3Energy (2).nb 237 KB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    237588,       4905]
NotebookOptionsPosition[    230361,       4797]
NotebookOutlinePosition[    230831,       4815]
CellTagsIndexPosition[    230788,       4812]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{
    "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
     "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\
\:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}], ",", " ", 
    RowBox[{
    "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", 
     "\:0441\:0432\:044f\:0437\:0438", " ", "\:0438", " ", 
     "\:043c\:0430\:0441\:0441", " ", 
     "\:0447\:0430\:0441\:0442\:0438\:0446"}]}], "*)"}], " ", 
  "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"m1", "=", "938.2723"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"m2", "=", "939.5656"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Eb1", "=", "2.224"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Eb2", "=", "1.296"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Eb3", "=", "7.77"}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"m", "=", 
     FractionBox[
      RowBox[{"m1", " ", "m2"}], 
      RowBox[{"m1", "+", "m2"}]]}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"j", "=", "197.327"}], ";"}]}]}]], "Input",
 CellChangeTimes->{{3.8418280761221857`*^9, 3.8418280761422033`*^9}, 
   3.841862171517088*^9, {3.8419262080807543`*^9, 3.841926219260518*^9}, {
   3.841928038092181*^9, 3.8419280541030884`*^9}, {3.841928487899782*^9, 
   3.841928488076267*^9}, {3.8420066140269156`*^9, 3.8420066793455715`*^9}, {
   3.8420171976184487`*^9, 3.8420172488882537`*^9}, {3.8424381617095547`*^9, 
   3.842438201338784*^9}, {3.8424382660884786`*^9, 3.8424382663017025`*^9}, {
   3.842439900950303*^9, 3.842439905584711*^9}, {3.842440130144476*^9, 
   3.8424401408080816`*^9}, {3.8431287176062517`*^9, 3.8431287369491*^9}},
 CellLabel->"In[8]:=",ExpressionUUID->"03437ec1-8e8d-4132-9ebd-bd698daabc4f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"Psi", "[", 
   RowBox[{"r_", ",", " ", "q_", ",", " ", "k_"}], "]"}], ":=", 
  RowBox[{"n", "*", 
   RowBox[{"(", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "k"}], " ", "r"}]], "-", 
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, {
  3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 
  3.8415122060456753`*^9}, {3.841926409979779*^9, 3.8419264177339487`*^9}, {
  3.8419276456625643`*^9, 3.8419276518377705`*^9}, {3.841928494442438*^9, 
  3.841928503957432*^9}, {3.841928615751482*^9, 3.841928632201804*^9}, {
  3.842033422958788*^9, 3.842033423943757*^9}, {3.842437713760228*^9, 
  3.842437735679245*^9}, {3.842438434224802*^9, 3.8424384347359476`*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"6a7dc0c6-be0c-48fb-a1d8-5e115c4bba2c"],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
   "\:041f\:043e\:0438\:0441\:043a", " ", 
    "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043e\:0447\:043d\:043e\
\:0433\:043e", " ", 
    "\:043a\:043e\:044d\:0444\:0444\:0438\:0446\:0438\:0435\:043d\:0442\:0430\
"}], ",", " ", 
   RowBox[{
   "\:043f\:043e\:0434\:0441\:0442\:0430\:043d\:043e\:0432\:043a\:0430", " ", 
    "\:0432", " ", "\:0412\:0424"}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.8431287647436237`*^9, 3.843128807073161*^9}, 
   3.843128990348751*^9, {3.8476878131431694`*^9, 3.8476878141054096`*^9}},
 CellLabel->"",ExpressionUUID->"11c14549-6598-4f7a-b43d-46f1014014f5"],

Cell[BoxData[
 RowBox[{
  RowBox[{"A", "=", 
   RowBox[{"Integrate", "[", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"Psi", "[", 
       RowBox[{"r", ",", " ", "q", ",", " ", "k"}], "]"}], "2"], ",", 
     RowBox[{"{", 
      RowBox[{"r", ",", " ", "0", ",", " ", "Infinity"}], "}"}], ",", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{
       RowBox[{
        RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", 
       RowBox[{
        RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, {
   3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 
   3.8415122060456753`*^9}, {3.8418621836152816`*^9, 3.841862185815211*^9}, 
   3.841926746792386*^9, 3.841926895943141*^9, 3.8419270140918956`*^9, 
   3.841927076075403*^9, 3.841927522717456*^9, 3.842017257041871*^9, {
   3.842437744800707*^9, 3.8424377549466815`*^9}, 3.842437979416876*^9, {
   3.8424380555912037`*^9, 3.8424380602688913`*^9}, {3.842438441710887*^9, 
   3.842438441851587*^9}, {3.8431288152995477`*^9, 3.843128817453047*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"e1e79645-e32e-4b68-b5df-7ab484da6ba0"],

Cell[BoxData[
 RowBox[{
  RowBox[{"K", "=", 
   RowBox[{"Simplify", "[", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{"A", "\[Equal]", "1"}], ",", " ", "n"}], "]"}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.84142616113337*^9, 3.841426178836554*^9}, {
   3.8414262777345657`*^9, 3.841426284352947*^9}, {3.8414263330417156`*^9, 
   3.841426370919484*^9}, {3.84142642169523*^9, 3.841426426745703*^9}, {
   3.841426931233382*^9, 3.8414269316640887`*^9}, {3.8414270180161147`*^9, 
   3.8414270221548047`*^9}, 3.84148513535236*^9, {3.8415125163491974`*^9, 
   3.8415125198006496`*^9}, 3.8418622677252283`*^9, 3.8419265653233194`*^9, 
   3.8419269042440987`*^9, 3.8419269748002605`*^9, 3.841927041659233*^9, 
   3.8419270882586594`*^9, {3.8419276967204638`*^9, 3.841927700771744*^9}, 
   3.8419286997488294`*^9, 3.842017348039254*^9, 3.842438082303847*^9, {
   3.8424397967035007`*^9, 3.842439821268721*^9}, 3.843128823099741*^9},
 CellLabel->"In[17]:=",ExpressionUUID->"7db9fcbd-2e07-4390-89f8-64abec23f5fc"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"K", "[", 
    RowBox[{"[", "2", "]"}], "]"}], "[", 
   RowBox[{"[", "1", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8686038940314617`*^9, 3.868603894543469*^9}},
 CellLabel->"In[18]:=",ExpressionUUID->"67a1328d-5221-4305-a01d-e50843cef26e"],

Cell[BoxData[
 RowBox[{"n", "\[Rule]", 
  FractionBox[
   SqrtBox["2"], 
   SqrtBox[
    FractionBox[
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"k", "-", "q"}], ")"}], "2"], 
     RowBox[{"k", " ", "q", " ", 
      RowBox[{"(", 
       RowBox[{"k", "+", "q"}], ")"}]}]]]]}]], "Output",
 CellChangeTimes->{3.868603894970817*^9, 3.869625980413628*^9},
 CellLabel->"Out[18]=",ExpressionUUID->"2421d1b5-e428-4ca5-a582-2db7153aba37"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"Psi1", "[", 
    RowBox[{"r_", ",", "q_", ",", "k_"}], "]"}], "=", 
   RowBox[{
    RowBox[{"Psi", "[", 
     RowBox[{"r", ",", "q", ",", "k"}], "]"}], "/.", 
    RowBox[{
     RowBox[{"K", "[", 
      RowBox[{"[", "2", "]"}], "]"}], "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8424384039736495`*^9, 3.842438428725119*^9}, {
   3.8424385151885943`*^9, 3.842438546087465*^9}, {3.842438772860559*^9, 
   3.842438800554349*^9}, {3.8424399202820253`*^9, 3.8424399613286667`*^9}, {
   3.8424399927962785`*^9, 3.8424400638808756`*^9}, 3.8431288282508316`*^9},
 CellLabel->"In[19]:=",ExpressionUUID->"9caa66a9-5aac-4de1-bb03-8033da0edc88"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"\[IndentingNewLine]", 
  RowBox[{"Psi1", "[", 
   RowBox[{"r", ",", "q", ",", "k"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.868603797366624*^9, 3.868603803371442*^9}},
 CellLabel->"In[20]:=",ExpressionUUID->"52cfbebd-057f-4c95-bdc8-b59dedf6cbed"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SqrtBox["2"], " ", 
   RowBox[{"(", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "k"}], " ", "r"}]], "-", 
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}], 
  SqrtBox[
   FractionBox[
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"k", "-", "q"}], ")"}], "2"], 
    RowBox[{"k", " ", "q", " ", 
     RowBox[{"(", 
      RowBox[{"k", "+", "q"}], ")"}]}]]]]], "Output",
 CellChangeTimes->{3.868603804569292*^9, 3.869625983373563*^9},
 CellLabel->"Out[20]=",ExpressionUUID->"cfba0267-a092-4ef6-8c42-92733cb13d89"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{
     RowBox[{
     "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
      "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", 
      "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", 
      "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ",
       "\:0434\:043b\:044f", " ", "Eb"}], "=", 
     RowBox[{"2.224", " ", 
      RowBox[{
      "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ",
       "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", 
    RowBox[{
    "\:0432", " ", 
     "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", 
     " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", 
     "\:0431\:0443\:0434\:0435\:043c", " ", 
     "\:0438\:0441\:043a\:0430\:0442\:044c", " ", 
     "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", 
     "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", 
     "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\
", " ", "q"}]}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"Psi1", "[", 
          RowBox[{"r", ",", 
           FractionBox["q", "j"], ",", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "2"], "*", 
        SuperscriptBox["r", "2"]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}],
     ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "238", ",", "238.4"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.841426186760852*^9, 3.841426194987237*^9}, 
   3.841426235567309*^9, {3.8414272721292486`*^9, 3.8414272771345644`*^9}, {
   3.841427331043933*^9, 3.84142744059406*^9}, {3.8414276703149347`*^9, 
   3.8414277167910213`*^9}, {3.841427762538426*^9, 3.841427763378219*^9}, {
   3.841427991721037*^9, 3.8414279919260397`*^9}, {3.841428129728818*^9, 
   3.841428130747701*^9}, {3.8414282143306217`*^9, 3.841428217697406*^9}, {
   3.8414283871205826`*^9, 3.841428419843808*^9}, {3.841428486663429*^9, 
   3.841428557797946*^9}, {3.8414286124453373`*^9, 3.841428618859884*^9}, {
   3.841428653223057*^9, 3.841428683650543*^9}, {3.8414287250655603`*^9, 
   3.841428726764765*^9}, {3.841428961621318*^9, 3.8414289632587185`*^9}, {
   3.8414293474807277`*^9, 3.841429348553874*^9}, {3.8414293964972286`*^9, 
   3.8414294051683545`*^9}, {3.841429441392866*^9, 3.841429444525548*^9}, {
   3.841429514978922*^9, 3.841429519625922*^9}, {3.8414295752486134`*^9, 
   3.84142957830805*^9}, {3.841429618772784*^9, 3.841429621688943*^9}, {
   3.841429671140091*^9, 3.841429677643608*^9}, {3.841429725281893*^9, 
   3.84142973132315*^9}, {3.841429794250433*^9, 3.8414297989424906`*^9}, {
   3.8414298426616917`*^9, 3.841429847387005*^9}, {3.841429893675215*^9, 
   3.8414298981449738`*^9}, {3.841429937323591*^9, 3.8414299456963725`*^9}, {
   3.8414300032085257`*^9, 3.841430007293438*^9}, {3.841430056931363*^9, 
   3.841430061156352*^9}, {3.841430095216503*^9, 3.841430099493352*^9}, {
   3.841430228009698*^9, 3.8414302348136067`*^9}, {3.841430286848734*^9, 
   3.841430293178632*^9}, {3.8414304278618417`*^9, 3.8414304335866623`*^9}, {
   3.841501077439352*^9, 3.8415011289714375`*^9}, 3.8419263466938095`*^9, {
   3.8419271215351887`*^9, 3.841927129893823*^9}, {3.841927279707741*^9, 
   3.841927282512185*^9}, {3.8419273527382545`*^9, 3.8419273586494093`*^9}, {
   3.8419273978051605`*^9, 3.8419274002513933`*^9}, {3.841927452992919*^9, 
   3.841927453960373*^9}, {3.841927776102415*^9, 3.841927783632065*^9}, {
   3.8419278793478727`*^9, 3.8419278795674515`*^9}, {3.841927980569458*^9, 
   3.8419279850325923`*^9}, {3.841928106073079*^9, 3.841928114845869*^9}, {
   3.841928236170072*^9, 3.8419282600440474`*^9}, {3.8419288050703664`*^9, 
   3.8419288066732883`*^9}, {3.841930737410688*^9, 3.841930740257744*^9}, {
   3.8419308009531436`*^9, 3.841930803512135*^9}, {3.841930924777073*^9, 
   3.841930931239976*^9}, {3.8419310607216372`*^9, 3.8419310612381573`*^9}, {
   3.841931206535185*^9, 3.8419312112081795`*^9}, {3.8419312727086554`*^9, 
   3.8419312754340277`*^9}, {3.841931411810797*^9, 3.8419314192045755`*^9}, {
   3.8419317391945534`*^9, 3.841931751405635*^9}, {3.8419318808331027`*^9, 
   3.8419318848515325`*^9}, {3.841932282064253*^9, 3.841932294082672*^9}, {
   3.8419324380319295`*^9, 3.841932448113352*^9}, {3.8419329287763004`*^9, 
   3.841932933769066*^9}, {3.841934137743878*^9, 3.841934139508807*^9}, {
   3.8419342082416077`*^9, 3.8419342115931273`*^9}, {3.8419922000040298`*^9, 
   3.8419922013937225`*^9}, {3.8419924342216797`*^9, 3.841992438525422*^9}, {
   3.84199311956271*^9, 3.841993119772709*^9}, {3.841993305326928*^9, 
   3.841993319638669*^9}, {3.8419933528035507`*^9, 3.8419933558398294`*^9}, {
   3.8419933869828987`*^9, 3.8419933908733406`*^9}, {3.841993423883912*^9, 
   3.8419934459890666`*^9}, {3.841993477174613*^9, 3.841993487973899*^9}, {
   3.8419955763129225`*^9, 3.8419955796245885`*^9}, {3.8420023888580046`*^9, 
   3.842002396297885*^9}, {3.8420174075606923`*^9, 3.8420174086549425`*^9}, {
   3.842017462387191*^9, 3.842017471550541*^9}, {3.8420175023526773`*^9, 
   3.8420175094095616`*^9}, {3.842017546304228*^9, 3.842017558900095*^9}, {
   3.8420176160452394`*^9, 3.842017633902339*^9}, {3.8420897510471034`*^9, 
   3.8420897516868796`*^9}, {3.8420898148155155`*^9, 
   3.8420898247457056`*^9}, {3.842438117208927*^9, 3.8424381584235067`*^9}, {
   3.8424382140231795`*^9, 3.8424382265617323`*^9}, {3.842438554038668*^9, 
   3.8424385551531467`*^9}, {3.842438810279594*^9, 3.8424388436955366`*^9}, 
   3.842439898146412*^9, {3.842440147834546*^9, 3.842440155112587*^9}, {
   3.8431289038323483`*^9, 3.843128957140154*^9}},
 CellLabel->"In[12]:=",ExpressionUUID->"cde6bbb8-faa1-412f-aa16-d218f4ef9a75"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd0nsw1WkYB/Bfcot1GUxmJxvGykHJDoUs77FbHZe1xaowKwfjsoeDg7Ml
2++nWtTuqQ5RqrVzpoytVsTSbJ3MQ27nuB5Mchm3JtauJRu5RfY8vz/eeecz
z/PO851nXuvolOBYDYqiAtUH74UoTYqqF3Ipyr0/QyAm1O6ALVvQskubgXFi
YriUr6GBdnawt4sWE4efLLU00fzQs4NhYhJdfUBPF/0o3t7bT0x6NURmxujs
b6Q6HDGpujvCsUJLI2/emswgKZOPg7hoFa+4gZ9BhG2Cj3LR9YsXnnLTyUuL
vZxW1jorXS5ppGbgw7p2A+bTaXLaLSKmS90HvkLzo2Y9DVPJaHbVoARdz59q
0U4mjsLCiV60rLAsrSmRzDw/f8f8OeYZ76+VfEfMc881nUDLFsIcs+JJ84Nz
R0rQ/AJtyiuWjH1e4DnK1v/t0LKNIUnuFeOfNKrN9c2XmUeRrKL2uWh0drfC
Qx5BliJXI+6y9c+Wr14LIws/c/b/zdrO5aHJMRJjHdO6pwn7Pf95V3aUkE8r
nghZ8xqdjPxIycU1sz9Yb9zYtpNL4sJP9CygqV1uB7fvJdWXa5c8mtFH/zoT
ogkiB8sXNDp7PfxWgCvcdr1pBmy9rLRS+AX4yszqNFuwfixzOj4A+JmylkPo
8RNFDa+DYEbudikHzV1yEVDHYSVSVdPG9l/c7yEOB5Eo00e/VW0r2766kpOQ
9NrGLQg9XimqvhoFQ/WDk0XobIeRt80xUKMne/cCrXqWadwfC8aP45N3KPA/
fDnyzCQBBrqI77doavQ+z14ApkE2w7fR891Kn31JoHLVfTmOTs0PVAiTYTVn
w8VaqTZHq9Wcmwql7ourcWjpZok0UgTy0PdW99DUQspaYhocemWwZRqtGxFl
kZ4OQZ3W/nva1Fb8efy8NAOUtocXheijpmlDt8TQOJaoU4N2disSy78H560l
fSto/sYpRf8p0C0cpTza1T49UW04dhpicq1v0GiV/rPrG5lgP5VxBdDck09M
tmVBdGWf9ybaOaGCZ/QD7BxyCT3YgfMMuHWOZ+FQWmnvj2hO8xu7fTRwNC6/
zUEn2OgqPWjQKxCb5KGlllYCbxq6qg4HX0JfnP+6nEdD6H/TPZfRzku/OYfT
IEjd03Md/Sif58HQIE1+3H0PPa/j5a+kIe3Dr2/uo4t3+M100hByJc/od3R9
R4ikl4aPK0KPPGTz6CZ2DdNwZ3atqwq98qogeI6G2iTS9RSt4qjCTRkoXreb
k7Pe3v/enIEzEmPDOvTAneFfLBjwLp8IBDb/tclRWwYUMxc6G9m8g4vR7gw8
yEqabWLn1yxv9WJAon/MoAVNOa2V+jAQ5LgrUMG+X92Y8mfAVW4oVLL9AZt5
RxjYHrAsaUPf86TsQxhYGRorb2f3p6TaQhkYEig6Oth9LVKJEQz8D+JGO94=

       "]]},
     Annotation[#, "Charting`Private`Tag$7497#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{238., 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{238, 238.4}, {-0.007657449706387709, 0.005228477853506774}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.8424382636216803`*^9, 3.8424383001831417`*^9, 
  3.8424385645116606`*^9, 3.8424386726493254`*^9, 3.8424389133230906`*^9, 
  3.8424400867886543`*^9, 3.842440179283087*^9, 3.8431290571693273`*^9, 
  3.8482514108102045`*^9},
 CellLabel->"Out[12]=",ExpressionUUID->"7b0cfd5d-f03c-4b28-b49e-874682901456"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Q1", "=", 
  RowBox[{"FindRoot", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"Psi1", "[", 
          RowBox[{"r", ",", 
           FractionBox["q", "j"], ",", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "2"], "*", 
        SuperscriptBox["r", "2"]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
       RowBox[{"Assumptions", "\[Rule]", 
        RowBox[{
         RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", 
     "16"}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "238.2"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8424402093132343`*^9, 3.8424402905077815`*^9}, {
   3.842440406074133*^9, 3.8424404072100916`*^9}, 3.842440803549906*^9},
 CellLabel->"In[22]:=",ExpressionUUID->"b46d647d-fcbe-457f-8cb9-0e3c2504df7a"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"q", "\[Rule]", "238.16212237907018`"}], "}"}]], "Output",
 CellChangeTimes->{3.8424403237987022`*^9, 3.842440810164362*^9, 
  3.8429753238119316`*^9, 3.8431290607693367`*^9, 3.848251415227048*^9, 
  3.868592126317268*^9, 3.869625994476714*^9},
 CellLabel->"Out[22]=",ExpressionUUID->"43a363be-f864-48bd-935f-df34040d934c"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
    RowBox[{
    "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
     "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", 
     "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", 
     "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", 
     "\:0434\:043b\:044f", " ", "Eb"}], "=", 
    RowBox[{"1.296", " ", 
     RowBox[{
     "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", 
     "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", 
   RowBox[{
   "\:0432", " ", 
    "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ",
     "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", 
    "\:0431\:0443\:0434\:0435\:043c", " ", 
    "\:0438\:0441\:043a\:0430\:0442\:044c", " ", 
    "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", 
    "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", 
    "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\
", " ", "q"}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.8431289771472473`*^9, 3.8431290090207987`*^9}},
 CellLabel->"",ExpressionUUID->"f2516471-e981-41fd-b4a5-b1fa86962326"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox[
        RowBox[{"Psi1", "[", 
         RowBox[{"r", ",", 
          FractionBox["q", "j"], ",", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "2"], "*", 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "4613250", ",", " ", "4613300"}], "}"}]}], 
  "]"}]], "Input",
 CellChangeTimes->CompressedData["
1:eJwdzX0s1AEcBvAfFklpzFuXOUmt9XLTqYgjd1akDglDjoS5G2E5f9TMbsp6
2XWdpU2Wc85YC8l5KaZW2K3MRWN56eW2C9m8FOmG2ur3fP949vnj2Z5n16WC
uGxrhmGC2MDptt7AbbULwhFDynF4raAwHh4NsUmAverz6VCwukj2J5kyoYKp
yoLusS4yuDXBh/zRGXwZaucSSO4prp0rq2N5DPnQyG+x1S4I1732P4Vx0u96
WDQs64B6rbgbLqnse6Dgn9Mze9bIizGk2nJgGMojJCNwynDzI5xV7ByHmuHs
L9CLuUJGZiyboa+Z+QaTJ8J+bWFd4Xv/hkMVtTscWPmLAg5krDsD4BNRUCCU
J/YJ4MR4dQi8F+wsgoK2enJjt0LsxKp0XSOjGookcCb3UhpsDJjNgX6VrTL4
1zHJxY3VsZjrCvNCpIegNLSGBxk3/hF4UnyXNDeXnoZBgUbyTtNiNOxZ2h4L
X97Wp8K1UpUEho1ONsDCgaVGKFA6PIfhklvkhNqnFz7aXEy+99/TD8/kviDH
6g+/o5/2qUGobbIfhT/HuGNQWZA0CTmvLKSt9+BXeKPkoAmm15TNQk8LZ47+
/DMuuKPPe5wK9+rkmbA6VJgNj9VViz1Yz80bo6Eh9Goy/PzBNwXOzMvTIMcw
QCpsynOgJc9IhvMKr0Ndfjv5qdVZBas2dZEaTf596CIzk/vCrKrgSsQDkiOa
q4GCOqGGdqzCdfDPqo6MS1Q2wjLOPNmRntUMYyW8FmhWm9qgaKFCDyv91ruh
m2q6B24kq17DQV78G9hlZ/MWenieHYInGjiTJtY+6wwyc1k6A6NSSsj/xBPD
bA==
  "],
 CellLabel->"In[14]:=",ExpressionUUID->"2340e0ba-ca13-4073-9b8a-6f8ba8116315"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw9zn0s1AEYB/AfLmSucL/fdYy649z1glqrq9nuqVyLWlIWWi07xsQY2mrW
0PUyrbrCalmo04Z0f8hyWuSemkVZL8I/KSTJLhUX0sndlbZ77o9nz/PZs32f
R5KaG5/uyjBM7GL97zE8RiO+eWDH4sj8EcghU7XgdKKvHC6dnTtD1i+Tw2vm
xzly8lI5xNsGLpCf2mVwdK65lFzyVQbHTRk6MvtEBtWvepAckSWD3WKTq8Rh
4YNQcIGiKLLCPRSGffo15KajUmBz85+RTfUhkFChdQt2eK81GKb2mKPJeapg
aGxmL5PNVyRQMN7STb49JoaqWh0/xGGvcDF0h7nHkmPcVkFgVvhl8tbmIHix
8dYbcsOuQDjdeZEvdbhgOgDKPuMBcsMZf+h8aLhOblohgiUH5f1k7y4h6ApH
haEOv0viQJUbkEj2dmVhx4/KSnJDqR+kiQeHyD5SXygPqgyUUf6d5SCqr1GT
xR3eoLeE1JDVAi9IYY4Nk5njHpB/bVYip/wKHmjNNjXZZ9IFmIG4OnKN0K68
eTLV5NxnW5TK4Z+y1eSQGWVkb3cWeaRnQhl1daWerAkcUeYym0xOF3Upf9nK
161xePvS58aSzuws8lv1iDFPVNZIVo99M6Zv3jBJFsXPGE97lIetpfsVFuN0
WmQeees+uzFPq75Pnu11wehtPTNkcwsPVXftinUOp2k9cM+A/gRZtNEL9Td0
reTvPnzkVvrOO43Lse6wakuYw4b1vng1GE+RtdV+eNbQ0kr+YxagbuhNG3l0
ToDt7qbH5PdWAc4dCkBymyeLmbbiDnKhmMX9u2Jekq1xLAa9ez/ozG9kMdJl
doj83cBi4lr+R/JgG4tlhds+kdu7WORJar+QNcMsTmTmTJItfA49rpVMkScE
HErbdWbn//4cJi/rmyZ3hHLY+0Dxm3xeyeHkhzgLOVvFodeSzHly8m4OdyZV
LZAVCRymaAxWcsQRDovvvbaRpSkcVvWN28meGRw+Wvj7l8zkcPgPXDiKPg==

