2sDc
2A9bOI8Ye+5z838BxCFx55t77wd5D7H2xCRwR5z/ESC2kVh7YhqhazOxdqwh
90m5h8z9ZbCr9aZbeK8Q64afljlhbrBTf0si9gO/Nj7tO72WzBf6SF0m1rcJ
F+aJfsJ5oH506ZZun7hZYkOGeXzEzxA/Qdwj8RLEShBTB8ZCLDA6IevP/mAP
HJSJ8wYNfojMwefCfDPvYLb0d5j7/JnnvsnHu8jf4Gd+y7Ya97mP9Dyg8/xk
fQsbCvsKewocYdMdhKqI7SGuh1gs4jqI6SDOc3US/91AOfDjfsaf8R3hQ4KX
rzOG9bnxLvqOXret5xtd8S7t3avwa5civpp71GAF/Yz/sWfWFiIme1Ip5uJA
n4WRnp8uxqkO8lw17TkwDXS5ldbzKHuQy/OfPeB36KQrC3Efb1wp9EPwLHRC
5PDJlsXM+eHe5+BYK2xf4jPnPzXAHyqNtfE942A8rCvrgN8VG4Q9xr0pxkgs
+cGm0RFOsJ6AbXeybc9VxvjACAuluCdWLAVuuNzzutb44DLjf5/4929+/29j
iMu8Hqtd3yfGJtkX9JvYNeLWusn22rEY8THcQ6orxR2V+lL468613bcxjTsn
FaXg4cwPmF22FHc5cugOvi+xQc9X0+Dji9LYK/28vkNNs5+RH8gRcJsfCxFn
+WAp/Bj4NcBwiF+EJ4BlsXd62g/N/1fh58OP2qMYWAN+8kU+Y2BixC3CWxLz
DnhI3nvnfp9B9F3uqbHP4WfoL00+9ie9lvzHFv+19Wga/4fF/2I9koavFZ0H
3ecQnxH2ITGsxLJOTOO/tPhPrQlpxGsStzk5Dd8+fvOm2IEn3Pan/k1fDjNf
ZSzM9xGeN3TWc21fb/Sas663+1yyLv1NM+fYDY9Yx8QXhG8IOxT+8GfzCDCM
XsYxwP/7Giugnb5u69VS6JeLSrGfXnJfuTNFbBx8j732ot9hu2DDgNPu6/8M
4b9D+K8LYkrwEeGfwfePj4b/tyB2BL/TEvt+lpbi7Gzweq1L4rxx1jKZ0AGO
N1+63fODn3C8+Tj/FYU//G+F6CN9hR/iZ5ng/63jviF6Afu8rfflTPP5m83r
T/E5BYch5pjYY+Li4c13uF340B3mRfT3ZvMfzjbfwg/5DzLquNwYKDwFu4z/
Xdp0T7oYOjCxXOhvzYrhYyZeif2AvGBNOa/8nwW6+R2WEbT7MXxD37Yphi5K
HDy6IhjjdN8X5jnD9Ezngz+kxcAFuLNb7/+tWpPGfHGvD7kKvl5hvYwY7Zn+
Flx5rfnxglLUX6s6/il6mehWxbhvRz3I/TuKIce5o3CcdTRkKPvtRvMc6Ju8
/7BT/mEbDD2ug9eM/72gPGcCfDfJhB636T/dNM9XEJeUjf8s6+dYz7szm8d0
l/tzhnVIvgETRfYj78k7w98+a3wQecFZ6W3/EM8+phfwXz+ctXLcDTw2GzoL
9xWIIQYHA0uuyoTuzNoN9f55M42YwHe5F1OOb7uXA59G10HPYB+xF9H9eJ5q
+gPPC3ouZ5j+bcJJXD97s7fPOPjnXNW7EdusHBg5Z4lzxP/W8X5AIfAB9hK2
9uE+X/AW7uhPbgh/0DxiCUQnxfBLrLaeAOb8tO9jHu59Cx8jj3fcEYCe6jLT
XJ78OcQnia5UnZMagsZ3hQ3yqH2lM0tB/1aIO5rU2cdn+hGXecw0Ngv9neQ+
07811nmw/Yk1x87Cl7LOvKW6GL6gVWnYJ6wV94BYt5HJ5rtB2CTcRcI+wZ4h
jpbzgc3CGWE/YlOwJ/lPoBEux/8xPOa+Nfd7YiX5ryDsDuyPGt915Z4id4qI
Me5cCpwe3RodmpjcCeYj/LfQQ8nmO1LUQewlcZ7EeHLfZKLngflcb30N3eIa
+yHwQVQUI2ZnZRr3OaZ5XfAD8v2u5iHP+OxT30TP7ab/MGwIrOb/Absre/M=

          "]], PolygonBox[CompressedData["
1:eJwtmGeUltURx5+FfXbf92V52ioIxBYT2zmJCigW7CUfkmMhKmooCit2OiwW
AoioKIgUlbo06SB16QtWFJQmtpMcjaBolGIh9Jbfn78f5jwzd8oz9965c2fu
me06tehYKwiCzkVBUMy3ZRQE62sHwVd1gmBOFgQzkiB4PgyC2nWDIC0Pgpfg
h9BH4S+GfzPwXSlf6BbgbwNhWRB0QeY1ZBuhfxR+f+D+2DZlexH0Fujz0iAo
KwRBRT4IliN7FnRr8Bz/O5n/ncbYO7kgeBb52ciPBu5B/24Bth4H+oKXIdMD
fBj8W6BHQ+8EX87YAnw5ztgK8Fvx6WLm9zn0TOg3gUWaHz6/Bf4F0BC8HT6c
iy+rsHG0BF+Rnw7vQ6AO/O7ojMPWNGQexrcfkdkHvSzzvzrCHwq9GTpGvif0
ROgPoPPQ3aDHQFdBL0f+PDbhSuhroJtDb2JNNmJ7JXQR8p2QHw7/JejR8C9j
foPAv8W/F/H1CHRL1upKxi6H/w7676P/F3QWYnsNY5Mzr6HW8l3oSdDDgSrw
q9AfAj4BfrdS+yTfJmCzH//eiw9HoVvAbwKvMXAR9Hj4feHvgX8I+m74zeBd
AjSDbg3dFXtLsd8K/CVgG/TV0O+iuxwfn4Ley/rVhncHY83gXYvN28EvzPyv
+cxxJ/T/kJ9LoB6E3gveGH5T+NXQu+E3hZ5f5LGLwdtgM9La4t826PeAUvCu
2B/F2vwEfMO/2+DDa9g7BnyA/SPYOw5+HvqnwesLvR771yLfDns12B+f+Qzo
LKTwP4E/Ffm+yK9mbAK8iYw9zb/288+AeJ4R+yy8BX8i/DWyEdqn98H7IN+I
vbsIe/3Aq4A+8H+Bvx/+O0B16DP2LvjmxGv7AzZHYHsddG90nwLWgr8N9AC/
CRinswT0BK9C52fk5zLHzujuZg0OM7et2PxjwWNfg9+W+WzPRv4Y8ufGtl2L
sQDeJPQ3FnnPL4XeANTFtx74OB57qzOfrc7Qr+h8ACvAM8Y+0b/Qb4u9Aue9
HuszHf+SMp8ZnZ3PgVPA70XmbGQvg76Uf9VA/6q5Y295aJ2P4U1m7Bnow9Al
2PuUsZPAWyH/e/Sfh38a82sG/QL4y/DHYe8A82uR+EzobOjM3ITt1xkboHyH
jTz2AmxsQXcROaQF/KPwN0E/CH0b9ADoU7F/MWPPgX+GvXrotoH+A7p54D/g
jYmxVsifA30fdBnzr4/9Muht0H+F3xZ+S9Z7A+t7CvyG8JcovvHnDP6xNHMM
KZZG4u8NyN+B/Dzk6yPfAPlLMp/FZdj8GX8eBxqg+yfoJ8FnJd6LFNiSOWYV
u72xdx32noLfEPkLkP8neA38haFz0irwj4CloXPievAn0HkU/ceAB6DvwZ+d
+NMAfxrhTxXzqyC2viPefkV2Ejb7o38Q/drwr0BnV5H3uLn2H/5VyA7k/18k
zsHKxcrhN6O/L3Hu0D87ZL4DdBf0ga4E7wRUgq9h7AF8+ZT/r+D/JUB96BrF
aOicr9y/Dvrsgs9Ac2R7Zra1Gf1z+dcU4FndJ8iX4W8xMl/kfWf2iZwTlBv2
4VMF9s+HXxdbHZBZqXyHzMrQManYXAFdEzpGFCtj0WmLfhuglWI99V4rB0xB
tgE2VuecY5RrVjK2KvQZ0VlZCywJfcesy5zTldsV40N1XyL/APiDQEVmEL4C
mQzbT8LvBt1de5h5D7WXNfBPhj8bf1bnvUezwPcytqfENtsj+zT07/C3CTLP
JL5zdPccRKYD/lYBFZIF2uo+Qmag8hnxUV7unKLc0g/9c5CdCv85xRv8GH5H
8XPe086Z73Dd5RNZjzeRP5D4X5rDo5nnoLm8h84Z8DZCLwudozapVkFnPv7O
A1akjlHF6g5s/EN3K+txf957qL2cCAwp+EzqbL4Av33eNYxqmeH8Y2fomukN
eK9CX6dcA10B3hGoD70Pf25T/gF+CJ1jZiE/CHp76Dt3GvSDyod5+7APf++C
PobufmCo/IP+NvQdPFX1AfT3oc/UDO019ODQPi4DX6Q5aC6c74Xgo4Eled+Z
o8C3q97B9hhgV2yf5btqsnng9wMvhs7ZC8E7AINC57DF4KuALnnP+RXwkcD1
eetI9xbm0ATbW9mvwdhfzVjXvGVeA38T6AZ+AzAK/C2gO/iNwBjl2tS1UTH6
G8AHM/Zd6Dt2OvN9InFukw/yRTWBaoMB6PwCP+WfgWpJ4EP0T4ptSzlhM/Qu
5Bci3wv5XZHvGN01o6APQo+OXDv8F+gGbwSwK3QMz4V3PHOtpJrymO6u2Llm
NfAZ9oeq3sHWVuJrcOqaRrVNJWM70R+S2LbusJnQDyeuLeoBf8PeZYw9hK1q
1rCQ+E7X3a4YGQJvZmpflXOVe3snzt1aY631yNRroTtCd4XuBN0Nium96PdN
XHtoD7QX/ROfZe2B9mJg4rtTNYRqiUdVk+Vc0z2i3Jj47lPNodqjWHsAbzj/
q6295p+ToNfwvxh8GGM7Qp/xOfx/KPSPoXPsbOiXY5+VQ8Df4Y1OHBuKOcVe
U+BLeFeohs18h+suVw5XLlePoV5ju2QSnxmdHfl8c+KcodzxOfQFiXOEcoVy
zJzYOU+57xAyk2PfAboLVGOr1v5zYl3NqUvsO0Z3TTEwD/zyxP9WTa/a/urM
vs5Afh17sRuZC3PuqQart1I85LxmTSLfAboLNrF+Y2LXYKrFVFM3j5yzlbsP
QE+E9xMwLvfbGQMfm/jsKAcoFyjnKvfuxt44+GuxMRHZJ5B5H/6vjI3PuccY
jOygyLlAY+JN1v2Zd82n2u8x1Sc592C9kH9INSh0DlgMXh0bX689wf7c2Guz
FjgLeib08VL3eKcqPySu/bUmt4I/ljj2lTOVO9cif0rOe943c0woNjRnzX0J
PvUq9Z0UxO6R1Cupp9gGfWfiXklz1twvSly7yWbjxD7K1zywBPnPEtce6rHU
a30YuXdRzzQscw+qXnSB8if8HbF7T+Vo5WrNUXMNgfnw6ieOJfUQ9cA/SN2r
qcdcAz4odm480VOrv4LeC74M/XbQU6APl7oGeESxhD+doJdA18Xe8Ni9wA5g
E/SGxHepemL1xrXK3YuohygCXxp7rtpD7eWC2L5qD7WXTRWDpY5Jxeag1LlR
PaB6wdNT92LqmQaotwZalzrHvQxvLDAQvD1jzeDVV45Fvjfy/ZQvY/uqHku9
1hWqd8BPBy4HTxLPXT2petNYdxT6Fei3i2xTthciU6r6THdwwTnyRK7MXItp
zR5W/5+5l+sDfIR8KfJf5V2T51LnJOWmjdCH4Z8f2xf1VEXoHmPs47x7gOPg
Y1LXsprjuNQ9pnrNnxlrG9uGbKlHOAJ+b2ae9vQ+8EORey/t4RvoH1FPWuI1
WIN8VeS3BuXEHtA5bC4u+MzMAj8VnX1598TPILs/cu2iN4kZ8GoS157qedT7
LEjci6imV23/OvKVoe+wXsolid9i1MOol1GOUq7SnZnwv6WJ30ZU46nW6xk5
9lVDtGQ+36Te2z06L+p1Uu+V9vxr8D3If1/iHmACdHXi3k49r3rf11O/pWgP
p6rXT9y7qWdR7zIp8luKaqzKxDWhasNawDToj1L3Zidq8tQ9lHqp7eh/mbrG
VK1ZAsxBfkLkXlV3UM/Eb1x66yoGZkJXRs69ynn3qL+IfJepRrgjc0+m3kxz
uov16RU5t6pGbg2/Ueq1eBUf+itfK4cUHEOKpQL8rXn3fHXUKwDf5h3jEXgu
cWzrzUtvX3XK3Yuq5yqA58rd66rmLwWvRmcK9qcpRvjfL7F7fdV0qu1O9Jh1
3fOo96mTuJZQz6HeQzWIapG72Z/b9V6DvScLzgHKBapZVLtobAh4lDj3qKZX
ba8eXr28ehL1JiclvptuIt+VJ66xVWsvAEqUa8rd++kNpBi8f+xa6d/wG4JX
xr/VagWv3ZHMb03qQQ+r98TeTHizgVrwD2Z+K9Gb3wHwEZHfzlRTd9Zdrvgo
+AzpLG1JnAvUY34MPizy251q6k7Qr0Z+u1CN2UX5OvFdqTP6XuI3Sr1VqodT
LxeVuzc80WOA3xi5N6/mf6v4d2lsXD7IF62B1kJvpNN1noGvC44JxcYx9KcW
vKfa25GR31ZV43dN/IagtwTp/Av+manfrrYy9mzkNdRaKscp150R+ywoxhRr
YyO/RaoH6a7aI/VbpHqEBaljSLGkO/U+dK+O3DvIp8Wqn8t9ltTTqrfNyn12
9Majt56k3GdTbzR6q9GbhN4m9OZ2J/ZeSf32tg16N/xhqfE+2B+hXJ4a152i
u6UInVkF77n2/sfUZ0s5cAf49ZHfLtTTrYS+JnLsSWdZ6hhRrOjNsX3sNw+9
fSgHTkb2/z4ZURQ=
          "]]}]}, 
      {RGBColor[0.9537199931327605, 0.7542999828319011, 0.4565319787115574], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnmQVFWWxtPMkiyyKvPly2IRCW2XdkVFbSMmZiZcUAoQl1EnJiYEKVZx
68YW2UEUsVsdp1sFQXsmZmx1UAQLRO0WtVWWgmJzbUAEBGRz6Rl3kUVxzo/v
yyj/uHmXd5eT5557znfOvccOufmqEdlMJvNYTSaTi/zU+ClHSiMNKGYyPeoz
mUHRoVfkjZEuj/Zv2ql9YFZtfPuxnb71jPJlkQ93+TrnjS5Pj3XGR5oQaVyM
vyDax0d+TaTzojwg8isjvypSbV459SNqtOYFXvchzzExUv+g8/xo7xntX7VT
+aIo/0es1zvKf4h8Gut57QcjjXV9aHwfEok/f0LMMzDKu2Ps/Ej9ovxs5Ce7
/aMofxfz94/yzCh/3l7zPBBpe5rJfBH1I1J97+c+TfDP818b+bBIh+WUU5+R
1/fBke6Pcpec6Dkyp/pQjz21qPJh/j7MfZ7zf3w+pzkGmc7JUX8k0sM58eM8
82SGeTYp0pmRroj2syKvRL/TInWL1CnSmZG6Ww5oQy7uqGQy99RlMiuTTKYh
6qd7TIdIZ7je0eOo312n/lMsU8xxSqSNtZnMvdE+K/7fjZHfEKkxaGsX7eOi
fCB4/Fbkb0Y6OfrfUlH7pFIm8270KUb6zxi7Pug4LspT4vvqyMfXaY7ri1qb
dVnnbq91bbRPjnLXaN8V+e5Ih0f7xti3T6N8avBhfYz/TZTTyC8O3vSplxyR
Uz8sL1mEb51rxPs+5v/kisbeVtF6v43yHdE+IepTaA/6x1W0579KlN9Wp32E
tm5F1Y+I+tmRzoJvtRp7sJ3WvNL7xX/8RVFrrIs+d9ap75Ci5O/h4OcqzlWU
V0f+o2URWVoW4+dGeiZSa6TmSPMiLY30dKQ5kZb7O9865tW+JFJTjB8XaazP
Neec8z4k0qRIEyO1eA7WGJaTLN4GHyI9hA6wfoA3t0ca6u+MH+/v07wO+YPw
x32Za0v8zy6R5gRdmyLvFOnJKA/2+qwz0HMxx5ygszX2eFLw4PboN68Q/aL8
fVl660DkK+P7ikhrov25OMOPR58Fkc+Lsc31kpGH4tvyyGdkNQdzMs+urMai
N7KJ9OPCGDvItIw37X/wmTyY1R53jvR9VueNc7OvTnS8EW1r89Ir8P3Fgtqh
7ceSdNyfUvH4Aeuzuc6ned/I0bUjYs69kQbH2GXtVW6JfGmk76K8JPLRdVqb
dRvNO/b5Yu8Ne9s3p72k3iun/0a/3jnxnTpyd3xRsjegXrK3ICvd2WS9ured
vtE+rKjyc1ntP7pqZk7/FXrgKfs5w3Izyd+pQzd6oynG9jGN0LEhZKEh0hN5
yTz6FF5faplDjtDbX8bY+2tkl5ABbBNnALuCjuT8Ip+0N5uXfGNfGAvf7w36
P49yzxq1feU5ab8n0mdRf75eeVO0L8tLz3SrUf4365xLTBf87WneD8hp7i8i
1eWVUx/gscgj81xX0d5OCLkYVpEeHR/lD0I+WmPcwCjXR74aWxL9C3m1941y
EvmbedmCPtHvvRh7XFl6dJx16dZIR9bqDP5X9K3Uys4Pi/5jYtyHqf43/x/e
NCeSo2NinuV5/Wf4k0b+bl68vaNe32i/KMZ9HXOuy0vPrLOuIV/r8pyK1r2i
JP2Mbr4oaPhlrLUmyieUtd8Nbu8U9dei3Dny9yPvUCt+NkT9L9QjvyjSZ1Fu
jLmPb5BNeSXma4mzlkT5nJzkomOtZOCEBumZZdHnxAbpn9VRPqUsm3RqWTp4
ivXwo3nl2LufN4i2xdH/2kiLo9y1LHyzNC99vhl6a6VX0WWdTPMl8Z+LkZ8U
/adE+bPY987B8w6R/hbljql4O8M2faLlF1lFP3bxnBPcNv0n+mLOT/TFXOuS
OdY5veN/ZCJtijn6gdMi9Yj075FGRroV21IS/e2Dhhvjfz0Y5SWpMBBYqEvk
v49+oyKNjvRApDGRxkb6nefg2/3+zrcuMcfmSNtMa7PpG+869B4R3zfkZY8a
g8bvCqq/HGlyvWx6A/ggrzN9e9D5ftBTE/RsTEUztHP+OEvIKHro50XposcS
naNK8Pzl4N+Y+D46L7w47Sf48UHzjP+KTuHsD06kn9HT7PPBvPTh1Kh/E326
xvqdou39vGzvE0H7WHRKjJmW15l7Pyu5zkf6OsovJsJ9JwY9Y4vCRklOmGBt
nWRsrfES5bfr1AfsRE4dvDS1KNyzN6e+a90HHfkLY47FBZXBJG/E9zV1kj9s
4M4oV2o0z51F1V8tqM832Kz4fxuwLznROaaodfjOXDPzWnOd1+1sjAPWvDna
fh1pcl4262aXB8f5vDbKgyrCvGAmaAM33hRpQl54mP9wCGNH23DmD3qGVFR+
lDPXXt9ox/6xxoQonwidUf63vOwNthA7dWOMvQVsWpGdpwx+IB/p8k0VlWcl
oneE7eykevFhWdDzq4r04cSS1hltOwv2ZC/S4OemyDdHeg48WFSdsSsib62T
Xl5YUPm1KHcvSx8uinVXgRnM/01ZlTdm1Zfx9+XF37625+hw8No55v0l/na2
bST1sRXh5NGRL0jkTxxflgyhJ0vgrGjfGeWp0eeykvazW1nrQxNyixxd5nk5
X9h7MAF2+0bvXXfThQ0/1fYPHY6srPL/Il/tOTcbh4JV4dWkSBvj25ac8q05
8XKT29iH9y2TH3hci3UI82yqka/Sx1gGLF3V3zcnOmOlRD5Qo+nbZnzM+d1a
IzxN/XTPAT46zTljtnhN+k0uiZZ/jrxX0L4uZGsutqYs3+JgWbrmqXrJ6jx0
YdDT7LbZbm+IufbFuP3Qzn+I1D3SzqivirQ60t+Vtda/xFp3x1qnoS8jdbVd
x6Z/GKkVWcvpjDD/ovbCuU/XC+tu9/eVkabk1Y789+Y/e+0d/s7a4IUtxufo
VnAKtp55+Q/YkV41oofx2OcNxmzYvfdt+7Dz67wX6B+wOOelZ1E8wzfgbILv
oRe/oTnSM+xRpOX+b5vaayyYCTu83jhhe+THRFpgO7nZtpL/N8f/Edw5z/OC
WcAu4LHZFeGE1xLh0fnuB0ajD//3Yu8JfjYyD97GroCDPi/IRkHbxoL+15GJ
MMHUyH/ISj/iG/wYNuMwfMDIf0hll79PZUNox2Zip2lHrok9EL8g/oB8rSmI
X2/EmDfQ15EnifDNyEQ+ZGtBeLeSSA7HRr6eNaL9iCjPz2tsDj0Z+aqC/OLV
qcpp9Bkc+3JXXjGT3+SF9cH5T0VaHGlRpPdS/d8uiTDpxwXh0J8l4uvdiTDp
pwXhmp2pyjvAO6n49mnkX6ey+19FfrTHbqJv/N+PCsLJ21LNvzXyJ73+65H+
Jys9+mqkWW6jDl7YW5B9/jZV+ZtUugSdjk7ekmr+4xJhDmgAt2ILmy2fyBll
bCWYbpP906o/MMCYYWG9cAM+zbOWIXQouvSf4sx+Et9erBfOPrmsuMWYkLtC
Khx/VCIZXFsrvd6hRvrgQE70brJNOZiTXtgV6c4Y/3H0P7esOnpijcegC7Zb
p2xz/aW8dCqYYUpR7egdaOO/4NdsMH9Yi7YX/B/7loWJri8Jz4Pz19r34EyA
e1mbGBbxE+wh+I21Li2r/yVlYV8wyKUl7S/zf2LMBX/AYo94ngU5tS0034gZ
di0qhkkc7Mii4oScZfD/If/EvgA+wQ856TL49bDnY296lOWrNQUN35tP9ANz
wk/4BE1Nxob5VGeZM03M5grHMJEN5KKb/aDP7d8NtG5GLxJXgg72DZmhvck8
6+Tv6JWOrqN/O7h+dlnxtbPK8l0o48seVSt9h66bkGiv3nX8DDuOrWQu/htr
o5cbPC96uuI6MYxWn33WQ24Y8160rY/0Y06+xiCwsP0R8iGRrg6afhfrHhv5
35e1Ljhikr/jn2LD0dtbvQ7roZewgV1tB8eZHwPtFwz0epxBZLPiNbFPffyt
l+vIF3J2uP1hdHRfr9/H9bdi3Tcj7Y65iqn852OCzpUF6b4ppm2F+UA/+nOe
LnQsu7/j2ZSJu2L78KFOIq5cVPxigP0q/KurnW61f9XDc/RzGuVvA+w/Vf2o
B+1X8f339qtG26ei3hJrTc8K6xJnpzwtq9j7NI8f4zkYs6SoeYmrYKvBIj38
n8ZU/TT7K/xXzuLzPo/4o5xPzt2dJZ394SWdx08cK2eNpyPNNq3YhidN62zX
S+Y5vGd+5kSfcKZftM7sb1r43/hP+Fzw+aOisACxOuw4eAUMc2desfuZ5iNr
48sy5xemmRgGc+PTjfT3+yLtKureAZ5dU5T/AC/xfV4rSDctchlsTP6qy+Dl
RS7jWy0pCHsT56WOL/NK5C/hw2blQ7/icl2iWPi+OCvfer1vzH/ik+zBqCg/
WpBcoYfxwbBTYMvGouqtxnMTjckXm4bmgmKC6EbigpQH+z/Psp1caNres52k
jq1kTfAi69YmsvWvxn7dk1e8klhlayqbdW7YnDrbLGzXCPt2yOQdJenV/iXF
JDkXPX0uODPIHpiUtcC9YCj6gaNmF1SmP7S3+L+wN5SZv12ifX8l1f9YaN5y
jlgLOQcbgsOw3atSnfPzK9r/J80Lzsccy+62SPsj7Yu0Bd5BV6TtWcVzD0Ta
6u9825EVnuMbsWLiksSA50I3tKIrKtIr58Ref+g5WOOdoOW8OulV1uA+hrsU
vhMz5u7lgop00D/E2LsS2bbNqdbmXocx0MKdDXXmZRz1naYF+gb5Dgo/mngt
dOILo9sP4cAa0bLBeh47tN7t5O+5jC58y30OWjdS3uA+lEmM4XunRPp4SuQd
XX43ldwgP2CfOebTUu8B+RLrDHLw5Tup+NUh5hhdVIxkT7S/lYo/8Am63jEN
I4s6l5ytNY5lcJb3FBSXBLOs8L6yJyu9l9u9b1u9/9yz7PQ37qGI4RDLafH3
D7K6g9nlfsstQ4xv9dzUS/Y395elm5+xjDzoHB6gy8D287LS5c3u95DbqBPH
YC3OIPqmxeedM7SoemaNT8ApxEC4+yQ2sdT0bs4qhrDQZ5/YAnz6xnqAGNUG
99vjby8l8ttH4FsUFJsDI3/g87HHe7XZ84HHN3quodzZ5cWnxf6+0f9phfnU
7Hy5//Ny78N87w39VjpOwFhiDewNPsiz3if6jUvkV++qSLc8ZZ/3r4n8weZK
mw+PT7/CeA88vNK4b7v9y23GKuizZUXpHPYFu8uefFxUO7qXOAfxDuIxxBvO
cL231znDGBYsC+4hdoK+Zu/A+BXj/FXGp9BBbOVs95vIuSkqrtLX61RjPGe5
H3eVvX2nubSo/tyn4ytU4yj0486ki88uZ3SX16DtSK9/0FgRv2Cv+QAWPs54
eIe/gw+520QWsT3wDB9jn3l6wPV3jEvBp/Dsr+Zbq/sxjnhKN+8NsZhTXede
j/7sw3avybzEDuiDv3/QMRZ8XGwjcQRiBdjIRpeJ0Z3os8C91UlFxb+oc0bQ
h7TzJqDJ9/DczROfrd7pLkykS0/2WPozlhgj+Ykuc59/isciV/h/+BoTi443
5PTfKc+zHM5zP3gJT9GPxIWZ40+J5oQeYqL8L/4TeGBURTFl7kyISS+pla9+
VFkx7zmJ4s2rrbuI90H7/EQ+yr2+zyLGAt+mOW90LOaGRLbjOfO2l9uJP/Qy
DiGuhn4jRs09E3rl4rD71yXix81BYyb6tNRKF3wfaVGtMByxYe502F9wNRga
G04MmDsdZP76RPHOeYnun4izEn/tWBau4a4MueJMcj7/sazzzrnHL0LG8UeH
+1xx/piXcwJOwIfnbo4Y0bU+V/Tj7rNXru0utLfPN3elnHnO4uGpMEa7VHeO
3J1fbv7AG+J0+Jr446t8Npd4XWIu0PW89cMa96vKBDIyxGtebPlhz5+x7LRa
lq4qKY6TCRqeSMQTeAO+/sQY+NGKzlKP6PvHivbgyURna5nP10updM0FJemP
pdY59GEsZ/bPqXD5+SXhVMrgc2J8nFvie8+nuv94IdXdFHc13PfsycvvAO9l
EuG8F1NhQdrxO7ZXhH2b4vt/VzTmj4m+j3Ef4mvMyX1YLhHefTkVf581v5us
RxrdtspnER8I/h/yk3J6R8A9/m7/X3TmdLdxx0+skz7EVO+wDHFv+JC/c4+N
PiaeR1wPn2K350EWP7K9WG1di35l/V2mYZllFvuCL7LLY5d6HvrebrlkbfD+
R9afH1nmKU+yrFTfXJBX32gM83jeleDb4uPib/P/OcsPe8xk/6dBlnd4MNB1
7Nbt5sFA87WX+dfktvnm8QrrkOmW1Xnm1wwneFZ9UzLYdM90G3Q8Ylpu95wz
/B2Zn+65FpjuR7y/M11HbpHhgeb5Ap8t/jf/HywODsEfBWPi8+APzTJuedLf
iDnWOX7Z6FhEk+MIQx1XQH+iO/FhX/ccjK93DIL4QxXXgvGGJTpHnMXhiXyq
J6J8k+9Yj24InZfIt+Tuenkqe7Ai8oGJzgXn47BU+iUb+ZupsO/baRtuZr0+
prEaLxnseAnYGLwGhsY32GHsig+z3XX8A3AmNhF/5EN/A3uD9/BTDnoc/bCH
g/wW5M+2F9gN/AB8CfBEd/OueqfRp6btnqG34zjY9k6Od63xvSK4tJdpH+j4
WWfHx8D14FOwfot5DJ4Gb+EH4Ud9aGwJhrzBd1Po3mcS2aSjy9Iv6JlyWbj4
dWPgjZaJxcbM2KDXjGtf9zf8GfwafB3sM7ihem8JH/G5wDH4atW3eOT4aMSr
dvqu8HS3Qfco3wVzL4fNRE7utr5Gb3cp6/6VfcDmcv82tNiGi581Nq7i6Wbv
Exh8jfdtles7jJ2pbzXuZhzYHtmFr/t8v4n/sb2Kx7PybZabv/wn/FL80TMt
++z3s8YAYIFN5uWSbBvun+e55pvuFW6bb1rm+j8UHF8mtrzFdPF9s+eDVnBn
g2Oa4M4Ojm2CFzs65vmd5ZgzwF33VGNc+D3KviV7wrd93qOpvhMnXsp9GzHe
Kb4rZyx6m/gR8Qn2YZjfG3BvMsTvpvg+wPFqYhjXuMxbBGIevPHhfocx8AEM
N9hjeXPEuugh3mIxZz+/w2K91e4DluN+Cp10j/sz7h63T/S9KhiCnDr4AR+B
O1f8BGLpvLutYrH+jqvzbZL7c6+ELsWOEGvp5z7E5Ac4poaunljF3kW9G4C3
8GyKeXtrUTxHzvEBaN9q2m4zncg548veI+apto12O/kYz0/8DfyMP8KZGeq9
YJ1b3efQ3Vx7xacarIOqsfDTHMPvYD11unXNmY7Nn2Zd1Wg91d39kP0t2bb4
0NZsWzxpm3XoEdab6IXO1r/UOff73Bc9gYwyH7pgv3Xw3d5DaEOvHci2vTEk
Zy7uIqAT/cjdBHEAzgu+M2cPXYqe4+0LeAp/8Tnb9j5+AwsWHWlelbxHI803
+HqtfRPeEVCG35wl+qCLsb28k8T+8j6X96zIC34q/xke4IegW/HnGbPJ5/g7
6x34uMdt1Im7EC9F7yJ319uOH/A7T+48u1vfH+JHXr4F97xgH3A6mH6E4xgv
4/tUdO/wVqJ4M3FnYuHEnfu5Tjz5ate5u+TekjuNZaliwUuJZZXEU7Aqb/J4
g1cf7b1Ksi+PV0Q39GNTiE0Qoxjvu9eceT68oljnnrJimsQ2D+d9i+Obr6d6
X8M7G3ytNxLdx39WUfwe2vGbeJ8K/w9L9O6J9xnEcPHbj/N9EG+muDdibd4u
vev/ho2d4LsX7p25c+YdReL/Dabhbpp7ad5I7G+veifj8i8dq8e3u9N7wH37
077HB9+Ac3hTxv4jB/DmwpL2DL9kvecD30MXWB+cD64ibkt8H5x1n+s9S/J7
H6soJsWd7ZKatjsq/s8P7fX2DLrBRNX3dN+113qsQWyw+laxv2PX3A3yBh2+
rUv0Rg85SLwGb1bgTyfzA5rxZcF4+FP7U8XLDqR6n/KBx3BXiZ7lboP3I1v8
bWhFce9vY90rS7rn+yHKrYnum/+vIv16jXXsWO/5ITxTo7cq1Tfg5MzNmz/W
ht7d9jvwKfDHWj1maaK3Gv9b0TvBFo/Z67dP2CveJUPvwZLeuODX8g4FGUKW
8F25j8UGIH+cH/w65OLQmbD95o1ewXqJmD+YDBuy2nxFxrA5/Ypt92zMgVwN
KblfqtgAugY8N9Rvs3mjTYwP3/9fS/Jxuvo9DP+T9z3Vdz1bzfce0f/coOHC
iuRjm/lC3IB5iC9z/8EZyie6Z+RuGLvPm2jsMWf1lxW9b95bVuyDGMiiVHGg
oY6//+j3jJyrvOMx6ED8J2IQ+M6d/aaAWERH3/Hib7I37FFLIr2KTp3lM8ZZ
4/7rL6nKF5UUT57idmJCvNsAU3xsnxSfE3+GO1fu71K/xyGe9tuSzsyxqd/Z
m54j/fYHfnbwux5oRi6he0XQNtd3RrW+4+K8o/duSRQXOaPcdr/L2mCZwcYz
4D58ZWj/TUn65We8OU11Pr9M9TaOeClvh5cnelfEG97XE/2HSdG+JNF7IN7n
Xl7SWwre9Yz2+7fxkb+dSDawA2sSvRPi/e9w32/yxuF5x85ujT53laQvjkqF
R4njT8+2xfGpd050F7IuFbad7v8z3/9pptvAifj7Zd89czfFHJzn6v3tOPdD
v8P3NxNhI/Q4OpzYxhPeL/aV/QXzP+5YG/7NryuKe46oSGZfstxmHIcDF5Hj
X+AXrHadMn4p7b1LeqO3yv4YehZ9+3TShlNZF76CBYiT4ifxHoB3OActd+DY
S/3muSWVj40u5374tVT0N5YUlyWuis9wq7EhOGS2+3LPjA92n+dPHDsnlg5+
mW97Otv3g9wT4hc+4H0iBsPZ5lwT/2i2PPOWcIPf1WCfaSc2wt4jAy8kihuy
FnL8tGlhXt5hzXN/dAmxcvhNfJozhY92lN9ooCf/HzXQ7fo=
          "]], PolygonBox[CompressedData["
1:eJwtl2dsllUUx28p9G3ft33ue9+yyypiBONecQSQLaCoxJGYqLQMGYYCYqGA
jALOGOIHNdEPRBABkVUQZMhsKass2VRAJEBoInvK8PfP8cNJzrn/c89z7zn3
jCe/sKj30FrOuWqoNnQhOHc17ly9mHPn4OsmnVud6dyQhHMzvHMBeSXyVfC2
kXNLWYshb4dGppxbhZwDvwdqg+5abKzA3iooDvYQa73SnUuBPwz/ILQPPkBr
wTeivwbddVA2cgsom29VQn+CVSNXwP+Dfmf2NoDWwA/jfD+C9US+hNwJuTvn
KWFtAfrbsZcLfwzaGzOdF9FtC52Bb4t+B/SbgsfBN0KH+V45cl3wQ9AH8Dug
xvDHoA/hX4nsLnuhB7A1l7U77F2P3B9+M9QAvlr+gR8G7YfPhTbAr/fGH4Qe
Yf8g7O1n/7Us56bAvwftQb6MPBl+L2c6wF0OQg3YO5i1Q+A3wafC358033/P
2u/g7VgrjlnMFLvnkcfGLKa5yB2QJ8TMh/WRJ+ODk/Atof3sb8TaLfBxPJKG
8M0gB1aG3BQ+hs71DL4tG5wtmbS30Rrcw9cBvwZeqm+CN8nFfznOXWStAKw9
3x8FNpP7LAGfwPc/IRafQVvBu0RmewPfbIK9y9B67jod/dtgnSKzvQ68MVhT
7Odh/zL2+7L/KmsV6M9HP11nQa5EXoBcG/kK8kbkOcgOuRv2PsVeOfaa620G
83U7zjMBfCx4FXfbwp73OesY5IJa9o0BKTujzqo30Bmsgj31kY9Aj4O1grZl
Ws4s8fYNfUs+7Yr+GtY8fDnfzPF2J91NMegIfj1p314OngU+hLVqsNusfRzZ
G9RblI1eyF1Sliub0JmC/k4oD/k49JTOohjDH4WelG3uuxnbW6AkWIls1DIf
9cVWmjff6g2tQPdZ9pwin1uw/zn4O5HFVjFdBv4XVExhOc/+E/CvgTdVPiFP
gH8zsr0noKflb29vTzlZyvf6g+9QvqM/KbIcVC7Kp5vgf0Gnmtgc5QxvgD+K
jcNg9aBXkU+Cd8927jvwYvQXIZ9CP3Cmt8AHQtPgL7L2q94eOgm+dx55KfI7
yinwGuQy5Mvc4XrcclS5WsLaeLCvkUfDNwOvHzOdK/CnWevN9xtioxTbNboT
chrnWa76gM4GdPOQK+HPgheAn8bni73VYNXia+hcgv8bvGu21dDh4BeDYV04
Qw+wWsj78FU5+HjOtxKdb9hfBf4T+ALkL5A3q16q3gWrNbmsNYFvHqyW6A66
ywj072bYN/XtUchpMfOpfHs7ab6Wzi34vGC1KqDTGL4HZ7jEXbbxvVnov4zc
mrPtQ56LPAl7dWIWE8VGNUu1axfybORGwd6OYlTK3gbB3oJHp758A9Vk2Rvr
B/56ZHc/xP557N+DvbKYvRG9FYf+wpjd4S7nrR3sLaYjp8MvDVaLLnCfRYoH
dC5uNVi1WD6Sr7RWE0xHujOQy+AXB+NVc1V79cb01g6zdkDxk824vWm97Ube
sCOcoU6wnFZuqwYNUL9i7QzyNuTCyO6su2vtOHwBa29j/zTyUeSW3vizimmw
GqlaOZI973p703rb2qO9ipFipTOdhM8Idha9+YmR1UjVSvWIft7esN7yIeWA
5gPk3fA7dSfk5cFqaWdi3gdsO3JV3HzeO7IerF6sN5oGtjJYbe6DfqG3GCgW
2lMVLOeUe+r56v26k+6mmNcNNlNotvgKfIjO5u1s6pHqlcpp5bZ6vnq/aqpq
q3JuU7AZQ7OGZpbVmm+grfH/a2CwmqHaobVtwe6ku6mHqZflB6u9jbDfAn42
+Lfg94A3Bx/L90sTNuNo1ilC/hzdYtaGpaynqreOQB6CPMsbPxwajDwOn42G
L4FGIH8ETU3YDKFZQjmsXD6AjRfQ3RUsFqrJO+GfwP4k+E/RmZiyGUmzUhE0
EHlQyr6lnqjeqJxR7ihndnvLWeWuasgKbz1ZvVk19jH1C2+21bPVuzUjalYc
DPXX+VM22+nM4+GLU1brVDNHpazmq/arJ6g3qAepF2nGqvLWM9U7NUNVeqvx
qvWaUZ4B+5c73uW+DTnfjWA9Tb1NM99o9G9IJ8N8ODxlM5tmN/XAXZoviVGr
HJth5iHfVA+Dn4T+GPTbp6wXyoft5P/IMMVUsVVMFBv1dPV2xVyx18wzx9vM
p9lPPXa73h5nzEm3GbcC/g6UlrAZTrOcZibNTgNYK8T2b956i3qGescfypmY
1cx6YBuCvX3dMaFZOdisrBk2oXk5WO9XT2sGPhnKjFlPUm8amrK3qJlmPti9
SZvlVbNVu7OCzcLak6l88ta72nDHlrkWY8VaM8IPYAu99a77wPPBf/Y2K8rH
8rVyXLmuGU2zWhnytJj1PPU+H6zWaeaP4POSNksrp5RberN6u5q5ZnqLuWLv
WLsdrMep18nHPSPLSeWmfHwXvmPKZn35UL5UD1IvUsyLsHcrmK1uUM+U9VT1
Vr2xm8p/9e+EzaCaRad7i5XWCsDyWfsyZj12oLeZUbOjauTuYDO+Zn39U2z0
1uPU69QTX4rsn0X/LvoHOx/Mh/KlasYibz6X7+WzZapdwXJf/1jr4f8DW735
WQ==
          "]]}]}, 
      {RGBColor[0.9934355471622628, 0.8535888679056569, 0.5796501962030146], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmMVeUVx195AzO8mffue09NY0pEZBFbcGkrrayCWi0DNRVZpdotigLD
MAxNK4u0sg9YkjZpYir7Zm0aUi2y4+CCdSnDDLtUBYwssotaqTX9/zj/CSZz
cu/97nfP931n+Z/lTbufj7uvqkUqlcqmUyn9peaXp1J1oudLU6mJJanUA6KR
ovtFVaKxoisKqVRO769LUqnBeh7ndxNEw0UjRENE1X63SbRUtEy0UbTEz0NF
4z2v1t+x3mbPXS4a5DXHmDdr1IjOaA+fZFKpc7p+pI231FiJedR63ud696Xm
/LcQ3wwzj5zPNtLrD/W7au97qPc92M/DvCZzT2qtViWx3gyd/5/idayYSjVp
jV1aq5/u39N417JU6h/F+KZONFf0SEUq9bCok3g06f1Cfftn0Ret4h3jfMO3
o3Kp1GvZVOq4qKPG326tc0gvb+n6ZHnc99P4YNE4UZWot6hDOuaP0PdbxHuN
+P1IvKeI1ur5lxp/W9ertN8+nsu6P9P4Gxp/QfMf0ZoPZ2Ov95v3WFFOZ+gs
ul6UiG7wM3yYe7uuB3X2ztr/38WntDTm5K3XidbNHZrbT3RWhnefdTtadF7f
V+haLjqr+4yurRkvC5nsFL9P0rE2e3nK/OB7wfvLij5sHXzheU8+lfqWvn1X
+/o4He9Z47Tuy3Qt9fr32dbOpGNN3jVmYq1P08Frhmi66EXRM6KFoitL436t
aJ3HFok2iBbb1td7jGf8Cn7/Fu0oDb7wnG0fwu7OpUMGGdv+IPvfpiRspSIJ
faLXnZrbx3aNna7T80CNv6hrpa4DRC20Tl/rAP/Ypnf9Nf6yrocyMd6PtZOw
yWeL8R3f/8VzKz2/t9fBR243P9aurYh5z2pOe2SI/kQnbMPYcpXPgV81SCdP
a60/lcY57hU1aP6b0t1F2fYbul6HjswLwmYytnGu5aKHsmFP52RLF1vFPXZ1
tHXYwWNa6/Hy4Hle47usG3AIe8KuVlsHC63XSsuM8+5Oh01gL+Dio1pvrq5N
ktvuTNj2/4wz4M1czVsuWibaqnf7RfuYk4n7l0TH9P1R0fdsY03ms0/ft9a6
baSHtnq+TfR9ZCxetaIJote13wWaM080RM/V9v8eonbpkNku7/cUY/q+h6i7
aFRF8HlAdK3HWKPJc8G2xzRnOfhoP2v03u6WTfTTnu/Rdbr2d7vu7yqG3TeI
dtj+G5GrZYysm+wvOz2vWzZk+Fk6MO8R4wy2sDUT9g32MH695lyj8x4pC39Z
b36N1t9ur/Gp5PZ1fd9J++qgucdFm/S8xbLfC+Zor3205zuLoT/OhR9u9vs9
7DGJ9Z4rRsza4zW+kYRe0A++gs8QO/rkY63eut7hcfyojee/kwRmjDbGDNV6
460zYg0xYY5l8+JX5LfOmNFgXOHd9mz4En7Uyz6GH2zWGjnt4Zv5wOW+9svO
9mmekQOxdEVJ+CJ8KvTtttKYA0aDo+Dp/JLASHh1Et2juJAW/+WSSV7zu5TF
PLALXMW/8N+BxqIm7x39D3LcGJOO+DmvJGIhukX36HeC1+QdOlxrW+ppW+ac
d+YjphBbOvl8YN6BdOA+uL7fV2LIO+mIE7xDvmAq8t6TjriCP1/HGvaN4fat
GtEwX9HTeq2X0bordPZ95g02H0yH7bAG/rxStMo6nlkSOm8v6uU1xlnPYHxH
7x0c7eBrL2PCE5LJNSWBk8ydhW16TfY91mOssdX6ZG3yoAuZwLH60uCD/VU4
XrxcCP8m1pG7nCsL3aHDffaZs8Xw/dH2f+I3Mn9Q+p+ejX1dynnEZ5Fooe2H
Odg+sb5TWdjST3KBbf2kt5mat9jfVIn3ONEqzZ2l5yV+19ryQif9s4FJxOPh
lhX6PpwJ/2KtX+TC7u4W/0bjFjng+5Lhe6ITup+aRL4zOYl41du8hlrePN+o
tbpmI58CGzk/uDcwFz61SjIYq7ExHh/tOSPTEU8ed5zCD8m9ejkPIh8ipyK3
6uN3Gx1LwOZN6bDF3Y6P2+2P8HnN+R7xhJhRXxJ4SJ5IfjU6iTiXScLniJnE
+g3mDZajY/CdGILO2/m5zDLm+fXSiC0/xpaSyCW7Sp7jxbNa9Hvs3/waHWcf
zEYMJhafaRFxdmo2/J68Y4R11Zxr9DUGfSRZdhS9pDXf1loLNPdWrVUjXs+V
Rs6A7g6Vh86IvW3KIv6C/W2N/3WiFY6va0oDqxkHr7kfLL3dlo/5Q3JhC4dt
D8Tbk46507KxHvs+URb2T+3w7Wzo+1ca357E9Tv54HHEfIbl4tozH7Zc5flj
fI/cOMf7no8sV6djnJgEL2wVHxtru0IuHb2HOenIHZamQ0fsGT0NNlaBJ8Ql
4hOxC/t9tCJiOmfm7H8tRu7YwX5F/ohPEe8rjOvgELFto3nd7/esMcTr4Cc3
mz82X+7v4PuUz8y55otWiVaK5vmKnpiz2u/At+PlgUvULk+6ljnpXIgz8v6Y
dTTQ+S32PVN7mJGNedwzBzzi21OevysbWI0f/aE0fIr8cLtjJvfTktD3rGLY
3gTb363ZsHvsslIyLNeclcXITY/bN8mbRllfxDTwC2wrlkbuSN44xmMzrPca
58MrHd+Ic5vTgen4/5Z0xBWehxo/wAr2VOtvyfF6+h21Xg8/k2vXOj8nPwQb
+qajXuvuecPMDwwa7ivzJnhvnJfabrbPQ/473fFrka8zbTuDjMm11is6H2+f
JOetse55nuD3PBOj6nx+YtdYxzdsapTtdpVlQ16BTcEfOXe3XQ6yLQ79im0O
sU+Q18z1Gku8BrFzsffOM72EOZ63NR25AnJf6rm8q/Y58L8e5n2p5+F4hZ0T
m8BLbHWc5yI71hnjs42SjW2X/bTLB0aRK4Bj1J/E3NnFqGnIbdoZ96Y4dwJX
2/sdedZ517zIhjyJHI1+w5mywIZt4rlY12pdG0ojrhPT52qNP4rvHF1/kI/5
d+VDBzXmxVzmsCdyZHJEcornk6iTOuSjXmGMHGev8YZ5nI+ccE+L2G8v2yTy
Jc+i59HONtjd5+np5zq/Zx/NtRw8yC3RP7U8/sp4ue11hO0XX95lf8TXucfX
wfMnspfx/j1j7MtJ4NbNOkv/XHzTMX/ZH/APMGiEfac+HbkjeeVLvu73GfCr
QT7DYD/jfxPtg0+7j0PcBzPADuI4uSPrsj52NN6YudoY8ax9dJgxoKd9njWo
0w96TzvKApcqLO+hnkfuQ3wmTu9yLUltRV5CvKYu7mPcBvcnGjfAGPys1r72
VhL7q00iDlY57yGGUwtQT5DfbXNPpzkPIAfo5/eMz7f/w7emGLY0ORd9D+qu
T40LNZ5HDoUO0TV56zHHCGrEbq61iYXkTORQtzhGEz/xU3IZcprmfJpz/kf5
7gG9n5MEbrT3uzpjFmuPtT7RY0Hzj0lexULEqnrrf5LWnuz9jbfM0VNtMcZf
SOIMw22jv9M5z4nP1eLzbiH6afTV6BPQi6OOJs8m39hvn93h+IG+kEW5ZTLJ
605ynokcp4nXQc1rVQgcAAPAo+mOp+Rwp5zn8O6DTOyBWpXY2dbY9WEmvufb
KssAe6u2TXHOcR7jGf2id3Lv5hqJM0/VfvZoPy0KgdXXWh/Ei7Z+Hl+Mns7n
+cilyJVeTQI/6GXQx2jjHg557YQkdPtKErgGvk0Rj4uFyIX7F8Of8ev6JOwQ
OwdLUq0Dm8Al9gBec94urjfxT3ANWWKbA7LRJ0IOB+1vYDW1Bb0j6vZDZZFb
rnHNgt0gM+zlqPtLV7ofTl+8GTuasaTefMGRrX5H7Nni577lgcUNrp9O2sfI
4cjlGpPId5lP7kDNgr6RC73HJvcfV5gf86gBP3K+Pce6RLc97Sv4w6+TwK1u
+Yh71faNld4jvO51DkZOfrvxAyygD3Q6E2uTh3A+cIx6j1zsp7nIg8ZYXrMt
M/axzOfAn9tYrsics4IR5POnJce9up+dRM9trn+PoD+w1z0C9LXG8zu430P+
fMQxgGdyswb7F7UcNR39EnoZ2N/fkoiJ5GfkKUuMMdRS3M/y3vmO+ot+xVKP
Ide+xcDaXjr3gHz0Eun9k0/WuI7CB6jHqMOoo1vZN9AN9TR5LDnANMcv9Lag
POqBmc5jFjlPWeoch5jIfohZ5MXwbWsfn+H7dl6zuebj2tp7YX5LX2e4tm/O
+Rbax/C184WIOcQy4k6lxg9o/ItCyA/fxdemFsMmJxfDDuuM8T8sRk+iMh96
nFce8gLb63yPbc/1N78rxpzdyeVagnhCP5q+9L25qDtZl7izyu+JY6cy4Uvo
m9ydfW9IIgaz/06+Pu17+hHk6djpLtfg4O1ij82yjBdazsusc/bK+gu8B2wU
m/ysEHhSmQ3sgD/1M3Uxujzh+g6sAuvBq9eMdWBeS9sEc77reoR4zHmJs2Xm
tdB7x0YXpy/b7BLbJjnYcue8k4oRE6bkAhPgj67BKn4DItdabXwCp7o43yQP
IyfnHv2BSZ2NS3sLEcv4fYmYz28u9InBSmIZeNj8GxW5PXkAsZH7PrZv9kJd
+ZhrAOJ+vfc2yza+2FiT9Rrtbb/UtXN8PvzhmGtCbL9lIfpQVydxLuyCXIvc
cJr7FNzTs2i0frhHrvjeEx6f6nxyp2W8wXPROTEKvdcZM5D1Ta6RweT11g/f
kYtQM1c4/8j4+QbLLG9MrfA58cWZ9kdkjw6ae7KrjFMNSeRuE3WdWQysmFEM
m8RW8Efqa34v7GesWmr7wDaJidRxe4zBm41vTcY4ZE3flN7m2ULoHz8mr+zm
vv0BYzF92t22P3hRL9CzAiPoJbH+JPfQyCnJJ7Fr8BFsxGcbjNPYY942CY8v
zafez9Qg5FbYaN65JPtpdBwqOg4eSMLfphejH7bB+yO/aON8uMn65N3jxZDV
xXz0UD9xz+2GfOD9RvG7KnFuDR7qfpPutxVC99RD1EX0K7AjbGavY/Na65a+
Mb3p9kmMnyxEfo1MyIfQPe+R+zWac0T8Dxbit1jyt1lJ4FmDsZjfm8nfZmr8
1UzsH4wCQ6h7qAnol37g3ynAdXry64z/vKcf/GEhdHC0ELaFjKn3PvZv6/zG
fsGyX2V/o1e00ba/1efHVzd4DXRBboA+Lv0Gl4n8aom/22Df3WxeC70vfuPo
mIRd8XsOvkLPm9738ULwPFYI/EPO9Dyxq1ssQ3KJQ84nsDEwlP5Gje2Ne3wO
u6YGwXaw6UbnyDnnyfVaYwNn1vWw6Dh950L4LXtBl9gq43nrEp12SCLeIld+
e3vGZ1pr3OI3B85DHOY9z8j1gu0NzMEmwR9yF/RILMBnB7jvsNf+usX+ttRx
abX5oKOJxod/JYHr4CC5WaV/nyXn+1oheqxXJBGPHrJfgNn0E8Fq/m8AnP9t
ErH9xuzl99yDddgr+S55Lroe4NhX61ry9ST6vMj+zSTiALEB/v0dKzkXMRY7
xoax5bdsz/jsQ+4501enD07uQy7fxb8PEkeJp9RNnIdz/SaJvj95664k9lRp
3KPX8r77zNQlfHvpt+PyeKY2wD7IL8ktyY+R2Y4kML6rzw5WPuw9YBfoZp/j
CDpEf9RG2CV7Ou/31AF7kvg/myfdG9jhuh55l7pOpL9M/3h4LvDgsH/7IDcn
NyL3IUdf4Wd+jz3iOfV+j+5fLcTvqq8U4veTw8YEbHGP953xbwpbC4Ftb1om
2PKlvoLjwTuWC/a33GsTw4nlI23Tu833tL/jGbnd5DmbbbPL05d/tzvgOfAh
HyDO4oPsiXqXugi5/B9Gk/yH
          "]], PolygonBox[CompressedData["
1:eJwllW1ol2UUxu82df+5fO7n+auVJBN1m5ZGBIH0oXSbLzMXQiIoWYSGiIYj
rCjdhtrUSoVBffKD+EFQFIqYBJmkU5crXa7m67RgLV9mTtsirGXS7+L6cOBc
9znnPuc+b/fE5XUvry0IIdRDw6BrWQj5ohDujAyhD/7zfAi9JSEc4exiDOGf
NITTxWDkJeCT6ByF34W8NgnhZmbbKmzmYXs8s+4ATlaj38JZP7J29H8Gn0B+
f4TvaNNd0BD4MLgV/jA6JbkQzkJr4b/Avg/7GQT7Kv4mcPYbur9CV9BfxNl4
dC8QYyN8FfrnkN0rDKESfg40C/tq7Kt5y1xwJbgfnevYzwbPBLcS32VwP7ju
4RDexf4Uvh6BzqPbBf2EvCbvt3ah3w9ejM9S/PdAM7h/IvrX0b1BPCnyx6AU
3T7FDL8J++3Y74QuoJtAbch2o1MH/xnyHmS38L+Euz/IW7cF+QbJoUJ8nYJW
wf/LnQ+UO943lLkmqk0n8inEM8DZX8j3I/8Dfhv33UJWDnVjvzCx7y7wNPSP
Za5FM2fzkS1IbfsU8lr4H7A5iGwdObqTd06V26nIZ8OXjqYeo1zTNehOBk8f
5Zofic6hcqkajY3OuXJfDD0e3XPqvT7um5m6Z9Q7d8FzU/uU72by04HshdS6
ZdAlcCX4NnwF9EriHlQvKibFppqoNjehDH498t6ca/gj/HzlLOceUa+0crYM
X09jX4b9nNSxfEdMW5C9CB4ET4dW4u9rzqYU+s16e1t0Lz0DLh/tnlXv9kKl
0T2j3lEPq5dngX/PuSer8X8NquW9B7jjPfUWeCH4S/w3gt+EPoGvR/9tZA3Q
HnATuBF+BP6u8tYizoZr1jO/fTU1W4G/prx7oRn9rfDPp56dHeDN4PPRvHpW
vascKBfycRzZlrxtFbNiL8g8iwXIH4KvzzuWKu48iv5H4E9LnGPleh14A3iQ
GrUg78k8Kx3Yv0F856LfqpnQbHwITcv5jo/hX0+8G7RjtGuuRPeSdoZ2x7jo
t3+jfcbdk/DZnvMM1WB7NXMttCOa0B3MPEuamT/hK3jvs7x3H/ZnkDdAnYWu
gWrxfvRbVSPV6iR4L3gN+Db4Pnd0D/OM/gc/NvPbEmgMfHv03do52j1no2v9
Dvgu+EbmXaUdrV2tmdRs6g16i3pcva4ab4R/LfEsagY0C+pJ9eYA8s2JY1Js
6ukT+JqXuheU0xrtr9S7JaC/NHUMikUz34n+6ejZU06Um03RudWO1K7cBn1f
5B2tXV0GjVHu9cdk3pnanTqbjOxJfCQ5z8wTqXe+dv9I6Cv4Q9G9rR5Rr2iG
NEvK8bfaJ9CEnGdYs3w5ehdox22M3pnandJ5LvVO1G7UH7OAfAyBO4q9g7WL
tQO1CxXTS8jrE/em/sC35D91bJo5zV4F9Ch8N/Q3b1uVeFdqJ2g3jMuce/0B
+gu2Ru8O/RH6KxoSz4ZiWM/9k6J7Qzn8Bf17mXMnH+XIlib+G/RH66/+H+ry
I+g=
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNVTlMVFEUfWE+S5jlL5UJUBBcorUClZrIZoJAFBItTIxGGCXRDmgUBgSX
QqKGhK2z1yBOtLGzErAyURSwAiSIGaRQwMJzuCfR4ua9+e++u5xz7pvyyzfP
3shzzj2FxWBNnnNHYcdgg75zLVhrA+eOFDk3W+jcNfx+CcsVO5fF+iTu3OO4
nfEbzyZgzYpRCTuEu28Lbf8scq4cvz/45sPvzLGDu39g77HfxjqnPPsKnGvP
d+4qLI3f/bAMbNozn1lYDfLvqp750Lkl7GuQ54XOZ2BVSecW8X0BtlJkNazF
bH1VaPuRuPXDXtaLrQ/mK0etSXwbwtqZNJ8B9bWh3hqAUQ77eq0jikP/6qRh
1Is7Y7BRz874jfGHsT6EvcG3PM/qiWFdQQ+vsb+FvCuh5ayLLOdh5Z0QHoyz
Bp/vqHsZ6+/Q8DyIu+M465Mfa6EP+2MtvTr7Af8tfNvvG67b/3Gxo30QGg7E
ozXh3LmEccf6ryeth2XVsBpa3HZYhyyjXOyd9VJL4+KZfP7EvU3YJPa3feud
GIzpnHyW+MYveU7nmz6ojV3VmRW+9J2CnQ4Mt/uR8dYpLqjztOrKqk/WsQpc
K6QJaoWaqZTfGc/usU+elSpGk/RO36/yp/YXtF9SnDLh0SfciV9ad/d6lSYb
C6yvd57pc1X1fPSttueR4Z/UPJJT9jUgnZOLMs3opjDh/OY0wzwnZ/T5jJiP
sL8bGS6MRW30iZsx9cu47IfcVitXhW+cbYRWH7XL+tsSVl+L3pImYUetrotf
ap1xS3XWIWx4r029ZXSHdXAeuhKWo1+4s/epyObwC2opkU+p3pVm7x8Xzarj
RGAYEkv6dsuf/FQJt4zqYQ6e9ySs3nX1z/p7dDcmP3LJelq0Z74S5SYGB3zT
6K/QcOR35q0LbJYXfbvXqjjdykmfSXFJLELNIGeR9TNHnt6FAem9PrI73+Bz
MWX4TOk95KxwLjgr29IGtdaod3ZWs8N5I6/ktyGy+ljnNPa10ifnb06+nJ2T
geE3GNl5rTRMvVXpfaDWhvXWHRNG7JH6IS/Ek/rm/kLK4o5LBw80w/ciw4Ca
JlbUeE68UMPkqV+9she+/0OR5b2D9ZNveY4HhnOXeKRm2CM5ZJ/cX0INV1KW
K9Ibyf+brOK3C89TkfVODKY1N3vvrm+9zmM9n7J55n8g3wnyUqn6t8RFWv91
M+JhVLH4ltfF7R3+C/bbECg=
          "]], PolygonBox[CompressedData["
1:eJwlkU0vQ2EQhSfcRKP09r5bLKo+wm8QEh9tlyKRsJAIe7YWIhJarY2IdOeH
2PgXFkXUriUpKRIEC8/JLE5y5p4zM3fOm9vaXdnpMbNREIGx2Oyj3+wNdBKz
NujAjxBb8ONgdpY2Owd3eCfAH/oP+ER/ApeR9zzDy/hHIu+pwIfxP6I9gAZ6
hXqwz2x1gF70pazZMv6plFkBvplx/gLms+6RV54yvbN864Xn0efgteD/esG+
U/gtnmvm79HTpQ7snE75zgR+g56jboH92D3yamaDugnqzOqil5i/nvFdbTBD
/cWMX25ZxFPFWw2+Wz3qrYFC2jP6TjwjZaWe8dh71KvMXxPPXNm/g3zsGSmr
JhiSNzhXpgvwYtb/TTdt828nwd9GNx/iLwWfpTcpBr9Rt16hH8SeqbKdBBsZ
v0m3KZM16vvYNb2Z3u4fwB9UoQ==
          "]]}]}}, {{}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
       LineBox[{3965, 4838, 3966, 3964, 4052, 4782, 3672, 4156, 3673, 4783, 
        4055, 4159, 4158, 4056, 4848, 4057, 3968, 4743, 4058, 4740, 4742, 
        4741, 4160, 4675, 4676, 4569, 3867, 4568, 3868, 4059, 4785, 3677, 
        4162, 3680, 4787, 4061, 4166, 4165, 3973, 4840, 3974, 3873, 4368, 
        4369, 4370, 3683, 4167, 4168, 4062, 4744, 4746, 4745, 4169, 4678, 
        4582, 4583, 4581, 4585, 4584, 4679, 4680, 4589, 3875, 4588, 3876, 
        4590, 3976, 4599, 3877, 4598, 3878, 4600, 3977}]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0ktLVlEYhuFlkAMLNc3QieGhQkMQoqKBA7Ogvs8IigIVgiRELLQjmJqk
Bf6RNEKJShtUipmaQllqVIPEMHBWWTnSCrzW4Obez/O+ax9gF9S3nGpOCSE8
Rk1mCAVozAjhIe5lhXAsPYRC3XF+uS2EMYwizfwi8rNDaOJXui28ZveKcx32
r3KxPKi/5nqIr/Ml3qVP2OmVn8nNeI4+OanfY17NE+47iXFsNR9GkWe+4BI7
pRhxfd+5E/b3yif5gdyiT8e6rk2+pW/nMnlU3+G6M/a4HL8Bxe49xuV2xvm7
2UR8f7yO720+yfvMp/iH+XT8LrzFbvM3vN98hn+av+MbmMWK/J4PmLfysnyT
s5HiGzeh03uexkE7Z7jfzpx5G+YxIJ/VHzJvl+/In7iLP3I3V5hV8mF8cM+c
eJZ3xD080te6x2ddnryZU3FbV4dK58/xE3sL5kfkKhyV78oLdvP5C+/kHgyZ
nXdmUVcYv4m3x2fjgn6JvyE3PhPdugYk4j/HT53/6ly1nIz/nPzL3m+sYBV/
kNCv81+s4T/+IanfAMDBZec=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV09tPz3Ecx/FPBxQ6p1L9OrCZC2PMhbFy5s4wmxtTOkoqbMrhIoQ/A5VD
wiiHnOfKIec5XNiMqc1Wt4WN8PhePHt+3q/3+/35/vb7fSutatncHBdCiPen
MTWEkyjNCKEE//AXu2QnUOxchHGMoUF2HDHnQoxiBPWyDhQ452MYQ6iVHUWu
cw6+4guqZGmcipTo2WkhfOYK+XSehqmIyT/xNnkyJ2FK9Ax5B75nhnCMP8ry
+D3n8gdu57ecza/4DV5jhZ2l6SEswzu9K+qt7l+i3sLtSDSXgJd4gc2yEH0/
Zv4i014bhu228nO9DH7G6TzIy/XKsdj8EX4mb+dBXiRbiE3uneA/+I00vX0Y
MreX58sW4JFzr2yj+XnqDdyjfihPwWPPe4onKJPPNdPKbdiPgziAJrO3Meo8
wHPM3eRZWSHc4gb0Y0S/j2frX+VS/Wtcjxa9PWjGFXWJmSbnwz7Tbv6lTpbX
oVu9PnqPZOu4S31ZXqSOoTfad/clTsKD6Pflh7zWfKGZNdxp76K8FgWyC1xs
r4cn4575SXyfV5vPN7OKz9g7L5+pzkOj+px6FzfgpyxRXYPT6pV2cmS5OCvb
KevmGep650P6dfxDnSC/G73LHPNZqjk++n5lcXwnetfMZ5nNRlf0+e12cqa6
Jvpd9Kt5XB3kA3YqudB9O/if/s3of5JvRe8UX+cbuIZ+9KFcnuGOMj7lvjN2
06P3CVXq0+odXIkx2YS5Ctk39Xb+DzAchZ4=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV1fV/V2UUwPE76S7bn1QUBIMc6X8g4UBpUOwCi7BbYmxjGyPGxgIYGylI
jO4cjcRPivWDLwVGp+L7/PDZ5znnOee5d/c+z/0+OHJ02qiUJEmu+dOvSZL8
3DxJ+vM/jdE0SdqJ2yNNbkqzJDkjf0b+Obkxxs9zDXFNzFRTIO4oX0vciTP1
ZCED2ZiKzvK5PA05OCvO41Sewed4OlfH+ta8r4Xr8Uy583Jnrd0hroPO6IRZ
5vKj19wA8Vh1A7m2eJbeQcb5XFdcB13MF6gvxGxcEM/hrlzMF7mIL8U6+u53
DwO4RO6yXLU1Uq3ZBYPku3Kpublxj+YGi8epG8L1xLPVDDUu4Abi+uhmfr76
MszDFfEC7s4VfJXL+Vqso+8B9zCYF8pdl7sQa1izO3qiBxaZWxz3b26YeLy6
4dxQXKh3hPEcbixuhB7ml6q/wUv4Ji/jX9Sdxq94WtwT+8yl6Zkql40s5CIH
VeZ2mMu0dhW/hbfRC72RLT+Q/469hRwcFN/rf2plnFijNbcS75XfhxS5NnLd
4pmgB9qKd5m75Xo7eQ92Y2/slXj3+EPNCT6Fk1Fjrp+1jhofw370jftXd8D4
Mb6NPBwW5/IhnsZHeCgPQ2E8Z2v9Z/xsnAn0xhRxL87gPpzOf8Wz43PoF88s
engU3sFk8TNq3jT+CauNM6193Dgj9rj50+gr7hP9cv3j3OF3+XT1v8WZjL64
Ni5EHOeT/8R5VGO7nklxTUzERmxAG88zXf0Vva+LL/MbnCVXyNvwPSbgO6zH
unhe+iaruaR+rfg1FMQex1Z8g2/xNSqxBq31nFK/Ud898c7Fk4wvyq02/yry
46xiC77EV/gCq7ASj+o5qX6Dvrut8Yh4YpwDuR/NvxLfIMzAZnyGz/EpVmA5
Wuo5oX69vrus8bB4gvF5uR/Mv4zpyMMmfIxP8BGWYSke0nNc/Tp9d1pjiVwL
XswvRZ38tNiXPJ7ncef4NvCxOKPxzuPZiZvrWyhuxhU8Mq4R30fexeO4lDvp
L+Ej+srljnKluKm+BeImXMYvYol8Du/ksVzMHfUX8UF9h3EIa8SN9DVGQ8xX
+wIWy2fzDh7Dc7hDfCu5St8B7I/3Jq6vrwHqYZ7aEVgkP5W384exN7h9fGd5
j7592ItV4jr66qI25qodjoXyWbH/+IPYF9xO/6w48/p2YxdWimvqq4UaKI1v
Hiridyf2Ir8fe4Kf0j+Dt+nbge2xZ8Qp+u5AgpI46yiXz4h9yO/FfuAn9efx
Zn1bsQUr4lvAt/EvitUOwQL5KbEH+d34jvAT+nN5g7pNcQ6wXHyTb+EGitQO
Rpl8euw/Hs05/Hj8fvLa2Lux92K/iq/xdVyN77raVHXz5btyF1TGe0Zb4/8B
htQ1IA==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0sdSE1AYQOHLzpUKYsOCIBYgCWXBDpQOIrZHYIEKCFIERJGiVB/A9hi8
BzowLGjSIQl7mLHM8GVx5tz//BfuZJKclq5nnWkhhDlEzoRQmR7C/OkQls+G
sIKYtpwRQpSr7X7aVfEvruFSvY4XzLW8yPVcpjfykrmBm/AAp/yvI7tjVCDd
XM7d7uWh1Z3n+O3tDWwiX//i3j33Vpxf2K/ySz6nZ+CPXYH21fm+cxxVWDNX
8l8U2n8zVzsnUIt1cw3/Q8T+u7nB+RJveXtNa/POeXMmesxJ+3pcMNfxRf7P
pXaz7n7GNA7NM1zCU5zkSU7wU/efoMjfxnDorbg+Yf9Yj2oRJPUD/ZP+KPUZ
tAIk9I/aOPLNfe7c5bg+po3ijrlXv80H+oj2AXnmW7iJXOzb7bs3bNfsjRzt
Bvb0Pf29/lDP1q5jV9/V36W+V/2adhU7+o4+lPqu9StaFrb1bb1R+2Eudn7r
zhYP8CYPchH38wb3pX4D/IZj3Mvr/Jp70I2ouZO70I5X6MBlb5wAuNBiFg==

        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwNzckuA1AYhuG/NcXUlr2hxLBDEGNwAcaqea7a0boY6qZYSMRUtlwAEnae
xZv3fN//n3OyhXKulIiIIjpSEfNtEbc8x3e8wDXtEUl8pSO+MYxXeYjP7XTi
Sh6R753HuCqP8oXchWt5XH5wnuQJfOIDDWZTXMv1qMOP3Gt3w/+bWMeLnOce
zvEzr/ETz9qfQcbdNN4zEY/6VfOU3IpLuYXfzFb0y2iWy/omruqXdItolEv6
LCrO097+wy8GdUU7ZzjBKQoY0B/xMfZxiAP063d5D1vYwTb69Al/JnHj3bx/
Khxyt9k/O3oteA==
        "]]}, {}, {}}, {InsetBox["100", 4904], InsetBox["200", 4905], 
      InsetBox["300", 4906], InsetBox["400", 4907], InsetBox["500", 4908], 
      InsetBox["600", 4909]}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.882869943813424*^9, 3.882870081259675*^9, 3.8828701166396313`*^9, 
   3.882871729377467*^9, 3.882871865813219*^9, 3.8828720659863653`*^9, 
   3.882872131858041*^9, 3.882873121832155*^9, 3.8828734641296663`*^9, 
   3.8828736620083113`*^9, 3.882875873212578*^9, 3.8828759718578873`*^9, 
   3.882876170985383*^9, 3.883105853929991*^9, {3.8831099767956038`*^9, 
   3.883109996566893*^9}, 3.883110210204383*^9, 3.8831103304892282`*^9, 
   3.883110463645043*^9, 3.883110763208725*^9, 3.8834689541537952`*^9, 
   3.883473334934162*^9, 3.8834793891091433`*^9, 3.88347964277168*^9, 
   3.88355384539804*^9, 3.883646077759963*^9, 3.883646562487159*^9},
 CellLabel->
  "Out[114]=",ExpressionUUID->"5d6b7975-54f9-4f76-9afe-74ad694852e3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   RowBox[{"q2", "[", 
    RowBox[{"Et", ",", 
     RowBox[{
      FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "180"}], "}"}], ",", 
   RowBox[{"PlotPoints", "\[Rule]", "50"}], ",", 
   RowBox[{"Contours", "\[Rule]", "10"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}], ",", 
   RowBox[{"ContourLabels", "->", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882869946235857*^9, 3.8828699513682823`*^9}, {
  3.882870053861499*^9, 3.882870058838035*^9}, {3.882870091343609*^9, 
  3.8828701131764917`*^9}, {3.882875864487756*^9, 3.882875867330675*^9}, {
  3.882875978035491*^9, 3.882875981124445*^9}, {3.882876107810185*^9, 
  3.8828761458585567`*^9}, {3.88310999739314*^9, 3.8831099975130577`*^9}, {
  3.883110316326748*^9, 3.883110322401126*^9}, {3.883110467842113*^9, 
  3.883110468060246*^9}},
 CellLabel->
  "In[115]:=",ExpressionUUID->"19052f96-5012-4bb8-8d61-ab162fcff6b3"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxsnQeYTcf7xzeiRsm1Olmusvpi73asO9au1dnVrbJ2V0m0IKIlCCFqCJJI
k5CEaJFoIaIL0SXRiS4hsUL0/r/n7P28x8zv7/E8no935txz5jvlnXfmzCmb
NiC5R7aAgIB/SgQEWP+af4r89OnYD1tf9+ocoGB3yX8apL+ZW+l2l7Bt7l1Y
uIz9H8WFKzSe6fv7kpHfLTyn9fVBL3QtJ1zKvl4F4bnW3Q2qKFzWvn5l4a++
rxd+5J2qwpXs36suvPjspcI/fVpDuKj9+7WEj76z48HBDqHG/XiEO9oPFGY8
b7jwyTX9fH8jhO3SHBQp3KXFlj1VhkUJl7YvEC2s/05+hR46BygYPXS7Sxg9
YPSA0UPP7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9vuDB6wOgBoweM
HrCuR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5Ch
R5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5DoMc7K9kJF0UPnAAWj
h253CaMHjB4weuj53cLoAaMHjB4wesDoAaMHjB4wesDood+PRxg99OcNF0YP
GD1g9IDRA9bbR4jRPkKM9hFitI8Qo32EGO0jxGgfIUb7CDHaR4jRPkKM9hFi
tI8Qo32EGO0jxGgfIUb7CDHaR4jRPkKM9hFitI8Qo32EGO0jxGgfIUb7CDHa
R8j/jFvooXOA3Bd66HaXMHrA6AGjh57fLYweMHrA6AGjB4weMHrA6AGjB4we
+v14DF3CjOcNF0YPGD1g9IDRw/QbstpLpNFfRRr9VaTRX0Ua/VWk0V9FGv1V
pNFfRRr9VaTRX0Ua/VWk0V9FGv1VpNFfRRr9VaTRX0Ua/VWk0V9FGv1VpNFf
RRr9VaTRX0Ua/VWk0V9FGv2V44f1ty8UI3roHKBg9NDtLmH0gNEDRg89v1sY
PWD0gNEDRg8YPWD0gNEDRg8YPfT78Qijh/684cLoAaMHjB4wesD6+BFrjB+x
xvgRa4wfscb4EWuMH7HG+BFrjB+xxvgRa4wfscb4EWuMH7HG+BFrjB+xxvgR
a4wfscb4EWuMH7FGPxVrjB+xxvgRa4wfscb4EWuMH7HG+BEresy3n0OJHjoH
KBg9dLtLGD1g9IDRQ8/vFkYPGD1g9IDRA0YPGD1g9IDRA0YP/X48wuihP2+4
MHrA6AGjB4wesD6exxnjeZwxnscZ43mcMZ7HGeN5nDGexxnjeZwxnscZ43mc
MZ7HGeN5nDGexxnjeZwxnscZ43mcMZ7HGeN5nOgB6+N5nDGexxnjeZwxnscZ
43mcMZ7HiR7v3p7ne5J40UPnAAWjh253CaMHjB4weuj53cLoAaMHjB4wesDo
AaMHjB4wesDood+PRxg99OcNF0YPGD1g9IDRA0aPt+3xvaHooXOAgtFDt7uE
0QNGDxg99PxuYfSA0QNGDxg9YPSA0QNGDxg9YPTQ78cjjB7684YLoweMHjB6
wOgBo8eImBw1F55NFD10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6
wOgBoweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0eNW+UGPRQ+cABaOHbncJoweM
HjB66PndwugBoweMHjB6wOgBoweMHjB6wOih349HGD305w0XRg8YPWD0gNED
Ro+eb/Ze+uK0pqKHzgEKRg/d7hJGDxg9YPTQ87uF0QNGDxg9YPSA0QNGDxg9
YPSA0UO/H48weujPGy6MHjB6wOgBoweMHp3t32kueugcoGD00O0uYfSA0QNG
Dz2/Wxg9YPSA0QNGDxg9YPSA0QNGDxg99PvxCKOH/rzhwugBoweMHjB6wOiR
bCWLaSl66BygYPTQ7S5h9IDRA0YPPb9bGD1g9IDRA0YPGD1g9IDRA0YPGD30
+/EIo4f+vOHC6AGjB4weMHrA6JH1HK1ED50DFIweut0ljB4wesDooed3C6MH
jB4wesDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YPGD0+t/MliR46
BygYPXS7Sxg9YPSA0UPP7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9v
uDB6wOgBoweMHjB6fGz/brLooXOAgtFDt7uE0QNGDxg99PxuYfSA0QNGDxg9
YPSA0QNGDxg9YPTQ78cjjB7684YLoweMHjB6wOgBo8f7dkG1Fj10DlAweuh2
lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6wOgBoweMHvr9eITRQ3/ecGH0gNED
Rg8YPWD0mGHP19uIHjoHKBg9dLtLGD1g9IDRQ8/vFkYPGD1g9IDRA0YPGD1g
9IDRA0YP/X48wuihP2+4MHrA6AGjB4weMHpMsW6jTFvRQ+cABaOHbncJoweM
HjB66PndwugBoweMHjB6wOgBoweMHjB6wOih349HGD305w0XRg8YPWD0gNED
Ro8Jdvykneihc4CC0UO3u4TRA0YPGD30/G5h9IDRA0YPGD1g9IDRA0YPGD1g
9NDvxyOMHvrzhgujB4weMHrA6AGjx1vW9PC2o4fOAQpGD93uEkYPGD1g9NDz
u4XRA0YPGD1g9IDRA0YPGD1g9IDRQ78fjzB66M8bLoweMHrA6AGjB4web9jx
rPaih84BCkYP3e4SRg8YPWD00PO7hdEDRg8YPWD0gNEDRg8YPWD0gNFDvx+P
MHrozxsujB4wesDoAaMHjB5DX+jqS9lB9NA5QMHoodtdwugBoweMHnp+tzB6
wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdEDRg8YPWD0gNFjkH2hjqKH
zgEKRg/d7hJGDxg9YPTQ87uF0QNGDxg9YPSA0QNGDxg9YPSA0UO/H48weujP
Gy6MHjB6wOgBoweMHv2s7mteJ9FD5wAFo4dudwmjB4weMHro+d3C6AGjB4we
MHrA6AGjB4weMHrA6KHfj0cYPfTnDRdGDxg9YPSA0QNGj952vDdF9NA5QMHo
odtdwugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdED
Rg8YPWD0gNEj3U7XWfTQOUDB6KHbXcLoAaMHjB56frcwesDoAaMHjB4wesDo
AaMHjB4weuj34xFGD/15w4XRA0YPGD1g9IDRo6v9O11ED50DFIweut0ljB4w
esDooed3C6MHjB4wesDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YP
GD06Wj/boquzH07jAAXLfjjN7hJGD1j2w/lZ9sNp+d3Csh/Oz7Ifzs+yH87P
sh/Oz7Ifzs+yH87Psh/Oz7Ifzs+yH067H4+w7IfTnjdcWPbD+Rk9YNkP52fZ
D+dn9Ghjr4d0Ez10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6wOgB
oweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0sO87MFX00DlAweih213C6AGjB4we
en63MHrA6AGjB4weMHrA6AGjB4weMHro9+MRRg/9ecOF0QNGDxg9YPSA9fVB
Rw+dWR9MNdYHHT1g9ID19cFUY33Q0QPW1wdTjfXBVGN90NED1tcHHT1gfX0w
1VgfTDXWBx09YH190NED1tcHU431wVRjfTDVWB909LCf67Gjh84BCkYP3e4S
Rg8YPWD00PO7hdEDRg8YPWD0gNEDRg8YPWD0gNFDvx+PMHrozxsujB4wesDo
AaMHjB5Zz9ld9NA5QMHoodtdwugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweM
HjB66PfjEUYP/XnDhdEDRg8YPWD0gNHDfu7Ljh46BygYPXS7Sxg9YPSA0UPP
7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9vuDB6wOgBoweMHjB6ZP1u
mrG/PU30gPX97WmiB4wesL6/Pc3Y354mesD6/vY0Y397mrG/Pc3Y355m7G9P
M/a3pxn729OM/e1pxv72NNED1ve3p4kesL6/Pc3Y355m7G9PM/a3p4kedrn8
7uihc4CC0UO3u4TRA0YPGD30/G5h9IDRA0YPGD1g9IDRA0YPGD1g9NDvxyOM
HvrzhgujB4weMHrA6AGjx0y7oNJFD50DFIweut0ljB4wesDooed3C6MHjB4w
esDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YPGD2s6OL3Gx09dA5Q
MHrodpcwesDoAaOHnt8tjB4wesDoAaMHjB4wesDoAaMHjB76/XiE0UN/3nBh
9IDRA0YPGD1g9Jhq72/IED10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweM
HjB6wOgBoweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0yGMtTy1y9NA5QMHoodtd
wugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdEDRg8Y
PWD0gNFjgr3fpIezv0TjAAXL/hLN7hJGD1j2l/hZ9pdo+d3Csr/Ez7K/xM+y
v8TPsr/Ez7K/xM+yv8TPsr/Ez7K/xM+yv0S7H4+w7C/RnjdcWPaX+Bk9YNlf
4mfZX+Jn9Hi+5sKzl2Y7eugcoGD00O0uYfSA0QNGDz2/Wxg9YPSA0QNGDxg9
YPSA0QNGDxg99PvxCKOH/rzhwugBoweMHjB6wOgxxt7/01P00DlAweih213C
6AGjB4ween63MHrA6AGjB4weMHrA6AGjB4weMHro9+MRRg/9ecOF0QNGDxg9
YPSAA579M8bRQ2f/eWRjHD10u0sYPWD0gNFDz+8WRg9YO49sjKMHrJ1HNsbR
A9bOIxvj6AFr55GNcfTQ78cjjB7684YLoweMHrB2HtkYRw/4yVPrD+cDPPbC
WedpFBU75QRnne9QRTjrffZawlnv74YLD7P3F0UJZ9jrxXWE7duM8Qp/Zj9H
feFZtpAN1AsdF56JyB+jhnb8eOB7uRKEBzxs+t3PfzQUTvvs8bX7KxsJt/Uu
D6kxuYlwi3OpfdNSmwknjAtc8kFkC+HPAs+/1iNnK1Xbuu1LYaqcXTytlNXL
l/wnXJj0n16oPXv0DSf9S3b8I0nSw1nVPUL4DXsfXKQw15u1atbKj04lyfWK
2/PFZLkezPVgrgdbqux4ECXM9SePv/rbyp3O9QJtf7u1XA/mejDXg+V67RL+
27fCyV/A9k/aSH6Y/DD5x1aaW/DyZ449t91/txX9Tc5u1992wk+s5+jTXviB
Vf3adRC+ZS331e8ofN1qRtU7Cf/ta6Vji6UI/2k122ydhc9a1T3T4VNWuz3W
RfiIVYzbugr/6qvNOZZ3E7bfR2yeKnzeuv5Wh1OtBhDd3bm+9XvLHO5ktc/y
ac7vWb8/x+E2VvMskC5syzouXW9f9x3ebd3fgAzhRla3ddHh7VbF6NRDOM5X
XEsPOLzZaq4J9KdnvfQfdO1mf8L/6/1Nfslv9jecB6f3RxUNe4jRP3mM9JFG
fxVj5I81+i9lXC/O6M/ipb7uPPRFye43nf5n8+vJHd/flSi8pnj2Obs+byz8
3Y+rjzwe0lR4budeRTzNmgt/+KR4m57lWgonturRuPkbTv/iLbuxd69eTv+g
/is68a1kpz1HbBuw8JNYpz3WnP3LjtWV28j9m/vTzfbE/ugzVr0cG6N2+5Ln
eqZ9sV8XZr8ozH5FmP1yMPu1YPYLwexXgdkvIXr51+ulvvvXi2HWK2HWy2DW
a2DWC2Di1br+TvsiXgcTL4KJV8DMl2Hma1Le/vkCjL8K6/7jWS/tjXYEa+1r
jJM+wPhD+9Lsz/gH9OfUD5Ppr/v6dG0aF6NW+Ir3r3IRwtZVWx2IFp7oe761
I+sKW9XFVVgJW48b/3d94WBfcQ7f3EAdsvq1+lnnWtVd307sth9446oXttTZ
3zJQ7NZjrB3jFrbkmXS8krDdnXlqCr/iq33vJ4QJW/3nkxuRwspXe3rOrS1c
1dddHmhSTzivrzw+eeg8z3O+4jz4a5zwXZ/82b+JF860SnFUQ+ELvnbWt00j
4eO+5/6iahPhAz55Dwc0E/7Zp1Keo82F1/taV+yylsLHfPnXbmklfMjX//++
NEl4v+96mR8mC9vte1xrVcDWOdr+vRwDHH23+36vbP82Ym9mjw8O77YLtK0K
8unSwJfe6j/iOrYVe6I9XrQVPa33v7fFt7PrtceX/gVfBRhfs73kt/qP90p2
kN9f6tP/qxwdhRf4WtPG6w7P99W3Yyc7OfXPV73/25EiPMd3u/lWdBae6but
ip91EX7Xd1tqYlenvvruq9PgbsL1ffrXrpkqvMFXwXd+5XAdX31uU7K78A8+
Pc5NdzjCN0D3z5EmbHVHD0c4bNX/idcdXuLrQIr0TBe25PjypMNf+8qjVlKG
cHlf/d6ww+HPfT/QpG4PYatcj37v8Ce+8sqo1FOYfgFmvIbpL6Q8/f4/jP8v
evj9f8tvSPTxDV/qjbXCha3kFf+IEt7p+3f6pDrCVva7EV7hVr72XGtgfeGG
vvqUkdhAfm+S3X8mCI+2xyenfQ2xxyOnffWxxx+nfXW3+z2nfbW3x5cWwhXt
8cRpT/j7MP46jH8N038uT+94MT7O8W/pr2lP4o8Z7YnxGca/lf7M79/C+LfS
P/r9Wxj/Fsa/hfFvYfxbGP8Wxr+F8W9h/FsY/1au7/dvYfxb+T2/f/ts/2z5
tzD+7bP9v+XfSv/m929h/Fvp3/z+LYx/C+v+7UG/f5sp7QP/VecgYfxV3R5i
tCePkd4Zf/BX9fyxRntTxvWc8Qd/Feb8Jpjzg2DOr9H0nNZUmPM7YM6PgDm/
QPoj279y2gfvb8O8Pwzz/ir1HX810WqG/vHF8k9h/FHS449yPfxRGH8Uxh+F
8Udh/FEYf1T08PujUj/9/iiMP6qXj8P4ozD+KIw/quvrtAf8URnf/P4ojD8K
44/C+KMw/iiMPwrr/uhBrx3WSjPGk2fiT2Z8wnyf3IxXmO+Xm/EL7KSnvmA3
mfrD75vnD5i/j90up1WRtj92cI6Tnv6c54Ptx1kXZftb/4xz7PjLPC9cY6Hl
2Dr9vT5fzvRSvro/f1D8ecrHzI8edrUOjVTt7P4yq32djIwS5vdNe5Ldfzp2
kxmv9tr9foSUD+XNeAhTnpQP6clPeVHeJuOPkh9GL8ZHyhcmPeXD/RAvgulP
eD78VcqX9Nh/tscD5/1Xnpf6AaM/bI9jHcqKf5Xlh9QUJv4Gc38w+fHHyA8T
H4S5Hsz14IV2RSkt/hzXhy9bfsKHzjnr/B7M78FcH84al0qKf8jvwVwf5now
14OzyrOo+JdcH84ap6oJc32Y68PUH5jfg7P0zS7x62A7np9POOs5A4W5P9j2
e8ZWEeb+4Kw4uEeY+4O5P5j5OvHzrPWQe8LcL2z7WcMqCXM/ML8P83uw7Yel
l5f4vO2n9QsW5vrwWst8MlSY68NcH0Y/4v3UD5j6CHM/8B2rWI7UEub3YX4P
pvxYT6D8YMoPRm8YvWH0hnkemPYCc78w4xHM/cLcL+sd1B+Y+g3zezDXhyk/
5kvoCaMnTH2B+X2Y/gXm92Dun/kY5Q1T3jDlDVPeMOUNU94w9Qem/sA8P8z9
w9RX5ou0R5j0MOXNfBJ9YeojzPVhyof5J+UDUz4w5QNTPjDlA1M+MOUDUz4w
5QNTP2DqB0z9gKkfMPUTprxg+lvm2zDzbcqH+TblA1M+MOUD055grg9TXozP
lBdMeZnjN0x5wZQXTHnBlBdMecGUF0x5wdQvmPoFU79g/L8Uez6dLOWJv0p5
wpQf/in1C6a8YMoLprxgygumfPDPKB+Y8oG5X/wvygemfGDKB6Z+EC/h+WCe
D6b8YJ6P+ArPB/N8MM9H/IXng3ke4jGUP0x9gLlf4jXcL8z9Eb/h/mDKA6b+
w9Rf4j3YYe6X+A92mPIlHoR+MP0nTH6Y5yF+xPMQP6K/hdGbeBLjDfEkypN4
EnaY9kJ8if6B+BL3T3yJ+gCTHqY9EH8iPUx6GH2JT5Ee1vwVH1MexK/ID5Me
pryJb2GHqR/Eu2hPMPlh8sPkJz5Gfpj8MPlh8hNPIz9Mfpj8MPNF+jPmZ8zX
0Bs77ZN5sT7/yi/1Cbs+H8sv9Q+7Pj/LL/UZuz5fy2/M94KUfn3ne2nm/A27
fj3n+3DMryhP8/th5vwNuz4/rGjMB53vnzHfov4Rr+R6sH6/Icb9Ot/zYj5F
e9HeW5XvczjzN+z6/NL5/pI5f8PO/jDmS/RP5veVdHthYf37CM78zfxekTl/
w879mN9/Yj5FPYHZ3wazn8ycvxH/5fdgfs/8nhDzK/p383s22Ck3c/5Geq5v
fk+H+ZQ+/3a+54Kdegizv82cv5Ffn48736Mx50PEtyk/fT6X25g/uZQ+vyss
TP2E2Y9nzt/4PeI55vwNO/oy36J+m/M383sb5nzN/L4H8yn0NL8vgZ36A1Of
YeJT5vzN/J4G8yGeB6a89flcbqXbXUqf3xUWprxh6pOe323M/8r9z3zN/J4C
8zHah3meP3b0Zf6Fvub59NhpH/p87brMzygfmPLR53O5lW53KX1+V1iY8oEp
Hz2/25j/lROmvsDUD5j6AVM/YOorTP2EGW/N+RrrP7B5fjjzLcoLprz0+V1u
YfxDk5nfMB6Y8z3zvGvSU74w5QtTvjDlC1O+MOULU74w5QtTvjDlC1M/Yeqj
fj/O/I76r9//dZnPUd4w46HJzM8of5j6ClOeMOUJU556frcw/ZfJzPcoX5jy
hSlfmP7UZOZ/zAdgysO0M99DH+zoA6MPzHhpMtejfsOUr253CeMfmcz8UvY1
+u34RyaTHn1g9IHRB0YPk5m/0v9ih7GjH4x+MP6Uycx3Gf+ww9ip3zB6wtRn
k5kv0x6x48+aTHr6E+wwdvSE0RNGP5OZfzP+YIfN+Tp22DyPjvToCzP/MJn5
PfUZO/XXZDM+YJ6nhp34h8nECxifscNmfEE/f+yexB/QG8ZOPAF/GTtsxiOw
y/zFv34v8xc/037JTzzGZOIX9E/Y6Y9MJj2/D/P7MPUJpv6YTHyE+osdNuMp
2GHzvB/s1C/yM980mXiM5k89E69hvwO/R3rqo8nEc8gP0x+Y8R/9PJqzXtJL
/Mof/6H+YKd/M5n0zE+ww2Z8yTzvBTv9j8nEn6R9+O0wdtqfGb9iPwi/T3rq
o8nEt2gP2KV9+O1cH6a/M+Nl+nkVgZIeJj4m8UAjvsZ+Fdo/dhg7v6efp1D0
f+Jv7Hfh+mY8DjvX088DKCrxNtqnGa9j/wzXg7kerK1nPhO/Y78N14O5nhnP
w05+4nfkh+k/zPgf+3m4Hkx7NeOB7Pehv8AOY+f6MNeHuR77hcgPkx8mP0x+
9heRHyY/TH6Y/HYjH+Pkh8kPk9+0s1+F/gpmP/MJe/xorppY5fRVmMQb7Wnm
onBh9q+ctttvkuR3WemuOP27Ob8xv+9j+uvm9y1Mf9r8XoLpH5vfHzD9YfM8
eNO/Nc+7N/1V83xy0z81z1c3/U3z/GzT3zTP9zb9SfN8Z9OfNM/LNv1F8/xj
0z80zyc2/UPzPGfT/zPP7zX9P/N8Xd2/dP+PP2eeL2v6b+Z5t6Z/Zp5/avpn
5nmxpv9lng9q+l/m+Z16/tz/40+Z51ea/hN26hOM/2Sev2n6S+b5i6a/ZJ6f
iB3/2vR/zPMCTX/LPL/Q9HfwX9DfPI+O9Pgz5vlupv9insdm+i/meXSmf2Ke
T2b6J+Z5YqY/ZJ6nZvoj5vlapj+Cnfprnm9FevpP0/8wz4fS7Y6/Qf0w/RXT
PzDPz8E/wD821/PM8Zvxl/prngfC+E39YvylfsLWe0c1Kznjy992v+Osd1H/
ie/iz8OMP/ns348XzmmPDwmSn3gr+WHSZ7PHA4cf2f17ouQn3kp+mPT37P7c
4f/s/rmx5CfeSn6Y9Nfs53bYbrfFmkp+M14Jk/6i3T86bI/Pmc5+FNqv9v1Q
H5Peev9kaU2Hx1vV5JVUyU97JT9M+m1W9/R1ql6eZ538tFfyw6S33kfbUdJh
W5+23Z31eX97JD9Meuv9pdYzuuv67XHy077ID5Pe7ndzODzcqvcqzVnf97cv
8sOkt96P6jfSYbtfWuPkpz3KecB+Jr2d7LqTf7BVv6qlS37aJ/lh0tvNsqfD
9vA0z8lPeyY/THp7H/Aph+1uqmiG5Kc9y/5sP5Peer9rXpLDdjue6uSnvZMf
Jn1lqx/Y6XAvq30810Pys15Pfpj01vtjP9V1+KLVfoY6+VmvJz9M+nJWv7TC
4e5W+8h08rNeT36Y9F9YAlRymP3qvK98ZuLQR68+0z+xPgWz/gOz3gOzngPz
vgrM+A4zPsOMvzDjJcz4BjM+wYw/MOMJzHgCM17AjA8w8yuY+RLM/AdmPlOi
04S2KZVi1Cz3n1tSR8Q7553795OTnvcN9PfhM72kZ3+C/ryBxvvRgcb5kuUk
fdY46Dber3dLevYbkD5rHK1knBdSSdKz/k/6rPXkmsb5ITXFnnX/OY3zAHKK
Pev3SxjnA5QQe9Z6bAXj/f8KYs/wj+v6eSbVxJ61XhxqnGcSqvTyd/T4/8u7
nHG/VYzydfavsz+B8oJJn7XeHCbp2W9Aepj0o/zzGtKzX4D0MOlftsfr2np/
GuPV+1Mfk97u31vUk/Ssr5MeJr3tVz5Wkp71c9LDpLf94N/jhCfa7SlCHz/2
RAt3tW+wrrB9uUAlbP/MZed+XPa/DcQ/o/7YxTavjNSXXfaEoIZwul1upaS+
ZP1uMakftp/xYnVh3s+Bs/7NKc9j+xU5qgrbv182TDhr4Kwkz5s1fyovz/uN
1RG/5BHm/nj+P20/K1Q4y7+/7KU8svbt1pLyYf8pzPNQXvw+/if+LMz94x9y
ffw93sex3xfa1kLKJ8tfSpL+75PBZ5a2mnjLC8+5ut295vdCYi//pHLepXFl
he+P/zfHm59UFt6Tf01Ai1s1hSf3WDy7VJnnhfMPOPpnuefyCL8ed35TzfrF
haN33usd5iklnG/RDyd6Dy8v3O+fuOV/36ggfL7WqMMxv1UVbjA4z+L1TaoL
p3Qu13t8kVDhKY97Je/41eFqW14o+PbEc/K8h3p9O3TFeZfYxwyt06/N7DLC
HzbICH1YrpJzP3uqVt87soYw/RNM/yTl6e+fYPonmP5Jv15+g4OUfv2Khj1E
5uPMd5gfm/E3xqOs+a5bxpvJdjuoKWzX5w+DZHyx/ZCxJWT8sONmhUOEW/jf
J4Ozfr+I9Kf2POCFasLEB+Gs+8om/ant9wdUEc6aZ1WU/tNut597hG0/+2w5
6S9/sR7n41Bh7p/+Masd1RImHgnzPiH9I+UD8zzMF9l/CXM/zAcpf+Z33D/z
Na7P/IvyvGDPj5z9Ifx+VnykoLTnrHpQSOKplCfvJ9If8n4g98f7ivQ3vA/I
87F/lP5Jf7/vljfO6jd/bOePXzzybrbDKu2l/LHTf2KnfsRav/t1e+nfrfM6
+pXqIPUDO+MHdu4/2iqIGR3k/tdY1TdnRylv7PSf2KlfYVY1fqOjjA/fW9Xp
RkfREzv9NXbKt4Z1X706Sfla53H8dKqTtA/sjG/YqW/Y6Z+xUz5VrHJNTpHy
WWi1z50pUl+w0/9jp/5gp71XsISL7Zw1zzxZ1j4f5PqKzqIXdvTCbs+D/6mg
ythhoy5Z8+TrweozqxzmdpH6jJ3xCTv1paRVfwt1lfoyxz6Apqu0b+yMx9ip
D9iz+qkXVBFrvHzSNet+Py1gn19S77VuUn+xU3+xU59gxkuY8mc9gvInvoG+
2NEXO/UPO/0p8RD8H+Id6Imd+ood/YiHoB/xDvSHqb+kpz8jHoJ/QryD9oSd
9oSd/hI7/g522gPxEtoD8RDqD3bqD3bqH3baG3b0Jp6C3sRLqD/YqT/Yqc8w
7Y/09KfEW+hPiafQX2CnvsPUF+It0p/44ynUH+Ij1E/iK4xPxEtoP8RD8DeJ
b1CfYdoH8RLqG/EP6ivM+gD+AfF4GP/djI+a8U4zfmnGI834ohkvNON/ZjzP
jM+Z8TYzfmbGw8z4lhmvMuNPZjzJjA+Z8R7iN/hjoYcyVs9slin+YOTimGbh
KYFiv9H5grvPBLfwzouLStU94/iXn/Z9tWj+aMefbvb35tgyrpzCR97uN/v7
dSWE6zZ5vH1RhOMfB/62bdOId6sJ36qe8MfXg535NP0b62fMfxl/mA9hZ76L
nfkRdua32JkfMd/kfUX61x62/q3EznoadsYPic/618Ow0/9L/NS//oWd/p77
e/Z8G+v+aB/Ynz3vxrLTPrA/e/6NZSceiP3Z83AsO/E+7NQP7GY8r/aIT3IP
aBQm7N74ZPzRW5HCL2ZLe175/Fv4dsLPY75pXk/4Wnzh0bl9/ir8558/b6jr
8w/tuNiZ6Kx+4aJzHmPN7KO+Vu875zEerVqlztejG0p6u8P70TkftuKCmhdf
6+Oc17h774nhx9s2kvSRtn/lnB9butG5covqO+c5bug/dW1+n39L+uq2v+Oc
L1v875nd/yjmnPe4xlXvbn2f/0t6e/0/tpnEhxjfsFvnXw2r4pxHyPgEMz6R
3h4XP3fsjDcw441WfoWd8wwZL2DGE9LbzWeyY2d8gBlPSB9v1Z+njp3xA2b8
IL1dn4Y4dsYPmPGF9HYc6G/HzvgCM76Q/kervFIdO+0FZrwhfbRVXocdO+0H
Jp5O+lXWDTR17LQnmPg56T1WeW127LQvmHg56b+zHjjSOe+R9kZ/yDyK9Al2
+02Q/Pa4neC0hzr2/CNReJ09/3Dqf6g9P2gsvNyeHzhsx9OTmwp/bfvnDtv9
b4ZTP7+18r/lsD2fPO6w7bfeddjur1s69cn2c/o6bPtt2x22p9vnHbbdtNpO
fbH9rPYO24X1ncN2v7vPYXtfR7BTH2y3Ls5h26/4xOHiVre91uHX7QMvHb0/
sNyiGg7fstrPBIcDrf7/S4dftdrLQ4dnWA9YwqkPdvsY6NQHxjfqw5v19xyo
MSpCb3++8Q179/E1mn9Y1TkPl/ENe/Ku93Y/PVJX7MT/sM+d8KD8qvrOebnE
+2T9ofLStMvFnPNzif9hn7q7y7yXrjk8b9GwWS3+9gi/k3nS9cMHkU58LdT7
bpkGtYW7DJmfd+K/sU7+U2Pj7+1z7u/jUeHjqn8VJ/xbk41vTl8QJtz0i/GX
MreEC69+t+zDu8lRjr9z8XJau/5OeX3z29vDUp86v++u3OzsxpJOeU0pevn2
L0vqCefsu7xLpZ1e4ZhlX68rXt0pn8ftJ2XuXOdwaMv295plc8rj9v3a1R9N
d5h9DHq8zCkf3gfU42dO+fB+nX49p3yePS/OGs+JX8HEq2DiU/gndvxleUth
5tcw82WY+S/Xo7+G6Y9h+luY/hQ21xeJD8O8vwSzv4f2RDwLJp4FE8+CiWfB
taznyuf0X+b4bI6/5vhqjp/m+GiOf+b4Zo5f5vhkjj+UF+X37HmEFj97HqHF
1C/04/0v/FX2M2Invgfzfhj+47PnZ1rXJ74Hsx+S/OxHg9lfBpvfEzbnA8yP
uD7+Avzs+XgWP3s+nsXPno9n8bPn41nMeizMeqz+Pu5jr3xv28/EO1ifJD3x
dtLDpGe9ifkt6YiXw8SDWH9ivxnxevavwcR7WJ/i+ti5Psz1Sc9+L+ZXsP5+
9Fkv8yuY+sX8nfzsl4KJHzCesR+P9UKY/o79iqwPwvR/7H/DDmPn/rHr+9ni
ZP8g8QSY/pT9oeRnPxtMPIjxkf12xCNg9kOwXw47rL/Pe9ZL/AJm/wTPjx3G
zvNjh7Hz/Nhh7KzDYIexs78OO4yd/XPYYezsN+T5WQ+CiS+yP439j8RrYPaL
sN8QO4yd8mP8gNlfQvlhh7FTfthh7JQfdhg75Ycdxk75YYexU37YYey0F+ww
dvarYoex019hh7FTf7HD2Km/2GHs7M/EDmNHD/192LNexg/0wA7r7wtnl/EI
xo4e2GHs3A/nicK8P8D+T+wwdvoL7DB2+mvsMHbqM3YYO/UZO4yd/avYYeyU
p/5+71kv7yNQnvr7xPfETn3jfQSY9xWob9hh7NQ37DB2ypv3FWD9fYezXv39
27PyvgPlhR3GTnvT38cNlPcZKC/sMHbul/cRYN5noL7zPgHM+wqUp/7+6T0v
7xtQn7DD2Llf3g+Aed+A8iZeCfP+gLwf549XwvhjlDf+tJyn5PfH8B+IZ+I/
wPgPxDfp34mn07/D9O+sJ6EX8Xb2v8OsH7FexHhM/J3xGGY8Jn5GfTX3f8Os
fxCvwn/Bjv8C47+Y6fFPSQ+THn8Vfcz94zDrKcS36E+ws78cZr2F9NRP4r+8
vwCzvke8ivT6eeluYdITr7LjIu4Yic/D+Hcw/iHM/jEYfw/Gn2J+Y6+7dXLi
XxvtauHEu1bZ6+VOPMv2g081kfUz830u83tdzFeyW/IdilSP7fqS5MRvLL0a
OvO/q1b5/uSw9f2R26HOfM9e11rosP38Qc58zy6/mQ7b9S63M987Yd3Pmw5b
1a3BTYft73D0duZ/yVYFPO2wXT9bO/Nn/Ffs++z6Ei/xHBg7/ieMv6aVxxqn
vPGvYPbbwuy3hdlvC7PfFma/Lcx+W5j5Hcz8DmZ+BzO/g5nfafHDZ/bbXnz1
m04F3E78bfeqvMde3+vEj9bd69/2zLPxtdIvX/nymXha4uaSlY89Ez9TaXt7
5tvUQOZ77M/Vz+N67GX+BrPeTnqY+aV+ftdjL/0xzPo++WHy6+dDPfYyv4bZ
n0F+mPw8D+OQfl5ZUZmPwtw/6WHmv/r5W0Vlvg/z++SHyc/4w/4w/X3ncnI9
7VyrdVGSHjb3e7K/jOvD+vldVeT6MNcjPcz8Gv+C/XWMFzDr5exXg9k/yn4D
4sWUC/lh7b2pDgUlHsj+AZj9F8zH8U/o32Hm/+yXIZ7IfhmY8W7Us+O0b77A
+AATL2D/BfFI9l/A7Bcgfs14xfiin9cXK/tR2F9HfYXxTxiP8B9gxgvSw/y+
7Bfyx8vZXwKjj24PNM5XC5T4Bvqwvw99YO19d7nfopKf/R2kx5+BZT+QPz6B
f8R+Pcqf/bvsV4HxBxmf9fPR42X/CfsL2V8CU7+Yz1N+sLY/p0+ilB9M+cA8
L8z+FBj/ingOzPhGfSJejH8DU5/ID5Nf2+/kS0/9gvFvYfpr4hsw4yvtm3g1
/Q3M/ib2T7MfCaZ8eR+O8oUpX5jyhSlfmPKFKV+Y8oMpD5j9WjD1C6Z+wdQf
mPkP+3Vg/A32JxG/x/+FGY/Ir52n4stPeyA9/T1MebJ/lfKEKU+Y8oRpn+Z5
1cQbtPL1+Z+0V5j5Cvlh8mt6+NIzX4Cp7+SHya/p50tP/Yep7+SHya/p7UtP
/YeZX5IfJr9WP5YlyX4+mPGB/DD5tfrkS894ATP/Jj9Mfq3++dKzHw+mPjJ/
oL7B1B8YfwamvcK0V5j9efr53ge97IemvsHEq8zzvvX4zAuyf5r9hzDjDflh
8tP+Sc/4A1N/9e/nFJX81GfSU59h6iv7ual/MPUJRm/z/HHiRejPfnD0h9Gb
/DD50Z/06A+jP/vL0Yf94vQnxLPkvBV/vIr6wX50+heY+B/5YfJTn0hP/AOm
fnE/xDvN89P1+Fc22d/O/leY+kR+mPzUL9JTv2DqD/vhqd8w/Zd5PjvxNeoH
++fpz2D6L/LD5Kc+kZ7+DKZ+sd+e+mSe/048j/rFfnzqF0z9Yf898UjzvHj9
vJKDXvbns78Zpr2z357+BkYP83x54oPow/589IHRh/32lL95Hj3xRPRgvz56
wOKP+/fjE7/jejDXo75q+YuFCjOfIr7JfApm/mS+P8DvM56wP5PyN8/D189D
OehlPwN66O8DZP+f8/JZr6Y9sf+B9gTTfxAPxZ/DLudvGefpE29FL9a/6Y9h
9DLP3+f9aPRjvz/6wfinMP0L+/mJ97LfmfgtzP59cz+/vn//npznBhMfor6z
v4L5I8z8BKY+sb+a80tgxldzvz77IZnvsR+b+R7M/M7cf8/+SMYP9m9zPgmM
3uZ+fPZLsl5DeublMP0l+WHyc//6+WnO9wy4X/LD5Gc8Zj8K83OY6xPf5vow
1yM9TPyb+SDxbs5bgaU/M94vMN8nwK7Nz++n6/Pz+87vkx7metR39tcwP4CJ
v7C/mvgLzHzMfH+B/aO0N/ZfE7+H6R/ZvwOzn5T5DOmJ58P4D+SX+Yo/P/dP
eu4f5n7JD5Of8ZH9RNwP6wPcD8zvkx5m/YD7IT33A/P75IfJz/2wn4n7Yf2B
+4H5fdLDrE9wP6TnfmB+n/ww+ZnPsB9Xj8fmV3p8Nb+MR7CePsiwO8z7srqd
92ULSzwP/5r4H0w/gj+Onecxv69AvBD/ANa/LxEp+bHDejzwssQLOQ+K+B7+
EXaYeB/9KXbissTzGM/ZzwoT35P1S7+d9kd8TjvfKcYr4yF2mPgZ7Rk79RGm
fzG/b0B8j/EL5nwuGP8ARg8YPWA9fh0nv48dZv2M9kF8j/6XeB39LXaY+B3t
DTvzFZjzxIgH4g/D6A8zn4Lpz4mf4S9gh4m3Ub+I51HeMOWt2wMk/kd5w5Q3
THnr+V3C+Ft6vLKwMOMpTH2DGX/0/M736ug/sMPEA/G/sLMeTrwP/xnGH4J5
nxCmPImvUZ4w5anbAyQeR3nClCdMeer5XcLa+9+ZzvcTYC3+lel8TwHW4luZ
zvcVYC1+lel8bwHW4lOZzvcXYC3+lOl8jwHW4kuZzvcZYC1+lOl8rwEmHg6z
v5X9zZyHwn5b9CKeiF4weun2AIk/oheMXjC/RzyM8Qc7TPzMfs+haFTW+vuM
JHke4lf0NzD+Fkz/BNO/wKwXwsxHYOo/TP2Hqf8w9R9mHITxN2H8A5jyJ/5G
+cPUR+JV1EeY+ghTH2H8Cub/lDfzZezMR+kfOd+K+Q3r64wHrK/L/NO/vs58
Aia9yay/Mz6w/o4dlvNS/f42/gHr8fi7rMfjn8GkN+2s12OHsbN+jx3Gzno+
dpj+SW8vLmW2J13vADmfgv4D/eg/TCaeh79CPBF/Bab9EF+k/cDUP+J71D+T
iYcxnyYex3wbpr2Qn/ZiMtejfpGf+StMf058j/4cpn3BtC+Tib+hF/E6/FGY
8id+R3mbTPyN8ideR/nD9NfE7+ivTSbeRnuivTLfhak/xOuoPzD9IUx/aDLx
M+oz8TviyzDlTzyP8odpn/QnvM+AnfgaLO8f+39f/F9/fI3+y2Tia3Jej/99
IdaLYMZX4nOMryYTbyP+Sv9HfBam/RBfo/2YTHyM/oz4Gf4uTHyJ/pT2wv5B
2geM3Tw/l/6X+BXxJ+IXMHbz/Fz6Y+on8SfqI4zdPP+f/Ix/pGf8g7Gb5/vT
v1O+xHfk+yt+xk58iPk2/T/tn/2ItHcYu/l9TMYD2gvxFtoHjJ14jfY+6Wxn
vyD+M8x5ZDD+MUz8Usu/x2H0gylPmHib9n7nPIcZL2HKA+b55P00f7wGJl6i
7SdMc/azsd/Cfk/aFZP1vm5SvLFfLL8TjyYO7W+v7F+ifcP0B+xn0vevBYk/
x34q/f2dWuIfwfhP7G9ivoOd+RLM/ZKe+sL9wcRPqB+k19/nCZf6BJOe/VD6
/rgQ6R+5Hv408Q78bfY7cT/YaT8w7Yf0tH/uByYeQ3snPe1N30/kMO2b/Uvo
QXwFJp6CvqSnPyG+QP8H0//p55FdN97Puiznk7Fexf3BxFPwz7geevF7MPEQ
6hvXRy/iB/S3MP0t7YPxRt+PU17261D+PI+uT7zowfWIH/F7MPEO6ru5H4j9
KfSPMP0j76sy/+H9JuZH7FdBL963gtmvS33gevT3/B7M/hjqJ9fHv2A+iP+B
/8z4hx1mfkn5s7+C9sN+AtoP/jblhx1mvwHxO/YX0J7xv2nP+NPEE/BviTfg
j9KeWP+GWf9m/oT/S3/F9WDWo4nn4L9SHvi7rKfBrMfhz5Ke9Wjmf/iv1Hf8
Xeo7THnjz1Le+LOUN/4n/RX5Ydav8Z/wd/l97LI+5LcTX+D38Ddh+lN+n3EI
O8z6Nuuh+L/oib+Knviz7KfgejDXIz7P9WhfXI/2xfWYP5jfX+f9GuYb+Lvy
fQa/PyvxYev/CznfW8eOfwfTv5BevpfgXy+mv8Tf5XqsTzNfYb2Z8sIfprw4
/436y/oz9Rf/GP+A93dgzt/G/2f9mPLh/R3mZ7C2X/Ks8z0wrkd953p6/Ms5
Hw5/jd8jPoIerE8zfyA//T9M/8/1mA9wPfYvcD36V/IzPsKMj1zvjWfH+Wjn
fSWY9kp67pf1cuZDrIfL9/L88w/5foufiVfiv5Ke+Q3rMayX098xH8GfgBk/
8H/ley7+9Wf8G5jxA3+Y/pv5Bf0367f4I6zv4i/CjJ/4z/gD2On/Yfp/830r
Mz7F+i71mfVT/F8Y/wh/nHgF/hj9H/6Idr7hmIbiz/J+Jv7scXv+5TDva9I+
iBdR3814Doy/YMZLzHgH/TPlQ//H85nzdXO+TX/A8zGew/J9Xs+Q24lxMeqH
5Csf3VwfnnVOUq2YrHQDwsU+94NmxTr3jha7fd+losU+9cTy2dsL1xW7XY92
1hH74NKFAkO2eMVu6/CaV+ye0PU7d6+pL3Zb1hn1xV719745n05tIPYV9v6G
BlJfeP+E+gDT3/H+CfWH9VzsvE+i+9shUv94H4T6y3yG+A922g/zA5h2ynjJ
/AJm/kB7hRnPWd8lXsj8AGa9lv5Ov75HWNuvsida+i/8fZj5Bv0NTH7WcxkP
uB/6S5j2Rnruj/mEnBfrX7+lP8efh5lPsP7AfAP/gPVW/HX8ado/8QT6V9o3
THuG8S9h9nvin+BPwvifzJfwF2H8TeoX/huM/0j54w/B+v7Es179e2Vnvfr+
wpIS74PxfxjfsOPvwfK+lb9/QX/8GeY/sOxf8PsvlD/+B/0pjL/CfjbGB/wN
9IXRV/cvznrN73Xp3yc96GX8p30R/2J+BLM/g/1S1E/stB+Y+k96/GfOR+B8
HL5fyPohTPlR/yg/xhfKx2TqJ7/H/kF+D/+Q34NpP3r8t9b/fM8OO+0R/eX7
qH5/Fza/Z4ed8mE8Qh/qC4z/S/3GLv2P3y79j58ZP/G3S/r3e+Ivw/jH6E/9
gyk/7X2V5g6b36/DTn9P/aV9UR9h/GP8I+yMJ9Rn6j/piZfwvj39O/4djH/I
/EX3B7OJv0h56N9jyy7xb/k+oN/O/mT2V4o+fjv+K4x/Snr5vqDfv4SJdzM/
ws58kf2Q6MP6JvEL/FPmP8QrmI/j38D4N7QPcz0fxo6e2GHaG/qQHn1ID2NH
X+ww16O/Ij3zK9LD2OnPsMP2OYdznfPQ8GeI/1LfiIfiT+AP017N7x0Q36N/
Ih5F+eK/Mh/CfyVegP+Kf8vz469y//jHMNeDmR8xn2J+Q/3G36X+MP9gviLr
eX7Gf2a/JfNR1vH1/WuZXv08sfwyX5VzSvz1kfg6/TXxdfwD/E3GM/QhP3by
Y6e94L8RT0A/5tu6P3jZy/u49A/6eVqPJN5L+8dOvAk77Z34K3owX+L39fOt
Lnt5H5Lf18+veiR2fh87v6/nd4md58fOeI6d/gI78RTsxFOwM/4Rr6U+6u8X
XjfOm7rsZTzn+fTzpB6JnefDzvPp+V1i5/mw83zYeT7sPB92ng874w922of+
+26x0z6wEw/CTnvGTnwGO+0bO/UHO/UHO/E07Mx/9fu7bpwn5d8ft8zZT6Wf
F/XIa8avsWv745Y5+0uwa/vjfHbiJfhr9Df4Z/gH2OlvsOPPYmd8x048Ezvx
TOzUT+zUT+z4X9jpH7HjL8GUp35+1GUv8XnKEzvliZ36RPye+kT8g/qEnfqE
nfJkfkV56t+DKSzzJ+o74w33x/yH+yM+Qn7iv+Q3318iXsf8lPGF+QvxL8Y/
M/7F+SaMr7yvgD+HHX8RO/EH9ksxXrPfHjv7pbCb560SX2A9OWv/b5hx/m+Y
8b2/KEn/0J6/Rkl6WP/eXh39vJxidSQ9rH8f0Cvpf7X9+XqSHta/11dfP18n
ur5+PnK08/0387yhLP+xgaSHiRf1mNNp16SlYRIvamnHG8PE3vTUhob/dYgS
u63711Fir+Muu71Tjjpit+tZshPPKpvxdv1t39cTu13eT+qJPfuhwWeK1HTi
WfZ43daJZz0aEly6SQ4nnvWa7d82kPbE+wHUX+I/1HfiN/SnxFfoH4iH4E+Z
+7th/EtzvylMf8x+S5j1Ovor7ftMvv5T21/ma/+sl3G/+nrXZdmPxfOzf4n7
08cXpz/DznwN/9N8f5Hrweb3iJhPwsxn6U/Z/wSb7yOSn+eDGW9Y/5H9/f75
Ocz8Fb2xy/f8DDbfF2T+AeNva/vv9zjv7+E/Ux4w98v6Acz8jvqkfQ/Hp7e2
X8nH+OPUF5jyg+n/Nf+8bNj/fJ8Gf10/39iZHzGf0v3xEPGnzf0ljJv0z+Z+
EvYPMD6wf4D+mf6L8Q6mvjN/Yp5A/4W/AVNe+NvMF9ifgP8A4z9wP6wn4p/j
T8GUP/464xf+MOM5TP3BPyb+gn9MucHoib9M/IT2yngPozf+HXrR3kQ/f7xH
vjfojy/Sf9FeYNo/6xu0D+382eYOU39YL6S9EL8hPgETj2A9jPgf/RHpYdLj
P5CeeCv1hf6K/pr6BxNPZ78G9ZH+GSYegv74g+hPf4kd/ws7/hf+KPFt+nfW
r6i/+GfUX90/c0t8m/ZAfID5APFt+kviBfin+vmbl8W/o74Sr6S+0p9Tnuyn
5XrEF7ke9UniWX4794Od+QP1jf6Q9TX8TeoX/Tf1j/6VeB39J/E3yt/cDwrT
XvBH6R9ZH6V/ZD8m7YX5C+0JZnxnvxP9J/4A8SXTP6D/0OJTPuZ6vA9FevZz
kh7GTv+CHeZ6rN+QnvUb0sPYiU9hh7ke+6VIz35S0pvfu6U/ww5zPeYPpGc/
AOlh7MwvsMNcj/qhld+e7nr57XHsjNfYYa5H/SI94znpYeyM59hhrkd9JD3j
Pelh7Izv2GGuR/9IeuK7pIex039iN9dfaB+kZz8v6WHs+BvYYa7H/I307E8g
PYyd+R12mOvRXknPfmLSw9jxf7DDXI/2Tnr2I5Mexo7/hB3mesxHpf77909I
/fczduar8j0KP3M95q+kZz806WHszG+xw1yP94NIz35q+f6bn/EHGL9g1l/x
DxivGG8Zz2DWYxlfGb+4H8Y3mPVZ1k8Zz1g/ZryCWT+j/2c+gT9Hepj07Bcj
PfFpxh8Y/4Z4Nf4N6zmsR8H4z8x/zP1TpIfN99tIT/mRHiY95Ul6yoP9VTD9
K+tL9Jf4o+yfguk/Wc+gP8QfZb0Kpj9j/kX/hH/Mei9M/0K8h/6C+QTpYdLL
93v96Zk/8D4ETHsm3mN+Tyavf1zXvvf1TPzHztcuWtiM95yzx6+6+nnHz8R3
bDdjuRO/MeM5WeXtxGvM+M1v9vM78RnmN5Qf94v/BuO/Mf/K8neLyv3jX+nf
Jykk6x/4N1yP/QYw+7WIn7D+qX8PJUCY+THrJ9RHygN/EcZfNPfj8/zEb2H8
QeZ7tFf8cZj9Jqz30j/B9Gf8HnYYO/MR+iuY/o3fwx+H6c/of/DHYfabUN+J
t8L439Rv5new+X0h0x81/UnTHzT9OdMfM/0p0x8y/RnTHzH9CdMfMMdzczw2
x1NzPGQ8k/fv/PuhaP9m/ID9T6yXm/EC4hWsL5rxAcqX8cOMB1De9G/m/J/y
pn815/vsf6E/ZX7P+Mj98fzcH+M3THs14zHED5g/w4y3/B71m/cR4Pft67WW
9Snil7R34pXMv8zvxZvfhze/925+n5396KyXET/k+c3zbomrUP5mf8h+QPYr
mf0f+Zn/kZ/+jv2B7A8x+zf29zHemv0Z9Y/xnvpH+bSz4x+t5T60+ICvPPG3
6J/pj8iPf8V6Iv0R5Y0/RTyJ/ojyJz5AvIz+CD2IB7OeSX+EPvp5cuFSf7g/
+/yHca3FX6K/5n5h7ldfz8ou5cF4o+8PfOSlfKjf1A/qN+2D9gRzP4wX+G/m
7zMeoD+/x/WZ78P8vhVPaRoXk7V+UzGnsKV/sZ9LCFv9TOc6FYStehMyu5qw
dbnRr4cKW+W27APn+gV95X2ub6JwLt/9FGnQWNj63kOTEk2Fb/qeYtS/zYSv
+ORe8XMLYWu8uNm8lbD1/Yf8MUnCVr9VqUKysNUO6r/YWtjqz1IetFZBvgJs
4GPrfab+l9rY/bjHx9b8YsTBtmK39n9uWNBe8lvrIaff6yBcz1f8997oKGz1
J4G9OwmH+4q/eusUYas/SazXWbiqr550r9JF2FrPGFm4q7DbV57vP3XYWn9Y
/nc3Yes81YuvpGrlO/Csw1a//aRtd+HnfNV56h6HrX6hRP00YWu9cMEah615
Rlj1dGGru988z2FrPt+8WIbwvz79Tkx12KqOvbL1cPT0VdtbQx225rNvZTps
Rx3Te6rgm+/H3S5eTvbn/LZk0Z2+8TVlP8/DPU8/ODgwXDj/kOBVro+ihGnv
OUpuWtwsR0GVuj/OldnW2c/zr3trxrk/y8j+HPqXHWtjWhaf7VYVy377y6fF
aoj953ebzh4a6uzn+aft2r6Jy0rJeoR7ecPPpz0KE2b/wI/XRh8YV6OWanOx
wFunl1aTfpT+YF5UfMTXb4aoCaV3fD47zdnX/U/t0e2uJedW+nn/hVWxuXsv
LjzmUaO2/d1y1soqYj82bukHJ1s654fNWX9//tiGzvcnKZcxfTvHt4uIkf6q
cpt9d1JqR0n8uGqtWRklDkSJP7zjvUd/FqhbW5Ua9d3SwSWc/eLEg3/JM+Kd
luW80v/We2f3oaO7YtWm0ZUqTQ529oNvPbq0wduHzsr3Aok3p6R6Cvd+ub48
X8TtXZ/kzVtf9r/MnL37x48+V+r1pUPLV8yI/J/94jmWZ6S2OxOngl9tsLLx
3QjxRz66+v2iiMIVxD/i+SZEz33n06IJMt7sPBo+sNHoeLWg3P0tc7o652NR
XpOLtC19e0+izG82PM7XY/vJhvL8fV1/lN78aUN5/gLPt4tfn9xQddm7LeSL
gs5+depj0JXh4dOyN1L7/yhX/ofGzvfz0H1Ih7yHG7ZtIr/ftsjx1xY+bCb3
O2VIwosrhjST+vXRnLffORTTTMpj+pLDj1debapWHh4y+9xA5/uiXO/KsLaf
PBeUpN4eWqbEkl8LyfpCxolJOXI3dc4jQo+Rc3aVnzwkSfT4r8jg9r3eSZLy
+LR8vQExHyVJebzbf1K7O4uTpDx2Vnh5/YyfkmQ8ffObYRfv7EuS+tW43tbs
Bc8kyXpIidM5R31wKknut9Sk22OzH2mtZv67v2yfiNxK/15ablUpsmzlXhFt
pD6t3tC30nvt28j979hU9YerI9rI/bdu8N6aTz9vI/fT4nDk5SoJbeV+Tg5o
UPb119qqCl+9eSLSXV3GX+5n5MPk/IU3tHPeX1/4cN3GYu2k/KvO+XDS7fbt
pH1d+67D9rdLtpf7vXemya7RzdqrMu6g4LS4Ysb47VEpkzKf3GzcXu53xY5S
RX76r72Ud/xn4xedquX4W1/MT/yycXQHVTihS799rZz3VXm+1lM+e7+ez//i
fdcF7one3892UA+iCwTu7+K8P1pzYvYvpyzOIfM/6tvzD5dXblysk+jzYZE/
Uqbs66gSk26vmVooStLzfAtynAqeuL6T6PHxyIs9H+RKUe1f/2jnyhNFZf5I
eXkSkqp0zJ6i5g8K8fzY0DmvmOe/1j/HpgLfp8j61dqLNRatnO34e+dTmz3Z
eaGz+rd+h6Vbdj2W/efVP33z9q6LlWS98YfF0fc+7OB87xZ9NqcMfaNfald1
Ked3t/4Kccn+cvqLljOXJe57o6vq/uC7k6OSnPczj31Rr+C/bzjfy+V5d66+
NPn32G4q/nTIg58/KCbrl+g1ZMTondNSnP388T16v7Ohbjd53hHb1p4NKpeq
urkvbE1o57yPKfv50hesT9iaquodLjJ1xGdlJf7mHlZ4y/Otnfcl0Xt+yuPx
4fNTVcKwI9fqnM2U838pv7B3RpUeXK676jwo59r+58vLfJvynnOi0O6Nvus9
iRm8YMlzoWKf9rh4yeeyO/utWI9ruWVH79+HO+93rgm5/He997qr/H9VaRR6
IFjm71/0znP8boNIYdpfuReH1x1aOE29HO65tqeAR+b3iRuqLw68VUXm8zHr
652rl1Fc5vMfvP8ktt+Lzv4uynP9kdPDu2xLVyOHZT9+YmVJme//lvdmxIUl
1YSbjHu769HEMOFHC/puuTzpJYkHrJznKdU3sbow7fFe6x6/t16aoUKjfhn1
1uXSEh+IylO2U683ykh84L8lqZcmLysj8YGPO3ubTw8upy702+S5HvGCSszV
KPRi+3CVb/X6t7yvvaTenZB6fk5pt4qMPVdkSdNgtSc5ZVZMbA01q8eDoM9W
VFDJfVKPro8JV6Oetg7fv66Cylf8WEL/ai+p2amhndyLq6vOFR7Mvlywuqp2
Oj72js8/n+zK89WYDOv7SMHFGhTzqBlXX19fe1Bu1fvK2tH9ckSq/oNc8Znl
qqq2m3ouONDGNw7++v5719uGqTLNhhYecSJCBdaf8NVR3/jQ4LnRuy6+EqFq
7f343+9ulVfN3lrz1+8z66rKVbMV+zHKo+626/R72+N11dahOV6Ze6GUern1
6Fl1Y5SKKVB6zXgVqn48MmR8qc5KdcwZHXHu+jXvh3ljz6QlxKlOhccuunLh
sbdL8d/yDi8Qp+68+1Wb6UG1VNdscyb88qi++uSrzzv07e3rf7r0OP9S0zh1
/Mj+i51jq6uRJ+sNO/hXAxVVeeX0dZ0qqL9X/TDqxScJ6si0K/+UyF1RHTz0
/KymixPU95sDZ5bqEaE+f/FCjtsPEtTiB+fuvZXtmjfqr3X5PvwxUb1fL2z6
G7OfeHuua1/q5leJ6vihhMO3suVSRWNbT3prSqJKCdnRMPObAuqrRtUyjvVL
VJ+eyP11nYZhamz1J20/GttYvZ7nw8GbkmqphPnb726Y1FRVzHn6Sv8yoerd
kPvTfg5uqj77d+2O+Q+ueEdcTDtU+fnmauGywqNmzHns3fHw0sjovM3VrkZ/
za1aMJca0uD+z60KNleb651uV6XZiyr26ZJXaxZprh7t3r/0zoZCqkWUp9k7
RZurHPNf+nbQgWJqzYGiBZ4Ubq7a1yx179PjpdR/Ey5+WcXVXG3NeaF3t5Nl
VGaOzRen5mquesR+FLL2Sln1y41Rw2c9aKbm/1d1wrTXrPWigbneq9JSDXrw
X3COY4+8N2/Mu1ekbpJKr//vnIMqlzoya0vO1i2T1PlSu1dsfMGlZpXO3WFq
WpLq0/X2qMa++nSmS8OT+br7xuuJg+7FF62lxt9I33a8YrJ6480CLbZVClVF
in0/+WJostof9an7SrhHfVi73os5Y5LV+OD+AVvqhKnKHcvlHFk7Wb2WreTq
Jr763CciI8+MsGT1cPO0lttKPfHGrYys+/GLbdR7Aat3dW1aTv0yIue9G0Xb
qgUx+z0ttl/zBoe+2+7eX+1U7JFL7U82C1V/PPz2g11/t1OnK8Qv/G1kIVXk
bOlqvZa0V98FhqyoXqGcigvJWfqH7zuoroWT2wx+tbKq//T7Anm+76jChz3e
MaFEddWzRcWic/t0UuVm7cy2McGt7jysnXxtYGe1+qOHVRc2r6DKd9+RVKt9
F/Vt2tphPZOiVf7iM1vvrNhVfZpU5cE71cLVLwfDmn6SrZta+PrK/id948Pz
I/+88ji6m5o8P3J3cMMI1Xz1ijK5X09VV3el72zsqy9bGp4+3/FRqqowc17z
lKhI1ezrhxOW7euuBu6ZErE9srg60K/Chk1r0lWNkp9NyagfpnKOeX1WQHCG
aj3Vc6DC2y+pPXNWDg3/JkM1K5mnQavq1dWlElUqn5iZodocb/bt2CVlVNka
vx1Y7ptPNas0ZNG8YjHqZOKN9GKB97y76has0cnHh37eEhzyY2HlejG92M9F
Y9SNlZsfF/+xrCrS4fddp4vEqDrd71XMKFFFnd0aumRe4Rg1olMHz4zYWsrV
oumBHIVi1NW4+6nb/g1Tn38+e2RAwRiVvca1eoO+jFJ7X308aFyBGPXSqoEF
Dnaoo9ZO7vvfyLwxalSvJZ3cLq+aHDMz+tdcMWreqjvu0xn11Yy4RZ3Tno9R
wYVWlM7foIFqvG3/1V63o1VmoS+797odr3qXT53X6Fa0Cssc8+2A8AQ143yX
d05nRqsnHV9LPflzQ3Xlh2Pvh1yNVq8F3XyuTolE1W/d5sBFF6NVt/g3fsr9
fiPVanvKgorno1XRReN/GvlcY/Vlcr9/zx6IUHuXXU/9PkeyGvVJpaprzkar
bFs2Tvtpcpr6JWLYrGhf+txHIsdHLUhT61vEvbnnz2jVOSTq5ZzPp6t3Y9xX
jv0VrWp/2b5/3RLpKqFf+WKH/4lWjxv/u/voiHRV9OLPN6b67mdm8dbLlkxN
Vy9kFLx0899o9ePsQm97/0tXOzpMDOx/PVptebrw0PCADLXlzsHE+jd9v7e3
ZkDjl316ln/pj+k+Ltn8XpG5r2WoXL/2//agrzymfpnnyaMzGco9t2bl5+5E
qwk3Tm4reCVDlX3l0brv7kar1ncvB6a166HemDfqyF4fF/c0vXegSw+1L+Zk
3qv3otWZI31zvbm3h7r53P3UBz5+sH5wu8O/9VADakw5NOl+tDr++/5iSXE9
1eFWtUPf9fH9zdnOl2nUU62tFBe+yFdf8IOnzN4wfX4+X32YP27bvL8j1YJz
mSMfvxCjRpfcX+jk8Npqf9G+JbPniVFN7rjm1H2+nrp87Vrg4pwx6r30JV/e
3qrUwaijjc749H5uVO15GWPi1C9BtadWvBGtPLvKdB31XEP1xb1XPhpzOVqt
3jqpXr5TiaphrvQWUy468f1p/Xuo81ec+P7dHO5Wza89873KV7NfuXTDie/3
HFFm5qZbTnz/+luv5rtyx4nvr76yP6jfPSe+vzX71KDW9534fr/33mv1+X0n
vo9/9c6lj+5UKJasXG3eDVKNne+bjn035tH4+jXV81sjc/496T9vmS8u59oR
XlPdvNnh+F+Hs6u7G+IS373jVoOKNp7Q/JFbrT34SbnjLUqraVNCWy+qWkXN
CPf8tvvbEHX6gFr2QnoVVfBQ5+PTKoarHV/mnFvzUiWVd/ONt149UUJla9Lx
1rtHa6qwoKHz2/wRptr0H9Ku4Mu11Mb+HWvHHgnz1ePjE8ttrqVyLg/6pWqu
QHVsZ5MnBf4MU+v6nCpdLKmQylPor6JjOoapQm9/efyz4Gqq+ieDXs47Iky9
PvfXAyuq3fMe+27FuYT9UWrDhPOLlxa+761za3DBzzZGqVXtyw9Qeauo4N/X
Ht2XJ0rVGt5pZvvWwerBwsDOH3apozwzap+fuSNY7Zq+PSYos7aKmtr4jwHz
PWpJ/nvJRZbVVi8OHFS+jStKJVWL6bGoeh0V9/FbYa8eDPL96y3Q7oZXrfkk
Y0dKvrJq+ahSPY4tr6fqvDX59R+3hKqK806e/O9UPfW4WMm2JU9Fqis5NpQ/
+Uc9NfaNtJy790SqL84cvnjggFctf2Vf8CcX8qrTvYLOxn5cXyVVeC5z/r2C
qsKI8ZNbJNRX05+8uGjE3UD17ZC6dS6G1FdX33hvdcdVtdQN793pAZH1VeOE
8Fq5XwtRA7pt2xz4cgM1rOWsX0+Vr6RuVquwIqpPgnpra7HcJ+tVUZc6Pv62
y/l4Vf+FcQcm/hKhzmys8enao/Hqo68zJv33RkG15/Wuvx3tlKjeSaw8fPjt
IuqNRe9NyVYjUe3blPrf7LEl1fhGrfr9fbehCgmJDBlVs7SaWOGVXhnbG6rq
C4tszhZSRm27fGTIF6saqohWRxZOOedW/SMPFYyY3FDVeOXszV0XwtTsiq8c
e7KzkVpYv+iND+6EqWLZb6QtXdZIuR7mb3NqT6gKP/dXvYcbmqhb5SNWdXxa
Qe3NUX/+myeb+cbxp+siQyqpj5ZOqjx3fTNVx3vj5uJeVVTV0G/3vjyjmZpa
4eOOngHVVOSe2s817tJMfffFgFJtV1VT0Y3mrfq1TTNV+tXFBT6I8dXPnE1X
zCvfTB2q9XTn9tgj3nJlum89XS5J7Xg9T93oTbe8459sPd8oLEmlTR0w8vwf
UerFcSm/pV1opbZveOQueMKtarQ6dWLw8iS1aEPp47l2lFVNYz691P6HJHXj