       "]]},
     Annotation[#, "Charting`Private`Tag$50183#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{4.61325*^6, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{4613250, 4613300}, {-1.2471446098061278`*^-9, 
    2.6866366908961936`*^-9}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.8424409321698084`*^9, 3.8424410279298563`*^9, 
  3.8431290846720724`*^9, 3.848251447159778*^9},
 CellLabel->"Out[14]=",ExpressionUUID->"0ec5bebe-3bc6-47a5-b407-e82fc1ddc060"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Q2", "=", 
  RowBox[{"FindRoot", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"Psi1", "[", 
          RowBox[{"r", ",", 
           FractionBox["q", "j"], ",", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "2"], "*", 
        SuperscriptBox["r", "2"]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
       RowBox[{"Assumptions", "\[Rule]", 
        RowBox[{
         RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", 
     "16"}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "4613280"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8424411355629845`*^9, 3.842441156587248*^9}, {
  3.842441619365672*^9, 3.842441624049182*^9}},
 CellLabel->"In[13]:=",ExpressionUUID->"f1e481e6-bf4f-4d88-b460-30ffa444b7b8"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"q", "\[Rule]", "4.613284148275481`*^6"}], "}"}]], "Output",
 CellChangeTimes->{3.842441161802581*^9, 3.84297535012632*^9, 
  3.8431290887731695`*^9, 3.848251451410477*^9, 3.868592130803894*^9},
 CellLabel->"Out[13]=",ExpressionUUID->"2cb18a1e-beb5-445d-b2e9-3a6fc28e1c0a"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
    RowBox[{
    "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
     "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", 
     "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", 
     "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", 
     "\:0434\:043b\:044f", " ", "Eb"}], "=", 
    RowBox[{"77.7", " ", 
     RowBox[{
     "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", 
     "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", 
   RowBox[{
   "\:0432", " ", 
    "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ",
     "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", 
    "\:0431\:0443\:0434\:0435\:043c", " ", 
    "\:0438\:0441\:043a\:0430\:0442\:044c", " ", 
    "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", 
    "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", 
    "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\
", " ", "q"}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.843129163537047*^9, 3.8431291766371794`*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"3bcffe89-b392-4789-908e-125efb410038"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox[
        RowBox[{"Psi1", "[", 
         RowBox[{"r", ",", 
          FractionBox["q", "j"], ",", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "2"], "*", 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "80", ",", " ", "100"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.842441177956608*^9, 3.8424412108939075`*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"a0c8abc7-3920-4712-8409-6a31ba8cf5d3"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd0XlQU1cUB+CXVyIiq8oUFShCWAZkGGCCDZsvFAqEEQSasNjQcQuIUNQi
wihqUFsRN5Ypw1IUZBEsRU2RbSr3WnYoiqI0CCgg+1ITwBQQkp7XP+7c+eZ3
7rmb6aHjwSKSIAh/GPSs51nDIAg+l7j8rFpUKacu2UekHKHNzjSUlckphbEa
o4P2VBQ+UySnBpeDiEwG2Ny5OT1bTpVXzStZn4FTiWokllPUDos1nw3g5nR7
a4GcipNnKW5pgQPdUmyUMqrrzslZk+1g/ubb44Ey6sDW2n4hG5yUE7pUN0+p
vKIkXf5grvad4xqzVM69670NkWBxTFpj3BSlaeq20poCHpa1FBaPU6lhIRrM
fDpvW5fovqfela0aH6ihrWP5495hyt5S/6zrC9qR6yK3ASrtcM6fvjNgwsVS
xeujUG2ZTjxTAB7SbvnUQyk7TL5+/gXtwJSgXe3Ubm2d5l+/pM1lavOfULyo
n3xKg2kT7RHSIkp0IfpxT8z/HlF7VYyEVX1W26/Q1uuyNW5E/jr1oyNFtAMm
NYfakY/thtTBBto9DvNLPcjo4JDD0mvabz0ce16j1W9MWt0/0NZmJ+99g36P
mP2uZFMInN+7ptrwHYrMseVeswAPa7g3vR9BZhlSzZI9YFmAp1RzDNUX6gz2
h9OWtPkKJ1B43INsj3gw4b4LX5hCi7EtudbXwSeMt7tkzaCjF0VFdvfA7fud
mM/m0ITgRJYIgzmbt4YM/YMoLjOtfgDs9ajtxlUZyvhWt+OGgs7XZqJ/kaN5
9uWFLN1Q+P/ym555C4hlcWlnrQ34VVSR9P4iOtw7x9HyAn8lNegqW0IFkq7c
ESH4fMDM6fyP6FE5W9WbCC5MWIq8q0DPhRv3LaeDq7q7hT//i9qsIoudK8ET
cc7svGXU8dButLIF3J7Uf+zaCmo5Fhtd+BZcnsFsSFhF+a7sjw9XwP3ZQ2dO
fkJnOyNjFreEwftxzDn715DTCdZEsB3Y7OXFTfx1NO0tqHDkgTnuY3PeSnRv
QB7idQjs1x0rslIh6so2jfhzYVxxo5WalxaBR2QVpb3Z4HLeeNtZAidfe5hW
/QCcNdBvNkXgBTePU5LOMC72q0gsFDLwD5VuvqPvIVfkhYa0M3D1sD4KHoP+
aQUsp04GVujPOzWBuWUvB7f+xcBnzhWwSsahvlf6+YvnDHwxQKkUTUK/y/EV
fn8zcKYMPZ6egZzZx3OZYOBHbE+WXA5OnD6vqUbihaOGeQcXoN4lbHGSSWJ2
waLeS9oeRoJmdRLXMUuUkkXYL6Z8OFmTxLhP7c2pj2DBB4P5LSTuSWpNX14G
q1tv7DQl8ZbfbqtHr8D68O+DS1kk5o+cPt8PFu/alia2ILGUZxXbsAr3ySt9
utuaxMM7Un2S18A1T4Lu2pPYbN+Bxjmw2ICvfs6RxEcucZwi1sE3w++Hskk8
NTtltkcJ/TVq6rQ4JLbZ+TS3Cix20DWfdCZxLD9Xz0QFef1A8lNXElelnrxy
C0xIjJry3Uks+4OnVIHFdr2KBIrE/wF6IDy0
       "]]},
     Annotation[#, "Charting`Private`Tag$92629#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{80., 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{80, 100}, {-2.2809867175290606`, 1.1045891821634086`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.842441199793255*^9, 3.842441234999315*^9, 
  3.843129111613172*^9, 3.843129215202892*^9, 3.8482514815251293`*^9},
 CellLabel->"Out[16]=",ExpressionUUID->"2cf73a61-ef6c-4611-b88f-0f5a1198b439"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.8431290938375373`*^9, 
  3.843129111287323*^9}},ExpressionUUID->"4a482f08-5be2-4e85-9e7c-\
9533e11608c9"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Q3", "=", 
  RowBox[{"FindRoot", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"Psi1", "[", 
          RowBox[{"r", ",", 
           FractionBox["q", "j"], ",", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "2"], "*", 
        SuperscriptBox["r", "2"]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", 
       RowBox[{"Assumptions", "\[Rule]", 
        RowBox[{
         RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", 
     "16"}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "85"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8424413110369177`*^9, 3.842441322453842*^9}, {
  3.8424416387409115`*^9, 3.84244163910299*^9}},
 CellLabel->"In[14]:=",ExpressionUUID->"2964588f-362b-4640-abcd-8429dddfcd8c"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"q", "\[Rule]", "85.47711799676074`"}], "}"}]], "Output",
 CellChangeTimes->{3.842441326734892*^9, 3.842441644638994*^9, 
  3.84297535828819*^9, 3.8431292183557615`*^9, 3.8482514860813136`*^9, 
  3.868592134644457*^9},
 CellLabel->"Out[14]=",ExpressionUUID->"e3615178-f343-49ec-baa6-5d4dacd72f9f"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
    RowBox[{
    "\:0413\:0440\:0430\:0444\:0438\:043a\:0438", " ", 
     "\:043f\:043e\:043b\:0443\:0447\:0435\:043d\:043d\:044b\:0445", " ", 
     "\:0412\:0424", " ", "\:0434\:043b\:044f", " ", 
     "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", 
     "\:0441\:0432\:044f\:0437\:0438", " ", "Eb1"}], "=", 
    RowBox[{"2.224", " ", "\:041c\:044d\:0412"}]}], ",", " ", 
   RowBox[{"Eb2", "=", 
    RowBox[{"1.296", " ", "\:041c\:044d\:0412"}]}], ",", " ", 
   RowBox[{"Eb3", "=", 
    RowBox[{"7.77", " ", "\:041c\:044d\:0412"}]}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.843129208232153*^9, 3.8431292978172646`*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"befc8de9-0d27-44f7-947a-f192faf5f8d4"],

Cell[BoxData[
 RowBox[{
  RowBox[{"V", "=", 
   RowBox[{
    RowBox[{"Psi1", "[", 
     RowBox[{"r", ",", 
      FractionBox["q", "j"], ",", 
      FractionBox[
       SqrtBox[
        RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "/.", 
    RowBox[{"Q1", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8414865815670404`*^9, 3.84148666834463*^9}, {
   3.8414867160015464`*^9, 3.841486720505498*^9}, {3.841501642367877*^9, 
   3.841501686449999*^9}, {3.841511738794239*^9, 3.841511808923006*^9}, 
   3.841863409834422*^9, {3.8418638247842407`*^9, 3.841863830550558*^9}, {
   3.842033912742408*^9, 3.8420339133995967`*^9}, {3.842033998524009*^9, 
   3.842034005203063*^9}, 3.8420340781096725`*^9, 3.8420341097907977`*^9, 
   3.8420923585802064`*^9, {3.8420928187410583`*^9, 3.842092833128294*^9}, {
   3.842441563153664*^9, 3.8424415719640217`*^9}},
 CellLabel->"In[23]:=",ExpressionUUID->"66d8126e-9920-4e9d-b7a9-2d8a88e580f7"],

Cell[BoxData[
 RowBox[{
  RowBox[{"L", "=", 
   RowBox[{
    RowBox[{"Psi1", "[", 
     RowBox[{"r", ",", 
      FractionBox["q", "j"], ",", 
      FractionBox[
       SqrtBox[
        RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "/.", 
    RowBox[{"Q2", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{
  3.842441399379265*^9, {3.8424414299110937`*^9, 3.842441479866211*^9}, {
   3.8424415424674845`*^9, 3.8424415564393497`*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"6edd5cae-065e-4309-91cd-7ace061191ed"],

Cell[BoxData[
 RowBox[{
  RowBox[{"S", "=", 
   RowBox[{
    RowBox[{"Psi1", "[", 
     RowBox[{"r", ",", 
      FractionBox["q", "j"], ",", 
      FractionBox[
       SqrtBox[
        RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "/.", 
    RowBox[{"Q3", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.842441463330613*^9, 3.842441527920395*^9}, {
  3.842441602317494*^9, 3.842441603337468*^9}, {3.848251404599659*^9, 
  3.848251405778296*^9}},
 CellLabel->"In[17]:=",ExpressionUUID->"159ab438-0475-49b4-8561-03f59d837d6a"],