1VIH/ilQXuUaF3994tYklXzjveovLy2vfn+6L8esnUkqfsTLt67GBat6kavL
1j2cpF7beeXfoFnB6ljRfB9/czRJbbvZ/8lPQyqpf0+eztnzryTVPnbi3uYj
KqnUva12TfBx9bNVSuxOq6IaJe7sduBOkro1q9TSIc2qqTvugDen+8aDzBuj
IzZHhSjVffzp2YWSVWoNdTwluKbq/+bsTtPdyeriG7nyN/D5zfkvz/uzzcMk
ldju976pnqPeqbtWTvrpbGv1kXpt/ugOhdSPjV5JHziwjSpZNqD6/pNFVNDl
HsN2v9NG1R1Vpcu+c0XVq+On5Tgxo42aMXZ96NCeJZX3/JJrzb9vo+aWvdR1
zJ9B6kjbk+l7f2ujpuxPHZNyJFilZvz+aH+Ptqr92Hx3RqVVUn1yNt4XPKWt
OlRqSmiPCZXU7JnejqPebasG7tq7srmnipqfu8bAPOvaqsGB6tZ3RWuodR9n
37S9YTsV1WjK2NYzaqp1nw/91jWsner1xtHji5bUVJ8XWeCaP7KdKv7Z3w8H
flpL7fl79PyHK9uphNGz4ys+n1NldvyozF9126tPH4x62Dkln6p8bF2nqxnt
Va/st5ePW51PZZaKn1S+V3s16sb9apOWFVSLVasDB2f60hfu3OPubx7V9esX
JvYZ2l6daXzuUsKIUmp8vswrC8t0UC/2bNn5pVGl1Zz7W1u0atlBfTur5vTg
b0ur0QsetGyc3EH9OHFLpfSrblV9ZP74pxM6qMzC1eOK1whWjYPO9lhWoaMa
X2nKuQ+nBqu4gCalXg7rqDpPvPaZyltJNRh96lKrQR3VopuPPiwaf9jb8LPB
wa8830nVm/TzimWzL3jfezt3/IPCndQvR3b93v6dO97Mcpeufd2ok1rQ/cLe
WSnVVM6q3XIvi+ukmt4u9Ffy0/zqZrGF4wZe83HVN2fE5w9U2facL7e8Sopa
8PCLcffvlVT13u/zuNKVFNV087BXF54MUjsXnA0pUKOziuzUrOe5y7XU8AV5
Vuy7kaJWjepfvNDBKNU4z6aceat0VrnPfJm4pmR59bn7gyedC3RRCyt7VnfO
E60ud3quxAdnO6viHbzH4rae9EYcbD/Es7OL+i1p3J9Xep7zDj42Y1Hgr13U
2y+88k6L6Gh1sFBKjVfndVEzJua5cnVSDuX+ITAl5cuuanbxNS9PGFxF/b7/
g+DVu7uqJeVf7XrpZph6of2T+s1/6Ko2tah0f+6tQLX6w2H7y0/rpqa/m29S
1PUS6rXj/+V4rm6qGts8MOSLRSXV60WipsU1TlWlJwaufVogQu364Vynyz57
RLfFdZtsq6kKXOx67qX1qeqka+/aXkcj1KHb60/8V7276lf119OhFyJ887SC
MwPrdVc1ek3++s/O973f5z4/vd/C7mr4C5l3h5aKVIm/xV5o9nF3danOhQ/7
7A9VbQZU7fJyUJrKP2fT16eOhKqSxz96mhScpvrN/ST+64QqKl/+rp0XBKSr
IgVWdL870Need6YdeykwXS3vv+LLQt971Pt7bhzeUd7nj+Xpuizb5kj1zXMX
rgypmK6CXm/1TczeoqrPhscLzgxPV/NXnVx16R+PypjXdPvJUelqdONNFxsf
jlTxA58b0XNIujrXrEHT2ycj1Zd5V/cYMD1dvVln8bDllaqppcG3/v7mfLp6
acr9mt918/WPpfd8vez5DLXy8919t5cJU81af9Sr4B++9P1uzXrzZqTaemft
nsn30lUZ14HQEz5O6DzgRJ0H6Wpv4djyC1qVUgOmPDzUr0OGmlnwhZk1L1ZT
Cz8JOP5KSoZKu73r4uOcUarm0O35qvfKUP2n12vVrWiUSvl4ecK+wz5/cGqR
a2/3La1e3Jhv44o2PVTljX887ju6tDr+/f6BfXz+38aAV4vn/yZM7fpp8KYb
Q3qoT8NKtw4uF6WqVI/PVaBhD3Xh+8kB+6uUUaUHzf5w36YeqtnVW3cKlA1R
/+xI/yDH6h7qnWOVOr8SEaLqtY9evPFSD3VqUOWY+BVhaneu2QcHrfX5j7+s
jRv8Q5iKmrPi8IyLPdTYbp79bapGqaZ/TStz9YceauKD8n8smlVGHeld95+B
VXqqaQ2GJ77cJEQdm77zvbNhPdXGlfV2F20ZorL3vpr5dtueasLvPzzutyFM
PXy35JkcPnvTE39kO7QxTDVMbnF7T7ueKl/JaeEXa0SpvMu3n+hTrae68Pqf
J6p/HKHaP/mg5luuZNkfuOLw/lXrniapN8fdHxQd7Hw/pk/31KcPk8vKehD7
NbK/0rzJ2FxBauivbYf3Twv/n/OH+r+ycuiphhXUsI8vxpz4wS1xNNb7S33w
075/Z1RWiQe+vR4ytIbYiRd5M29envt8dbXAvaRqZEBpOW+I9xF6heYc/VFm
DVXwpZR23YqFyHoS+2+2Lr66eU3+qs77Ul8FbG50uabEu77o1TD2rQ211IBq
0wPOniwu57de7XA1Z/eB//u9msqePB+sOhmqbrUoGDF6YHVJL99H2ht2/tt5
HjXwzz6dolc637PZ0XFeoav9oozzYrOr6DPnjy/4MlLioV3L9zvY/71wtfDy
7PnvNywo+7eIL++JVYFV54er5WG5/ju8varYZX9kz6gLP7WNlPNVZoTdWfpj
jwh1eOimzJrjne/hEH8cm5y70ubG0ap/zREJhfLe9bK/rPTwpZXH+ub7sHyP
0rVh26HiMSqsgnfqtD0e2U/B/pj4bvfe+jw0RuKZ/0fWewdiGX/940b23nuP
7M19o9zHFm657b1XhVSySShUUpQoIynJzhYiMyRJZqEiEhlZFdX3+jzP4/L7
Pc+fr/t9Xdf93u9zzvuc18ElZ+1syx2BekMyxSEBMdS/bH6zdvbb0v/Nj8Pr
MPVbleIo2m92t3pMrnIfgVMMQ/xG4Uro+/v+GC1GHvJpZ7Rghb/bjnRDDf3e
vr8ME4ZH6y3mKDpfWuerKe95AqjE2JZIywqi/msoX3adswReESBifYX27hNF
tHw/Xmb7cFnhBVJteMwpNVlZ+7/z63zEKWhOf1xwOeATOHRs1k+nSRvEr5T6
3HvBgPoL7tuLLcpqmF0btEHoBKfnX2Re7JfnHCq52psuj97f7fs3+dxIHRay
0UHvF5y6s8xIWHVA0uOST03qQX6dQ7jE5esn/2++nMS6rggZCT04/+hii06L
LOqPt7/+idYoXa+Y6aHjUXFYP3JbwgC1N/O/oBbyTtcH0v6dn5ccJVD/iH39
zqKj5V/frD46nzf8p8csvA/y0VBObbuVaB3knwmeyHyGYzIE2hvXSP0qudF4
rf35ezyMRuCOxzGYbmPubvmojMZn7c836W9W8Vbzx9D+aVXCvGd8fpBfZlg8
aDGazARqBPx+pG4povyx+/PTb6aMpPbzQX6UJ6KpMnd6DvKh4ORFMtYKTGEr
PfafTqAUGu/FzD2hJn/9IB4T9W8XnyZTbDRH19crMx/hZDkCen9d+eiBSb45
AZ2fJu9WLacLD+KVupg9DnetEgAaCm4tZx5G9eP99d+pQkf+Edmf9+/T9jQO
XxdiOIivd6OdPiHHdxDffk3liX7rpiVkUPBfj8zkQuPZ9/dXKnry2/+6rND/
p2TmHJgttIaNQ5d6iV4eRuPX9+drW+qK7mKuDYQYZHnY9cuj/j5Vd+ibC3mU
4KSLngpe8SA+KltTbuNnrC1w3E/9edaCDvVHF2vXiR+pVkIxytdfrqL3+6wd
hKb5Hr+9xI/6BxVH3v7d2a8C1zXlDHyR8v3x4jGrDN6xs4deF0Xjd5/FUH8q
l+zjCjYbkpCrVfGg/Jc9yIpQ0r/4pgqOH6XBwuAgvip62+O9urwDFDXF4e/r
r+L2/a3yIgt891alUP+rQ+6nCz8yygFzlgvnl48OED/Vfe/PqBq8ofuSuWjo
AN0jolsYISbUH2vOf0EgzUkeFu4EH25Wc0T7+9DWqvU2vROwy15IOEPPi/pn
rTD0itu3CMGRdP9b4W1OcPt9FCUxtRL8G26f7u9wgmraru0XixiUrwqNN7IL
D2ordQLzLxupA1eEUX95qd5q6ojnYqCeFSsWXuMMGfdt8+LplSH4ZsXtKxXO
qF3qRv2muN99Z5AcVji8QXoYFuzedfLSuUA/9vfGYK4yev+3f37mfwhqPPvI
BdE35YvIOGmQ85WPM3zFBVw+44/dcJFE48c8Xwrc1GqShrByseUjd13hkAxl
2s9bbFBD+vbm9kdXoK5XOsI5JgsJSlaqL7TcoGqQzrCnQQVkpldeHv/gCpcf
8lqXfVJB7wP3/fsKz32Ed9xusCZgo+B3BYvGo8mRPq73jhGAAZe0QvUnbrBx
XfYOEak8eh+4vz/0NvNpsVW5wXHv6gD7BUF4T0R+WvSDG7zx/J2qWHeQr0YB
TK4FlIzhum6pOFobuaP9JV3KqF4v6w6/e133sn60o/yuSvOXuBR5ROA0/aKG
O/L8BRrSd7jnChAVJumxrnOQbyGHc2/1nIU73Bksv0v7iQwuxHmEsNF7AKw+
qycXF4NukSfs4y3ukHlz8Ap3ND1sl/srq0Z7QMi7asNXyPjIvVBLPXvUA2Zd
uG7iPx6GRr5fiR4XPaBqsqcjSo0FhJ46uB/a9oCch0+rqq+zofa+ffmFulxY
W9bfExmfs55MfUpo+f5+apUBxcVIeWDOVEJd70F+nTaMzE3qhYN8OqwzsYPf
Vrng79fvZ1KpvdDzlWO70eST1EF+hItbA7Rhgl6gs1nvWJXDByxrMu66xN6Q
ovBHKG7lIN/Ovjz4N0Cge87fGwLTCMmqZQf5dLyHpGoNtA/y6aiuFz9feHaQ
T8dN5/p2EOEgn44H86TdudaDfDr78/d41Qf1l2oW6HwiuUn0rlbcAl7eeoCP
zMPC4b0/Hg/u4+Ea+aMu45tYuMGyLnhFygzOQlXo02vKcOiEb/ALrAX8lBj8
/L1JGbrOEaUeQ/AKbceUVJ4KtJvN1b+TsYBg+TuiKtUqEHi+KLRJ2gJqPjc8
W01Wg4BPjxr7hgmQGrB6sukWFl7bvJnpoXCDVc3mGxlXsaD98u7fV00HfG0l
NU5kBf4EVF6UumRtMidqBbW5pQ4MT4XR/OD75/V915JDZ+Ws0f7HzxM3Dvyy
hst09BFGIpu4fX7Gff95SqfndhoktnCfjaT2WKAiyt+4L1/xi7K/vMxti84f
1qsin6lHbKFsl7RBuk35//jXyxGKnvFt2ALJmgMlfkr4//jXf8HTY8Vm7CA2
lXuSkK2C7u/746F+20DjzmU7WJwR+9mN6AX/2/++mtF1c3fWHv6UVMe2z6mi
+/3++uL+3CB1xsQe7a/DN5cLP2U4gPb3ccU9Ktn/46/v4XFTwaED2c/Dc+lp
Xqih+/3++aym7mxld84Bbf+x0yInTyQ4gttj68NP5+XQ/X5/f7nWcaaQ3NgR
xJaCXjyyO8hPQ66QernISxDdv/f1J8lw//yd4gP+QYZqWx+8lhMk319g+kGs
iJ4PzS7dfxyKFNH30fijnvgJ6TwnYIn+bmF1QfT/8BEm7pVgHaid4UZuRMTZ
I0ro+UCafHjLqE0JfX5//Xs2iK2pxTmj56NQ7qBV4B9niH295ejIN4fb9xfe
nz9SM5+0+OQO4odPfyrO2Jlzhpeb+WWJBuKof/G+/pDsnLP8UO6APzOwvZhj
isoFWvcmnverKsP///uUUB0Ye/t1nwswFBOl8u5RoOfLPp9eIMkQTzypK2B7
zo2l10mh/iX78qZ6Nqk2KbKennGqZ4hTsaLnxf54Siv4XBH664rKU9spvqVB
a65QWctdK712wEfhkjVKGk8vi55H+/Nnl3MrJkbBDazSHrqsI/N5//n9895S
4qzIlwA3yL1isZM/xX3Av/h6hkryMx96Pu3vfyOG/SuLGQf8n2cTmQW5A5Hz
62IIBTmrHPq+4KUE/zvWgmh8GRpPsttI9mbNDYa4E/21k1Thf/OD/lk2HP5p
8R++uTnd4X5hNN5sf33OqTmH1Nm6Q9IHOXrGcgW0fF//YTy95vzC8oBv8bJh
36n61+7wIWXAsPDGb9x+PNr5d/m2x4tIUH+V/fX4LWi+aH3PHZQ146dJZkXR
+LV9/225uyFZo4MH/OQEp/QAojp32Ho0kJ1udpC/aH9+fA3RG5eX8wC56zrz
K3kUKP/jcvU2EYcqLeoPg+ajx0+NkXl6QIBmXGtykTj6PJEh7aMTQYfR5/fn
q19ZnEmY20G+Imp1h6vjkh6Ap1v0eOF2kA9pX97t7FozkM32AE4PgZynaoxo
vN3pt0PbbIeZ0fu4/f39R6fAl5uTHjDJx1sWflgCfV5AQiC8XE/pf/FVsoLW
XiaHp4AnDN3e4TRYYUH5Fvb3R5J++nUOrgN+c2errKTuFE+IW7QoeX/uIP8R
8UPt68fucaH84/vr8fIqY7VzmBcEMq8Uv3E9yHe0jhPhljnGh8br7a+X/F5/
v+JVLygzdJWMTzzIb/TYkFF/jEUFcr3OxpSqWMCZBJJ+YklVCJxINVYRtIC6
7z2XRBRVYW1Z7A+xgAXQkRrFHf1PvqOPuc9nI49B9z9WtlcTWDii02mYt3sM
fs74iZ3vx0IK4w/hKDkTCA1LMoutx6L62NsH8ewrrViIvxrJ50lkCpULNebL
xViwKovUwDPh4eqZlrqySixs8J++G/XOFL5UsCaV5mPR9cQqeVSmMRML7KQJ
yhn8bqDHJ5cujsgDcqsi8tNHEfmQVujW8yIsUOTax1sGuwH2caNg6kMsxIxK
q1W6IOtb6ncdfS32gP/0soCJdgUWwj9XfDPIdYMouE6S+RQL2PKYLP4SN7BL
aH7c2YjUrzgrCPPZDcZdP4ysN2ChuGSz8sQUsr8ULnLvtiHyraMfUyuXO9w6
kyLY2YMFISdq+Qf2yPqSxzTmvcLCB4PxCfor7kCoxTAeHcYCt2fHlN07d3is
PZuXNIqFVLoEM/FddxAS82Ud/IAFnnXCaRUzD1Cbo1H/OY2FC92h1xb8PSCM
ev7frW0seLEqd+U80QO7xgfnfZH27cczvc4/ce12xgG/UNX7NtFXJQf8MwlY
geYrLQf8M/t8VfTkd7uGydxBhp9xopBDHTiXwt/dt/6Oc3jXIhyI4BBchLiD
EzNI4yluf2VXh/R5lmmSREEY6rspx4LghwGXkt/PHIajjaJki6zq4M65qFOP
Rc5Znfjf6cj7Nc0Vf8bpyIG8lJ5XFcGb2odyExu4YLLAWyAJeb+Zfy2FXhXZ
Z+LL2ZLZ1KE4/LvtKCIXKV58RKGEfI/c72cE/pwinFAcFfrmrgJ6o1VDQifY
4d+HN+dTPOXgjuzpqC/SIvAjG8MU7c4Bwhk8zEkuipDTFdZv8J4DTO48ut/M
pQhN0bdqL/PJgOJlij0iB0WIGpBnPBqAAR8zjjNSFQrg2bjAMo6042l6tLHh
PSzcScs/8bhVBMzrrmnsNB+BFCum3Xfb3LB08VfKrDVA/69Ph/89k4cXk/8G
LhrqwHw/uelwgTSYscmOvBDQA9NEzthHSHu1Jl76lCr/wGFzwy75ITici5nL
+AgLcGq6Tk8j7e+XiE/12xSEnB3KMjIEy+mdiVA6JgHPytsUxpH2Z4TaHfXP
locsby+HHOT92uhxwWZ7YigrOrqWgWCq/ATNOONDoKDRF5qIYKs8ySt+ndQg
eo076gaC6192KNa8oQDde61ueARzC150J3LggF7fr8ZH/jMem8S1uElO+Mn8
MIELwYdDLIu2uHih/vq9k7II/igXLKudwQ0E+8+ylUj9wgsWbLyJRUAvcf14
OoKrP4uTsfSKQMSklZcTgnU/fvnMcEoMevuYQqMQ/I2lpTf7vig8O/T3dDsy
vmF/6G9dtpQC+1rWb3cQzPl2NShFXBrkXmonmCA4galpPrxfBtpaXo2HIzjj
FcuJ1E1paAkxm4tB+uPYjVbSvCEFuMU0uaGL4O+rz8RGdRShX3hV9iOLOvCe
OeOkwqEEqTZG3QJIeT77GaPAAkWQMdBcLULa86z485VS1hHcQqJg0WMEp+l2
C+vpzuNmBe58ikGw39zAkdtEjPD9b6f6OQR/vh08ShrFBENkdzMpEVyZu7F2
v4QfSo2/Dawj7SuiFMrV4RKEl0/5inQRXHVYrlzsiTjMHjuNE0SwuTZlPFnI
Ybj7z3hAGmkPbzTbR+nfsuD5ChfxC6mfPpsPi+c7OdB1f9Sdh3z/v/f5P7hU
sadUVgjet9d/IuL8+IxdHbW/J63oDL9BvrdvbzcI+BZ8g1UdtV+PfIoJike/
Rwejyr1mTCjmg/MXfMGcXR2N/whb6Z7UZFNH7fP7/r3ncrQr2hQsoD+raZDy
lAq8kelculZKBxEyFnYlJkLQYtwdtfyCD6KnNJhomuQgljImJ+ooP4yf8Yxr
/YKcPzFnRp+lyoFkWj/TiTAMcOT/iaLxlgU2wQAt9U5WiFDzWMqqVIJdJvZU
9jxleJ9cftgXkTN1mjtcGjKVYXZjvPj1OWW4xBg0P2dPAnHROOeKDTUIUsyL
d/Qhgal6593X62pQ7uc3zVMkAWylIqYv0jFAzyX9hv+BOJzkc6h5SaMBNxeq
iAZKlIB9MIxV8LwGxFhaMxIShcHFQm04tewoiKpFUekUccIZxY0JwXsArCxP
n8s+VoOKWn/H6S8AS4XsDS331KDocVVujKQ28F4l9/MdKMGxbQzwMobqwGkz
xU+g8xEn+RMjcMhVByJ6rCxNf8lBok0ik/1THSg6TPGsp0sKulxHQ/6e0oMa
LlH/zQfCgFEgqQ8zMgA+LxbvbXUR0DwnzpsnbwBjaQ6F5OdUQEXFXTt3wxBe
PRs/MnpXCUg8ruGMRY1htWpHq6NUCfzuqibosBqDe+pltrPbckBz0ZVlYMoE
6JhIjXud5SH/dErtyT4T1D7SaQV1z8J1gDXz0lZFGiNYJCSTP/ciwMXefs1x
HDNsHpOnEEP02XRlrjdDzqzwbQm/YnOeAMkKnAl3TIjhwzSjiR2nFTQpJ1kx
95GC8MNfOH9hK/jKHqQSFEwJglkyQaBqBY9sDA8xnhIGabLftVFc1rB8//iz
WGFRSLyoaj6mZQ1PSFSZflwTgQfhgh7cStbwdUl5x3VCChZG/z5/8cUaljrX
3IWcpKG2PocncNMaiPtdSugiZYDDWQ+/wGoD2ce1InHbazjiS+xvfJZtYHhR
HBKT/+Lqzm19OcRqCz/c3+ITsn7h7IYoLiWR2cKtrujeu8i5sFapcdp2zQaO
M1075yGgBC27cwJ1SrZwUvrWH+9frEAqXX2Wts0WiOnkvp6VYwfyC3RSWkO2
0Lct1PHuKCeMGv6j2VyxhXJ29dnIeGX47LBIUtRhC+tm0UREMioQKLNEwclh
B/E6VttzbCowLkKnO01jB3cZ6Osqo4QhhGEnarvFDkK0fsikU4iCRObgvPOO
HdxPkOhKLxAB6gYO6qqvdlDwRD+Vzl0VpGbNwsXH7ECR+IQXSbwE6BOZvLWs
sYcZy2deJcpS8JzrtX8SuQPcO4Ubfu6rBik26u4rbfYg1yxVPJZGDBguNWGa
GAfYmjna2DdJCjL9TYWH0hzg9SyrcdMQBdi43sTp1zqA0MyvdKImGUjWsSIu
SHUA3cVQBwtNOZD/F/SgdMkBkvw9bk9gMBCul2k79t4BBl+LX6xUx0CDpleh
0YwDzLb8pedhYoOeyU5vAV9HONrb0Eanxg6msh1PnS44wvuiHNNUak4w4aPr
/FLoCOL/VLOTzRTg3OGfctk3HUE/mDL/6RUMxNDrqHtEOUJ4/A71ip0g6NIr
vW8/7wTPl3P7PygJgzdbcp3RpBP4NPzFjUYpglEz/ePntk6IfLhz/m6QKJSH
HDuS4+oM19jvfCO5oQQ8BTlVxmrOwHX8XsgLy02c4alG1nZWF7hhTPHI4d4m
bkagbvMcuwsEnsbwl/X+w1EHn2kddnABmpBQRppGcXjF85PE+aczuBvMjZ8G
RP4nUbvVf8IFNF/9Y8ZcUgYJTVGiN/IuYEOp0F6/Tgmj85Z+xEMu8N1Arv+r
ASNwkJSUWhxxhW/Hh2vvZ0uBWRkbFZ+CK8wFlj0NcFCBS3fUZwUMXOHsFZnb
f6Kw8EAntGwY0Y+vfIn8cv8TK3Q6urwx6HOF5ZO3hnrEOeEJ1ZFACl43kA9T
UZ9/LQMymc9ePTrkBjmHyvjWx1Sgr3to9gmVG6x8jJk15uWDmx9v3Dse5gYc
eFmbOLwg1Kl/dtF64QYO5jIyzsNyUEdDkno10g2Yd7tkzJxVwe7XaBw21Q3C
iqNGRciFYXeZ4CDF5A6qMdd/6lgqgOzimFkyIj9+qNJMWC1QBaHBzZ29OTfg
z9XLjbujCg4qqfdPjbhBPOvjK+uJq7jcm3xev0Pcwe9c/uQfMVEQDxXOm7/o
DicsY+tyhRUhO5av1fKqOxSeNVWoAkVoTI9X/vDAHbBKUpoERM5h3I680jnh
Dkwpfl593Ig++Jm10QLRT9MFKhpEYhUhAO459I+6A2cQ9/oRvBocJeqNC/7l
Dgn1/r+GHdXAqdgydYrTA/QbwpLkdakB72TUHq/nAR/Kad387A9DTcXCd35b
RL8cMP59U1wJJN9oPCEK9YClBqrABmUleCDRVdJ1yQO0ODJecYarQd0NYyp9
Rw9YqN7iITFgAuLvW98IDR7QYaA3OlohAdTMFRePvvSAmyM6nvjTSpBJPL33
tt8DuiK6L52mZ4PsxwNW4Wqe8DLdiqtOTAqMT9lmYl094fjkgHC+O6IPSmQ5
WUQi+uHaU6LFAE64LCfgebrNEyxINZwu90lBpG+Hd2WFJ3xs+l1x2lQZeCuo
shK0vKAQnz3KiOiD/ldxQUIBXnDtlDFG5xov7BRmWYcXe8Fg/xHsVxsZRA6I
3D5c7wWiyYkdMgkyUN7GE+v9yQs6w1MLFc8qg/1W6y+WAi/QkEtP0yjgg2Dm
JRpDUm8wf5WdUFAnA29Uuz5JcXgDufqE5RcaVZRvdfixdaT0GhYUbE9sOjHq
AxslNcXAPBZkT7Sl+S4awGxTYRe8x4LFeRMBng4jIHAzGg8j+tHVi9/WynKM
UX0kjvhc+QqbKeT7FvBNdGBR+4ZS19eaiNdY1L5w9NQ9jcAxLKrfi1ixHN1B
9KV9fZzC/3fwsS9YVP+mIHbuu/YNi+rXLdxPBD+uYFH9+v5panPHH1hUn9ae
lkxh3MKi+nInr9cJuh0smr/LY5c00fEnFnT+i5/BG5ZOJ7MQ/8JC23/Fs/sA
LrZM1jsZCwsDn6vVHrrCk7S9PS0rDHq/f3dmrOmbOQZME/j4k16ogPj9PK0K
ZQx6n3/Vvk30niwGjHLmI84herIdVwAFrRQGEqWJxWaQ/2Foo7rMRoNB79sF
Vy5NXqHEwAUXPcHAIU34aWhMwWGI/R9eRHOofWw256CGhRLjTL2vhuZwmlbD
WFAGwZScb085mgO13gfXhzRY1P4YXzDgm8mEhVPEPleBxBnMJ5VFp4SQ9lD9
2mEDZzAV1nLWAixqD2y5EVD3wwQLePOEj8fJkP3v7YMHZSexqD3wfvmmFEkg
Ftwve0a3I/vji5CWqmwKDNrfJoqmj6KoMOAY6jP6J9QLPH+HzAkzYKCHpM3K
KNcL9rCXw2k5MOh4eEVelV/lQtq/afRwfdMLTF/S89TyYmDwIv2/RjpvuLRS
SnpSGIOO18l8j+3LYhj4IzuqXHfaG5JJHwpXimMgyIlg0hvjDTeD78XMSWLQ
8Rx5olJVIYMBxoWAv5FfvcHQ+1ElEzIerWLR2qHr3hAX98DkLoL3x7vGknHm
mTwGfNvZK3xdfSDOcanvJYKDZmwu9Xv7wKV8/D0SenVgoJGm8TJShqEjbyLv
0qpDH3Yh3eC3Gtya+q1Fg2Apj3PYyU01cI7r9h2nVgcLNktZ/zoNqP4a8a+E
EtGf+NsuGudrQIufA10Vgp8KJQaxhGgB2+7yyvVDiP72cPliM14LYjnWHrKR
qwPedKDjO682dESQ5ab9w8J2gIgu53/4Wo5pXl4iUYffGEs+U2JduGl+qfAK
Mq/CjzdFWA7rwGrLX1/GbWT+3PMJNerRg9kPPhJ0G1jQl9maob2tD3vLbz+K
ryLrz9+n4eMFZH0v1550RtZT6QeDkROPDSAUr9A2gqy3Y0Y97xVOGUJud9M2
NbIfsBir/hW3MYLZZGG96TksZAx8Dv2QbARU2aU1NR+x4GKXQk/QPgY6/TLX
5kewwLnwS1jOxhiOlUR/+juMBb8P+JqcSGPAbtlPN7Yi77/bcww7ZApUL1gf
zbYd5Bspoiq4pfgCCwLhYxfnedzB/5CFEnMnsl6r7tg+V3UHDM09k44BLNQZ
wRWeO+7wcLCnEAaxYHLhvKluoTsYetXHHh3Hwqez6pmuTB5wl2usuAvBZsML
1YkcHuBZRfv+/cwB/6CO+djSY6T+mcnPriUle0BhhSEd3ewB3+DSCdnBn18O
+AXXflXyJyH9kaTU0BC05wHORne7Cr4e8Ale6tUnZ1464A9MlIc7wQg2lRRN
6z7tCSAqLGn4/YAvsOTcro3B6gE/YMDLDN8kBGf4hHyLnvWEr3WvrJnXD/gA
5Zsl08t+HPD/HX+KDRtHsIE4nX2KrReE1FDLcm8e8P1pXsX8st864Peb5pRs
DEZwx6/5p9/7veCE46WrgdsHfH5H3tJr2u8c8Pd5aDLt+iGYsPytIAu8ISgh
SZzn5wFf32x3P6b25wE/HxdBIrEFwUHr14JTar3hukqZuMSvAz4+2mD5yOBf
B/x75qaFCaEINmI4/LZbygci3vGn3v11wLcXVKpj/hZpv2hAwmn6aX3IjEnS
OIG0l4J7qtmzXh+chCqrg5Dza8tvIKlB3ACkFr9+nUP6jz6W1A/vYAC24iPm
sYvI+/00AS/LDAEjZAQzCA4Z04wMyzQET5J53aAFLHRVnRP+Q2sEwYa5Y6II
jmQuAScxIxB3MDuFReaL/sloteNRx2BuJru5ahILYtRzb3QXj4FR2xt1nh4s
9D8rVlmKNoH5H5f5OruwwH/v3ZW+LBNQu2orOduLhYkTJaPzAe7wko1VbaQP
eR8eNfuEuYOcQzOzyjss3H1vHj047Q5XOCvb+5H1o8/Y//zzD3cYEB0r2fuA
nK8kMeV+5h4wy0qksI6clwKh78+m+HvA8rXs6jlkvuJfHrm/3u0BRZub5xsQ
XEyUQ7XS7gEjx02EJZD523bm1kTJDCL/pBK1uCH4RqX7139zHvBuw/fCaaQ/
vixhxP5oeYLuz/EdbgQn+h7pokfkHVa9sUYzZD9oYj5/dcHCE+ZWdMefIFjp
5PLUdydkPs+2cREh+4dg2w+WzDpPUH1EKpb5n3io1y+rM554wvPAt5czkHKy
otmYxG5PaA1uriFCxmeJfvBN4DtP8CMVCahGxrfC/OrpQVkv+Fi9MWCI4PI/
I3yRfF5gNhryng0ZbzOj8KKLGl4Qe1/+ZCyCTWOEf1w38QLFGwl1ech8F3w7
ql720AvGyle0jiD4wfvQnuqbXkCnkf56CsFxfNdsX5cj6yWip/MoMv+VT3fn
2LZ7gVFm8MwIMv+DzwgzqPN4w7pfoXY8grszCFEa5Mj8zZWS2EVwmndNv6+I
N0R4TsQZIevhJN59cRDrDbLjHec8kPluYt56K+ymNxBdjhwWR3Cvyc0W6khv
OOpIQRmK4DbmscVjmd6QFSygVopgP+pnVH/KvaHZ5CPeDJnvewLI9kDhAy+m
qx/IItjm2p1koTVv6DrRbGOLYO57JlRn6XzAeXnwYxCCFRlOZH0W9QH3yWya
/8QDscjflxaK9oEGw3CXe/+JD1rewUQj55eal3pOBLM65CjH0pULqEJa4B1B
JgSXLn0RZ+hThVTBGUEfBK9GdaeWm6jCWlrtXVtGdZjKaKmgReS83iH13SEG
deDLWw8Kj1EHB9OUHW2k/CWeTXYFGYeT92pFntGpg6WjKN+JsCPwJNrHixnB
0z6WF8pUjoKR1MLQQwSHaJLpUGcdgc/6TCXXkfMxcLA92p0ZYJVf/W0zlTqc
SyqjjgoBEE6ZLYlEyp/ckY75xg8g/sTcrwk5D2/v/Fq89lUb5m5LdtSQqYOo
Uob3jKUOXI4Jii5Dym98CSBLXtOG6sRaZn7kfJTtEEuoe64LXOS83O+I1GE+
272pU0kPUqtImbmQcjFzkVrsC10oNHpY9YxFHTazJDYdHiqBq7zk1B3kvL8f
IlcSrKsM2PLktAUmdchL5ruvY6wG3HeqygqR/lheYGAvWFEHr5jthK/I+c+U
q8Cjf/MosEirNGci7ZEifsewlgnQ4FUWlY3U91GHgha1nw50fB1rTUO+n3ch
es8GrwzjjT4000j/+7qWTUqFqYAlE9H76wgOrC8RNt1QgWAHy/oRpL+5L3hJ
6vAh+27Me44ABJ8k8qXrfIiFgudmPnbI9+Zdvh2vadME8fRt38H/9D+VLb+H
7RHoWZOwtqJRB35RVydtDxzEDt9+mo/071+/RrISMoBCcn+JKgoEb9pn98Ui
/Ssh5NOL9OePpz8DT3/UhhIe/I4FqTrcSQ44LnhcF2JqqAVEkP6TF/Ixk2jW
hTJr2cwBFnX0XjypZOz8HpM6yvfy9rW9VzODOurPunX+TtgfWnXUn7RRNP5F
MZU66u/5YFkjo4hMHfXPnLzIwPoWGb99f8t7ITeG+dww8G3Lf+1ejRJcSnv+
r9cOAwL8meqmHcqwmev5/SQOA7eKzhQ3jarBd8tmwbtHEXmdu012hA4Djx0J
2eM8GKCKGFFpAA14HLVeM+6PnIcf7F20bI+D/1aH5IQtFnDmTNxEn47Ddf8/
KYcR+fsclnqsJtMZLmU3Ktc7Y+EOq7rpzEkXcBl2+hzshwVnU4FU1qcu0Boe
Qmr4Tw34jEVk8rBeQHGyQMaeGQNCl1pUXtR5QYE3nuS4IAbGciVjMpS8YcK5
N7UAkV8Dcrh9bUq9If7y8Z4aOQyc7JdUk0bWt45SVO78VeR84Qkri/YzA3Wv
5xw1Ywf80+G7SU+HWg/4o0lTyBJkBg74n/G/89udxg74m/f5MyVGnemjz3qA
3F1v6R9CGHR8aIOUXNvpsDCNL2FYzjQHJ01VcQ32/fsoc0ibt4qKReT36pTb
fibpBJQP/R3pzle5iwQ45SUUsCOJRf0fPDSW56bisSif+dv86JDvf9Sg9d6N
unAFL4hciLlx868aGh9ZLdPpXcV4wGcc3FM3Hst/wEd8y/65h5rEAZ9wKg21
72/ZAz5gfSHf2Vn5Az7flGSPwXPHhFH7/C32YoYOfWGY4+C+imMgAtP3K0f0
e4RQe/0Zb6WeuMdCoEsuWUmrzQkv7szGPdZXQe33b5JzmeRABVgY71zVjxWB
z/KUO5sFsqg9/8LtUO75PFloZ0zxph+RBKpGZRVZLhW0nEt02fgNowpYWI5o
/luSAsnZhvBcUhXw/5TnLZgig96ncwY0bzOYq6L+BSUVBs6T7VjInRnkEWNW
RvVNLcsO4w5iZaD3jJH5z7zd93ewfe0n+bQBh/qT5JiH5diK6KD+AtFPLq8u
zGij/9dE+o0lOV0b9b/4rT1z+5+9LjxPAbsJBTXUn1leZWgnk18NPPwKcIHZ
umAkrPD+3B9VkCF7g8nlPeCLWxeZtnDp1Ufv+z+bugSn2Oqj7TGwlMS8ajdE
63erXPnVwzJDtH705q/TTG4ZovX7UZDOJBtieJDfOPa8510LQ9TfJF1ZI7dd
whD1l2ur0FIr3jGAz3+bf+/8UkH9n19/3XULQPbVjO5ci+RDhqj/RV80T/sN
ExPUH+F+ZesD8RpjtL5aZI+sQ4jwaH0JIg50M5R4tL6f2nzJohjwaH31g/X6
qFnxaH0vHrcQP8KOR+tbL/3hTyUbHq1vtmWx0jYTHh0/ZvkEhQvUeNT/5Hkp
b2buX1PUnyRx7Yl61HdTtL8DErNEKEZN0f62ar8+9qnOFPVfuJrQfEX/uina
nrww78ABMQLantGmmQ9BmAN/ONP6OzjhYwS0PQ5bvRPTDgT0ewpssUeWdwio
P9zsWw+lxxQW6Pw5lXiO2pndAvXfqv0w8SRfxALt75jcEdF3chZof7e+uc66
p2aB+kvxPsF8StSwQOu75hN10+6LJVpfloSWN4WHrND+q7TRvH+nygrtv5sJ
YUw/J6zQ/rvac+GdEKk1Wn/G0VPkV19Yo9/3/P1Yp2jYBq3f1gQmLaXLBh0/
F/8gW5tsW7R+pXxkr7DRtuj3Q49nV7y7bYf2/3u+qmO4S/ZofQtDhbPJCA5o
fzWQSwz64B3Q75OrCvNKKDii9Z973l9Oqe2EjvfgX4p7MQIH/N00o24KA4PI
efPBio//z0G+5BtXd20UJZD9xEhWrPePC7jZ9XVH8qui/hgRjCfLxTGqENqk
65Dj7QYrCpvOD6fkUf8K8ZOxBdo8CiBxpjx9+70bxHx6UKwhpoba77SsUjgM
VJFzNebRk5Bed7ClEFKsp+ZA7XMiNSmXXt7ngFm6lrjmbE/YsViybl05yG98
g4rM+fWGEtAz+iclX/MEHc38ihxyZZgUizLLLvOEv+f769lllVH7Xj6tkd13
NWX4HjW1dIrOC8SWh9VelfKg9qfV5NZB8g0eiGUmnV2N9QJv41Rns7/SaHk9
cRn7HwEZYEzJbG5O8gLa04ns01oCqL1ovWe3vdNWAAzpWPbq5ryBcmTkYamv
AAxmJhnkbnhD6M3277r5Aqi9SFHjxh3WEgG4fHqeOsPdB26P2/pd5FBH7YPG
Px5WEbGpo/tzsWJL+zIiD+3b+wopmlzlEHltP/5l6+fAl0JE/tmPL7nq+vie
7CF1dL9ljtRUKdrAwqiAY4NZsD7Qy35Ib1nCgn16P68ZIPvjAnkj9WcsnH13
04yY+hgcftcV0oOc/0Ivp80d94zBkd728/AbLKTuXr2b1W6M8qNjxv/IlncS
YJnZTFl5QQ3N33F/Z+pDY5carC3ZxJ1tIcAVydg2KkS/NRx59rqf4A7fyD5r
Xu9E9EcCGdOAhjuQMOWx9gxhgbi5tSS+3R34GPgYbiD/18thb/+i1h0aayJY
lhF9Wf1is9GGsgcQxWxfS0ew3A/YHZT3AIIRbYsNUv+vEjsG74s8wJOC4brY
Vyz0DMz5kgl5AjV9ZtX6MhbOl94Tasr0BEwsPfkkou8n7o7aUDN6wcZ6gck2
0j//Csgb/1z2gsOJDo/tEH1N48TPMzl/vCCjtPcJPaJvtY/YZK+e84aUqhFa
YUQ/Egq+nflz0Rs08OyqWQgeaZI2bHL1gWUPx3pmRL8LbvokoZWiBylKjUnc
iPzpkyB8M+K0HnAdDSEXR/CI2gMlRgRzV9ynePXhgD/6Qu9XcO8+4I82I2Wc
se074I8+KjbR8evdAX/02IZ6+drUAX+0xPJevq+9MDCmP36bXHkfN3Dyqq2R
iTDUNV07QmG4i7t68fpc0BF5VJ4hGTKbztSVB+xNryXQ/IKbTExMNFaUB81Q
Lb9xWgowjFBwEA9SQZ93NTQWnT2jAm1GE2ccv7Xh+rqcWPyQ8jOE41U693Zx
BOo8FfwpFRA4cU7qGDMdlIj1ZZEh5WfnY/d42f7h3K7/rE3LxKDfM5V0jjx9
FwOCR8NwhPFpXKbJuaeyCE61C6b607SFe68T/34Ged7tENsPuVoq6Ouy+1GS
hYEaTq/q0hASyHGMeHb+rxAsj+i1vnFnAp1jNvGOK0KQUK2obDXPDH33M0lJ
9+RQ+Ww2oFzmDqs81Gh6aWQyMgMVRcrHEEZ5IDUfJlHqZYZPcQ8mR17LgW+q
t+OV3zwg/5f/d9KyHExirfdIjnHChZPUj3JuYdDvaX1dHlm4gwE+gu9KQwQj
cEZ5CkdnYOBO7t2pdmtWSK6S8/idhoHSY/bvhT7xgK9AMYX4bQzQtpEdHy3h
gAneE+7VliowKJD99v51fviZ3vVJ0FgFhsPl/YLihcAMaz1x5xoGlR+FZN7m
+t7EwI/+CYXnr/nBr+3l6rHrGOBsePag+bkQdGQHmjsmIfKvJ53q+9ticM2h
cbMEeX9J71tW9bowfAX6KYUfsrCoaqQ1b34Y2hviC9vFVaD5aNzS3anDwI8t
sjCKxaDy5s13lsVrlzHQ4YzLGgsWhzLBmx+5L2LgbwsTTUSIJHCePONzJgwD
EaLiLuAuC1+7pR8rIu/b4+KyytYk4YUtT3L3pDLqn6KX4hcR2aoMQtT2p4aG
FYG15MbttduUwDZ7+6rPP1WgJfZcx/nTwHT8039Cl1XR8y08YYgLh7w3lvRl
aOgEC1wiHSinPq4Mave4ValO9OCmeN7exP9H7+7sr6FSGsatfPa0YtrCouen
p+Zc4qWXGFD7cDnrRPhf3O5pzxuHPTHAXf7RlQiUYW+3idMnWQ2yui5X6yDn
h2zHD58jiN6wLx95sff909TVBPkrN0682RMD0qtbw6cbNMClX+vnqXA+mKwR
33x+CNDz3P9l0apxlBYM49PDVXwFwVVIN0CKHQdtcwX6rETCMDU/etqbVgvs
0rzTwvqFgOHf0MuHilpALbzyXGxEDd3f2+o/Yx1/qMGr18kinYFH4dFnXRho
R/TDw7w/omQAbuVsXRY+s44L+I4b/HZUB5wTcDj7mm2cmPqbhjwpHWDzYLQq
lCGBhzXZ5nc3tKHOuzbQOJ4Edt8v7k6vaUM5PYRJplFBgXrnJbWn2mh/uxf6
fH6uqQ2tgV/begMYIWfcMUHcVxusKFjiJEtYgJ/3fU8LnzYqjwpo8HmzjgFc
p64luNqzwR+lqzOamwDGqw82dK+zQVObv2vLCsCdbHK5QQwnWPJdeCj2GMD7
pN8zOVIOEMHXsbW+BBig4QvZ/SEDm+QG56Xv68JflXnmx45q8DVMvmYzUQe0
Ui3ureupQV2+D4vDtg7o8ViSPY0WhTSLUiaXHX1wseXETCqJQdemumT4iD4w
XLGqiZ0UB0ru8c2UKH1U/pk6ZYg7+VoP4nmTzI9flQBFJgqZIWZ9mIzxtCqn
kIKpIws9tx/rQV5pjgntISkg03lT1VykB9n3Q4/V7z7GvcGHBDH1G8KukRZ+
p+IDzj51PIer0xBct8QTc1+u4wLD4/5W1BkCU3enxOfX27i3vJ1F2EpDWMhJ
EngTRQx6bYtaPTmG8NW9/tJbCVK4d7fL5lmmIRzJ3OPrlaGG+WMvijMuGIKe
ScEdv3FqSDl3nEEz2hDW875P2mswQaAqJsHLGdFX2onCFv+wQlSv74U+rCGw
6z57YV/LCUnvonab6A1ReVDQ5ZbHpRYDeBkbn0T7jhfOM1QLb40ZgL9d5gmP
XQE4tFDQe7TIAJ2/A0Z3HI6EG4CSoXISd48gzCdoid5JMYDvizlikX+EYEgy
4biDuwHgF/8xunQIQcGIIMHupAGsi/UnTaipQuog0yWVAAOQHae+wSqnCkZn
fieSxBug8SjltyjshbuMgNX+gSBOVgWwOflU/O5GYPZ58cQzGwW4iw09ezLR
BOTH1qNmGhGsy1DH6GACLS8YWG/GKULgp1+CvN+NwY2d2zde/RWOxpGOueiP
KYhwxSSwPX6L+3yu3CcE0Xeu077/6Z2ygbu4+K/SiRwPUtVxnX9Nt3Cyv3cG
T1Hg4QuWYMc0RAwG8UMLgXR4eBsSe/bzKgkoia0EJ9Lj4bblJdPhWSrQzJNa
zGHGg/vflge/5Wmg+UXl5FUWPLwsumstTcQEZ+gd/91F9LHY0S7hriomKCGi
SFRE9DWeeFGCKCsbOGoXZZEh+O6on05qDxu84O+iEkNw/Dmz8Wk5Lmh6Y/nV
G/ke5vtLq7gRLuiytEs/hODRc6ORTwh80Poo0FkMqV8vI+fZ3Pd8cKg2aNeJ
Fnm/qc2Do1UQDC53UySQ4OFC/2qUw7IgTJw/y1JIjIfLz1lem7wXhoZxFq7k
H6bw+5iJesUXYVj+OcOhheCmn7xZShOiMEp3qiJryhSmctbnR7rEgetul1pX
uyl8lznr7lQsAZyliVkF9w/yKfyrDhN7bG8KFVQLPjtXpOCqd0e93XlTqBbv
SCe1kQHXimH5JW3Tg3h/hb969Wym0C+xzT01KwMLQwMaz+VMwSBDq2uEWw4c
oCrlJ7Ep5OVMLDzgkoPx6cFmGRJTUJz0zLqx144L9VUyuiFAgNPM7GVXD23i
PL9fzLqiRICgxFejtjvEICZsEV2vSwDK5IjaE6MkkPH4aHyNPgFOZB5PLb9O
BaSva4MVrQjAv6kYJF9CA+dnLjxYsyOg+xf5252s8Bjk+9aHbWnPs8KPj1OV
HecJoPn9Z0K6LjtQKkb6ZUYT4Iz5ezO8JCcQMTYVv79EgK3uk+JZxezgMz58
POQCAdUn8zkv2lrcIEBfMGGG6iMn5K1tZgsnEwBXUsNGzMANT5x1DQWvE0Bu
IoLh6SYP5Lxsfu6dQQCDn11xNmw8UC/2pL87jYCu3y31QkOeBwR4d5Ji67wx
HxCFmgy6ZROApPPiK9dJPpgeiYguyUXaz8NtwNgmAG6diuNrhQQQz8cOO18Q
AGurHMLKIwK6vr9nK4y+rCYA5xg3zfe3giCRduaCQgUB6F6m8d7eFAJ+daIM
ykYCqj/aX7v3xKSLAFeftvIoNArDEd/qo+GtBGjs/xVMKykKd7Ypf671E9Dz
kqDxRCt1lADFTZxrdXmiENIWHV0wSIBVnrcPLjqJw0IUQdZ7moDquy/6k2ZD
/8NvVDAQUXBZHOQlyX7mzRCgjfUD9cJ1CeBI9WR3XSNA+s8lrpFWKdCMOcVR
SWwBT/CuSSIrMtDS/evDWyYLWPDa0BnglIdcH4UlgqAFTP1Lowm/qgCvjpWG
tkpbgOaLDO3QPAVYF7Zr75axgPLjCuQblxXBvrHY75KKBWSlWnbulisCx9kP
JtRqFsCXQJ8ddlkJkl6s4B+rW4DD7h86w0YlqLqnZn1XwwLqGFkKJ9pbcPmH
aLIiJiyh9ffW0CPMJm7URjoas2cJbmeYximebOKYE6RSuP5YovYQnexX320N
rOBi7d88/2RKeHijzy5L1Qp6zL+cTCGnhQWMBemOrhXw2sxHNmcwgFLdJ9kv
FlYgWEkU/ciMDq713Io8fcwKPa+jjuxWsp+wAk7c7PtHNEygRX7JosjZCoj8
rIrPpDFBGnXXNJ2HFbz4J11NfZYFqj0q7O3OWqHzv3TVvI0jxQpkOaf8G/jY
oC5WbObQRSt4Z7xuVmnICYckMyrrcqzg+/LNLrwkHyx8TvTu7rcCqhSrs9mV
glD/vuZv1JYVYJrrOC/QCoE502Qn0R8rdD5gPnrvhTlZw9eLJ8U234iCim0r
vaOZNfBORciO7YlCUpH2jIiFNeRm/iUS5hSH5i4jSip/a3R+LA886ZZPsQZr
Zf/rG+XisKh/y38u3BooJX2uMDyVgDWJn1nipdbwslTnc8bpPhzHlUifnS4b
qPx4UarixzvcL/VXT07026D70eQGuZ8IxgaO7p2wzHgmA3Xar0tu89rANzfv
kVfHZEGAJF/klKwN/OakxzkLysFWlfRlSiMb1B6l3/pe1j3CBlKWRwt0PstB
aCJLYZ2bDbSyMFx1vKwAPHFEgZVlB/kt3Lu+uYOyLehNf7+av04MKatLnkKi
tnDHw1/T5xEJ6NI7hppK2EIXd/eIjRAFhD7etPiha4vOl4WPJ/mMfWxhhE+R
6pszFaSvtbWPEWxhdH02om2IEdiPDq5FJdqi+4/T+RppDyY7iMsQ67q3yAnM
8heqiH7ZwrX1/ge8U1zAQ9O6ykhhB+rL5kcPlfPAdCPD+piwHbrf6PzeHlAn
2MFkx6qyKxsfdL46XV6LtQPzdwKTE2WCUKZuwPU2xg4dX64dc/ciOXvYdbyG
He8ThRuFIXM0bPaQzftAIqRbHOjIeBXnfOxRe5lbK7VVA70D2IXTC/6k6MdV
bKdebdu1B6eQ0lNxWWu4oWtVeFsFB7T9nwaqd459coC/DzqMrXupYFhT8xa+
xwFSoWKg/xs1KJ48Qnd3yAEYFU4mN4wxwGun1+XSRI5of5iU/naUn3EE9rac
CsmLXLDBNlYf1+MIN6MuRGvHc8GPOEvhpwg+qt9q1rbGC2Rkrj+mOJxQe57D
0wyqxS+O8Lc6HPs2QAEuO1UsFj90hMexHDnh2QqQ8Zr2zKEXjkCgpQznbMOg
8aEMZ9wbPPMxoKmWpiJV5Qj3//0SJa/AQGep3NsjQ45AtThFM/sZA/iHch+e
eDgdxAOSLd3if+0MD5eONtXmd+PumujgWSud0fmU9tXNZeaWCww0js+sBhHD
XJTNbmigC5itkX8xfUYCHf9oL3TEuKD7g7KSgZ5HpCuwhR//FxzJCHSuk95B
Oq5A7jC9457HBIY+x5hdvFzR/jrv8t3ws4EbkHodMsec5AK2R48OnVJyg+o2
Y7ov06qof94mQemOf6cq3KL88EaUyR3VtwQYnPmoC9zBL5v6vJjbBs5SOZsw
l+QOqxkPscJZm7jaOR7HrevucMxDXS2MBtFntrJVDl9wR9Z5+9jjd4qofx93
XCKjfakiWBvFs5b9cQett66DqjfUUH+/ay3KotWRakDIV6vfdfcAK+63p0uu
qcG2ZGnPkRQP0PhEosiQpwY8p2TeNrd6wMO0B91VGWpAd9wu8muRB0zd0lNL
95NE/QXt0s8/KGOWBLrbbl+7lz1gYvTYpdP5Smi5miN11dJFJThOSzLTPOsB
vDsd9Cw3laB1/vKOz44HaN0G5eQ2JWDW7iur1PAEycIvuQH1auj7TaufH3wq
V4O9cJP5GyseUDIWNG5WqQbQUmzW9sMDHCdNjWw61BD9snPpqpIndH8JWXIZ
V0Ptn4yaqzQXX6tBNrN0T52DJ5RubIwYf1GDL89v57vVe8KlOirnNDNp1P45
0fqsxYBDGuIefqBWmvAE35gwzwB+ZTDMcyKPmfQEgdKj+Y821NDnqQKX3Hy+
qoGk16uC7E5PRB6NkbkzzQ2wt6VMrOUFtNNCzERN0jCnd+nlLQQPvZKpJbqs
jPrneVAXDuNClYGoaWOxt8oLNG1/K1rEKYN1Ke5J5qgXMPkN2TfcQMq5tk7N
UXuDr86zMZOrylCkST55e9sLigSfhWaE8aP+e2byA46urPzAsqlMWynnDeKG
2Z2z32TQcrajmypxPTKgerI42ELaG9QFJ2pap2Ug/egm05KRN2z2DLIVEMuC
Uasr9XikNzDGGd0Q3ZWB7t8TfPVnvMEhp/sU/wNl9HsPs3cO1d9TBrNHQ4Ot
//HPeP3+ml2OMlSRBYTs4bxhLW4n7UGRMry8u9liE+4NlSM2G/K/+MGdwzDe
NM8bmuxmF7xkZFH7MD3DwOUafln4LqmAY630hsNWr2lfachC05crTzK2vCFv
M8+gqEYZfb6+Z+F5XaUycJz5bf221Bt4j2GFRRuVYaKdw4yw7Q3Je4+Zz94U
gKPvZrJ/i/lA1N0+3LapLGpfTrlAtNigLwtfvXeWJnh9ILer7umcuSxs3V0K
5Q3yga94xkdTLcro8xY/vkvINyvDYGkLiRqfD4SkZHMYtSLtj/ZqzQ/0AaX8
tahr9sIHeUT+J3+bTH/sB+Y+BtB7F35L9pQKGm+Um/Ex/Axq36ODFUq+OdYO
OTT+6ENMmi8mDYPiPXUy7keJGDQeae6SE3dAGAaNR9I/E7D8nZ0dPIujozRp
lND8Yv3vrV4NuCoB2fkjEz80Of7H/q2I5jNf11Yge7mrhMYjK82U37xOqgam
XceJMh3o4e2wufttYlUwyT39jx6HyFeKBdz4URXAF95+PRKpDL3aP42rrqmA
VKvVi/7H8ziMYBnD9wwsDDx58XO4aAlXEZs3HBqEhQXtY3ZyuofhtksYJtpW
HRxEb9NcWhVH78P385U9Gjk5zVipDl8sh2qiGg7/t79fPxaatm5ldOBE4PS7
G8tOIkfRfKh2nSmOFaeOovHqv5aFmBaFAaarrZiSmPn++3dmgKFuzEaEETfs
9MhdsTwFwMS+RdRtwYX6Q+zngxe5VZ1sHwewrCKh2UAlAK2FGqbX7+FQez6L
bJVy5U044EfqajeQ0dGBV3MWQ2njv3GZExTVctw6aHz5eIFRNhupDrC7TZ+X
oyeH1Q/pnUND2pA4+8TP5B85mN5envv6Uhv8X54MHKSng3Nvidc3r2sD9SQN
JW2yGvwRyO5vuquNxivXtH4cHe/WhedEBfLThf+5b/mPX7gumMWrrl+Il4aZ
CIfmAmk9NH/fYgJNMKW1HrD/u9es/VAWhPVkPHKsdFH+qPwUW9vzu/pQcEUq
5lC/GHwb/zAVXqcPNern3XdPiaP5xFT3nCJnnyDjF3U/ictUH26RPbW/nqkK
R6wm8SH++rBazPGSpUoV5dPaz8/7ZKJYbktCH46kOA4fvvAZxzv3kdH3hSHa
f3UrW/86Ggyhg+xjSo3jb5w0c2zBWLEh2n9JAWs8efmGIFRz5tP9ITKgaaTI
8k41ROdrfYd6JdllQ9gqLq4avk4PemtnVTUDDSEii2nrDp4BzVeeoMfRd4OP
BRat5uqaTQwh3C+M51MdC5T33uoN1zcEngCZPY337PA2V/h8pKghkLdcfquk
zgmKrvPnj7AaAvfcTXuOa9xAQqsvG7pjAI9LyL+y1aqA8Ta1t/8FQxhpii/6
Ha2C5l/cz9+X9IllYi/dEOUHcXP+LZXOZgiiCXQF11pV0Prt81Pdc+gXm08y
gSuvFa44USlCe3ed7W8FE2gTf5Q1hVVE85s/f+cVN/NZET54B+w6VhjDk9f3
w1WYFnDxT1+zK5Pg0f49y355YPQQHiQFiP4M3d7FeUmUf+CjxqP9O8meddaL
Fg+BvyQKCBNksPqy0cmQEY/2L6P1VxFyZjw09Cmxd67Rga9qsrYfK/6A729U
+Mo5NjxEZA8UulOxQOpzyQhJdjwa728jdVbIBsEbNXHmGYIcUGNUmSeAPL/P
n/b84/tCfeR7nKNRe5I4HnDY6svpRP5/fz1jKVI8O+jxIDLjX33bRwDGZKT6
AinxKN+Wg6ztnDIZHkgzbxO5vhIC5R1mLr1dU/QegEnE6fzotinIs02rqn0U
gfySM+dzvpqChVdohdKyCLDJdd8nR/AhEa72c2/E4NLeC2KKIVOg3A54tcgq
DvhqH/3eV6YQHVHVp9h4GD63E/2trDKFNx0Y94dGEjD19bbXg8emEHS13F88
SxJuZZgknL32/8k3X9p5fnXRDEp5738vuYj97/yDHWZQNdcoZ7+Jgdn/ug82
B0678QUyr3nckptUF60kAdiXPglyHP+Gi73R0swoTYCEI5wbEzZ7uKiu5MKL
mgR0/CQPHRZXAQJ8qA9S5ewgA8+wHzw/TAjo+CU+vCG4QSAAmXRIRfYjDAgY
BhcbixNgTXnamaIXA8L/db1kjuYLfHd4qqeGkQBOMnzvvlBi4Bb5iDM+mwBx
tyS/PHwsCXP+becP/yLAC6u2u8G2UlDrbvNV5y8ByC9wJLqMScN4CXPpdyoL
0DBlzJnSlgHBNw+7y2gt4MeYIBnxITmI+EA9c5zLAoLMdx6ryskBaSnbJ3Vu
C6Cro5TvpleA5yLHdv3FLdD18KyuMSNB0gJqC3o83lAqQmADw3K0ggXKrzFN
9EXZUdkCdvroBVnJlYB1nv7TY4wF6id3F9+5HqJuAQUa39suUCLn+aW8VVkN
C5Qv4oou0d3XSPkbppT3ehfmcZHHP5gJLFmCSLAk9VGKb7heH2yQ14olSAqZ
cMb0/cAR/kv+s4RPxBXjDXXcsHjkor1djRWEKst/lzrMC0kfdtq+vLACOuLp
jzdzBWD9rxLD4KwVZI2xRro/FAB3VYUB8jkrdP6yFoc5KqxYweKntDKLKgEw
/S/50AqVIzacqSSLV+zBPKjgVmt1EW4/fyavYglX1/8r68rjoVzft68lypoo
FaeQaOwzjCFyWRrZwzCWYTZJkVOhyHJEJWUvHYpsUXTSgnYpWiyJkoo6ISlt
U8lSqH46fXr/6Pfn8y7/PO973/d1PfdyZZkQ+km//K2MwMUu/xMH8xtu95ft
NyTyn7/0PuMz1ll4vOMCeWEzDLZRiXzo7Rti9pbtWsR8j1/6spFRozlXB3nI
scyYGR1JJu7bhEs29ZdRiXVPwqlLUi9JxHytX/GHfXD1unn3+MQ8IgXvAqUm
4UDcyV173+MLlai3v9QmejYsgkLUoxlN/WXaWadD1KM9Uhyo6c6hEOuHlKc9
e+V0ifq0X/rcM5VEh/UK1iAmLWTXQl9p7LblRUay3Ah/deSj9vBFvhsSzHdE
yK+btAzznj/LYBaDsKflD5YVZCkwcHuuEcsqXRUic9TLnMQ9CX9yc+pmyiYl
T3y1m2g1sFOHdQ1PbFLbE34uW+YlipAgeVjn1Is7nrjRbm7nOoOEPvGhQP12
T2KeyVaLELeZ/3oiR1djbHAWidCv5Siar3Gxf2757YKT26xuL8J/r5LY1ljw
2gsLFKVacxrGLfm+vaKyQkxIbvJdbPjNAMkKek8z7noR9vBxocH4LoEXZKoL
Jt/UTceLMX7IQjkmTm5bs/a1EhlX/zMrJurohecYjDnYJ5vVa17BJPx1aNXU
WvJ5Jv5ccFxo9wwKtiwMszZMY4I+K+uYog4FGV+LrjXmMwn7yYqkR1jUMmGY
ntZ2BhRCb1e0ahe/5REFX5JfhYS9ZWLQ9M0Lw1pVMC8mOOiXeBP7yZdb5Hb2
gjeaXvZXd1mrQ76uwNmnxxvf5TW9ZZs0QdrynvEy24eY78g5aV3kUe2DiPFL
9frmy8DsexqV+sAHjvkFl640LyP0ZWvn9PbPk52y1P0a1d3G9sWo92Tu6Z4p
y/gGurcy35f43mPJSrcZ4b7Yvk4441THV8tf+r/dlJAMjpQOFh3dfrUy2JfA
Xzy19q7tu3wRs2hJEmWtLqIiJq6cOeeL+qaQWW+/6xL6tV7fr5W3ic1Bg0zu
JSsLP3Q52M2NypwDzqJja1VW+RH7PWr0xC7cxw+hLwL3NMgqEHrDT4VW7ZnJ
N4F1xJNZu0h+xPzN4deVb58z/FBzYqNF7xYT4vm7Ct1+XqsWoTunJSbNjUX4
l7wFS8VPR7BQcfv77glJVdz1HImvO8gC16PmgU+8Kkp+/GVnWFgS/Tjx8E11
sFREfNOp/gQ+jFSznV3u749XQkHa6Uoa6G5ZbXYgxZ84z8o8ctAhqNAfIm41
16KCNQj9XV5Cgq7Kq2XwD1jmLDkcAJst11IDZpIwOj9e4/5UAGEPp12Wx3Zo
seFhl6pyR4YExR/+41sAQtY9t6DrauMN/+Kd7EA2kU8JjHrvlrubDSdGW4gj
U5uod03ckF1t426I2oanxRWnuGjT7LvhPs1z/sNXrVzcJQ1qDvCpOLbP/9FM
Eo+YP3tvpfc9PyceJvV06gc2UH/yCvBg32MsOGOvBaEka6vNR3jE/5ewQ0fC
5CwPivLqgX7T61/9Sz8blzSxcX9hp9QeHkoGj39qcSRj59sVmuLFPCIe+WxL
27tr+vlhtc60m/5k4v0Rrcx+jW0kZJks3vd9Fx8s+urrfVUkon/JzVDPeTVn
mm9e2g2fjYGIdHxTErueQvQfHZs8qRCZogO3uHO3018Eolz08OaOUh2i3+hX
PbJvp7WWebQ9qLkFrrtu0wg8aX38cwz/Fu0nD/Pk4uLdct3YezRi/6gbO80f
PqYR+yP0R0vjvP+ZIuAzVlKptshZaKhnLGSKK1lv/yoLs0XxH+puAp4R3gwo
nA+6qIizPgI7Q+dFEJM8cEZ+lSY2L3FfGZCgB+EqWcGbcVUcejK+2ExiIRZ0
tukFOOjhfcX+Yt5nCu77slg7h3RxI+7d47F4HQxXnHwus8YAje7z1pcf1kZ5
5zi3Oo6Mj/QLJyT+NMHrA4L9n4MMMLLfrZ4eIob6D6lLX8ZTcVCb/aFwGp8d
qrJc2EuhIqEw/MbwVi2oN946/eSBCW6ONbHUvxli2HITaH0WSJfz0FB2WAzN
pXZDQVqWcL3wZ2rzpAHkrCdTY1sBnwPxQVHcPsvo4nSnewHWONngL/XRSg7N
n2+Jfl9vhbKAsX5VNz2wph62zBezgU9mqpTx6HR8/ifhnLiFLdznJ6+Zm6CO
U8drs/hL6PCuDO8ZjdSCoP/Y3gqllTiyepBVxlZGrzaN1fiUDp0q54dGw2QM
zZkhEvHAHllL5Dmkdn3sfqViUl/riG8tmzZvBBleSTc0ToQ6YC97rDdwJwlK
h198H4t0gp8+j7siSh6c53WzJDe4odddYYq9jor6buf+/l43WJwOk3zVJ4p/
NFRyzixloDTmeM2JI0p4raB+aKSIgX12Ay2vKrVR/954SuSrJxJOaM/OzJ+L
klj/I/YPmdgk5ZakH0VGMSnYP9uDieygZzTVaT5klWfeWmTjDRuX9s/N84yh
LCS9KaXUG2yBh0ToUWOQI8ISA6R9IJN5z2+IRIXMghIvtUQfBLdmHgqvEUVr
6LvudXm+qMs1/5R0jARv4U0vq1V8kTP7ivaSYiqesKTDOoV9of3s1GKzmSY4
KzlsgExf6D0b3VCZLIePYk2arZJ+mHmrWZKaMRfr9jfqV+/yw+RU9YjseT2w
L4lFUafvy8cX1q78pg859jXKTv40ntp67Z+RUDU057UfFXrJwh4GJ71kzoSl
nEaFwg6TAAQfV//iWaqJGHpRxgezAPw1Q3p7f5c0Or0DC+UU2agsP25u8FgL
lOomm9q8AJCrrqZU9M5Fj7TCkPQMDvbO3VhVsMcI54XXZ7hkstE3IPMmkrEY
gnzu6fUNHGgeq1QRbFVFBXu2Mn+Mg9CjlTF7thujOPpL9akLHFhtnrh2vm7Q
Uuabk/VmNhdDFfedXmepIZ3BuB+nw4XpfMmbL4vVkRfHsH4UyEVQGtdxf4oB
Ji8Hb3q6iAuLKxqpNh8NMBjpNasxiAtZm5X5ukJUZO/oNrkTwoV2oaqAd3QJ
fMJyhDMLubjPO6vWXawBkYCi6IYnXFgVbVNozVwKxcIEp1RlHpTMlivu/m6I
DaLyvFZnHsQ/R43va1uGuCL3vXQaH3EuNhUd5PmgSqyRkR3kw//CAqWJIwvQ
v/Z2xLhBIGxZy6+RjmhjbdLwbUn9aTxYZST9ar4KwhNuOK7uCsSQ4yFzmSd/
YDhb3/xm2hpCz91q5Zk4spE7gX+3rL7z+NA03zih2DtDwFBFi6uh9So7FbgG
dHW0py+GsHBK6nKKOiQPdfTY2KigJywtMWSUhHpx/QFlui601d8sNF+hg+ow
2onJchIiB5o/uoQa4XD7+47ETjJGx/Nr9iabwsoxIDwujIwvn9Ps7JqW492d
KeHkT1TsGSv+MOFnge6jumVJiYY4v7ZsdH+7JRzGttaV5utD4UDNXfhY43Vr
bmDTAQrkrSIzYrXskazvUWwgMEFYYcH2uCQWVPxcHLLqKAhPKd1atjkApdFh
f715boTIDwL32YocrOCNnH/upA9GSdbXLwc5yOXn2rXJnLA8tea6XJEhFyVa
NcE1HxRx+o9Xrq1MPmp3xvd7t5NRqaVjLFjNh1NIl83FPBp6/utPdybOK84+
vf7OVccdUZPLO0ozaZD7cf0VGyP1Lu8crhtiQuWT81QqC03mu1NoHWQ0C296
Ib3ZHztcHik+dqDAmDT0rkngj9t/D5REMnRR06pvw1bloDgv5Uq06x8Io7Ns
kzM5SOPdCqj30sO+pVOCOywOvsxwLb1QLAJ1R5u845+m+Um6eAlzjRRcVFeV
ZHF4aHCKTaoO10QDgrZIsnnIZJ5bYGIljwdXLp/sesBDa0NLfZGGAv69Xlox
oMj/GRd1jNGXbc6sW+SOw580MpyraD/rb9854W8nx1tW+TTQf+BvfQ4+vK1J
6i6n/eQt6zl4/mRLdvIpGhp/nP+WcRC4otc28ALtJy/q46DvGDe4oo6GdT1F
pJ6vHLRZxzK055jCXrUv5sMZClJvxWSYSJnCNriSvnacCnKBCJk8e3pNo55P
55igySplNnOmKUTM/3ff7LgZhK8UVVyXMYXH5ShGhMxymAznht4TM8WDw6Xl
tZwVKLSWmHdX0hRKj8TU/rm8ApymZ3qp0/H3zIXIrtlSVhg57whImKJ3x0b9
EmMrbCv5V81/iobXvX9+HRmyhqz4Fs4nEVOck943oiltg0VZcnnBYVogyX6a
MnvvhrMnKs3esLRwj23imFjqCeEUe9OLpgZo3haoZfe3F+yS3aWnROVAT0p5
0RzLhPbqiRQftcVIcd8vYIV646JUq+Ca01IcsqI8inX3QX5EtnmXzgfLhiOL
Dx/Q88VVf6+33SHKsOGqZVhLspD6oFn0JMUQ1u5R8yWWsHDOvqzjrTMZWVLx
70ymWMg1e19Hl3tn+ffdW8oVw/4YcR1NcuEtxWO3/G9Off54mxoToceQwM7B
xw/TmgKQGL1G7SBdARP5clplZ9loDi2jR9N10ORzuVHtLhvivALa5+cL8X2j
r24Gh4OPtvyjVnLfLBPUnwr8rnLR/W2J8sRcCcRWqpfMWMYD7dDBZzIr5aB2
42Zq+EHe/6uf/L2/5/d5Vb+fF/2uP/h7/vx3faXf9Yt+z2/+bu//B7QsTrM=

    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNVslOVFEQLRu6Hw3N+ISmaZrZiHFAw2A3hAQ1JkRlasAQEwyaIAIRo9Et
MiSujUaRjThEXThs1LjQ33DpD7jxA0yMdTyH0IvKrXtv3apzq07d91qv3syv
RMzsq0uRy8GoGeZpl7KEWdxl2/VT5WanXTZdv1FP/UNoViKbp75+ppx2IzGu
lWp9SOs4iz3MlxAvQR3rq0bbLZdZt8kF1HFuqMBnifCsGfV7Pna47aO42bLr
Ta4/dH3S9Y8hMa043iBBn/Adcf2sr3cF9IG48IN1rE27zVRsLw5wbvi4aLxT
NuCZu/XUv3mcHZdBP7NVZ3bYc3jFpUH5nFNOu417PT5m3PaH6/tc74xSh+1l
x348YHxgxByYduqI65bHPCGMwIRz6Rj9pOUT/tKK1SAbxAOOAZ+fdr3fx5k4
84V5dUD8bcbcDbueN8YGBuCJ17BWh2qZa9QEdaxymxz2Xf9TSl+YX4qzNvC1
bvSBfLYH3MN6RQ3zfMR9ZgJiAp4+X2tEnpT3MZdxCfZOGmNjPmG8T4tLq0vO
pVnzBeB0GXXJgh/ag79e+ZqQv6xsUSfUqDPgHZfFNWDfVk6mdCdgjKh3JhW7
X3GKXaKKk5Zts9b8+P/8ZnUGuAPEEe6Y5m1ai6s/VsVV8B34llXntDC3K9/A
Upwgdzdtr9+Qy66k2a8ys2NJ2kTF71iC803ZFmsdnAY3nvjY4md++tnmJOsO
PSf+wOegODgnPl9X7pFv+LqueqKnEWNJ+z3KU6rSrL6S986qX3HvZdUpr1pl
lONrLhdUt3XVGzHWtLegfM1rnhHf0QczKfIzUkNs0wU8RQ+i1s9SPPMy5LlJ
1TeneufFlxHhGBZf8ppfU+ydFGvzJiRnl5SHCd1tSTlaFP6GSuYC+exRjhDj
bUjMwH6/hv322OsS8/UHzokDtcxfvzg1r/uvimv5Ar5j3O2n8YKeGFO8UWHZ
7aEF3aelIAdRcbpJ/O4r4Huv6ppRPOzhXQRfu8XrNuHM6e2Ji/st8htoH/Ni
xYG/iOKlxRnkCzXdfXPTss0qdrPwYt4pbsK2SP4ahQW5QzzkPVW5t5aS/37N
B8QXvAXgzLkkvx/nk/RXJLzI30YBN9fFzeqQ39cJt68I2XsjSeZ3TTW7mOL7
/Lfa7EVIHoKPn0N+A774+C7kO/Dex08heTvrNq9D8g28w/cJvfTdx1chfcI3
+Ax90vZ6GPfFewD/wH1b3xvEhF/4L3He/d7PuO/EO2AbEP879C4draU9cGXL
+VZU6fvcrrjP69jjdzzOaJLf6bEkex7r+Af4B+O5rBk=
          "]], PolygonBox[CompressedData["
1:eJwlkksrhHEUxk/TeF/vzDvD+DPvUG6hRrnuTLJANu6UkmIxWTIu8QmUlJLc
yoJxCRvs7HwVX8CCrVLyO53Fqec558z/PM/zTmtxY74UE5E8FafenciAL5II
RarBlTUiffCVQOQI/EJvJCUyTK3lRGL02pkvMT8E79Bb9uyNXfBPRiQD/k2I
7DP/gzfBF9k/gHfViVyK3egGv/F+P7iC+ynwXCSSDG0nzf4kPA73qDTzZvhH
knvoWeVeD/wzaTf1ts/OSWA3751pVK1t8AdnntTbGL/fzJkm1dbI/JZ5B5qO
4YPcv4Z3wvfEMlhnP0HvNLAMnsBTkWnTnYC3LrIiQ55p6o0sU802oGYj86he
1ZN6O2O/4JmnFvgM5YeW6Q2zR2fa1ZN6u6oXaaiyG2VnGlWr9nS2hcYFzzLd
Bt8586aePGcaVItmnIF/1eKB/Tw73+ASvxlNWU9n+s3122vvlf1nZ7uagWYx
wXux0G6Ws5apZqu9cfVLJgXfPE3Dz7P231DP6v0f7lJCwQ==
          "]]}]}, 
      {RGBColor[0.6932942829180384, 0.5473558182779048, 0.41151390397150467`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmOtzlVcVxre1PWkCOSfnvEneg5QS7jDVVml1RgcLqC0CgVCSEEgoUARa
UUIJ9TbeZ1ou4vjBqe0YpJS7pOr0QilgKaPO0ALKpX9Aq1WsM2h11A9WEV0/
nucMzGTP3tl7v2uvvdbzrLX2GbNy/cL+G1JK59+T0nujv7MupcWFlLbFeHUx
pTXRzsf4QY8vxPhjseeH9SktL2huted/E21djH8d/eZou6I9HW1bJaXPR39D
RbL3xPg70bZE2+19/UV9+8cYr4j+gWgrYu+Y4Sl1Nab0p5hfW9D4XFLf7fnJ
pZQmRXsuxotiz/gYb4/x0Wg7rUNPWfM/ivGygr5h/+mkb89EPz/ktTfq3B7L
58zlRem5Nem+2OJzMf9iki5no73g+3P3I7bdS9xthGz6Uqb7cc+LtiH2e946
HvV3rK+P9kisnQy9xkU7FPO9MXfzMJ2zI0n2Ye4b9+ouS5fbQuaT9fLd+mjd
rEc7Zhtg5xMh778NITfGjZns9WL0XSFjbKw9FvNPWRfOOOT7cbevVlO6L2zy
q9i/NXy5JM76S7P07bfvVsbcwtizqiBbzrU9G4dLD3RY0Cg5r8f4NfvutHU8
ZlssDX36yvJLQ9z7VPTPJsleYPnjbZ/t1pMxdri/LP9i27ujLcb/0aZHW+L/
p9k22OhTIas3+pnRZiSNlxiH+B680q8wDkaF7FujzY7vHg2b9IU+T4Y92ota
W5eMX3/LXubhwMKYGx3jjeYIe/vBXszPizY/ZH46+llFraHjw/Ynd9jg/7nD
gP9vK0nmnILkD1j/94XNe8F04GJkjJfGeH6d9ET2pmh/Df/1hc/eadYadxko
iJ/cGcwfD9n/DszEXxoZ41uifbKg8zgXe32gRTHh/S3y1e+jvWV+/cH/V0KH
Dvsdv1702qjhwk4tflw0j/Ax+8EDdgGfjxr35809ONplnhIr3jZe0avNdoYv
Y0rCNXfibviFe3CfriR7MwYPd4UdBuu1B6x1GG/of+E6fp83R6bG/idif09B
uLochvp4kr5jrPMu+3uLcb7J/+/23Fb3/fb1shHSo6EiThND4HVnnNtRkI+X
1ovz/N+ei8tw+kAmezVEf2+TeMIafG2rE95H2ofcd0K0oFgabj+dus5vp+2r
OUV9B0e465Q63feeJt2T8/a3Km5tCU5Mr5PN4DP2w3b4kbh5T51sx/nVOtkM
veaYh6PMLTC6J9O4LhOONxSk47sN0nl8tIOZvt0e53fEno0FYQg8g2Xu0ZYL
w4+3au2MMQbewB34m9WkuLHMeQ1d0XNPq8bfjnsNlRW3icOvZMoZX4n5f5UV
U2+Pc3aM0L2eivWPBB/mcd9MeqP/W8YvmD3nOEOMBAvHjHts9a2q8P2N6L8W
rTPGX49+QS4dm0LmQzEeG7Zdk4sHcOCcOQUP4MObYag3osX10v6y/AYnJkeL
o1NcOU20/xvhSL2wR65eUy/9N7gmWOzYgA/X2j6T/B2yiL3EbmJ6v/MY9j5V
Uqwnlt+RKwc9EXbdlykuUiO8UpJfx5tD9PDobvsZnPaNEOZvqgj3t5kX073O
PXZl4vQW6o6qsPrTmPtyVTnpi9HfWFFsmNQie7AHnv4vdP8EcmJ+Zi5cpoqw
Qc4mp8ApOE8tcWvIbQvDrc7FUWyHjYoV7b8PX+WKxcujX5ErFj+QK9dMtP3g
FmfV8tAk+4fY+7Lt8uew3aVoU+wHfLTH9+S+V8qKS8SnWj0GTsmN5NIXjHn8
sdG8OOv1Wi1DX4uvhx3frjTIX/A0qyh+fyjsc2Pc/behz9hc2FxVL1yUhov/
YLkp9v88+jtif3Psb4q17lx5CWzBafQYMK/JUX3OU+g43+ubq+L2hZDxmRHC
ZEtFuGT8nySsseei5SEbmftaJWtTyKhWVDNObREnJhv/eUVceTB0K2SKTbsz
xWXiMTm322NiNJgBL/DoHefQ/qq49jv7iFoLTINl7PSmOXg4E1aoDd/wPPs/
mMvHU6Ovrwhj83J9w76SY+Y06zLZ81fxEPuaw7bVkF0fc/c2qi4aqGq8IfrV
0T4a4x2ZsAmma7UwY7D9s0xcgDfkxG7fF5mvllSDwuHXXLM9HPsGo/9eRTGa
WL0/+mHDxHn2TjL3qbfpT3mMf8AAPgTX3B3ukWsueQxmOfOQdWA8aN7C3x/H
Wd+tKBf+LfywqaI4TDxG35PWmfgLTsAO88jCPnCFumCnOc+ZD1UV4/A59RX5
kHtw39lF1WeznW/IO4Ot4skOyxqXCwM3ZarZajEMP10y5shD5KMftKrGm+Z9
4BJ8frOq/E1e/UmmGn+HOUluuWI+kmP4f0J811fUO4H8xHuHtwE1MfmfmEW8
AlOMF7meIn9T84OB+8vX3kLEC2IFuYWcgk70Y11jraqqHhydq8anvid/rYr/
R8d4VKZYgt7oTE5APhg7YN3Qhzx1q+s/+lGWz3qP9zzjnPK8Y9QY57bOst4t
6H9LJv5Tg5y1XOIfd2QPddi+6PdGW1iWn+jxO2udnsNei/yewhZL/Qb5bC4b
ED+Q0+lzuct+v8GGmRu8U9p8r7et/5DfM9T4Q6Vrb4UhvwvA1MGSOEesPeG4
8YWw85yw7yNVyWf8nDlx0m9DZOLH+a7rDrqmXZIrVhOzx5kLYJ7+VY/BRo9x
gg/xJfGafNXu+glcgmNwCq6JIVPsr9H2HZyBO3fmylXkLOozenIYWAHvx53L
yIG1GA//id/URawRM+HwZY/J/fQnPL/GNc/aXLEEu2CTnvg/482Ti7uLrPc/
m5WbHq+ofuaNROwgzhG3ieMdrm8GzBHiO9iDT/Bq0Dbv9bjzOhxRyz+drmEJ
niKT+nWz1/EJPu6yr2d7TDwg3s20H3kHgocZLbLJh1uUO/HJl6q6F7Gplpeu
fzdsSdfelOCIOWIBOhNHZ/ttuc5xbZtlHfQ7aJaxOc86bLD9eGtis06/LcHn
Zcef8Y5tYITcTP5dmcv3E7y+zbL4lhpzotew3ybbrcucwn7/aNbvCN+vCDPv
1n6vSKqLat9P99m8N+D+63H+Xc6h5FJ83uO3Ibp3+e3U6/vwRqamp7Y/k0k/
7so870f29Nov8PUx+wtfEcO7bJON1qv2+8Gg88LNmXSdYV3h6DzLmVuU3+HM
kH8faPc5ex1bFjpeYaM8k568RbDTPuMPzhb928pez/Mtc6yBmzm5MEuuXmyb
Tfd+zkM+vGn2+5a3WuYxPf8TR4567YhxNeSYzFkl68A7hhhCLuhz3AN79M94
P/H1gGNmk/VHTzi33zGfOhL/4btux1h4tdRy+jx3wPufzfQW4H1QzlTX8E76
e7N0Op5JJ2xy9XfJVsWNjlzv0wX+XYK6FezxBltX9Vs3+PeLTGu/JCfnivGN
Fd213TFzp3Mx778m6/ByJgzNMD52tqr2mBsybm/R7wyVTFiY6zf2kUy1Pb8B
LLGv+L7o3+t46xeNQXBH7XU1PkX/f4Fxj+g=
          "]], PolygonBox[CompressedData["
1:eJwtlNdvz2EUxk9EVf3a/vi9bb9fq9qKi8aKmXAjZmK1VLUUrVZrj9h7JFYk
EonQBqFordgxEyMxrrjiH8ANLgjBDWJ8HsfFSc55n/es9zznLaxbUba8jZk1
IG2RtJRZ73Sz2Rlm+9GLc80a0QdyloHdiMzHrsoy2xmbdcAeDFbD2QH01jyz
Ve3MZoHvAj/IWR3YCO48CmYfc8xmYo/hTiv2705m5eQdn21W0dnsMmfF6Z5z
Gf5DyP8TfDJnQ9EPEa8ebBrxt8SeU7kHgd/G9yKyi/uzOPtErtPYo8nVLWl2
gvi5KY+lHtTL5xzvtZQ7V7l7mPp/dDDrSYw94G2Qpegl1DcD/yR3mjL8ja6h
76aG2dTSNdNsbmR2g7MaYh3hTl/qrY0cW83ZGWKv5/494k3CZwN6BfhYYi0B
j/Ddxtl0sErkGXYlOSeSexQ+f3irdbH7liAPwcvxzyZ+RyQHuz31HlX/+MzB
dxP3p3C3DHkqHJlArgJyjoy8J/VWwtm54D7yVQ/q5QEyF71WZ2CTI+dCBWfZ
wWem2Y3HbsF+HryXBZzVglUh5eirxS9quxXc9xj2TfRLwXNrZprdS2QN9gp8
6vGdR758eitA8sEeB+dSEjugV4EH9Jf4z0SfHvlb6I07kq8I+3UCHfs771eH
XZruObrhvxi7iPvvwReh1yBdMp3D4nJD5LnfgUfEK8VOEO+aOBE5Z8Qd9ahe
Czl7lfCcbcH2xD575dyLPhE8I+EzmoDeSI5f8O030oRuKZ+NdmQf+lTuDMeu
JkYn4g3E/oB/MVcHoN8Jzn1xUty8h1xXbOa9lnzN1JSfdA6fATuJXZB0DlzA
7gVH43TfkXbYy2PfHe3gleCcEXe0w1/ZlUGRc1E1DEZPA3+T8J7Ve7/Id0c9
9Y98RpqVOCqu9kCA/u1YAfr22N9enN8R+5+iv0UzqAZfE3svevOTvM9K7HFZ
/obNef93JMv/hG/U15Tyv0c7qd18Aj41y3dAuzAg17mis82xc1BcVMxVsf8R
+iv0J51S7cRrQT9K/H749sn13dZMssHuB5+N3lxvL86Ku2+x88AXRM4dcWxh
5DukXVJMxdaOaFdeaPTYG2Pfbe3cF/rZGvtfpz9Cf0UqeC36c++inw++W5qp
Zhtj52T6TlRGzilxSzNuDs4ZcWcYMRtir1G19uB+Pdjx4Jhm2hP7bPDdFofE
JdWoWpVjBnj34L7aUe2q/nT97fqz9Hf9BYrtvNc=
          "]]}]}, 
      {RGBColor[0.7979841525395, 0.584147785237524, 0.3499709774208691], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmWmQVdURx+9jecOTGd7Mu/PefSiLyKLMAKKsoqVRYFxSqTImAiozbDOg
xqggjIMMIgxgFAbQsogxgGhwi1qJSVW2QkHMUuWSDzEaNGVS0Xwx7pqkkpRK
/j/7PyUf7tx+5/bp06dP97+7z4xaesNl1/dLkuQq/emvd6eeXXp26nmyIUkW
6fmj6FFZkszKJ8nANEluLyXJ/EKSvNuYJC/r9zdqxKP3YfE9rOeRJOYt9twJ
xfj9nmU+oafNv3m/r/cayd4q+pjo60RvFv0P0U2aO17PY6I31QdPkkuSicWQ
j+zKYPHrW1nvDfUx9x2xvSidLpZuDw1Nkkw6f110h/ZREX2p6HaN/0Y8F4j+
gehFes4W/bTG6sVzvujLxV8sxTjfFw6RPMl+Bt1Ft+pZIn0PJTHO/ll/i/Uf
oLlNmnul5s6TrIbaJFlfTZJnbadH9ZS13h7Zc3JZZyD+ceLfV0mSj2XfJRpf
K/5jkjdS4/Ml57+iS6JPkbyS+C8UvUTjt9XHuhtsp9ttz576sA/08nzYn3P5
URq6fdgY9t3psx8juW/JluP0fkM8reJZIfnT2Ifm3yWeA2no857m/l70JaKX
Do397LCsy2Wb3uN8otffDmhvJclfJPmPae5Yzd2vuQ9pvFHjS7LwlyftJ0+Y
RucfpmGfK8T/yzR0ukn2+Z3o2aIXa7xH88+SnbdmocO6+lj70nzQ25OwTY9t
wli3x+cNCZp5+BM81VzYdbNtu1JymyR/td79czE2IBd8+OjQ3Jd6v2L7s94m
nw/nhG/US/5G0cXB8X2refgND7J5bzT/n/Q8bd/DlzvzEQs75QMHRJ5QCrv1
xRax8a7eLyehxwdJxNpu8X2K35XCjtgTv/tqPuiuJGJ6hXyvS2NDRb8vnc4V
fVF9xAVnsSIfNn9d9I2yV0G6fOh1oAflwq+JryNem7EaPbfozL6i8ed0bt/O
B42eM6XzjGKsy1kiv4H4k60/kQ6z9D5fz39ED9LcFvGNIjaT0Av/RrcLshjP
lWI/n4v/Zr0vqon1wAd8eXpN+P5BPa/aTrvMj5//W/59jfZwn+SMUXxOIoak
e//BocNV+n1STeiGLgtFXyv+jfnwN3x7tXj+1Rj2vFdypmZhzylZ+D08j6aB
adgX/X9l327WmvP17pasRtltvPzuZNsQXAPfXhLvpHJgFFh1VPM/1vOR99R3
JtfnY/w1+9JH/tal/XytTvbR+5yawBzsgR/20zpvi342jfO5uxQ2hg+ey/S+
Wb9zudB3cSHs2qZvc/TMTQJrwXdibZHHWvAx7b9W+7ksizXPtsxWPbM9H7kn
6TkxFz7NvvO5iKlNjk10HGY+4nCEnuG5iJ/h/jZQz0h/wx+XFcJ/vyW/bdA+
yxp/sRgxn4memw8dFiaBuWAdmPe8eFLxVMTTK3stl91eSyPO8l4nsb7gAH42
0HotkIz1+YiNSbk4T9Y93W9kku+aixEvR/R+rhg+1m9w/EYfcsd485CPxhYj
96DzEfOPK8Y4uPCY+cHmpflYo2+syXLIpfgfvgc2v1AMu+Dn6MD67J3xz7DJ
kMDKKyTvPtlhteywvxR2AHc4q458yMRv0AWd4Md+2Bo7r5WMW/T05GMP4O7D
5n/c+qMH5wRmgc2sC1aTe+HBBm/pDK6RfTdkMTbW43ukW6d0e0C6/U08KzgD
8Tyo8R1a8+9pnDn6fC6Zk+WPa8S/XHxv6tvVet+axfrXWQd4XzI/+qxzvsD/
1g2Js2+wvThT6gN0BbvBkhV14Qenaq1r6gIzwM+VxtBd0u1aje8phb93DQnf
Ol38N2m8Q/xzNdai57x82BAecAHZHZbfbnpULmSzxgm5iHtoYn+V12WcMbAX
GvyFhpf3TI8jb7llpt4j/tBWEzpv0ry/pPH7xizy+UuOGWyKn9yZjzNfa52x
DbXUAec3zo0ch+9MsP9wpq3meXNw7H+i6GWsI5nfkcwdstutev9Z699dDZ/6
axr7Y598210N/n2y7STZc2VdyMCmq0TfkQ+7Ih+sv7ca4/eL/5jWzdVGXsAH
59sPu40jZdsWbD1qzH3lOAx+1d8Wu66e4Hh63rGGnV60rdpcO5Azqd16XN9+
bNlgODUftd8LrnPBd3Ixz2HjBLkO+xGX4B6YR7yXayMXUmsfdU1xyHIPeT6+
+IF1n1kbWDpdz9TawNRpeiYbtzJjHtjXh9k5Y/MI499A+zI+zbnjn+SzQcbm
gcZ24oH8eTyOM/8Mr1N1nLHG1Fz4Gn430ljfz3OIeWJ/r85wivEYHc+0jKGu
1xLTYNM81/fo9L7PkLjnfDlnfBj/Zd93Su4yyd9WDVzZlg8diVti4S6Nn6EY
eE/ndqbed2o8J/p7qnNP05nN0N43aXxdFrjTnQWG9eZDX/LsQftQt9ZfPyQw
C5r9s3fwaXs+9sQY35iLPuwdnaiLqCvA4/XmYS5xTczjs2u09kTp0Kn39Vlg
0w1ZnAe+A56PqY18T91Jzqcu6Odze8c+Rk9Fvv+D+8Iu1xw1zt/Y9OYsYq8r
i9qZuZwvcUgckxvXZoF3t2CTLNa+Nota+DbXyFdk4cdX6j1M6w0TvTSLWCaO
yatZGj0Xvdf3C1HnULsgY4Nr7MNp5MUHK1Hrnuvcz7ml/k0O7O96D59tNwb2
4Sz+Qo9HP0VfBf8R583T3E/RV9G+NutpSmI91n2gEv3SmiT674qxFV+nhqUu
p27aUg2s/W4p+qjVnrPL86hvqTkZp99Bd3p21gK7qGmphenV9hfiXFa7tlhj
XAVTG12jsSZ13O1at1V73FoNPIcm97VYrxZj20Hj9xzPa/Ve53oM32c/zBvg
2oL1Z5uX2mZGOfLMK7JhmoQ+E6hJ/P5CnvMe37iHoP4+z/ucY3l9c5BB7UZt
dJXnN/jbSdYF/albp7u/Hes6BRzg3LCL1Poiz2PfXvs9Poj/0MdBv219U9uQ
Ogpcp2a4pxB1PvPxx3rz48/Q9Hc91eDd7Z6lzWfA+XeZbvU5d9penfYBbNnP
9mRel/n2VGJ+If1yDjLKrlHwNfIZ+8aP6DUeLATWIW+h5dPLgkdg0acNkRvp
h36RRn1TSgMb7i8ENvw4DRsW08g35B3y0fRyyJ9WDl/Czz+zrq3Wndp8tnMV
+bFkHva2w779zSzwLE0jbyILn6R/TWpj/5wn8UWtS+yf4/4QLKS2YP4njdF7
/joN3AVPwVLulBbVRc8ywT6OHxcc88Q7MYts6mqwp2IduCe4zj3m3kLIJw+P
zcKP/tcQuZdvjM/Pgr/qO4x9hcjh9ENLnAPwRfIyeZq6/Vmvy70K9OEk6ubD
5iNG8FvOqezYxiepoRa6FgUbuEdq8Pe3zH9OXfSnYOE/NalF7+fTwI9dPity
CjZdbnwH58kjnH+Le0LuM9b4joKn033i5mqcKfdA/IaXeFqWBf9wrbWuGvY5
oxz1D7Y9Zvnz6mIN4mZBXcQOtsaW5KCOQmAc9RDzyj4X8BSa3I99+U69w96Q
d6vWvK0a8jdUA1NaHNNgyF2FwBHyAdjaZH/sO4devzkH7qToh+nj8aftrg2e
qgS9rxoxh/9g059Uwv/2a3xAGmfDnSu5vNf5/aeVyP/0LvgEvtF3jpwh+oAx
A4wD4HSbsZpchO7EM/sYakwktnd6H03GJ2ravcYN8AM++MFV9rDN9Q/59Y78
l70smAGuFB37P08jrvB/7nu6q4F595Six6X3JD5nleOO8Q3fR4KV6DE6Czvv
TV1vOad3uw6a4v6xx7XfI5Wo8ekDVrreJ165j2k9rqbkPdw15yaPUfdd7trv
iUrIpIdgb9QkE92/078R/13uX5Bxg/jmyM5PSc+bsqgLRmiPq0Q3CxdOSQNL
qIvwYernqa6RycPUScRQYxqYBLbRZyATbB5dirr7rHLEB3d/xBM2oF7EDu1Z
yOdumzgDi4ktfPwSy6fXxBbU1wuy6B24P75a9GittwLd09g7NqC2Zb/s+8RS
5GXyMzHHXOKO2CV2OFdsiWzsie2Zh/25F0aHxlLcmzb7Dqvv7gMbc6cG9pwq
HU5OYz7niR2x58xy1KQLXetzhtPdH9Cvr3bPjj9SRyKTfdAbjLTvUBeyHnfZ
+MOwUpxte02cL731KvfX9DvT3E9U3TPg+/dXI0dwN9CWRb7uMVZ8UU8kkVP7
4mNEGmcGti3OIo9Rx2WWBx8xSv4gTre5x5hsP0VP9knN2WS7PVCNc+fOAyyh
1kcWveyN7mfhZQ62Iw9yz0asPV6I/EueH5eGD4Er7BO/xCe5O2f/rDvWeRF8
Iq8ecw05rTb4sRH5iv7zdfv2NPv3IOtN7Z/at4/o/bM0+njurde5X6EveyaN
HN2p/V3sGKhNA+Pom6kxN/N/KPam8S1Z6Eh80D8tdw+G7mdZN3qadvcVF7rf
xW/RlzxBfMA7y/z0HB3u8ehRltmn2NN076vFNQF54VzXnbONq+ROsPKOUtSb
FJr46Ez3zNtLga8DS5GrsRk5qMtYQr+FjtQH5LSOavQh9JH8j4oe/rdp3MO0
+56H3nWKfbTR8YQ/k6+P+R6bWup11wrUMc3ewxznjWbXFkdt6767AH5vzGLv
p6aBPWAFGDPDZ43dxtgXyW//B6FGI5A=
          "]], PolygonBox[CompressedData["
1:eJwllltsVVUQhle1eCznFOlePd0bLdIW2mIbS0VaoRAFNAU0JlqCBQmFthx6
kVAptNzacpVLKQqC0lJ6AZWoRMUXLw/eMOqDl6ioiZpojL6YiDGixgcIfr/z
sJKZ9c/Mmr3WPzM7v6GtZt01zrkBVjprU+Tc/ZnODWY4Ny3p3BfeuTr0Fax9
YEdYrch1Med+ANscOleWcO7Adc69nONcCT5HiHMPNm3Y/oLN42Dd45xrmeBc
J3tzYnbGZuTtrIeQRzhvOr5dxCsn3kF8zhHvLfxnY18P/me2cz3YV8fMZ0dk
MRV7Rppz+YFzW/Gfhn8v/q/gvxObpdiOjzv3DPp28JaY5VRE7DP4z7yBXNC/
QS8nh5OcdZ5veEffDl5H/HrwN9CL8P+ZWJi5QuQ/yKmEeH3ofZx/EX0S+nL0
A+jn8UnhewH9PcnEayfeWPK9MbAzdFYpOZwG20jMEvLPB9+A/Dr4MuUKfgp8
OnsXOf9O9sqRl7BXTbwyYlzOcu5H7HeDbWWvGewRbJaSTw97ed7O0FkN6O+i
Pwye5Ly16LXIy8Frx9mZ57zFUKw88plIvt3cZxb2v3JeF3Ij+FrwLuw/x36I
vU7uu4kzf/KWs3J/FvvX0Ds541b892P/Eu9RQMwKYlextwfsN+6vlvu/C3wU
+1b2poB1oq9BbmMVo+9CP4v/Ld58Z7F2h5aDcjlNjEoe6VVvXEwDXwTewMpN
GKfFbXFMXFPOJ8n9MPmswreC/N8E3xIZ98TZt9EH0DdkGse2hMZ5cb+dvf7I
OCfubUQ/gT7I6sg0Tm/DfjQwTHvCPibmgphxVFxVzan25rE3Htt6fLJ57yvc
3yrk28CHwBeCe/B+VhP6YvQLxDqB3oLeSLzeyDgtbsvmb+72KHgj8nzsPwDL
Rr8XOcXeU4EtyYvY+wS8mPOOZRjH08GG+b4i5PuIOSRZ9Z5hnL8K/ybgM4x+
N/pHyIP4tKK3kM8TkeWs3MW5ZXxPhF4TszduQZ9FvEr4sIK9KuSF7F3l+x14
nHhfe6sd1axqd0xgtSfOirt7Q+OCYjyGvJIV4H8ZmzrkHawK8DtYU731HPUe
5aBcesCbkQ/xfYXg3aFxuQ99iu6Xb76WeOmsQeQx4h+Yx2ayaimws1QTqo3v
vdWeal61H3jrJeppZZz9obe3UM9JIufhvzpmNdKhXJPG5bOsuci5gd2N7lR3
Owmf0Qx7w8+Q+7jjlOqP9Z23nqfep5oN0TO8vV0+9vOJfwY8J241kQu2K7S7
UU2qNkcC47Y4L+6nwB/Et4MYN2N/LLBeoJ78F/y6nr1/43ZHuqt+VjW2l9Bn
41sVmnwT9leyrIepl/3O3gxkF1jvVIx56LeHhs3h/Gb1nsC4JQ6LywlvtS2O
iCtPBtZr52JziXyKwSsT9uZ6e3FQXFQPWRfaHemuVDP/YP8t+ppMu0Pd5X7W
yky7I93V3shmoWryOfQlodWqeny2txmkWaQzd4bWw9TL1KPVq8cG1gs1UzRb
htEfJd561nFiz0xa71cOhyLrcep1mrmHI+uZ6p3yeRo9jn9lzHqWepc4KW4W
sveC6je02aCZNRX5eGC9RDWxB/8C1UfMOJyO/afeal81rFpWTspNM34TtsOR
1YJqZAQ58jY7/u9h4GmBcSuN+L3Io5HVkmbuKeSDkfUmzSTNJnFAXFDP34f9
kLda0oxLYTuQY7HEIXFJHBAX1HPUe77E/oGYvZHeqomYkxPG0VB3G9q/imZi
vuZRjs2+BDaLQ+sp6i3qaS96m3GadaXstYc2czR7FLMZ+X1v3FIP3sZ5NaHF
0hvoLb7y1otVk6rNid5qRTmuxvZ5b2+jnqreWuDtLM389eClSZs9+ofSv9R/
U2MgvQ==
          "]]}]}, 
      {RGBColor[0.9004271600896104, 0.6210679002240261, 0.2913241962777923], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQVeWVx++bVLrL6ff6db9Lv3sxiVHTNCgtiyZRQRCyyGJGGxAUkpQ2
LcreYqJCgyAKjWyyNAiKgMgiu8lUZiZ7NICpVM2Y0RjjNjpTY8wsmUmmBuKM
mamZ88v/39VU9avv3O+e7/vOd/Zzbl8ys3Pywj9JkuQTH0mS+EsGZEnyXl2S
tMR4XfzOBTw6xk+Xk+Sq+P1n4FxVTJIrYv5LhSTZWY2JgJ+IcVY8twZ8V4wb
G4TzZwEPj3VXxu9dzqkkye21STK7f5JcGOOmC5JkTE2SDI75NYE7uilJ/iL2
2hpz34pxUeAsCJzHa7Rfq8+9LMZB8ZsY8GeCvt8FfHWMT6fa9zf94ox60Xw2
zr0z8C6vE40dBa1l7sq4y+CAbyxovNzwL2PdQO8/vKjzgN8oCwbnrbLWQM/C
OHN+0NkTdLYHPC/g7oD/PtVzT54kl8Yd5wX8cNB5ScBzA54TfNheEV/7xfir
VHs9G/Ob4/ko7I1xQJzzizivOcamwJkde78Y4wsx93z8/u9Pk6QU7z6MOxdj
/Hrw7kzMfS3GCaWQU9Dz5VizJvYaF3v+b2OSbInn+wO/Lej/eJ3gqwO+MHBm
BA2zgoaPBfzlgI/GPrsqev/xGDtz7Xl5yOuXQcfUwFkbc4PieVnsPy/geXHP
AcG79QFvjDVfDfz/CLl8Nuj9TPzqCjrzAZ/LHrMDpyvoui2eH4n5W2McV9K9
4AXyRBc7A2dJjfZin0uC/ovjd0PA60L3PhnwtQF/ok53Y//bC8K5I8YjcZ+H
Yv3hGNsL4uvMgvgMPL4gvEvr9P5TdYLHBfxyWecB/7ysd+Bz1xy8gNc0CP5U
wD8ri45rAl4Vv7nxm8f94jfHz91xv/kxrubc4MPqoG1EoU82k2IcGb8s4OsK
2jvzWYOKui/7g3dRwJMLmrvI8y0xvlaW7n8+5PKHeP5iJh3n3YSYr6+TDp0K
Pg+Kd78KeGCMw+L5/YCHx5gbjunk1yH3zqB1buhJU63wRwbd/xTz92ID/YX7
a69tLkjuA7DBRsmuiF1m2vcPMXc44Klxn2MxXpZp7eBMsoFO6McOBphm9AL9
KJpuxtOJ5rkLOjOqVnfj/dBYOyR+bwU8rCzfhF+aUyP4xUTvwcPG3k6l/3fF
XWbW693bgfOO17P2RcNnYrwlaO8OuhagA4H/aPwOsXfY4nvxuxqbj7kJDX36
Cwwf7s7Fp9a4bxkfh2yRaezZ5n0/GvdYwlrbGLZ2Q+DPDbgj4OsDnhPwxICv
yYTbZfyb6/0c8Ktl8REeDk1F4+mq9Ardzaw7axukS+sbBWNTS0uKAfg9dHF1
zI9Chxu0Fp1fG/iPNurdoNh/U+z/UKZ91vHO+zJOMX6313I28HX2yfhZ/PKb
ZcGciy7joyeaP5OLsp0pRT3Dq4UFyQNZHMqEMyyVfjFPvDkS89MCvjKVjWKr
2NvRTO+JS9g3do79v1IWjL2/VBY+9sWe03wue081jC+B1+gvtgbNLY5dr5cV
gwbZNic6RjF/o2Ppm75v7/1nOfYRh1jX5vtyd+Lu+uDb3QXF1REl2SX7veE9
2+qlD+gC/vgfQyeHBM6STHd6InRnaSa92JXLJ+Gb5nlEp1dZt3nm3FWM8dsZ
Mv5kKr1+NZX/5t09gdM/lc/+mxg3xr4H4uxrmhRn9ge8It79KJWtDmvSfqxd
FGu/F88d8f67Md4bOno6aF5UFd3AX6lRHCQPIbaddjxsD7g78EYH3vdjbW28
r6mTLbD3I97/TFnzdySyD2wMG8FWiaGc/T+Nyiumhh9YVxFuoaK1nMeaHzbJ
j/ygSXa/xvwZyT1jPJDLpl6yzjxKjoUexjgk7n4w1p6qSl+RK7y/IuYPxPyP
q9JL1uLjl5SUuyDTjUHbhkbJ/oGS8hV0CXtdZ5slFgBz/uh4P6oomsYWBI+J
cWat6CH3GhE0Hwq5XNsk/3fwAvkjYhOyIz7NrxUOeQR+67d1ihUTDE/0+DvD
nMPZ063bGxqks2M8Dz2tqfTor6qau974bbZjbOpE7NUTv22J8sI1tnXyD3KI
12OPLPCrRfnn3yfy2X+XKO8k/3w3cObWyxejr61F3W1VwAPNF3hCTBjmuPAD
y7caa48l8vfEGuJMb/x5x3O8+8BnMkfsgIZznvvAdPGMr68v6LmhoGdo/8Br
0T/O597QS15LvDjt9+x3Z8x11MvGTnmO80ZmsgvydPJgzikVZHfYHP52oOd4
12A6OBufTv41LX7XFyQH8rLRHm+1/+f9VOc5L9l/Lg89fLAkXZru9WOcw4B7
i9ePOm+/0cabajz2RmfXWm+JFeREU7x+hPEGmXb4hvzJH//LPDhleZB3kH/U
Oa6WC328PmdZzDbv4Bv2jP/AD8An1rH+uOM98kUO8LSXd2ctz2mmnbu1+N7c
a4BH7olM8FH4kdutd9c69nEn8rr3bU+IkDqBeuG90L0rnBeRH13r2ocaaIzP
Q57j43lS7FlMZSvoDrTjw6i38JPjnAeSD2Kn2C3nESOID1vR2/Ar7Y2iveS9
W3zfQX4mxjf7vkNt/+PjNz3W3dYoW+myvfb43cxE/O3lS4v50uznyTXCX0ou
V6eRNWN9Jme3+z17c6eh3ht+/NY5J7QM9b2w43csO3QE+aPnU12LUju+fZ5d
koOsdh7SbPq4I77vUuseNjfTeoBMkBm5LHlw1WeT68JHdJBakLoQHRzj+po6
+2yd7ge9xKKPOk6RT3U7H2PdWN+dmHfCPOVuVesJNRu2/VYquZXM26rxoOdK
5734slH2r+gOtRE10g2OHb052kO1ikHUKyuI1wE/HPDygJ8JeGXAK2sVv8gN
lsHLgFcUVNtR4xEjlsb83hiXx/zigJ9iDpyAdwXcFfB9AT9JbRfwgwHvI28M
eEnAuwNeVlBtTI38ftzxi0WtZ6/xAXf5jJnWBfh5Y1F7QesNRZ3NXtjfeOvh
l4q6D3f7fMD3mw76D8SYzjj3C0XRB63keMQcYs/XYm5HjfIczt8T8IMF6Wa7
9RY7Q4/J0YkVx86LE8dsm9Q2rOOOUzLFlX1V5Y7Mwas253rkBthWj9cij9kF
1ZPbbBOcv71RdkjtP7ao+0Bru/eD53d4hOe3e1zs/dgX+RKnkQMynVQvH4F/
4bxHjEcdu8rP3c4TyRtfNI3oK/nuct9zYlG6gozxN132D3f7TM6b5TNZg62c
dS4xoSh9Qs/GFaUf8H1kUXnJ5hrFH/QbmyFWEDOmnHdneEBO3eq+EDrV43iF
LPHjt57HF9Ys9D7EqE6P4JFLEsPIJ193vcJdX3Oejmxfde6PPCdbhvBnkkf4
d7NlONu0LjDeLT57wXln89zmdax5xf2hXtkychZ51nrnWjd5b3j8t65puFez
a5vxPm+yz19p3F7dutlnUk+87rvN9dwk491kPGqd13xnzr/Je1HDvWkewW94
1tvvuafQl3Pc43vSS+QOra7DXjHd+BVyDc5G5viYm60rd56nO7PO09+7TAP6
12G8BYW+nKJXHtyfXOYi917mWae4wzLzlfXEZGpb+pzU069aBvSI4O/FdX11
I/JocT1IfcU8OPSRfuL6iDoJnUV3yYeHu2eAvx/iEfu+yj0w4g64y43/D6lq
gN257H1lSTZ/KFcuRm91RqN6JvgEeofETvwgNWOT8wPqhfkl5STUhOjF3opy
a3KsT0cu/GbA0wPekKtn3K9Wca/JI7FmU67eG71DeguzS8o51+WKoU9W5D8f
LskvHckFH6jItz9akn/HZ68tyc8P6e3NJOJNh2Ph4pLqImoiar45zpu7SupZ
UEfTT+gyDI3QTGx8PJMf2RHjvlw4T+eqtRd7T/qdrbXi295c83ti/Gmqs6j/
iBHdJcWJk/FuTcCHKroDMLHjn1PdeWOcdSxXvfMvqdasLinu0OteVpJebbUv
w48dz4VzsCIewaujuWp1dOrpmPtGLl49654rekM+RRzcVlIsHJ6qV/IsPfNM
8W9fjP3JB0rKnx/OBf8scL8bcE/Axyuyr72Ocfz2OC7z2+2YvifTeXszPT/l
+L4zU5x+IsanMsWA3TF+P/bfHvufiP1/kyrn2B/z/5oq53gmk16iW+gVvQ36
jTwTt1lLfKevTW47IpP/2OHYfSpXjvJvsd+TmeLHrhi3ZtKznkz07XLuscr9
DPY41y98Q6x9Lda+5P4GfQ5qcvKi52Pv2+rFY2Lu0VSxsS7G7fGuM2jblkt3
mCev3pHL7vdUVFuDQ25I7Dzg/Ao60AVi8QtV5SY/zBVXD/bmYwXFQGQyqkn9
WPqy1M/Qj37h9/Y5H8OfP+Ocin7fH/t+ufwUvohYQA+C/X8c89c3qZdLTxea
9jvf21KRb/pOk2yanBO7pqdOv4D8drJ91jbXVvR2qK8ujL3y4PlXgufP9Nc8
vR/sGLvFZltS9RhXBM70evGXXud97ufQ1zmTqo/bU1FuBQ78p6d12n0t8h/4
Ds/xU/irN9xjwAaRL/a62jZLLxseNseeAyuKTdfFHQdU5F/p5dDXhictFflX
vk/15lWM6Bs5IzjkhzUV0c63EfoZ5BnkGANS9XCWZ/rGQ696csB/nep7EN+F
VmfKabpjPO7eNfXGY5ny1E0xDk7VQ1mXSZbI9N9jbn2mGLAhU5xgHXUNNoAt
HMjEs+nW3eZUvaMHsY9MfPsmvipTf+TrmXvJ7h9enOqbB995iEv4Yvzwd1Ld
he9Xl6T6PnFPpv73Gccz7KDNNebhRu3X49qT/JLah7PaDOOfHi/J1vGLxF18
I7GX2ExcphajD4JObM7ki7dkipMdrtF+nqqW31lRDTitVnUgNT42zju+aeHr
Bzep30KfCHkc6i+cX6SSRYfPwheS9+MLd1fVZ9xTlV232xbuzVTn8/2TuApM
bOW7AvbCdzZ6APSgyFX5JjDHfZ4TZcHQQA1In26s58kD6EOcbNRIvUd9ip4T
X1dm4hXfGzfHuZtKypsfi3FjSXQTY9c4zuIbiA/4B/i93TzHD1ETLbaPxFbw
Twdz5R778UuZZMF3TnIlcjLyMXI8bGqR/Qf7rXTcIG8nbvwol5/H3xOjehyn
1pUUy3rrRWjET2+IufWlvrqQ90vtC7kf/nBrvN9SUo2BP3vI/vWFXDBxBr/I
+xX2u9CAn9uWqVbcnqmPe8i1Lb1eer70begd0KcjVr5rmP7C+JK+uZInUEPz
vQOZIl9g5M643jA6TP8WfSZPBkaf8ZGZe5jka+O9J7X5en9DOeL6bqtxZrjf
sjBT3kX+hY63FOWbF2SC52fKMTY29PVigaGB9dSW1GzzSrJf+tUzfBbvOfew
+zvMzXCN+Zx7Heht1fTDH/oZ8K49kXzQQ+zmyVzf8p6rKiZvtn7uzPXd5WTM
P57re+uJqnKHx6y3vX6WOog8YqtlzQ+5owtP5fru8o2q+ipn3Kv/y1w0HK1I
tvhD5EtP4LTli0/gGxZxDR9/r3sB9ISYpyfE/fr7jl91/vSxVDEJ39BYEe5a
70MvZ62/i307F53HKuJZh/nGN8EO94v4zXT/7TbzHD9J3s43D3IdaOaZHB4/
etj6gFyONPatO9LY19N7zn09+pAv+HtJrx8p2pced6w5aXzmyYHwgfhCfM8J
/0/IA5nymR2W1cvlvpziZdc4f/xOYR27L1Of6eK4+7Gqvr11ZvJzJ+zTxrg+
4Y7P+9sQ+QIx8Li/4XKHk+5zoR+cfX8mWf+3v+nAh+2+e6tzAnR1v33Xs7n1
v7HP/jbaHunVYFfoPDLgPPppz/lcnrFLcIh5X8jU4+F7LDqH7i3LlAsS8+jL
otPo9uKAR2XqZ8zx99sP3Qf8XCb6L0jV8zjn3hH+lDqXmvezmXqcfDdmzVnj
YEvYVFem/eg9kX8Q6z80PNH49MeIJ9QYY52/Ea+IiYzEG/qNj2Ty6Zelik3o
KHkw/+fC+m7HDfw2PnVzLpki2xGOSfRL/zyX3z5cUQ5EbKD2x9eus5/H9212
LY9/Bx8fvyiTD700aPhWrvh1pCLbI5bjj/k2Rexb7ZgMDnGGb4zoba9NMzbb
D7MnNPK/J/jKLveUNji+8N0aHz0wzn0nlU/cEuf/vp/Oog5mHbyDb+jPJvcK
+J+gTveV/h/7L3l3
          "]], PolygonBox[CompressedData["
1:eJwlllls1UUUxgc1tym9t4b7771ziwsCbVkKskb2ggqUoi8UIWGLCEaRrbKv
skkplq0ti6V231twAREpOyIuicuDGmNQUQGNxhiNwbg9+Ps8D5Ocb74zc2bO
nDnndJ9XkL/0NufcZcYdjONx57JTnBscdi4zcO51cH/wEHAWeIJ37h/wfHTH
IzekOzfgTueugq/Af89YmuTcWPT7Ij+LTm/kRRHnvgZ3izo3D35RsnNVyO0J
57bBrWDuR/hj2OvD/oNYkwEexvpfhdn/AeQ6+Ag4lVGP3MH6MtZPRr8SPjvm
XDl75zF3mvVV3ri6kHMX0M+A3wffFXv/dnHuIPxE+Cr4M/AvgnPB1eCz4G3g
RejuA/dmvxrwI/D14IvwdeBHwQ3gS+Cr6MxEfwH293K2Cu7Yo5NzM5j7I825
w+hPQr8G/XPovwTOA9eCz4O/CEy3kTPuYf0uRmbY9ihG/gz+MfgG+GG6K/un
dLK5W+w/i/08+glGV3T3s+YJuALOcxC5B3PbsfU4c8vRvRaYvBi+DL5XYHdd
yNxW+BuByRvh6+EbsLcE21vBreBacB72M3mPCnAfcCE4H/vNrD/H3KGI+agW
3M4dZ7HfFmy0IbcwNxVuB2v6sjYDPAruJvv19uZj+foge5xlr43M9UoxmxuQ
jzCmsb4I3I5ciX4IPolRFbc9tfd0dNrgf06zt88lnorgipgbHbaYVGz+xH3L
sVeYik+I7V/AzeCd4CXpFlOKrUmKWfnL21lHgp8CH4fPR38G+rPRH+vtr9xC
ZxzycMWjs5gegXyCM5aF7Aw7vb2B3qIb/FG4RvYYzP96Bp33A/tT+ls5jBfQ
7+ftb/yAfn/kMPwUdPtxnzzwp+B1IYuRTxRb7Dcl1XTawU3goez/O3t8AF6p
PcMWI8u8nUFn0R/uDt8CTqRYTN6n9ehMCdsbDgLfxUgPWwwqFgcH5nu9USs4
x5sv5IMxyFmKsRR7c739fsYE/WXwaWx14k3movsXOg/BtcYtdrLQWQIeGFis
6Qw6y0TGRmc5Khd5sTfd6fgjnb36oF8Ssj+93ZsP5ctxjGy46rjFzjr2uB39
eGC+z0F/Fdxz3nLTGt7oW7hsb77n2Vxfb2+ut9cZQqy/V+dPMp+ugE8O7C6K
UcXqPPQXptobfQQXRv9GZ2wwSpH3seZh1lbAn0L/VQztjJiPyuA6lEPgiph7
Ba4naxZjbxR8IXw9Y7PyCTr92f8w+i7FfFqM7ofMFYQsBhQLteyxPmI1QLWg
BbwpYjHajPwe+tecxaRi82LC9t6CjUvI3yne0F/LqAFXJcxXk4m/Ouz9Tc5N
S7I3z1RtYG51kt1xr7c76q6FrDnK2pcZO5DHw5fAn1SODlnNaINripqudKSb
E7NcsFw1CPkt6aC/FXwZuQX9F9AtZhwDv8N5F4SshqmW1ct/yVbDbioeEnYX
1STVJuV05Xb9Af2FBm93l4370R+NzWXYL2BuDHK73hD9EsabrH2DsTdiNaCc
tV2iVjufJAbmYj8jamt1Bp1FNUu1a7/qGWuPRk0+wDgj/0QtNyrHKtdqTpxq
VLU3m7KtGlPhreao9uhMJ+GOsL40YjVUtTQtarlAManY3OOtNisn9gssByoX
Kscr1zd6861y5AD40oTV+uHwlfDNUYtNxaxitw28J2I+kC9UY1VrNXcCPASf
/Yn9GeBt4PMJq62K4QvIWVF7W9Ug1aJjgeU61fwC+I8DW6scNIezHUZnAdw0
dD4PrOdQ76Ga+A14NzoPhi2mFFubvfU6G9jjemA9hnqNMehfDCyGFcuqQZXY
K/aWO2aqBsKd5vzz2esK/3dl3GqEakU7d+oIrGardqtH6Kra5O2vKic9j5zv
TVc9zlTkTd56Mf0p/a0a1kzCVk/4cvauBueCu4MPJSzHKdfpzrr70JjdXT6V
bw8krBdogu8ZWM+h3kMxcApueMx6D+Ws/3NXusWmcsS76Ccxd527zVF/ErU3
1lvfg/0S1o/0VluVY0Z5y6HKpao5qj0r4uYb5TjlulJvf1s5TLlstbe7TGTP
VchPs2YNa0vhv8L+bG+9jXKQclFjwnyvHNWUsB5FvYp6VvWuA2P2dvrjMfWz
8Lsj1uMd8lbjVev1Z3txnrMxy/V6wzMx63HU6yhGdqFf4O2uw9Bf6i1GFCvK
mXUJ6yHVS+4CHwe3Rk2WTdlWTVNtUw56DbwM/HZn86l8u95bL6U3Xof8W5r5
Wj2FeouOmNWG2aoHyGu9xYJiYA3y3VE7m3wm341ApznZaoJqg3woX2puZMxi
QLGgnuzLwHKicqN64gPebMiWzrg8bj2Oeh310Oql/wMci52W
          "]]}]}, 
      {RGBColor[0.9171507814348918, 0.6628769535872296, 0.3431674224481647], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxdm3m4VcWVxe9VefDe48Gdz0XTnY4mQVFmBBEBAZl8DCLGDGoabNOdRFES
UP/o1iiadkQUZXaIIgiogIgoM0SZZxk1YlABAXEiztGk94+13qdf/3G+qlun
Tg27du299qq6P7jyuouvPSGVSh05KZU6MdLfNEylfhvP/nQqdWplKnVaPO/E
u24VqdQPI18bdc6t1DvKe0d508hfFeU/ivTH8eyP8mb19LtNlPeL9Cfx5KPN
Zkkqdag6lToz0vPi2x+4Du2RbxL5LpG2iOfdaKdFPeVvivLBUb955MdH/rxI
T4/nQNQ5q57ytR7DD93mGfXULm3yvqnr0F5Lt9+pUt8w5tcyqdSeeG6McVbk
oq/6qdTl8fGTUTY1nlyUD6nRb/Izi6lUsSqVOhppbaXqfBntL47fbaN8SVFl
1P/vCqXTnB9aozzttQ55vNE4lXoi2mwfZZdGWwPjmRv1psfv19JKn4rnWOTH
1Fee96QzXI7czqmUjO5ppG8o/1kD1eG7tu7rrrTk3cqyQj5nWJ6bo37jyN8f
de6Ob56NflZFfm8h5hzpukjLsX6ro60mkZ4Qz7zI7w2Z1U/UX0Wkfy+lUoej
ve1Rfnno1Lr49u147oqx3Rvtro38L6LunGh/TeRXR74m+v1l5NdEe7eGDBvG
7z83UNozytdHvlGl1qhJSfmTE8nslfjmrCi/J9qeHW2ujvwpJc3llETr3ty6
tKpa9c8OHSlUafy0jayXx7Mins5R98x4DsYcXnfZynia11M5Ot8v+mnmNik7
y/XJN3OdO2M8z0S9V+LbfPT1XLXmmov83GrN76sY56H47tWQVTpRnb9EPpWo
zmuR/7qkfboj8t9E/r3I78xpHVZ5Lv+M8vejfHeU/yPyRyO/K/Jr4/1tVZLv
hFj/z6L84xjPh/F8GvmPIu0Udd6Odw+llb7jfEeXP8v8o80+8fvxGNeKyPeK
/GORXx75CyL/SORvCZ1uFflhMe/zo7+u3rNfR9mp9SUzUmwH8mnqMmTI+gx2
nr3HHpyXlyz7uf7H0U5SXzZpT+yxPjGvn0b/v4+nVeRfirLPos733MePYv7D
I393jO1ozOP9eCbFXC4Nub8YY32U/VSp8Y6L+o9EOj/Kl0W+IzKIdETU7x1t
fhS/50e+r/NTIn9T6PbzUf9h1rkcezjevcRaxfv34pkYdbpXK9+tWg/vnovy
HtUa0zzWIeY5IdrYEvN+PcY8KOZyMOZyKN4fjmcCeyfReJpF3Z7+dpLbOeK+
zq9W/a6R7klrrXenpUdtG0nf0K92jaSH68M2rMtIL86O8jcjfTrqV0V6b9T5
Kr6vjXENr5B9q439n42xTSvKpiJj7Oo58e1b8U0H25i9tjNtqpXHznVw+2PT
GhO6tyut8n1R/kxa8vurx0IZbT5oPdznPD6kVF8+BN394iTpMm3/1e0PbCJb
dmIifaEutm5wE+2V4bFGo2P8S6NO+wrpSzfPBXm0d9vjKqWj6OUAvg2ZHCnK
ZpDHboyzf0LP+0f52Pj+xfj2gazyj6b9O/IvpVX2oMuRc4cK7ceXC8qfkNe3
92f1Tbto8/6M7PeAan3b3/u+R4xhZYxhTEZ17o527ovvJkU790S+te08/vqt
GF+fyO+LdEG82xrPlrR0enM8m+J5plJ2GRvdNNrrFW0NirLHqpTHTpH2dn5W
WrbtZdtObCh693SF7CY28xcN5Uuwywvj9/Z4Xk1LFqTb4llqndhlWW3z+Ja5
Pd7dEmv2x2jnw5DPZQ1l6/Ef2ObX3feieHa4D/R4lceHbq3271cT7dvtke6I
5+bI74x0azz/E/ltiXzrdPvZVpFeEjLoWyn7gp1ZGOn5Ue/zWIOuiWwaefbD
kIbydevs7/B/b0V+dlp+D3/3vOW9Ma39T7ohLTvZpUbtzcXnuZ0XvFas07Nu
g/nM8Xva7RRyGYGvjfEsjt87LYuOUX5dlK+O8smhb0Pi2RJrPDjkOTPm8ptI
pzTWu61R3j9+T4vyX5XkO/GhJ2PjS9KDfy/J7+J/y5F/M+SzrYG+pS558MOs
ovLvF7W/jlVrj81OpBNz8G+J1vK5SDvEOK+O/MuJfP6qBvL7vaOPx6PfoZE2
j3eH8fWRvpqRDQMzLLHuMOcLo97UqP8fJdlR/O4qY4dNDYQfwHvkN8azM/Ib
Ir0hyt+I/F8yKt+d0f6m/qgq+VF8KO9f9zeXVAlDrGsgO8PYsDXUW+exURd5
j3H7my2fHRnVWeu+dmWUJ2VMayJ/UczhqWj/vyL9qW3Vl7Hvtvr9FWntb/Y5
uBt/id/8uCBZYBc/iKddvLvIOLxt5PtH/quwA+2wKxn97pARBr3Iun6J61yY
lTwHV2rvowOD3NaASuHhsVnlz3LZQOebG5diG9vTR6VwPT69vbHTccxufN49
0h7xrI18r0r1id26yG3SZ6v4/oLIz4nyjm4fPN8nKz25uFLYY5DrfGm7x1x4
wOuUtYi5No+nN/LLaJ9fWKmnb+W39rKvv21TT+/echv9PJ7W9dQGYz4z2miW
0fgu8FwYQ3/Xpx3kVetv+a6Xv+3pPO3z3cUur3u3JiXb3dN1PjN2wzZ2sDzB
n+jDubb5vWOffBM62SuRHyMPlsI+vh/PUdva9+I5khYuxq/gU8CxnY1lb6kS
Lmdf7rBOvW/7fdTfb3Ubh+MZGfv4Xdur4ZE/aHt3TeQP2N792rEmdu+qyL9j
e9fe/TKXT+3bd9n+0fYh9Dnen10pPE78QkzY1PEccR06darl8APrCLrSsp7k
2N2ypY12jn3QwbaViinbWieJDZu6DvgTPQbTjnN6vte3m/O8p68u1sk2Hg/t
tHA5e2K2v+fbOR4PZe08F8bDWLu5zdMz8sf8Bnt+bPw5uyzstdB4/MPGwob4
2ydqFL91zwvHnRjpx3nFJM8m8p9P1sgvry+r/pzAns+Vhf2fyslOT61Re22q
NE7k91G0c0eU3VGSvl9sXWc/DbYe12F95IauLK2QruDfPnc8wO8lFdKfOWXh
u+nR78ayxjY38huij8VRZ1eUtauS/u8zD9DO697J68W6E1sTY9fF2lc6vzrs
w5p4ljeQXrSybmzK6h3lG7D9zo91+Zkxpgf9LWXXRnvD4uke5S2qle+RVt1V
rj8vxnpevFtcUhltXpCWXrf3nmJscADZKB/RSPWoU5tRH3fEmJtUqw42gzY2
eWzsieUV2of4z2k1Wk/q34QNwu/EGOZF+fyc2qecsRGrUM56TIh0Yo10aXlZ
v5eVFedNcPknjk02hs6MjHZuzqg94qPZ8fze2AveAaxG3ED+mPHP3Y75sYfo
CnpyLNq8L8o2l4UJ8J3g8z80Ups3e7w3ey7Mk5gMPVoZ30yKsa2I9MJq5R+O
8sVlxUPPxHw71cgX0+6CkuKQe2P8b+Tksw8HJulcI0xSFyuS4oPA2I/UCJ8v
LCuuejq+e7GsOGxWTntxkPf8FPqP55F493JZv/8cab9q5SlfGr8ng93i2+cj
Py7yM3Ia+2SPH9xAXANn9ULUGR9lM3OSJTIlRpgR5XdGOjWnuPUPNYpdl8Qc
u7BmMcdFkT+XOCGRb/+JfQ+6iE6OS7QG3et8U5R90ljjHFnSPl8U8llaUjw5
KerXug5xwxexdpOJVY2Xn0NP6ktnsEvEytQ/1ljzAg+gd+jw/LLGyXhp71P3
u6Qs+wWv0NffgnlJ/+Z2Tq6WfqMP2JeetuEvxjiGxjgWgyUTxaqnxBjXRVsL
I/9qtL0kyn8VdVZEuip+PxpjXh1p1xr5xLoYjxRMgp/hW3zNrOhnRo30dVt8
MzPyd0Xby9wmba8qiedZG++3llV/S1n+cFGF2psX9a6I+gsS6QZzR05Hq9Qm
HF0fYxPs27Sy1vfJsuQ7t0a2clFZfAu8C1wDMfOYaHN9SX3tKMueYjPp/3/r
Kx4jFjseC1UoXiMWetbc1LWVqjfLdnKTbdnD9h34EOKernV+Kvq8vUbx5rNl
xdzTQifXRb0L8Cvmb5ApvrJQEoYuRjoxqxiEvjIlYYsscUROfdHnnrLm+3yU
/Yl9EHUfR/9jnjOI5aPOQq8764/d7+YYH5vOXmIfTSOWI4aL+gvK0mf0+qWy
eJllJdkQdAy9I66aY/6QmJL4D9s232vHGuJr8bkPRP6xtMbDGD+PPiZh0xJx
v2A8dJ62ZptHJaZnPHz3WdSfGPU3Rf3rKrX+9Nc85nwXfFKifT/aPMxo2wHs
Kni1TUY8YP+sfpNf30Tle4vCnOz/fsa04Fuw7MCscP9Rf9svq3eUD8jqmzFZ
8Qj3wX+nlT4Z6YlFYaNDEV80LgpTvRf56qIw6JGC+HWwDji/flEY63CUr42x
tSS+KorLGOO24U3PNJbr5RiTWBN8Tn14T3D1WRlxyqPMZRL73fIdnrg2q2+o
f1FB8dLc6HNorO2VjcUd3Gy/BafXxDz2JU2Ew8Eu2BXaIebh94CCuMKBBeEa
YgCwd9+sxsR4wD7EANii1U00zteK8g/EKthYYiniLvA/GBvOGh4K20xsRizA
uM415wiv2c149cfGtcR38IeHzAd2dR6eAMz3QWPxCtjXdyPfOdKBjuWJ6eF2
dtWI37nYcSXxZW9/i3+aWZavxGeyN9gjU/CbZfGiL+RU90PXhz9dUCMs8mZZ
+QU5yRc+dWSk30T5zih/Lieu5YUa8azYMPhY+EvOH0439p7mcxNwD3PY31j+
8mBjzQu/eJrxPec8b+SFlU6L9J8FxcLvRron+hsQc3ynKH0eY34MfHVhRrit
r7kFOIZ+5g3gD5DtQffVyWOAv8Gvwo3DRyJH5oW94P0Bj7Ozv4WbebxS/Cn4
8yfmWwbbD1Oftj8vaD5vF7T+HY2pvixILvsLwl3XN5Lv62G8CFYEH410OT55
sbE0dmWh/Q42aZF9AfVvMn670N/SXtuixtou0m5F6Ur3ouzurY1ke8FmtzTS
2OAX+Q3HCF77g8vxU0uM88F94D+4r6axFiPj3TVwqHn51DVlYdGlxnXwZNSH
yyK2hZMmviX2OSMjvrGV9wF2Hg7ydJezX053fDTEXBbnVaRTnIefmmzuq411
rdZ7Ge4AbNrOdoiYZWJjjQHcBS870XnSSY3Fw8CfT3R+rX3f5Yl4Y7AFeIIx
gRfBiowZDoXfyHVUI+E5+PFbnUem2Kl709oDf2+kGAH8Qx4MBG9cbe4YPf66
keKRoeb3mC/zJD8jLXt/tm3+FSXJi/OTv9teHywo5qj1vviiILvzjnUPXbnD
fZFHZ0hrXU6/l2bk0+lzqP37VwXZ9wMFYQzqYIevdB3GubIgHn5K6MbGJhrn
X2NsZ4TOjIq6w5pI3hM9XziwL8x9YH+wPcRD2JRljona2/+A5WZ7TyHTZtHm
bZz5xBp1TIT/z0kUs2Nrx5trggeDbxoUa3VRVr/xvVXWAWRPHr/cslryJxbc
HGM9J+q+FeOfW5a9AI/DrVHO+RxtdnB+VvT909D7pxPhfNomhuqa154F0zEf
OBf4PDhLuEs4ydvra3+CPdg/212P/Q+nAzcDRwn/CPf4oduAS7kxxrDXPOaE
rDAZ67UhxnFDjOe8vPRwWlp+Hz4H/gU8DOaf4n2Ljk53PdaddtC3LnnZHzD4
+XnZJeJ47BHtwBVhj+vwxac+p/rIex8ZIAs4eOQCBpsJHx3ynFUSpwS3BMcE
X7rbMrkhq9/k4VD3mKet41XhTI9aNsiL96+Z7z3icSG79eZk+W6NOWL4Yfha
eNtfuq895mrhteC3DnqvDTSO6paXPdxY0vkUZ12cS+yzD+Fc4m37AXh9YqWx
5hDwFegeesKZ0QM+D+JsjHOXB9LaH+DJR73fkT1rTT2wJjgT7uKheFY0UJ72
4WaJyfFha4wn+xsHri/IVq6JdHxW5ytPpbVvZhi7woU8aC7i+vh9GfY7rXX5
nfk+0t87f4Pfw1df31A6xtrBK9zYUHpF/eH/jzdEpiPcJuVrE7V5bsh1+3fW
Z4t1lO/QwQnWQ/oa6faR5SDLkz6vd/lI52mfs0uwKfcx7kurDeaObcZG4weR
/dleR842wUvH71QU5TsqIh0W7V1rrpPzPOzWlEj/tShecFtOZ5XEbsRO3y/K
r/2joHslm302ccT4iPPizlFnBrFNUeNjnOwdYrG2HgN++Gb75YM+BwaH/FtR
/u6ESEeV5evx+WBkzkGxqZwf0hYY6daSbM2qGM+oks5x1hbk/+kD/498wHes
P34d/34kr/7Bf9gGzp2GWQdGp1U+0nZpjPWCmIP9gm9CHsgW3e7eUONhXuf4
/Hhsnd2rlO075HN1MDD9Ix/GBufHHMFd7EP6AGufZqz4UFn8Mzz0AdtDznU4
lyF9w3nW4Q3bB8659rocvhreGv6ad3+xnfnIceR8j4exIE/s/SD7keNnLFnF
ANvcLm3uN2YHZ35gHgU8f9ScLueELXLCUz2KOgPabpvGuGhnq+09v7EH6Gtr
6zPxOLiEmBx/hS9vYa4FHgK+hZhggNcCfgZuCM5nuO9JgOk5G3jINgTdp31w
C23iC8EhnIHC5cPpg6vAV8RJcFXcD8FeoNPIcL3tB2PBRvC+petMsF9aaT0b
43053nt8pfcov9mnu8vCwXBUO8vCvsTlLzeQvLA/nAVuyehscbjvfaCXbXIa
79JEdyyIww7mhS/AFvhhcAeYA18K1gC/4nux8fSL78U+cs7N+TaxznzHO8Sr
nFm+Eum2jPL4Ee6hLPBdFLi0uebTrs9qfbd+5xvmcTjGdFvUmQXH6HtZ3M+q
5/tX3MMipseev1fnOzI6V59e1h2dp8riOPEf+I7pifJgLvwJtp55cB8FG/2J
8QhxBT4cf45s8ZnE2NiRQQX5fOpjVxn/Ns9xe1nfwnlwH41xwmOAIab4HOBM
y5x7LpfbNrDmrazzzydat81eO9rhnB7epHVOZ+4vJeLwN1tW8AKbMvJ9xBxw
ePA6+DlkRFzO+e16Y4SRcPVuf43PhNGZqS7H35Fucp219qP4UL6lX/rnTtA8
3wsiPoSbhwdCl+HZ0Fu4N85i4N84R+E85U5ixETyB6vS3hav/33mhxg/HB4c
ETze8Zg1K96Ds5onfF6zrqz2OfO5zLLE9sJ9gsX/6DsZ1IWbwrdjW8GTnCc8
6TMFuMM7LLeDnANWaQ7cA2LdiX3gGPpZ3zJV4kzYKxMTxdDw2fgY7tZQf6rx
A+sCz0g8CuZh/dmT7EfiXWIP7PWBvOLLJ0Imjybi+eH7H0p0VsWZFbEa7YMh
v5+THboDbjaRLz4n2tiXV/kj8X58onj9OB9fIduEnC4uSD/ZT3Cc2HFs+A7b
W/QZ3Ao/hp+FU9lpXuW4X8yqPm1eZpmzp8Bj7LXj93qc3+y1RVeR+yLbDnSO
GIsY/+FEZxCcRUxOxP1wFkE/Y9wX49phPHRnIvs5vySMPcY8HvaVNtlb8GS1
5rjGJjp34/yNuxLYKcaELNfXrVdGvhRuGg4RnvqtlLj2fT5jh/Ml/iUO5kyp
f0OdH/EdHAh1NvksjDUfliimnRHj3J1XjDsp1uXkvNqFy78nkW/h3ONPiTgn
zlKwf+ADsEGTnL69JtH8rvAc70+EF+Cn0aMR5jpom3Eybu4Kcg7E2Q97qNb7
iD0+9TuYeaqxLv50sdeJebDXWSNiU2SFDr7sexmUr7BvYr8TT4Lv4fo4LxrY
UGcfnP8MaKgzjisSyWpLXnE+/DH7YlxZ8fmDZfG5cMtwiaxzC/tK7kZy7sWZ
1xjvd+zXqUXFwlWR3ljS/r2h9O29LjhKfDM8GDzmiqL2/PJIf1tSXNyoqBid
vc2+Ju4h/iHOggfta/5kdUGYift3f050n7x9Xj5+iO8Bc+7EGRPnCMR53PHi
7hhrcnaV1qV1XnsG/h7eFRsH98q9WWw66wJnf8x4i3Onj4yZ4CY/MGa6tiTe
dUBJ68b6gYWGldRebUlr+Se/4x4amJqYl3uUh4yh8Z+P2acfqNIdb87Bl7g9
vuFeHr62v3nNo8bu15XE8Q4qaW8/5v44//nE2It9iP4x17p7EmBT7o0eMcaF
L9zvWBE5tbOs4MbgvuB0fum7xNwpHuI72NzFrrtjwTpc5fvD3CNmPeDd8GOX
e5yM9zLLDfn9wrJCZlf6HjL3kcFR2AtsxUrfaWZd8Kn4A77/te8kczf5ZyXp
2tWR/qfvJ//DcQYxDziaM5bLfX+OO8s7fLeK+6qjbJsou8Tl26t0x4uxvFdU
W8Qu3HW9xbryQE661jDSYzmNgbFwbnCrv+UssZ3X9H3fWyPu4X4lHDLz+zSn
OSGbpKTxlSLNl9ROjjPNnGSFzD7LSZ7I9W857a2fl3R2cZvHzwP+wG5f41iJ
eIRYDNt9/M5nVrj8+DluVrJFxhuNNbBLa3xXgdgejv0R82LoRW/zjRckul/Y
M5F+L7O+oxPET+BxcAw8RN1dRVLiR+5LPmx+bZ3L+GaDv5tn+0ZMQ1xQd6+R
+AVeD9vxYk64aaPxGHhgqXFC3X0g2iOWIh4jjuE/Kb+2TKbZTjDuV3xHib7A
R6vss/b6W+Kpa0qSeZ+S2viN7xuBTcDa9Escs9L2hHXOea0ZJ7oDxgOnb7Of
3mBciW2/2m0ytm3G6bzD195jG0KMMt5cBDgP7uA4b+BYrY6zIabBZhPDjPbv
ZW6jbt6kcG3wBm/6jjT3o/eZV+Jc4m3zStxv5nzpkpL0erV1+/qS8qW8fNN0
9wmPAffR2mdHBx2L8v5ej4n+7/FvOLIXbQ+nWo+whfBnC/yOmA+/gA2qu++L
/dth/4k9hq8hVib2BB8/Y/1bZTnxe5P1iHrwx0N9lne17UnPkjjNJR7HFrfH
ODon8vFdEnGfi12PfXaNeYntHhdj2u02kH37RD61Q6QnJbJRM/3/njaW58+t
Y+ja6JzOuuvnFN/D37Ef2uWF9VeX5POP3y9JC4OCRcGqLfN692QiP0Id8CEY
ivPpKelv/3vA3PAvnJ+Bg7k30dN5fHgfy5z919McAncz8I2T09/+94D34Ebi
NDDtokTxL3EwssOPsY5t84o3uOOQM08FX8UZFr4I/J0p6izu45z8/FDbcNay
kzkN9PNc1y+Yj4KXwsdxzgjGZU49nMe/M3dwEfclap3Hb/azDJFFrTmKScaB
4EF0p4P5VbBVP39bMkcHVzfauo+O35eIczo9J44ZXMqZ2gjrPjrP2Qvl9EE8
RDxJTAQXQ3xKnMrZGrgNzDbS+5jv2XMHrDP1rSe/KymOAo+Bt7jXjl73L8hX