Cell[BoxData[{
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"L", ",", "V", ",", "S"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "30"}], "}"}], ",", 
   RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], 
  "]"}], "\[IndentingNewLine]", 
 RowBox[{"LogPlot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"L", ",", "V", ",", "S"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "100"}], "}"}], ",", 
   RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]}], "Input",
 CellChangeTimes->{{3.841500071634055*^9, 3.8415002093293724`*^9}, {
  3.841500249852621*^9, 3.8415002582608767`*^9}, {3.8415166352827673`*^9, 
  3.8415166395207634`*^9}, {3.841756034654497*^9, 3.8417560350153217`*^9}, {
  3.8420926035856695`*^9, 3.8420926854090242`*^9}, {3.8420976816040435`*^9, 
  3.842097704028285*^9}, {3.8476877343022203`*^9, 3.847687796690255*^9}, {
  3.847688036312707*^9, 3.847688036802*^9}, {3.847688067067485*^9, 
  3.847688073718582*^9}, {3.8476884898998203`*^9, 3.8476885320361433`*^9}, {
  3.848251608826153*^9, 3.848251645608255*^9}},
 CellLabel->"In[25]:=",ExpressionUUID->"f932f825-b20b-4ea5-8a8a-c6167060a32d"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVkX081Accx4uUqxHmaeahVR6SS26XOPfr++Va7ZSb2npQKXTaeUilXPO0
y83Lw6RNtyTRcoRCJFfI0KUhLYvjDuXhpy15vCNP1Wa3Pz6vz+vzz+fzer8+
nwWc2B2osWjRogC1/veZ3uaGtSl5W0JUxhvCOHEgu2Ya6a4QQhplo8BugQQ0
ag0wVVyEWosme/dZEox79Cl6W7Ogc85xle8ECXzvW3JNhRjGfSmHY16T4H+3
5dZCagHIcmbIa30k7DQei33PKob2W5klDXIS9MdNLs7Ly4EZfUnXrImEhF8L
o2dpEhC8oovZ9SR88HYNnE69D8Z7zfkxlSQM3T3gomLVwNCTA10jhST01XBO
vJVLIaG261tVMgmZRibc01oNQGHMyxlCEr4J69s/SXsMg6xrsYlRJDyxOumh
TG0Evv9qrn0ICfeEaUajrKcgCG7/Ln0nCdvWDr9UydvAd19JxlI9EvK8Ofvv
hLXD1qtrpEJtEhbHlred1JLBqHzJRxqLSajpiGqcoHVAtUT2njI5AE6JK+6M
pcrBMfuILcgGwHzYIf4N6wVkhV9MJa4MwLx88yWlmnulWV9JnPUAVNK0/QrW
DULgyZHxxxYDwE9V2B+OHoTzfr3FOsYDMOkRWd9i+Qp+HqJeKVg6AMMl1SP5
gX/BC5dflmkN9cOLHwgP36nX4BPd1sst6od6R9ZEs+4Y3KB73Suh98MjVkHe
c/EUlIr1BavEvWDeV/V3gMM/sP9EVEBrWg8Yhh65tYyliZYG8WsMXyrgotO2
B5w92siMrJXsYHRCV8bGepWeDt7MsfiKqeZOyRO0anyij55M3tzy/udg8stg
sij7Y6RGNDtxPrRC4jfsLW0zRpi8z9ZSs+MpnHbNOdIsNEUD+o0mzqNm2Drx
Lips0AyzIrxbo5waIY65y9/MxQKfaHygfT3aAIzbVyq+r7PCfqvymDGJFELn
VOeadD7Dyy/vdol66mF+vV4vdc9qLIoej8wyrwVmUfH19PQ1eCiV8BuZrAaV
gaffXulaTFywvv3rzkp4dd5vb/gyG1xSuNTHslIC7Imz7L+cbVHk1uel89Nd
GD2qfbpCYIf8hme5ZRF31P+baCRK16HtJi26kFkKBn/YXCibsMddRUtWNNkU
g3lSqbezswOm7PvzVKjNTchY76r38bdUJKUVLety8+GJmfumqbQN2Jsa0zwT
nAcMc+nPjp2O2JXEHz7iLgZdTfEZf+FGLOZWMppOXQfLOCumj40T0iDZlnk4
GyjWh+7tbnTCoKkMe/b2TNhAfFJ61peGUXY/aNeUXYbwXoNHnos+x4V2Gf/x
+kswMXV+Dzvjc9yE/iEPV4pgu+PvmWwqHftzjFbm0tKgdsrt/ewzOiYUlXka
ProAYQ607ueBm/DCsZRErcoUIMa5Mh+KM/YrOfGe0iT4Yq2pl47YGX+8sffh
3PYEsDv343fSzZuxW7eO/tAkHuwDXeusuzfjjQCct5yJg8BaXnzFKRfMHjpb
7UI9B3XXZVyVkSumV02uDiZj4G3hwqzjfXWO4TE95JFw1LqIkunFwJYsDcMc
z7Ogshc5lysZWLhlTD+p9QxU5r0fmE5yQ6FQMtv6IBwObF2DbpZM7Dx91cv0
75Pw6fHEqg31TLx5gJtR5RIGRstD73jtI/BZeYGJLiME8lixUUofAg8WWjH8
qSFAi73AEh0iMOcjF1b1qhDgKMs6FP4EPj7I+Td2WQgkdE7PHw0lMGMdv2VH
RzDMiQUeUXEEerG1/P89FQzdbqL2/CIChbGZkuLSIOBF5GWxbxMYm6wRfj83
CGZuSwJHywh0+SmtrvFyEBisVsw63SOws7tRc14QBDu0Lcx/qyfU/3kPZXsH
QY0sn9veQaCukWhwfJIHnrqVVL6CQImK8v2u1zxQbG+eMe0hMOLPunNVPTx4
Wz2SdLifQOVyRcWVBh5QczaWvBkmkEtPSstM50FNtzv//JiaP7/G1i5F3Wf4
NTgqCTweQDV4IODBscSI52emCZwNVnQpeeq++oRMkzkCj01blYt8eSB8d/lo
9TsCpz1qZW67eaBHv+ng+w+BuW1MeLONB9eOV08vLKj3v7SZuOrGg/8AIX3q
eg==
          "]]}, Annotation[#, "Charting`Private`Tag$135473#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVlnc41e8bx3GSFSEio1JGdvY6H/dDNOiIyioyovzKSENRCV8ZGV9RmamO
mVHC19YXDSMj+1jnc8ooJ3tvv/P947me63Xd13U/1/1+3/d9PRLOXmddWZiY
mOoZ5797idr4WTIiXX+936uAy52s35Uq7GtACQIq/algZGMAIME2Z2FKLMxo
Hd/alx8DPuY5vQQKGXhtDr7hu/Ma+KaEYld7C4FPKI+bzFYAeJWZ10JvHbRE
S8hzeHyEJEEhl1usn8HvNOu44O4aOO+J28ypfoGNHN3Qf0ZqoOnADcOZqHp4
c56ZyzC0DkqCngpOHGuGDEnZwvs5X+C4JH1otrcDwvPbcwNufIN0czObD56d
QDTwaWsRbwbmh4UdN1i7IGL0Lim7oRmquv3qp1W7gTPyjtghoVZQCeX6MBnV
C8sx7ctLpt8hushLPl+SAmyH1D9oJH6HCbwzw72SAut+3T1Wo98hUzsl6c/v
PihtuxhF8msHMbpC8PixQWh7mZZ3Jb4D/PY+3cruH4SBxw68ewY7oNdw8Z6b
9xD8uNukX3mgE2KTqz1+pVJhkTWDmSu9E4Kls3LnHtBg38qG+9rrLljt1Xo+
0/sTFGTp1jGePVCmyu6YJTsMbs2sUc3ZPeATRZG7dH8YHsqG2HP97IE5Q9+a
b/tHYLaHJ/GlRS/Q8yv+ZLqOgpRecdt1KQpks0eU2JeOgv1+/wcCNhS4cvli
oADHGBjXrthSwikwLLyxNyhvDKRTv0I1nQKDf2GG9vO/QO5C0awJuQ+SqNzc
Asa/YUbgwSux1j6w0aH2Nr34DXQh4rcDq33QPeXvoa07DiXGnyS+nO6HVtua
hD2BdOiw1M7ppPdDjfKx6UaeSegkaLyU2jEI/k/2VAQ4TsLfY/eCdCUHgTg6
HKxVOAls99T9shg6licFi2RYToGoxLuTsQGDUMj61TggZRoeKjUGjs0Ngrfj
C16tqWlI+axlusw9BAn2RZNLB2Zgkezz7caRIbAq+6ss33sG7uXmN2ZcHIIO
D0kzUcFZEBNSv0iqHAKV5MiiJWwW4sQ1MvrahyCmYUG448oslLjfrh76NQRm
h78Mh5XNwqUCss95fio0UVx9ly7Ogebh/rcKTlSQ3dlKbQ+eA+WmKvnsW1QI
U9M0ys+fg2zqpNzbx1Q4Hr1zt8v2HPiyigsaZlPh07Gs9HbyPHCzJOet/6LC
0ej348sN8zDuYKvRu0iFVEqp0v7peah86P/2LAGHex4NZdf0FqCGr0FYSRyH
sdLvmzFOC7AVnOYRI4vDOZY+w9LQBXjx6qpTvAYOSvHjzYSuBQj2rSiKP41D
yo9ZPrm1BdghxGoRZ40Dh8KalfnBReCR+sSp7YzDSA3njxT3RahWvKAY6IND
El1+UYN1CZwNyueUk3Fg11DXtZNfAt4cFbPYNBzuPCI+CrJYgka8/EhmLg7m
AiSOtpeMeMjk2bEKHKovWZotflqCB8Hn4gXqcJB7ax8nSl+C97xnjFYacGDV
9xR301yGCj5T8nA3DjfDfJyj7ZZhQitAZXIAB1qHf1Zx0DJwa38eff8Dh4qr
f6swty0D9ofPzmUChyOF8T4yi8ugItg4Zj2Lw/ONV5Uk0RWQwFZl2JdwuPG0
wDjp6gpct3htSN7CgTpQ9qQmagX6bwn/Ps5MA1Pp2raxohWwUdT/KEagQdmN
RgHu/hVgmcjn7txBA+nKdls1plWgSonDtZ00iGPtT7WVZvA77oqfbDRgMv85
/Oj0KuQoto8QOWjgmUQ/knlzFW6FREr6ctJgYGTOozlhFXYQ9YbiuWhwUnm9
cO7jKojXF3on7qJBiS9hRXh0FUxGMo75c9Pg8GcuDLjWQIOSVXSchwYxPAJB
riprkJWjLDHP4C0bsfoI6zXQt0mm/7WbBtfTJHcVPlwDtnVVj1UGUyYVLChp
a8BEl2c9z0uD49oaL7Ya1xj7KJf7GYOLg7AByZk12Cr9RitnsESL8UHTvesw
JZDc+4XB0UJmrt7EdTCoPGRSxuANJ6uceOd1EOy5+vdTBv8v79J0ddg6nOzw
3LRgcM/SFfWRd+vgZqA//t/7RgZevpzd6+BV/CMznMEfIu5+PLrOyBftHs7M
4P09jwjWEhsg3rrx04lRT+TBsJMPT2wAf0f1jlxG/avXYqLSPDbgEd8f/SGG
Plf+SehojNuA3rYO2gpDv67t10Iz5RsQW0/R3mLoa2Dy1m4vbQPCWu49m2To
L4aXjzkrbEKV31ZoxH/+zHsnNFpsQoSiyWMDhn8jO+VMjt7dBEOP7oBhhr/5
Skn5m7Wb4BkW8niC0Q+xhmcdXH5tQsmUzN7zTDTwseLk+7ZrC/TL2d0sNnHQ
9/e7nWC9BbTpnUR1Rn8dilWV3n6wBU39Mr2eczjszKT3upK3YPcl/9jHUzi0
tlzQU5vcAtFvvg6nxnBwENdjaQ3ahlzdA5VaXTgYqcwXqWdvQ9W/qU2ObYx+
Ns51TW7Zhh+VlrX/a2LMe0mUi/ouJrRid0hJvAYHRN2sZ7ZmQmIcRWhvDg7t
itTolAkmFE/cx/X+Hg6ftSp+ndlmQlvFHM85buJQYvACEfiZUd7LmRST64x5
tjSb+58WM7rhej4t0B4H54cfLbWCmJFPXlJJC8JhrjlVrEOIBT0oZx6XZ+wb
AXeHHLZjBPTUgVxM9KWCHFvaV3NrApL5c0fRyIsKiDz2M/E6Aanx+9/WcaWC
O8VDVOEZAWXtc6icMqfCZ6MHkeajBKRJ5BWMkqHCbfFEz8TQHSgvhnlqkLFf
O1s7VOWbWZFyxq6iUrEhiFU5XmlmyY7ipOzPSiUMQF/C0ZpZXm6knH/puT6Z
AhHpj9pY9vGhn9jX19ah3SD0bDg87uUetFdZ877oxw4IPX9Kv2NJECk7mP4J
uf4dbum8cWgMEka1aSJevleawWh6zc9zWAQpnHrumP61AQKJFk4i2uJIKYS5
wevtF9B9l1js/+8BdM06e9diaR24r8wGNHBLIPrUTjnq+RpYleelKloeQhEp
7Rey5auAmJv3+sWLw8i2VlfE1K4MZvlNHK3qJFHIwsWkeuN/YCTS0eommzRS
vp2YqGhfCKem754a1ZRBd0LrPpFYCmDiMvut4kdHkH2tmftSfC7jvyLEElon
i2QE+kLOUrKAv0U6umBaDnnWXgxabU0HsbD35pqaCujakTW2xPk3kCCvw7vn
qiK66qziYnniFTSJGGjMP1VCqdTHrPjZZNAVq4tR7lFGN1SxL1UJ8cBDIN92
CjqKdqhVm4s9ewb7Aw8QbaVVkCVHMul39VPgkLIrOVuvgjjPkaQH8qJBCdv3
/q69KhLl8bz5pP4J3KTyfzJhUkOE5TOdr8VCYXo+0vJUghoSkX0yEicZDCeU
vyadUlRHGWaH7GyTAuHjvN76cqs6EsH6q1yv+YOngmp/u6sGsimoL1cM9wNs
yqXLlkMT2SVq3d897APGksIkbrImkhz9fEFy+hYcCXhyr05LCyUOiGm3uHmD
nKvOv1L9WijDjcl1aLcnuH50Cy721kY+shq2vzSuwb+vu1xmBXVQuDK5Kzz+
Cixkby8rl+ogtSFfy+chl+GyVC5HEkkXsZ2mY4WcTjArF6dZOKOL3pwc94ty
s4ey9PUfi2F6iG1RaU/3K1u4YHQY6e0nIq7a3zyGl61A1CO0XKmGiExqf5bq
WZ0DQU73DyRrDHlHcHtXDZlD+rGHfjO2GFr+Rd6+1WkOqg+jj8XZYeh4m3yn
SqM5mM0UdFOcMNQS/l2nptgcQnoWVy+7Y2hiejZJJtIcVsiPDP0CMXQwIcxR
nGgO/XpxnZm5GKrkYjm41+AMuN1JTzn1DkP7dUQI7EpnYOndP64TBRhae2IS
zCp6BvgPUZZVSjBEnSQbHV40A1N2cbHqGgz1Kk4v/35rBlVdmS6d3RiKpdB2
xQuagQlPmaIPBUO5hNEwIJgB5UTjkvAAhgbb89XmZ0iwUPEn7BINQye2TNfu
N5NA8c3R/HE6hi449kXxB5Ogqt/AJ3ISQ+NHd9TtuUkCE4FzoDyDoa27g1MH
HElwJfRO++1FDH0d7RWyJTLy1YQkCa1gSMEvc2eIHAmC1uIvV6xh6OpF385q
YRLwqr9VsN/E0AeXgrtMbCRI9ahY3N7GkPX99xOkxdPwfx3lBAo=
          "]]}, Annotation[#, "Charting`Private`Tag$135473#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVl3k0FVwXxs1JyDwn8zwPF9fV3iFCJUohReYGkkRUpoRELypjCS8ilLmM
eZGMlVmGK6IkczJFvvv9ddazzln7nP2c315nH1HHK5YuNFRUVJ+oqaj+P66S
W5sk7mcdkDCyOSVyMfFAbxqf/8HBUPDpOHEg2fk6IPdHR77BeJh1/CiSdewu
+B5/MUA7mAnNY9/u64s/BvZ53viNgRLIz3mcn9eZBWM1x66sDDTAKem7rfFS
ZZDCzet8jb4JBEkOQSonyuGk55j1sto7EHPbPGl1uwLa9nvpL8a8B6PG9acG
bW+gIjSOe9agA/Rn6ohCxrVgJDEzujTQDW/+3qjf+t4AWcePWRd79oAk189V
p0uNQH27pNuLvhdqda5xFsw1Qk1fwPsFtT6ovVG6PTXfBKoRe4rnYgYgvy5i
t+pkMwjNKIT9MBiBh2TboWepbbAxoPV4cWACar49rv436xO8UWN0eC77FXr4
uHTFhz6Bb8yg3LmbX+Gcic5Fvr1dsKzvX98uPAmRvRcS3Py6YKaw6meOyxT0
HLZmKz3YDSN39PTP/voOOY6cJ1preyCFzMLCdWgaJkI/H2P/2QPWOuSBtoRp
OB8VdmqUtxf65gM9tIk/YEd7aInOqxc+2NQncYbMQHBMxUyeQB/UKxsstLLO
weEzBy1obfshMIqzKthhDvJfa2QtBPUDaeprmFbJHPxg0uLwyO6HypQwgWyr
ebiT72wtvNAPJfTNh4KfLMCCmPXmldsD0O0hcUyQewm0/jmr4hc+CKqp0aWr
ekugKrdW+TF7EGJbVvi6XZfA9kAn6V3TIBwTf/c18s0SDIRF/b1H/RnaBl38
V88sA+0nr+kY38/QaPA8qyvzF9isFcbwmg+ByoNXP9ZafsFurlyXSdchSBt8
rSS88Av+5fYwcA4cghseLW8u6q7A+mUmyaCCIVBK/NFB27sC79Q9vivTD0PK
jPxvTfpVMCorV5/PHQZGTQ2infwqiApEHpGpGYbrQaSgUItVGJNNdN/3cRiO
cx3d/fHpKjzWqYklrgwD/QHPfe6ENej786r5qO4IeMUVHUpxW4fLUXbVB2pH
gDz8Jqo+Zh38nWSfOHSMgJnUfx+/la6DXthKm+HwCEhVd9moU21AwnuFD1br
IzA8uezRkbQB2QyyF3KUR+Gw8p+S5boNMPa6UvONNAoV/rTrfFMb4N2f3DRr
MgqxrFyhLqqb4BpGTDVzGgUjbc2Ev62bEMi50mv/cBTKQvWGJRY3gbV71ehz
2iiIdh4SMeP5A2pfzhcKvhiFrfOnXiQ6/oGR5ZGfW29Hofi+X53Knz/wuTh/
H+nHKAj3B9GeFt0Cx/Ezkoy/RiFaJPLwbeMtODxF0E3fGgXX8qTu1odbkAxe
nIS9ZBAaq/zmqLANflEvJ2nUyED162pSq8U2bGex72YnkmGSQc5UxW8b3vIm
8yweJEOhUkrh9n/bUGemf1jMggwHAgN8kk7/hTe5N9wdPMggFq8mtXPrLzyz
2NHduUYGhpyZAZfMvxC7XzPzagAZPnTa6qrP/YWndtre3eFksN+nS/MhdAd2
rv3HE/OUDIaqv0o1cneANsXYvyuTDDKH8l1SO3fAM9No4+dzMtyoiHHWYKZC
R2mdB1nFZLhYf6H2uzAVWmcfQYMKMti1HeJJVaXCLxYCppVVZEDy9nvq01S4
/EsmRaGRDGrTn0XKL1ChYficv9x7Mkgsl/u736JCqxqfSap2MjAyeMp/zKBC
kuxShHY3GTb3moaFllGhVNmXUyl9ZJjllxrVfE+FBlmRI32DZOhSJD94MkuF
ZgeU1YfJZGjSqvpuvkOF1RnFCdnjZKg4mIC0HNR4dM/vPtNJMuSaeSdXSFDj
4Qk5nfZvZEixOrZ8QYsabZ7zMUr/IEO0vZzZPlNq1LjAF3XuJxkCLzBkfbKj
RkdHfgbvOTI43q6z0gqlxh3dVnqlJTKcjEh5OfOIGsuvHOIeWCaDUZzvrrTn
1MhUcY5wdoUM2qmWDhZV1NhyebWw/jcZ5LKVKuk6qfF7WHg99Rrl/l8xcbwZ
o+y/KFoisk4G1spvFy8tU2Muz/XmfRsUHhobGoXpabAwrxk3KHq5I02om5cG
yz+sOZVuUvjoD7h+V44GOTfDvI/8IUP/l1MftPVosFo9/GUTRbfMqEnPmtOg
3cArG6EtMlStsAY/c6TBN98sy09QdMHfmUHL6zTIWHOW5hJFpzG+V2WIpMEv
XnYhjhQdy/FvVGUKDcpd9/cmUvQdoaCvlwsp61dvc/+ixPeVOkMSqadBvsTu
vGiKdlfRetzTTYM3M4M8d1G0LZFzPnyKBgWWFTOdKOc9YrhgRFynQRKd9J0M
Sj4HjrU/m2OixYVRK/P/KPmrWD9fT99Hi4FSxoaNFH/EHO9YnFShxUvCcs+e
r5KB67L9i10GtHj12acnnv/3c9e/zcdP06LFtrTk5i8Kb5nfJpIv0WK4TWep
E+U+TunJ7UwE0eKtqeVH+YtkuDzoIajwiBbVY49wdc+TIfRasdb1XMr6Bbbb
A7NkSGL9faKuhhZDGjb4a2YoPBneij4+RYum2WV8EhRehsbe5iZv0GI/QxxL
7lcyLAbQvptgocMjk8/tmCm8CRVHbfsQ6HCn0l7Ob5gMPvuSPZMj6NCOt9p8
9AMZot6MRE2k0uHK2bCpSxTe00+IPJcvokMeD6k9o5R66Lj3fKx2kA7Rk53P
vZ5SH6vlxydk6TE9Sj9NpogMxLiNy/IH6DFhsF6wJ58MxxX07vlY0mNW07uD
jpT6vOXY9B/DTXrMdL58XzmNDD0futXkO+iRwewuf0wUGaYv8Jj7fKFHOf3U
Cae7ZPhLZ3updoUe844aWogGU/zUHf/XfB8D+spPc1tcp/jzfIHLx5MBjcq6
v0ado9RvMPNaDdsuDNvSvp2qQIbDgsc5GSR3YXxzcNG6JBnOVTxUNtfZhQJS
4Zq4n5LvrID7+PldyD5szvEPOxkmrGU/05fuwlv/NbKp/R6FeFWj6mNWjLjH
+1pd9ZtRUB62MdZzZ0Ti8vaLc8Wj0BHm0SN/kxHd2ePilvJGgWHw0U/GDEZs
9/WZ/54yCjcDvwo2zjKi+qKZoeCtUXBuD76lFbYbS+xcrtfpjgLBpVpPpJQJ
m2XtOzaLRuBzkkr9EhsLzlGb7c0PoLxnPfl7fSVZkDuqcCPiyjDYskrbb+qw
4GHB4d4zzsOUfmHfXxonFkw8YDs5fXQYvngykbjKWVDiqfPuJyLDMG04+Zpg
w4qZn6byQ5uGYH0x8dXNjL0YtMeVU3rXENzPCvpIw8+O/W6sBU23B4H30dd7
D59yon2nd92mcx9EnDQ50L3KjUpnt9//ftgN13Qy7FtD+bA5yj9Xwv8jGC5s
Bnh+FUCXPdZWf4vaIIRkcV5Aex/60DSN+t9rBuLL5LLAt/txJrlVMfJZA1xe
XwpuYRHFgchdbv/8rQPiVVeebxyiqKn+zTB2qg4YZ4byaflE8XtzZ0RmRx1k
Dzf2HxATxbdHGff9SakDct1jhXKCKLIGxufc1K4D87s6gxn2ohhvNK5Z6lsL
ahwhyjeLRfFBf3pW4041bMizkRWtxJB47AXhqX4lrD4VCFG3FcPWrqc/+ZQq
YWWvpISOvRgGJrpf+Je/EuZ/6Vw0vCCGzi/an00uvoGJaqdV29tiaJtczs+b
/gbazF6zRmaL4dw7ZwtN6jeQcukcTPwWwxALrpP7P1QAKb8gPSFBHMdO/lO8
EFsGwyL5zw6limNCf9QZ+pAyCEjIS1t5Jo4OcePyUlfL4HVIzhPLPHFU046V
umdRBmrW6UmsNeJ4oPNdbw9HGcjSP4oNHxfH/pioZ76JpcBjfzPYV0EC/xaE
xzbnlsASh6nDqQYJbPw2w0ecKYLBy2KfLr6XQHnemsWW4SKob96EoA4J/Kgi
LOTUWQSxAfn7c/sl8JdylXllURGoTDCPbcxIYNrOgs2sXxF4Fn88+5RTEpcC
rwa7MhbBjLnVmUlnSVxeyKhccHwJk9EOp7x3SaEwLdWjbcN88JxREFNhlsIL
EZZK35TyYc14Y26OTQpVR609xvjygYk2/u4FASn8t3qkkHbuBaj4N5Y5KEqh
Ka8VI0fCC7jtIsVpfkIKO/3aX5F+5gHPgdmP8s+kMJQnTy0oIxdMFvxMpgjS
mNs5WuGjmwNCqsLhjCRpVCDqtxZK58C8d1OD/EFp3BMsZL/GmQOPVtlI3mbS
aDbEPFk9mw3k7TylHXtpDGO23WJ8lg3ezCOc/Pek0V3ydGsuQzakyCL5yLA0
SrrvO5U//i/MOjFeKwuSQRkjwhdCUwbMpxnWvg2TQdLvnsnAsgxY+By8q/2e
DLq5X+PozcqAZfON1PGHMpiWWViffTcD1nRnmlhzZVAoRMJyyjgDaLg6eC58
kkGvboacjg/pwN/0T9U+UVmk8qi/vtj+jPI/4aWJaJDFpJ9nL3ldeQI/HI1z
dd/L4vwnFfPS008gOsPv2GK7LDYMOnPuxifQIzyYYtMni44RSfRzbE/AgT9Z
XWFaFkmLuXsfl6aCP6ugSxeLHCp6ebXZbKVAwbpwi6CNHF7QF+W3Tk0Gjk6p
B0ULcsjWdPayFXMi/F1QyW5bkUP1dtoqo7UEmOHQrZnckENb/a/ephMJ0GBt
PsNHJ4828wYzkW8S4Nqkn1EInzy+Wkk++sUlAXr/tPy1OCiPHMK/N342PoZE
uUtXfsXLY0vziQL2mEcgFPnqOIGggF2JwyoPjsfDi5eFjRtEBYxP5ttowXjQ
7ssn1IICupcJdLGpxsNJsVwhQxMFxF01Ee/Z4yG6Jn3awk4BD90WW/nYEwd/
FuOCPUIVsHt1P4OhbRwM2fgUZX1QwOs6Qed9vGIhSV6HjdNNEZO8KmM7g2LA
yqwztu6SIt6TS5ordY0Bjkvn2S96KeLE3bHpl0dj4P6Lexz/+Sui66lbAROC
MRAoO8R1JVoRK6W1zQ5URoOz9E3+9mJFvGPO2121dh9UxWvF7mwpYm4Vo86Z
O1HQJnBQ81ecEo6di2T80xUBn4RfSdElKmHhu4rV/uoI6Bfbx8f9RAm/9x3v
ac6OgHG5jU1CjhIWJ7lzTvhHwDqxuD6gSgmZA0N66MQjQOqM6BGar0r4jkEr
c/ZGOISmUjuxaygjs1dsdrfaXSAKNcQq9ytjal19+P3hUJgQlyD/GFJGRonT
tBztoXBPPlw+a0wZq7smAnKqQmGQaNrM90MZ1xZcFTeSQ8HPpvsP9ZYyZliO
ORnahIKt2VX1GTYVrD9+97j7UAgkRIak1RBUsOXCh+Lkb8HASpvpcz5UBe36
2yRKDwcCw8bbE0thKnjHM/vPkHwg/J0fVQuJUMF9N6Lj9+0NhIUh/qX0aBW8
xs6esdx3Gz6VxHl8SVDB/OmjeZ+db0O8Y4irfb4KnmcNmAmPuAU8DQ7WZ3tV
0MRT4WjdWAAIh+wn2UipYqy8Ie9Yvx+8vMYoNiqjiq8TTr28Wu8HB1yXdp2X
V0WD4tQRvhd+cNasscddRRX79taWZ932gyfcbpduEFXRqLPoXJGkH/C/eJmS
eEwVc3X6xiL8fYGrR2+jz1cV3R4HWtQqX4fdknYVlu9V8RCz679p3d5wkR9M
81tVsdKJoYCmwRvaWMTItB2q+I7dbvf1Ym+IXv1OX/5JFVcYID4s1htYW65Z
8Q6p4gXpZ/8cNfem8HV/ZXhWFSXPvpq79fEqpd+qUnPhUMN/5GiaqYa8QEmP
/5XfWTX0LjF84CHnCaXiF/7QOKgh3sp95cHiCdpMlcYPHNXQhGlD+N6iB+gP
WH/JclPDyeo7d9hfe8Cpq0ns3VfVMP7sTqHLIQ8Iyub1UQhXw9qtx/sY3C7D
JxYenfGXauiZfvVCcO1F8CZzNJpSqWNqEFOhS4kbtDTb1b6gUceWH9cmGZ66
gfCrnNdM9Oro+jqYtjrCDdqCiAVtu9Xx8o7T6zNn3UBM1PGxKac6/hd1XvX2
bjfocip2M5VSxzpCvLeaiyuo/DBnNj2ijpb3RrfWZV1g4Ve0lUmSOr6+Uqde
MeUII4MZp56mqKOv5yHbhV5HaKutOL30RB2Pqy2LajU5QlbEF5vkDHU0sPjt
uJzpCLaCGud+vFDHPy9cLXjOO8I7/WHXe7XquO1ppbz7y3lIjZO90TqhjrN9
n68ZTzuAsXJziomiBkaWvzY5AefAmuHwyU/KGvilzt6QS+wcXBxtZTmtpoFu
+76wLNGdgwf3O4OdtTRw2W5vznbbWej/3usadFADCaJNQhQSwTn9q1q5lQau
DYz+Ub9hB6Hs1O0igRpY0/xr/GK7LdT90v2z9kEDbxdL6qxVnYaMjteOJ7o0
sOSUUt6N7NMQlq3e9rJHA79+3DRgiT0NJqflk10GNbD861LFFZfT0FsloNUz
roEhdL/redlPw0zIhvfLFQ00FDFk/HbpFPCwvZ5xFtBEZWbjY3uUrcBTQW2o
y0UTW1QTfcSnLeH6msCmvbsmjnt0HbzTZwm3GmgF5i9qYsHmsvjvBku4b91n
w+Slidq/eCdY0ywhN+zGZ/0ATVSkSnbjs7KEiZG6wdIHmhh6OHfQp9kCTsWY
DTx+rYnHJLfufik/Dnrzzr02uwlo7x2vRow8CjzVxpk1ewjYY+div3r5KMxH
yHntZyXgq5HDDu0WRyFNdHHPFAcB+Vv8774VPAp/T9408BIiYPO08Upn0RF4
Wx1XEq5MQP+AGGuvMTM4eK8uttSKgMfpj9YQjpnCIQm+oyyZBPxoVbTnvIcx
lM29E3XOImC/Fm+VoLUxSLy+tlqVQ0Cnahr/H/rGQGf68Zl7PgHbUXeqls8Y
Gq6ELzeWEdDzH/Gsw++M4ED1SmLAewIWPDSxHBA1AoJl18T3WQLGXrtOe2Ha
EHIEg14fWCBgbqGWoWufIXBPKUQ/XiJgXM9Agk+DIaz4RWoarBJw8pW7ZtMT
Qyh5CpFpOwQcM8wqU7Q0BOUfhYpWHFqYlxXYIVRvADLBUTcatLQweX0+iCFX
H2p0s+mPELUwZJ88b8pjfTi+9ja+j6SFYeVOz+GOPtzw/F0wfVAL5bHDo/6c
PrTYOYyzHtFCITJnaQKPPrjrEEzPOGjhAdVO64h7ByFveVxwJVILqe0C2Rlu
Ici56LyVHNLCWiOGdgkRPfhH7NjmnREt/DzP06RFrwcrY46aE2QtPJf/ytpp
hgR1ttH5aV8p8+ETf2jLSWB5fCyRd04LHb5fb3A3I4G/7l2v3VTamHpk7Xjh
LV1oYe8SnZPURsXcHZsHizqg+HHKzkxGGxtpdA3vD+pAfPRmYp6cNjL5usim
1euA3S4JVldlbXzxhvSYPk4HFrZ8N8na2hjHXNc+qKYDPNNCPZ/MtDEzXrc0
KEAbXOrcw8quUuZfS4+b8mvBvMeM3yEfbexpvWbLR6MFN/ZdvtTvq427uWjG
tmYIEHXriuX6TW2cdMh5xVRLgCKirwgpXBt/UHNuERwJsFVxp6YxRRvb3v5c
qCvShPhXaSvdjdr4kJadZvWsBgjZi0w7NVP2j6apDTDRgGzWzOGVFm3UnVb9
zKmpAW88sht4PmjjxavmU6HMGjAqXxBrO6iNGV3jIpY16iCTW6kwMauN1KGl
DFn71eFteq/zErcObogwuMeuqMKXI6L2vnw6mMjYLPZpQhWoNjxs/gjo4MvX
+0miXaqgb7HrGL2IDjLnxBqvFapCMzVRi19OB19k+Sx4uatCh+Oz3QcP6GDx
cxXp6C8qMCRx8WWsqw4WsISsT1Yqw0ruzpryax3MEHqj5cigAN9OGaXfq9RB
6fyPSTdm5WGQLubw12od7FlmL8vplodqB4HkhHodFL1n1mjyTB5C+TSJ2606
qH1VZTFXRx7YIi/eahvRQdeWB8KV3nKg4NZH5UJDRN14F4+43zIgzC2UV0dH
RLLvxylfsgywNTpa8O0i4oSFUczV9zLwS3gxo30PEfuFM4RykmWgqp/JQI2b
iCW+pdJMIAOHjfDujjQRqbRpbhXGSIOTZP7ulKNE1Nt++f2LjhQEvDt3Ueo4
EXst1sqixaUg1oWjvcSSiBmnFquPsUhBTbZ/dPtpIrayRe/nHpcELqnDe7fP
E3HARZmce08SmqWmuBx8iSi3OnLnM1kC5GT2i0g9I1Ler6urnUnigC3dwSUZ
RMzyN5DluysOp9zDxw9kEZHZxJ/a96o43MmdyzydR8TO1PyTl03FYUSmRvJe
KRFt/g28fHBbDB7I2sjPvqfkW2PRdctVDJbkHhJKFokoOWyX+dpIFAY78BDn
LyJmCrjc9yeIQr3n/Amf30Qc7g5JNJUShQclJlcJm0Q0YFcb52cQBTkiVUEV
rS4KtzRUXGoWAUcTD9FGHl0UVDzn+8lEBHrdjJl7SbrIxXzweGiFMLzJ+jP+
O1IXpZgrCjfMBIFg4LNmel8Xz8cVVDWqCUL5+Cxzeowu/ghLJ2fxC0KJMFnL
NF4XQ9wGeAu+C0BBUn1MWqouLqes7u4IE4D06Ls6xi91UdfMYBsa+eGez964
pB5dbPB+c/rycT5g5IzMmevTxQLz+7zLOnwQXkxVoz+oi9O+D69Fi/NB2PzS
t9kRXQyuuFn+d5UXAt17SQe/6eKk8Yj1QBoveNslT/9Y18XW3hxuk2UesDUU
R11hEmYal/gVP+eG7V5G1kYREqrZK3evxHFDusv8sKk4CVGnv+voLW74Fl7p
ZytDwi+7T1xCC27wbjV/5a9GQlkGzwrJLS6IOnZL+I0RCe9a3LlEtuKCKuu+
LY0rJMrPwftcAB8nnP1R1VZzlYRTfWFRpvScQBWQnmToQ8JLWYEDisscYJR6
SeOkPwkFafIiFTs4oHuU+vK1OyS8ue6suzeEA2YclYaLE0mUftqzymyeHQQ9
IiqV6knI4lISIt/PBg92XDXvN5Cw7WPn9NlmNqCJNyr+3kQ5T4EV47MKNpip
oM9LbyXhP5LniEcT2aCKKiyJo4eEqgLzi6dt2MD2UbDf6hQJ1RdpmQj1eyGp
2l+zbo8e6vB/Pry5wALMx2yKBVj1UOF8kMNQDwsEf9FW9GPTw73N/cW9r1nA
nX5dQoVbD/fE1aTzBrOAlrkvV6awHh62U2PtZWeB/gnvX3dV9fBQ02cXDiIz
cDNdLj56Wg87KrhsaZ8yQZbB7YBFGz0Mi1Ts5Q5hArXbDwwe2umhU4en6yEX
Jji2WNQ3eF4Pf3TanPmjyATh/b83nC7rYc+JPYfe1u+G9cwg/YAQPdyt23A5
5icjDOk+7MnJ10Np6fm3N612gfv1rCcmL/VQoo9oukHaBasvy11mi/SwLN/N
OVZiF3CIDa6pVuhhgUg9mYnSNJsx7hOqrdfDLd1vLEqPGKCmN8e5p08Pky5J
/8fzmR5MWd8o+g7qYdb+1v2iDfQwaNy6yjesh3kb7dcM8ulhpepn5LkveuhN
9TXp4216UMxQKfwxo4d/hx2kaSXooWbooG/0HMWvdsfgNhZKPK4ToLxIiR+g
sidvjQ5cI653+fzWww9kvVP57XSwUh+ewruuh8GWDd8+lNNB6GaiU9WmHiqR
U012p9MBm0aewtltPRyckHWzjaKDNI+q3zs7eij186t0gw8d/A8yFFLb
          "]]}, Annotation[#, "Charting`Private`Tag$135473#3"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0, 30}, {0., 0.5936472400792799}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
       RowBox[{"1", ",", 
         RowBox[{"296", "\:041c\:044d\:0412"}]}], 
       RowBox[{"2", ",", 
         RowBox[{"224", "  ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"7", ",", 
         RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), Editable -> True, 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.24561133333333335`, 0.3378526666666667, 
                    0.4731986666666667], FrameTicks -> None, PlotRangePadding -> 
                    None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.368417, 0.506779, 0.709798]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.587148, 0.40736066666666665`, 0.09470066666666668], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.880722, 0.611041, 0.142051]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.37345400000000006`, 0.461046, 0.12992333333333334`], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.560181, 0.691569, 0.194885]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{
               TagBox[#, HoldForm], ",", 
               TagBox[#2, HoldForm], ",", 
               TagBox[#3, HoldForm]}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], 
     TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
 CellChangeTimes->{{3.8482516697852106`*^9, 
  3.848251726776382*^9}},ExpressionUUID->"2a3471ad-d9f2-4cae-b572-\
f7864d7b08db"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVxXk81HkfAPBhXU81RckxDePIMTKPmV9Sj/D7qCXlFvWjY1tHM3IkEbvO
qNxFQs9qHBvbxuYqSaXvl5TySJJWjjZDDV6x7iaKeZ7nj/frret70iNAlkaj
+f7P/9e7tHy9SLvZprBHPudszRrcoMRmhQiKyQ4yNXexcwg1R1eVGQuqSfsn
jB6/r0Mo1+LDYfrFBhLvu6XaaSRCT7mn+AoCRO7sIr12eIpQ7EbpPWnJY7Le
qzvv10QRyr9sZ/Mtq400G/D/c80tEXqW2e2wwH9J6ovTDorkh9H0uTWj0RWv
SGEQ86ojMYziHlezJSWvSfWZqrf1R4dRPnyumsvqJVd9e+2d3jCMnlsmN07w
35NzKtqHtwaOoEqrDfHbqofI4IKaa8K8ETQz4F8cUSEixczd7xRbRlA8Q2l4
tmSEHDQSHB1kfEAFBS78qaxRstW67tj5jg+oPWfg1Bh/iswNtA/oNROj1Kv5
z3N50+TaqbfltofFyFRA+mytniZTIoLElaliFK6YExNeMUPGJmTzE0VitGJn
/mi6ZI70z+sPZOeOIo3HP++ezJKQW5tDQ2M+j6F9TYouYr6U7NEoiGI1fUI8
qe+C2rSUHG8UsuwnP6FMnR869a1osOJT1hasNYEifO9HerbSwERYq34/bgJ9
Lw5rre+RgSTdjgZPm0k0PPnux+iF74BjIvMlDf2NdJYbri1bKEGrcJvV0tA0
ekG3+IfcEWXQri5+6D8yh3ZdssM3XDXg7slFGe2kRRRgtkTn0XWg4QTnZJGc
FDmzA2bU9myGvODwj14JsriuJy7y+Q5jaJ7NrnfZK493rjeplkswhRvEzDe6
qxLmf70sLKe40HzJ5m2N/Wp88uno1mpnAjoedL6xW70Wp/soGCwHm0O7m1t5
13ll7NcWc5wnsADDyv6wqAkV3Kyo6R7kvQOYVw4pKDttwDyVxPzxCEuY8o7r
zXiuio/NWZu6BFvBzhTcmMhRw6VFT5iSLBsIyCnrparV8e2LlgPdHgDGJglI
z0QTR9y3dhM62YKvScy9gAwGRu3ls2mHdkGMosZkxiomDtzzr6ZAajfQnf4k
toRp4Wu/8+qDTnwPMSHb7tya08Y5c01nw6LsoOXiE6nyDh0srog8Iwi3h2SG
TFXKuA5utb98NSlpD9xWpS9N3dTFMq79w5cSHaCo5WbnlSN6mGZ7V6bkp73Q
22CbWkfXx6nqEufulH0Qt6nifXOHPg7z8WuRJDuCiLiO6AmbseisuT+Z5wR3
7gVbO4IBVs39d39aqTO8Ps8rkVkxwL8pm/zUVugCVQopGfNVhrg5nGVnVOkK
Xxb+UO0LNcJFOiVMa083kF71M1zSNcZNsUs0QZcb7E/eqHXllTHWdVT8pn/Q
HdQGC2pZ2Wx85yU7o6/HHfLGKjpHbU1w5tMVrs4RD0j2u5hWKrsF554eP3Fs
0AM4l2VfFNzdgmM3aq/T894PBkrhCwp8U3yTLd8eMbQf0idqH/ANOVhhXkaz
+agn3DqXtEq+j4NvcGvji0Y9wTpDX5L7yz8x27fCZTnECxh96FkhZYYH9jbW
eX3yAp+QMyrTclzcff1nDnn6APxgEElfHcDFX267W+nNHgDb7Q+dWx9xsfRe
eP2F0IPQPpFIu6/Gw45ce7vYhYOQ3sdJMj7Dw21HzAKDTlPA1tF32PaSh9f7
CR4IIynYlOg01tLFw0cFpfSuKArWDUWmunXz8OfwDXXmsRQsFD97FvSGhzen
SpaWz1GAWaF7fx3g4cQ6lJmdT8EBVuO+dWM8bKnoVlPfSEGytqvzOI3AF9ak
yY49oCAqPnryjCyBX6m0eDIeURD4V2mWnByBBUzzxfgWClyL5l+wFAlcwNPY
5fAfChjav7gcoBN4/tDQ6/5BCmq1Pro+1iQw/KhpSH9PQVnc2mm3TQTOOO4R
TYooKHi3PfsvJoH1TrUyyz5SECtM71pkEdj9wu8BIX9T4KDFdecaEvhahqih
eJoCyzjvmSYjAo9lM1Z1z1LAeZeU48gmcGJhZpWFhAJV4ZtXx00J3FHyhBa4
SIHi8sqpeQ6B1X9b8Sj8SsHiYeP1SWYE9q3cXv5imYJPD93r1vEIXFUTJpFK
KXjPjPEQEgT+L5kb/40=
          "]]}, Annotation[#, "Charting`Private`Tag$135563#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVlWk8lGsDh81EFFP2piwJyZYtZhDdd4RKyP5o0bFlbCdLgyNZSiRLodKi
4kRKi+2gcrhvS6S0SSulHD0zljJjX8fb++H/u75e16f/Bt8jLgFUISGhG7/3
f6qeXbx5XblpW5LILkmlUG1cJ6a1Pox1A2x94z0eOCKBm2IfFGuyysHkutnU
nixRnMcYOEDLrgM6m0aKd8YL4zaDiMDlLAQm8w5QWvdTcbzc0sOlwhZQedGA
a42E8MVcm20LWe0gTmvYKWxEgMpXZ7bMxD0H87XbfANfLKCnmV07JwNfAY9N
ztw06jzipUhwYsveAL+SvNM9MbPoeEu51nThW+Dn0EdtWT+DVlJdQ9n574Dt
CSfxNN4UuginHoxnfQCKNIrKfP8kUku8zI9I+QQMewoK7vEnUEWDhTEvrge8
NoNRh+gTyGKhL/rPiC9gJoiy56HrOOowP/loJLAPxKspBFOLxtBdC5kEk/Jv
IC42mSEq4CN+j/+No2XfQW956CE+i49Mj9Xi6pJ+cPDJ9g7mNx5KWCfWP1b4
H/D5yeVk+fJQ6yOvZUYFA8BZLehd+ZdRtNLrrnpE/g9Qk1TjYi02ivLzHQNH
szjAPKniADXrJ/rKKDytl84F1+bcNP4aGEHq7/l3wlIGgcXATx575wgKZls/
v5c4BIpFL5+ZrxtGFbIXRobjhoH5qsPhmkbDaKqapOlEjwDpw2nDRrVDyNLV
VD844ic4I2z2IcB6CD3L6YngBo6Cao+EU+3Rg+j0pYsdeYY8UMMLKepVGES6
LLBvSzkPTApmXP5r56JXTO5Qly4ftPudcQmN46JI0ZxjkWV8MBPxb6fUFi6S
+2AmIa05Buoy3byi+Rz08FZ/QWXJGLjUliG3o4aD9kdnbHZWGwf2xfq9Ogkc
JLAxbuQVjoPaPZL5A/YcVCT3xfGc8gTw2rhQoq3MQTt+nOrTL5gAIZ+0CTRB
Iu4/euGv1k6Cr3bH2axXJMpI+SB0JH8SJKr4vRu9TyI9t6ScVXJToG8mm6J2
jkRdalqqD3KnAFdjqL+LTSL2+JsqB8lpsPURO+atN4noLXHWP7OmQW7X9Nn5
3SSqz1XrzhSfAZEHEs6rm5PI27fTXzd9BoTM9Dtq65KIYsSefL58FlQmXn48
pEKiYopyakjKLHjG1PlkQyeR3Zs2eXHqHDjEe3dGSZpEQ4VHSssS54Cexsdg
91Ukyg6nm+5enAP0LGp5lwSJDGHT08G4eaAcbbwynkai7tXBXukz86CnMSrH
TJJEsX3SQ5rRC6C0cN/NCVkSKZTXxz0dXwDREtff5CuQqDHBX5wVsQiaY6I7
V6mTyMeRViA6ughirOqdbPVIJKxcq1saKgDXnVKldH/3lP70brAdEoBcHfOq
B3Yk2t0g6kgGLoEw2HG/weO3z5LvpDxvCSRvK2U3skiUqXLopZqFENR1S74a
Ek+ipCYJVYskIVjZUyBbnUOio76P2W6tQtDyiB4+eZtErGWsjlAxCnzoW0K8
wCQ6UCyndGoPBWpkrz2c9JlEO8jw1ppuCsxodXvMleIg0zRl+ks6Far97XLn
hD4H6Wp2hpAHqJB/aNkuJ0cOkgneJLPmBxV6StRV7D3LQf0/v/jETi6DZ3yw
U7MSF73Pzqg5ZyYMI+pTbtdbc9EzfbMVd44LwxkRk7bzwVxUFXG+4pOICNzH
qVlqfcxFyZO7l8zll8MwURvCzn8QqSzWFSwyxODY3W49+vshJHs9gCd3TAy+
nY8aa18+jMSAzA49JAa7hk+EjDOH0WjSn8Pedivg552B2+5dHUaNwhvNsedK
6C5hcNGENYIOSuR+OBErATffCvC8Jv0LvaAxVggflITvR5SDZF7wUJe99KWX
8ZJw2EyJY8rloY/pvzQuF0jCPzaP7wpfxkcDIqU79Holodt9nCltzkcLi2uS
iP1SUFjgXyR/m4+0f81O3fOShpU70upqU8fQ6ZcNA+4esnCw4e6VTvsJZHXW
Bpc60WHBars0U+40CtCfoxnSVGBbq3fsbfkl5KAVwJe3U4fGr0TtOo4uw1Xd
x9kdpprw3ybzOwsKonirtHa5cKIu5D5J3ZUjJY4D53OvlRAGMPyMeOW9iVX4
SBtnS7mDEbzyLfFS1G4pfGbf8o2LocZw/9y3d3XbZbBf+7HDhiwGHK11jchY
I4ebRNc6h3iZQverX8dUBuSxoVTSxcGj5rBz7erQLx/o+I9xS13HUAu4syjI
SqtsHS66/kRxOmsbvNsTIFlwUxFXZ5v3dLlAKGHp3fo6TxkffWy599qe7TCb
ioN3G6pg9KxkLH2/FdSt3TAKdDfgIDuzhiDCGo4r0lWPy6vigtuGNSHBO+Au
177XDrJqOGe8ITk8xgZeuFocmUhTx2QZO5oVaQtX5AuaZybVcatt7qUTJ+wg
zVfrrMjYRkxx+tx/NmknZH7jrtj3RQMLba+lFP61C3qG34pZ3boJn14z7dCV
thuKvjb2IRo1cfg+v+bpk/awr99zlluqhb8nG/uDC3ug7RN7Gq1EG8vmXf6c
XuQA/35kKZt7TQffktT+q/2qI9Twae3wPqWLmyLX22y66wTNPirMNyZtxtdV
ChUt3fZCNlWs53CIHm6InxNivd4LS7eN3T/irI832IsuqHk6Q5MSD8GpjQb4
n1daGZ+6neGdFMHC9GUDnNkmMFA56ALJ59mPttANcV7UYPAfvS6wNjTIQSbb
8PcfK69W9XKFyfIt+25SjPAdLZFnR7+5QhlNEY3FBCO8fIKytsnbDZrn5Tyd
GzfCpQaVCdc5blDz8HKt5sgtWMu3zHExzB1KWs1RzUe34J5dj6rch91hVozp
P+5+xrjrZtxmEOUBu2QPqW39boxnqp0tVMc8YJn466BWDxO89DCyJvVPT3hc
HGsJOkywvYGtTfykJ6RHXSql2DFw+0H9oJAoAtoZ1y/crmdgaT9W/TU2Af+W
Sfxa2cDA3qwi2usYAgrGrPBjxMBTkTJVxvEErKl8drKzhYHVT0/PLaYQUFX/
80recwZOqkKZ5y4ScF5rls7sZWBz0b0VNY8IWLGeafJkgYFTJdKp3HoCSizN
yb8UMPAbqWa3dY0EDPzaOPNeiIlZisazCc0EVLpm+y9XmInzDelWO58TMGOd
h7UEjYkn9n97+7mXgAFybGdXJSaGPms1aH0EbJow3XJgPRNnHHaJBd8JqNC9
IBuwgYlVI1oVi38QsCs35WP0RiZ2Tr0dEPaLgFDy/KErm5m4ION73Q0eAa+M
em6/qc/E3HPrVnaNEXDqpYLaPUMmTrqa+YAxTcD7WTfJBhMm7ix8IhQ0S8AV
YYFP25hMvOaWwOXqPAH99+iUvTJjYt+7zJIXiwRs1BnN+LiViR9UhE8vLRFw
nXh12HdLJv4ffCj58A==
          "]]}, Annotation[#, "Charting`Private`Tag$135563#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVVnk0FPoXt5MlIsLzJCRKmMjO95shopAlY8mLkpFkiUJiRCIG8bJkTaGQ
JRGJ71cqS1J5Xj2pRDJj383Yf/P745577rn33OVzP+eeu8fT386Lg42NrZYl
/9fyKRsP8mVbjZuebfut63AAP+dT2e1HLgB/WlXzhRqJ4NbQyofK5Cqwk29f
zAN+AZyuPeImlPwc/H3ZMOMqjRe/1Qj05iEj8NAgfp1Sx40jxLcatgrbwOBI
z2YdLxfOSDMzXqe2A/3oTFrsEw5cJZzUxgx/B3oKfeW5qey4I6nXYsn7A4jf
xsxGGWx4NlaQFlr2CYwIJxwOid5C19uqVBiF/wAH7Lh6nG8T8XPYXwzJ/Bdc
kkzYa9OwjjLgcuUC9QtI88+Qt7m9hhSisucCY/tBf0+L7tfQVVTdbKg1Gz4A
EktWic+iVpDh+uCVS4HfAfNIdF90DhN16sc0TnoPAvWqZbHkTgYqNxSLPFz1
E3CacdoW8TLQ3MC5guCyIeD1Y0hqzH4Z6V6rx7XFw8Cuy1Knv2IJRUrzDc8X
/gK2G+/X9u5YQq8bnTkP5Y4AbN8cXBu1iPidyxUDM3+DmSaVU1TGAsrMtPae
odJAxp7RlPmtefRDuzBeLYEO/D6f1FFImUeKn+ce+8WOgTVXxalhxXlUvfPu
5ET4BNimXWQu7zmHlmtHhQ5cmQSnDagL7/jmkJG9rvqFwClAYCwcdHw2i7ru
DATSvWeAUl9Mx1vJWRSfldGZTpgF6QNSA8SiGaRKBi6aVbPgyaJYB0V6BgXx
3rkWVDYHWm8LyvfvnkbiX/QERZXnQfFnCz+NiinUUDKcW1M8D+zPGajEGk+h
TTOtltnCBXApsi+GfnkS3Rf/bp0quwg8KX0BvhKTyPT3zUH13EUwGf3Sqqd5
AiXGfmHzz1wCCVxh9OPSE0jNgXJnu/gyKJG6vb7ZM456FVTkK9OWAZdw8/zL
W+NIsi2cOEVlgEIHZ6knXOOoKU2hL0mACQZTijySO8aQu2f3OdUEJhCrmLbs
TxlD7IdClt7xrADr/FV9X5cx9JBdNs43dgUMRWTlKCiPIfNPbyUEOFaBRJBr
7S8mHY0X+peWRa2CCtu56ORuOiLA1o6x8DXw9MsVOd0IOuoTvuCcwFwDdwYV
Q7lIdBQ6KDqufGUd+K6/8jylTUd/VDWFdyysg1sR+P2uXXTUEnlOgBy4AXbl
hLdprtKQh7VQLu/MBogheZEyBmmIS7ZetfTiJmA+epmt2k5DpVPuzUfHN4Fs
Q+b1kWoasmzmtR713gIH6oz6KnJpiLDluSQxuwXO3qZ2cybQUJLcXz0Khmxw
bOJiY+FVGqK0CsobUtjgvuek6gAyDQV7vghxeM0G+SUUqjxcaYjMSe68yMcO
jSPtqJ62NOT2UPzPm8fZYWVF0bSnOQ3ZmrUF5KWyQ1cGVdse0pDpaMDruj52
uCfnTYSiAQ3p3pKV7JHkgOfFbt7o0KEhVeVu31E3DtiVVvGIoE1Dcp1haLOQ
Ay7zp43asWyxC/vEdv3mgG8iQlt369IQj8C/59VVOGGGWaFpEivfavmNF+Z+
nNCX8GsliVVv+rjG9jM1nLCI/GlYgtXP8NR3j9AlTgiZpkG7bWjoc3JiXaoe
F2y76hGXS6KhLnW9bY+vc0H8mOkZe5aGWj6OurW2ckEPL6uK9/409DTw7+p+
bm4oBOU8/a/TUImoCdf8MW7oyqMycCaJhu7VzjjxJ3NDxtUanM3CN3rJcktf
ggfyvDyz1opZ+GUw7exdeGBazHeZoj4WfjolJb75PPBLV7ph+RgLrzB261wl
XmgnuDEpw9q3qXTV/WcXeGHRgKxtqDod6Ta5LXVX8kIFnx+2wxZ0JLfxPHdD
mw+2hJlqdEXS0c58r1nxa3zwgaNPimEOHfEBMVM1xAc5me/iSxroaIZyacLd
fBu8+KPB/Pgyi09ce/WxEz+8e7dh3CFiDD0t7qX+l8MPlcGNbmbBGCo5Shma
HeSHkgR54qXXYyg5fiB+D1kApsu73G4WHkenBdO+3AgVhJkhRsToqnFk+wQc
yHkpCPkyi0tM+8eRqfVUZC2bEHyAXrxo4pxAqqkWSiPxQnB74+TEc5cJtC62
FWyWvR1qxDhwpolMovdC2tu4TotAYz1JCZfsKdRrJZrVEyECuc7TzRM7p9B/
CdNK2bki0HxGKFhzdQqNcJeaqn0TgRYf71YOuU2j9Y1dFJLrDsjHFnslbt8M
2j+9slzhLAr/zNQMsCSz7lNP84jjqZ1wu95ukrbWPDJJMcOlNpJQdfk/hqbB
MqJYPnvce0kS8gv7vGp0W0Yt3ArpG1RJqDVjm+EcuYz0I9jO23dLQqe35+xH
W5eRpk+TwJaFFEyTeql80JKBFIkEp1Mm0lDddcvT4C8m4mHITHMdloFZXnpK
37NXkZf6qhBBSA4uBOgc8zXfQidUvOYkzBXhsWftvksS3Php3/WQTl1laKDl
te9DFD82EN1fxRWlCoOy3tFlT4hg77W0vGKSBmxTXSp/5ymG/d/SNKtOHIKr
x2pcP9pJ4NsuPHs3LmrBSi+t4OgUKXy2/dp5AlkbZrX9jD5cIINbeaVO+jrr
wrDfdRrWpbsxYQclYyxYH4bccyO6R+zBZxaMVK0vGsK/Yka/5Qoo4Pv5b2QY
VGO4UtrwUREp4tpk/YFeOwjlig0DFf2UcPALI9u840fgyokM4x1syhh1Fc8n
uJpAkkD9w4l6FexjrtfsQyLCWRheI2Z3AOc+ItT5XjCFDlFqCVI7DuI7C83R
AVfN4EDT2UWXTjU8WhZyhRx0FJ584k/IPKSBXx9Ny7pxwxwONqj2nxMlYHab
r8MpFAv4h7ae0j+/CJjtSD17YdgxWCY6K0mtOYTjdzFO9N6yhHF/VL7fd0cT
B7icfcWIsYKpBammGp5aeCha6xy4exzaymhRZcwO453p2V8T7p+Aa2c2HY0U
tXGJyP6w9hxrqDKspVa8qI1bg3ab7Su3gQTfs2rzn3VwvlyhjJGDLYtfzvrB
Zbq4OWKVjfzRFsprRJ7hCdfDe6x41xWcTkIlM6oRxVUfP/ugktjfdxKaFlDU
JNQMcNLbTQ2503Yw1yqxPlPUEKdfHrtw5psdHI7jWVKmG7L+GVlheWd7SD0y
UF7faIQfq3B3Bf+0h3HB4uKaecaYZ5FdqtXdARYtJPs+CQS4VKMmMp/mADva
RTmFVCFW8Syz3vBzhDxq+vnGeRAPHGt86jjhCHt/fy6j8RzBvQ/CD4LLp2AP
X3pAYtgRzKw9aSg/fwounb7PKBo5grcaguriLjlBEc4bHpUnTLCVxlGziCUn
+MGjaXs9MsHtp9V9fC+TYEu61MyB/UQsepbclBdCgveiS3x5VYnYnXxf6ONV
EnxZaTA2fJCIl4PEnmpFsPx8kbRsAhErxjNWN2JJkEY9PcurR8SUpygpNYME
owrcNUfMiVif17a6rpEE14L3XM/zIuI4wQQOehMJ6tq5Sod5E/GnHa8cpFtI
sCsrs8HBh4jJMlorka9IkFkmwRTwI+JMgqSJxTsSPDikEhMeTMSLrj//+fqN
BHNrIjqdYogYekgpCQ2SoANqv6J5k4gTz9uFgiES3Osuulf4FhHLB76Wefib
BFvvFce+vU3EJ+MeeflNk2CPPLI5nEbEuYlDzwtmSZDSzc69428ipqdK8/fO
kyAqMGmavMuaJyepUptBgjbCLfsfZhNxd+EbNp8VVrwd81dUDhHvKtm0y1kj
QTNBjXzXPCL2LNcpfr9BgioiXs46BURcWR3A2NoiwU5CprjYfSL+Hwe+h6U=