4bNG2Ldst5/aYy4KrqlrUTxYF2SZFx4enQj/9PJaM2bOkBjT3SXdNWmZ0z4i
BiQe5S4RGPvHOcm7r/WNWIuY64c56VBv81pgrT6uQ0zK3QXi0u8VdW9xS9T/
l6Lub27NqZ+DjhnvdJy70hzmEu/J5nnp+hO+C8E4x/jsB17ig3jfIq+1nBp1
ysa0YFv2Sn/rw0OOK8/yuq6w7dxlvApXD446fg8K/Umkp/AH+33eWizKR400
vk8VdX/zlEgvNR7+rc/GwWXEY2CrX/kO6zs+O8sXhSHPd50DPgtLovwkywqZ
NbCskBm2l/N7YmbOhW43577Z48EfYVOwLdh3zg/hpuFC2WOdzffSZ1e3Q3ud
Pd+DPu9rUpTPYu/jtxqal4afxq93M+fMvQ3ub9Qr6u4Pd4DQXe5/cA8kXdRZ
O2fu3xSEUcAq4J6Ti7qDvCknPwWHS5z5ts+7s0XZiSGW2ymW8+ac9m1Hn4lg
Mzr6W+bW1Xzv8kT+vG1Od1C4i1ITbXxdUL/0z5pcZb/P3RTuqFQWhTGv8P8y
/g8/5opt
          "]], PolygonBox[CompressedData["
1:eJwlmGeYldURx98F9i5baO/e97534VMeExN622WlFxEIZRGikicJSSBRAwRQ
FP2SQsCEEtEgIFUNUnaXDlKk913aLihNaRZ6MU/EKDZMfv/8P8xzZ94pZ86c
OTNz7veGjx08pkYQBA0zgqAWvzvTQTCnThD0yQ2CPakguJkfBM9mBcELfFsB
760wCNaCrwPeh64ElmcHwWRk/o3sVWBWIgg61AuC0oIguA09H9l5wB5k20CX
wZ+EfHkcBGew9wkLP1A/CKqRX8G3IXmWKQPfgA8t8aUVsBH8/SgImiHbFDiA
/O60bfeFvxf+HnRGoD8KKGatBnybkBMEbesGwWV0P4q8VjFQhX4EfyL8QvjX
4O1G/3F0LxOPXeD7sf8a9kuwvx/ZT5NB0BzfZxOr6fi+BngT/mLgCLLb0BmG
/iX0t4Lfwoe5dRzTXfBLgQngo7GxGPwgsJK9ToE+BN4I+aeg+0EPRf8T6IXI
LwD2wV/HeqfATwPfQR/Fp+0Jn8l70AuQL4bOJf4L2V81/J3QG+Cfh18FvQN6
PfRZ6BD6L+y/kv3dxfYxvpXV8ZkWYesh+K0yg+ANZHqBnyNGLYldC6AS+1P5
Vo78bfjTwD9D5+Usf3sHW5uwuQl8M/CB8oX4Ha8ND1iOrRQ6k9A9yPpfIrsx
tK8bgQvI74t9lleIZyG8ar69lGUfj4MfQ39XwmtchN6L/a/Ip3nsfwf+nUDn
Ri3nTAV0Jfaext4zQEd8PaecRveP0O/G9lG+PoZ/Jdiqgl4K/XP4a5WPoWMn
HenqDugu/AH+cfjLoSdBT8XfJchWQL8O/Vd8noCvJ/l2s5ZjeBB//oUPE7Oc
Y8q1CmRWJZxTh7WftM++P/HZl/KZ6+xXcj7did+72LuOvcbY26/zgD8MfgPW
P4PtNfj0M3xbjc1K9A8CaxLOoXvIDkjat+HEaw3662LvVTKS3RP5bq+A3h35
THQ2f0LmZOycV+7/fw3oTcBQ8I9ZfyP4IeyXgy/A/k7st8Kn0oT3vAz+Wvxf
UscxVqwP8208+s8DnZGdybcx8Hpg48N870F7kc5ReMXIf0psuvOtCPw09m4T
jyLicbTAd153fy0yAfxl0CH5VgK8h2wpdD74IOAs9NMp3+1W0OPAy+AnwR8B
zsPvETn2L+L/o0nXDNWOddjPwP5O6CJke+o+42+Cbz+t7Tuhu9EM+gayHfH/
SfxfFLvWzmd//wTPR/9+7DfhzoXgseoddHPoFHgENIZuBp0En4lOB/Rnov8K
eIHuJ/wW8NPgO+Rfjn2Sb28g0wv5eci/Dv4a0BN6LvRC8AbI3Id+Y/Tray2+
dUrY5+bgv4i9N9WohuznpvbL/tfDrwHvfmI0BVsT+TaK+H8fehz0BOiRqu+h
1+qB/Ntp3xHdlTbQ5WnXeNV61chl0KtCx0Y+b9d9C32WOkOd5bt824Ivc/Hp
hHoR/DnId0Nmk2pr6L1qj1uhz4U+K525zn5y7NxSj5kCPgN4APwVvv0j9p3T
3SshH1uod0E3hG4kf8H3kwOHazsGJezvZXTawZuB/kvg02U/zzXhBvqNWL8J
vPHIP4H8i7H3rpj9HbwQnxYR/+Gq58gvT3kt6Uj3POs9iO4BvsXI94Wuz152
4MOepHugeuEA1myO/mydH/Qs9GeBL4gde8VoPvi82LF6FXqu9o7OGHRHA/uh
uwJ34XfBn5HE77ZykPWqWO8WeCf4vROW6Rb7Duou3oFuD74qdm9TTSvMdw1X
LdcaB7RebNnO2B+h84KemuWe2Bb5B6H7g99DpnfsmqDaMAeZz8F7xeZ1RX+U
+mFsnnKiC/wdsXuxevpO8Lahe/tI6L06q3zjmhk0OxwD5me5p3aH93bsWqae
vgX8LeCjDNe4DeBbiUEbzRfANvCq2Lm4Ff2u6FcrxtDboLtBN4W+nus7pbu1
NHSuKWdW4n8HZMbluUepV3WCfi7PNVG1cUvk2rSaGjUD3Sc579Ic17wnwLPh
F5M/V6Frg49Qf87xjPU7ycaevVSDW2P7HjnTGvlL8L9NegbQLKCZqX7KPVm9
WTNSEnoO+l2gZ+Pzq/KfNRrkuOeq9xYhfzXDezgIvw789ti/Bj8PPEP1GPqy
hk3wYdhclOMe/WvwLuh8keucUm61w961DMfgCPRDwLe5zgnlxq9Snk3UA38J
/htgcY577HDwx4Gl0Legfws+BOgD3ZL69hj4I9zBCuwVQf8EPFP1DP+uIF8L
vDz03dCeN3A+y0LXWtWI1ZrnQt8t1eC1adc41bp5+HeN+A5ijcJMn9HglGui
amM5/OvwS/jWNtM+DgRvir0XsjwDL2d//fjWJtN76g/eCZ/Ksj2T/zD0GlpL
3zpHrimqLZP5dh5eTeBr9jKdb2MLvKbWLke+K/I/AmZne6ZNhJ6JNRs/zLeP
4c1K25Z68Gzw63w7meOZLU65BqkWKYZp8CvwT+R4psyH/xxQCX4VaKZcSnr2
q4f9Rop/yrFXjj4KfiDp2lIXfkHKM6xmWe3homYF1hiY55lYs/GuyLOJ1nhe
+RN5b4qhYtkRuhT6KegfQK8GxmR7JjuQ9kyi2UQz6WHWHgM9ra7veAvNesDY
bM+cd1jvmZTvnu78s+AfRJ41CoEj6G7Weee65jdD/oLqA7zWwCH4p0Lnor4d
LvCZ6GzusF5x6DeB3gZ/1kyU9gyrWVYz/T78O5bvt4F6xET4b8au9Xpj6K2x
JG1d7Vl774M/rTN9x36suxG7l+lNpreZ3nR628ln+a6ZRrONYqBYfNOAuSPL
NasJun9D5gq2KoDx4PexxnTWGkL8Hk56BtUsqjs2FH4FOmPzXBNUG1L51tVM
otnkauTZSzmj3NEbS28tnXFLZE+nXTtVk8+kXeNV65Wzyt0TsWd3vXH01jmZ
du1VzT0F/k7s2VxvHr19dAY6i77oX0T/UOy3gGqMas1ZvvXM9pvnTugZTbOa
Zsx2sc9YZz0AmQ+RPQ/0znaMPwvdI9UrVaN6Iv/72LO4ZobR4C1Dv5WUU8qt
stC1VD16fdp3TndPNeOL0GtoLdWIz6EHJv02Uc9X778QevbSjKpZdVDSZ6Ga
3C/pPWqvqiH/Cd1j1WtVYzvjT02gurZ7eq3YbwC9BTSz99dbLXQv0Qz6ddIz
iWYTvTH01qgK3Ts0M96Fn0757mom0myk/wD0X4BmwCvobo/cK5VDyiXVBNUG
3UndzRuRZ23VGNWaS5Fndc08mn02h551lHPKPd0Z3R3N2INVW0L3Gs3A30BP
i3339Z9EU9ZvmHLt0Z4r4Cciz9aq+Vng3yU9e6sn/lf3LXQv0Mz9FXSNyLO3
elhN8LqRe4l6XD3wnMizt3pwbuT/KPRfhXJKuaU3s97OyhnlTnXoXqiZ/0vs
n4r9ttKbVm9bzWCaxXSH2uP//wCzOZsc
          "]]}]}, 
      {RGBColor[0.9338744027801732, 0.704686006950433, 0.39501064861853696`], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHeclNX1xmcH3mV3ZtvMzrwzY0EJ0ZjYxUK1a2wgHRs2sMWaZk/URFDU
JLbEWFH0lxiUogK22LBiQUABQVCMXWNXQBT4Pd99zn7MH/dzz965731vOfeU
55x3exx7+tDTsplMZmR9JtNF9Qj90U+lv0ovtbV0y2R+KbpZdatKQW2PFDKZ
R1V+pPZLE/fZU3WXxL/Rfn3BNGPdUPDfPUTPq2UyU9T/+/ZMZproEQ2ZzMCS
2loymbtVPlGfPzf6fTnRL9S7/0ExzqMx1p169l21V/Rsu97bTZP/VH165zKZ
sv7uo7/napzzNf6ybi78Tr/5TZnMcv39lsauVF0fr/kUE/dZmPXYtG+q/ve0
en6vdvMc+Z1+x5U9/i81h0H6e6p+H6h6z2Imc4LqLyuZzK6iDxD9oeh39K5/
qs93etcpJY/XqrpZazlO44wW3Vf9f6b+Sytum6U+F+vvP6m+UmVNXSZzn+Z1
NXso+ts6/0b7ZWkm87HWP0H1DPW5Ru1r1X6v6Kt4r+iTNOajoidqzPFZ0+NU
l2v+7WjN4Tn1v1Pt26q9i9qPUvshJdf/6ub1bJ81vZ3qZ+u9rm1Ez1f/maLX
aY0nZz3/X6h+ud7tJ4kuJd5XzuIm7eeNKk9389neEPyztqtpeGatfp9ecNuT
msejmscjek9frTXVWEM1zl3qMznO6LFmnz1nvDzOvpM/oOExznZ5tFer5oma
6qFF/z5WZ7ur1nC22l/UWTykMkb0w6ofUzlB9OOqD1T/B9X/8LLHZDzWdoXO
YFvN7361P5czP9F+f6PP9eLYm7EN3p+lmvMSlSPjfE5s8Ln0CX7YV+O8p9/f
bfYz8NrRDea3DaoePy35Wc6V891Fz/bWnE7XXu0ePHlQ2efGezi7L7XGr+CR
ot/5Sr3fu5vaz9EaX9Iab9ffE1QuU6npHC5VfZvK3upzqfq8pT6Tsm6n33v6
+y9qf1/1vupzheh3RN+m87lV5QW9v7/2pKKzO1l78rn6TNS6ntU6+obsQG4s
ST2fgua/v/pco3E+1jg3aIxL9PutcZ7cQc5seIN5A7kxU/2OUv9ZqvfQs+eJ
fll0RuVgvfsd7UOd6KGi3y+bn3h2tvZwR/U/VP2n6PeBom8W/bXo3UWfK3qu
6MUqF4p+TXUvtR8i+m7Rg7SPr+j9R2rM2zS3IzRmm/4+TeMfLnqExu+nPluq
7U31X6k9uFploMpXKn9ROUClID45VP0PFv2NylUqB6msUrlGZVBi3h8Y/F+O
35F73bVn4xPL5E9UJqjsxZ3TmCtUn63ytcqVKgeqzNMe9FM9u85nMijOpT3m
Ak8jG/cP+fiF6j+p7Mc8o0Ymfqn6z9GvFGPD85+rvkLl5yptUf9b/VtU75OY
r1pV75uY1z6lLX77TOXy+O09ld8nnuvXkgX9Vb+uOb+v+oLEf69WuTbxvmVV
dlPZHPmr+iKVXRmn4L1iz7qp7E4/ZH7Bc2buh2hPFunvPqJHiF4ourfoxar7
qv5S71+k9ktUDuV3lXEqI1U+0u9/iHd/rHJxvOMDlQtVBrAPOosFDR7rHZXz
E7/rXZXfJW7/j8q5KruovK1yXuI5XBrniV5e1dXjfV1nPYzO5tzfUjlHZWeV
/6pcorKHyvddvQfNenZctB0ierrm/abos4KP0uClMWr/VGsezrx1H8/R3znV
v1e9Su1HMYb+Pl9/N6vuo3Km6G6qz1O9Un2OgOdEfyP6cNG/Ff216MNE3y36
ddW/5gy1J5NUn6ryK7V/pT6Hit5JY/1af3dNfQ5vxz5wPu/EvnEu78a+zdYe
TES3al1P645dK3pH3bnZFevEXqKfUJ9bRbeoTyHru8o9nVnv/uu0n29VPc63
ut/P6dm/it5Jz07RXJbpPb9RmVXv9vXqf7/ov4nOYLdUTO9c9L1HR69Qn6l6
djl7oHKX6KWsVeVo0Z9oDcNEjxb9X9FDRZ8u+kvRh4g+SfTnokcmvvfcVe7+
T7Uvv9Bv30nmvIb+VzlSZYnK5SrHqByv8pmeHaFnNlP/E/T3avU/RfUXah+l
9vcLHpezR3chB6rwbcE077tIZ7SYean8UfQS+BB+F/2a6jNUpunZN1SfqbK9
3nWG/q5TvbXKqaLX6b0LQ7bVVD4smOZdF2qcRapP4+6ofYjqDVQ+Ej04+i9p
ME078vvVgu/Iuq7WAcj/QZKzDchYnWFV57KVSiPzVts2os9QPSrokapT1Vuq
JLxD9dYqOdEt8ewA9clHnx+LblO9Xf0PY2wbY+6oeqd6382y6p+pdE18J7mb
TapbY/xd1WeH6L+9yjDpiL2l24arHlqy7kaHc26cX3c9+3i92/MhP3eMd83V
3h6bl+4R3z0neqToe0S/JPpo0fNFvyx6rOiFop8VPVz0tIp1Ejy6Z9nz6RVj
MifGRz5vF2tkvQv07DOi39bertDz46X73kD3tUkGy1Z+QL8tTG27d9VallY9
B+bylfrdqP5fqL5aa72qxWN9pL+vUvsHFdsl2KDYnwPDB8D+77QjsSFf05hH
aswXNeYbVa+L9S2reh/YD/Z6hziXCbEe1sJ+7xBr3DbOsbPv9tG/Mc6uZ9Zy
BHnRISvqfQbsf7Fsfm1X/brm/QfNf4nqean7r6hapiCPGKOtbBlXUF0q+y6V
Vadl35+K6lrWsgQZclPNftCNkj+VrG155FI165p+3bTn9SpHac2NqhtUjsnb
N0jhwRiPcTufo+4cj5p+61psZ2Nj8zfP8/tkjfcvlX461/Uq61RGafw/q+9f
Wiw3eceVokuqL2ryb8hUZC3ylHHwoTrsc7UnGq+rymiN80bRa2StdWrLqBya
9/uYM/vQRW1ZlcPztpnxK7CfsYPhB/hi2/BD8EHwc5gT88E/auesVHroHm1a
sA/HXPAZsNWQ0/As78KO5HfsHOQ6Mp3966qzOUdnlKj+Xvflt6LXqq6WLQdr
qkeWbXcfoDU1iD5P7Y2qMypnia5TPbXFvuQnMZ8psSfUU8N/mal1zsj7nhfr
LdeQaavrvA72Nqf9GKM9GqN+H0k2/AQeVvs3deY1eHVlnfmPv58t2+Z+rmxf
kb1hX85N3c7v2AbYBdgS6EB0WweftZg/huEfpN7nd8Xbz1a8P33bLSd7hkxj
LlvEfKj5m3FZy+bsp97zj2a343sgSzertx2CbPxxve0x2jeIu9kYspjxj0vc
H/lciDHZH2RqLfqMTTxOfeIxuoddVB/ylz5JjDkg5vnTmHNOdQ/4Qb+PSbwu
+uajfTP1aVb9o3rblg3gBLEu7O7usZbGaEdfNEX/utBTxZAtm8cZM3/OvD1k
Czojjbkhh8rRn/dWYg6vFWwTYw+jl9J41/U6q7+32HdCr+JHoFvn54y3fKX3
DxbvNqpvT2wGncXiZvsq99Tcf1jJa6/EHrLGUuxJY+hIdAF72xbrZf2FmD/9
2mM/mwM3Yo252P/dgm6LcbrHWTMO+rYaa8cmx1fBLm9I3I6+bo/58C5wJ/YH
zOqdgv2oA8KeWRm2Ejb/N2HbYnt2qbf9iQ3brd52LLZqUm97FZurrt52F3Zr
13rbrtik2XrbpdhNmXrbTqy9Mc6IM2+Is0B3r0tsd2G7rU9sv8EHW8S9yAXv
0bYm8Bpk2Nqq9Tj6/HmwCdHPpD/YmpmQ4TPjnj5V8Z3t3e6/Z4XserFqXY/O
Hyi5cVCb7x/82BQ8jLyfEbL6iYrH3Lnd8wBv4vfnK5aT/dvtWzXF/EuxXs4C
G/b7xHbs0oJ9HvyTJQX7afhobxXsE+IHLivYX8JXertgH3L/sPe+TWznYX/i
92KD/qdg/3O/sA/XJLYRsSHx/eD31wv29/Bzlhfsg+F/rSjYn8SXzMR95ozY
+1zwauc93yzuYGP06RF9aOc+NMe+4RutTewfnZLYd90nzrc5+r9ZsB+Oz4Zd
/11i2/6Ngn0zfDB0KXoTrKeicxqmu/qB7ma76MHgR2XbvcVG78nsom3/0UXb
62Bh+GvY1WAH7AM+8s45+/W75EzjLyMD8D/xlX6vehu1LwgbH7sf339BzjRy
A7sfHcH7Zmoem7FOvffDnMdlTHxpsFf8/W8lO36lcV8uGhMCMwKv+b/E7fgO
a9Tn16LnqU+fnJ9l/v/Ub79ptE9xi/ZjQz17M/oy5370uUdz6MGd1rPTRG8C
X4j+R+Ix8UFmqP3H7LfaZ4nenPtXtH39ZM5YSGtgsKeWjAWCGYInbZWzrp9X
MI6DjTCkaL/nbNal9lzJONaJgV33CLuCgo0BHtKlZBk8ot1t9EHXFyr26zI6
2y5lj5lVfabqn6l9bsFY7EONxvPu0289uROaw72if8SdEJ1v9DrAc6arfVPV
76j9DLVtlgs/WvRPct7z80VvLXp+wXv805z3ua1iP3BtzGXLnNd4bqP3gn34
pejNc/bLviv5+flFzxdbiDlPLdtHWaH2BSE3OYP5IXNZw7yQoazh5ZCznOWc
uBsbqp4bspX1PJ9YpmykOlsxFvOR3vNiYtnK+15IfA83Vv1SyFl44rmQEfiJ
z4ZMwX98LOQI2NUrIffh6VdDH8Ar9+k9++eMSzwZ+gMefyr0Cnfu6ZBN3I9n
QgZxXx4NGQfWtbP44b688aQnEusncLXZiXUbWNPjIfvA2LgvYKngq+Df0wMP
/4fW/Knu8xLt7eqSz2Ou6DsS05zLqpLP/iW1b1DwvWOcReKlSs5rp43fwE65
VxtEH+oNo53zPyv4HF/8zDjf9SXT61Tfrmcnhf08GR8GG1LtmwSPP6wytWjZ
sxUxkJLtx4NVH1iynz6kZNwZG3Bb1f/UOJ9pja+LvlP056KXF42TMT6Y2+2J
1whvI7/4jfal2Dg5n/UJcTe5o5wxdxG8ER0DLtct9oG1IpfAkzvjIS/I/jkI
LKxs7A05DLYA1sQZfqF3zVGfA8Fx1OewwP+Yw7NqPwB5iE1V9Hlxbkeo7fCc
eRusAsyCdb5SMBZNv5f07EDRb6n/0qJ/Zz/ABRkfjGt8znOAfqpoOX0s8r9i
PK41Nc+xVnBUZOEWOctD9u+wmOeowClZy8U53ynwtGVF7zl7D9Y4MtrB3OjD
b320Vw/ljQuCL6KbwBj/lniNQ+Iej471PlrzGc3RWVyaczu676jAqDaK+310
0NclbqfPZTm3Y0v8PTGOBd1SMR6ySvPsrfk8mHe/YwPrQg7sovYH8n4fsmFM
tD+p+bRrX97SfJ6u+Y4vKXve8BD8c73K2Jx1+ptFyxhk2+ya+7xSMq8tif5P
1EwvUPtjNevgl0Q/XvPdmxsxK+Ka2MDob9q5j1fkPDfexR1dGO3Y5djn9+v9
G2n+D4VMwNe8InC3/cqOxRFjJP5EHGpg0XG66Y2O8xDvIe5DTJIYEvYFMcaO
2GKj/Wn4hXvLnYVf/hA6FL1xUehr7nv3gu88WD38BZZSrBir7SLeqy85jje2
ZLzl9pBl6L5NQiei006MGNcm4Y8jL/YoGx9dVzUWNaXRmGl7xXhxvcYvV4wp
N4kuVYwpN6bWSxeGDATbAbMCx2mpOd6WKTkGsndizGwn6eN79PvLVevAP4a9
gc4f32g7ZeOC9509GRPrYn2sZ6OQmezFxtHn3LLv4/FFt3WPM2NeEwLTZF8v
D5x0UsgknsXOQRY/GGNvHM+y95cF3vo71Zc22j5anDMPw7Po+QtCHoI3XNJo
OwidfHGj5WVr2XZei+puZev1+rLncW7YOeDQ9MEOzJdtK+QCtxjXaD2Dnfi7
6IMdwfuwJZaEbTE/5BlyDZmA/U3MBV8B+/uPif2+XeV/3K27OVN9+4u+K299
21f0ZHDLnNfx61gL6/5NrJ25/DLmQ8zhtsT6enc9O0XP3p9zjOLWxDqdPTgj
9oGz/VWc797qP039H4695F6zn9jXiwJfxnfYPfTFblFvHv44fgH+AT4qfim+
J/7KXxM/2y/8UtrBD1oCQ8BPzwfdP/vDGPjZzeFrg1u0Bk0s6L7EPjuxrxmJ
7XriXTMTx386YmiJ7yU+xoTgc/wr4m7oQOIntyS2wfB/iKmhK/CNiT9iwxAT
uCGx7YQvQJwRewbM/qbEdhpxhhsT22b4GMTakFf4Y8QEsWHwsYlXYiPhtxNn
xHZCn05PrEfQa/cm1kd76iym6iwezFnv3JNYN2HXTk2sH9E10xLrRWJosxLj
Vfj5xEyxo3rGnmMv4UMSi8TWIh41MbEtSizi5sT251ZxLuAZ4DCFwHB4Hoym
Z9zRSSHLuJuT4s5Ob7VMxM6Y1uo7/HTINJ5ZGPYVcoK7PEprHNtqGwh/kHNq
Vnk4MWaED3hcq+0i3n1g7Bn+1JLAlpdXLHN4PzITP3fX2IfOmOjs8O/6Bs9U
KvYTlpWcv/N4rBP85Luu9nkHxBjgfmBK/eLZ/sFf+Hd7BU+BmePL94/34eMP
iH5PhI2HrYf+RI+iO/GL94nnH0rs97LeEXF3wHMonANYEDYvti9YNL75FoGN
/Dx4mf39UdwX2sEQdgs5U4q14d9vGveUM+0R9472XaMv2AV2emdcer/gX84O
/6Azvo3cQg7kE+OObYE9bhc0+OTWcWdzsVbuIvpx3xj79uBJ+BFsGXt//3gf
8ZYdYhwwin3jeXyFA5If4vDwOLH442JOzAdbCZsJ2wm5g/zBJgFn4p6OjDnz
DNjab0MWzg3sinsNfvVgnAtjgntxR8C+wK6QCeBXYC3YechJMA/OF7sFvAf7
DNsMbAw5Az4GzsHchsZdJ0bLfUeGwUPwD/cbfcEdPyvkOn7HeSH70SnIDGxQ
5AayAVsc+YAM4A7Auw8kltfIaOQlfAwPIyPhUfgT+YH9jQy5P/gmG3vJ/qCb
wAWRFWCDYIHoF/BAdBW2PTFf5BQ+AvFN9A2+APFc7s3v417kwy//NOLzF8Yd
g//HxdnBUxcHzX26IO4Rd2N8nNdx0R8aXYWPQIx+cNjfrIW7jp5gvawf7Bs9
hR4ZG+tCv4DnduBa9daP4Jk9ox08/N+JZRNyCVuJe8udxf9AXnN254T+xGYY
GfKas3gkeBe+xWdC1nNezZJpTSr3hu2ADsd+aFVbi8qMnO3Z88Om5XzIe9gl
+II8BmyJ2ep3Z845CuA3k3POZXlc9R05x9QfRe/nnE8A74MjoKfw+eAP9uYx
/T4p5/j9E6r/kXOs+pGc7R/sIGy0c8NO436AU6D7sGXgG3gGeUgeBnuF38O9
2DDO88E4U+y+M8P2w447O2w5eAqsAbuFuwI+0jPuE7gGMpP7B1aCnoIfwVPQ
X5wbmAW2Db4O9w6/Bv3PGbD/6HwwDmQXuh2cAv2OTga/QC+jt8FE0N3kjbAW
ZDs6HywDvY9uuiTWWNBZtanM0jsrqlOVf4suqy6pPIQdpbpI/DfnWMv4eBaZ
BBaDXEJXg30gy5j7CzH/8fG+5njnv4PGpgAfKUY7fbgfyKqHYp+5Hw9FO7IK
DAgbBtkDfoRsxN4Bl0EWc1Zz4rywEcBlkLHYKWA96F2w0q9D9zWVzbvNZcc5
iVlvnXVMkthk16zv7fs59wdfh0afPp+3347PvlXgIWfKZxlUs+/9VMlx0GyM
80LefjIyk3t3STw7J+/++OOHR/+Ns76D46L9StkIO6jtQBWSei8NfIPc1B1V
dso6f4W45jMVxw6JF3dT+8Hx+85Z56wQE51TsWzADkU+rGl3rP7nqmup3/t0
yXx4efjm5EKcHvqcODPzIVd0eMzp1Kxj+r1iTpukfnZJyTlD2GoNqePy6ENi
8de1ON5L3PeUwGnIUZyVd74rdsypsVZ+g5f3DP5hb4k1d886Rg6d4Jelznt7
pur4KeOAQ+ETj42829GBsZ8TORTdIs4+Jxd4dBf7mfi6zLM58qBaUudI4Yfk
U+voCXGmG6Y+0+e03o1Tty8W/WLeeAd7CO98ELz0Ut4YAXr2iLz5jfNnjyfE
GWNHnR77S54TsdsnK5b9Hb5L1rFBfI4Bcc4HB1+Qa0G8nzyArpFnlaTmg8HR
ry5yeLKqd9HfQ+K3XnGW5Gb0Vhkav8GHnTnC1zaZH3eI8x4Uz6yRnPhO5c06
YzDkgYG1ItOR7SerHkEeQ6tj+CNStw8nx6zNPiJ5U8TEvlWfIXnr5Gmhl1e3
uv2NOuvnqaGjiYPx3mF556iS50yuCe9aE/MZFjTxdnT+lND7x8R92TRrfOXI
yIfuo7+HxfrJKyDXgbgC+e/4I/iC5LSS20o+85TOPvB/1s+zf92jZo83iP1i
jzeKe8m58e6+8czG0ZffyuGP4lNuGH15nrxaeAm8g7PoFedVC1t1VJwZd+sX
ca7U5Nj0C94aHms7JfrdonFODN64Rmu5ockY072NzkkmNxmZfFzI52Fx73m+
Gv4W8gHbn/H7x5qGxz6ij9HLJyWe+4dxF8j3SSJvZE3Z+XA/SY09gUH1Sh1T
IbaybWrMCOxol9T+DzbZ22XjR+BIu6XGj8CR+hFXbXeOOjnstzU7B3h5ndf1
ZrPX1hq5j3upfrrsuNszZesEdAP5J+BN4E5D1L6+6tj6A+SJ604eqzEfqDiP
g1wZcjnIRQY3KaTORQYfLqfWG8QPwHzRCWCa4JlrI29vS/WZWjGPv1A1Hgou
2jO1LAEbBRdFfoDbgjP+p+q8ZfKXu9W8rvraD/n9+5eN0X3SbJxuS/1WT1yy
5vgY9PnxnQAxqlFlf/9A209rlp/vRY46uWCTI3fobrVNUemSdZ7Xlf8jF6CR
FU+WHeN7quycI56tyxoL5NsH8EDG4jfuB+8gH54coBlaz5Ea576K+0ITR5/a
6PwGchvqas6xf7Do+7s08u0ptCMHHi87pvmE6ukVy4OXqs55+lfMJ1/zex/W
OKWa96q9Zh+dMyW3e1nFNbneS6rWOfcV/d3G8U2OtX9TtMxaUfb3B3y3QBzy
0Yr7PKK6X7tj/eTagI2Ckd6j59a2+7sYvqf5umgZ94bG+bJoebpU9OjUcvKp
mtcPH5KLhtx7pNmy74Oq6fdV92l3zgB5BOTmfBQ6sZTaHl9dtP4j3wy5Rd2R
f5a1DqY/eMIx0Yd2MA+wD3z5lUX7L/8p+xsYvhl5V+/apd35BuQdrKrznWgL
nYZ8QFZ8VbQsXlZ2Tie5nbPUNqDdOQnkJkxrdp4/dtS8ivecvSfPaVyT79zy
qu2dmUXzI/n88ORdzf7eISt6QcVzf73q8+Rcwc35hob7Sz7EXu3O8SPX79WK
x2RsnuHZGcWwNcLeeFt9Ltez++i5y5pMb5W1Tp/a7DkvrppeVPV3FeOjD23T
os+4aIe3yOGa0OT1MSY0dim/j4tn+fbismj/edhv5G9OiHb67NfunC5yu+Bz
cvzQIQenlsODUueHzw7/i3vNPST/hO9jDsn7XuArgRWCJ5B7hk7mPAerPlhl
WZ2//wA7AzdDb6BDTvwf3YMuQu+ij9H75L9Acw/RO4NDN71btE9GLgB2LLlw
PUJvsgbmj2+FPQMWQfwZXYCfBcYM1nxn4nw55sZ8+YZjcMzz7aJ9R+Lq+JLg
nmAprHVUrBd9QG4q9gzxamTypmGTsHZ0x6pWjwmN34d9CJ6A3kRPYg/t1WY8
Gv8eHBQ89O7EunZI6N492twO9nBa6MoRoVOHht4cFTKcb7bAwsHE74rzGhSy
i9g7uhK/crc29wHD2Cby1PlOBd8Tew/859QYm/fx/j1ibthWrBPdg54cGmvE
thoe50X+JnzCmdA2LPqvChtrdeSXMj/mRn4p+5sNucGZcs/BFMcG3ZF/FLz3
YdHnSX4EMX/sAfw+zrZPnO9bRbeRJ0LMgdjD5MRjk0PJmOQpYAPgX7Mfu8W+
kVPckWep+oiSY2Z8q7e21XyJLG4ITJEcIb5jAwsGBx4eNg02FN9l8X0W3ywe
VDI+y7ePHxf9TnJV8PHxfcCd+rU5LkJMZHjJ+Xjk5R0VOpdv9chZwIYBB8Cm
agjbHpsrFzb/J0X/Ts4O6x4Qay8GJgq+TRu/gW/VwjbD1wNnwH8BI2pLjcGs
KhrnZo3EznOBv24Wd3fnsEfXhR21quLvPNFTn1bMy/zeO3iqT+zR0Gjjb2JB
rP1fiXMxsLXASXoX/b3GIo3zWdFt5PXQt1/058z7hm/wftE8Tr4Mec3rAtcn
x+qikOfkr4HldORwtjl/GjlOPO2CnL9FwVbiGxD0JjnF5Blj490ecgxsH/9p
u/gNewNdS170sZGTjT6cELIWWX1l4AelkOfIcnQTMgBZMCVxbGrvoIkLHB+x
AXyRxwK/wvacE37ooSG3uTvP1Xyerxbdtj7akUPII+Tda3ljbyck9o0eDwzt
mZr57pWiZRh+FPd1QPAIftC+qXG2fVJjbdDHJ8bBiE2CDzO/STH+rqllXka8
sHNqHl9XtO0HRoCc6BV1h/zO+XsqsI39U4+zn+q+qflxPTZV3ljUifj6qfM3
69ptR1ZiXPId+EYLHGVYrAX50y/uFv7m4ryxSeaPbYKeA1/FZoKPFhT9vQp6
bX3Z+Vbgj/ip+KbIghXxDe73QaMjwSp/kTivje8/ieO8WLP8XlS0/OBZdBvx
anBW4gVDUz87JLUsXB/59q/njbEx5vM1y+yFRfvN4J6vhzy/P/xc/GDwTXyp
Dv3Wah23LG/cDv+a74/APcE859asfxZrzKV5Y3j4X3uEzsGnZgz4Z3no9pVB
7xW6i30bHzoJvfFN2XGglWV/a0R88dvyD+fN+R8beSzEzzm37eMuwYt3xPmC
h4Cp4cPyfQDfCWCzHZY3De8jO7BJ8Y8PSv3sgan9YnxwZB3fF+OT44uTd4af
iA2Bfw2mgj9NXizvArvDhmBsfkeGcA+RI9iJh4We4v3QzIc7Sp/GmNuh0Qdd
g/7CBmbsgbEWZCHvxO//Z7PbeT824eExJvbpEUF3YgSsk3xQYgDvlS1DWTf2
z+ap7ZQ1Rfv/3KdOPICatfwstY32nfpsk1rPf4+8TB3n+RbbSvSf4CvpnB1S
21Bri5bxG8W8+d4Mu+j7svN5+PYMrIsz51kwK3Jy+A4NjJA1ZeLssP2xRZGl
6DfyTcGcwRuT0ClpYBroVnw0/DN4A8wFPjkgzocxmRP+DHYscpjcWeIQH5aN
85H7TnxkbOCZyPyzU8vPk9sdu5kXfcAb4WEwxgPK9v8PLPt7DHL0O/LzAwvs
HnoQGwDfh7vLXeWeNoV+JM5YH3pgk9A12BScGbITGXR84F7cT+5mQ+jofPAP
vMP5Yo9zP08K+YocR8ZWI85LvBccHvsPG4Y4CzoV/fjn+F6nELqqHLoL/YYv
0xq6qRw6Dj2G3sMX4z4hc7mPxAKwpSaHTEe27x54MDh17+A/+HCL4CNwzOHB
W/DYj1PzH3y4VWpZTnyB8Rm70PpDG3SH3dLqtbEu5BN/nxS6BJ3SO7VuQEf0
T82v8O2O4e+gb9G7+LH4s2lq/YtORjdzB7gL26W2dbB5ioHXguODw18UfiQ6
G9wa3BbMFhwX7B6Ml5gIdjx2Mr4ueoX8PuIm6HV0+sdl67n/lh2zQDayL59F
vuDnqr+Ie/Wl6jnyCW8Fo1D9dNVxBPIr0em0Lw+cArt7etFtt0U7sgW5gi//
Vdl38mvV12ktf20yHnht0GAyk5vtDyO7FlaN3byq+hO+aQXbbbffhv82KOob
AwM8qN0+Ed//Md7fYkxswOviXWBV6OFpRX9XBD6Ajb932fbTPmXH8Llr4Ar5
inP8cqqbK84/bKoYz4ImfrS0ZJxrU74xbHdsoL5i7Iz8W2KUXSumu1Qcl8QP
xEcAUwBbIH8TDAUshRxPcBnwGXJCwVPAVcgZ5Pus+2Nu/I8BcAGwpvlVv5f3
8/us6NNYcS5iQ8V4HGshJgWWRztxKNY6M/pzX1sjNkqMFJr72/k39525N0dc
FbsD+wN/+cqYC9+RTIrv3MjRZY73xXcla8LuwP+6Of4nA7lnd7TYrqX/6sDI
sf2wc+mDrUt9W/Sn7x2RA7MyMPiV4U/jV+NH8x3S9RG/mVc1L86tOj/u9hiz
MwcX2wHfAj/q1mi7MXJzyaNnLGQybTdEn+6RL9e51knxPR0424z4boXnrotn
vwm8CNwIOcd+0If/53FNPHNti/1z+Jn62vDV4XP+hufRXVcF3kt9ddj0/I+Q
q2Ov+b8b6Iwu7Y4vgY9xvsjTleEHo2eY28lR/z32ChnN753f/K2u++FbRmrO
F4wOOwX9guxmz1fGt338ztrYq5tiD7mP18Yd3DDywG+Obyxuif18ueT8N3JX
Z0fe6v+VHY8jttf5zRfxNeJzL5acs0reK3YlcWH016sl59SRM0t8GJmIPOR3
5GCnj1OJOPLzJecJky+Mncsz6FD0WHvElLE5RofOBecjHgAmhqwtRwyattHR
Tt4Bd4Q7zj3hb/QsmFxHLCHreNoR0X9+yXm85PNmI87AO4n9HRX9MxF/w95A
dvFtJPbeWaljxo+VLc/Wxbe0+F+HBh6FHbsq8qzAkrHrsc8mtnj/H4z7dXPc
i7Xx3SXjY1euDRpMAmwC7KLj/+K02LftjHFiY6woOa+RfGd8UHzRbmE7HhO2
B20dWG3Yj9gk2BiMPSb6g+8eHX2Y48TIcwOzvyrifK0VYy/EZF4rOfbQPXVs
m5h1FZs0tb8xKrXf833IoFeq1jcLVC+KHPGN+E499ZkfF37Q5NBHfEuDLOB/
w4Ax3NZkPJBYKHgxcdjB7Y4JLE4dHz0tfsOWxRYZp/YTU/PdSaonaoxbI6a1
smJ6kMY4OrXMPSa1jDo1xgL7Wh3yDn9oZfjU6MAbYhywyolBD46/0ZnEs+AD
7P+bQ2/SB9sf2Uj7NbG36M1nSo4DbUAcOTUfH5V63RNj7ceG/TQm1nJLtOOD
3B0xl+NT348TUmN0a0K+I0OwDeDJXmEH4Jf9P9pTqV0=
          "]], PolygonBox[CompressedData["
1:eJwlmHeUVUUSxu8MTOBNAO579943gIhZQcwSFCOYQJAcRMVVRMyoK4KyihmB
Xde4Z4/uAfa4q0vOyYCgjGQY0gwDEiSDIEmMyP4+vz/q3Kqu6urqvtXVVXXa
PY91fjQ3CILHc4KgJt/dSRC8URwEi/KDYG0cBMuAu4qC4FnGrksHwftlQXCy
NAi6FAbB/EwQ9IQ/PhUEtwBHwiBYDN0T+UHIX418L+gJ8NoCR+Evhb4D/jPw
r4XfFXosvC+BAeBLgNvhD4Z/Dfyp2DMVW+6Cng5+HusPYe18bGgCfhvQDPxV
5pdjz2rWmAI+Fh2/oKs18Bx0n7wguB58Cjq6w9vCfieD/xwFwf3wT4W/jbkJ
OnYWsH/G+rN+KfznagXBZ9APMr8m6y3FnruxIQ98Ejq6om8z+iaC92POtnzr
qJcNgk7Mn8X8lznkm9C/D/1N0TWEsSJ4/Rh7qEYQXMjYSPRXMfZEnvdwJ3Qn
1mjB/oZDVzG3M3RL6JHQ1dCNy3wWK9D3IHNvACaCj2H97vA7wm8Ofxjy66HL
0dkZe3txnpfp/OG3gd+IOWXY3wX+piL/k27gC4GO0D2RvxT5EPn+7P1ASRBk
wBsyZzn8vyJ/GrJtgEro0dA3gjeIvfZSxhogW459V0B3Zs8L2PsaYBr0OPi/
Insh8Bh0T87gAvD2QDW8/zJ2G/hNOiPof8vnwLewpxDbN2BTBXhbxjbA/xD+
reA7GTsX/ElkfgE/yPq9oe8AvgffztjZ4I/D/wl8L3A+9DPQBfArsPlu9OXx
/1aBb4ZfF9461lsGnmWNl5FfjEw9+PVi++IS6PrQ3yBTB/luyN8KvgidrVL+
51+x9xtin9XnGgPPBQaAn87+d4c+M53d64ydAm8ddF/oAuxZm/if69/P43/s
x9+6Qc+FfoD1+rDeSv5RhzpBMBuf/IH/14WxXoXeg/Zyc+yznAc8DP4U8h/g
Dwvxn3vh5zH2JLwzsGcv9uSz5kzWnyUbwDvE/jfzgUfBF7B+C/CWutPgk9HX
r3YQ1MLejujbzlgRax8k2FSF9jn5nsay4KcAy9A9Qncy9hnqLF+Dri9fBDZC
fywfAm8X+19/ATyi+xKbtwB4DHwN8+9BPp/1V4N3ZP2ZrHUfZ3BHxv9M/+4V
5MsUyxL7+ibuc1Ps+x2Zgci/DpzK3PrAK+BPAwH4OYo5KZ9pV/BdjHWUb7G/
aubXhX4e2bMY+xb+4Ni+Lx94BvxQZF+sz/mOA1/OnAGKF0A96O/5ZxXwVwFD
kb8GeFb+i/zV4MeR6QvdEHoLc69kbBB0b+grwFeE9m3ZLNvr8j/W5PsO6y6v
Z7+j+dfzGWvNWo9g41roifjAEPjfMf/MPOvMIFsXnbeBN2OsDvhedHaBPsR+
NyG7KON/tR54EX6k/YI3Rz4TO6YqtspH5CuVGft2FfAS/BaK/8gOlA+Bf8ma
72DPDOxrztyHgMUpx5CFzD8G3KO7wZwJip3Y/A6238//vhZ7NmTsSxuAl9F3
BJk+4A2QHw8+APk3kG+MfEvkT2dsJGf1kvwRfB3zK1OOGYod2pP2djtwAPqr
yL5+ABgBbzH2voe9s7D3SmxtDX8Cunpz3heEtkG2yOajkfesvcumw9DlzH+X
+TOZ35L5RfAHwzsLew8wP43M0FqOWYpdhbHPSv9oP/wPmFOb+SXAZuhc6L8h
/znrf4n84+z3LfZbjv5f4J2GvhHwXwRi8N+AB9HXCH3bmf808mOQX4q++5n/
HfwespX//T/wBsCrzB0M1Izss/Ldp4DfkD8H+x5Avjv6zlZ8gz8I3nCgEfiq
0LH5NeAU6Itix37FwIvl66w/rtQ++TD6DiP/fMp3qg7ylyLzhO4fcy4Bvzb2
3RjC2HW6/8ypZu9p5LeC50eO7dqz9t4EmYeR7cGcxoonjE2FN5H1eiF/EvoR
vW3wd7L2K7HfOt25H3R3oSeDtweOw/8z9v6z1HesBvN7w5+kt0jy8G+Hngje
DjgGnYqcC8jn5HsrE+dak4jnP6V9JjqbZ4FC8IHoH4X+OfhrO+a3in3X5SNX
gR8M7SuKERG6VkI/Ucv/SP+qQjaCDwMaQs8Dmul+KoaC7wn99uhMQ+YPVEzP
sczT4PtCvwVPQafhXxb77PVGXA7eFx0Hcp2j3QfePLas7nQz8NLY/+Zs6O/R
NYj9fKjzYk4H6J/Z8yjOfihn8C3v2aHQssrhYtbbz5lekHJOVjtyjFKs0pqd
Q8doxWrdkTDyHrXXvwDF4AszjvXrgBdi+6B88QUgA75DPpvymf0MPkcxhH9R
DeSy1lroGfDH82b8FjvHVK45lbG7FBszzo0LtR/wMvZQUeycMAGfGZqnN3wz
9LTQuYVy7CroyaFzU+WUy6CnQG/Ncc56Avp6zueLfN9x3fVJoXNP5XRLxI8c
azTnOvAZoXMFvYGb4E8P/RYqp6mGHqYYju17gNfAb1F8ZH5bZG7WXY+cS4yC
7q77xvy3FQvY0zz+x4XQR1lrP/OHxz4Tnc1MxTjwraHfpn7Qpch/zZqjOMsp
7OFy7P8m9NvRDX4u/BWJa4MJyPyoXDry3foEWMH5V8gfmVsJ/yS6LmL+3wsc
YxVrT+q+sf6nyt/BW8E/H9tHoHM7ui+GfhP5PtAzoD8B7gWfhs5Zytci381Z
yuFYb0Pk2kY5ajn0ItYcXeKcWLnxGbH31o09ng5+CfrfKrDOuejbEvnuzwGW
MX971rH3I2R2gIex31LlDGmdV9Zvse7ANvAt6GiC/a+ibyt4HjCDtVsg0xn/
2hg619AbmwPvIDChwDXKrZzf3sT/8k3m7wNvlXYuqDdqKXQc+23WG57EzumU
22kNrXVm7L2pRjpL+XRi279Gx83oOj927FSMbCr/Z2yMzhaZk+AdgNHQo4Af
mNsae/vneuw49AnVh6w1WzEV/DPVUMU+Q53lp9DT8z32Ofi2jGO53mS9zaoZ
VDtMh74bvCTyXVeMUKyYrfyv2P9c/74t9rwH/S7wneIJ8DZ4O2y6Bv6PiW1f
yZodkZ2WuPaUj8nXJiSuncbgA4fhVyfOHV5kbCP4kcS5x/vQRxP7lHxLNsxJ
vIbWkg0HoNuh4x/F/mcnwB+I7buqwVSL1Yoc+1Uzqnb8Xe8HvLnQ/cDPjf22
6s0+T76Udq6kO7oA/S3SziWUQy2EviLt3EQ5xiLob0PXvnqjayeuUVWr6g3T
W9Y29N1XTaDaYHni2nwc+z+OrhvSvlvDFa/h9YkdC1UDqhZUTqTcSDnbIOU+
oXN/5ZCBzir2XpTTK7fPiZxbN1FMYr9/iv1vVfOp9lPOpdwrBsaC3xfbd1Qj
qlbMi5yLqIZTLXdv7FikmlC14ftp50bKiZQbncg4V2mMzG7l78B5Kb+Rv2ac
kys3n838WtjbQ/6Wco2uWr0q8VulmKTYpDdbb/dEoDLrnoF6B5rTPXZOodxC
Oapy1fVZy6onot6IYp5i33hgHbx9kWOjaswOyM9MHLvUE1FvRDWjakf1YNSL
UQ2nWk49F/Ve9I/0r8YCa9C3LnRs053T3VPNqNpRb1QW/JvEvqyYswl8bda2
qCej3szs0LG3CgiwZzf8z0rcM9qFfDEwt8g9CvUqlJMrN9dYCbxdyH9c4Dl7
wBvG7m2o5lPttzprW9VDUi9JPSH1htSj6IK+xaq3Cl1Tq7ZWTaXaSjXTj+Cr
VJOnnPOtzfjN1ts9Gf5NkXta6m3pTc+Bly5zL0M1s2rnFcxZX+iegnoL5VnX
XsqBFmbtI/IV1YQnM/ZR+apy2hqRa07VnsoJlRvOj5xb6Y3VW6uekXpHW1iz
APzrjH1Ze1qScQ2rWlY5onJF1dSqrZVDKpfUmevs1eNpg+6lzElStnkleDH8
XSWucVXrVsaOZTsZK4L3SWhcMpLNL7MtynnbIl+Y2NfVM1LvqDL026s3VW+r
zlBnqRyhB+ut4Ew+KnEOcARfW5n1266xVeDLEvcCc/CnY/DbZ9wLUU2r2nZW
6N6AeorqLR5D/l/FfiP0VnRCvmuhewjqJZRFrs10R3VXk8i1i3o86vUoh1Eu
oxzjUNo9MPXCVOOp1rsKnU1zXQOpFlINo1pmGvurydo1EuPqKaq3qBpRteIc
xooSx3zFfuUAi9lfo9i9OPXA1AvbmfXbKB+Xr2+M3PtUzrgIfTXSfruVw/2R
yyXOpfTG6a1bHzpXUIxXrG8fOtdXDaZarFPoXFk1kWqjKHLuqpxVuevqjHth
ugO6C4rJis0jgRtZL5V4L+opqre4I3Stpxqojt6ryL1I9TTU29gVuvZRT64u
/P9EriX1T9rB35FYt85UZ9s3496RahTVKpsT5y7DgDasvzzj3pl8Vr67LTFP
OZpytddj55LqMVVwfv0zrj1VI6hWkA/Jl9TTUm9LOYVyC+Ucyj30putt15uq
t/XOjHs96sGWIr8ncS6kN/8W+IcTv9XyufZp1wSqDVTj7mev/wffpVuD
          "]]}]}, 
      {RGBColor[0.9505980241254547, 0.7464950603136367, 0.44685387478890937`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNm3e8lMW5x5c9bXfPOcv2c1aKMWKqN4kaMYkKKNiisSU3XqyxoBRjuRcF
UbCguZ80TVRABE0UYscCKBpNMKIGBWnWK9J7kSogoHKf7/n9zkf/eD8zO+/M
vDPPPPX3zB5w0ZVnXpFMJBKH1yUSNVEe25pI7K1PJH5TTCSW5xKJFfEsTSUS
/fKJxLh4Lo7Ov2tMJBY1JRKnxoCh0bY0+sytUbnM9ctjzP3xbnpDIrE4pfaP
UppvufsMiPf38cScfQqJxOAod7ckEgvi+3+PcdfG733Rdyffr4331UTiH9F+
QkElY6dFuTDeL4l+c2LOz6PcFb8vif5DY/yL8X5IUmsZ5PX8Mda/OtZ/c/Rf
UNW3OpQ0X9u8Sa2V/TD3ifG9P0OkoM0b8f6KaHs6fr8e9auiviDq/0onEldG
/c2oXx9zXhv1M2LczGgfEvWN0T67Qe3Uzwj6PhRr2Bv7vTuTSMyPNe0XfXc1
x36b9Y0hVc3/s5jnlXh3tb+VjXUm4/fTscfHG3Quj7GumGf/eHakdC7QGbpM
iHcj41szgq4Loj443s+Keb6I73zerN/rot+aKBMx579j7muiviqp8W3zcIY+
P85ufZQb4ukQ/WtYT150h4YDfC7QG7o/H/O0Bu3qY9yGKOfGWubFs3/8vjr2
+FD0PTr22LVG72ivzapeF/W1MealWOfqKNMx3xfxnTHx3Yao74v66KgfG994
MObpHeWQoMHX4+kQ+zgvpfZvR/vyqK82P3dO6z3zNOZVT8RzVVVjfhn88Fq9
1nZ8jK3Na5+fxru3o88r0V4bffaLNS2IdV4a53ldvF8T86/MqVxLPfq/V6/+
dyXV1vYu9jUs+m/MifZzYo7Z8SCEs1zfF/1XpTSG/rTNcp81SdVXR7kg1n1T
9NuvRt/jbFak9DA3Z7oqp70zD/tf5TPlHBaY5oPi94xY55NJ7WWV+9+Y0vr4
LmPa9hf1UUn1vzv55Z5XmN4TfBYfBK1GRtt1Qat1DaqzTtayymdRSou34KuB
phdz3htn+E7IRZd4f2Hwx2Xx/rpyIvFJjNsO/7G/6HtHlAPj3ebovyyt3/OR
Z9Yb5d86JhIT4/kg2p+McZPi6Rm/L4vn7WgbGf3+GvW/xPNO/B4b374xnpvi
2RzyOTb2vqVF7+/3GOabEM/7Ub/XfW9O6j1t42POblFOguc4u1jHrVEuLolm
0A46I0OrU5Kj+2P978V+909Lv25rkI7dkdOeN0a/lnj3MTSM/luj7fq86v2D
PvdG31vK4il4izk3u88m8yP8BI/w3fW5L/llnc/ulODje+Lbm1ok65wLZ3RP
rO3tRsnN1ljXb6Pth/G98dH+brR3TYsHmAPeODHmuT3mWRXzlNPmY5/7cteT
Qas1Idf/0yhaomufjfaPYsytMXZRlE/Hty6K9rODVl08V9dK2IP4bud41qW0
N3ihGvs9K+h7UvQ9IejQNfpXov/Xov8W9mu6dW4Rz3WO9mXx/aXN+kZD8Ori
qNdVNW6dz+X9qmRgcMy9okF1ZOHO+P68WHs1+t4e9TmNOp/vRv+60F/fjvKf
8fvXKenAswqS6QFl6cXL3X5NVfWfFnRem6yLL4jv3R/v/zP6b4t1bW2WfCy1
XodeDwfdFqVkr3oHzW8Mur0X+5ta1RmNLMn2LrX9pb7YsnZtQbx5e1myuNI6
YYlL7Ol7sf5bfdajY48LYo+dom1DrGV9PJfGuz9F+9xob4U3c6LbWusS1oss
nx5rezDWtivWdrzt6S/iu6VY58aYpxDlubHWkfQty24zN7abs4MuzLkixv8t
3h0VczQHDZtsA16tV/tx0b9vUTrkwzjf0fH7uSbJ27Qm1Z+K+q+iz8Los6gi
WkNz+Af7/0STfADODRvPGSFDW302vyjKR/mgIv/kC+Qz+u7E94hnS9QfiTke
bpIP81iTflP/PNb/aNTPLGo/m33WD7vPNUn5I4+5PzL/ifn7uvg9qUl+DfqP
7232tx712Pn2S/ATkOmNnp/vQEf4/4a8xjLHubGOD2IvC2Mv23LaI334Hu8P
jfoLTaIddEP3bHOfTe5P3+fc50nT+XnXZzZoPGOvrYqml5TEJxvtP1B+7POF
dz52+2c5+TLQFvpv9nfPS4pe50bZ0KpvnV2UfG/xPE82iVZ3mmb8hueedp12
5BfZ3ZaS/Tu5o3wQylPi+VGNyp/Fs6JeJb/p2yPGzsrIz0Q+3k3Lvh3h8YxF
LpCJTay/pH5TggbDg9Zvxbvbi7Jn2LV+wc/PxrjFoTc24Xd0lLwi4/iH+Ib4
wd+MeWqinBbjFmWlL5FTbMVC62Z0Mvq4Pi171yvmuiUpHY7+xn86NqM14Dth
Z7Gx+JRTgzaTm+SrPOM6tKJ8xu3D/A5+hJfgz8Nq5eNMdZ9d5k/aa+OMpkT7
WUXNM8VzwjvbbNeg0Q7X+4cuyUb9sigT2IXQD7+O+vUV0fy3Mc/n8bwZdDq5
qO/v8Ld6xfvZ8QyHzyuq/64o3YXe2pOSrkfnz47xz6TlQ+M/b01p3cyDXH0a
9ZOj3td6uxz7+O84vwvjXd+SyqfQU/EulZc/uhf+DRl/Itp7xrg36lW/JCkf
mfesjbV8HvURtfJpGf9ZSnZ7vfl/te00Nprz3Wp/YHZSfjw+/NCq4oL+JdEC
mmyM738n1rol6DykqPezrROmwB/R/la9fHzmwc/f3qL2bVFucKxCnFKf1zpZ
G3EGtCIGpN7PcQc0YF58oDaaRr0vdq0oXj401nZxSracGC9T1e9zov1g6Mx3
o98hrar/oFWxysTo38fxDroe/xzdutt6D598j2k4OM73gIzWek5S3zrbftxT
Xts7wQ9XBB+tadH+pzbIZ9vZonrvOK+rY46vxbMbe+/1H9Qq+aONOLRDXvVP
rZuRAXTlgVXRdFBJvLM9Jf7BFyCeeTe+8WKz/KITkoot/tik+GJorG1D/P59
lH2KsmeLY10nFcVDa6N+eI14AFsMbf63Sf3QMfAufDsI2c/o9/oYc2f0WRfl
6nhOjO+sib10qJEfgw+TjfYXgyZLY+9LWzTnkhbFE/TBV8fPog/6dXJV74bE
Hp9D/8TzYYP4gm+x1i7R/6VGyTR6k32hD9F/67z+4chCTnRCj09o0rl1qiqO
vjTmfyapeJtYGxv7uWk6sUn9sXfE0BNdv6GqWPvXJb2nHX77WVHnvbVFczMn
cfpp0T4n2ndEe8cWrXl5QTqatd4Q8xxfVBy4vEV2EnuGLetUo71AH775ruWl
tao46qIY+05V/RuivicnO3NKrb6JTm7jPfMPZwc9oAt98EGGNsoPqemoOr4g
+gM9g97G37wjI5+zmpFfh814jhg43k1LKmYmdl4V5eWNqsMHN8UcGessZAY5
R46Q85T11E3WS8TIgxvlp2NH8OMGu77Bcf3AstY4xGtmvjrPmXSdOSnrrev2
WIaRo3FJzT8+yoODXtlo+0bMPTDa/t4secEP+MI8MAJ9kBdP1IJHJKW3ajiX
pH53jnr3GsnNo1Xp0K4lxYzEi2fU6Bx5D08uw5cgHnD5QjzfAjdoVX13UVhB
Jv8l/pCx/0nZaB210L4zthndgQ5BF2Lbsdlv1WhPL3pfK1v1e0WUlzbq23yX
+Ag64xMfEnNPjXHjamS/06bhiHh3ZaP0XI/YW3figFbpGM6b+WtivtebpWuP
jj6HUEafqxo1th/+cDyDon5hUvHfVW7nN7b3oqR0J3X4p5DT/NTBRWp91ugI
+BE/bVfMc1BKuv294I8TgkffL8umMxdx2l1R3tmoOGRPUToRTGi/jOJEYk9i
kTX2c96O8ceBC5S1FnwD1oYehVfQpbmc6uydNQ5yfX5FvsUHIctvxvie+HBl
rXNGs9YKv6d9vmBCja4T03OexPXvlIQlzIsyCT6VFM/Ni7l6g+Wxx6owp+dD
n3wUcy9qlq2kzprZe7Kq8oXo81aMOYYYsizaE4fiV9D3I4+tc3xaWxU+BU51
HDFUTmPo/1i8SyI7JWFnyAR66RT7sOhhZIi4pd2WIUfUKTtYHm+IMdOjPjzK
S6J8Oa+2zjGuU05nhuwljPu94T74BvgF/8prHD7rPsdHL7udPujCPY6VwAmn
xjMwnimuE3O9ZkwDbAMaQ2tsF75tOp43Ys3TbH/AwcCswa53Bm/f5jp4NjZm
r/UGdruD9wvPsQ94a0fQ8cOg/23BI/92XEx8jJ75wrSaWxI+NKskDAheADua
6/NnjcNijgPjqYv1FfPywVnnLeYd5DeP3o32mdHeEvWKf+NzcV74afjjdcZ4
oTlygt6AzjPzOhtw7D80ikbzrf/Qe/NcsqZcXvPUej2FvOrrrCuhKfHiFNMc
XBEaJ0xr9CM27k+x5w6x524lxTojbcsZ39n9xuSEqfcH2zdt2PfpNdK3tO1t
UDu/+X4XjwfL5Nt89xeOcYh1OhjrhLb0PcI6nRiLelf7EviE2M35aeEz+C61
ft8+7gyv5TPzA/3BmOmDrAyPc+uWEW+BYU+Op388rej5aFteqzpnlkqLxrXe
B7RnDn638zFnQq7kt42K8cp5zc3Y00wPaAUPzzLee2VJ/JwvaY2fWXbgXeSN
eJM4D2wHXxC/g+8i48TKn3lf0GOP6894L9hl9sNvfITupgdrwW4/4z6r6kUr
dMXdOcUc2MiO5p2atGwJeh3MZIaxWTDa3fbpNhsTAH/BX9ruNvCE/hn5iB87
5ttk3/WXRcXnyZDZZ5PyCfAH8APHYJeS4rlOttfdzTvt59vF582+d1u3vFKW
3utfVHzwcqPsJz7laM+Lf7WpWTSYbPpApxfTwuXIGR1uHu9sTOBk4wDzyFPE
0xz9piaFBbPuKUnhyPzeUS96QSt02yDLWiXs0Iz45paC8hX/alQM3s+68yLL
8kDzUjn6v4JfHf1LLeq/sSDbTtx0sNfK/Ph+R7ba1pfE13wLPibGJT7YYiyH
cyDunmwas+5B1sfMA00GmDc+rdecnCM5Hto5o2fNW/AVvlsbPYI+fXPKMSBn
4BtZt2NvE5kvbe5N9kWJvaY3yjf8Xqts8/dbhV+S0wKbhO8YR17jx63yb34S
ZT5o8k98iYLed3OfQovmXFuQrqcd/Y7fcmNe/ul6Y+ZgZnVux5/JeG34ANiB
EfY5yXWQIwHHxgaOsE1Z7nWCr65yH3BV4teb88IrO7qObh9Rlr0+qCS9MtL2
gDwee8F+drGOqTUPdrDeRpffkpc96ew2+pXcjt3p6nHoiFzQ4R8x58qCbBS8
hH3aFPU349neINmnRP6JI+mPrSZfyjrR75QdXCfXgk5v0+9xvv07SnfPDJn4
d1b90MUdbEf6O+/CmIUtykt+GGWxRbK5PtZ2vX0O/A38hX72GQ6tCMc5rCL7
hx0EV/leRRjZ9ytqe8P9j60op9I7yu4V4V9HRLkreGVb1P9YES8jn/Bzj4qw
s55R/qQiXOzIiuzPW/HMSXr+en33tDjXHh2FuYA7Eyfif47NyTZDn6XEyfit
2LKq/F5wiCXOT80piceIG4gjwG6Y76dF8fXBXh86BluP/8D3Z3qPHxfkczQa
P1hlH2+t14tvcuRXznad2+Z5nffkNO/RGZ0lsdHXK8pnHBjlNyrCMb9ZUe6K
HNbPo9xckL3MVr70OdBRB1SUOyH3QiyCvgADKdlm4uewlnW2MS/7vDjPDZ4D
/+c7FeGz341yRlp5c/yjgvkdG7Tb8TL2hhieuPrUonAfcCgwKPIHYPVg6eh8
Ynjs0egYMyon27yqoNz5vrJ4ljbscodWYcX7wIey4oHVHotdxy7WOQ4jtl1R
EP7yWcyzrCA7t7ssP7S7sSD8+H7W7T1a1U7cBg4HrgcWN8D2Z7zjI3A8fL8m
7/upWuVUyHGAtd5UFJ2PivmWFJQb2xnfrbQqZ1xqVY6ffAeYIbgiZwTGiJ6r
sw7cv6L8Gnk2cLdXzdf0qbE+xNenLxgmcUKN/X+wB3Jq6D2wEmThuKJwN7AX
sI59rYq/iMPIDYPx8Z11BeF3dciaMbhk1B8Nmj+S1bq7VJyzA58sKMefirbG
qmLk96O+p0WYz6ctih3ZC/r5dGPg7bgLv8EuwP53GJN5vCwMZUtZcTq2Cjt1
dFa6BT081XjXKvsOT9u3Yf89nAvAvjGWmJ8cFTmpZbGeIfHNB5w/5nnAeWLu
PRDzrow+D7odvcDa7vJdDtoedP6aMeRKiUXxE1kPPDk0p5xB27ussDnW+R8V
zXNwRTahYLswxn4Ve+iVla7D98D+T/a7sfZjJtuPmerfx2SlJ7EdxCnjHO8c
XVH9qCh7ZKWrseNHZSXL2JFD4t2oqP+gItzyz8YqkafRlkfi8h7G8J9zHon8
HRjsKGOzxGF/cS4e2v7FdKP8q+tgAAOMCTxrvYdOfCEnvwRMFj+d+Ge+/Sz0
GD7PQsfcyCn8cFhe2M2hedXhjameD73A/RNwTDBMePr8pPJUyM8F/j3FfZHz
h7PCIKHzy2nd9wGXnOz3yOkb6Evjxs9Zx7IH2urcTv73EeeAyTeQa9jQojbe
YXt+1CobMrwoPpnodvhpovmQ8m9uH2d6sT/meMjt0JK9HG8asgawv3xOWAxY
0QT3BwPDp8a3Brd8yOsBn+yYEybThjnF75fSyhXvcDyBLf5x8MfYOOsfVZQr
GWNsH/5ARxNvXF6SXeC+VV1J+Sfu5oC9Mu/ZZWEVxM/oz5qS8rvcI+Ob25xP
b79PdkZZ98DIv34RNDwmvn1ffLdXRT7LePPbsJLiX+623Od27CL2ZLTjJXIJ
5BQ+iXk2lXU+75aEXdznGPOyku53cc8L3urkdZKvHJVVnrdPRjofrGBrWfcx
RhrHIj8GTrgoI/uFrhid1VhynfAU9g4ZP9DySvwGPneH469a060ueKQpJ/yR
OcFFWA+Y28UlxUHcUzgyK3+AmO2TjGQVOQXjButOxTzHZuV3EWtAX+4tYKtm
OBYjJsPfxY8Er7q1pHiWOwtdSsJpwWvxocbaP8Gm90L3xLO5Wbx1v+XtGMsf
8tbb8neu2/jdMyvfj7iP/OdY3w07332R0W9XpIu+VdF53ue7QAOMa+APcPbo
bnCcCzyuHW+Ep5EPcNG8+ZszJu7C78GeI1PY9JdMF3ieWJO4E/lGNxetnytV
0e0fBe2VuA69dHhFsvDDinKw5GLxAThz7kzAM+hizrvWd9yILfEvJzlnS+4V
WSIexnd5Pq27Fm13JRv1vWnWWwMsp+DPh1rvvZ6WP4HPcmpZORbub66s6MxW
VRQT4R9gG7kLhq3nLLgn8mfnxYlH4RX45PmscBAwkLXNuhcE7o3NwBZio8Ei
uhuv4M7Rfc5zX1MS5sM9nU4Z+TfkTMFUptk+7v0KjnK6sQMwA769v7GdtRX5
W+sq4m/WCC6xNaNx2PekbR6x21bjAsh7tqR7kxeXdS7QGFpzPnf7jLjjOcq5
fO4N3eX7B+S6kWfw4u7GXJh3f/sdrPtu+6t8CxntF883k2rjHTRBPmhHHsgP
vmr/Ct6Y5PsP0ON5Y6bIFXEF+OGJZeXCT4ryl2VhH2dFmS7pbut5ZeHNT6V1
v+8c53RPKysPPiWtPOuZZfHTz6NMWSeQB+Me3zjfM2B96C7ks6mqc36xIL0+
07qd+1vtGDkxJO+QQWzlLt+P7VMWzcDaq1Xdm/1nQXHFEcaviHHxV9B9r5UV
Aw0KO9jSKlyi2qq4Ex2BfthsPx0btNMYEm341vjYNxfFD3sd14Ar4Ovg55C/
gm+R8U8dU9JnhXGINY6ptxl7YU1djQ+D5eCHwV/gIpOMX5A34FzwRbpY74LV
/LQsvL++Kh6Bp8AfrrevBM+16zuwC+5acf7cZUaOkWd8yHafhjrjGH+Dxw/z
76lp3ZPj3gS+D/4QeoA7lNylxF8gDn4i6kd3lG+Ff4BvcHpVsUHK2Az+9E7T
apL9cHJQj+eUb6J8wvVJZcnzJ2XhEPiR0I7vL/E9mdFe73D7VsTqyPsa423Q
HbnAfhAPTrVfjI/FPbOR5kH8XnJp5NGS9gG4G/5qQbHxzLL013m2LRuMgfGN
9rsgJ5eVByc+JzZvLil24a4ZcjbPsjbG6x1h23WO17fV91+Ym/s54AHEetDp
SdPqgKrubE8vyPdc6z2Toyf3xt0nzgA6Mv8TZeXStpUlo1N8XwP6LXYu8jDr
dniBXFIxpzNBxpApfAj4Gz+MGJCY5jXHhvucQyeXjj6AV7h7wT3BMb5zw73R
sb57BC4ILcAxzqgqTssEb5xZld5uivpTJfF/j6psLbxKf/zNF+y3c8/xUutA
7NEXvsfOXUn8gmJVsR50g0/xi980bkM/aMjZcK/hJ1nRjnto0A/eAWNM+Hxf
KQhDed3+JHTCL0JOu2S1Vnxx1gXOxj0C/CRktVdVfXpWZYfb5DstO9PZeTRi
gcn2+fGzuDMKPvyw7zXAb9ONdQ23XGKTL7R8UhKnTPB9B/ipb1lx0ykF3V/m
Tg6YCOeDHD/tOzvE5sTonDl8Af+Dub1sDPoC27Gh5n3wlGvddoHXcb7f8w6f
d47jfeT4cesEeBn8An7+A/dxgxaXFuTL4tO+XxIWha9FzggagZkybg52MKOx
yOJmY1Xc5cAeEDdxPpuMc3EHnPnBIedGuStj/zkj3A/dzT3E6WnFftvdjn3H
ztMPvU3bVrePMVYGpve45QP5Ym9tOdKkaDbduGU2zntd8Nh5Jfkz1MHLiRu4
rw8Wig++0H44d2rIXYGVgiG3573hD3htjfUtcTi0vbWiO9X/V9J9Yvwm7qlh
0/pa9+JnfeT4Gt6kHRwe//a/copZ+rtOfAMfMD9xP7Z6meN67nYw33eq8rmW
O365wvfz2vPw1E8yL5xv/oCHrjd/4m/c4/P9lfn4uq/wMb9vNj4Or7T9lyIl
+4nftNixP7pkqX14zp4Ymlj6jrJkEf2B7lnimBGbvNb0x+da5FgJ+wpdkXPu
Qu7I6F4NvjB3m8ENWU+zsfq2nENG40Y6D4jfCB4Jvgm2We88a1ueLCX6gnXz
Dlx/Wa1oV7afz7iysVHOob9jSe7BotPRR+h/7CV2lj7jjaFz/tjHld4j+8P3
YI4BnmeWc9ZvlbQOxo10LrLkNQyrCP+/riKZxZZjf9GP4G/oJXRpT99ZIrbD
Z8Z3vrEiGbu3qHGn2XYfn1E7cgd/47tg2+Av5hlnXYb8IEfgzcSl6GFkmPWA
EaOzmRf5IhaeYz0woqL63f7u0e7Deh81tsK9LDAUdHNzi2iFT9HYIpuIbTy1
oPuR3KM8uSC9wD3lC40hcJ+Lc271WYPvbbId61eSDurku/bclScvSZxPvL8s
yi3N8qWJ3+CjrHmpY1U89lJ88zdlzXlbWfYh63wAd1c/cXyNfcBOwOvcgd1u
vcQZtJp/BpZ0/5B7iNDhYZ9dzjLFd3sV5Ktwj7U9F1XjnHSLeTjdIiwUTHSe