          "]]}, Annotation[#, "Charting`Private`Tag$135563#3"]& ]}}, {}}, {
    DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     Ticks -> {Automatic, Quiet[
        Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& }, 
     AxesOrigin -> {0, -39.25839490778487}, FrameTicks -> {{Quiet[
         Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "ClippingRange" -> {{{2.040816326530612*^-6, 
        99.99999795918367}, {-39.25839490778487, -0.525265491627573}}, {{
        2.040816326530612*^-6, 
        99.99999795918367}, {-39.25839490778487, -0.525265491627573}}}}, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, 
     CoordinatesToolOptions -> {"DisplayFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& )}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, PlotRange -> {{0, 100}, {-39.25839490778487, 0.}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
       RowBox[{"1", ",", 
         RowBox[{"296", "\:041c\:044d\:0412"}]}], 
       RowBox[{"2", ",", 
         RowBox[{"224", "  ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"7", ",", 
         RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), Editable -> True, 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.24561133333333335`, 0.3378526666666667, 
                    0.4731986666666667], FrameTicks -> None, PlotRangePadding -> 
                    None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.368417, 0.506779, 0.709798]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.587148, 0.40736066666666665`, 0.09470066666666668], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.880722, 0.611041, 0.142051]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.37345400000000006`, 0.461046, 0.12992333333333334`], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.560181, 0.691569, 0.194885]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{
               TagBox[#, HoldForm], ",", 
               TagBox[#2, HoldForm], ",", 
               TagBox[#3, HoldForm]}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], 
     TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
 CellChangeTimes->{{3.84825173726093*^9, 3.848251737328946*^9}},
 CellLabel->"",ExpressionUUID->"a69340c8-3d55-4b01-a082-5e602758e073"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Psi1", "[", 
  RowBox[{"r", ",", "q", ",", "k"}], "]"}]], "Input",
 CellChangeTimes->{{3.868592822275166*^9, 3.868592828204987*^9}},
 CellLabel->"In[24]:=",ExpressionUUID->"c1f60bdf-85aa-40a0-b042-625e18a6bd55"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SqrtBox["2"], " ", 
   RowBox[{"(", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "k"}], " ", "r"}]], "-", 
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}], 
  SqrtBox[
   FractionBox[
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"k", "-", "q"}], ")"}], "2"], 
    RowBox[{"k", " ", "q", " ", 
     RowBox[{"(", 
      RowBox[{"k", "+", "q"}], ")"}]}]]]]], "Output",
 CellChangeTimes->{3.8685928291465673`*^9, 3.869626002847086*^9},
 CellLabel->"Out[24]=",ExpressionUUID->"81848ac6-4afc-4119-a924-06272c3ec87f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{"\:0424\:0443\:0440\:044c\:0435", "-", 
    RowBox[{
    "\:043f\:0440\:0435\:043e\:0431\:0440\:0430\:0437\:043e\:0432\:0430\:043d\
\:0438\:0435", " ", 
     "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\
\:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}]}], "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"Psi2", "[", 
     RowBox[{"k_", ",", "q_", ",", "p_"}], "]"}], ":=", 
    RowBox[{"Simplify", "[", 
     RowBox[{
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"4", " ", "\[Pi]"}]], "p"], 
       RowBox[{"Integrate", "[", 
        RowBox[{
         RowBox[{
          RowBox[{"Psi1", "[", 
           RowBox[{"r", ",", "q", ",", "k"}], "]"}], " ", 
          RowBox[{"Sin", "[", 
           RowBox[{"p", " ", "r"}], "]"}]}], ",", 
         RowBox[{"{", 
          RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}], ",", 
      RowBox[{"Assumptions", "\[Rule]", 
       RowBox[{
        RowBox[{
         RowBox[{"Re", "[", "k", "]"}], ">", 
         RowBox[{"Im", "[", "p", "]"}]}], "&&", 
        RowBox[{
         RowBox[{"Re", "[", "q", "]"}], ">", 
         RowBox[{"Im", "[", "p", "]"}]}]}]}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Print", "[", 
    RowBox[{"Psi2", "[", 
     RowBox[{"k", ",", "q", ",", "p"}], "]"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, {
   3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 
   3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, {
   3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, {
   3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 
   3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, {
   3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 
   3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, {
   3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 
   3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, {
   3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 
   3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 
   3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, {
   3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 
   3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, {
   3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 
   3.8429761802928667`*^9}},
 CellLabel->"In[25]:=",ExpressionUUID->"28022c76-1dc5-462f-aaaa-deee655910d7"],

Cell[BoxData[
 TemplateBox[{
   FractionBox[
    RowBox[{"2", " ", 
      SqrtBox[
       RowBox[{"2", " ", "\[Pi]"}]], " ", 
      RowBox[{"(", 
        RowBox[{
          FractionBox["1", 
           RowBox[{
             SuperscriptBox["k", "2"], "+", 
             SuperscriptBox["p", "2"]}]], "-", 
          FractionBox["1", 
           RowBox[{
             SuperscriptBox["p", "2"], "+", 
             SuperscriptBox["q", "2"]}]]}], ")"}]}], 
    SqrtBox[
     RowBox[{
       FractionBox["1", "k"], "+", 
       FractionBox["1", "q"], "-", 
       FractionBox["4", 
        RowBox[{"k", "+", "q"}]]}]]], 
   RowBox[{
     RowBox[{
       RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", 
     RowBox[{
       RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]},
  "ConditionalExpression"]], "Print",
 CellChangeTimes->{3.8685922536274242`*^9, 3.868592346311206*^9, 
  3.8685924363180447`*^9, 3.8685925271538057`*^9, 3.8696261159846354`*^9},
 CellLabel->
  "During evaluation of \
In[25]:=",ExpressionUUID->"1adc7663-3373-4163-beb3-72b128641479"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
  "\:041f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", 
   "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", 
   "\:043f\:043e\:043b\:0443\:0447\:0438\:0432\:0448\:0435\:0439\:0441\:044f",
    " ", "\:0412\:0424"}], "*)"}]], "Input",
 CellChangeTimes->{{3.843130807463869*^9, 3.8431308540633965`*^9}},
 CellLabel->"In[30]:=",ExpressionUUID->"6103cbcb-41e7-45c9-bb09-0b31a318aeaf"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Simplify", "[", 
  RowBox[{
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{"4", " ", "\[Pi]", " ", 
      SuperscriptBox["p", "2"], " ", 
      SuperscriptBox[
       RowBox[{"Psi2", "[", 
        RowBox[{"k", ",", "q", ",", "p"}], "]"}], "2"], " ", 
      FractionBox["1", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]]}], ",", 
     RowBox[{"{", 
      RowBox[{"p", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{
     RowBox[{
      RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", 
     RowBox[{
      RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8424297759514723`*^9, 3.8424298904774303`*^9}, {
   3.8424302132641673`*^9, 3.842430221226556*^9}, 3.8424308283157177`*^9, {
   3.842431023031686*^9, 3.842431045030918*^9}, {3.842441926294345*^9, 
   3.8424419379889317`*^9}, 3.8424421645252914`*^9, {3.8424447346828985`*^9, 
   3.8424447531082444`*^9}, {3.8424451876234922`*^9, 3.842445210127918*^9}, {
   3.842445241924023*^9, 3.842445249688614*^9}, {3.8424483961307383`*^9, 
   3.8424484004242554`*^9}, {3.8424589935407553`*^9, 
   3.8424590247120314`*^9}, {3.8429767149416723`*^9, 3.842976731081705*^9}, {
   3.842977308206172*^9, 3.842977317290962*^9}, {3.842977460771119*^9, 
   3.842977479967112*^9}, {3.8429776043458705`*^9, 3.842977607769457*^9}},
 CellLabel->"In[32]:=",ExpressionUUID->"8a103e52-246e-4acb-9af8-cf678ec594f3"],

Cell[BoxData["1"], "Output",
 CellChangeTimes->{3.8429768308386664`*^9, 3.8429774249420547`*^9, 
  3.842977583631036*^9, 3.842977709051814*^9, 3.843131171169419*^9, 
  3.8476892540267506`*^9, 3.848252020239182*^9, 3.869626421154914*^9},
 CellLabel->"Out[32]=",ExpressionUUID->"8a7b2f50-860c-496f-ad20-c255f9749b45"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
    RowBox[{
    "\:041f\:043b\:043e\:0442\:043d\:043e\:0441\:0442\:044c", " ", 
     "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\
\:044f", " ", "\:0432", " ", 
     "\:0437\:0430\:0432\:0438\:0441\:0438\:043c\:043e\:0441\:0442\:0438", 
     " ", "\:043e\:0442", " ", "\:043c\:043e\:0434\:0443\:043b\:044f", " ", 
     "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430", " ", 
     "\:0434\:043b\:044f", " ", "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", 
     " ", "\:0441\:0432\:044f\:0437\:0438", " ", "Eb1"}], "=", 
    RowBox[{"2.224", " ", "\:041c\:044d\:0412"}]}], ",", " ", 
   RowBox[{"Eb2", "=", 
    RowBox[{"1.296", " ", "\:041c\:044d\:0412"}]}], ",", " ", 
   RowBox[{"Eb3", "=", 
    RowBox[{"7.77", " ", "\:041c\:044d\:0412"}]}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.843130862431376*^9, 
  3.8431309443719387`*^9}},ExpressionUUID->"276d1ca0-d12e-4d61-981b-\
3fd39751d1da"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"M", "[", 
    RowBox[{"k_", ",", "q_", ",", "p_"}], "]"}], "=", 
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{
      FractionBox["1", 
       SqrtBox[
        RowBox[{"4", " ", "\[Pi]"}]]], " ", 
      RowBox[{"Psi2", "[", 
       RowBox[{"k", ",", "q", ",", "p"}], "]"}], " ", "p"}], ")"}], "2"]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.842448751392885*^9, 3.8424487953821545`*^9}, {
   3.8424490730056396`*^9, 3.8424490792071953`*^9}, 3.842449117797203*^9, {
   3.842449176027671*^9, 3.842449179152563*^9}, {3.8424495650557804`*^9, 
   3.8424495945895767`*^9}, {3.8424499740320044`*^9, 
   3.8424499846546497`*^9}, {3.842450149220636*^9, 3.842450164380662*^9}, {
   3.8424501979068365`*^9, 3.842450219034045*^9}, {3.8424584581133766`*^9, 
   3.842458474065017*^9}, {3.842458603624431*^9, 3.842458683642142*^9}, {
   3.8424587820987186`*^9, 3.842458785542663*^9}, 3.8429779349403095`*^9, {
   3.842977981604545*^9, 3.8429780126387243`*^9}, {3.8429782551339855`*^9, 
   3.8429782567222576`*^9}, {3.842978935303804*^9, 3.8429789399794235`*^9}, {
   3.8431309581969247`*^9, 3.8431309600304036`*^9}},
 CellLabel->"In[33]:=",ExpressionUUID->"9301a705-e9c1-4859-84ac-1b5ce87ba920"],

Cell[BoxData[
 RowBox[{
  RowBox[{"V1", "=", 
   RowBox[{
    RowBox[{"M", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "p"}], "]"}], "/.", 
    RowBox[{"Q1", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.842458711696268*^9, 3.84245873574479*^9}, {
   3.8424588016634493`*^9, 3.8424588031058073`*^9}, {3.842978435743429*^9, 
   3.842978436124936*^9}, {3.8429784683270617`*^9, 3.842978484933129*^9}, {
   3.8429789454479103`*^9, 3.842978946088683*^9}, 3.843130991688418*^9},
 CellLabel->"In[31]:=",ExpressionUUID->"6283ebe8-6c2f-4f81-afdd-03a59b159407"],

Cell[BoxData[
 RowBox[{
  RowBox[{"L1", "=", 
   RowBox[{
    RowBox[{"M", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "p"}], "]"}], "/.", 
    RowBox[{"Q2", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8424487324378023`*^9, 3.8424487924976873`*^9}, {
   3.8424490812716303`*^9, 3.842449081860818*^9}, {3.8424491928549166`*^9, 
   3.842449195716154*^9}, 3.8424492326284895`*^9, {3.842450114156495*^9, 
   3.842450118031912*^9}, {3.842458698127815*^9, 3.8424586997524796`*^9}, {
   3.8424588072981167`*^9, 3.8424588087068987`*^9}, {3.842978487821079*^9, 
   3.8429784886892*^9}, {3.8429789505156507`*^9, 3.842978950795658*^9}, 
   3.84313099820064*^9},
 CellLabel->"In[32]:=",ExpressionUUID->"a4f06394-1c16-4af5-affc-5ede58072227"],

Cell[BoxData[
 RowBox[{
  RowBox[{"S1", "=", 
   RowBox[{
    RowBox[{"M", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "p"}], "]"}], "/.", 
    RowBox[{"Q3", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8424487742240176`*^9, 3.842448843385522*^9}, {
   3.842449083797745*^9, 3.842449084203415*^9}, {3.8424492073215456`*^9, 
   3.8424492101892166`*^9}, 3.8424492481001034`*^9, {3.842449351053405*^9, 
   3.8424493595531363`*^9}, 3.842449400814065*^9, {3.842449454931864*^9, 
   3.8424494689151335`*^9}, {3.8424587036693344`*^9, 
   3.8424587039080153`*^9}, {3.842458816213194*^9, 3.8424588174747705`*^9}, {
   3.842978491566579*^9, 3.8429784919389296`*^9}, {3.842978543947376*^9, 
   3.842978570400922*^9}, {3.8429789541426935`*^9, 3.842978954412698*^9}, 
   3.843131001928097*^9},
 CellLabel->"In[33]:=",ExpressionUUID->"dc085a4c-7718-4290-b4f6-21ef20f426b3"],