77os8J5ob/sfQUo0RE8xR848f21Juox7gmcWdAbcy0Pux1p/8h8V/KDLC1rj
Iz4vcrTgAy0xx9mOL7griq5Hp8O/Q2yH0C9558qvKsmmYd/wo9jD8eY97hxR
R+5uMc8jrx+U5Hvgg+yzv4Xso+9yphV24zjPA40Y117vYz5Exwy2nkEnDbFe
4h7Qse6DHh1mXcp8fTwnNq23+7xXkp+Mv4w84I/iJ3InqJfXdlBFNqNbRboU
PYpfRHxEbHSzsQowC94NdH6feAiZH+C28X5P23jjHGAbH5bkg+GLPfAVvJnc
Ri/z4acZ0RR6TvAdfHwUzr5gXkI2WNdU+258j/gC/XqM94JdGmTbxL0bchbo
vO1l6TXsG/4tGCS4CTHsaGMc4KDgJWAUm42tgbGBC20xVgKGsdl1MMNRjpHn
ej7Gk4sH/wX3JR5Axtox2in+NncaNxprwv5cbRvUzfgWcoMfAY6HLwGvwX/Q
p+D/tuSrsinYE/iX9bAWzgycG4wE2pL7xs8GNyGOJ27Bv8WfIM4hPuMcOA9o
ONw8wrsDjG+B52CPwaC4m4ePDK7Xz3hhc05xN35Hf/seA4ypwCuNOfUjLmEM
v6lTMg/YIPE/8xB7X+Y+tC+zzUNO8alvd0yCr4R/iW/JHI1eD//xmmhsiPmY
l7VdbhwNDA08H3wf3C1V1b39vxeU8+F+JHaRu28l+2TgE+BNzNWvLP1/SVn2
kf4jfabg0kO8LsYSS4PDNHv/0K9gGnauCgMBC/m986yvloWZg6eDef+4IHzk
Kt/HJ2dJvhJ9THwCVgavE/8T+3erCi8CN3rI84CxP+D9kr/ARwEDAv8B5+a/
xNzzwU8ves3wHf8NJmc6yOvGn8K/Jw4gHsBfG26fjZjiPPvwYJZgl9yNZN9Z
nyn4zQb/t2t5RbmZFRXllaYaT0NGqM/2dzt6nhvtP6K/brNd2+h7vDljpAPc
Hx8QWYLv4fn/B4YrG0A=
          "]], PolygonBox[CompressedData["
1:eJwtmHeU1dURx3/swu7btwV8+ytviYggUcFuEqMgK4YiICDFWLAkgqBRmgZE
sWACxiMnIiIxQsSTY9SDiUERAiggZQUVKcsCK1KkdwVcytLJ53u+/jHnzdwp
d+7vzsydeU36DO45KCcIgtZ1gqAuv3syQTC/MAguTAfBx1EQbMkGweziIOjP
WmUcBMtYawPvZmA5+Hb4n8J/BH4V/KeApfAOAPdha10SBA/Du5RNvgGfVBoE
K+F1ANZGBuG3ANXgp+DPKbbNHdiuYq0dvPbAavCGZUFQC29BQRDcC90N+RV5
QTAjPwiOYX8s9HJkfwOshN8/DILBqSBYiPz56O7Ap3n4cwH8j+AfgF4EfRH0
/6Dz8X8L+ETgBvAR6LxfEgQb2KMYWy2g83KDoB5rl4HnAhvxpxPnuxP+N+gM
xd7bRUHQHV8myL+0z6CzvIj8l+jWwadxoX2Ur22BSvDdnLkjtuZicw/4GOQr
kS9GfiLyEfRBeG8h8zvoDey3Dt+OsVYG77OMcX0jfas/Aq+j/yryHTK+I93V
y/h3C77tYu0z6MbsPy3yHtrrAN/rL9BfAHvzfKcj0C3A3lZsz4DfFd589M9A
nwWawnsemM1+5/Q94DWA3g9vNvI9kS8ts+/fsxaCr8NmFfb3QdeHDth/Fne5
F7oEui78zez9d+BX4CexuRJ/x0FfDD03Y13tob3qAt+BD0FmLfw86P45XssH
P4V8Jbzx6LeAfyRx7CzHh658jy3w58A/H/5U/D0EXQHdDHom9FlgE/hrwBXo
fwp/S7G/ib7NaehVyE+AfyX8NLAV/B9Aa/D7Qp9tD1CM/K9ZewPeTXyzvNg+
y/c3uJ8u+HOK/TbCfxVoDm8v8Br8XcTgF+x1AlgBPRZ+U3iPYT8fW1/xvfuh
W62czbOPqTLvqb1H8U3u1V3D34buZOU0+FnsrS60T9dBfw+9ELop9IzId6y7
XoL9PtATgABeBWsHidcT+PxJsWvGVuhNsXNHMdKkzDVEtWQk52uL7HlljoUn
WfsWXmfWliL/AXfyA3czEv5MzrMeejD+nlEMI/s6e16L/EvIfw1eDnyFL3ch
s6nYOancHAN/Wdo1S7VrG/pz0W8E/SF0r8ixOQf796NbD58XgVfjw93o7kN+
AfJNkJ8eeQ/tdROwFHwce2zGv+Xcx+MZ1zjVOn2DbdhK4NeAz2WPu5CvhL6t
gc94Bvvz0Pmx2DKSTfBhu2KxfhBMge4FPRrbf4CeBj0A+Um5rgmqDT2x8T7f
cgpwmr1/C/0B+DzOkItuL+h/Q38KnQPdHv1hOdY5g3x7fLqPfG/OWjvw5mWu
bYohxdKtrD2Qcg51Br+WtQN5PrPOfgIbQ+G9g72T4P2w/1Cua5xq3XLk16A/
Gf/nQx9PLPse0APftuq+4E+BXwF/NfRM9N+FXlTmM+lsOoPOsgl6NHgFPnwL
PifjWFbNLUT+k4xr8SDoOtBV2FuH/bext1D1mjv5GP0ZwF3YO4eNqeAfAXdA
z874W+jNOofsbZy5b8pn7KZaDX8633I699kFujfwKPyp8O8GvwP+zhzHrGJ3
SOjYVU1UbewR+W5U41TrvoRunXaNVa3djD8v4ss78Fthqwb6zSLvqb1/TFyr
tHYYvEZvIvpb8eHHyDVdtf095E+CH2HtZ/B3wj8c2aZs6xtuRH89MAr8X6y1
VPxGfouPq8aRX9/B/zzPPm0BP5s4llSzb8f+EtmUfejF4DdjYxr8icgfTHzn
unvF8DLOewiZsrTv/CD4isi9xFFgHPt9HTm3jgCvxL5j3bV83AC+AhuTsfVP
bC7A9prIvUEtMB75l4Ea8MPAWPBVkd/WY6qhqm/4/Gfupzs5uAr9TvCnFbhm
qHacht8vxzmqXC1B59m0a6RqZR19E/C/AdeAd+W8QzjLfGzcg60Ua8PT7iHU
S3SGPwD+HPh3wC9UT5H2m6C3IUc1O22bsv1t6LuKkG8MfQ6dQWm/OXp7TiXO
HeWwcrme+o2030i9lT1YewL9CvTvR/581kLw71irxvYFsW1vg14H/RQwCnwt
a4OR747+0hz3POp92iL/lvop6Pqxa5JqU2PuIJYu8BL6G9Afhv7+xLX7K+6s
U6lrlmpXLjK3IzsUGAm+CvmByNcm7pV0J7qbC9kjhrcLmfXIroYeoPcNmY7w
c7LO1fHId8LXPYn3Gs/aPvADid9O3aHu8lDiWNQbqLdQMaXY0pvwTOyYUeyo
Jx0ZOwYVi+ohnwU/xn6n8hxTtVnHkGJJPd1zsXtc9brKgUXgfYCDaef05+Bl
6FQWuWfMgvdn7ZDunzOO4PyzIn8brf01dswqdvWmPa3eAf/fzXcOtuM8OxLn
9mLoDtAtsZlL7B6Fvh78tOpR2j2DeocXsLFe9UV3xPccG7l3+C/0K+AngIfh
b1DOgx8D+qWtcxS8KPFdqIYUg6cTx45qTiH4VexZy/lq2P8K8G9C1yLFXCN9
n8i9t2JKsZVKHIuqAQXgfdVjFrhmqnbuTXyX/+GM5RnXJNWmD5HpELmGq5ar
Bqxir6ti91qtic8A/MbYvdYa1W90GyJTXeAYHQ1+fezeXj2Oep1HWRuWsg/N
sN0mdi+0Fn7A9/1l7N5TPYd6j7ac8bqUY+IF+MPRfx66Cv0odE+s3lhvRm/o
q2PXCvWE6g0/V47k+42viDyDaBbRnW3PuAdXL66c35mxTdlWjo4IPZNpNlPN
2J1xT6LeRDVgb8Y9mXoznemR0D2relfVsIMZ55xyTz4/Ab++3qAC14wBoWNS
sakYVizvVE0tdM+xOOMcV67XcIZGyD8Yudccjn5P+HdGrnWHiMnfhz/1jGnX
xP3wL4rdq7bkvmr19vE9r0H3ON/jeb7n7sRvt2agXeA7s56FVANUCw5DLyl2
zN+QdU+l3kpv8APsdzFrJSn3KENLPSNqVtQM2C90jVatHgh9K/6sj93rqQeL
uf/2pc4t5dz2xD2hekPNUJql8qA/K3BN7wueBhYV+A14KHTNVe19DLob9m/C
/pvqrdEvit0zqHdQT9VGfGw2KnEPrV5aPbR6aeXUleAhsAx8hWoavj1b6lzX
N2sF75LYs1ArbJxE/7LYs82N0GegL409O2hm0uxUXubc155twJupJqY9Q2iW
+FOp70IxXo79y2PPOpqZNDvpTnW3mkE1i2pm1uysN+0H+M+oX00555R7w1WD
izyz7MFWs9Czbw7wHLoDQ8eOYlCx+Lhm0iLH3A7NH1nPorrTy0P3bOrd1KPX
C10TVBvUw97A/l0y7sVmI5OP7j2aR8C/RD6FfO9S82apJsN/tNS9i3LySfZL
ZS2rmfreUtdM1U69SU1i9/jq9XWmFlnXKNUq9RAdI/es6l3Vc64J3aOoV1EP
vFJve+K3TP9x6L8O9bzqfdXzbgldQ1VLjyNzDfjVWeOKecV+deLZ6RLOeD17
XxA6FzexNgh7D4eOPcWkYlM9jnod/UdyDv6DoWNfMaxY1puvt1939rTyJ/Td
6A50F6048yTNT8RLAfgvYs9e5dC5sWc2zW6aOTR7qEdQr6CZOcbXKOv/AhTD
cdYzl2YvvTlbM7Yp25oxQ+TrYKO68KeeA952YEyhZ4qKjGuyarNyqjx2Tim3
9B9OlLjmq/bL55axZ2rN1prhShPnkHJJPcgwztofuqrIb3SSdUwoNhQzip0g
6/9ONCPUAb+TtelFniE0S+g/Av1XoDdzc8ZvkN4i/adyXuIcVC7qP6cGib+Z
vp3+Y8skzlnlrmbS+ol7GvU22qNu1nequ9U32Ba751LvJZ8bZl1DVUv1n0VJ
4jdcb7ly+ufI/x8NpQpv
          "]]}]}, 
      {RGBColor[0.9673216454707361, 0.7883041136768401, 0.4986971009592816], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmUlNWZhsuqlq6296q/qv8ywiQGdUYRGpOMGicakyCLK5DFoIkCCnMU
aHCX3cQZJ0aQACoQEpczoEZAQRFBFLBZAmjUcYmCLG5BmCQ4xyWCKPM9vG8f
Pafvufe/dff7Le/33v7akLYBo7KZTObhXCYTf5mV1ZlMqSmTmRaVY2szmRsj
LYhy/8ZMZlY0mBTpmlImc1bklxYymacbMpn2Bn0vrVMf2q+KutWR9sZ4A6Lv
XztlMrOjzYRId0W6M9K5+UymOn5fV5XJTMxpfH7rF/X5qF8U9dNivNsjLYr6
86K+Luo3RH3/KNdGeXuUd3XSGnrnlK/1eh6NfEmkj2I96+tUfiOrNk+7/fLI
V0RqjvK+rL4/ify4Zu3hxJz6MdZr1drTKo/Pul5r0Npof2yzxqXudde3Rl2P
SFvi+7FG/cZZM+eTnndOnPcdkY+PtL9aZzws0ptl7e1bFe2JdfPdN/aei3YL
Yu/lKL8fdc9G+4eiXT6+j08ymamxtll5nfuvozw1yu9F+buRZ6Lv+Oib1mcy
Z8T3waifGW3u91hdo76X5+jl32dE+4NxhifE94fxvbsm7or7izStonWcFPOe
FXlV9Lsj2l9ueeFut0f72+K3T+K3PvE9JNLgSH0jDfV3v0iX+XtyjDku2o+O
Mc/OaSx+O79R+xjmPpzZOGSjUW3Ocf8J/u2dmHc6e6hW/4n+7a1OuoOC72K5
y3/M6a42Rv4IdxVpa8jDvMjnR3o+xnkmq/o1kQ8LXdgUcwyPfE2d2q3O6oxK
cQbdq9SP+tejfka0WxzrWRr7uiTKa6PvpZG3hQx8HP0/inR8/H4gp/4tkT6L
8ueRylWq53tbJ62PtbVW6TfaDonUJ1LfSO9Eu02RNkdal5Uur4/85GbVvx3p
qoLujjs8Kq99vxXpt7UaZ7DH6lGlebIhG4dFSqPcHHlTpH5RnlWrNvT5aezn
qdjXoMjz8Xt1pJ5Rf0+T1km7p2L/K2K+fhWdBWfSK8q/L6me35dx17HH/4u9
vleWbF5fDB1m3w26qw9i7KpotzD29UmUD4/yxiifGns8JdKuBiX22nF2lN+x
bm61Po6vVd9xtTprfn830sEYs1PUvxNjTq5VeVKt+rGOJNb6aU5zMD72j/Vw
1htjL5/Hmn9VlL5xN0MjjfO58p3EPl+IsxoRbU/Pq35sleSL+92SVb7Y5Xd9
n+j77gadD/OT7/ZZXRVzHxZrGBP5W/UqX+0zoR33e1pea2M93WINa6LdX9M4
E+s3cvu3+H4m6v8eef0RupeONY7zOhljvPfF98wq2Qp+v8PfVTHGBssAex7v
3xdWyZavr5LNWOQ+GdsP2g1K5SNmFGXvaIu/yNsP0GdAKls1Jdp8M9X6xxd1
1y3WDfrsqJK/wIfs9NyDU/mR2UXJaV/LedURkkl0EbnlPEqef6fHml0rue/t
OVot2z2sM+gC+swakCn0ptV62jOVvp+Y6rw4iwU+r0X+PmCdZ96vVSR/20IP
3oi0JfbYOeoK0X9DjNMU+fay7MIxUT8g1vyDuPdX4ruBe4w2dZGvyqrv05GX
K5LXLdFvseUKu1CpSB+2Rv0jrsMudIr+f46+g+KsBsb4ZzXqe7Fllblzqeb8
SbT5Q8zxcpQfivxASybzYpQHFOXjmY+x8xXJ66sx1z+i3Y5o83Hkm0JWX4jy
VLBHzPW9RvXv3ix9vdN4YYnHaoxxrsMfxzj/Gbo0N+5tdsh1TV5twB7o7Bbb
jd8l0t2ekc+tlb27tEp96HtrRbZtiO9yUKzhyljDzlhDVexxTchM37CdY6Pd
i1G+oKC9Us9+8Qk35IUZwFSrq3UeTYnOaUicwz3N6vt21N8d5ZGR1lbrfp6r
1h3dG3VjIr0U33ti3qfiHo+IfGBB/qQ+lb/BL3G3r1TUtzYRbgH3gH+2ZXW+
nO2oRvnUkyJdHe2Hxzp/Hu1HR/2eavnQRRXZgn+L+q8mwh0jY83bs8JHjPVZ
3OlyMEKsZW6s8Ql0MOp75jQ+/pyx2T94kjbDIy2J7wezqudMuGfGmepz2IBu
R7k6Vfmcgs6qDb8V38uaZYMPGK+BoVjTW9W6nzS+n4/znxBz76yWDef8PmPv
0fdT2maF94o5+X3qSpEnOeEyMAEYYX9WdbRjvnJO7ZbjO2LMliiPblY946eJ
+g2Pszo66ru5b/eccA+Yk7atkXrk1L+nv9/Mah3MucPrY187XbfPa+zh8V6K
Pd4Ue9wV6zimWVg18e99PV+r74HvVca9YNcR+LRqycAVjVoD59bHNhob/16d
bAL6c1oieUAu7kyE/ZZVJFfIGLgamUa2sUNgIWwOMkrON/5rrespY7foi0we
Fnf9cJQzkf8t+s+J+/17WXgZnI3ODyzKBmBL5oY+/rZJv/UvSoY+aZF/xk7i
r1fXqYx+bazTfB97vRusF+gl86K7FxZlu7BhPy6q7mCMuTJ+f7JO+jgvq/J/
W96eq5PMXVSULcRGotPMzbzlVG1KkV9SlG5jv3dUa02sBxzJ+aDHlxVlA3eU
bQM8L7KHzCNj2GZwyh+z8o0L7N9OS+VrJxQlf8jhzhinS5xT5ybZuMuLWm8S
be9rkg/Dt2EDG+vly8BzTfaF4LcjjPHOTNXm5hjj9FT1NxUlL7Qf6rzZZc5+
ks+f+WcZUzLvvf5eUaf9sBfulHiPWAgsRj1YDjyFnwLjoSPsHf1FRmbb/64v
KN66MvKNBdnySc7ZN/K8N+7yquh3ZkFnMtd990f9vFjHvhbZMMrI0xG2tz8r
SgYoP5XVnaz0vcw07gHPdAmd+EqDfP380JH52M/QkV6JYraLUsVWf3J81SXa
HtWgfmDXffWyb9itfIPkoGv0PyzKVybyKbkG+ZUdUS5HeUqUT6uo/O3I/7mi
NsdFnmlQX2zf3pj7YKxrZvjGD1Lh99bIny0Jb90ae/xHfG+KNXwc+dv1wo7g
xg4ceVtWuGxc1Rfx42bHkO1NimHYf01F/VYUJCMbLT+9E8X8Q1LFlGOrvogr
19UrtizWaw3gU2LGYoPixkXGRsx/SkX1J0f+1UgHov0/RX50RXq/qiAZ4UyR
kw8j/6hevvXIimTq6YL2+E69/BFxGONcldc90HejdX2l7/2o6Ls/6ofFPp4v
CbNOLar9ft/dQu+JtTZV5PdWxlwtFcnvUwXFBsQtxGLfjPrm2Ms3In+5RuVf
xBpa47ueGLMgG19vf4TNb2hQHT6upkHy0q0imVldkL/L+N7ZO3MttP3gN2wI
dR/6TLjbt30O9KMN5whmrzFuJ1Ubv+6vkewit31dz/2CrR4xVoTr2Or4COx2
ZqP8+/1ZlR/IClc+0oEFjfFuj/qRjfJPFWM2xsL+v+YyY/L7SPuwPTXCbGA9
4hviRmKcznmViYmY4y5jRmw82BicRv59l7HfYNoN9rm9GmVvflIQFwEncUOi
+zkJ3BrliVHuDj+T1TjE2YzRy+PsrpMffTQn3/U9n8PU6DsDHiD6LjFWhze7
tSS7gf3Y7LPB/4KxwEiftgh3gjOzqX6bZXwLrgPDnWP8NcrlMa7/Rk48yXWR
zs2pbowxH+k6t+dM2xqFDai73u1vijXdEmvbEmu+pEltGHNKIo5lG/FIIt9W
jLVNi/LMqL+lorajPGZb1I+N+kkV4dRDeDUVVwSHA7cDT3OZv+GY4HLwC+D/
uyw3YG587c9K4nSGus/OGs0Llwa3NuFL8QLjMg+cJJzmZPZbFk92lWOTCW4H
tqAfsvfjgtY8NOb6l0Q8G3wb4ww0v9nTWIo9nmobi60dVRRn1SX6bSiIa9td
lu/qVC//C69SZV2bXpRfJ/ZlTYx9bCIZQpa483UFcXzvluUzd9XpfNoL4vve
Lkt+aA9XAHYHw8MpUrfb9bOKin+Jg/FJlXrZZmx2wXqNPy/apxfs36nHNuTr
v7ANedf3SzVO38j/p6RYfWZR8fZCx7evlBSHz/H86xyb7zCW6Yiz13+JI1jg
/nu8fs4D3mKPy9imw7yexxyfgiv+K5GfPLUieT7Pck4OnzjMcnaeyxe4Hpmf
bJm/uqR7HmCZucI2irvu73p08CLHidguctqBq8FcV7o8y31oD89wTIO4hsmu
Rz7Z3//6jm4syoYtirV0tx/fa/livy3Os977DW5/Qip/DAcBJiGHc6Af+7vA
XGrvitZwVuTnxT6Xhv6cX5JPB58wX4u5DPqeVVBcR+yID2BseCk4mBm+J/gz
6uFgdhrTEDPiu+obvohbyIm/bk5kg45M5AexscROcGPY2GbHXCsifQ4GLovL
vr0s+eJtADmZVFZ5euTXJbqHkebhaH+Ie0pkt9pK8p95+1B4euwLtgUsw/7Z
O36TmBMc2918PjaBt41bvM76RLYIPuDZGvkL1omtpA1yNMbrH+3Ycbn3gh3E
tmBjiPfHuu9zNYoxaEu/5e57cSocBZ66uCgMnU8VM+J/1jsuAHNyF49Hn6WR
RjRLLx5tkn/6aVFvNoenX3D93B/4tGKMOqEsTn9a5D9KNSZ49tpEMk08AQ7q
Z4yGLrM2dPgM84XgPHAiHGLHe8MZrgeX0wacPrGscX5Tlr0BA2JzBhcVNzam
ksd248yzHTujg/ij0fYx48rqO7Wse3vCd9fm8iifI+dJ/D3L2AF9XNwkf4wv
Jn7mvYKYHfuKzcfGfr1Zd9/Nvpm+2J+Bxvc/TOXPGQdMkPc7CX3Bfos9/hS/
h/AOMt5+jrcMOI+7zQW9WpE/LRh37PK8P7f/xVfDL1CPHnVOZLeuLTmOrFaM
eb39PjoGXkGnro62FxYUBzen5hqqpacTzZ2gd8gfcojtAq+AW243fuFdhTVP
tb/Ffg5N9T7XN9FbYtnvidj7AXnZdTDgw03CgejFvdaFQYlih3Nj/YMT4dYL
S+I34D7gPeD5GPPaWiXGATeSP+Ly5Ynw+8XR94chPw9hAwM7/cj7/feS3o8O
+vzRB/QCvIf9ZS/YY3TxXvNv3CV3h45dXBCPwlvoFYnw8pCSeDhiiFXGlgN8
14cnwp1wDOebuxtcEj9IPMc7DnEYunaI+85pfWAaOLe11m3sJXEAdw3/Mddv
h2CAueZD4J3ggeCDiJ3w+70tI8hKN2Mb+oNv4Is4W3gpuJFt5gmR86PNK5F/
3XwW9q/VNhCZ2f4lvmqHsTNtu1pP6ozx4Cbnwwc1Kw64xzxAd8cOPWx7l/it
9Q3zYW+ar2ONx3hv7ehHs/jGrn6rZa79np8+rd5TB8dGntpHj7Bv5o2I9zDe
hIg1Wv1We7Lfj4gjWC98NLidfLPnhSPY5HK762lbNAZGd9Ehzgg9Yt37vSdi
H+YgVuLt6BSvgfjlVL9b4ZPQYfQRTAqWHe97n+O7m2MeDBno6jvivsYmsg2l
RDwL/EtvcyGU4WGY81TvkXvgPni74Pcubs+e2r3HYS5zh+CINvtH1rfNcrDZ
Z8U5wDu2+uzBPpw7Z55YnpDFNttj7neE2+Cz+1ou6Y/NXuZ26Cm+jNiKNzLe
YtEd+CJiduJ+4vA2jwmvBr92iHs0/8xeyNkPnAYyAr/2meUXP7nTcRzvHGDI
kfaf680BDvM5YKNHuj6bKMaDpySWHu7xuW/WzhycwyDv8XFz/uwFWWcv7Z5/
qddA/rjbYCfgV9kveBX/B47lHNE9ZOt849tzrdPMzbxvlYX1iEU63uAH275w
1h1v7/08Lu9OyANvT9ihPm6Hz8H3gJ/gz7qYVxzpdbJ2Ytz+tsPbvKe1PoNl
Pod5fkuH83zC3D4+GjuLP/jMfmG0y8RlYC9kHl3vajnH1sKprvI9jrZPX+F3
E3zK6/6fjMTvHGDXgWF7v1sRnji9It4Q/vDmkvz5XPt0uEe4Evw2b9r45rXm
/bfaJyJzj1pOyB9zmbhtlnHFmILenX5Vkp+/y76edybmGlEQn079HYlk4Q3L
drv1CXnjvMjvtx3t4FQ4v3t8hnBaYHhkkHNeYx4en4pvhZ/LJ+I74K3xxYwx
1T4Un/qAZRxZR4Z/bbmH9wbn3uO3mHbfMWvFl8IDIFe86/NevDIRvlthjPeJ
eTJ0k7dV4h7erzk3zvGQ/zVv+7uSfCRr573rVceMxI4vmH+Dh3vJMSaxJv4e
vw/Pt8prnm/52+61cjbwvJwP3ARcweUx/rs1wjTcC1wGe7ktERaY6fjshoLW
O70kbheuZl6i/03g/2eIg9bZjmy3/mKzdlqvqcdW8L8W9EUmNjk+4f8F4CmR
M2QM/LjYGBJse4n1Dh94rOUfu32ffWib24CB4Rbu6+DcjZuwp8QlyC168YBt
zhrL0BrLF9gKjDXN94ovRg7/0sE1+H8x2CvxKWthTcxxot+1e6TyZ8R/vGMT
ixKTEsuekipW/Xbk+2p0DpwHb1PHehzK5L3tJ/FR+Eo4Debt+N8W8g6/ucv/
CwHmXOk3xg6d6ZAFcnh7bBRYEdkfbiyBvPMexLsP75LYieU1Ggu+7RW/ZQ8o
6Wzgd5/xOT5oGaPfQ186U34Dv4Jj4YDb3fYPTmttH580x4x+cefYm3X2U3Pt
s5CDtR7/Qfdjfu74XvvuD8zprrd/3OK1oNOcC/2QfcZE/rFn2AH8Cxw49hS7
zDsaPDCxL+3BOqyB91Z8DfgTPvJFv9GD/+Hd0JV5thfYDfSJ/8HCNmDb0LFx
jk/wUb9MJG8l250p5v3xUfgrxiWmmO43D2wLuviXGunjc36/4B0D240NH13Q
ec7zXeOb7rYP7el3/9+bw+P/2LDH+BT+hw+5W2ucgzywbvwfa8aWwzXjHyaW
tIauidY1xXbvqEQ49BeJ9gD+7m3ZPcr6DufHWyo6i//5irn0k/3/N7y18h4C
N8SbCAlbiS++pii+69hUenW87WfvVO8xfSL/Vqo3lX9NpU/H2VbwfzEneBxs
VRfbq+NT/Q8Y/ws2uShe7zup+HPWjO7BRdEGfWe9YD/4oL1l4YD3y+LaO7s9
/zeEbvP9H0Xxht9PpU/oGDrF/3zwvx/vtwhrPWZeYpo5hz+VJEe8PyFLtKXM
Gx7xHDYKjDGjrLjyzyVxB3AIL5bEAcEFvVxSP8ai7+0lvWFMLek8OOfjzSXB
EW0uiTuAQ5gS+dkVcRf3lcQZYYNvTMRhUI9/43+sWN/V1nlkGV27zjEq6+Qs
OJNDZ+r3FvZVMla/PtH7HJj6jIriSeJK3rUYnz7sg9ictx9ii+9UNOaUkuzZ
w7ZpxLfEucT3PSri0fhfM+w/vNJWc1dwbcR0cGRg0msSycahN5684l/4LPzF
keboxpuL4C2KmPL/ATQUYNA=
          "]], PolygonBox[CompressedData["
1:eJwll3mQz3UYxz92l/2tvezv+/39fL8TYhyVUe6QI13rKGStjHUTJXIfi103
RewalGPwRzM0XYxkJkIUYeWKspQYN7lqkKPo9Z7nj8/M83yf63M8z/t5vtX6
D88ZluCcK2UlsWr7zkUizl1Mc26051zZwLmN0F+glISsLXyQ7tyjcs5lQ0dY
m5HvQZ6MfARrEvY/pTiXBX0V+Q70NyQ6NyuGbejcLfgv0e+HfDExIsnOtcdm
cty5BxWd2wR/CP+dkTVG/yL0POTPQg/Ax0ToI+hkYF8T/5eJf4U1Bv1c+Br4
T0SeA32d9T18ZWzqQJ8gxsRUO1N39G/Cr4Dvy+H3Rp2rgM5uZHtZA5C30Bmx
T2FNhW9AzDi+/kQ+Fv4i9guwX8v5fsQ+j/1t5ey30e+P7knkU5FvR78v+lfh
l8EvZ12DLkZnEf7OY1MdujpndBnOneN+3oHPJP5ObE/A5+K/JvKT3Ec+NrWg
03S+NNPph/+f+da5gnOH0UnA/jwxioh1Ff4cdCf2t5FY59hfD+Q5nunqzv/j
7stjfxbZaOLlIf8Nm4JUe+Oe6BawbqFfj/hNiN3CN7ocNlOQXY/b2dpwn5PY
71H8dWE/x7CJoPuQGJ/jqxj/ZeBHsyZjf4g91UU3QfnCXo6i/wb+jvAtB/tf
4Mui24v9H0ZewkqBfwz5PWLvxd9A+MvEX0z8m+hfgn4Rf1nIo6xZ+BvvmUxv
WFu5w9qK7VblEPRc5A7frZEXYP8333Yp35E3DiyHlEt/6Q3QPcB+siNmsx/6
LvJ96VYjbaDn46M58hL4f+Bbssfd0Ems5vB3ApN5rNn42xez2A/xXwL9FquE
uynF/zBsh8bsrrLItzzudzDfDiJbQ85MCC1HlCvr4Qvh7+P/QLrVRBdoj3UK
/VP4f5N4o/H3HvFu8K0Svlqx9qJbntUK3Zu81yjucxQ+b0D3RX9nisVUbO1J
e9tAvMnE64FNO/wl822hZzmh3FDOK/frCT/IjTvcZ/3Aaki1pBpWLc/Ax3Z8
ZXO+npylCP44vI/PlcSaBb8zwzChqm8xFfs2++saNUwSNoXEbB8YhgnLVKMX
iH+M/efgK439/apcihn2JAlzoKd5dnbVvGp/JnxmumHEDex9vp3G/358xgN7
M72dcky51p/VAX+p+FuKrNCzt05gNUV2lBgdI4Z5R2JWI6oVxXgB+TTO8y3n
OUOMwLc31lvrm2TPseLQp3iDar7VsGpZNavaVU2oNu7DV4If5ButGlGtVGGN
Iv6/8FVDw1BhaRl81oAf4hstDBIWCXOFvR5809AwR9iTCP9kaBgnrBOmC9uf
CE2mnB3E+U7FLdcifKuD7GntEfog8iHId3C+dPgMVn1kp+N2dn2rB9+QlQV9
FP2QWI+HtnflYJ+Y2cj2CPww+Abw0yNm0wi6GWt+xO6sOXST0M7yB/r56FfB
5yXivZ7p3KfI+kYt95RjyrXpvtWGclK5KcwSdgljhbXZrJrIkso7twR/65BX
gb+P/2L455E/wl8lvrWGfoW1PmI2bULrqeqtwjhh3Qz4DuiPZz9fh9ZT1VuF
ocLStb5hz2XsF8OP1/uzv3fR/wo+lRzaD38CnT7k3irfaud39IuRF8BfQT4S
/Q16T996Qxf4z+DHwIfCFmE2/AT4hvC94UtDwxRhi3pQBWTtAqs1YYywZgvf
NhMvnft4Fd1lntVCZ74NQD7HM2wTJk7irfupxqE/oL5+iFoMxdKZJuJrNWsN
8nvcZ0tk49D5JGIYvxt6HvKF8OeQF8bsDnQXOsM4ZC+j802y9byOyF+D351s
Pbo7/Nm4xVYOnIEuZY1LtR6V69kd6a50B5Pwl6IzItvG6u3ZHemuhAljkc/B
555E2/Nc6LbE2068TcTLhV/kGTYKI3oG9sZ6a73JTOy7edbr1AOTkL+N/dKI
9fBd0Nui1uvUk0Nst0ZtltJMExc+BIY1wthm0N9FbZbQDFIN+eao9XZhegS+
yDPsUw8r5OxbkC9IsDvIVP0H1vvU8xtB1w0Mu5XTzwRWM6od5Wxl9j8Q+8X4
Os15J3DeD/m2BP4y/DT4ochXwF+Bnw6f59lsoDdJVr/0bHZTD+ka2Myo2VE2
s6Erh5bbwjBhmXJWuTsVnZrEeimwXq8epl7WMrDZTT1XvdfBr0uzN9HbCDOE
HcKMfORd1HMjdgc5McMoYZVmlFHIB8PvT7EZt1vUZjbNbjrjR75hgLBAM4Nm
B92B7kI5rlwXhgnL1HOn+YbhwnLl8HzfMEnYJMx6X7kN/yDRMGMR9MqYzaqq
sVUxq2nVtnJuJP5jgfWmM5yve9RmWM2y6vke/j6OWW1qRtGskhVY79TMGw0M
U4Qtipmv2owZlqnmVHuqMdWaZtYi/M2PWW1qxr4WWI4r13WH2VGbeTX7amZL
R79WYLO6/gnq+FZDqiVhVprmj9CwUhgqLN0etd6hnqHeoTPpbHoDvUUvz2Y3
1aRqc7lnvV09dgr5nM634wk2I2cENiNpVtK3TlHLQeWiaky1VoOYF1Ishxf4
llPKLX2bHLMcVi7rH+kp3/5x9K+jf5Lh0I8q2uyqHCtDvHvwq9MMg4RFdyva
v42+3YceEbV/B804mnX+Byv65gc=
          "]]}]}, 
      {RGBColor[0.9840452668160174, 0.8301131670400435, 0.5505403271296538], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQldWVx7/idYTufv3e67e037MSpRuRpZtMFhozBCPQgGgyk0wGJka7
GxKsWJmxjKFtlig4iBg0YWlwyWYqOpkSAadSMxGJgYmsRo2OFRREkEUimSQY
FTAqmTjz/3n+r5gqLve8+51777nnnv1265e/9vnrByVJ0pFJEv1LmvTfCLWL
1KZXk+SRIUnys3KSLCwmyci6JPluJUk+o/EtGv+Fxj8+JHD4duacJHlU8CzB
S4R/o/ofCb8qvP8eLFzNu0fff1ufJB9Q3zUk1gFvkfC+oT2/Ldy5gicI7mVP
ff+J2lv6vUTjd6m/WzizBL8owi/Qmv8kuKDxMYLHqhVySfIx9UvUjmvfq7TO
A80BjxbelwpJ0p8PmgapTdH6K0XDOYKnC35QcFU4+wcHPxZq7On6+H299mrX
2Ee19lcEnxYNIwQ/q2/7df69+t0n/F3Cf25w7NundlRwu+hu0LfvqB+mlghe
xXnLQT/n2K+1lml8kcbe0pw7BV+ib5/QeFHnGqe+QeOf0fjjonN2miSfEzxd
+EP17c9NSXK++ve0/wbz7UA11lkmnOVqszW2QHuN1PggrXmR+lni0Rc0Pl/j
S9UeFHy9xvZrneWaO1W/TwwO2toyMfaSvr2hsTat+Rf131J/s+bO1fdrNfcC
n+Gb5ViX9ecUY29ouFj7turbu8IZL3hBOXgLj68uhgwgC19M47zT9P0y4V0o
mqeqP51Nko0aPyO818T77wt+WPAw0wqdS6tB663luOcu33V/XcDIXofWa1cb
r9/PiH/5hsCdpH071d8kWh6TvIwVPFn4f8qEXMLbzRofJThfF7I/3vK/U+tk
GuLbLwUPaYj5/B5p/FF1oT/oztvnxF7T6uJ8w2j6vVt7ZNU/oX6VznK/4B+W
425bTQM8GGY+wIOs+XBjJvSsLxN6B7xC8GPVmP+w1vliJu7uSvVPa8+nciGj
m6yrdwlnVDn0Dv1DBw6p5TJxno+bJ3MsP61p6Mx+4yyuhv5crzX2auygznlS
OvIV6deifNw994McTbXOc+/na51PZUJ+kP/eTODMUv+65terH6L2Sa1fEc1/
XY3vbxtnWTXg2Vpvmfa5LR/69obmNmRiPnRk1TdmQmfRV2zKZfnYA13+L91d
a1PYhTcHBc5J93sNc6Z9gk8JXlQNeIb2PbcQeMyjsU+D7Qn8wXYsrMbeXxV/
HoEnjUHjcZ3p1VzcMff5I8vAqfqQAWDsLbKGzGxTO6D2ktrUuhjvVduudtDf
xjYFvEOtR22+2jy1bvfoxPPSqVbztst4fJ8p2q4QXw5pzwdE4/2NoTszND49
H7avS3N61LrV2k3HFOjIh3xP8z6r1VZ5P3r0EZ3bYv2ErgHjtTQFvECtvSlo
X18Xto+z7le7VLLyrtZfWtL++di3Q+2U+HdS7WrBo01LV40mn+0KzT1X605T
P0l0X612ldqlmdAN9OLyfPjEnOUG+9Lmu7zQvxtyYeNHYRvUJmdivX31YTOx
RyM8NlFti/BfzIasIxfDvRYNub/EPniiaRnu/lMeu8r0ZY033DqyABuO7ufj
LqaYlm6fbZv2PZQNXf25/NKyxri3LYXQn17jzlPr95x+25K5zbEWZ3xU+Esb
46w9grvV8rmgC1xszi79fiUb/mBlNWT4BulFbxo+7N5S3DH3+ZDam8J9V7hH
MmE7f2JbOb457CV293AmcN5RO+T+bbdm4RTq4ntJfbEuxtp9/+DWxoqWEb4d
zMTa2FLsKHOxpQXPw05/RPpZ1LcfqF/SGHxH37+m82wTvFy2caASdnWjcPo1
fkDj39bYPxbDn+JXD4oPq4VzBzFRfdjYFbbBjF9pm3237Ta2Fp1D9g5VY3xA
c68pBl/xtyvLETsRQ6FL6+oihvmD+P/7XPiXl80jzvmXbJydcx7jjnJB645M
4MGPic1h1zl7zcZx3lW+K/Zoa4q7G/DYDtubnb4b1lrnMezTF9KIsQZKQd82
6/HHNH5K69+k8V2+Y+b/i851ns47Vv3GTPhCvuNLH7Hv2VAOGzlO/fpM7M05
xor+7eofUtur872Qi3v6vu+R+6wMCVl7wmsf8d5Z+118aH0atq1HtG3w/jtt
5+ZbT45q7SO5oBXbXLF9Bpc5Gz1nvX/jY/89H352t78/7DW7rLNbC6GT6HG3
dbjLOn+pbcAzXmdlJnSa8Suts5M856TGr9M6R20zJvob8S9xMD4XGdiUD37h
k6/V+M35gOcUwkf/Rz74CO/g7XrzGb7CY+aCe43xy7n4vVDje3Ixn7l7Da/L
hHwSP6HbxOw9tiFHTA/8hAZiBeR7seBb7MeJ1/oL4R/ucSxNTL3C8SRx5ZO5
sF3whzMxn3Phv9oK4cNaCwHjI4hniPPwJeg4OQCxzBrbVc6C32Yc342vxsfX
4gJg4gfiYmIP7OmA5YT5I5tDXlZlwudA/0Lte24u7gj7R5xCvEK8NcNxCzDn
A14r+D3h9Qm/XBdxIjA6vdryyH6vOH44YLnebTkn/oTn6Bv+kfNOdr5zns+1
2DIAz/E3+CT8yxbnMuRQ2BRsC/aB7/jC9+MbjQ3ORz5zW2PA+An8zM89l36L
Ye57SD7iftbGx+BfiIeIi2ZXYow5XZmzdh89vb0x5rI2sj7XOBPUf7I56EPG
TuTivMSgxF7XVsL/4pPx3fhhzoDPxYf3mQZo5zzQz5qshaxuLoT/Iy4Y7nPX
/DA9MnPCe8OnER7DhhOroiPox3KtW681vtkY+SLxJHI0uTnuhns5nQsY+URW
iWeIx9gTuTvpePYNx5jgMgcZhha+Y7cXa4/U8WWpHD5lTinogIbZ5v8Dvpfj
zl3hB/PO9VziQ2Ig4h964mT2zpbDTvZqzU2FiGWJo/t819wNMo49qvn5w5bN
YV6Lc2DL8T/4YnJu/B86h+962XePDzvo3/BqUnPwBflFjtHdNBd6VXHeQ0yC
nwWv1fpOnrWrcFaHdlmnul0fwA5D83bbz0W2HwttE262PhIXb7Y8wCPOvm9Q
0MBc6EBewMlngi/gwLc5zoNYk7FNnovt32r7jA/gN7HZEtdSqKkgV+w50jQA
I2ObHJOzDncCTC7zunMb9mXsMo9jp7Z4L8691X5nVj5i9zHiyWv1Eb/hG3s8
TjyP/qHD6CBrbvK9ozOP+ryseaP5Oc92ELs8qjngVR7jN7YaWUttS3+Vi/FV
xh9tnOdz4VfwKfhBxsEdI7vaobahLvwp+/ZarrCHB80zaINv2Mx2r9/ZHL4N
v9br85O3UB94ohA+Z6tlY6p9X0dz+D/WAMav4ePGNJ/9PsbjrN3puITxds/F
Vnd63/XGYxz/8IR9RM1Xofv4xmOON162Hya+QMbx8fh/4owByyk8J4aAH/CI
s64zzZz/fRqyMbfPNKz2fPQF/SJvquUD3Zb9xZZ/cgrydHzFLR7Hd0y0bmLH
yAWIcYlfZubDt+HX8IvcDzk7dgh7hD28tTH0GV2eb9rBO94StZ6+UsjbDOsL
8j/T8oY8osPI20bzYK3lkHH0h7jpGdc6GOvx+Bb7mrk1G2zbAs3/kI+9NzsX
Zq/bfJa13guYWI4YC/2s5YL0+JSJ9hMjfO87bMsO+Q6JGfFb+C/yj8Mew3/X
8kDmY7+vsL6/z2Pzmdy3x7rJGhOcO0H7zP8XV8w0neQ33BN+nHUm+q7xXRPs
Q6+1jeJOkbtxzUH7ePtZ1h/jfckrsNV8+5N1apxlHtzxPhd3vMD3jl4ed6zC
vXPn+CzyP+qY+ALqcdQIulzDwc7i71iDtbCfT2Uj5uBeyLtYb34xYgLsE/Jw
u2MRfNyebPwGHutc48fq76Suq33vUP9DtQbte18l6nvA1Pj+phr0/Fjj91bC
b0yrRi3uf+sjjyQXYB180NpKjK+phC+GfuSWmJN8hlwGWwo9xELEHpyFOGp1
KfIm8qcdroPsdN9h+LmmsH3YPcY+7PFtzgXJw2Zq/nCNrygFXrvzN+IQeMhd
HBVPDmcjj0D/uA9iQuQXm44M/yIbZ4B+aFxqnmOzGcdud1Tj2+GWWO+Q19yV
jTVPufbGXRMb3VOKmgC1gcurwZMfVGLeYdcrcpxfcFMasRIweemXStFn06i9
sQfrF/X7l4Kb04hL8IXkc8Q96E9B8NN+p+C9gjyA3IDYAF9HrY2Yeb1rUQOu
BxRcQ0CWkfWCY+GC82Xi6z845iy5HkE9gTt80Dlvs/WkVpOgB4/4nNoHdY/X
WsL/nGgJGvEB1Mw+yPl1rq+WIm4iJqNe90I24DaPveBa3j7DjBPXIffI/MFs
3P0sz91rfPjQ6vyI2tU+z8X+cB/YeeIyeAsf7yxH7YLaBnE08XQtrt7vGtcB
w8TY9C8aJk+CDmjgjeKAxzk/9gPbMqwp5HaDa0Vthj9bjByBGuqTgu+jdipe
rSmFLlwtPs0sRsxPHXq34AHh/FY415TCXpSEUyiH3FC7TcvBI96O/lbfhmqd
z6ah89QgqauSfyVNYfPIP8nl1tSF7FSaQn5uLUUMTm0Sm0h+Bv4tpbjTCdrn
4jTWuVljnWnYkJNp4L5n/AHvwfo3VKKe+HVsSDnuhvei28vmXTXeeIDnCWdW
KXS1UWt2F6POznvIn9Ooa/+P+jXlqClRW7rD93iT5q4tR22KdwBq2fAnL/yv
F8Ou8Rbx+TTuZob6BcWwfXdp/Dvad5zGv5xGLYyaGG8Ob6TxLvIm9Z6W4Nfp
lqi9wsPp6semcfZx6k+n8XbyVhrnb3MtmDgMnnAfS83nSeWoM61zLeqAbR9j
nU1R+8YeUv8GfrkuasCsMd+1q4csX9DeafyxhsH/dVN822kb2245fMk6vc00
DvP4xeXwX1N09r/3Gc5wF2nY57Wls3uwP/aPdfabzu2m6+/SeIP4nPqpacjY
8lLQdbFp430CHN4zj2UjnutzXHfMNdhXDTNO/xuPf6MUtoo63FWeQ5x2WRqx
5ztp5EjIJfZsThr7flfzLkxjnRtKIUeven3k6KhtPrEacdPoctg48r8z7k8a
PmWYPOsm07O5HLkTeOSJfD9t/K25yOEnOG7EjpHDbs9FPIq/IHbud9yO3WIc
24UP/7Df+7C1rbmINX5ajn5SNfw3Z+a8+O2L/B73aX0bw97lyAuA4RF7dRge
57fazmrQBQxtl+h3VfC/am5XNfadXI23ZHz+tmLkoH3OSaGxw3SOd80LeYWW
C00P+MDYDuIaYl/iHPzVPMs2cr3KPgz9WOnfyMpKxwfwCR1Er97xvT9QCfvH
myjx14DXgwbiZWp2xMy1t5x5tl/QQkz0VzpXlty6HHN6bT+J4fpNx++F/59a
/3f2aY83hQ+6vxLvQY9r7kjXyv9ZY6+lISMrBC8ohdx0pEELZ293PEgesdC5
BrJHrEvdZY5rL+Qv5AXgkF+Q69TqZ/TkSHc5nvs31xKpH5BjjXQOSj7E3zLc
7RoDvoX3V/a7IA0/96E0/BKxI+91Q83LQf5bg0GOCXjfPsf632lcYvi2NOKf
oeo/Uo348EhLvPljL7AVjbngM7WaBc53Bhznb3TuQx3iOtcizstFbYK4lHFg
eEpfNQyvqFVRSwWPeegg8ex5nsv3smV7seuy7MXfW+BDr6vEuwh19xs1dq//
/oG/g4BGaKvlqfS1vJO+llOv812Qd/zGOe/7PK6PWgQ5HDkt7ysX+e8Zhqt/
rBxvBPwNC/EpdTxi1325yM+hibwcmD2oOZOvk6cwts+1hfvKEQvyflV7K+Xd
EBtJToudPOE4Dd8+xnWAF7zeEe/1wXL8LUVfJfKhTudQ/G0B9/3HlsiDXnGN
Apxjpoc1jnodeHDMuRK5Hu9XxBdTHJvym7+DIW94vBi2BH+K7W6vO/v2xRlq
b6HYxe3O4bGp2FZqo+gV+vXHNOI1vhHX9Xpe7Z2ZHll9vSXk9rZS5DPEwuSk
36vEXXAn1FV6XFOi9nzKtcoO04W9pb5xxGcnBu22fSEP7/Id7M4F//Ff5Kyj
fZ6h5Ygpef/fY9ngfrn/RusIvvfX9uNn7JcvV/9sLuQJWaJ/1vUBYs/n7NPJ
XZCx066p8vc25Dv4/DbHafPNX/h0vv8m50PV8JnP21+Pdr3rV65dsR82hbeR
PaYZeqGbu+TN6Enj0D9le8T8PaaZ/nnDfH/aOPzdDPZlVhr2FLvK33D1ey1s
GvWQp7w+fN3tes3/Ab/BECQ=
          "]], PolygonBox[CompressedData["
1:eJwllnuQzmUUx5/BbO9ebe/7e/V7XWJdily6sFQ0k0qiRC6laHbJEJV7hQrt
oCVbdjeLXCZS/VGZmsmoGULFVCY1hc0l2kmYxkpZY6TU59v3jzNzznMuzznn
OZenaOyUoZMbhRA+BJoAP2VCGF8YwsUrQqiIQpgP9GscwhjODsH7uVkIi3JD
+CEvhAmpECYmkYO/pyCEcvgzoXdC10FXQi9Ih1CfHcLqRAhPwDuG/gL0v0Z/
HPoTOJuO/HHo9nEIa5HPyQlhC/Lz4K1Cpld+CMXAGPgr8ScH3l7sL8Z+LnQt
AQzHv/3Qa9BPoP8l8g3IV6PfDbwL8Aj04/D34M9sbIzA/rPAYe4/gb1q9Kch
/yu+LIdfhe3+wPf5tjEa/a3QXZHtAgxE/knsnSBXdUCkXAHfIdsBGIH8S9Dn
4X2G/ALkS7nvAvQhfJiJ7nLOTsPrSPJnw5vN/Q3c/yfQGf156J9GfhsyZcje
CH0O3Tfwby14BTbq8D8D/zb4Szmb09hvqLcchY2u+fZJvlVGju0kNuahuxG6
OfRx9KsyfmO99SnufBHeAGBfvt/gMWxNxsd3sL8P+aXIbsRGU/L9DfyL8Dch
/17CMSiWOt67nPc+Av0U9Fz0RxFrWv4g3wcbMbaaA2/rPs6q4F8FfyD4Os7W
JxyzYt/AfbOb+A3uRbcpMrX4eiQLv7G/DZluBa6hdWnHqFhrsFEN72PlL8s5
V+7vBiLstYfuD94X+ADZIug7wY/g/1z8347/JdivSPlt2wFDuftl7P3D/buR
X5RxTag25IN82QxcA/4vPlTjSw3QGN++QP8s+ndkfJfOxFsJ3VDgHClXyoly
04D+EvjlKeduAz6dw7e+8C9mWUe6j8I/CL0Xn3Kwn4TflPcawZsegD8Mmwfg
7cLeGOz1hF9EvO8CldCD0GkEv4g7HtBbpO273nQWumuQT4LXcl8F9o7iQxm+
7CI/Y7n7Ovj13P9gU2zC7wN9AboEehP04rRj0ZtOw96Q2Hd9C1wC763+0iBS
zUH3y/htlEPl8lUgaDZgbzO851OWvcz9PZBfDv814l0If0vGPaZeK0dnNPeV
RcYPctYS/HZ0eiScw7KUY1AsqqlC+KnYs0o5VC5PEm9lrmM80cw9o97RDHka
+yvQz0F3CDZL0W1o5reaSUx74OfGriXNLM2us/DXwv8Le7+D34W9y9muwY8i
97x6vw/2R6E/jXhqsz0TNBuGx65F9cyw2DlWrpVD5VJvoLdQTjpFnlGaVXnY
vD7jGa5ZrhkWwxuMjTb5rgHVgma2Zrdi3g3eM3au1TPF4JXoZyF7HzIPQ58B
zuV5JtWD3xO7l9Wz/cHn4/+pbO8M7Y4Zab+Fdox2jWakZuVD0CXwn4O/LOEe
awv/GeglCc/U1tC3IJ9GvhT5cuiboAuhO0PPgi6J7ZvepAZfu0N3SngGzEl5
5mv2/98DyI+UzwnHtAz+Gd6kOOEargf/I3bvyoZsnY+9a1RDqqVu2knYK+T+
6dibkPauaeC9x6c9MzU71UOrI/eQekk7c0rSO1O7UzP5Tfil6MwA/xH9krRn
jGaNduY45P+O3TvyWb5rB2sXa0euiLwjtSs1sychP5GYDvA++4EWsXtIvaSd
8UrkmaDZoDsHI98BfqMC97h6fWrSu0c7Xbu9BTo78m2zZeyZo9nzKWe/gX+i
GZjwTh6ArVVp7zqdvQ6+I+lc6U/QBf5bkXeZdoJ2w/uRZ5N6ohd4MWfJAu8U
7Zai2LVyjPvbxv4j6K/QE1hJrNvR2ZrwjhqEbl7sXfE58gXgL8BfmHBPTcWf
/Ng8zUjNSv0Z9HfQDq1Kecdp16lH7o89YzRrNJNqIu9s7W71wKyU/zD6y6jH
v1Lu0p4F8mk9eK+Ma1cx3az/BDqH81zji9QPKc8G1WBfbM+I3LuqMdXa1bFn
w0F0WoPvTLr29Ue7AX47zn7J859Gf5srVa/gR4lvJLKtM66tS4oJvFXGuHae
dt+1GdeuaqCjegv9o1m2kQSfmvLfTXforu4Z/x3Ugz3A28R+mzpgCrK3Zvy3
VM/2zvhMPPX4ksh/BP0V9Edqo1keeXdrZnSMXLOq3VpgUsp/Pv39tPPy4LeK
nQvlULkcG7sW9IfTX047ULtQMaQi25At1cDcyDlRbvRH1F/xP9dFkcM=
          "]]}]}, 
      {RGBColor[1., 0.8724604421161561, 0.6046133289677929], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmGmM1dUZxv861+Fehrlc7v3P5N7QOqwzaIIsJjWiw8iWtGntpsNi02hM
TcXITm3FVpFWdhe0bqgMzKJoo7bYtM7GaGKMafvFDZS0qV3SD+rIIrJUbPr8
eJ8b/HDuOff8z/Ked3ne55zxN674/vLzkyT5un5qVHdkk6Sk8or+/C5NkhfU
/kclSX6j9nNqP6T2MX17T+V9lT+qf5/6B9R/aTlJPh+VJEdV788kSUt9kgyp
nqL6Yrfpm+L2tlKSnDciSb6p8Reqr0nlafWfzCfJZtV7VDoz0d6ist3j52vP
LvdtVZmWj/nb1e7JRJt1vq1171V9WvXtxSR5SXI+LDkvsgyMWahvzWrfr7Wb
GSv5W1z/123qM25/7v682k9Ijl1ac7vWXFpIkrtHqy2drFe9QaWnJvbgzMj1
S/czpqMuSVL1X4vMdSHDbrUv15qXaM3nteajaj+u9ma1r5Kc9Rrzmeou9Xer
f4f655djnU2l2J+9t2n9T1TeUXlX5VmNf1bjezV+jfZYonKdykZ9W6Tx96je
JRna1becM5ZD7u+qnqe5czX3W2pfLD1PUZmm/6v0fZHKYusXPXc3JMlMfZ+u
0poNm79pW/9A+t+ovg2S4Yj2O6ByUGW0+hZLhg61r9eYbfr/q0rIRf+umqgX
ecylWu9tlfe05o80fofGb9T4Jsn511yS3CYZ3pAtbiuEXyAHNb7RlA2dDKt8
Az9Qf6/mjRoZcjO2dmSckzNyVsbM0dzVPiu6+7QxSb6olV2k86u1zgyNGUrD
F1dmQjf45gr/36dvL2q9/krIhn7Q1+uF2IP16Zvh/gka/0+d5Q6dZZTOmq8P
e83Jhn02qcwbE+sTG/3Szal8xEZdfcy5zrLWuY1e/6Y1T2jMLZL735J/rOx2
h+auU1kpnVyrslxlmcqVxEYmfOITzemTrFeo/4j2OZwPv109OvqZt6Um1tmq
ekh9t6u9UO0Z9WEz7HVDOdqPav/F5YjDM+UY+zOVdo3/T238b7cs9K/wOtPt
Sx/WhtzIzP79lm3N6Ggj1yPy5w61H66LNfYXYh30gV6uykQfsiLn8RGxd7vX
5MycCz/CZthltn0Av99ViPXHZyKWiZ9l2EK2u0y6blPd6rHoETmYM0HtNtuG
tZ4qRP94r/mUx2Cn/ZZtr+ZOk9y96n+1EGdfpf4flqP/Yenzmpo4NzJjW3Qx
S+3BTGBldyZ0Qz+66h0dtkRW7Hmlbf2M9upT/bbKgPGX+fu9BjjW/yVs/qg2
cAfMQecX1MdZwNcWY2y3MRE8XFIOXNhRivWImW1gZD5sg12662J95LhTMX65
ZHysEnpETvR6MBNnQy78YoZ97IDl5ttM9w95/HSPGXKbueDTTI9512dj/jve
v9+2arPPoL/V1i2+Qc660PjOOcCZo8Y2cuTaQsQjZ6t3bM6x7Wd73UU+E/8Z
Dy4w5rDxG6zcZlwBh4alq09UZoEFwoiX8f1i+PChUeHH+Nuwx+yU/j5W7Ndl
Y5+JKpPYc0y00Sn54fNcYORsf5+scmsp1vtqOWKcGCLuyB23GitWFyInkjPB
439pnf9JllWl8I+JmjtB5QN9H6/6zIhoE8ebHeesOzWNfLAzDTwD18C6NsfU
Vap3NgRGP94QZyL/ci5y5gXqn6r6Tc19Kx9rPdEQOvi58z9zwXb8H/1coW/j
ChHDYFpvNvIBuQDucyYX+eJPxYjv9cVYmz3Qe0dD9G9Q/8ejop88tach1tmt
epLWn1gIvyZ+XykEVqKnTDZ0dVdD8IId5COtd5++1xsfcpnAhOM10f+p8zY2
YC/sVJeJeadywdPGquy2nTYhj2v0jW1Heg4yD4+Ks+Az7INOmMs31sdHcp7z
gPa9f3TIAlc8lgu+iN6zmYh91mNub03ICk88pNLp/fGjTnDHYzbZj/CDpnL4
8IXl4GOcCT08mIYv4VNwoo+079P4TSn8aJzGT9GYWn37tXnZ0VzwWOKWteBv
Xer/TP1l1T3Z0Be6gk+dzIWczdngTyMyIeOw5dyr/hMa87b50mf5sH2bY4U9
0A06mpANLCBe4Vxv2h/R54B10VUTfBBeiNzMacrHefemsd8HldBxt3k5uhyq
iXPdUozY3lIJLtDuXLO0GDpaL586Ia7ytGQ92Rh4f9SY/5axHpz/SzH+36O6
uRD5hlwDrz9/ZOhhgbBi/pjg5m1jYi38BF5z3sjQ2SMNwYvnVgKzOOegcXC/
5QbP+v0NG/TVhD5f077j8jEfHYAl6OFIOfpYGx64xJzweDkw8smGwNpB77En
DRu/XAnutdD4uqIY/npvJfYCs9jnJ8XwgwcrwQ37LB8YQU7Cd8BjcJn/E/Ih
J7ZCrz3WFXqbXAidEu/0w+eRifzX43X32PZgTlMh/Ig9d/vbZOMEuefPkq1L
7eOy3RvFwLF1qi9LY//n04gz5uKf+CPrwRE7zCuIaWwF3mGvIctC7Ay7H3+g
zdgrPJdcTizD/cFhuGWXY3erz0RN3ufus8F3DzACfk8OPJ0PHN9t/CCf8Q0s
xI/I8XBa5EZm6hOOKfz0iHlmnXMq984dsvcXioev+T5KGyxin9PmwPgq/8kd
6Bh+0+7YvM/YBa4cMz4NOhY5E749e0zMAc/AAeSGp79uH1jvXAD2T3LeJq9y
j2V/7qlVTgAGwOXJi3C2krEGnGkxB2HcsmJgMPkc/nujuR+5bZfv4+BZh9vg
H7GPHbkDwMXQ598rga0dacQX7V7r56RtwX2VNZcXg4Mhw6C5zQ3m0tyluDMg
A9jCfYZ9iKmt/r/a54Ob9Njv8V3sS5u9uCeRU8FA7izYBFsjy0SPgc/eVAj9
dFmWAa/Z7fhiT2Tt8jnhZcQIeEy8gyHch9Ht2mLoY8DjqjLtqcrqtbZ4vU77
7Ej7KXhG7q/mAfwADCQPwpkm2JeIwXr7NfMYh9/gP3Aq+Mg+58ac5zP3Guc7
+BNciPwFp4Lvw/vhQr9PA2vmVwILmzPn+MB479VqXyVmqVu9L7FS53xNjMIv
iFNyzONVn6lEm1zxUBrcAw6yNQ15yKvVOK/GfdeXcnjnlzjFHuPXMccVe29w
TgNrvlcOnnx1OXgL+H2PeQVxg8wbvQb5kRhlHWKTuxu8gHvZ/jTwYm4abwnv
5eKeBh43GZPBcfC8W2M2lIJz83bC3Ztc9VIaNsW2w45/8j+Y8KJtjq3JBU32
K95N4MfPpcFzyR3kpEtsW+yxrhRvQ7yBHW0MPnmsMew01WuyRpP3PdUYefZ0
Y/gp9xbuH10Ngbm8uzxQijsyd2ViqNVxtKAcdyLuRh82BlZ/1Bi5DXx4Mo3Y
4A5Dfmcf8hI5nrvazYWwNzZa6vbdboPh4D0yEKvvG7PAK/rmuJ83CWTgbQHM
Brv5xjtG9d1lZUNgyS/SsMlYr9PvsyIf/PpZ66TVnIkzwnvgP8+kobO9tgVn
aXae5S2SHPDTYrxRErO/TWOf52zTdc6b3AOITfIBOYU8SbvdOWKc+7HbOOfl
VcYLsAdu2JM9xw9fsMy8C3KvaDHOkL/BK/qmuZ878SX2E7Cq7LPAUfjfmcZ9
btjcjFzT4jeoPvMkMPxqx9F3ypEXhpzH4Wgv2sfwtX1ur3FOmVKO91n6/5CG
jM2Wc14l4mdOJXTKtz7jSZuxBZ/odq6/z/y/3jh90L57l2NyVUNwNLgafBfO
CO6TOzamcZfkTnnQHOGI8wtjyAv4FDkDvzrg74cdo8TqIeeyBeai3OMPOofx
RsD8OWm8n6LzWWlgUK1xD73C5biPw8k/9t2He/la37vBtgHztS7zgwHjHH1V
vtZn3oW8+OzZWBgRmH72jlyJvL8tDQ58zGd+37jDf+x5m9+XbvLbDvj7rs8N
VqHDBc6dN/uduXqvpl5ZincfsBCc5J0PGZCFHE5NHicu2QtuQo45UZUzG3OJ
1a9ozWG1x6bBm1c55y92vuc/b7jMwea8n5G3zr7fZcKW2HGh5/Gf91zk2JTG
3avTMQCuX2tsZ//jlh+7zrfPvGMdEGvzfAdBD7zjE2Mva82LynFHaylH3iBX
ch/jPWOvMZf8AG6TS4fMq+BR4NUbfiuGT9XZT7hT8f8xrf9IKd6Iri9H3r7G
cmPbs+8cNcHX4G3493LnSHIjsnCH4I5InL1WOCfLa84jrME7APG1wrl2s/nB
RufKZV6P/9wp8CdiCH951e8J3BV6HT9HfE87bBxBBrBo0PMOmBe8Yt6FzXk3
5F2r1XEPVyG3cC8AQxnLHHgBb2DogfHIjh8i/2Sfdbb5xyTzHuRjPnOpX/W+
6GzI/lNnu03yePSw0rGHvMTEEucHfHGa34umOsaHqrrJhS/hUzf4zZOzdfv7
YM25uzQ+MKkcZ/hxMeKbfap3QWqwencafgu/vjON9XhHz5mTked5T6d/aSne
Wvv8Fj3kmMdm/wdxgsdX
          "]], PolygonBox[CompressedData["
1:eJwllVtslVUQhQdaasGeU3K6z8nfRAUaoy0mXIqK4IO2VoMJXmMwxAgENV4S
bkYhIhClimg1tiqUFkLBFiyINzAImKiPRn0RX7ygMWp8sKIW2wK2JH4r62GS
Wf9c9uw9a+aftnzV3SvHR8R6pBw5kiLeq4wYPyniOvSnixG/TIxYUxbxInh1
TcRABb74XJ5FfMa3xnxEFf578e0GV2M7ybe22oiFyKy8feT7KPG/EX/6oohL
iH8VfEUuYt/FEcOliE3gCeDt4D/ASwoRQ/h+Sw2Pk3+Ib73YLpDjX/T55JxR
6RjFLiHnbPRG5QCf4vyHJpML/5fwbSXfnnKfuQjfF/jWRvwp8k9JrkG17EdG
0C/F53div6/Cjn4nsp/4KcTfhb6RfPeAE7gFvJ3z/uKuc8n5MflOgNurqZv3
OwSemrmWn8lXh95KjXliq5AbMov0HLIZ273gevQGpB28tcZ3n0f+m1V/jc/u
od5B6p2WOfcYb/YAtd2YXMsgNXVSSz32Y9RyGp8G9A7ip+d8hs7aQMz8ct9B
d1mL/W983yTHHnL9xLdHJpsDr4kf2Mew/4c0Zhbpo8h6bEsz9+Jr5Bb8L8v8
luqpentl5lp0hs7aiM/11LeMM76rNYfEJdW8Qr0rmmvHqedZ8DX4j9G7d8Ef
oC8kXzP6OPK3ke9avl3AfpBvb6v/xP8J7gY/VnBP1Bv5dGBbh/w40ZxYin1d
wbHn+PYytibqmUo9dciHxHZyxpycOSfutdTaVkfMXOyHwIurPRMzwXdk5s4r
vPHtmd9Eb6MeLAYvAH+Tc85lme+ou4rzX6I/J0zsTOz3Y2+nplFqO4DPAWK3
gs+Ae8Cr8J3Ft0HwbvBOcR37MLgXvBc8BxkB94P70d9PfstxvPE2fK8Gn8Xe
pxqSd4J2w2HwR+g78JkwyTM4D9zMffPlfqObap1DubRTDmN/K/ks1azaT4Cn
41uBT3fRM65Z34LPfdR/FfYBcBe4M7kH6sU+8JPYd6knnNdAjls573iyXo8s
APckc1d31t03IL+q13x7kPijyXfRHXQXzYxmRxwQF97AXoG9lR4eJd8TBb+F
3lhv3Vd0L2dz3m3Ynym6VsXU6+zkt9Yb6621Q7VLtZO0m54HLwIvB/8AHss8
69oxo+jdfDuf987S7uoCj4CbyPlJ8kxrtrWDtIuakneDdop2y5mSd8MK7F9g
Hyh5t2rGPwd36E3LPNOa7bVF70LVpNoOJnNLM6ZZa04+WzPWi+8x8JFK7wDt
ghng3WXmvLi/K5mL4qC4eLbk3SoOi8u6s+6uHbtFXM28O8Shf9BXFsxdzaxm
9+GC/z3qoXqpnqg3usPrxL+TPHvaudq9nyb3Rv8g/YvWFM0t7ZjV6DuSd4E4
Jq5tq/Fs9VPjOWodzryLxbGhzDtJu0n/sE349yVzUTOiWTlfcuxJ/L+i1rZk
rukfWpfMSXFTnBf3NxfcG/VUvW1J3l3quXrfVfRs6I2fwvd/SQcfSw==
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNlstP3FUUx2/KbygP6+DMdDpDodQVutGkynQwXRjTxEUtFEhc0MeiiwqD
1HbjSqXQMmiHRkuFAgVadaE1LuRRICFx3bRUwf/CYqyatNbEheeb85mUxcm9
v3vP43ue9/fi6Q86z+4IITw1qjDaG4XQYvS6UWl3CL/a4c1UCC9UhfCoOoQV
+z5k+zWjovG8ZndZ239t64JRpZ2Nm9yk0X7bL9vZkt3vrAnhQJXfiedHO5/K
up6hRAhfpdyWbH5h9Lvtv7WzvFGz8SzaumxrtenpMvn/KkNYte/3I9erO51/
Gg+hr8516f4QPBv2XWf7TVufpEOI7Qzhsa3jxj8Rd6y3U25X9ocjl5WP8nu2
yn2fyLqtjxKO/fka53lS6X622n7M9J03DFfjLvdntdsW9jw4W8zWftt/b+vL
mRD+eC6ElzKO/7O4x3TW+C4aXYr8THfyq990l+DRetloy85HbT1b5z58nHBb
1w1vJzGS3Shy/ljk+K4ZNUWO/QD41032dm0I/1p8itjdIn57iOE1fFQuS1n3
c9p8OVfn/ss32RnFVnfcY604X+FcOIVPON9M+dkVZEv4cnmbn8IwQn6L3JfQ
84vpvaN6I/7nwHY44/oVD8kWqA3hrSOn67tCaNjleawwajRqMNrBqp4YBVeM
+CmOwvOwwveS+63CV8ndMBo0GjL6jh5Rryh+yvUjq5dX6asfLAYfJv2sOeP+
Kebl2Eu2HH/VsTArd/six7MBDtmfwabqpt582mt00/Zz1JHqOk8+lGvZkOwm
OjbYS64R2Qb0KD6fJL3W38AXYRZ/f8JjqlpQnrupqxO2Hifv3exlV/13xPhX
bf+u+fy27S8m3PcR6ryUdNvvZNyOzmVrOuv8hw1DtelpV01G3u+1Nd63wi4e
4T+ZcVuXEh5rxfwVk/1mt/fvW7ZfY76ov4vETrG6Vet6NW/Eu04cpowGjC5E
7pP8VFymOVPuR8ihMN9KuQ/Kcx596kf1mfDLD8W/SJ1fr/WelM4j3CtW8kmx
k18FYiW9mjF7qOlV8i2eL+lx9YLm6Dh5aaRmVbuaD5qRfUanY8Zr+k7GvL4i
akx4xdO1rTckP88c0zyTXJPRqZiv+r4X+RxboTdj+FGuyVXucugVroOs+6hV
rcLcztuU29Zvilkb71ULulQLG9IHBvmkWaU4qG9a6GnZk5/CO08eu6nVZXRo
rjxMex5U+9IlmfuR15Ny80/aZ494fzZaNHqgOaq5ytkD6uKM0XvYzoF5A3sr
1I3ue6Ahzp6mvQbGk56nYfp5E7lVzvrIZYF7zQH1wzDnvZwNgUv4hF26N9Fz
BqwD6Cig9xiYlZ8V3uU8eT9FXNTDqlH16AIxUKx+Svl7qTdf/A3Uht4c1V8r