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"L1", ",", "V1", ",", "S1"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"p", ",", "0", ",", "500"}], "}"}], ",", 
   RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8424494839615555`*^9, 3.8424495102411532`*^9}, {
  3.842450000590666*^9, 3.8424500014713764`*^9}, {3.8424588269002743`*^9, 
  3.842458831886714*^9}, {3.8429785171732197`*^9, 3.8429785291328506`*^9}, {
  3.8431558669109173`*^9, 3.843155877148394*^9}, {3.8476897503297596`*^9, 
  3.8476897506498394`*^9}, {3.848252190928172*^9, 3.84825219610848*^9}},
 CellLabel->"In[47]:=",ExpressionUUID->"a126e6ed-cce1-4072-9d3e-c6df0794243d"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVV3c0FY77Nj9ZX5KRhpWRcY2ulXDf916y501Esm5mZGdfknW5N9lEIYVP
WppI8kFJSkuKjLatIjJSP7+/3vOc857zPOe8z/uc95X1DqH6cLCxsYmys7H9
f52a+21t6vuFpGZ2utpDYtEw/EKslklVB2zf6JXoU3ydFMM/47ul6hW0Hnyg
nFH0kqRnInnzVNgweCr2j2qOfybFt9awcVV9gnCPsvfKBXOkwUFSLTDGgbEz
2G2Ua42051e/TXzYDEyzDbPRP3LBU4Ze3DvCD1D6+IZBDxCAteITNsuV8zAc
y1tgmr0JCDXPZDaLLULvI81Ch8jN4HZz209txhIYZbzqtPq2HZjtfl3UtRVo
fVbxuCtRFlqe3zgdGrYGZk/yLbSeyMP0yN/gk1/+gsDb8Yep3kpwcvGCTD+B
HbMyQrzskQCtXHPz85Wc+L0o9CHJnwj9/CXDHO+4MFfriO+3Nm2Y3UTqEhb7
B1d65kbdDPVASjbrtAaDB68Gbv5DOW0IukqaqaQOXjSsK4rZngBgq9EfbLPG
h1ndtjbNQIZEox3kI2H/wwd8xQpnIk2gwOSRSly9IEZOaI9H7TSFS1ZHRRlf
hLD2ljIvddIMZgnDEa8IwujHUTizt8IKpAyUzX5UiuCf7uu1Qu8d4CLp990l
I1G8zx+3emqRCrqUZ5ps70RxdLPQwC5RR7C1iNoqJCaOr7elTe477AR05/9m
CAwJ/OKqKZfqeBCGI1wK/MMkcWXZoFxSlQb+0QTeUEEp5BP5qeQ3RoOfcX8T
o+ulUEa6SXxnzWEQSLngl/5FGtXXFKLuqfiC1KMYyZcEWbz6ROGBom0A2PZ3
fv9WKYfnS59avZ4OgaTRQy6Ci3JItC5/MRMUCtfGF/8jWMljZpwFTfVzKAiv
KuUHLMjjP4zW3PN9YdAnzdL5ZKGIs9LZPXtaIsA1YH9c/5wSWhWqmVaURYPf
7y+c90zUkUAcXZS3S4IS7qSgd6XqyHljPlulKwkeCUq8Xp5Vx+5EPgFb6WRQ
kbWs0S3VwN3asxovC5Ph1w5n+bfHNLEhoKm7lX4cms3uPnTo2YXfvc2uWhqd
AOqTDavvF3ahsqKIiGjECZiyd9QIlSHi5EEDS6+6E7Dddab4ZBQRjc/mctKF
UyExSDqgR1oLl0/oHE8bTgXMPcG/N1IbXx8oO046mA5dI+IkjnJtZP6TJuOf
lg62hIuh9zu0kbKcEyF4NR0OdT1/rS+ig01QLd/LlgFxa5KV6td1cHEl33vD
2Qxgt2p4OTWgg929q2OcnRmQWWLC/S+7LsonaYXETGRAsdaRQDkHXaxoDFR5
RMyEmwGN2hLfdfHq1I7K1dZMMLhj5fd6sx5qVzbINbzPhHau0dI80MN7Qce1
htkZ8KKC+69Ajh7GfKgXL6UwYPY1tZtdfTcuyU1uqL7HACXKzKGpI/qYpu7+
Ue90FlzNST5Vl6+P4xNia8E3skB3WKTD564+XtNupkk/yYK9MXuU3vPtwWjL
WM/F1SzwvpIx1/fvHnzD+FKYvj8bJla3KuS92IMuntMH6wKzIdTiirPd8h4U
u9xda5mUDUmf+1q6zQ1w0qNjQKQ2G8q37shoHTNAs6xDP3q/Z4Oc/62meCFD
1OVc5OPnYMLFW+bTu/UMsT6YoNW7iQlN9iEON9LX8dJ+8gyRCXiWIzX0iiEe
9etdsqQw4dFU4W21fkNMwmIvLQcm9Ke3bKtTMMKVAG2BumAmuPfZ2frYGGGW
XKKebjwTvsh+St4RZYS5ny5/pWYy4WcL79fyTiO8sHSp1aCKCcLzTtdyaSS8
OtdkMfaUCVKHZB0zskj4cOD+pVdvmEDomvqV0EDCY/1ON10/MMG8LBn8/5Lw
lFV+seE8E5y4rT4dUgQ03/DZv3SVCbQQsYx9NoBHJj93F3CygG58sZdUBvjG
7Kf6kU0sYF6ODNduB7xEj1A338KC0s0grjIBGHaUerNLmgWv2riGhXgQHdKt
708qsGBwYeJK1jZEFRNX2+uqLPig8iyZWwPxZ/5pT+ldLBj3uElNpiB69Rku
EHVZsNhNX4wKQNQ9onfOAViw9of26HsComzriUZ3YxZwaVucPnIKMdJ7zlrc
jAV8AepBX6sRLyu9OBRryQLhsyIkrzuIjjEbJjJtWCDxaklo6DHiWBHX9F57
FkjxjHxwGkHsTr5Ca6CyQMGo48aLH4j8VAfrJ44sIITXpVlzk9HfMKeq2IkF
WrUs5y4JMk5vcHAXPcCCPUPhyhQCGVW330kwdmEBWfjAaguQcUmQf1HBlQXm
pkZP9faRse12Q3vLOraL31Fx3ZeMxfckB3kOssDp2oYwtTgyXr/eTuRfx25f
pil1LDKOF/O0d67307a+FJWrImP1OCToruNAuztfz9wk49PNRY5e63yhqeWN
Eo/IGJDCZ2S6rie66XhW/jsymvXRFL+u66XP+roJfiNj/ZACG2U/C9LkrNUZ
HBTke57R6LpvfX4HdrFxiVNQbCHQcJcDC/JZ4i/pyhQkNTtEP7Rlwen21epl
Qwoydznv22bNgqpf76Mi7SmY812xSdOCBXWEh2bfaBQcc1jI2WDKgite9VsC
oyloIh5zr5LCgltFp6Y+Z1HwoveowhqJBS09Ufc8zlLw5JZn9ZIGLGhnO5gz
2EDBZuYBTU49FjwPVNB6/paCDdWJDTLqLHhTwcdtNU3Bjzyq/q7KLBjp+9b/
4C8F2d2yc93kWTBNao67q2iM1M36Z++t+2+DiF17TaQxHpT3nOblYIGguXaB
bKYxzh73yT277mfRxC2+5WXG2JswCRwLTNgx9ok3r90YlwODPumPMYF0N8Yh
caMJBshbcyd3M0Hm5UTvWQUTVC6/r7DYxgT2CVfrtj0myGopWtRvZEKnuJEZ
p48JchPu+qnXMMEynN2I0WSCTSr5ap+T1vdJOUup0Hsvhv3ZKm2uyoTduHrh
dvRetO/JseeSYcIW5yC5t8y9+CE3nLtclAlDqbZS2+7sRVKlu7jXWjZ4v98k
WsVvit3oIeb8NBtCisv+Xrppii8W3lYU+GWD/RWBxN5uU+Rdo/p4uWYD8UHi
yrcRUyxpuc0nZpMNi3MeC0ReMzxH/RKnRcyGBFv5qcZDZhho4LvdfT0PM7kv
93f+Y44fQqcuTjOyoDKi9fLQAQvc8/TxcmEZA5ZnqSqFQRZ4W7xKfD+LAdTA
sRqbZAucXJSOFUhiAJfXxsrWWgu0tVyi+ngzwN/WO69y0QL/dk9/71JigKby
P9GHCyyxcNOOa7k3M+H+iA1OP7PCjZljdK7HGTBiMfxy1dQWJRLS627/SgMf
q7gZ72cOeL9A7bOaQwrIkN+eeT/ggFK7E/h+GafAkK6urftnByx9MFjZrZsC
1B1zV1yWHfBy/U/V7O0pgMsBofZyVLSa3r0pefw4bK91mTeKpuJX4RxZrZTj
8IpDf1lCeh9Wi1mHdbYkA7n5F9ezo464qanjzMlyOuz2HtMuiXHEB8/PZ9pk
0kGT781hrxRHvCPZQd4eSQcp19ud84WOGHjryt9xKzqsLEemStxzxMl51Sek
34lwU3+O05t/Pw7WPYro80gExaZpjoXa/bjpqNqDQGIC8Dd+YNv2wQmd59zP
aXLGwXf74vQ7U04YY+d8XfdHLPRNWAs4LjrhBm+FXOvRWDizrXEzi98ZKVlv
0mvvxoJG0kn1vzrOOPXU+5NEVCzsMzVw+5TljBoHHb4OT8ZAWV/BnXrtAzg3
vy+q8EM0qP4wO2qY6YLXtwx9HV+KAmvDnAj5PBesKtxUEjYVBUEZ/TEC5S4Y
WDBozj0SBZckfU4MXXVBc1+OFJuOKCBYppQkvHHBbDGgeJ6MAvXqlvYWRVd0
8XHKTleMAuL+XZuNHrhisGrHlgL3SNjTtLXNiMMNh/5lCTZOhUNCz9UP8/xu
KHLumdC39+HQOmzCeVHMDV1+JMer94cDmSPEVFzZDfcatUQ8bAsHc6uOJ7N2
bqhZ9ljEtSgcnIePDFScccP5o1IMXuNwiGS/N8eufwg3qmvZO50Lg6sWHgoP
Q9xRsrBPXz46FEasm8vt4tzxf5I1xxOCQ0HQXkx0INUddaKCLw/RQiHIqYdj
utQdFymjuTftQ0GJpvdeuNMd+/ZK3PlPJRTOJQiVHZLwwJKulQuFbSFQcPX+
xoU2D5TZ3v+0u+oo3OPb+EeY4YlbNZ9vOMIKgnCf9NjfLE+0NywKqqcHgVLb
759f8zxRbKN74WJIEORFTUzdLffE+zokgcvUIPB/3z7gc80TT68ndqlEEIje
jrrV9MYTP8FHc/+aIxDk9S7IS9ELI3YOTpR3B8LWxpp31zq8MLdyZTaBEACm
/Gwc3N1eeLJGWEVaOgDC3V2UXHq9MA/503qEA+Axl0AU+4AXuj+0iqT88od4
hzBB6qwXbvz4RK2u3R+GJg3I8xLeGBx+fsjyoD+clXxRo3PUG3fsn264nO8H
O06shjVL0PD0zrZDAtK+MNoUX7MgScMtXvniCqK+UP59dVBTjoa3b1Uz9vL6
grj7b+NaNRpWnulMOTPvA3z6a2IFFBo2fj3N9u8jH/gx+6cpOIiGHwXKSEqR
PtDmysEh20bDZi/956XPD4M7kTcvw+8wKr3IMfh2hgbCyjbnOyt8MN1CfjHt
nBeEGNmFBM354tygadH5Eg8wKc0gpKr7o9aOrOrEGjfo3EQ/909aAMqcsaEq
fnaB6FC1c9avAzFoLa7jdrYzVImJFHAIBa2fXSfKuar2Q/Tb2yQ5WjD+4bi1
8eGTfdD58dS7G5VH8U/1ble6JRVMXshx8LwNwbxuE0LJkj00Hm0O/VQQitaZ
mj5V3nbAkKAPxBHD8Oj5BznFYAOaLyrPmg2HYUVA9cKIihV8X61QWkwNxyzf
CfaXjhYQZNlc7yYbgS8FWs2ud5nBvVqt7KXHEegkS/wvH03hsdIjmnVAJDK6
GCvGP03gxzZ99hSuKKwf+x3S2m0MM5K8q9OXovB+6dDu5UoKXDD+OSNkeQxr
i+Tl35wjAzGGZOT/8xjKPnq3TL+AEP+8Oi0mPxpPNsUTNIsBhk9/yQvUiMF6
VwfjQH4SiEWm/859G4MNs1ujZhMNgTeM4hF2LBatLlqnrCoYwMuEQ1LpsnGY
TjMr+dKjD7dWHM8ldMehyZWmxzmndsO+cj9pVd94xNufvwFdD7qsB5YENybg
yTxqS6a/LizK+PZcvJKAuZwJvcRjOgB+z7yVLBORg7pcrVasDe4txU7v5hLx
7OGtPWo3tWC3Tryx6Sk6lvymmVnMrP+38RQV7nw6Vn/KXJmaIEJUO69wZyEd
8+ui83K+EuG6XckIuYyOsYKhIQOjRCAE3oo1qqHj2hu219EviSBT8e2qdgsd
Hyo384zeIQIv7+HtcuN0VD3mP+l4ggh1dqqcHyfp6L3Cc0YkmQimRXMTlTN0
pJ2vUHmVQIRUueN3pObpWPYm8bXjMSL8MTpL3fqHjh2///XyDiDCXPjbTGHR
JLzsmSNcY0eEU00VIc/Fk9A0eIN9uDURNNj8nHK2JOEYqfUwWBAhiLUg9z/p
JPzW0yo0RCHC19pN93lUknD8yXeatO463+zAhS5CEpZ4GFvPEYkgp1PFTNdI
wi1qaTwPNYjg2a7hyqWThLEbG1ZDlNf18PzCDr0kdP6Ph2iqSIQzdq07U/as
831UMZCUI4JhUZog2SgJfXJ7xRekiTA4ZL3wF5Iwnqe+8+l2Ivwf+jC98g==

          "]]}, Annotation[#, "Charting`Private`Tag$2973870#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVl3c8Ff73xxHKiBQyMjIKWRnJuufg2is7svfmGpFxSVY+yb2iyC6jhHyz
IkloqUTJCO2UZGYk5Of313k8H+/H45zzfp3X+eMcdA+x9KKjoaHxoKWh+f84
vbhhouf9jdA6+TfvQPm8RljFGUViWTeUzUfpHaOtIUSzzHjzlr2B5h6NPHWa
FwQVokAjhTQBf93aNMQSPhBiOypp6Mu+AE3f99CNzWnCu3eEKjj/A2zMTlKO
TSwT1FaHTGNJMzANg82fzmwRXp5XiRmTXgCRrxV1h/0ZYPPKOdO10t/ALz1S
N7zMAtKVr4T3c60A42hYZM9tDnBs5F9SOv8HejeqB+zfcMGFLp8nlpt/YZqL
VdbViw/a+xuuhpI2YYRX8s85LyH49X4r6OK3LUiL3P2z0U8ELq5UCA9J0+LZ
R8rWdnbi0EG/+Pt36Q68PBenMvD2CAyx5E3QjdEjReHlGQVvOZjdS3jCwcWI
vUU7go5cPgqCBzOuyp3fhfFLOTf9apThmIR8MqGbCaVIAU3GH1TATG4oyHST
GY+InTsZK60G8ZoiWgGk3bjrVmMOPxdADvGpVMwtNsyZlJjnHUGoMQ7mPP+N
HYP87+dHKGjDrPRE+BtpDoxmc21X3K0LguqS+gul+3CMRP70z84Yqgkb9/5o
cmKYjsagFJMpHNN+JU8zxombr7w7TR6bgZlhJB87FzfG8Qo+Wj9qAWS7hzPS
53nwyU0L+jucNsB8Ksdd6RAvPnysLOTKbwuXnX2G1bt5segwRTblsB3Uee1+
aLTJhwE6LfPT5vYwEW6f40sSwHcx+iwiH5zAN0qaKZRNEOkePmFNZHeBpZit
+KhbgiiqsnzVWcQVWJMqfFK/CWFaqxB3l7MbCD6NFngtfRApIvlqtL89wGyo
Z36uVBTrvgm5Mib6QcIHJ3u2FVEklzx/s27oD/U/Vh5KG4thlOqmKR13AHCs
S1zyWxbDE07iursaA2FQKFP5i+Eh1N/1MFJuRyg4+NnEDC1KYLwqIf9mbDj4
bHzbcZ8oi2dVDq0ODsRAHkNC4Fi+LNb8d7ai2TAWnrLxvF2blcX0Rt351oex
IHXQqPJYvhyyGQTdYr4TB6sidmIjp+XR+Q6LtcAlMrTp33ts8fwo7li/x9Ql
cRaQeo5FN0IJZd/cirz8PBmevOcm0BUq4au4vbsFaFLATLo69EG3EioHCu30
UkoBpyf9b1X3KWORsJybQmEKxGwKlMreUUYDlg2DXN9UaPS7q8QzfwzHb7SG
yvxOA/UWY5+3+1UwgIn1AodoOnTRf8jPBhW850NcLrFMh4EShi3WLBW0Oj3C
21KfDrNvLZ/Ryh7HQ/3BjvW+50FCe8ZpOkAV4+e5jFYfZ8DtrETKjUuqmB/x
7+rOhQw4NrGv2+ueKn5sDqU08P0HutFqEh+Z1fBDoufAWOB/4F6Xtjh4Uw0v
SLuJOrFegEI+kbSO7+roqHVaoFklE0R9m1pj2TXQ0UmuT+tUJlQ3Gfw6rqKB
Uce/rbqRM6H1RIhFQ6oGlu/PeO3cnQlDqe38N8Q10etFbpuuwUXg+G1bT/Ug
oNuS1YMGzSwQdDponZZBQKa8xnc/7LNA+sn0atz/CKhSblDZFJkFBgWJ4LtF
QFFGj3vcNVlA1qnuIxQAmtb0u28yUeBCbUSYUhcgsfBbbjQ3BfL3A7fU1PaY
PFp0OkUo8G55qi6DHzG8syulSY0CK8/IK5F+iMf9jmqr+1Jg85/H0/k4xH8u
VeMC4RSgVzK8GkBBZAIllr54CnAU7yO4tSDaRYn0X8mmgHTYjRQTBi1sSYra
eNtKAcWqTLsnPFpIGOqQk+qmgNp4mKS2tBb2fjMPN31BAQM9zZcqVlp4erWK
ju49BTz4XnOKlmnhksawj+QWBfzNWyaLGrfZlVttg5EKocmFd3meamGDwe6p
EjYqkGe9HdnmtLBf2X3YQYAKV7vWr69paGOlzxpN5XEqlK1+jIw4oY1X98jf
ZwQq3JB+rD/noY3nfpW7qelSoekyZfprhjbK37CL5regQr+/uGL/iDbqa5Re
fuFNheESZgbjX9qY0SBh+CKACu8H54YebWljDgeTUFkoFX4R2mLuHdLB2o/+
Ts/PUOF3eInJMTUdPBUXduogmQp/byQL/s9UB3d3DlSZJlFh5z7zrsoIHXRW
SzwllUEFNgOlnIPpOriw/uDUWCYVOON5vQsLdLC8XXrcg0oFke9fmLK7dJC1
SvfSxhUqSB54NsY6pIO7eileuwuoIG9RV5s2pYOGC+pzK0VUINyLtojfQ8Qg
i0F3m+tUEH491VcsTsThlJ/J/yqoQDvlYNKptv0eJPsj5gYVPm89f/bJnIhN
/xta6K2mQg+3pv4OLyKO5JrtnKuhQqVMXY9YDBEFJmUvfq+jQhpRSFsvi4gn
2FV+NdZTwfcU5YFPORHTnPTS7O5QwSiMVvN8KxG/u9k8etVABenzYW3VfUTk
SwhhFWyiwu7SLyovvhBxraCmS7uZCrPN1k0zf4gouSFlRmjZ1v/lIwV2Nl3k
JjBxcdylwp2vx+rlRXVxLt41/t42X1qvkrE8rotORYQZzVYqROzlvRVuqovG
t0t787bZVjJDItddFxPTgmJfbPNxXK9ojtLFlKBQr9Ft5rULFB25oIuBi1az
D7b5b9BE6VqZLv77URibuM3jyWaC/C26uJZQEca/zR0FDwo0Xujivfi849Tt
+iV35HmdP+nivqJAhc/b/SY+K7ucsKKLtcwfe9i22f3jXs4yFj28RRdhvX/7
f8TVc9QuYT2cy/TV3WikgjjbMttXZT284nx3/f62Pozi3hcYjPXQ7TnnmOO2
fj/Uh5kOu+qhxtQnvdFtfXstDdIMIvVwsEvhmuJtKtT4tdL7Z+ihV+0j88Ba
KoRcKdiqadTDYb1ZqZibVDhRxxrf90wPfa+rHjhRRQWFR/F/597rYdr4ke8M
2/NfWXRZVmDSx//4j2TuLaXCCNNAmLWgPvKZdkv4b/unVVh7PlJRHztW9wpd
v0qFODOx6btO+rixKpHXlkMFZ69c33dh+phxfGk4f9ufEMc4uZ6mj5/exP46
dZEKdNU/PhLu6ON7yZxdGWlUSGeoHephNEB7/0mRvGgq+B8QtJ7kN8D6kY8H
8yKoYKyYNbDzqAH+8OF7Hb+9T2xupBdGpwwwqIhSve5DhZx25a7+2wY48Tvx
Xa8NFUrDO2rHTxripzTlE3QyVFibtZTKDTTE6dd+J78epoKl//dK00RD9Cir
4GgUoQK9257SjipDDFJuvSrAs+1XM/fs0hVDjPi1ziBMt70/koxRnjlGqGrX
UMvzhgIP3pvir1fGuPwuYSXcnwI8Dp/by78YY9FRpo1EDwqEvj2t6rRqjJfP
if5McqSAyIsShT5BE1QWfqDvbUaB1NYFsfogE/TbZPCqP0oBs5xcpggWU+Sg
uSC6+isL3htOvF7XM8P550rMxKWLsLdq86+DoxlGfrj6feHzRdCjFxRtI5nh
VPRpUvbARajtcA6PLjRDSlXGek3dRYhT/LhvecEMo4ikHgvfi8Ar8MV6ttAc
M+c+5FeMZoJUdERA6JkTiAcWu4uaL4CXccyM+ysLNOBbceT3zQCttlX6V8HW
SP2mV/uRKRVY7n6i4f9kizE7stbf+CTB/IkrqS3TttjfuUWnYJ8Eg1MmrNYr
tsjT3Pc13ygJivjv7s9ksUN50z3qaTJJIJdwUXZL2Q5bFKWJI7/PgpWeuuOX
DDt8Yym3ZpV0FgoGc1puKZ3EFiX+jdrKRDiyoB+skW6POz3eyjDxksFEIytc
LNseXRv0y4GODIFpQ9GshfZodKM7NHU6HmoEvM6N37ZHCmF4gdgRD9JGSXlx
w/Yol7j0LtkzHmSvt3e1H3LAaXKDCXNjHCjYHN2v+cgBR8pv8q45x4JaK1+n
Jp0jOijuEK//HA1xz29/+s3iiOduHb8o3B8NHRPEHdVcjtgzJfus+H40aNGF
6HFLOmKi051LPXnRYGDc/WLW3BEryP25jebRYDcRMFpS5Ii3aJoPCHVGQQTt
/UVaVSckynWc+Fp9Gm4buog/DnFG2yszkc6VEfDepK3QPMYZNVSKyI25EcB2
gotzNNkZ92k3OvKkRECg7XO6X/nOeH2JFMLkGQESHiofOXqckXLd6EWWSARc
i2MvcOJxwdMPwU7sWjjk3H6wZ7nTBeNEsznEb4XBfeY9/zjOu6JLzbWDtp9D
Icwr9cxGpiuWCKSJtb4NBYnOjaXJbFd8FCfOcuhZKGRHTk3fK3TF1Sx/L4H6
UPD92DXqVe+KC0PrsWfJocDZHNnUOuyKUQ8d6ngEQiHQbSzQ7ZAbhqVaTpZ0
BQPf3cqx+m43vMdRdLp2VyDosdDQMTxzwyvXuJ1VFgMgzNlewr7PDY8t6XoO
jgVALz1rJO2oG/J2KP+nfzsAYi1IbJazbqh2bX/sHrsAGP+prvWbxx3/ei49
Faz2h2KBgUrlYHc0unb8RYeTH4icWye18XhgNeE+Plz1hg+tsZXLAh7ofHtB
YfabNxTOr7+TF/VAM4s9fyUHvYHbeUOnSsYD34Ls4Mt6b2BW3eTK0fZAu6eC
to/8vWFh9l9rUOB2PhJvue8nL+h0oKM72OmBg+LN3EdGPcFZgSk7zccTCakk
Tq55d1DVtkz1DfTEmL7cL9mf3YHTsiDGkOSJV8V38fK/dYdnJBkPllhPVGR0
yTVqcwel/1koZV30xD6uHdNiKe7AIn916HKTJwa/1xp9cMAd7soc4a/c4YXX
1SazbK3cgEPStLynxAs/tNQvNN51AfejZ3TYK7yQQX9fT0qpCzSqVny2r/bC
hLP8uf7pLmBrtCk81+iF0i89Z0JOukBhQG0Rb68XPjoin+2z5gwSdbuvBC95
oQHRsXWd4Ayo2Heex9Ab+1bklrRHHCFE0zwkcNEbG8L3Tw6DA7wXJPY5rnqj
V+y5oigZBzCjUZUx3fDGl7bFduL8DiDdLTItw+iDF9yTKqtX7OGnwYr3HK8P
7gtKCj9VZw+e1kXOYVo+WPyUfbeJsD04BEybRlN8UGqoQVmA7SQQ89Okk2V9
MepQH7MGuy1Ihbsce6/oi1kqf3h7/tnAHlMVPK7qi/w2tXn2szYwTvPd6peO
L/oILzTVvLSBCF+9WGt7XywfaZNavGAD5SoMvWLJvqh2NWtlbrcN0A8l+Twa
9UUz6xt/fXmtoWcv+Rpjih96sP1Y3bKyBPX+uDb9DD/cvCfY9ELPEu5kxr5O
z/LD+BOj76+rWkLJrjN0LFf9UL0z25okZAkx/8Ld2W/7oULVyJu0aQs4+tNP
hGfUD2+MCFILUiyg+KHNNUkZf5T5d4hd9OEJiAqVuWby1h/nd3fA1yozYN25
fEbxnT/u6XmXWnnJDEqL2i34Pvhjr4N7YlSCGfT2GtP++OGP7xRfOOramcEB
cX/Xcxv++Dl8IDZrpxl0jVYKtokG4C5DctQbf1Ng1REuOBwWgC2r+YEv1U2g
jGtfDh17IJ65UHqSwGAENeX3ua04A/Hi/+T7fi0awl1F3/zrvIG4oJsVe/Oj
IfRZ3C8migXis0QhM9N2Q9jI9LmZqhqI/bb1aZoRhmDL2N7B7BmI19bG9zdP
GgDrqufU3tZAnN+QFbj7Vh+iRpoJoh5BqGRooXJ9VBdKUeosr28Qns8875L+
XBd6bxR1swcF4Yi9Tl7UfV04cCbZYON0EOpNHjkQUaYLnbyWlm8zgjA48Enu
Vz/d7ft6xivtThAevn+2vHCDCMUTopnTtME4NmbFrSxJhJ7PlLGG0mBUntrz
7UyRNpBlj0hTK4LRKntA9BtVG47HPIoLrg5GGzFO55Op2lDD8VdAsjEYzayI
tbYh2pCDHq7FT4KxrtBlzx0tbfAsVv6WPhuMw7VOz95/1wJ6h3ezThoh6Hnl
8cp3VS0gDojS7RoJweBymbNs3wEiuco2zSZCcBomFb4MAFTaC67lfg7B+uOC
8U/aAXZ+5pkXnQnBKMLBmx3ZAF5rjHNCtKGYz3qK3hsAJJg3xtW5QxGO+XFc
LCBA7ZHJu+EYilbfvRbmnDXhbnBb6JecUFT2aEsjs6uDS7xTn/2VUBxk6Utj
3lIDxgs00v35oVjzh3yzbFYNbG7qfW8vDsWRwBn5hZdqsPjltdPlG6HYvjUc
wJmpBtL200aG7aHYvNGU4rlbDUp1Dojf/hKK9kf+yi9xqcJ5HvJojAIJxczT
XaR1VSDwejbrIWUSJtM+4eM7pgJmslUwoEJC1U+LLXsPqwAnsb/isCYJd44+
ixRjUoHiEJGwQX0S+pPZOZ69PAZ3Hj9mlnUiYe9zfX92+2MwHsGu8SmNhJ8e
mavaRSmD/EBpsf4ECS8Oto0IDCjC2MunJyc/kHByvrHuQY8ipPbO7035TMJb
ZHEx/7uKMN6NaV3fSVh0/eCbkRJFSG/+GKK5SEJmrtaMAyGK8LFAWEtxZxga
14XcU2FXBIp36RfBo2F4f72FlWqjAPPrJRIryWH4U35WKGFNHgKN2m45HgxH
UzvD9ORIGbhfpfjfn95w1LPmdGmwkoReiaceJn4RKMjoe7CS9RAs8KvSJtFH
YgtjqcmUkSjMCDCt/6qJRP2wC7wn7glDhc7SDLvRaXzidEqV1lkAFKIJmr5L
pzH6XPj9nkxeiO2/nhJ9KQoX+o4IzcVzw8TVb9n+ctHY1mD5SvHLPuCKSN2g
jkSjoriaDwuJA5hI2i6k02fQ0nSM7s8vNngd5ySYejAGOwfMg+sVWaDpr/W1
uGcxeOnP8JvBXbvAqtBH6Ih3LN7wfv5SIIIBnpiM/mHbE4d20g7Dp2h3wIqw
9/PqujiccbBd+0lDC+Dzyl3CKB5zdeSOs/z3j+DcfsV2bDEe4wm2jinq64Tj
yrE6ehQyPn9U26ia9IcwFKstxXCJjPSzd4t6T/8hRHYxcfTkklHzSlKpW8Af
wh3zvPdaBWT0zOv4Wmb9hyDt33RGs5KMIUWn6AIO/yEIl8zdVmonY91phuAD
fasEJibPA6I/yGieFeD6RWiVcMP8yI7PP8mYcftysTzXKkHv8uJU6QwZJ8cd
U88xrxKSRc+2CP4mY0Snqa7a8grhn2axJd8/Mk790RGd7l0hLIaNpHNwJuDD
zoYYu6gVAqW1JKSfOwFNFm16NgNXCHI0PrZZvAl4lm086ab7CiEwc1l0t1AC
Mq7UW3CYrRAmq/Y+2CWVgGfs7o8fFF8hJM+OVjyRTkCn6dvhv/lWCKLKZRdS
5RJQkLri1btnheDaJedAr5yArKkfzNM3lgn/dq1it0oCutUf0wpZXCYUmXcc
TlJLwAOlxmdP/VgmaFxOYdPS3M4/sclq+n6Z8G7cZHkLEnDPmuwnncFlwv8B
U8AKGw==
          "]]}, Annotation[#, "Charting`Private`Tag$2973870#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVlHc8148Tx+2ykz1S9h7ZI+87e8+sj+ydvQmRkVHfrM+nZaWBVFIqI6NB
oUFUGihFpcwoI9TP7697PB+Pu8fdvW6I+EY6BNBQUVG9pKai+r+dXtywMgn8
QuTl+WktsU7ti6k+pGp0vgs4x5n0i/UuEUnMs4H851/C8aXdd+n1uglNo123
i6LH4GzNnI5E9zCR0llDRXd+Ak7uDC9i2TdJvH9P1EL+FLw9lVn+unye0FkZ
tk6JnoU/T5Zw88Ey8TxfM3lE/ieIvz2inbj6l9g8nWW9VrUEfvxmPQ+16EC+
ZmAPL/cyLH65Ie9/ihHcbwv+UstfhQ6tscPfKezw38OgHofNP4A6NYzMApzQ
/uJWaVT0JpCrw5JetvLAzId/4QVf/kEb75x/XZ0AFCxX7xmWp8YJjrc0Ad+F
oZNucWmpihbPXDHRnpcTh2HmM2M0I3R465FvpnCXJMztJHo4uBnQpLEg6FOG
DAiLHCtVyt+OymUnWm7GK4GGtHI20cWI8zKLJfpOe8FGaTjcepMJb5ynEtSi
VYXDeqL6odGsWMVLp3/srAZQjHplk6+yIVfT6+cPMrTgmmUEV/4Xdrx3Z5UZ
DuvAnPxY7Et5DqTSCTO/W0+AsK6M6c8qTtyQrjCSXzOEK8RG26oeF3r9ZOlX
1TYGDYMBZaoRLvzPtC08O9MEbMzjBdi5eTDF6J/Vc2VzSHN5MCufz4eTma5j
R/7YANMBiq+aJD++vXEv+qq+HZzyDHqj28WPTDabi5lM9nA9gPWBxaYAXi7N
Mnatc4CxWBIlOHoX7rvaINMq4AzBifKMUWzCmOWmbFBD7QK/kv8dTrwqjLZv
Did2zLgAS2Z1UM6X3Xj685icyQAJhHuTdg3Ji6CRh1hke7cH2Ax3L8xXieHr
Oy8IRzU/SP/oQWJbFsOf1YIXDV76wY2p5QfyluLYpxslbhznDxzr0uSDv8Xx
kgSrbUh7ALzafUJ9wlwSk9I/zYb6B4PbQafk4UVpbDHT+9nHEgFBG19oO4wU
0bOhw57aKB7O0KeHjZxVxIEjjE1O9fHQy8b3em1OERm6zdg0eBNAVsSiRuOs
EmYd/9eYP5MAK6Iu4m8TlLE0rFKeoSIJ7pq2PbZ/uhezv/aulXOkAhZnMRvH
qeGf+P26oyczoOcDD0FTroa1akSJ79MMsJG/EnWvSw29ba62TVNlgkfPi9fa
nOr4znyNmSosE5I3d1UpNqpjZdbYfVqDLLh9sEWNb0ED3d1E53hnskHaYNZj
OlQby0tlvlEp5kFD4ZGiy2RtTPf8MjzjnQcaY5xdAW3auPzLrv0aOQ+Mk3Sk
x5l0kL2Z2uPiah74Xs9dfFWng7lBXyLN7+dDuYBobuc3XZyoFW2OMj4OHEvO
N4r9CLR3mApr3F0Awh4ijrnHCHSJ/9rKb1EA8j3TK6k3Ccyk2TeqEVcAZmVH
IPgfgVIiT24W9hRAmuGVfqIMUJGO/2ttSCEs96Utxx9EFLwd5bNgVwSbf/16
F1IRh/kms674FQGdmnlpaBFivvtknk5CEXBUchI+zYju1ce1RkqLQD7m8lEr
en0sL+Q/yve5CPwEhrjEzuvjukrdgf3BxRBi2/y14rY+BtbGCdgnFUNUdnkL
X6/+1rx5M0TyiiFtLtCdbV4fPwleuqVdWwylD9cvru0zwKxSe2ajiWJ4ESKh
+uKtAf5upe+77FACb84x0VvOGGB4ToVxl1cJfHg1P/zonwEWdEuMXQ8rgRni
bnKbpCF6znkqrx0tgW2ctg9r4gxRod0vg9RUAkRbkv3hHUZo5Wlqa8JGhj1D
3/srJYwwlKqg1IKfDNTf3azu6xhhiHHYZV5xMnTz6JnSBhhhP1W7EYs2GSxi
qPXyW43wFce7cB9vMsjnx9y90m+ExaTMhvqDZGCtmtB8NmGEv1qP2XfFkOHF
80cq7GzGeHn/A3HLbDI4yxyTPulrjJ0ihd4vLpFBC9ermxKNEayvL4ZcIwO/
S5jY2/+MUUihc2rgFhlGs22EBZuNUW9AvnLtARk6y+6V7XtmjOEebQ2dvWQ4
16jM7/nJGF/4FPTZDJDBd3wn13lmExyf2973YoQMRitZxQ/3mOBH5lDmrk9k
kGD7zTapboJNjCnsGd/IMKX7hlHK2wSfX30g5rNIhicOZrlm8SbodT2rNGuF
DNcOttKFHDPBvC9/z8VskCHydNm/a7dNUPHgJ+VmegrYXWc53N9ngkZ+M3Ks
TBRQeXT4z/wHE9x4PENRZqPA8qLXbxVGU2wO6Cob56bAW8bBGEdhU1Q9dO5m
OD8FWvcYLMSrmuIFIlqiT4gCqTbi0y0epkgj2CIyI0oBz4CTwe9jTNEt5pPM
bQkKQCrD1/VcUxTq9yi0lKbAHnKi364KU5xv0Kc0ylKA5srUONFoiks9KSnf
5SkweZ/k6d1jinY3B/IWFCnw6M2TkYxRU/xe9oKqV5kCNXO6pIs/TdGpb0Q6
SoUCefT1w90MZtiVxWn6XZUCIULCjl8FzfDDCdIFVXUKWKoWDm7ba4YPRSwy
bTUoIG9BZStjYoZlZRpKepoUYPOJfmZxwAwVjPYsbmzxQuJn87AoM1yxu8VV
qEWBwYL9PSeOmqF0r/6npS1urO42aig1wzj3zgty2hSgtKs/fNFghvSFzZc0
tjjhZQ0sdpuha7SDKvcWu/zg7eB8b4YHeEzKerbitajzddTnzXB7wLCMzRYL
8P1pdqYzx11WA/J1W/k3FEPVk/jNMUHmyOLbrXrHjEcbzyqao25TU9/YVj+d
7tbKbYbmSI6/S92iRoGq2M76UVdzbBc1+xG01f/anIPsyTBzLDbicd++pY9D
yLca6yPmKCWklpK9pd/VLyliDBRznJWIzh/d0pfOZ0dVZ605SidP9e5QoIDH
6CWhxDZzXPPeTBGRo0CTi/ZZpYEtdnX9wiZDgWAb35KqZXNsvdP39Yg4BR70
LbORmCzwKRFJz7A1fwHj48c5hC1QcjXmW/BuCjzTvZ2daWyBHfEC9H1b+yPR
bEatS7JAx1ObvY95KJCmMnZ4KcwCu8abvS9yUkBZhiHRn2KBGW94hf+wUCD/
UumS0GULfH/a7nkcIwU+71aKet1mgQ2mGX4DW/tM4XE9aDJhgeZuHiSJv2RY
pb1yQFrFEjX+NVO5z5LBPp14O25siR1yKaljU2S48mfI8SzJErmDbzPpT5LB
/ee6NVOGJQ4NpsY3vCfDvQ/WODNgicddAiT3PiYDn9vn9ksTlhiRkfrmyX0y
RL1O0PZYsUS9FPM+szYyiD47p9IvbIU/QhaOLjaQIaf1p/iNcCtUmTSjpj9D
BhvKScY4ZmvkexLS6OtHhlp22Rz53dbofqNm3dudDFTHO2m+qFjj5quQt6ZO
ZGjM+Lbu5GaNTSvKHi9MyMATqT2nWWeNQ+KC/15Kk+GD+djQuokNDvFWBo5P
lcDO2s0/bu42WDWtcOflxxIwoRMWuxttg75PJCJvDJdAfadnbFK5Db5xbYmU
6i6BVNVxzt8/bfCH+r8zXJUlwL9rwnGu3BbpOq7Qq9iUgGxSXGjUITu8WibP
e+Z8MQRYJs/6DtjjuuA5nQLxItC/u0I3EOGIB+y3iw/xHgPmlk9Ugp+ckXRy
rfxUYzYs2J3OaZ52xj07p4r7yrPh1XcrFsdlZ5yh/k3LkpsNFYItvCeYXbDg
wo6KeweyQSm9QPGfugsOhCbrTtBnw34TXfeJYy649mXutJRHFpS9ojRfVXPF
/Sw7js/wZoLcT9OIfXkk/MNWZyadng5W+wpjxUtIeCp43F3CMx3CcoeTWMpJ
GPzN8QzopcO1XQFZow0k1DIcini6nrZ1/5lnUt+QMN3p1jwkp4HixfaH7ZJu
KMh1cMep1MOg4rSXV++RGxqt5tS1nEoBh6okIYkBN7wxt1/O8lAKxEzfE2F9
54YV+6F+7UAK3MqwkR+bccMCx+G0KyIpoHY9VP8w1wFM2siYJV1PBo1tNaEd
fgeQfFOGf/LZIdBpFbivR+OOG+/LnUE4CVKfNnxaYnZH1zdXtz53EnSOGdFe
4XbHxwJPK62mE0GfJtKER8Ydf3mZKne2JIKZZdezOVt3PKbMr/rMMRFcxkLf
natwR9mblsVHixMgjrpjkVrbA8tPH5ZdE4qHJk4HrhYDD/yVRGlOZIiHVYlv
6hFWHnhqnN6OdSEOUi04Dr338sBx1n/uh7viIIsc8K8xxwPvLrxfjwiNgxIJ
Nhb/Vx4YeSRyNO9eLDSYe0k8jvREm/9eNwgkxcAHq7vltsmemOnU5HjVNwbY
7Li53mV74qrMzhRH6xgIc35KM3PWE2VOPFmYF40BaT/NcY5uT6x2zKAyH4iG
C6nsZR58XpjVcaYtUj4aKA33dvy+74WTla9vfpqPhK5Ggby0p1649kzC7OmT
SFi8E/9v27AXmsX56oxXR4J9u9ycwLQXlhMeGcfdIyF38mlAFZM37k6r6f78
NAKMfmoaPlbzRo3jvh3hjeHQwbTjL0e+Nx4/xTT7uCIUYgJyDm2c8Mbojz8v
/EgPBen7G7++lnjjg1dG4Uq+oVAS/326rdwb4cidFkGpUAgef/gu4IY3ej0T
zExpDAGupvg7rW+8sX6BZ1xn4CCE+YyE+Uj6oKGB24HXu4NBtN1+ylLOBxts
QvlG6YPhDU+vn4ayD9ouaI3/mw4Cg2e33Zh1fPBMx3uuypYg4NMsMLtj7YPC
CdKte/cHQReLvjhjvA+6ZqjHlZ0IBIGWmpEbXT4onsbysY4nAEyYqWjo+3xQ
sTaRV+2vP8R4kqRJ/T545zz/rtEv/vCEjiWe+p0PqhQ30By94w8p9tFsDnM+
uNJn4aPh7A+jP3T1l/h8cZKmRX6t3A8qdw3WqEf4oucyzHKCLzyJkn2eH+uL
0mJmb7hlfWG5K2tpLMkXs2xM/Pdy+4JNiAbmZPkiq1bZj9vTPvCvqezd8Blf
zE7hNftx1ge87QJZkrp8cdlIoH7pjzeIZq1H3+XzQ8/uyamACi/42JpS83uX
H2brckwwJHtB+cL6e2UxPzx6r40YcvYCHs8Nw1oFP6T4MVl/2+EFTNqb3BSD
LU4MVqXP9YSfc39bw8P8sGPHjM1ksgfcd6OhEbnvh2VMFNJo+gE4XJyp4f7I
Dyc/jvCE+BwAnV6a0NNP/LDSYo+qkOEBuK1O+4r1tR86eJOGZxgOwOUddDV/
vvth0+3JRZ0iNyh8TG/xitMfp1dP5/jXkcBThbEkN8gfV9pfB/X8cgFtA4ec
4DB/DBkp7bcfdQEuh7Jk82h//B1GclzpcoG+aAU/5hR/pF1bAjLZBdRu2qsV
FvhjXi1FnVnNBZiVS4dP3fHH5Nxt6+OHnKFFQU6whjYA2862vHHicwKyXhx7
7vYABO0yOSZaJ4iw7qANZg1AM1Gp1dezjiAWbjsjwxuAXXTfCm51OULBtdiO
etkApPdM68qKcgR/uXavO/YB+LS3Q9mnfz9wyFhf6j4XgMWBUjEepQ7gu/eQ
IXt1ADKN7D+jl+MAt7WrP5OuBCDrqffn1GMcwNlic8/87QDs/B40EmbhAOWh
9RX8TwJQ8svTnl/r9iB9nfV0xK8A/PrAjtHezx5QtT+fzzwQ/UOY5RIN7KBE
94+0n00gMvWHGwrttYMJQ8ne+v2B+MHX6tHr3XaQ45jGYOgZiIV+vwjmdVt4
Fq+YFR4biMbpUq+vxtqCa0tB6sOKQPyxK8zVJMwGIvVsI8MWA/HWRaX4kkNW
8EHYqN99JRD1En9unvKwAhsqbQXrjUA0MGVYatW3Avku0WkFhiC83NxGcWOy
gh9my4Hz/EFo0VP8iabCEvwdKzxj9IPQLc4wa7DHAtxCp62TioLw+2SuUZqK
OfRZjV8LPhmE5Y+px9gEzEFL8TUzqTQIqxPIXa3U5sD7s7NP+1IQsk1bU3sO
msGrhBLj9eYgdK2zXBqNNgPbTG29tI9BeNKhpLe02RSMzubKZysGo/1RGX4b
JxOQjfXS+KAajAYsPrTShAnssNZELe1gZAyeuSQkZQKjVN/2zxgGY9zYTJ7T
mjHEBZukOJK2OPmUDs05Y7ikSf9EPDsYyYkMVHLzRkA3nBn06F0wvplO8Rk/
bwg/Gtyid38MRhdOfPvyhCG8yFdJOTQZjF8/JMp/OGQI5XqfCxTmg/FkG7Gh
4WAIatX6TSfpDqKFIL/sMq0h+MdR0QcqHcR0Ul97SagBdO9Mu8Bw9CAKstIM
H7fQB90XqXdNjx3EDZ6ih4na+tB4ImUor/Ag/ik/VZIgrQ/nth+iYS49iOrR
CpnXGPQh+W+sL3vDFk9dk1npQtj746Ao37ut+KYMs1/6CJUPnC7IKITg3f7O
9p8nCeBOd7wbohKCMfKsxxSTCPhv3/6hq5ohqOHk9O64GwGHmu1oFA1C0Mxn
xLd2NwGO9Za+Ki4hWL+7fd7jqh4wndUX1c0IwaPso39re/dBYpTCBavXIZj5
q3/5Jr8usGz7fUj1fQj+aLz1LI5aF6oq2u0FPoYg3bXv9HbfdeDJE0vqqakQ
3HT7qGHbqgNCEiHeWRsh6Ew/UxfupgMP39UI3xULRTZbjUXO89rAYrinTCom
FM3bvaScQAuq3n2LYUsMRWMWr/OLMlqgHtVg8TslFH9/mnSv5tICzwriz8Oj
oTjl8kzX4ocm3FxxJ3meDcX2fQvchac0wfnaWd6T90PxKy1P8s9FDTjPzUmh
YQ9Dg/UzhkfuqsO1Sx08+7nCkGvQNpGuRh1aVIPPXuQPwwKFxsTKYnXot++o
NBIPw4qLsUmcB9Vh40RQXY52GKZRtTb95VMHZ4b2Tib/MLxtrRTXnaoGLCv+
33e2huFHrbCLAftVgS+HPcyvMwy37yqziNNXBTHuu3O3usLQ1T+996SSKuio
sv9y7A9DoySdnztYVCEosvXvqYkwJG3Kl355pAIPv7FyCbKFo1qxwr3f+1Qg
8W0TIeYXjuV//a1EtfZCFcpm8AeHY5Lkqk+EzF54crmiiz08HF2onzf0CuwF
oUPZZhsJ4bjyJ7W5dlMZ7vM7OLw+Fo7P288OsnYrA9OB2YDcxnAckgogwvcr
Q+WY2Ilp6ghEHL0qs6oI3Z+LRm5VReBFO0dT1Uk5SFOUky+ujsDvP2x2ZzyX
A63kR6kRVyKQo/H0wkSTHFzj+LNL5nYEHp9RkJnKlwMK+nlX9kRgZYF/5ZSy
HPhXqn/Jm4vAB2NXjZszZYHO7f2cx75IpEhFl22qyYDRoBjN9reRyGQ6/4D+
hSTEc5/ftBmLxJjaNcfIdkmoIQmvnfwcidZ96SwzlyVh22e+BbHZSEzo/3BS
OFMSAtYY5ndTRyHd9dDBAHVJkGbaGNXlicKJNzs1Q89JQL3c15ZYjMLrtdu+
9B4Rh5aIu1ETlCgckGYNGowTBa/DHv2k01FoXJ+RHB8oCgz/Ucm/OBuFprq0
VpKuouBUZ/KtvTIKt519tlyvKwqLE0Mepy5H4XO+Z6yOtKIgT5q2MG+PwmP8
LEcWKCJQZSgk0TARhS/ZL3LzPtgD+Xxp75JVopGF/vUHu3hhCLtYwiKpHo2a
ub9f7ncXBhvFWhjUjEbWwaPqEYbCwGX0olpKLxqd3BdHpjiEoTJSNOaVaTSe
f8vAttSwCxofP2ZS9IjG3jVOUZMFIRiNY9/3KTcac7RPeBtnCILyYFWl6Vg0
iot0DM5+5IOR572uXz9GI7WpzvvEZ3yQ82Rh59HP0ehqFGnL2coHo12Y+/Bb
NPaoauqklfBBXtN4pN5iNHKv/pYXNeGD8bI9+qrbYlC1rP8C+QYvFAVWTQjv
jUHTxI7IumIeWFg/J72cHYM0B2cCiAwukA249jAoNwaHZ1/duhnDBf79Le7v
8rf8/SeGlf254G3VYFF7QQwu1TpEO5hywX1j2rXMMzFY5Eb3TISNCwoLA/vY
r8UgbfHXj98qOEFRTCFE5mUMHnf9MtL3aCeEWdy96i4Si4fPnDHuVeOAT0pa
grTisfjLTbrgkxQHOHM3HauTjEXWftMFekEO0B+/eXBZLhY1mT2HI6k5gCeh
TqpIIxZz15Ooevp3wP3zZy52Wcbi7OV71YdCdwDXWkKZbEIs3jf9nOhAYoeO
WtXjq09isalv1V3zDAs8XDv5Pvp5LB71vcTamc0Cjy1XZaYHYvGW/YM/+6NZ
oH++vXfsVSzaH3vgWG/BAh80TRi6PsRiTGgfmesvM1D1umacWIxFeveYnrog
ZjCaOpwoKhCH9zsix08aM8ET6V4/q4NxqPQr5eKQzHY4NaOn0xoah/eKZxJ5
BbaD341bOyQj4vDHDgfOYKbtsKF5ruNfTBxOlzskyk9vAyXTBN5bqXHY/bVk
HOu3ASVA/Cl/URya/t7TWqi6DTwvHFH51hSHJD97jywzBvgpqE2dSRePsX9r
mJ4X08HqgT31YtviMVBKtbEyiw6oyreRHjHGo3+lcWlKPB3sEBq+sZ09Hk9c
6KN1IdGBslCsdyF/PBZOikqQReggSqj+XrliPLq4N2/ju00L80Iiac2u8Sgv
+S2e4xMNzO5iXJ+5Fo9MLXUrfa7UkP3kVY5PQzweI82w/rCmBoHEqp3DN+Ox
tDH3L4chNZi90JS91xSPU2z7nA4pUMOlzEBS8f14nPVYkqymoYYD37qa1V/F
I3+B1KfQ61TQdyMtLm09HlVv6lIdZ6aCasNfs+wWCShXSpd3+s4mkRS217bV
KgGb24ONx89vEhYnI2742iZgZ2ofr1bBJjH3dSrmjmMCzhon9XAFbRIax8ZW
3LwS8PIOxu9H+DeJ3hePqWviErBKS56DP2ODmPE4y73vXAKyyHy1WHRbJ1SS
CL3gXwnoLuDr06KxRpBZvdMmlxNw74rMiRSpNeLXhYx73msJqDTi4WrOt0Y0
Pe/WJ/1NwJLKsqt0f1YJXTFLE4vtiUgSYPZY61gljPpdbOWFEnHQfc/9l6ar
hLN4tM+CYSKyK3CWc/mtECkvLh5NIieioWWrz66m38RY6ZeSEKUkLPWToJ8c
WCS443I2it8m4S1yrfKG9ALBGG3gFZ1wCAMltgf2i84QQ6kewjkiyXjuueqH
cosp4s4fxwupfckoKeBEVc/3hdhfHrRbLjAFG6p/OnH895nosXq3yrYjFQXy
DD9pK4wTy3sCn165noobvTqik/+NEhA04CttcRiNesIi5u3eEZ7tp51HFg+j
ikHcxKTJMKGlnmJoUpSGTnuOZjIPviSGUwxk6clpqDjfLvHs8Usi/iEjR/fJ
NHyUUjNb0v6SaLQ980G/LA2Zrr99r3L5JSEfcueQXk0aJo6HNLWlvyT2nJtv
UGtPQ8tczvezSi8JRkZ/IbGpNExacLnVTBkiLtvK0X7+kYbDu16yqR8fIkxO
LX6vmk3Dil8S7C0ZQ0S2WEaz8FIaPnbfM98fMUT81at0EPibhrcdTj4E8yFi
MeZtHgdXOso0ecfI/hskilrPRb7gSUeRZUES1fIgoUQV5FzIn45ym+J1IzOD
RNiJ32Ksu9Nxo+1CwoX3g8TX2p33tsumoxK/s29U0yCRPfeuukc+Hb+SMhSj
6wcJMfXz/+UopSN9H2GaeGmQ8H6o5Eanno6BCUZ25JJB4u/2FezSTMdj+mna
dfmDRIVtp1SmTjp20sr5dB8ZJPadOsqmr7eVj/1Z12TiIPF+1Or3P0hHJ4vP
HkyRg8T/ALKNDt4=
          "]]}, Annotation[#, "Charting`Private`Tag$2973870#3"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0, 500}, {0., 0.019749501994637892`}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
       RowBox[{"1", ",", 
         RowBox[{"296", " ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"2", ",", 
         RowBox[{"224", "  ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"7", ",", 
         RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), Editable -> True, 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.24561133333333335`, 0.3378526666666667, 
                    0.4731986666666667], FrameTicks -> None, PlotRangePadding -> 
                    None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.368417, 0.506779, 0.709798]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.587148, 0.40736066666666665`, 0.09470066666666668], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.880722, 0.611041, 0.142051]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.37345400000000006`, 0.461046, 0.12992333333333334`], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.560181, 0.691569, 0.194885]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{
               TagBox[#, HoldForm], ",", 
               TagBox[#2, HoldForm], ",", 
               TagBox[#3, HoldForm]}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], 
     TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
 CellChangeTimes->{{3.8482538059339123`*^9, 
  3.848253846044467*^9}},ExpressionUUID->"3cadc262-eab7-4fbb-884f-\
234f08e0bbde"],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
   "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", 
    "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\
\:0439", " ", "\:043f\:043e", " ", 
    "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\
\:0440\:043d\:044b\:043c", " ", "\:0438", " ", 
    "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:043c\
", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], ",", " ", 
   RowBox[{
   "\:043f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", 
    "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", 
    "\:0444\:0443\:043d\:043a\:0446\:0438\:0438"}], ",", " ", 
   RowBox[{
    RowBox[{"\:0433\:0434\:0435", " ", "\:0445"}], " ", "-", " ", 
    RowBox[{
    "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:0439\
", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441"}]}], ",", " ", 
   RowBox[{
    RowBox[{"\:0430", " ", "\:0443"}], " ", "-", " ", 
    RowBox[{
    "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\
\:0440\:043d\:044b\:0439", " ", 
     "\:0438\:043c\:043f\:0443\:043b\:044c\:0441"}]}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.843131030649044*^9, 3.8431311460404525`*^9}, {
  3.8431534352323246`*^9, 
  3.8431534721316104`*^9}},ExpressionUUID->"7d92322f-b234-424d-b5ae-\
4f47a8aa5809"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"Psi2", "[", 
        RowBox[{"k", ",", "q", ",", 
         SqrtBox[
          RowBox[{
           SuperscriptBox["x", "2"], "+", 
           SuperscriptBox["y", "2"]}]]}], "]"}], "2"], " ", 
      FractionBox["1", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]], " ", "2", " ", "\[Pi]", 
      " ", "y"}], ",", 
     RowBox[{"{", 
      RowBox[{"y", ",", "0", ",", " ", "Infinity"}], "}"}], ",", " ", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{
       RowBox[{
        SqrtBox[
         RowBox[{
          RowBox[{"-", 
           SuperscriptBox["k", "2"]}], "-", 
          SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
       RowBox[{
        SqrtBox[
         RowBox[{
          RowBox[{"-", 
           SuperscriptBox["q", "2"]}], "-", 
          SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"(", 
          RowBox[{
           RowBox[{
            RowBox[{"Re", "[", 
             SqrtBox[
              RowBox[{
               RowBox[{"-", 
                SuperscriptBox["q", "2"]}], "-", 
               SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", 
           RowBox[{
            RowBox[{"Re", "[", 
             RowBox[{
              SuperscriptBox["q", "2"], "+", 
              SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", 
         RowBox[{
          SqrtBox[
           RowBox[{
            RowBox[{"-", 
             SuperscriptBox["q", "2"]}], "-", 
            SuperscriptBox["x", "2"]}]], "\[NotElement]", 
          TemplateBox[{},
           "Reals"]}]}], ")"}], "&&", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"(", 
          RowBox[{
           RowBox[{
            RowBox[{"Re", "[", 
             RowBox[{
              SuperscriptBox["k", "2"], "+", 
              SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", 
           RowBox[{
            RowBox[{"Re", "[", 
             SqrtBox[
              RowBox[{
               RowBox[{"-", 
                SuperscriptBox["k", "2"]}], "-", 
               SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], 
          ")"}], "||", 
         RowBox[{
          SqrtBox[
           RowBox[{
            RowBox[{"-", 
             SuperscriptBox["k", "2"]}], "-", 
            SuperscriptBox["x", "2"]}]], "\[NotElement]", 
          TemplateBox[{},
           "Reals"]}]}], ")"}]}]}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "Infinity"}], ",", " ", "Infinity"}], "}"}], ",", " ", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"Re", "[", 
         SuperscriptBox["k", "2"], "]"}], "\[GreaterEqual]", "0"}], "||", 
       RowBox[{
        SuperscriptBox["k", "2"], "\[NotElement]", 
        TemplateBox[{},
         "Reals"]}]}], ")"}], "&&", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"Re", "[", 
         SuperscriptBox["q", "2"], "]"}], "\[GreaterEqual]", "0"}], "||", 
       RowBox[{
        SuperscriptBox["q", "2"], "\[NotElement]", 
        TemplateBox[{},
         "Reals"]}]}], ")"}], "&&", 
     RowBox[{
      RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", 
     RowBox[{
      RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.842980288224*^9, 3.842980304636065*^9}, {
  3.842980350190974*^9, 3.8429803881369057`*^9}, {3.842980459380775*^9, 
  3.842980460201066*^9}, {3.8429804983600235`*^9, 3.842980529303157*^9}, {
  3.842980696604257*^9, 3.8429806993664875`*^9}, {3.8429810848783765`*^9, 
  3.8429810857319965`*^9}, {3.843131180242304*^9, 3.8431311803784227`*^9}, {
  3.8431312129599676`*^9, 3.8431313227437353`*^9}, {3.8431315652060738`*^9, 
  3.843131568057932*^9}, {3.8431318423645782`*^9, 3.843131847708364*^9}, {
  3.843132835332533*^9, 3.8431328374624863`*^9}, {3.84313510981318*^9, 
  3.843135118063053*^9}, {3.8431365854023275`*^9, 3.843136608518384*^9}, {
  3.8431521386616273`*^9, 3.8431521549825897`*^9}},
 CellLabel->"In[35]:=",ExpressionUUID->"556c9c87-cb3d-46ed-8dd9-1fc8b0a73f7d"],