mHrAWM79QeIxCKYFcjaPH73gU25V683MgDXefr0Ro7yRmmH19O9j/gE+T7r9
PBikfzLy/hbv3LZYz1HL+pdZ5r3sIDYFYqn+v4H8Ivo68COPjzPw3GGdAb+w
NyE3ha4VbMq23rp+3vcJ3lPJ3Ev4nPrbfGpNef3q/+sosVM+z/MuV1JrM+iN
iLX6bYz+UL/fTfgM2kr7/VXmhnp9DB7Jqv80r44Rg17ys0Dec9RNuXe1thGP
Du6E8Wj0rI/b+F4nfuV+WiTG5RmRI1fimcenZeI6SGynoSXkL/A9Ra21gWmA
s0ny1Ak+zQN9N1Fvs9hpx9eyjh78KOd1iZzV84YW8FU6j/NWqN7+SvtsHaGv
O6Jn81hrF3bakf8fdkJyUw==
          "]], PolygonBox[CompressedData["
1:eJwlkstL1VEUhRdp6vWRpsdf95KCjkwwmloTowQHBoGDRjZpGFwVmokDEeIi
Kk16gCI+GpRB0EP0xo3GEo36B7Rpha+BGjTwW+zBhr3O2Xuftdc63Y/GR8Yu
SOojqol7eamjSfpB3E3S01bpfp200cAZ+Xyb1MndVWKY2l8FaaJF6qLmI/VL
7VJtvbQJnqT+FmcnNdJos/Se2hL9/8H93A/SP01NmXyV+d/Jt6jvgshL6r9S
vw4ucD8LLoPfpXhrAfwF/BncA34OroD3iGJL9Lzlbsoz64KTuc2AK+AG8Ap4
hZqfVdJjenYLwdncX8Fnh/wZfC/WSkOcPYDvC3AOPAx+CL6dYpcc8wbIF4ll
8EFOuk4+mKLXmlk7a2btrPFcW3A29xp2/uRduD9An/1GqTcfHtiLS8x/Dd87
KXLv8C2FptbWmt1M8abfvsz9jRSczM0aVFLs7N2tubUvgQ9zwbkIPs1iN+98
Qn6chTf27Ij8DTP+VoXG1vpaPrheoedJa3hkr6zpWgqP7JV7NlJ4am/t2Tb4
XxZ/y5qeZTHDs8zJ3P5k4YX/0O8sPLJX1miV/g8ptPMf9F88B+zJZtI=
          "]]}]}}, {{}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzjkvhFEchfG/r2ALpQrFUIgEDWG6USkkimn0KCQKQcSSKV4JzRhGMZbC
EhJLYglRi/gOM1oqEobOT/HkyTn33Pu+LeNTI5M1ETGG1dqIF/w2RvwgXxeR
bYpY0VXlb3xhXT+qX9YXmyPS9RFruowu4WEe0h00RAzyI7btluxLukV+xqe3
PpBzJ+3OvK5gN2Dfj3tsynP6Hfdm+Qnv7rxhwb0+mzObXt6yueYH+YZ7cPX/
jnzJeefn/CpfcDdOcCcf84bzQ67IR9yFfdzKe5w4L3FZ3uUZ32/13+1ow7R/
y9lMcGJTtEmhE6dyB/8BC/k7rQ==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz89LE2Acx/HHfyE1krS55SHoEiZ1zNkPJqRZl5RgEwvEEZuKNmo1TfNn
Bc3pzPSguFt1i9Bd9N5fEIV/Q1Edog6+dnjzfr6f5/N94IkOZe9k6kIIGzjd
EELzqRBG6p05zQXZ16YQnvFoYwhjmHKekd07EcK4Ocln9CNowUN78zrfdOb4
kU6EF/BCltLPye5zVD+GVmTtLet811nivE6MX2Je9kD/qWyY2/RH9c/yGK/o
HOkUeUqnxJ/Nq3wO07IRe4uydfN5vMWSOS2fdZ/hV+ZN+QVs4bU5W9tzP8FF
8668AxWsmCdre+5zXDK/l19CUfaBq7KPfBnXnD9xnK+iC2W9H/7xExfxxH/a
Oc97ums6j729ofcOVVlCts/dvCX7rf8HnZixd4VnOV77p07B/nXZouzXSX18
kT3Htv0dHOre1D3gHq7I/trpxS304Db68A//0Y833rzLRR7gG/ZTXDYneZ0H
OSE/Bi5oWIA=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0klIVWEYxvGvZWlWXguFBiWatbIcGmzRQk1bBKYgZuq9RRbWbbgtrjSY
ZVCRCg4NC10EtQncSZuC2ggtWtYiGjeFkRatolW/b/Hnf97nPO93zrncktTZ
pvSCEMIbNBSEcKwwhIeJEJL8gFNcL2/nUXMbj/ARrpW38KC5iZtxGP/QgEbU
4UA8A3/xaHkIB4tCeG63kV/wpGwCffkhvMbvFSH8woBz99u5JJs3z+En+uQ1
9qbs7+VqncuyCq5CJf7gvjPrdOpRi2ndUdkIss4ck03Jeu1u0c9yKc9jLn6X
3j6dxzo1/ITvyG7jvP1h2aSsHBMYMp+TD7jfwzP47n2/IePszTpPdTZxv844
PzPf47UYxrR5iK+4f5c/mge5BHvi92I3bpmzOtWud6EKlfjqWWc8q9j9m+Yu
73BRr51vmK/LVyIju8bvZf1chJ2uK7ADWXNap9z1K7vb+Yuzu51dGN/f3CY/
rVNg3mbO8Fa+wD3yMtcvdUr5s93jdhN+13z338kS8f8mWxozLEOr/km7LXxV
J63TbT6BDeaNWI91+OTMVNyPv5e52c4SZyRluZyHxfE/KU/aP8S9eqf0u8yd
WGMuxmqswgdndtrPsZej91aWyx2yhbKjvIh/YBb/AfOVar4=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz9dLl2EYxvHH0tSgraY2wEoPon3U0nYUNFXcRRpGU8McWK6GRkJm5Un9
B3USVEfROIiIdqmpFJ00oCCwCNrr8zv48n2v67nv533ftLLK7IqoEMJnLBsb
wuD4ED6hLymEuJQQrunieX1iCEUJIQz3XMwb5Q1Y6fyH+Z/4js3jQvjFq/R/
OFv+zTk8xF63/Sj+q8vVDXjPKN1186M525052GrmgLxanyuv4ZBsF//s5kXu
87xWH8358lAu4Bi7PXajOUZXqHvhPUm6G+bHc4E7S50ney7jIrkQ65zH2imy
M4yLOc55r7lYjtOV6F66L0V303wql9gtdz7B8w6eyPG8Rb/JzEF5hLzN7iu7
afIt/ZTI+83sdjbV8x6exiN5uz7PTLNcKY/BfrTI+fpdkW/mRN+UhASUu7/G
TL+Zat5nppYvy3WciIMYkOu50vkhviI3cCqO4ap8lGucT+IL8mSucP9r3/8G
t727FPWRf+fjZjoj348mXTpf1GVwlb23dt7hjtmdOGJmL7ebOWemTW7FR/8x
Q87ganvpXMPzdJ1mq+xM19Xp3rvvA+7qatFh/xQumc0yuxRL0KUbtDMLszET
czEHX7AACzEfje5dxJnuyOQWeTEf5izO0q/gVnk5t/FX/oaTvqUDh3BCf897
7+NB5Lt0DWjXP5Qf4TE6dY2RPf0T+Sme4bSuCV36brkHvTija8Z5/XO5D/04
q/sPLkqB4g==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV1OlzjlcYx/FDCEKSyoqxtmptS1v7XltIUIm1g7Zj62I3tqp3eMUfYga1
tmX6om0sNUNbsUVsSSSREKJ2iUT6OS+++Z7rd133Ofdz38+TXkvXFaxtEUL4
zp8RaSFcyw5hUnoIF7NCKOsUQjnq1Xe5WO86ivSa1SfMh84hTM4MYQrmZ4Sw
Xj1SPlU9im+Yv4kS3MYtjJaXchnuYLL9y3mMvIKnxPN4KlfyWPkG+zaoc3DJ
+RXOr8QbdZWZaXxZXiW7hxpUx7VeNa7otbDHSXu15Bz3t8D9Jlgv5OnqaRin
f9/8A9Rgun1rebz8EeeqH3IeN8Xn5PpGrpPN4KvOaSVrjTZIRK598/CFczaq
J9hrhnoiP3XdMzzBTNc/j89f/pJnqV/w59yMIte+5Vey2VzsrPay38x34Nn2
XOyMZOslnMKB8+U5ZjapE9TzXFvi2o7qNGQgHfPMfaWfaf01L4jvFLmu3Sxb
JkvEcmxR58kX6c/krepv5En4FtvUs+Rf6ufzj+rV8lSswQ51gXy5/gpskPWX
DcQAfC+r9f46oTOysdJ9d+Ess/vMZMezZIVmT+E09vhc27BKfkZ9FoXOWYIf
5Nvxl+xcnJctxXbrlbxX71frvvadiyPOmMN3cAG/q//m8/gXf6j/4VIU4U/1
Jb6IKyhUX+YynLIu56uoc8Zj/If9aOd9to3v1Mw1/a7uo6u6Gxerd/ITc09x
AO31kpBv/rp+d/1u6h5cot7Fz8w9x0Ek63VAgfkb+j31u6t78U31bn5h7iVK
PYefuIxTzLyyfk//XdTLevP7eC2vR7nsEN/lVPMN8fnp90GDrB/3xxt5Iypk
h7mS3zHfZD1Qf0CckX3AH+KtvBlVsiN8jzuaD3qD8BEaZYP54/jbRktUy46a
r+E08wmyT/EJmmRDeGj8jaI17suOmX/A6eYTZcMxLN6DbASPRBu0Ra3suPmH
nGG+nWw0RsX/ibIxPBZJ8beJR7KfzddxZnwPsvEYh+A7OoE/QzJS8NjcL/G7
wVnmU2WTMDF+RvP/A86Y1Fo=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV08d7VkUcxfEJQVBskF6woFsVlWYXsFMCBFCx0SxgSVzpxoW6sfwLsAWF
Rwm9qJRAeiWECGn0IqiPUhMpwc9v8X3PPWfO3Jl737mjFpWXlmWklL7w82BW
Sj/lpzQmO6XqvJTqClKqxzn+Z/lYWiNvkFXoNtI18grUypv4tfLmUNk61Mmv
8+vkA3RSbkqTMTcnpbLClB6SP8c/TDfob8R6bMYmPCLfSrdhC37FL3hUvp3u
wG/YhZ2xd/luOt5eK+kEuif2Lq+mj/FV9PF4FjpOXkef4Gvpk7Q+5sfz0af4
Bvo0vYRWe75Im2TPRNfz7fNc7bjMN8ufjTny/bIO9PEt8om0Uf677AD6437y
SXE/+UHZBut20r3yNjTLu/iN8m66T9aOFnkPv0neS/fLOtAqP8Rvlh+mJd7z
DExBJZbZ/xZj93vnM/m1/Cw6FStku+l22R46yL6WYTl/yJzlricjE+WyCbJS
vZusOxRDcMFYm3W/s4/vMVpnPc7HO4jnQivGxfum/9Jv9L5FpfV3YSc+5z/D
A+auif9OtwZfyv4xZ7p1K+xhGu1FPXbwDbQWq93jb3wd55gvpsX2V0Rr4p3o
ZvKDsUrvL/yJr4xXGy+kRcYKaBVfon/W+CBZr/386LqHnqF/IF8vD/2yHJqL
0/IM/W7ZD6676Cl6EtnGs9AnG05H4IQ86XfKVro+SI/HOtbPj72gEHPsZTY+
NWcO5mI2lmIJbuCAuS06R81vpsfoZdlbxsoxC6WYiQ/wPgbibOo06R/Wb6RH
6CXZm8bKUIIZmI738G583+jQadDv1a+P80Ivyt4w9gmmYhqmYDEW4Vp8I/H9
6Xfr19IeekE2z9jHeBmv4CUsxAJcRbtOjX6nfjXtoudlrxv7CC/gRTyP+XgH
V+Jb1anSfzu+N3Neo6/iQ9zB3xnnwPu+nd6Gu9FmzlXZqTgXfAHuwzDcirPy
W+jNuAt79a/ITsb/xudhFIZgKM7EN0MHYyRa9f+TnUAun4N746whM86XPCPO
BorRot8vO45sPgv3YIC/gdO4jmsoiv9fv8/1MYzgh+Oc7H9ev/di
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0rdTlFEUhvFro42NCUUKxzEhwRxHgjOm3lZsLHQEwTH9AxZmVARUVEzA
wu6CAQm77C6IUGhlqc5Y2JjDjLWNv1s88+557rnnfN/uLj10fH/TjBDCB/yb
E0LZwhDKsRqVqMCRRSFskVuxGduxDUf5almDKuxELer53XIPdmEf9qKBL10Q
wsy5IdQVhzA4L4S/80NoVs/CiaIQTiKjJ4sWbjZOcacxxuWQxzn1GRSZUVCP
443P3ea+lnX2LZYHZIk8KN/Ks55ho95NeK++qH4nO+wpxjF9jegzO4kUSvjD
5n7Utwxt7rSjFZ/Unc6X4Lx7FzDkzjASznvRhR50Y4e9K/Reit9z3C/L5Bf0
2vFZPna+HPXqr+pqd6qwKj4f94NLmzVqR4XPzWZ8l6m4Q09Sjji7wl+O7xKf
gV+JBve/6a01rwblXEpPOvZhg7NkfCa+V65X98h1MhH/F3yjGX/U0+ZO27M2
fu/Ofssp7hWm+DXqLv6XnORexjO+Mr4j/1NOcOOY5B9xD1FQD9iTj3f4B9x9
5NT9/Jic4Du5e8iq03wmzuLvcncwqk7xI7LAd3C3MaxO8kMyz9/ibuKFuo8f
lDm+nWvD8/g78s/kGN/K3cBTdYJ/IrN8C3cdA/H35vtlhr/GXUUp9x99soj4

        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0UtQjXEYx/GnadVkkwo1pEMXsmmnsrPKNmNhZ5pxGzMdJHKNFDMVwuBU
p8vJYMYlYsWGTdnEhsxgMGjZNguTGZ938Z3f+3yf5//833PeVGu6pS0vIqbw
tyiienVEDaqwCbXYt0ZdGrGsv6ssYqI4YrEk4vLKiH9ck5ltyKyKGEIfn4ft
XIHZLDeKMeTzu+14yBei2cwKuUNOy7S76ty1Ba/U7eqXctC5QrSY24mcXZN4
ozdp32tZ70ypnMVdbkbedKYIe9Rv1WV4h3vqOXlLrwSt6vfq9fiID8jwS37n
J8/39eflVneU83vVX9VXvd8D71Hp+ZD36lf3YdjMH2e/8APqz/KKbHC+Qq/d
7DEcwQa9o3Idf8DeH+obZh/bm/J8WO+7vM5lzQzKR3ppvg3X1CP8Wux3/pvZ
Jvc0YiPXa+YSLmKzXk9yJ9+dfGP1+eQ7ywsyxR+0YyH5X+194Z4az116v2WO
m8Bzvlp9jv8lx7kxTPNV6rP8TznK5ezMymd6Z/jTGEn28MPyKX+KO4kh9Tif
kVN8J3cCd5L9/G35hD/OdaCS+w8ngmZI
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0Dtrk2EYxvFbSEC6RHMWVIhCu/WQqnP9CqJGIyTNqVqHduvJU0tjqyAI
IgqKoBhFJztVF4VqJ12q30OQ1sXJ/jL8uZ7rug/P876l5uy5mQMR0cW/wxEn
ChGJTESJJulJ+oJ2ihFjzmWM4hTGcU0+mIv4b7ZyJKKn93c24n7aQpzVc1D2
LB/xHO+dX+p7R4fMJfRU+Q/8H3MP+CSuyDZkKXzEK36TPlQbQI3/xKcxbE9K
Vpd95nftWfSuL85zdAHzGNF3SN8Fb8qqnacZ+hVbeKS2Z3bbeUn/N3qj/93m
MmqX9VdRQVHtEk3LG+79wa/ofe0bC84X1W7xN/FYz197v8tv88u4g7K9RbVp
vdcx1f+fuIqCvEOPm2nRY7RN8/K2+37x9+x4676jzk21n3RdtoY38oZsEnf5
p+a6tCevy2pY5Z/Ic2jZuWP+jDedxgT2ASSrRIE=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
       LineBox[{4621, 5966, 5967, 5792, 6260, 6261, 5051, 5052, 4880, 5968, 
        4881, 5969, 4622, 5420, 5421, 5043, 6493, 4616, 4750, 6256, 5962, 
        5963, 5791, 6257, 6258, 5044, 5045, 4877, 5964, 4878, 5965, 4617, 
        5417, 6253, 5037, 6252, 5038, 6254, 5358, 5359, 5035, 5036, 4874, 
        5031, 6488, 4610, 4747, 5029, 6559, 5030, 4871, 5027, 6486, 4606, 
        4744, 5025, 6558, 5026, 4870, 5413, 5022, 6557, 5023, 5783, 5782, 
        5935, 5934, 4600, 4742, 5781, 5780, 5920, 5919, 6244}]}, {}, {}}, {
      InsetBox["190", 6626], InsetBox["228", 6627], InsetBox["266", 6628], 
      InsetBox["304", 6629], InsetBox["342", 6630], InsetBox["380", 6631], 
      InsetBox["418", 6632], InsetBox["456", 6633], InsetBox["494", 6634], 
      InsetBox["532", 6635]}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.882869979564643*^9, 3.882870087392771*^9, 3.88287012026623*^9, 
   3.882871733235313*^9, 3.882871867785903*^9, 3.882872068011827*^9, 
   3.8828721340849133`*^9, 3.882873124245867*^9, 3.882875875509193*^9, 
   3.88287598388307*^9, 3.882876148868762*^9, 3.8831058583251553`*^9, 
   3.883109999440978*^9, 3.883110213948126*^9, {3.88311031859422*^9, 
   3.883110324508835*^9}, 3.8831104697436*^9, 3.8831107648170757`*^9, 
   3.883468959415133*^9, 3.883473337363904*^9, 3.883479392409144*^9, 
   3.883479645899507*^9, 3.883553848972858*^9, 3.883646082440133*^9, 
   3.883646566434946*^9},
 CellLabel->
  "Out[115]=",ExpressionUUID->"5a40e7d1-446e-457a-9279-37c87371dec5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"q1", "[", 
      RowBox[{"1", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"2", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"10", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"15", ",", "thetaCM"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", 
     RowBox[{"Pi", " ", 
      RowBox[{"45", "/", "180"}]}]}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882870163893723*^9, 3.882870255681621*^9}, 
   3.8831102234139643`*^9, {3.8831104739905663`*^9, 3.883110478122541*^9}, {
   3.883553873185985*^9, 3.883553873641539*^9}},
 CellLabel->
  "In[116]:=",ExpressionUUID->"810cff79-47ba-476e-87f6-c3e7e8c9c39c"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVkXk41Ykeh4VbKPfSOcc6ZEl18VATg6jv17lCGGMZjC0chMPP3lgbW5Zs
Yw8xDoVKDBEZQpqTJWRP1mw5p4XIlay3+8fneZ/3r/ePjzTNx8yVk4ODw+fb
/k+uVr6+eVXTCxZO/+6uDSehHLtFUzJTGSLL/mVteI2EW9XKLq8zALjKB2cE
I0hYswEjglV6kJXWcPhQNAkXye6b9Rk/wXL0aXP5OBImi3byVzWZw5OT1huh
SSQsO2VXxFFlBaR7t/e/pJOwTe3TaXOGLXSV1ekw8kg4rnu9vTTDAWi2Xm7+
Jd968kfkw9udQG1E7JXXAxLGfz/qX9rkDB4DkwMpDSQkn2M09dW5wla05JWh
ZyQs1qZzb1a6wVNT7UDNARIqXVL5UbrcAyw8nKqfzZCwyWQv24DhCUIdanc8
Vkg44pBxsjDDB2TzPgtyHyVjzVkl9XmmLyxb3pxaO07GILXMyaB2P1iof8qz
rk5GbrCXK24KgMIPR+qkXMjYTW3vUn0cCOEHp+IvhpExXfekd3fdVVBck3Hz
ySSjpPFq/efKINCR4n/77DkZF0wtbRPuB8Oi6BvZpVkyVlg07X9XHgJqP69W
cuyRUd0+Vl+XEQbuLQWahzQoaOYlOp6bEQHUy0IK640UPKIOrTl6kZAjlCln
N0nBT41+grPMSODVoPbn71Ow/snoo6vtUVBU8/D7ZH0h/A+TsfdHUwzQf9Oe
fjkvhPbDKmmrlfHAndjlGKwlgmjpNqepmAAv0nr5g+kieHwsTyXufgJsSJMH
BfNE8N3E3phY+Q1Y5YkXPbgpgkHzndI6jCRY7N6/kNMsiulrdrU5Gb/DeG2v
zQN7cUyh5Gu18afBSljkfXquOA7WxB5TNUsDfpVw97IhcbR9Z7coOfHNJfvH
bhh+h962h/3WPqTDp6bEq1UogVnn3RPyBLJg4b3c72IXjuHMAZmGJatcyOpo
DBBukkZNpgEfNYABmUHZHAd0TqBvqLFTre9dqEiqbncxUkbisWsqp2w1vPNL
VHXUVMFh1iXeclodvNflUVTV08BE5Q2OeuvHEMRHN975xwX0U+jMbittBue2
VqkvN7Vxy9mzasq7DYoFbF6HyOgg7YmlSdqVdghxjr1BidZF59XhtraEv8HC
aYDbm3IJk083+JTFPYfsGJvCU9cMkbOtQe16aCdU8GWbdY79iILyhn0zud0g
HNkp3H3WBPWLqLc/ZfRAQVce85SrKQqv9OhGNPRBsAdk7vxphvkdfx3g8ugH
Le4vgjfWzVFLQntfymUAlBIMZb/KWKDCG4GFa4GDsNW7K15Ht8TKu0fdH/kP
gaLb9SOGBVYYPm0/pBA3DHErq7P/XPoF/bTUDf/IGoH3R+sc3BRscKtIh/Y+
bRTWd4Pzb1nbYr9vvmNQySvYMi7hHGTYoYaezN5U8Rj0imTKLAzYY9dFjbtY
8Bpy4x6UJe5cxtKaPI25inGgfs1t4ZJyRIqsIv3yvQmgnfbqqat3xMEDPNGi
zZMw6sun2mrthI94Asr6u6bAOI4Yi/nqhIoUATqNOQ0pjD5vaioNV1I3yGdH
Z0AsVsFEW9kZZePjlX3ob+DL7p3k80xnnLOZGKcuvYHkidudW1YuqL849PWR
9yxw2DQ6Tm+4YLC/q7vQx1ko4gms70p0ReP6WwZCv85BbfWE6HP5K7i8Qw/n
2piDc0q8Ri9br2Dxq6g674B5oHwuFMs2dcMt9/OOIdvzUON/Ue6nFTeU2E23
9QtdgJmfozxlo93xrV5SNw/3IugeLj03LOWBz070gGTSInApcRqcbvZAOk8Z
tzTvW0hwkKXWG9GxgXH8/LP0t/DSLOrXTRYd+zS1mGaCS3Ao99EZr1BP3KTf
MndMXYK/m2Wc8nm8sNOkyIJfiAWJMcwXziVeSNPQKi/PYsFHI4tx3zMEenzs
/e9kDgsUve7kLZ8l0LfYQedoHguoimQTrx8IjOCNmQ0vZIHVb2YlbprEt6u6
xM3KWJC8oTJpf5HA0RCrtJ0GFqSXLt7RtybQ4C//ENMJFrRI5V8XjiLQ1Ju7
M26KBb0pUSeyYgj8RSZHqHmGBfISfq0CcQS6JTbWnlhgwXCm6yhvEoHXbTiW
tz+wgC8kNXc7i8CWrRRa2R4LNpdViKm7BDKrjtVMcLDBuoMaYV1BYA+tZl+A
iw3MeKOEkUoCJ7qHC8IOsSH3oUlE70MCN/PFX5kIsEHB+OCBJ80E7htXysUd
ZUMN93S3eiuBB7kgsInMBvv4iqS6pwSSPWmCJ0TZED5/fK3iOYHix9YdbMXZ
IPnDy5snuwiUGYqtSpNgg66el8rtFwTKxwvvMo+xIcd8u0Oyj8AzmvcMt6XZ
8OfNMLP8fgL/B1JKPS0=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVkXk01AsfxokWlduMN90rNy7yG4yL24ao7zdZihISZQmDMPysyRKNyq40
hhSJUVniclIYN5RXTZZcZKtMsmSZkTaVJPF6/3jOcz5/fc5zHiVGgI3nMjEx
seil/L8lHq5uf7Pdevekn+dlmTwCVUUPDBTStcFd8VLKliWeu6Pt8ZID8LCx
g8lZ4ooZ6KWWmwHz4pz2Fi6BY+u9Z6s5h8AllN9LzSfwglyzdHntYbhAabX9
6waBhWpOeWLl9pD+b/xN9k0CG3Q/6hzmOoJmnGu1dgGB/aaxjQUcFzDxuMX6
pWjJp7FWI6rRDf7WTP6geZvAhC19wQW17mDRtuNLcimB63dya9srPUHZ/GGE
WjmB+XuYkrNlXkCs1GQuryBQa/+2g0pFPsC3iSpTqiSw1mrhsjnXFyysStSj
eQT2unBo1zkBoF6U4PDpwdKerVp6b/iBYC3Qeyb1iMAw3fRXYY1BwPHslXRr
IlASnFXza0MgksqiPu0ksNWosWV7zUmoHyCuD/QSmGZK82+tDIVM1g9zLQGB
Cpafqj+XhYH9vnXHk8YJHLW2c0wsCQdndWOv9CkCS4/ULv5eFAHPg/P6+6cJ
1HOO22fKPQ2/bU3fpiRGQxs/uf6rHBas2vGtJW4TDdfqwcNMsxg4o6ljEqpK
w4//BFGH+THwmT3pw/2ThtX1fVWhjWdBOtr1bvFuGu7lcxdya8+D6b5byyLd
aUiYdVuJ9GPBue7BFSBpuLpl+c2tNbGgs4ao2R1Gw842pllzZRxEvxsNEabQ
0LlnG/tTWQK4mNxOHObREO28Rgw0E8HRSWeL7yMabn6RtS2+JBGSo1J+0jto
OClYeLGxKAk+hjfdtZ6gYdibZiVjbgps+hAbsXmjGqZNO93L5FyClroe05wk
Nbwom23YIM2GY3XWXRVZathVEae43YYNPbX1j8VL1NBx0mlMQcCG9PNe6w49
VUN/xzVB01NpINXVzOJQ1DFjl3diFiUDKp19d9sVqOOguDJvwv4q1AxuzMz9
ooGbc6WznXKuwgy7T15xDR29d36PejZ0FXLmdS8/VaLjdHCnUa1PFjiodZcW
HqKj5OiZ9tTT2WBzZ1vysTI6ajwRjG3Py4GgIAPbI4GaaMA3X20UwgXL/OCA
caoWUnoKO3TTuXAlv8D9EF0LR0eWXf7zHhd2iYvedxtrYapYraLcZy5oq5dU
aoVr4YgBffvH4Hxw4FrFqwxpYeLdNa65wTfgS9vbjM5KbezLa6uaC7oFep0R
nnyeDgZGWrrdCyyGmJNvB09d2oJkjWfqMpU7EJtkV887vQN7hPulihiVMLv2
8L3TKwwwWXtGrPpYDUgXMSjTvoBB9ObLDQV1oCC6iHtVjXDO3bd8wL8BTOYl
XObSjJFRb2fFPtEIfs+gdHe/Kbp/6mloSHwMM7fmB/j2+/GCDi+gMP4J2FoO
BmaUWeCyBp5ubGQzlEaE/GR8P4hUDYv2wautQL0xoWtmaIX78oxufuS0gcrk
UPj7E9b464c2UxavHUabXjr8KLHB7Kb74hI+nWDEmthqITqMhpv2LP7h8Qy+
TqXN6MkcQfoQZTT6ZBe0fJ6yNLK1w7JiGe+q4G6YCO1Qb4yxx6jXzt30+B7Q
aXL0031yFIMM9SxyM3qhx2ftjcTlDjiXZ8x4y+6Dz7USMjrajtgZmO0aduM5
dCR2yWYHOaG+mfLCQP4LcDnzx9TBXGdsMdEvxpyXoOc/9u3R4+NYUJGlP1La
D2i7PG9c3BVlVTSZx28LIC2j4ZfUTFfsEl91Tq7uFfzWYU4hdd2walVIYWfL
AByof5Iq1+uGmrIUJoP/Gir5x1hvvRj4IXVm/da+QZBuibkgWOGOKgkJ2gHM
IXD+SSWns91xxEHQbzQxBGY7eIEv6R64b6z7e5X/MPT/h5fzuNkDw4M9vTe8
G4bVSV+9Xzt4omX1NfMNp0bAZz/LdmLWE9/PM6MkZkZgzPjhfeULJzD/+dlK
/5A3EMUNF9B+98I5712uET/egHW7esIizws3/UxzDIocBSO+ZIjsfm8cN0tp
XSU5BtzgmYvjY974iGgDhZQxOLqTdz6A5YPMVYWSSlLj0CE7tc7kFybyuJt3
PUobB5uCK4KqYia2GxjybagTUDT7X/1IPV+cZV477Jo6AVIDG10l+b7YbJV3
RHqDEFKVNelSzn7I0DcsKsoQwsoMh4rgST/0effv11eZQug5G6QqmvLDwHwX
Y5ksIeh+HWC7fPBDltT54ajrQtA2qTx44Ivf0lUt8jaFQpgJRRfVBT/si7Bn
z/OEwL9EDPdSSTS/HxxhLRDCnqRCBx19Eq39JZvjB4TwjZzgFRiQeFQ5c0Pd
oBDmCz3Wyu8m0Sv5n3vEqBDcPlGuLd9LYqyD2PsfU0KoEm481H+AxAdzFxmF
C0JwPmNMPedKIr9csUIgJoJ85tTwDIPENkbFIkVCBMnyj2/7epIoaO3JOb1S
BCrFiwpHmCTOZss/t6KIQCI8LY92ksRFyzLVeBkRVGTkq+ecInGFBJysXS8C
Vx1BCSWCxPW+DCohJwL3xibO92gS5RW/uDjKi4BDi/hOxpCo3B1Xzt4kApbI
yn7kHIkaCb/+5CuKoBAs/7aLI/Evg9sWP5REkOIWONuaQOL/ALzGrJw=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV03s41NkfB3C3VaRflFhZRCVh025Z5PL5LCKUfEfSmhHG3beGGWyElPuW
NIRFLSN3/UbkWlJiCckqYl3KPTNdULuVqOy3P85zntdzzvOc533O+6gzA2ne
YiIiIlnU+DqL35XumdInzJ5v7VaN0Cdwm/COseolPVDSfFn81UuVel5DaQCP
O80ginLVe3giV2ENAy3ts9GUZ+T9FuvSDoEfN4YXSzlZqWNtRaMjOJxm+ydR
LtZi5IlUOMNoYZp5CuVmg4Vdjjw6PBFM62RQHraKaylKc4OMZZ9tf3w9T1tG
O7LFA966KOoVU078cYBT1OgJh4l/91dSlt/La+yp8Yaid8ucRsr5PwdILPJ9
wU1Hl3+f8k6bPQfVS/wh5mrMh37KjQ5fMmx5JJQPfiKonPjELW37H2mBoHmC
MBD/icqze6fhVFsQJLdta5GnfNLg0ujJFjas65Zz3U5ZAly35TcGg0GuRush
yl3mLZ36DSHwsB1SvCmnWm1nddWEQqizt38kZVX7N3X/8E/Cpp8aDvEpTxNH
6EnlYeBnNepyn/I1p8aV70rCwd/ifegkZUPX+P1WvAhQOfxhRNmAQNpxpeGs
tGi4+Feqz2XKMoZwN9P6DPRe61poorxwky030XYGCia7zk1QrmsaqA1tOQu6
dpJzOoYEWrTxvuQ2xsIBO17QQ8qa1n0OQqM4SCo6ELZIWbrzm4LdDXGAYvEX
txoR2NsdYN1REw8qh8JeRVN27d/DfcNPhPZXwW4WewnEI76TxrpJQA9NnvyV
8ta/s/cklCeBzIIg5BrlFyNf/t5U8hs4Ley7r2hM3d9Uh7ol7zzcjWKpf6ac
+pZRnZl2EQoY9/OXTAm8sDHHpHktF4KeWExamhH4uCpeTZ/GhZdjt9y5lOkv
GDOqI1xoeOCkqAMEsuhr2G9fpYL8MN0/EAlMN/VLypZNh9zACu5uCwKHhhzJ
/zmlg/BOYGkqZdVfwT42Ox281ot+XqBcUqEgf0IjA37vBUa1JYG31NrycE8m
DGv3LVhZETgmqlE/65wF1XG8Y2U2VL7ctTmMK1lgPbRiqGxLoN/ej5GPxrPA
cLrZPoXyW06veaN/Nqz4i+uG2VH9mD7dkxKRAxmjt8pdDhKo3T4yo593BWxE
8/NdCAKN22ylzYN5kMFm8ve5ECjbX/yXwSUeeEqJcvspT0+KZXxfzYNvr7Ni
vOgEpog0qin9w4PadXaZiQwCJ4119Bc4+bDKVOrk8DECk26scc/lXIXdf0lJ
VHsSOJDXXbvELoTWH9ae3smi+lWhFbGQWghbPt7TGKN8pikOn1cVQuGt5D5u
IIE7RkwePHpTCOv1Jo5+CCIwUoE/XsouglHH2bneYAK3XLiwxpldDCdUZrTr
wgkMOmXvUR1UCj7cO6+tEwi0ZZmUruaWgl3FStXGRGo/U3ve9XopjF24HjxN
ecBGMmr1XCloQfdc3G8EmirdyXIly8BBUrL5UTLVv4bve1f5lEOAh29FziUC
i97JAIP+f0gze3ZDkE/giQbvFLEtlVAQLl52/N7X/0xsFt1TCS6y9F8utlD9
HzK5sWJZCSO8TVrVrQSGLG8Y+ORTCSGCebUvbQSeMmtR+VBeCe+amjj5XQQm
/KnKf/ljFWw61cBR6SeQ1zv4oN/8BpiO3jMXzhLYL7CRKmHWQF25wXjLehrO
Z2vti+XUwGmzPNggT0Npu1Vn3WJqQExs73mvjTRE/p+LildrwNJD/7nUtzS8
xgZB0kQN2DwIKXJToWHM0p77Ae61YB1D32SgRUM9mc3xO4/VgT52e6ab0fCc
3nuRul8aICmR4/fpBA3ZOh0ZzUW3oTb4plnCOA2XPMmKp6xmOBbl3tTk5ojM
piMOXJ8WmJNp/ZA16Yieb/qbm5P+hIxq2Vc1kYcxeVd9YHFCOxxvnj+4QdEJ
xZrrDeJOdYB2szDao94J5bTtesayukDsLv8Nh3UE9+eZFyykdUOCbr/TGnVn
VJzvtoqu7wELbtEBmxfOmHP/lqi4fy/8oGe9ua/uKJqo/Lyy2esRtF5f9NeL
+AV1xmWno0IeQ6yBtFaZkwvyS9f71XL6IM6xpNpYk46Rz1z7dBL6IVT3pH2n
DAPZJoZ2uelPYFC66dC+fxi4lGfJfMkdAIZXylDWQ1fsDcpxP3l1EKyI9t3n
mo6hkbXGl6f5f0N1cPRHG54bdu4zKsUrQ2CXzhgIRHcsqso2mrw2DJbWEyW+
je64cYtuwLGyESDMpb9T0/PAx6KrY5Ruj0JZpFF8GN8Da1cHF/d2PgVdnFvr
os1E3Y2yAcy2ZzBmQd91Oo+J8ynv5XcPjEHEskXdDjVP3JKYqBcYMA78228z
n2Z64qTLyLD57Dgs5yY9LJDxwv0zfR9rWROgf6TQfTjZC8M43n4KrydgsXzD
5l4Jb7Svu2yr8OskfN585MOORG+c+xQQKf5+EtL1ftNQE/XB/MGzNazgKSg6
63jvWZgPLvmZuocvT0H/s/bwl0s+qPI5lc4+NQ3lkoOvfUN88bn1+a7VEjPg
nfMuWWPRF1s1u0H1/AzYpGwUPRvuhwGriyXUpZ6DPCdp3a63fljP22ramvoc
9BKGjCRC/bHH2KSNJjcL0qZ3122a98fFgMuO7imzsOPb9thanwDscMhzWqsg
gNKLqQ0MQQAyjUxKStIFsKtEtfYnDxL9Xz98N5opgG+6u8RoniQG5btZrs8W
QOX7iIMnvEmMloqdiPxDADuGZoYK/EnqqTqVacUCkLUt6JHlkDgQ7sz9VC+A
7U/VNV/EkGh7ixNOjAjggZT2mZxCEgmWREfCUwG4KQ8H1BaTeFQjU+H2mABm
HzjSektJ9D13s1pzmlqvu6IoyScxzkVkbvmVAH6PIiLYtSTeWbrALP4iAGVO
RZF1O4ltFWpVIyJCWBOkwmB2kNjNrFqRFReCwgvDdVFdJI509V+JWCWEcgUW
eaOHxMUc5UEHWSHYtOYufzdI4oo9f1vCeiFIy8HvBkMkSopDSKO8EPjHo/Ro
IyTKk0w5TSUhHFZ56JQ4RqKy2r9udGUhqI8MT+VPkKjRF1/BVRGCW1g06/YU
idqJip/b1IRwVPvmu4EZEn8wLrNbVhdCpWZC+JtZEv8DxqNqBg==
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81WkXAHBhJC1DI0bGUqSioUGlsZwnlTXGMqnhZ7sI91fi2nOL7BMZ
W0JyKVtxr+1aosVLt7HckSJ72bl3klBjQtN9n/54Ps/n+9c55znnPLsoF+28
hIWEhG7j8/UWeSLRPXXI1uj5w78ZT4wItIf/WF8xQwsKibdTX71WpeU5lA7w
/gavsgW7egVeSbFMIZCYFGnFnpH2+VSf/gvU3Roca8NOlmvfymq2B/EjXcef
YZfsIxhCrDOQtalJqwO75cjiQfsCJ7CaLbrLxR42iW0tTneF1ZtJjJ6v8dS3
qNNb3WH/xAWVV9gJ2v204mYPMKNbag1jS/9c0NzN9oIYedW2MezCY1TRT0xv
mPH5980Mtqa5rtWuUl/QF+NEz2M323y5YVFAwk/Xk1kfsF+5pu+9nX4R0m9s
zBcBXI+Opt4Uxx8cdzW5b8EOPZIxGtoaAEHlnswd2KLgvKewORAsgxmj+7E7
jVs7DjUGwexlzRZd7DSTvX6d7GDIlqnVQNiK1kv1H5ihsKKVm3sWe9rWwSnx
fhhI6a3f9sIuP90s+KE0HHaOWe8PxNZzjjMzKYiAgcedA39g252XG85Oj4ST
79YznmNv0YMnWaZR4Gg91D+OvfggQGqCEwUpU4WFy9j1j/rrgluvQvlvi92y
iEDHOQVf8ptjID2EkuiDrWbaa8M/GgsNteESV7AlOr65q9MYC1aVNOlM7B4u
1bSdHQejSaIt/8N27tNNXWImwL7GqGCVYwRCDt6T+gcSIU9w5bAhtupgjm78
/US4GWcfeQb775EvgztLfwe75bCy69ihU+27ThQkwQ+bE84KGeP3WSZqs9L/
gI/eKpoC7Os7cg1atqbC746H7VWPE+hldZzSIbtUkDn8l6wFttPfxIziSCrs
XY6IvInt57Q5YHk+DU5JpbYfPUGgTEOfxBzJTJDiCkPeSQINDdmT205nQtDz
dccubMUQsI7JyQT9l2Yy69ilLBnpC7tvwJ1fX1AJEwI1KXEYSDcLTvyqn6Rm
SqCxDbsb5s5kw3erJiWDZri+/K25RF42PGrtrZMyJ5DPz6v0F+PZUEQP97TE
Xqb1GDf75sBqmCC/BVt0+kp3SkQu+GpdTayxIJD6s5GZQ4w8eKKduZ99ikD6
HAsJ48ACcMuOiNG0JZBkX8nzIxkFoH3rwS8h2NOTwjd+rC2AA137Sx5jpwg1
K8l9KIDp/1KWbOwINKmvcWiRVghVCwsb6PYESqzZ7JZPuwP9H9ZF508TqJ/B
rVsLKII4NXuajhOeL9a+iMW0IngwWhqRjB31KBbNVhfBEC1t2yz2/hGDrhdL
RTBD2/oilyAQXYY5XhZQDHzfbe0SLgRSuX5985mAEjBbNwkXdSeQ/yVr91r/
MtDIinni4k0gCz+DMvHUMnBoahp6hq1CUX/vXFkGxvZhoVo+OB9zscviC2XQ
leVnKOxLIEO5x9nO5D1gsW8tM6l4/hp/7Nl47j5cFER/VvAjUPE/eOucKkDj
oZu7WzCBrvDX4qovVQC38fvxQeyzr3lcsdwKCBNNmLANwfvAeepYPVgBFcXU
8ydDCUTLpIeIOTChyer3Qu1wPK8688wqGxboS81F77lMoAuNXinCKlUw7s9d
OB/39X+wVd6gWwXJK1K/bojH+zRkUCM4UQVef3xrl4UdtP5d/+dzVdD2TuL7
1gQCXTJqVfj3fhWkLc91Kl8jUPxTReZb7WoIXDFrW0shUEHPQFefcQ0o5Byo
U84hUB/PfFMphQ2Kj3N0tCsJ9D5n38kYGhtGhRoFY9gSlhuvukazQdbDzzql
CufLfPpJ9g4bVO9EBM5X4/4FAC9xgg3d7oJhFptA0Wu6f1Ld6kDqzAuZU00E
0tqiHKfpUg/XjMJX5zgEuqa1IlT/WyOUbxPacfcNgQI02m+0FD+EztUUg+3y
zmjNg2S99muBBYfgICtXZ0R55GCTeq4V5j18kspLnJHHUl9LS+JTUKQfHDz8
2RklH2y4WBL/DNydXHhh9i5IuKXhSOyldliia56vrnRBUuqW3WPZnRD8yyq5
uNMVmTGM7y6mc2H36A618DhXJPueaxLZ0A2iqb0MlsAV5f7ZtEHEtwe2TLdc
2A5uyEDhmEDZ8wV8lGTkdNHdkMa45PTloJeQtxYSdbPVDTHLtvvU0Xoh2lP3
qYmYO6K/ce7ViO+Dj32NF/Xt3FGAgZ5lfuYrUJWoULViuKM1xgnK29R+SGBf
Ebbiu6Me/1y30DsDkEo3N6rSp6Cjpru/vC4cBG35jZax1yio4+TRMpQ3BOrj
TcvhQxRUXJ1zdLJ8GCpi2dWzBz3QDpUDVJd7I3A7wOWwRKwHerlBPFru4Shk
ZCcrNY95oDrxwJKejtewTZZTb6TviQ7skKRSOG9AbnTKZijNE71PWZHW6R+D
bTvVysWXPJFKQoLWReo4KNg/EhJYeKFJx5Fh47lxaGs8rL23yAuZzfSu1vlN
QLektfbcN+dQGM3LR+bdBOQce6q07n4OWdffspAJmQQXPVdN1rNzaOEzlS6y
Mgkh5WUV4Xu8UeHAVbZf4BQsqk77bI/xRms+hm7h61Ng8eGQgwnfGyn8l+YU
cGkaVgcGHxiZ+6BZ06ROcdEZOGLkN/Ky2ge1qXFBMWkGvuW1fhGT80VU8RLR
XZtm4bl4v2pTuC9qKFA1bEubhbh75x0Fk76oW9+AYyc1B5e6mRMFJ6noE/WW
vVvKHHgM8Bh5JVTUbsM4vVWGByL79CoVJUlEOWpQWprJAwlxR6VuGol83/31
z2gWD1SfK+snBJHIv9D1xPYcHsQa1juiEBJFboqZoN/mQQX3WHFNOIlb1SFv
V8KDmvVk75tRJOoPP5P6uYEHZGFkvnsKiSyaaOG2IzwQ6rRr/XSPRLZ+ou3x
r3nwr1qsXU05ic7uzpJ5OMaDWTmNWZJJIu9rD2rVpnlwu61bdqyKRLGOQgvr
8zyotVUu4jSQ6PHadUrJFx4Y+Ce4ZHBIxGEpVY8I8aEvskPV6k8ScSnVAkkR
PmRQTy+IdZBopLMvL2IjHwz/gaRLXBJ9ypUfsJHkA3Plu3n3XhIJrJl74rfz
QefDWa78KxKJiUBQszQf3iq9rHzVTyJpkiKlJscHJyOHKPNhEskrfXR1kudD
dpfTBZFREu3ujWOlKvBhc8s150evSaSeIPsfR4kPrdRxm9AxEv2kf89yfRcf
Tsk7mv40QaL/A7JGnxM=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#4"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 4.8717795932537635`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882870181702614*^9, 3.882870257355679*^9}, 
   3.882871735908575*^9, 3.882871868769987*^9, 3.882872071955386*^9, 
   3.882872135541754*^9, 3.882873139044957*^9, 3.883105861177408*^9, {
   3.883110216328271*^9, 3.8831102246314373`*^9}, {3.883110474375854*^9, 
   3.883110478453947*^9}, 3.883473337892284*^9, 3.883479395355332*^9, 
   3.883479647648616*^9, {3.8835538512286053`*^9, 3.883553874034453*^9}, 
   3.883646085840094*^9, 3.883646567631914*^9},
 CellLabel->
  "Out[116]=",ExpressionUUID->"665c9ce6-aabc-4938-9ea3-804267957125"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"q2", "[", 
      RowBox[{"1", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"2", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"10", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"15", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"25", ",", "thetaCM"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", 
     RowBox[{"Pi", " ", 
      RowBox[{"45", "/", "180"}]}]}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882870283332418*^9, 3.882870333228855*^9}, {
   3.882870392731298*^9, 3.882870440219163*^9}, {3.883110242780593*^9, 
   3.883110248889072*^9}, 3.8831104808183107`*^9, {3.8835538798395576`*^9, 
   3.883553880817544*^9}},
 CellLabel->
  "In[117]:=",ExpressionUUID->"7a20b6d1-898d-48d7-a70e-0612fe4c9344"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41OsXAHDblW26yBJuFBdl7Q7KMnXeXEvxu36Wn+leS2m+ljHKzGgV
3XQtqSSEUNasZc0aKYlCiCzRVLbUzM0lucSM+L398T7n+TznPM855znP826j
MV39RISEhDLx+x5FH0n1Tpm57JV6tybY+ZWGtHkPrdSvG8PSmQSVX7D5lca+
o0kAL2x+DfnuqiUYkiu3B7G9yuJk7GkF+nJd0n/h1iGZoe+OU+kglTe5AcrS
HDPBLtzulS1UfhBMvvzxsxl2y+7PO91yPIH62738Xdiv7aJaC5IOw44cfR/z
7/30ZPTCW49A50g71RL7Ink4pKCJgLnJiFgKtoJlTlNvjR98KfJa3Iudu48h
tlwWAM82/pG5D9vogOlv24oCQXj1ZIQNdpPzWopDThD0u1Rn2WMPHU7SzUxi
wnp1fJzT931MjMyn2lkwcMbAyxX79O7rb063skFL+W9/KrYYeGvnNh2HyV1t
hoexu6xbO80aTsA973EegZ1opxvcVXMSHharTdCx1Z3m6xbKToPSm9mI49jv
XaiesXfOQCU1Zkco9l33pvWfikJBW5VCOo9t7h293y4nDERjhGOuYLseVXmd
lnQe5mpmKEXYMubwKNU+AgIcmA/LsT/fZ8tNtEdA0joprA67rnm49mTrBTC5
mFXwFPvX9py1rKZICLgv0sLD1rEfcOZZRIGItLfqArZU5w+3TRqi4HFjX8Uq
dl83w76jJhqKCkXiZJdpyHvQNGG+7CL07I+WtMJG1IBJK4NY+GCaTbHD/nkk
3TTmTizYar+444L9N2dtRLXoEjwyZ5oHYp+e6thmk3MFmsvzNt/ETvziVZ2a
dA0aDIgZyRUauqqYQWkhJYAle3WTKvbLqmgNM9cEoHt8i9DD9vzba1qdkwC2
ArL+f7CDPaXZX2YS4cwUtSUJO3kPPTZdNhnY/z6eMeDT0OioW9BG92Qgk9iM
fdjqp8ApMj0ZbPpDDanYReVKCsc0U6CUkRwZgd2o0Z6NTFNB5EY/cwR7TFiz
/uPBNBh49qd9igDvl0XK8LqVBlq5jqrl2HTLlfD+8TRY5/qQn2F/CemzbgpM
h19Ffch8bLH3f/bGh2VArm88m1ilIb2nnGmz7Fvw1CHxk/U3GrJqd5CyPp4D
izur2szWaUh2sPDF7us5ICO9JuqO/X5SJMWwOgeipOLOn8COF2rSUFnIAaqj
v34N9qSVvtnnkFzQk5hz3yVEoNh70j5ZIXnAkdFatBUm0HB2dy2fnQ83UjVd
k0QJdLd8e9jnxHxwap5Suo8d0RyFPlTlg+FivfI49g4O5Xn/fD40mVzvMRIj
ULhS2XgxuwA68z9KvsDWunpV+iC7EL5apD5RFScQ66zTkWpWMbTFCYzGJAjk
EEwplkgohjzS/CUZSVxP05vzriiGgLJgdUvs4QPi5yRmi6FKS7CQgr1H5WGa
d1AJqAfouDhLEUiqwbBvg/8dEF7Xe/lCmkAFizLg5VkKruvZEysbCfQnjx9d
dbYURodWAo1+JNDvb7nd4hmlcO1Ulj6BLdPe5lE1UgqGnEcePdghyeGnxKll
IKK6g54vSyBkMlNW6VwOihXNe7zlCXSswS9eRKsSVoIet60oEvh/cNkqbFoJ
18L6Iy2VCPR5lHJv3aYSGpkr0WHYJwSbhlf9K6FWN9ptDfvs3tYtX+9UwoOt
5ps2bCZQTJt62SdyFdyV8dPUViVQTt+r54PW9yDaXYpxXZ1Ag9wDkkW0Ghh7
Xfhh93YCzaVvt40MqYGIBNZEJLaU44YLh/+qgbyb84p92KisbVk5rwb2t5IM
Anfg+7GBGztRA/OOHjJZegT6i2/6jOFTC2KHMjPkDQlkLLM12uhQHaQJdEd0
yAS6bLwkVPdHAyz+dFlLQCEQW78jpaXgAdj1PyedP0ggPhFU/ja4BY6amBpE
nyQQrZnqnODfCncexaX9kEIgYn6wpSW2DY7cTl/jNhIobmc9szDmKXgVnSJV
TxBIpKV+d9TZDlCjyQ6NSPkiOT3H3rG0LvDsn/06ZemL9mdb3/6c1A0qy2He
fQxfpDzXbXe+vhfMnDgJ4nm+KONZo7BoYB/Ya5lPMji+iLJl3/pW334IzQp/
VbHJD+mPy74/d+IlKGgm+Ka7+aGyYnl6bcgAJO4smX2d6IfC33kP6McMwiz5
2jGJET/Eppg7ZiUPwS/8zRKJGv6In21D+5QwDEY2vNo4X3/Ux8rwOZ33ClZ/
txGvqPJHFvaaa29zR8C65FpPt8AfddpaFKNbo3BOmqxDtQtABVXpFpN3X0Mv
WXCOnB6AFLUMGIdKOHC/qmLQiRuAXgpL/KXy4A0o7wq3mAY6qpU4XtjX+RbM
ZrJ9im7QkYGiLIPW/g46OPnLQp/oaC5+ScFkeAy6dquEztkFIq2LF42ZjHH4
IYAvp5EViCY9OK+tP46D/pWtFj3/BqL90wMrtcETsHGlyU3rfwx0JsSPrvTP
BFCHVQzNyxnIqe6mg9KpSZA/dWlig1wQml1lhIsuTcIBUkmmS3AQyn11oSb4
+BRU625sLO0KQnz6Hp9QwRREtc+0dhkfRVu+JXqyz76HvsBRzW/xR9EH+ytd
EmLTMH3dWGF16Sh6otMN6lemIX5am/rO+xhiSBSKbZP8AGEVHNdzD4+h+pyf
9zxJ/ABP971x5+oGo14rSrur3EdI5JdmT10ORsuMm24+8R8hcwrm6DPBqMM5
252kxAX5wBHFOioT0SwoRUXJXNhBvr3m1shEgf/0LL5J5UJ7A5TKPWAiVu5h
G/l0LsTTLI+8aGai85KRE+GZXHDtokw4PGbiU3WquRbifM1mC+sOJhoOPZiw
Ws+FjZttbcnDTOTQGBLqwuHCIcKpQfkLE7kEi3XEvOXCm3Abx+EFJvpdM1Xp
wRgXXm4xnk5eZKKAy/erdd5z4erHQUP5FSaK8hCaFcxw4WiJ6CVxIRZ6yL9K
K1zD81+5ISeygYXayzWqOEI8sLi0kDiB3U2rWpcV5UFET4XiYwkW4nQN3grb
wIOoe9a6EVIstJyh9spZlgf8J/khayQWWncq046R5wHn6RDp3UYWEheFE00K
PBDR9yht/pGFFIJocjoqPOgsoS6Ey7GQmsa/hz3VeMCIf37TS56FNAeiyxO2
8MCVftWesomF9C4qf2vX4IFRZsaSmgIL/WJV4ijYxoOZpPliAfb/Ab0wqW0=

       "]]},
     Annotation[#, "Charting`Private`Tag$28139#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hs81OkXB3C3UNhFLlmbO2tJKvxiqfOQS7EpFItE83UdYkZKYiXXIWlc
l4nM5LoyIuNSLmuVUkmKKJI7MxvlsluTit/jj/M6r/dfz+t5nc856qQwZz8h
AQGBIlwbXfivLb1TJk773V7H7aLFEUib126ukm0IwrOVv254tdbQ93UWwLiq
KmvDdR/hpUyNHfydMGWQij0jF8hvzDoCHpIflzecrtQtVdPiApa3XRfTsMt1
TxQL1LjBQvAmnXTsjr2Lu1yYnsAxEMq5gj1sm9hZluUNL3i//nJ14z09Sb2Y
zlNAos9sy8RO2TMYXtZCgPf3PYbZ2HK/MFt6OX5Q5SxwMRebZUkW4bMDQNA6
XjQfe+ch48PqFUEg+sTpAQO75eharj0zGPY/DW0vwn7pnfVTUVYYNPTS3Uo3
/mO003SqiwK+Gbn8CuzIvdlvIjupoGk/9/wmtgh4abNazoCXKtWAg/3YqvOR
SXMEuHArbzVjZ9r+FPqYcxacJQ3IbdgqjkuNK+xIkGEr0R5iTzu5etKqzsOJ
7kvverBvHm9Z/7EiCu5Hm6S8wDb1Sjpoy4yGpr7YgLfYziFKw/lZF0GlK+sJ
H1vSFP7Ks4sDFSunpXXsxTtUmYmuOOgOdj8idolAjW2DDWc7L4F6hQ1HAftA
F3PteksC9J9NUjfF1rHrP8ozS4RnKqmbLbG3PNpUYtScCFcFB362x+7rIdt1
c5Lgjuz+rV7YXgPG9CV2CixauqcmYSPXgEnzHTSQLk83omNrvSowTq6iQcsh
EYVr2P+MrL36oSIVIqvaE+qwI6e61a2ZlyF40EVoAjtz+UR9XtZV8JAtuGwf
T6Ar8gyLDik6aJc/WHDHflGXpGriTIeCWsmsIGzPf07MqIzQQYUYY6Zih3pK
UJfnM2Fs5+WhHuycfYG0AukcoP/mXOmdQKDXr12CvzueA0yZGv0z2CrnwDGh
IAfOD8ovJWNX1CjIndbIhe3Cola3sO+qdhUj4zxQu3fkq1AigcYENZrm3PKB
t6fxeSO21nUpxonCfLhTSJztxQ785XPM8/F8qO6Q8pzFXg7vs2oJKoCD31zm
FZJwPqZjezOiGfB2a5pONLbeg5EZk+JCKM1i8Y8kE8i8y36L1RkmZCRLSejT
CCQ9UP5sbzYTAkNMnh7Enp4UyjWoZ8KEzr1uf+wMgRZVpRUmsGMlQkqwJ831
TRbDWXBfyJBQTSUQ7baEz/XwG8BO4chqpBFosLinYZVaCqmmE6ed03G+anSj
FzNLoeqmt0ckdlxbIpqtK4Xx1R/iCrF/HrF48nypFBRirSLnsGMU2OOV1DJA
/Tvk4q4QSPPKFQk3ajnwMrTFWjMIRLngeKqeUgma3IUHJzMJZB9qUSlOr4Q0
a7vVVGxNkt4Hr1uV8KUqwrcBe/CQ6O/i7yth2cxmVDKLQPuU2vO9gv+E6lC6
Tzv2lmaDPjH/KmAdOFWtn0Ogsv8k4YRnNUggxcOGfxAolreaVHehGq5mNrud
wv5tlNsjyqiGh+6f8rOxJbvue9S9qgbWqs1ffOzwnJhzoq5sMHy0wujKx3k1
mmfXHq0BdfZCehCDQKeb/TKENGth1Xjo8HDRxn1wUhM0roVv6dlfFa/jfXpt
cXvduhaiyPbvjmNHfNk6+NW/Fhy1imgvsC/s79z+qaoWRkTTO3uLCZR8X4X9
bk8duJbs2d3PIhCzb+jJgNVtONZuPCtRTqAB7qHNFSQOqBWaSljcItCHAl2b
hHAO6H0uCU/E3uIgdsk7ngPN1loyT7ER+z5f8QYHlITcV07W4vlRgUub4ICp
7sFfk+oIFL9q/JDs0wDbGGOH39QTyFBSLWnnyUaIayuLqW8mUJrhR4FG92aw
nNTibrpHIKp+d25HWSvM6qTlHX6D7ykRXDMa2gEZDN3CRT6BSG2uR+n+nZDt
9a53XcEXEUsDHR20+0Ay5+fqm/ui9F1NYeXJD0D0emmCqY8vEupo2pt4oRue
lVtGXE7xRTJ6Dr1j+Y/BS8HMJabBFx0stipZzOoBpR3KH1ynfJHihx7bi029
cD6k/KTRNj/EeHhXUDioDx58zykxPOKHLLZbrqv5PoeSQlWOepIf0h+Xnv49
4gXwywp1wzv9ELtSNrAhvB9alGPc/rfmh2LeevXrJw/A3I+f/FiW/ohqYepw
PeclxDFI2f7J/mi12Jr0jj4IXWShNrxBqI/C8Im8MQTDRTHkTVsDkJmdxtoo
6xUYi9xdCfYIQI9szCpR4Ws4vvTHNtsbAaisrsBs8uYwyJ+nyRkvByB5zR3k
k3+OwL/qThP0/YHohaB4vFLrG4DWSqpediBqED9T3vdoFMyO7cr4OheIdshL
k0ldb8HXinst3zQIfcj4KGc0OAZP5ED3amYQ0kxJMQwjj0OfQxl3dSYITXqM
DFvNjYO9AcfmPzMyOjjT/7khdAJY/IJW7zwyOh/uF6iwMAF26vyA9gUycmy8
Zq9wbhKWxmm9rMPB6P1Xcozwx0kIJY8bmVQGI9bQJU7omSk4T67YOi8YglYD
9/lEfZmC7/4+8Hm3bwja/i3Tk3phGipO9it1doSgWbvLj8VFZiDeduzcvPZp
dE+nB1Quz8A5qmaLVNppRBYvF1HfPAvy7ZQVNe5p1MTU2ncvcxZMd8KzZ46h
qNfcostZZg6MO7c1HrgVivjkay4+GXNwtm3O5dh3Yaj7aPFxKQUuCEk7qK+d
DUMkM4uKihwumHo57NsxFIaCFp7+9yaPC7bxWYpjr8IQheVtLVvAhX6v+s+Z
w2Ho4uaEiZgiLui+i3j5aTQMj+qRsnM5F3jejH/uTYehwSg3+tcmLtTE0mhe
y2HI/m54lNMIFzRF3+97IkpBTqEi3cmjXHBzj9IuE6Og3zTyFFrHuLD7Zav0
RXEKCki7U68zzYVDnX7Le7ZQUKKHwPsv81xYGZeZZEhRUPvqFVL5GhdqEwKo
wXIU1FWjWjciwIMl4na2jTwF9ZDq1qWFeSAbde2OqgIFjTweKIwW44F2r6X0
gCIF8RnKQ0eleRArdptroUxB645s7WRZHgxS/v5J8UcKEhWGiBY5HhjvJJGX
sOWCSTI6SjyINnNaLVOhIGXVf709lXlwyLnQLk6VgjT6k2ro23kwfSw830ON
gvRSFL91qfLAr+L5vLE6Be02/9PhizoPtGqbrb/XoKD/A59unis=
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41dkfB3ChSJoo6SeDVBSm0YQHQ31OMtZfshTKzsjXvVxfa/ZStlLm
WsfuKi4lW9a6RsJtkCRbJOpacu+ULMVIYY4/znOe11+f533O+/nIu/pYuvPz
8fHl4rNxCzwW6Z7QsDiheU72f3GmBFLgNenIpqiCZb+X8oZXKlV/H04GWBS3
cdlw1RIMiJcbwoLoaOOGpySI5brkM2DZuqYbj31Tqn17OcsKrI81cjbMPGyf
z1duA4HWu0uvYzdrzh21YtjBBRWRzBvYrw2iW4qSnWCmNKs0YWOesqhyeIsL
GPU+Hb+JHXds0K+I5QaP/0w8kYgt8SuD1V3jDkNf5pv+wC44SRFcLvMAW86c
WxL2z8bqp+WLPeGXswlHUrBZ5mtpJgwqpJ96Ip2GPeCUfCg32QdavdbdMzfy
qP2sNcEmYTVRqCUb+5JmyptLLb6Qu3ZPLw9bEBwUClj+YJrYWnUHu1OvpUOj
IQAi6FoMJnaSwSFaZ00guBYaVd/FljWbr/tcdgk+NmobVmJPWljbxd8LBlru
3vZq7NJzrPUfi0PA0TDdux5byyHGyIARBtlMB8XH2JZeUq8zki+D9lHlMz3Y
olrwON3wCpxeH/vSjz330Fecw74CyZwjj4ex6/4arA1siYLiwMwnE9in2Iy1
PNY16OwojPiKrWjYZ87TjoYHCoeM1rFFOjbfUWuIBqv7epqb/0+gni6KYXtN
DCTV6V8Tx3boV6fPl8WByCrZq4KNrD3GdX6KB5WFhifHsA8OZarH3ouHM/9m
DGhj/zOyNrS3+Dq4pO2jGmFfmmiX12ckwOdy49Me2EkL9tXpyX9AuuboTCn2
rd1Zus3b6RCp+OJTLXZvVYychiUd1Pc2723GtvvHfkp2hA4+wnmf+7Fpdtt8
Fz4mgVWi3l2+0wRKPU7EZ4qlQvfB2QPO2MPDVtQfzqWCBlT2e2HLBoHZtcxU
uNlCrQzBLi6XlPDenwZ69T3cFOxHcux8pJ4OtfzGDp3Ybzftr5+2yQD6+8Kz
YIbz5W3Pss/JgA9WEzVm2MSvX8NfvsuAFyGSyBF7wa9Hj+WZCY4O519FYAtO
RnYnhmUBMjHY+hhb+enIlEZ+DnA8nEKNzxBIh20ioufPAJ1samKkOYHE+pkv
NFMYILeo9iEJe3KcP+1INQNuKbh5F2En8rHkpD4zwNDqC6cLe1xHRWPOrwBc
awcSZCwIFP9gm3Oe321Iijo6zsYezO+qXfEthODFlbRjVrhf5YfD5pIKofr4
ozwT7Ct/RaP3VYVQJ/WyyxVbaUT32cv5QrCjCWSmYIdLlr0r8S2CpRjq/BL2
gVu3ttn4MiGpqLug7SyByFAzl2qyBGDt7fcwawKZ0HRLhOklMOAiIJeBfcBV
edahogRSNL/+XoM9aLwlQvhTCWwePm8/g31cqinDgXoXmIpjy842uH8NR3qE
Lt6Dot0UrpktgYoWRcHe7j6Y1cvn/naBQJG8lZiqUOwiR62L2Laj3K4tWfch
IuP8v7HYouy2C1VD98H9Rey7dmy/1PCgLdZloCRT6mRmh/uq9rGs0rwcrjdF
iDnbE8i7wT2R/0AlmA5paeY5buwHi32b1CshWL2d9hR7blj3wbp+JRS+MOn5
hB3wbdfg94uVUNGhII6cCBR6okXm33uVsKtV8sYkdmybbNmHY1VwRm2TrYYL
gRg9r5716z0Agwqm/ZIbgfq5xluLXWtgx5jbs0VPAs1mHv7tml8NLB8+K6FA
wflNhaKcrtZA5A561FlsVNa2vOd2DZxgvm+vxi71BW48pwbe0BdEAqgEurqi
/jfFuRZU8vPtvnkRSFV0X8zPjnXAWPt6SIEk0A3VJb668w0QIH1bdSqIQL4q
7WnNRY1wlwUeAXF4n7pRy0dpzSAkORSil0Ug17+szekXW2BIQ11nezmB3Ob7
m5vj20BmYvDCHBvv76P1PszYp8AQGUsMHyMQf3O9ZnRoO4Rk+5czlgkkrmza
/TajEwpC+zMM93gio3y9O3PJXbAWNPHjmoYn2jPbZXC5vhs+n+2zTDjvibL+
frRJwLMHGkxnOBWRnkhX5uT6vt9fgtBlX0XjO55I5Z3YZERALzz/VCa987kn
KivZSdT69cGq3XOV1UVPFD7m0KcS2w+v/L3NHQ5SkK+ulmle6gAsuP3hP21F
QSv5+q4f6INwckBtZj2KgnrILOdLt1+B7cTyUF8tBWkb7l8bLRiCUxzJkelp
Cur4TbsE5QxD8I4jNtf3UlFRVab2eOlrcHq2JVreiop2H/iJ4nh3BMwQfTXw
OhX1bhK+KtX4Bk6mcfTn2VRUK+zP7OkYBUmu4x0Ovxf6abcYxZU9BuSp4BGx
415oNnFJQm3wLajyXT2cGuGFDsTFqfpQ3oGXuleOBMsLjV8Yea03/Q62PZnP
iV32QkZTfV9raRwIy3Or8NX1RsF+7oTkDAfeBGfqz4Z7I7O6bBPJoHH4c1au
XbDNG336TgkXWBqHyLl0K38hGip4FVVD85+A1IeVy1EmNLRCHHcO+TYBWQ+V
NPRSaUhmNcnON3QSHKq27uJ7TUPvDRM6hQWnQH0f4ROj6INaFbtANmEKhp4E
XE7080EUYaag/Nb3cKXyXsXJRz6onnHweGvSe2B8VLK4KEiibh1dtqX4NOQf
NFCnKpFomZJt5Zw4DYYuvTe2mJGo3Tz/3HZJLpT2sim7gkjkqq1bXJzKBeHb
7rZN2STynHm++CadC3OXzJU8ckhEFjjp78zkwsv51PUduSS6vPUaJzyXC0o/
KDS65JH4qzqkLZlcCM/SDtxcQKLBEBv693ouvBVZmDrNJJHJI78QixEu+F3J
qB+vJJEFTbA9dpQLIxJzR29Wkch2f7pk41suuIX7V2g8IJHHjYfVipNc6JBY
ZsVXkyj6At+nbx+5oHanZ6dqHYmaVm65Mte40BsUVRfOIhG7XK5qhI8HP378
EKXYSKIu16p1MQEevI6hWvZgj3T254QJ8UDvSiH/wSb8HlnSr8zFeHBEdDD/
WTOJ1s3KFGJ38sBLriUl8AmJtghAAEuCB8o/NNyUayGRBNVVXFGKB2FvWLf8
W0kkLffFyU6aBzkfnqbJtJFof19MOV2GBzYag7f/xlaO27PKluPBSwtujS+b
RL/o3DX9Js8D2+Fvz6Sfkug/JA+prg==
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81PkbAHBXyCIdWLnCKjmyLULo+awUan+uWhJip8jxNTPfIVcW5fwp
91EkRuVIzTBFOWrXzzZSyZGJ5MrkmNm2YttaV+b38cfzel7v/57r9ehQaB6B
EmJiYldxrGXJ3+V63lq473PSpdzathiG9IW/2WgVmIJrfljzmpcaTE8N5wP0
r6ZNrJnzBV5uZDuCzenGbTrY01uCF+7lu8Klp5/OrvmiWpcCu+0I5Ow4ML/m
agPfCjG2FwTF1ybpYrdbzn1/hOkDYo81DfWwXx9M6ajK94dJqar3a14ylDeM
7/gF9M32PfsOO/2HQUZV20nIdBF26GNv2cts62kMhJAj1bzt2JU/hkotsE7D
Q7szYgbYu5zN/6NTEwLfrvc8uBO7zW216BAzDDgNTtWG2C/983dczadBfOLJ
RpO1fsx2Wb3l0sH4ygWKKXa0ZcFodAcJSvFcw93YUuCnX9kWAXsY1PUW2E/t
O55YNEcCP2ZM2xI77+AO6tPGM1C844SbNbaWy/y9T6xoaPIpFNlhT7l7+mTU
xUBMr3MCwr71c5tIoyYWPj1WUt2PbeWX6nSQeRYytQeKnbA9CLXXl/MTYR0Y
9B7FlreC34sdk0CCE6x1DHuuhdw4yU2C2y6t6T7Y9x4ONp3pOAdWw7m1FOz9
XOZqeVsyiOrW6zGwtzsOuAmtU2Bmpd8+ClvuybrrZs0pwJe9FR+H3dcd6tjV
mApLijn7krH9eOa586x0KPmqsVyEjTxP822MM4D9U8i7UuzvXpWYp9VlAOcZ
93MF9p8jq6+21vwXNBXqj9Wtze9tl44D8wIUk8irfW0+f/veLc7PgXmtnyzn
sbOUS23bFXJh114TrwXsF5xUbQuPXCjLYxeJsH3+9J3WGskFi8g8quJSGKL6
fEP+/Vce9Jzi5ZhgF9oFZ5QoFQJv6/e5JPbw8JEwxZ8LIeSxVGkctlYUuCSX
FAKVFt2RjF3DVtkSrlsEmhv20IqxW7W5Fci8GFJXNls9xJ4Q170/63UZ8l2N
05WWcX/lCqW+ZZfBKLM7Th07eO9ifP+by6C5IJO1HftvRp99W0gJpN10VbDD
lppK6Mk+WwqHpjV+DcM27ByZtqgoA2WNc2o92DbcQ3L2EUyY5szur1sJQ0q8
6l7LAibQtQSKzdhTfIkik7tM0InP+4eLnS3Wpq32iQkO5uMb+Nh8GyOLOUYl
7L3mnab+NQxl3PkmoJxxDUrjahgF2IMV3U1L5A3w85BwvLSK74ttcHYu7wZY
H+ME1WInPUxBM5wbUD8oXtmCvXPE9ln//A24apYWOIodr8J6U0tWAXuT8i49
URjSy8r6xoushgi04WETNj3O5Ze79FoYdEvs+yBGoENU21rZ3FpwpEyOSogT
SI9i+NGvvhaiAwYkVLEHnaV/lf1QC9yFwCuAbaf222W/sJvg7GsnysOWazbp
kwmqA9pLMs9GgkBVn+XB1+c27C7ijlVKEihBuJTKibsNJoNZ6i3Yx8YE3dKl
t2FpdYTRhy3PfXSc8+o2rLBlqSJsRmF8lLQnC/hSpcUnpAiEzP5iNbixYdbK
tUFnHYHCmwOzJfQaYNOeNMk2aQL/B/dt4uYNkDP6tX4Ie27Y9o7IoQEeBdPj
/sGOXN48uBLUAH77HEJ2yRAobl+H5r91DRCqUsK+jp32SIv17gcOSF9KHyqQ
JRCzb+gZz/4OyGSNl2fKEYgncF5fQ2kEzbcy0/2KBPpYYnAgmdEIvzMTKz9h
yx2WOed/vhEunfscrbwB18t6tKB6rREC64cZ3ti3SBBkTDaCePMZJh/7/JL5
49CAJqAZXHi9qEQgU/ltqbtO3MP7zeq02UygTNMvYve8m6HDutNf4VsCkUZd
Re1VDwDGezsn9Qi0dDKMPUZthwXv6oSjuwlEeejplhvUAZ+ZR1WSgEAn53nt
7RmPgEkt/lDhRqCL39+nVad1wlZRbSBQCCTRft8yJa4Lkrq2Ppc7Q6CNhod7
Ji4/Bd+Z6ruaFwjkVGF/fS6/G973Uf93oJJAqh+7Dybe74EXtJyGf1sJVPq4
VVwypA9u7Vz8d+wlgWw1fxRtO9UPA+2t+uFzBDJ6ozT1a+QL0BAZePcphiNW
7abgJsYA+N98sOG6cTiKH/cbMErjQZC3z2KySzgiba0Olxe+BI9xReejZDha
qnCgvMsdBJ6DsNiwIBz10UsDoq8NwcZFT1WXlnBk7ai7Olb5CqaiFDthPBw9
OWBdi8qG4fxtU+BIUlEVp8Saf+s1dJSX7akxoSJlPePQEzdHgLwjbSnnSUUv
xGXPqz0YhaNkkLNWMhU1yUZU9z0Zg6TssXM3G6jIWFkplMIdh+6Ew5v3j1LR
x+wvW8wGJ+DJbH1BmzwN6aWnm9JC34BG78EyJRsa4h8feW0/+wauXYnRiA2h
IafpgcUm6iQcdeXxZstoKIYRGKzyfhIKHez1J57TkMu9K4dUovjQNu5+fFWc
jj6shMZLfuFD9seculZ1OqocOtdIjXgLjJhIPsWCjpaC7QJil99C3gP6KZY7
HWl+zfMh46ZgsjzveSJBRzOOF57KSk3DSePeJbFMOvpjezdoXZiGFnGVV4E1
dBQqWy2ls34G1FI//WD6Bx3dZ35n90feDHBynIruTNJRj40t12PjLKyYKsyl
r9LRQuiVIwHZsyBxaoivrk6iLreKnxVUBDDFcu9i7CURxdq2pqZQAC4so3df
vUgU8v7559FiAczZ28aeP0YieqW/w6YSAUQm98jLeJMocX3yZPxVAXxIjXBQ
Ok7iVT1R96gWwIwa87OuL4kGY71yV+4LoE8844RzAIkOtTJi3UcEUJ/bal8a
TCJ3qlRX2pgA18dL0A4h0THdYpUHEwJYd+1w+w3s05ktd7dPCWAx3fVIfSiJ
Uo6LfVj+SwBluhdbHhEk+m0pi1K9KoBTMhOpc3QScdnanBExIRz41k01iiRR
N4UjUpIUQpShAnsZe+Qpr+ysjBAEb4LeSUeQaKFUfchNSQgZ8bFVmmdIJHJh
6adtEsK6BKNfrmNLS0Jk2xYh9Jdv090ZRaItYZSN29WEwOrpvWseTSJ17X/8
fdSFoFydntKKrTuQys7VFEKcScJxFEMiw3TVr1xtIZg537HoxN5tc/Pwso4Q
2GO6Kj/Fkuj/mdSvRw==
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#4"]& ], 
    TagBox[
     {RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd1Xs4VHkYB3CiGrdcYiRbLpVyCYUQek+W3HY1iNqkUGlQmOGkUJF7oTEh
JEa5F5kalyJmSSFZ5U7K3cxGdNlWLtnf2T/Oc57P8/yec87v/X3f96h4+jue
XiUgIHAHXcRdqF60fczAYZ9Br847YRKObePXmWy+qQPCW4f/90K5zql+JsC5
n3PvCbO/Q7d0mRWc8/IcJTwhS52vZB6EVcf0pwgnKDRLlNU4wbYPXjOEC3Yc
yxEoOwztsz++EeYazuk6sVzhW+LMMuGBA1EN+cwTcOPJftJq4n0a4hphDR7A
oH9fTzh2dw89v+YkfKwWUyEsu5dV0845DckJETqEc/f7CM+XnoGAmcNAWNtG
/3eVQm84P5hEIVxD+Zlqy/KFGy5qJwl3n2Buv8P0h9yv5xMIs/W0jcaaAoAq
p3uPcLDhzXfBDTQYbbSpISwMbttyawIh9EX2LOFW84YWg+ogcN04ILYGOfnA
dr9WDg6BC7g64c32nyu/lgZD/fG/qITHHVxc40ouQNFowjXC951rVn4pvAj6
X0pKCRu5RVsfYIUC8zFpnrDjWYWBdOYVuPDU9s5aZHEjqE+zCof8NPFWwnNP
aNIjTeGwvKQ9T7jyWU8F3hAB7mdSj5CQf21i/cyuiYSUBzx1EWQ1q04K3zgK
pjvLPAiLtqy+p1cdBTcjuzMJd7T5WDVzoqElxEJaFNmtS5/xuTQWZP4sWieG
jLmcGTXRigPLLYEOhLf2ZejHlMRBlFh2KuG/B3/2bSyMB/5ZOVVxon5jzSoW
rOug4XPNToKoz5djj9OYN4AikDgsiZwol2nKlWBAnyMPk0J+y45WMnBkgPbn
kbuEXf8+NrF5kAGbJMt9pZH9XMVoX6aToYtbJbUeOcWMGpchlQKiIUFFZOT+
fiffdc4pQLHkqMoT9T8P9pEZKTDjyMwmXFhGlj2nmgqXdqvf3oD8VKkpB9NP
g+bZPws3In8QVK2aOpwOTg3Z65SI/WVLZB7LSgeL4w13CVP3/gh7M5wOA7pR
RsrIX+gd5jXeGVB/fpSqQuRj/HJ7UmgmHPITGdqCrPFicMIgJwuGfhNYr45s
0mQrah7IgnGn6xX6yFJdBX8Z3mTBWPf2AAMiH6OrUnc+ZoG0+06tPchJAjVK
Cl9ZcDY+sMgQedRE02COngsb5KfZe5HjHom5Z9Pvgg4lkbQfuSenrWKBlgfi
AfHP7Yl8le0InUvOA2dVywcHkcOfRWGT7Dw4+sw7lYKsPmj66s3nPDAonvF1
RA4jlw4X0fLB1HhY3QV5S2Ki2GFaAWia+fPdkANC7D0eBxRBB0Mr2A/Z1s+0
iMQoAhotOcafWO+pMev2sAh4Ug63AojvsVlzifSpCHxih2vpyGYKdeluvsUg
pIttCCbyV72zY61XCZw9JCgVjpz/jzgcc30A3vURQjeRL/MXotkhD6B60WRf
CvKRIV7bmswHwGyjhKQS/dD0/Ci77wHsUrv2/RYyPSXs/BqXUphimKxkEXnV
my4tp5QBffmWQyHyuerTSau2lIP5fa2F2v/ng4OyoH45NO/JuVxH9FO/6aMV
i3LY4FoszEUOWlzfs+RVDu2no+QakUP2NWz6t6QcjG2cbVuQY55vLv24mw3G
fu4CPcisjt5XXeaPYGFOPHsOuYtnI1LoyYHuZrMcDREcm83YYRlJ58Cve7hU
LWRRu7URJ65yIGZrvp42Mlb6fF7+LgckQ9Ne70K+TwNe3AgHkrrIMsbIVxf0
X/q4V0C/S8KQFbKOuHK09vFKYOuYXPZCvqbzXaDyj2pQTN4+WYhM02xO5ebX
wo+kW/esRdE8PelbNuTHBXPpxZIVZM9nLhSGVwMcuk95zxXDsZOfu7jcuOfA
pD3tKBFH81u3yr8g5gVI1E8qZkng2CpulWFUSDO8btQVy16HY9Iadu0f0ltB
pDKv6bUkjlnnmN+bY7bBv4K0yytSOCY/23bgSlU7yLa/2nRSBscyXz4VFPLu
AM8nrXl963HMdNP+FeVTb8Cw4veHtnI4pjksNX4p6C2kOaswv5JxrLRIhlpB
74TjS5PKaRtQPt+7dWrGdIFUgmBo4Ea0P1Mju+yUbmj1MCC7/4L2l2Ph+ZHR
Ay69IuPYZjTPAjLdg+/2Qnxs2G4PZRwztlL9OZTbB1VmroN0VRxrsTQuwrL6
gf1xu1zSVpQ/dobx6P0BUHbi7ptRwzG5LVo+x4sHgWltFm6kjuaTIOmqQu07
IMca/vZKE8cqSIEFHS1DcLvwJZ2qjWNaclI+nk3v4VpVifu0LjrvpO+yej0f
IGrvV5laPdQfsbE6/j7DUGA48tJ/D+rno4MD5lPDcCFHzn6HMarfROePCr8R
0LqkGq9rimMX6Kep5JkR+PbFoFYecMy+8rYt+fwopOy37XUwx7FPSz5hQt9H
4XqEsh7VEv3/eiM4foFjIPE0KifcGtWDauZ+cXEMwt4YJc/a4dim5WRXWsg4
7FjUe29wEMcmra63koQnQEekIqfbEcca1dpg8/UJEJlUrg12wTEfUoGwisgk
VJA+OE7/gWNVrK1mjcmToMF59PCZG461m5g2OUpPgWTuuR/HPXBs3ue2k3vS
FLwxWLi6fArHmik5zhJkHiz1aPctUlHejE0LC1N4QNYjpzSdxTHvmdf/vEvj
gYWbPasHOSD3hIVMBg9smeWlU8hXRCJHwu7wIL3uyyuRczg6qhZFxwL0vOu+
ZHvknouHGUtVPGA5bRzrQbZ9Sr/oMMgDruLLo3w/HHPwE26OGeLB8DuZhAXk
I6pp5NoPPFjLia4T88exM9eePFYb50GQ5bCaNnLUUYFPi9M8eO3qtToQuW4h
0bPgJw8m43N/LCE3lSmxBwX4MBrrZLYuAMfaPNkrUkJ8oCtpXlVCHmztygpd
ywfBWltJc+T5TMVeihQfgiVtDGORV+xLt8XI8KF637aodOQ1QhBUI8uHt9Zq
b4uRZX09pdUU+CCflEZrQ1ZU+nbCVZEPkRmrG4eQVTujyxib+GCjnCE3i6wR
K7/cpMSHGFEHbwEaju0yKbZbVOHDYWxnnTTyfyblVko=
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#5"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 151.72472953585446`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882870313200821*^9, 3.8828703337793283`*^9}, {
   3.8828704032913523`*^9, 3.882870444426054*^9}, 3.882871737560042*^9, 
   3.882871870421131*^9, 3.882872073896041*^9, 3.882872138682444*^9, 
   3.882873141177374*^9, 3.8831058632850513`*^9, {3.8831102393713703`*^9, 
   3.88311024932015*^9}, 3.883110481063265*^9, 3.883473340117433*^9, 
   3.883479397192685*^9, 3.883479649608984*^9, 3.883553881259975*^9, 
   3.883646088236083*^9, 3.883646569533897*^9},
 CellLabel->
  "Out[117]=",ExpressionUUID->"87302cc8-2b37-427e-ae3f-967f24d3fca9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"K1", "[", "Et", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", 
     RowBox[{"-", "5"}], ",", "50"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8828708703013153`*^9, 3.8828709053868113`*^9}, {
  3.883110255965941*^9, 3.88311027022156*^9}, {3.8831104853921556`*^9, 
  3.8831104857251253`*^9}},
 CellLabel->
  "In[118]:=",ExpressionUUID->"13bdecf0-e0fe-4fe7-bb03-54c065ce665b"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVjGk8lAkAh4eYabGZHLlSUSopcs37vhT/iMq4QjOMIU0UUTEMFcqRVGwH
UYixyy4VMazVyaQUSYdqW61uZ+RIqYxd2354fs/v+fIYCHZ7hcjTaDTud/63
6d6K36en1aXL8t2KPU6JsOuc7OblYXWp1SetLc1ZIlzsdHkc/UJdqnvkqqLt
SRFMbQbG+q6oS8V2sZNGx763zMjsoUhdmh/APDmZ/r0TxeeKB9WkylEHdxbF
i7AiOatozbPZ0qmMoEsPBSL4qo0xGQGq0ovxi1kvV4pAcmcba9Lo0p0On/Z8
bopByUma3+fUycY93U5Zq3kxMMzKm6ff+Laxoaa2K3EsGtHhlTW5UW/tk2pT
+4ISo8H8mx8emz1pn2nom502Kxoe/sbuShI6Mt2/HY7LFmJy3gd34ZAqiKWi
Wfu0hPisay5MXqsBK1I41VgcBVl22cHbI9q47y3vvnluFEr/iH0jZusjXtL3
QK0wEgsMrTubWhZA7lnHobi5kah7lWlkpbsQ6T/2ysdq74beR+bpEUcjGGt3
yqfL7cJ6mTDC+OwSsDr0sOZOBIapvviwAWOwUy+N6qaFY1t7evX4rOUwvJI8
1OKyA79y6RumBKa4rpi6MbA7FLwC39SydSuh3nggMT9lO5zp+hpMkTmWXCy9
avQ+BMMZ72/IzlpgcPF59msqGNO27ikqEkscbi6xNk8VILqvOIbfZQXVDN02
h5ggeF4/svfRuDX2yw7ycw7zoZY2m6fz1RptQ8EDc2L5eOqaZ7Nlyhot1Qo7
Mrfywesql40qsFAvzujzsuNjq+xOInMOC4VHcozZ4/6IpegpHiQLxZezgjt4
/jhbl3K0PYEF1ReRBqL5PAQmKoVrJrOQP+iWCmUeDJyy2AFpLAQY9JtMTfjh
tyc/q3z4iQXGGcZ1x/t+qBqXHlMRsyC/llOtmuCHJvPpLPYNFvxLbvLinvhi
oDK+oFWRgPPq3FHHOC7OmLft2aVEoMwn91ZnIBfr63Q56qoEPOy4U5ucuSi/
dpkZoE2g4c1mT5omF6FtX9JGlxHYzblLqUs46O+PjtTyJCAWaNq/ebcJ/Qsj
nELyCXgLbOznmvvgTNlVQyUxgRGWys56DR+sN1GmVZUQaPrhiu2yr94otzh/
5WsFAduli/7NbvBG6Jp+s8xGApGSBS1bN3ijLzBYt7abwHC6W7kdxwu9efwR
mhmJ4MCJp6edPIHYiSCOJQlW/Sp2xSJP5Hmd6LhAkHAx1NdInOEJV+VbdRyQ
WMpt7spL8kBtgklCxUYSFSKdop4IdyRtnpzpG0Nimyc7bsDIFc9tT+2r3ENi
pskKrepONiy1TYfkE0kQt1c/Kclko/fhlgeVaSTSf/F3nRhxgatDa86M0yTW
rdS5GXphA3SMzhhWXSbRGu3wtnbIGUI5i1MKDd//lkrDz485496LNkVeE4nB
JUeVRGbOSMqd7ldoI3H42juHqnAn9DK2V/G6SFzIOc1JaXcEumkG1a9JhPWU
FZ0IckSeND9LsYeEZJK1d/mYA1z33hdVfyBxnC4u4Cg5oOa99Sr6NIlvduV3
GXMAlTsPKv1nULB++XQGe549QkrC5ksYFEr1BrlMhh20+YXyfCaFVjvLvPp6
WwhJIkaiQaG5vi/iaoIN7mk86qHrUCjf3eIhsKBwoF2hVWJAged2oawrmIW/
zhXZMBZTeCVXoD3ruRUsDpEV/GUUMpbLfArNLJEp6NCvMaUQL/dnTRTfHL12
EccZlhSMkgItZpaaAnp0uQCCQpitS9H5IWPkfRELa2wppC7/J+ORwSJ8fEx1
M0BBfr/QQ/WoFhY10QstHCjoJ/c8FRh8tP8PvnJXzw==
       "]]},
     Annotation[#, "Charting`Private`Tag$28198#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 50}, {0., 345.26943998635636`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8828708873272448`*^9, 3.882870905891152*^9}, 
   3.882871740118313*^9, 3.882871872632328*^9, 3.88287214039114*^9, 
   3.882873144037532*^9, 3.882873467724246*^9, 3.8828736639473057`*^9, 
   3.8828739675576878`*^9, 3.882874555421548*^9, 3.883105865169652*^9, 
   3.883110007000498*^9, {3.883110253678253*^9, 3.883110270678035*^9}, 
   3.883110486084037*^9, 3.883468963591229*^9, 3.883473343001748*^9, 
   3.883479399961771*^9, 3.883479651663865*^9, 3.883553885440947*^9, 
   3.883646090926628*^9, 3.883646571488081*^9},
 CellLabel->
  "Out[118]=",ExpressionUUID->"d9074324-3e7b-49a3-815f-cb3ef58357e9"]
}, Open  ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"9a56ae60-c879-4189-ada6-b4e74790ea30"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2336, 54, 174, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2897, 76, 2801, 74, 200, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5723, 154, 2495, 57, 79, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[8221, 213, 9649, 173, 259, "Output",ExpressionUUID->"f6516faf-fd08-47c3-9561-30dd53e915ef"]
}, Open  ]],
Cell[CellGroupData[{
Cell[17907, 391, 2179, 53, 79, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[20089, 446, 1793, 25, 37, "Output",ExpressionUUID->"51ffc0e8-d7b3-4a69-8b95-a2da95048c0c"]
}, Open  ]],
Cell[21897, 474, 420, 10, 42, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[22342, 488, 1091, 29, 58, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[23436, 519, 1275, 18, 37, "Output",ExpressionUUID->"9f221de9-9a31-4103-ad87-9b04df8cd205"]
}, Open  ]],
Cell[CellGroupData[{
Cell[24748, 542, 2053, 50, 116, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[26804, 594, 1296, 18, 37, "Output",ExpressionUUID->"cd99cf10-3007-4621-9734-a1aac73ac167"]
}, Open  ]],
Cell[CellGroupData[{
Cell[28137, 617, 1393, 36, 58, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[29533, 655, 7185, 134, 260, "Output",ExpressionUUID->"a9008b86-55c3-4fc2-adcd-f243b8d12076"]
}, Open  ]],
Cell[36733, 792, 397, 10, 33, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[37155, 806, 1356, 40, 111, "Input",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],
Cell[38514, 848, 814, 12, 37, "Output",ExpressionUUID->"7d02abab-549e-4f97-9a0a-462a6f073f05"]
}, Open  ]],
Cell[39343, 863, 1185, 32, 58, "Input",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],
Cell[CellGroupData[{
Cell[40553, 899, 389, 8, 33, "Input",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],
Cell[40945, 909, 6581, 126, 260, "Output",ExpressionUUID->"3b018eb1-1fe2-415c-8194-4907f59b8e53"]
}, Open  ]],
Cell[CellGroupData[{
Cell[47563, 1040, 1325, 31, 109, "Input",ExpressionUUID->"a7903930-b537-4744-afa4-508c0f6775c1"],
Cell[48891, 1073, 21957, 379, 260, "Output",ExpressionUUID->"5a00c907-ef87-41d8-87c3-126bd0029635"]
}, Open  ]],
Cell[CellGroupData[{
Cell[70885, 1457, 1380, 31, 80, "Input",ExpressionUUID->"41107c73-e600-4079-9938-9536a9f8a8eb"],
Cell[72268, 1490, 15950, 282, 260, "Output",ExpressionUUID->"faeaa83b-7331-4fe8-9c61-ce1a5bc29c5a"]
}, Open  ]],
Cell[88233, 1775, 6880, 197, 339, "Input",ExpressionUUID->"2d742f3b-e2e0-47c6-baf7-86eb7d257d8e"],
Cell[CellGroupData[{
Cell[95138, 1976, 2211, 44, 100, "Input",ExpressionUUID->"c4aefd0e-3506-41fc-bf66-96c712b2ce79"],
Cell[97352, 2022, 1051, 20, 49, "Message",ExpressionUUID->"7d8cbc52-e79c-4d26-b399-b6747dc97bf7"],
Cell[98406, 2044, 704, 10, 37, "Output",ExpressionUUID->"f408be96-63cb-40de-889d-967c51b2194a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[99147, 2059, 2387, 72, 151, "Input",ExpressionUUID->"63a117cb-1305-4d2e-b025-0ad6c987fd15"],
Cell[101537, 2133, 968, 18, 49, "Message",ExpressionUUID->"74a7a21b-4b4c-467e-a016-05d5c7f3068d"],
Cell[102508, 2153, 968, 18, 49, "Message",ExpressionUUID->"19d4c228-75a3-468a-80de-5351d06871c0"],
Cell[103479, 2173, 967, 17, 49, "Message",ExpressionUUID->"13261410-d2c1-4de5-a57f-8aab2f5b6bae"],
Cell[104449, 2192, 670, 13, 30, "Message",ExpressionUUID->"06887e30-c058-4cdd-be4e-c95d6435f07a"],
Cell[105122, 2207, 697, 14, 30, "Message",ExpressionUUID->"053aaa0e-b5fb-4a0c-a851-770a2f41fead"],
Cell[105822, 2223, 966, 17, 49, "Message",ExpressionUUID->"0475986a-8b20-4171-a512-db8a4299149d"],
Cell[106791, 2242, 697, 14, 30, "Message",ExpressionUUID->"bdf07ebc-b9fb-45fc-9fe8-36f59febd02c"],
Cell[107491, 2258, 969, 18, 49, "Message",ExpressionUUID->"9c89a2fd-32bb-44ee-acec-bd252467d195"],
Cell[108463, 2278, 697, 14, 30, "Message",ExpressionUUID->"ba3e86a7-5a00-4e22-9b45-03303b35649c"],
Cell[109163, 2294, 672, 13, 30, "Message",ExpressionUUID->"e6a14ec5-799e-4c36-9f91-4cba4178def3"],
Cell[109838, 2309, 968, 18, 49, "Message",ExpressionUUID->"380d645b-0190-43e4-b775-c77eeeb8feec"],
Cell[110809, 2329, 668, 13, 30, "Message",ExpressionUUID->"7dfb6339-8ce5-410f-84c3-fd413b05fc33"],
Cell[111480, 2344, 970, 18, 49, "Message",ExpressionUUID->"0ada999a-eae2-4f8e-9fbd-13b94d5e8629"],
Cell[112453, 2364, 970, 18, 49, "Message",ExpressionUUID->"59ba0df5-be0e-4f94-bb7a-168417efdb39"],
Cell[113426, 2384, 971, 18, 49, "Message",ExpressionUUID->"26c3eec5-0794-4145-8965-9fc6fe33dfc8"],
Cell[114400, 2404, 668, 13, 30, "Message",ExpressionUUID->"d50c9abb-8463-4893-8308-18f5ef10302e"],
Cell[115071, 2419, 697, 14, 30, "Message",ExpressionUUID->"c8cfedd7-48b0-4622-af16-86bb4a32923b"],
Cell[115771, 2435, 697, 14, 30, "Message",ExpressionUUID->"ef7d9abe-a816-424a-bf00-ca2b4b8ee236"],
Cell[116471, 2451, 696, 14, 30, "Message",ExpressionUUID->"3e47e34d-6f37-4e56-b875-6afa50caa942"],
Cell[117170, 2467, 670, 13, 30, "Message",ExpressionUUID->"ef1c1e13-e29d-4541-b517-eba037e13b40"],
Cell[117843, 2482, 971, 18, 49, "Message",ExpressionUUID->"843e425c-0a27-482d-8d9b-b18a9e536093"],
Cell[118817, 2502, 969, 18, 49, "Message",ExpressionUUID->"912fd8fe-a9ea-4b5b-a972-a917f1c9cee3"],
Cell[119789, 2522, 970, 18, 49, "Message",ExpressionUUID->"3c681597-f4a3-4535-b88d-b74a30c46e20"],
Cell[120762, 2542, 670, 13, 30, "Message",ExpressionUUID->"7739ae3a-956c-4238-8c02-cdbb649f74ff"],
Cell[121435, 2557, 697, 14, 30, "Message",ExpressionUUID->"b2035ea3-b5aa-419c-b5da-4065b3126248"],
Cell[122135, 2573, 699, 14, 30, "Message",ExpressionUUID->"2b4de791-3095-44a3-b26c-d4d02d59bc28"],
Cell[122837, 2589, 697, 14, 30, "Message",ExpressionUUID->"e30890f1-534f-4ea0-bb30-0ebe1b024c38"],
Cell[123537, 2605, 670, 13, 30, "Message",ExpressionUUID->"8954f63e-80ac-470a-891e-c87b3a82b38e"],
Cell[124210, 2620, 971, 18, 49, "Message",ExpressionUUID->"559d617d-eb32-49bc-aec0-c8cf57811431"],
Cell[125184, 2640, 971, 18, 49, "Message",ExpressionUUID->"22ae1696-28e4-437b-a8fd-61d19962a226"],
Cell[126158, 2660, 969, 18, 49, "Message",ExpressionUUID->"7e06ff02-038c-40b8-8f15-2da7ad38118c"],
Cell[127130, 2680, 668, 13, 30, "Message",ExpressionUUID->"958b0782-6886-42a3-9155-b93a24bfe606"],
Cell[127801, 2695, 972, 18, 49, "Message",ExpressionUUID->"d0b5e57b-bf2e-40b2-ba67-a8376627ff94"],
Cell[128776, 2715, 972, 18, 49, "Message",ExpressionUUID->"5544a1cc-5929-4150-b347-b4205f73a6b1"],
Cell[129751, 2735, 972, 18, 49, "Message",ExpressionUUID->"6454f0be-2291-4689-a2d2-26279aae4ad1"],
Cell[130726, 2755, 668, 13, 30, "Message",ExpressionUUID->"68db7a41-580f-4373-82c9-c987d0e6675a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[131431, 2773, 678, 12, 33, "Input",ExpressionUUID->"763b3918-bc83-44af-84f4-82b8d9fdad84"],
Cell[132112, 2787, 27002, 459, 257, "Output",ExpressionUUID->"96f187ce-1e13-46b2-b208-80cab8fbd55b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[159151, 3251, 2326, 55, 215, "Input",ExpressionUUID->"f395d881-914c-4fc7-9c61-ed68156165b5"],
Cell[161480, 3308, 40380, 719, 78, "Output",ExpressionUUID->"a05276b4-8dfc-4261-94de-3cc5e78804e7"],
Cell[201863, 4029, 40924, 730, 78, "Output",ExpressionUUID->"673410cc-76f1-4655-bdae-d7bbc63e9103"],
Cell[242790, 4761, 40864, 728, 78, "Output",ExpressionUUID->"96b50b33-28b6-4224-b7ec-0e37aa015d1c"],
Cell[283657, 5491, 42026, 748, 78, "Output",ExpressionUUID->"6bf7ab18-e625-4603-8583-5d3a0032bba2"],
Cell[325686, 6241, 42082, 750, 78, "Output",ExpressionUUID->"6bb31bf3-f6f4-4af0-8c02-d950cf278323"],
Cell[367771, 6993, 42942, 764, 78, "Output",ExpressionUUID->"a2b8d0ca-2237-46df-b338-1487208e4f6a"],
Cell[410716, 7759, 20610, 360, 435, "Output",ExpressionUUID->"c100a39a-de2f-4553-add6-f2fc1c3ff28b"]
}, Open  ]],
Cell[431341, 8122, 129, 3, 33, "Input",ExpressionUUID->"4110d7b4-eea5-4a31-bb44-0cfe6630cd3c"],
Cell[CellGroupData[{
Cell[431495, 8129, 892, 21, 37, "Input",ExpressionUUID->"745956bd-cee1-4b9e-be2b-5f3aa5cbb78f"],
Cell[432390, 8152, 846, 12, 37, "Output",ExpressionUUID->"9e5ee1f4-d7a7-41cd-9bb9-266f67dacb1c"]
}, Open  ]],
Cell[CellGroupData[{
Cell[433273, 8169, 1007, 19, 50, "Input",ExpressionUUID->"84ddf410-1206-4db4-8163-fea78d05a9fa"],
Cell[434283, 8190, 5572, 110, 265, "Output",ExpressionUUID->"88feb29a-69eb-4f50-bf11-3ab1b072e38c"]
}, Open  ]],
Cell[CellGroupData[{
Cell[439892, 8305, 2498, 75, 125, "Input",ExpressionUUID->"dbfa69a4-38ff-4a4c-96a5-19b8ca17951b"],
Cell[442393, 8382, 499, 8, 37, "Output",ExpressionUUID->"1beec9ad-5e6a-4afb-ad78-ff734b08f519"]
}, Open  ]],
Cell[442907, 8393, 867, 18, 33, "Input",ExpressionUUID->"93967aaa-fb32-46f7-b27c-892da0b16278"],
Cell[CellGroupData[{
Cell[443799, 8415, 476, 10, 33, "Input",ExpressionUUID->"fd99e280-b87a-49dd-a288-5fe39a52e19d"],
Cell[444278, 8427, 771, 13, 37, "Output",ExpressionUUID->"68990b6d-5fa6-4ddb-840b-6229269d092e"]
}, Open  ]],
Cell[445064, 8443, 509, 10, 33, "Input",ExpressionUUID->"79a457e4-2694-4aff-b91a-36c1c1457a0a"],
Cell[CellGroupData[{
Cell[445598, 8457, 889, 24, 33, "Input",ExpressionUUID->"21c7637c-3a09-41a5-b3ab-b8f8756d6a35"],
Cell[446490, 8483, 996, 25, 57, "Output",ExpressionUUID->"c838d021-46b0-4977-9acb-43662a2ab4e4"]
}, Open  ]],
Cell[CellGroupData[{
Cell[447523, 8513, 675, 18, 33, "Input",ExpressionUUID->"2a836ba1-d54a-4276-b9f3-4a104a1093f6"],
Cell[448201, 8533, 950, 23, 55, "Output",ExpressionUUID->"51ef0d20-5d9a-445a-ba0a-a02b1f4a05c7"]
}, Open  ]],
Cell[449166, 8559, 5564, 150, 179, "Input",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"],
Cell[CellGroupData[{
Cell[454755, 8713, 1785, 54, 108, "Input",ExpressionUUID->"b024508b-6d27-4ffa-ab07-de4ed8a4b834"],
Cell[456543, 8769, 478, 8, 37, "Output",ExpressionUUID->"f3dede85-3617-4b17-bd5f-c45be83e3c18"]
}, Open  ]],
Cell[457036, 8780, 81, 0, 33, "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"],
Cell[CellGroupData[{
Cell[457142, 8784, 603, 12, 33, "Input",ExpressionUUID->"5f437c91-8022-415a-8eed-7828551b0fce"],
Cell[457748, 8798, 5917, 115, 385, "Output",ExpressionUUID->"e1a93078-515d-4540-8e61-efd727f24f8a"]
}, Open  ]],
Cell[463680, 8916, 388, 8, 33, "Input",ExpressionUUID->"5afa8d22-b29c-4441-90a8-81bd28869b4d"],
Cell[464071, 8926, 1776, 36, 174, "Input",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"],
Cell[465850, 8964, 1058, 31, 58, "Input",ExpressionUUID->"fe2e92bd-99ee-4847-8c87-958f9c8e2ae0"],
Cell[CellGroupData[{
Cell[466933, 8999, 324, 8, 33, "Input",ExpressionUUID->"11a1b2f9-f071-4cbb-8745-8b989c037646"],
Cell[467260, 9009, 10987, 200, 260, "Output",ExpressionUUID->"7571e114-1261-4891-869d-0b0efc646582"]
}, Open  ]],
Cell[CellGroupData[{
Cell[478284, 9214, 1471, 33, 80, "Input",ExpressionUUID->"e4b1105f-d069-4328-b182-1cb800c3aa9c"],
Cell[479758, 9249, 29636, 508, 260, "Output",ExpressionUUID->"2ecc39e4-7790-465c-9828-db1bc6d51be0"]
}, Open  ]],
Cell[CellGroupData[{
Cell[509431, 9762, 1104, 30, 100, "Input",ExpressionUUID->"12b6b67b-c03b-421d-97ea-f2051e4c3776"],
Cell[510538, 9794, 289, 5, 37, "Output",ExpressionUUID->"ff64a096-c4d0-4e66-ae91-449e7a8871f6"]
}, Open  ]],
Cell[510842, 9802, 128, 3, 33, "Input",ExpressionUUID->"871ac6c5-4f58-4baf-9618-135d4eb7eeae"],
Cell[CellGroupData[{
Cell[510995, 9809, 2314, 71, 151, "Input",ExpressionUUID->"bb3960f3-8cb7-4917-b64f-e3364369e663"],
Cell[513312, 9882, 883, 17, 49, "Message",ExpressionUUID->"578e879d-ed0f-4cb8-8782-524149187443"],
Cell[514198, 9901, 882, 17, 49, "Message",ExpressionUUID->"dd88730a-a130-4b56-a74f-cc102a1009f9"],
Cell[515083, 9920, 885, 17, 49, "Message",ExpressionUUID->"06dfa33f-66f9-49e3-93d6-4d14c11ca09f"],
Cell[515971, 9939, 528, 11, 30, "Message",ExpressionUUID->"4165fb3a-ba16-437d-9a9f-345d05364811"],
Cell[516502, 9952, 557, 12, 30, "Message",ExpressionUUID->"8029ee35-80cf-4eff-be91-1b24c8a0b35a"],
Cell[517062, 9966, 829, 16, 49, "Message",ExpressionUUID->"e9f0ead4-330e-4f42-9110-13d6a28ae8cd"],
Cell[517894, 9984, 827, 15, 49, "Message",ExpressionUUID->"52b91d88-8a4c-43ed-a2a5-a848d01fd270"],
Cell[518724, 10001, 828, 16, 49, "Message",ExpressionUUID->"a4441929-3c50-4e73-b666-7e6bc55348cf"],
Cell[519555, 10019, 528, 11, 30, "Message",ExpressionUUID->"811aecf8-e49a-4509-99e5-6adfed7b5010"],
Cell[520086, 10032, 557, 12, 30, "Message",ExpressionUUID->"f15a8dcd-fa86-4aea-85d0-c1d667aa4a51"],
Cell[520646, 10046, 834, 16, 49, "Message",ExpressionUUID->"b612c6dd-2502-4a1b-a882-cf8cc01d471f"],
Cell[521483, 10064, 557, 12, 30, "Message",ExpressionUUID->"e1be4e2c-c0e2-4c30-a8bb-950198c57400"],
Cell[522043, 10078, 835, 16, 49, "Message",ExpressionUUID->"58c8030d-74c1-4e42-9517-55e45e48e8bb"],
Cell[522881, 10096, 556, 12, 30, "Message",ExpressionUUID->"17c96323-51b9-4d83-938d-fd072cc65a11"],
Cell[523440, 10110, 530, 11, 30, "Message",ExpressionUUID->"361c6bb1-1c0d-48d1-8d21-2d4e44389c83"],
Cell[523973, 10123, 833, 16, 49, "Message",ExpressionUUID->"e36ff5aa-6408-43f1-8db0-fa191b68db99"],
Cell[524809, 10141, 528, 11, 30, "Message",ExpressionUUID->"05c05dd2-b2a8-47b3-9fd0-5a04a53ca1d8"],
Cell[525340, 10154, 829, 16, 49, "Message",ExpressionUUID->"45d851ef-de7e-4214-aca4-f64bd84175bc"],
Cell[526172, 10172, 834, 16, 49, "Message",ExpressionUUID->"bb900c77-be88-47c9-b093-e20f55c44fad"],
Cell[527009, 10190, 830, 16, 49, "Message",ExpressionUUID->"cc65cbd8-6854-49cb-9f51-4a2d9a4ce127"],
Cell[527842, 10208, 528, 11, 30, "Message",ExpressionUUID->"c75e5106-7af6-45b5-ab88-815fcdbd3ad4"],
Cell[528373, 10221, 560, 12, 30, "Message",ExpressionUUID->"82805e8c-4626-46a5-b2fc-e26bd1055645"],
Cell[528936, 10235, 560, 12, 30, "Message",ExpressionUUID->"124faa9e-914b-4ab1-8c38-445ca45015c8"],
Cell[529499, 10249, 836, 16, 49, "Message",ExpressionUUID->"70090373-7d8d-4bfc-be5c-c6b34199dc30"],
Cell[530338, 10267, 835, 16, 49, "Message",ExpressionUUID->"88271847-07ca-4dbf-88af-3b522d4dd642"],
Cell[531176, 10285, 835, 16, 49, "Message",ExpressionUUID->"f2b5fda6-ec29-4adc-bb95-9a46b2d84f54"],
Cell[532014, 10303, 531, 11, 30, "Message",ExpressionUUID->"d99cd4ea-3d3b-4511-b39a-a3fe552f03bf"],
Cell[532548, 10316, 560, 12, 30, "Message",ExpressionUUID->"8f43639e-9d7d-4e64-84bb-9e76e292046f"],
Cell[533111, 10330, 833, 16, 49, "Message",ExpressionUUID->"16e74748-ecd9-4ab9-a273-c97debf5794a"],
Cell[533947, 10348, 558, 12, 30, "Message",ExpressionUUID->"ab914f21-3d64-4ad7-bcf3-40576d8576ca"],
Cell[534508, 10362, 832, 16, 49, "Message",ExpressionUUID->"253b3607-25a6-4f82-bc33-8b07501bce9d"],
Cell[535343, 10380, 558, 12, 30, "Message",ExpressionUUID->"219aa988-93a2-4472-b1e5-bafe351ca40e"],
Cell[535904, 10394, 531, 11, 30, "Message",ExpressionUUID->"a9ed6d42-63c2-49d4-9921-a6c28af23380"],
Cell[536438, 10407, 833, 16, 49, "Message",ExpressionUUID->"258493e5-610d-4fbe-855c-a2929e8725d3"],
Cell[537274, 10425, 529, 11, 30, "Message",ExpressionUUID->"db0c9881-6d18-49b2-ae77-c9463877cece"]
}, Open  ]],
Cell[537818, 10439, 2639, 83, 223, "Input",ExpressionUUID->"d559092d-edc7-4d06-a702-6eff5ba0a662"],
Cell[CellGroupData[{
Cell[540482, 10526, 330, 8, 33, "Input",ExpressionUUID->"6e0c70ae-f2e7-4846-95d3-a013dc639521"],
Cell[540815, 10536, 26817, 456, 250, "Output",ExpressionUUID->"0c58e727-f54d-43ae-9b3f-c742083982bb"]
}, Open  ]],
Cell[CellGroupData[{
Cell[567669, 10997, 2057, 52, 215, "Input",ExpressionUUID->"d9505bf0-29d1-406a-8f06-1985e55de13f"],
Cell[569729, 11051, 40186, 716, 78, "Output",ExpressionUUID->"1f539735-0c90-42d8-9cff-72de5c5fcb5b"],
Cell[609918, 11769, 40692, 726, 78, "Output",ExpressionUUID->"b8e30bff-228f-4f09-a3da-66e9a752aaeb"],
Cell[650613, 12497, 40454, 720, 78, "Output",ExpressionUUID->"5194f2fc-041e-4298-90a7-c07ce5819017"],
Cell[691070, 13219, 41470, 738, 78, "Output",ExpressionUUID->"89d2a29d-4c06-46e2-aee4-6125700af1de"],
Cell[732543, 13959, 41489, 741, 78, "Output",ExpressionUUID->"333d3fb8-a790-4ae7-bb89-013511cec26e"],
Cell[774035, 14702, 42607, 761, 78, "Output",ExpressionUUID->"f494f265-7b7b-4226-bd0f-d070e4c94a05"],
Cell[816645, 15465, 93902, 1569, 528, "Output",ExpressionUUID->"85c8cfd8-306e-42e0-a5f5-a91e8ff1ef76"]
}, Open  ]],
Cell[CellGroupData[{
Cell[910584, 17039, 733, 16, 35, "Input",ExpressionUUID->"73fcd4a8-f07c-4668-a074-8d6edd4e9c5c"],
Cell[911320, 17057, 1138, 17, 37, "Output",ExpressionUUID->"46571530-99d9-419c-a8fb-40a93f7755aa"]
}, Open  ]],
Cell[CellGroupData[{
Cell[912495, 17079, 840, 16, 57, "Input",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"],
Cell[913338, 17097, 19713, 341, 263, "Output",ExpressionUUID->"22293093-5251-40c9-908f-4c2143cc879d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[933088, 17443, 332, 8, 33, "Input",ExpressionUUID->"cee43495-67e9-47c2-94dc-2d657d1fab18"],
Cell[933423, 17453, 530, 9, 37, "Output",ExpressionUUID->"5725f256-e6b0-498c-9fec-16f7130a939e"]
}, Open  ]],
Cell[933968, 17465, 1890, 61, 79, "Input",ExpressionUUID->"f7780dc9-ccdb-4a12-879b-505da55785a3"],
Cell[CellGroupData[{
Cell[935883, 17530, 379, 9, 33, "Input",ExpressionUUID->"8bb8b6c3-f74e-4505-9b6f-d5978af920f2"],
Cell[936265, 17541, 5133, 103, 250, "Output",ExpressionUUID->"f2313b4e-798a-454e-9a63-98e6906c7cf8"]
}, Open  ]],
Cell[941413, 17647, 292, 7, 33, "Input",ExpressionUUID->"c6deb938-a60b-48ff-8b90-a74d7ae9e157"],
Cell[941708, 17656, 816, 16, 50, "Input",ExpressionUUID->"6753751b-a669-450c-821a-0e2864446c1a"],
Cell[942527, 17674, 307, 8, 33, "Input",ExpressionUUID->"dc4db538-b681-426a-acc4-ce255c7c1d15"],
Cell[CellGroupData[{
Cell[942859, 17686, 1086, 22, 35, "Input",ExpressionUUID->"c96e0fd9-189c-4e48-b6f8-cbbdb9d07d41"],
Cell[943948, 17710, 109094, 1828, 408, "Output",ExpressionUUID->"5d1c7ad5-f000-4562-8efa-d8dd85a7bd4b"]
}, Open  ]],
Cell[1053057, 19541, 5757, 147, 555, "Input",ExpressionUUID->"e57ddf1c-67e2-47a7-9bb7-4c7dc728e854"],
Cell[1058817, 19690, 12428, 343, 644, "Input",ExpressionUUID->"7d563751-9dd5-4e27-9845-46f525c48682"],
Cell[1071248, 20035, 2367, 65, 138, "Input",ExpressionUUID->"8d9835d3-d38e-4b8f-aeda-dab1a09c92c0"],
Cell[CellGroupData[{
Cell[1073640, 20104, 5168, 116, 204, "Input",ExpressionUUID->"b0bf33f5-97ee-414f-b509-6dfa628674e2"],
Cell[1078811, 20222, 102150, 1729, 558, "Output",ExpressionUUID->"95939756-e714-40f1-9b2a-26d3eb5c8ab4"],
Cell[1180964, 21953, 16374, 282, 333, "Output",ExpressionUUID->"dfe6e270-29f9-45b6-a74f-fd587b12e238"]
}, Open  ]],
Cell[1197353, 22238, 381, 10, 33, "Input",ExpressionUUID->"50a3db6b-50c1-4c63-a4b6-e0a5ab5b7a7c"],
Cell[CellGroupData[{
Cell[1197759, 22252, 964, 21, 50, "Input",ExpressionUUID->"c36da682-78eb-4479-a88a-6d8ffe69fdb8"],
Cell[1198726, 22275, 118916, 1980, 409, "Output",ExpressionUUID->"5d6b7975-54f9-4f76-9afe-74ad694852e3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1317679, 24260, 1076, 23, 50, "Input",ExpressionUUID->"19052f96-5012-4bb8-8d61-ab162fcff6b3"],
Cell[1318758, 24285, 164815, 2741, 409, "Output",ExpressionUUID->"5a40e7d1-446e-457a-9279-37c87371dec5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1483610, 27031, 858, 22, 33, "Input",ExpressionUUID->"810cff79-47ba-476e-87f6-c3e7e8c9c39c"],
Cell[1484471, 27055, 14262, 259, 259, "Output",ExpressionUUID->"665c9ce6-aabc-4938-9ea3-804267957125"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1498770, 27319, 984, 25, 33, "Input",ExpressionUUID->"7a20b6d1-898d-48d7-a70e-0612fe4c9344"],
Cell[1499757, 27346, 18915, 338, 256, "Output",ExpressionUUID->"87302cc8-2b37-427e-ae3f-967f24d3fca9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1518709, 27689, 447, 11, 33, "Input",ExpressionUUID->"13bdecf0-e0fe-4fe7-bb03-54c065ce665b"],
Cell[1519159, 27702, 4121, 86, 266, "Output",ExpressionUUID->"d9074324-3e7b-49a3-815f-cb3ef58357e9"]
}, Open  ]]
}
]
*)