Cell[BoxData["1"], "Output",
 CellChangeTimes->{3.8429804208267326`*^9, 3.842980466538209*^9, 
  3.842980534275172*^9, 3.8429807076695385`*^9, 3.8429810874691515`*^9, 
  3.8431314719859695`*^9, 3.843131798671479*^9, 3.843132104320747*^9, 
  3.8431330193689384`*^9, 3.843135308664959*^9, 3.843136815477418*^9, 
  3.8431523489418387`*^9, 3.8476916849363337`*^9, 3.8476920260193815`*^9, 
  3.848252342382391*^9},
 CellLabel->"Out[35]=",ExpressionUUID->"c4b29f81-a005-4330-bc1e-c64e9841dc4e"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"P", "=", 
   RowBox[{
    FractionBox["1", "\[Pi]"], 
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{
       FractionBox["1", 
        SqrtBox[
         RowBox[{"4", " ", "\[Pi]"}]]], " ", 
       RowBox[{"Psi2", "[", 
        RowBox[{"k", ",", "q", ",", 
         SqrtBox[
          RowBox[{
           SuperscriptBox["x", "2"], "+", 
           SuperscriptBox["y", "2"]}]]}], "]"}]}], ")"}], "2"], " ", "y"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.8431533508025804`*^9, 3.843153381496809*^9}, {
   3.8431534803691063`*^9, 3.843153556845418*^9}, {3.843153759833788*^9, 
   3.843153765576248*^9}, 3.8431538701351504`*^9, 3.843154029069189*^9, 
   3.843155959385624*^9},
 CellLabel->"In[34]:=",ExpressionUUID->"51b4c549-6998-4369-96d3-3b8ae7dfd07c"],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
  "\:041f\:043e\:0441\:0442\:0440\:043e\:0435\:043d\:0438\:0435", " ", 
   "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\
\:044f", " ", "\:043f\:043e", " ", 
   "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:043c",
    " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], 
  "*)"}]], "Input",
 CellChangeTimes->{{3.843155965896037*^9, 3.843155996607298*^9}},
 CellLabel->"In[71]:=",ExpressionUUID->"09c4113c-9755-4ec3-b2ff-9af9bef1e6bf"],

Cell[BoxData[
 RowBox[{"\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"P1", "[", 
     RowBox[{"k_", ",", "q_", ",", "x_"}], "]"}], "=", 
    RowBox[{"Integrate", "[", 
     RowBox[{"P", ",", 
      RowBox[{"{", 
       RowBox[{"y", ",", "0", ",", "Infinity"}], "}"}], ",", 
      RowBox[{"Assumptions", "\[Rule]", 
       RowBox[{
        RowBox[{
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["k", "2"]}], "-", 
           SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
        RowBox[{
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["q", "2"]}], "-", 
           SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             RowBox[{"Re", "[", 
              SqrtBox[
               RowBox[{
                RowBox[{"-", 
                 SuperscriptBox["q", "2"]}], "-", 
                SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", 
            RowBox[{
             RowBox[{"Re", "[", 
              RowBox[{
               SuperscriptBox["q", "2"], "+", 
               SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", 
          RowBox[{
           SqrtBox[
            RowBox[{
             RowBox[{"-", 
              SuperscriptBox["q", "2"]}], "-", 
             SuperscriptBox["x", "2"]}]], "\[NotElement]", 
           TemplateBox[{},
            "Reals"]}]}], ")"}], "&&", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             RowBox[{"Re", "[", 
              RowBox[{
               SuperscriptBox["k", "2"], "+", 
               SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", 
            RowBox[{
             RowBox[{"Re", "[", 
              SqrtBox[
               RowBox[{
                RowBox[{"-", 
                 SuperscriptBox["k", "2"]}], "-", 
                SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], 
           ")"}], "||", 
          RowBox[{
           SqrtBox[
            RowBox[{
             RowBox[{"-", 
              SuperscriptBox["k", "2"]}], "-", 
             SuperscriptBox["x", "2"]}]], "\[NotElement]", 
           TemplateBox[{},
            "Reals"]}]}], ")"}]}]}]}], "]"}]}], ";"}]}]], "Input",
 CellChangeTimes->{{3.843153718635796*^9, 3.8431537344843245`*^9}, {
  3.8431537735999546`*^9, 3.843153877781804*^9}, {3.843154371973528*^9, 
  3.8431543752454567`*^9}, {3.843154436039977*^9, 3.8431544367799425`*^9}, {
  3.8431560377776704`*^9, 3.8431560402820034`*^9}},
 CellLabel->"In[35]:=",ExpressionUUID->"c0fbe9b7-0355-4a6c-a36f-2cb1b091ebc3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Print", "[", 
  RowBox[{"P1", "[", 
   RowBox[{"k", ",", "q", ",", "x"}], "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.869627957423524*^9, 
  3.869627970957747*^9}},ExpressionUUID->"a8fafb7b-4ec3-4516-8164-\
2e04b61ac9a1"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "optx", 
   "\"Unknown option \\!\\(\\*RowBox[{\\\"Assumptions\\\"}]\\) in \
\\!\\(\\*RowBox[{\\\"NIntegrate\\\", \\\"[\\\", RowBox[{\\\"P\\\", \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"y\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \\\"\
\[Infinity]\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"Assumptions\\\", \\\"\
\[Rule]\\\", RowBox[{RowBox[{SqrtBox[RowBox[{RowBox[{\\\"-\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]], \\\"\[NotEqual]\\\", \\\"0\\\"}], \\\"&&\\\", \
RowBox[{SqrtBox[RowBox[{RowBox[{\\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \
\\\"\[NotEqual]\\\", \\\"0\\\"}], \\\"&&\\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", \
SqrtBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}]], \\\"]\\\"}], \\\"\[LessEqual]\\\", \\\"0\\\"}], \
\\\"&&\\\", RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\"]\\\"}], \\\">\\\", \\\"0\\\"}]}], \\\")\\\"}], \\\"||\
\\\", RowBox[{SqrtBox[RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \\\"\[NotElement]\\\", \
TemplateBox[List[], \\\"Reals\\\"]}]}], \\\")\\\"}], \\\"&&\\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\"]\\\"}], \\\">\\\", \\\"0\\\"}], \\\"&&\\\", \
RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", \
SqrtBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}]], \\\"]\\\"}], \\\"\[LessEqual]\\\", \
\\\"0\\\"}]}], \\\")\\\"}], \\\"||\\\", \
RowBox[{SqrtBox[RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \\\"\[NotElement]\\\", \
TemplateBox[List[], \\\"Reals\\\"]}]}], \\\")\\\"}]}]}]}], \\\"]\\\"}]\\).\"",
    2, 42, 4, 26399387527435089823, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.869627966344137*^9},
 CellLabel->
  "During evaluation of \
In[42]:=",ExpressionUUID->"39469be0-005e-4827-a632-1196ac7faffd"],

Cell[BoxData[
 RowBox[{"Printp", "[", 
  RowBox[{"NIntegrate", "[", 
   RowBox[{"P", ",", 
    RowBox[{"{", 
     RowBox[{"y", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{
      RowBox[{
       SqrtBox[
        RowBox[{
         RowBox[{"-", 
          SuperscriptBox["k", "2"]}], "-", 
         SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
      RowBox[{
       SqrtBox[
        RowBox[{
         RowBox[{"-", 
          SuperscriptBox["q", "2"]}], "-", 
         SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           RowBox[{"Re", "[", 
            SqrtBox[
             RowBox[{
              RowBox[{"-", 
               SuperscriptBox["q", "2"]}], "-", 
              SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", 
          RowBox[{
           RowBox[{"Re", "[", 
            RowBox[{
             SuperscriptBox["q", "2"], "+", 
             SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", 
        RowBox[{
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["q", "2"]}], "-", 
           SuperscriptBox["x", "2"]}]], "\[NotElement]", 
         TemplateBox[{},
          "Reals"]}]}], ")"}], "&&", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           RowBox[{"Re", "[", 
            RowBox[{
             SuperscriptBox["k", "2"], "+", 
             SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", 
          RowBox[{
           RowBox[{"Re", "[", 
            SqrtBox[
             RowBox[{
              RowBox[{"-", 
               SuperscriptBox["k", "2"]}], "-", 
              SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], 
         ")"}], "||", 
        RowBox[{
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["k", "2"]}], "-", 
           SuperscriptBox["x", "2"]}]], "\[NotElement]", 
         TemplateBox[{},
          "Reals"]}]}], ")"}]}]}]}], "]"}], "]"}]], "Output",
 CellChangeTimes->{3.869627966391492*^9},
 CellLabel->"Out[42]=",ExpressionUUID->"bfd655d0-084e-451e-ac0e-1bb7f767e6cd"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"V2", "=", 
   RowBox[{
    RowBox[{"P1", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "x"}], "]"}], "/.", 
    RowBox[{"Q1", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.843153613284049*^9, 3.8431536149817986`*^9}, {
   3.843153649570823*^9, 3.843153667561942*^9}, 3.8431538916493673`*^9, {
   3.843154444412447*^9, 3.8431544445933447`*^9}},
 CellLabel->"In[38]:=",ExpressionUUID->"73bbfeea-4784-47c3-81f6-e61e2038869a"],

Cell[BoxData[
 RowBox[{
  RowBox[{"L2", "=", 
   RowBox[{
    RowBox[{"P1", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "x"}], "]"}], "/.", 
    RowBox[{"Q2", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.8431536172592535`*^9, 3.843153678984726*^9}, 
   3.8431538934020915`*^9, {3.8431544468774705`*^9, 3.8431544470274763`*^9}},
 CellLabel->"In[39]:=",ExpressionUUID->"3d2e41df-5350-4ec0-9780-19143fad94e6"],

Cell[BoxData[
 RowBox[{
  RowBox[{"S2", "=", 
   RowBox[{
    RowBox[{"P1", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "x"}], "]"}], "/.", 
    RowBox[{"Q3", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.843153644623069*^9, 3.843153688253951*^9}, 
   3.8431538951934004`*^9, {3.8431544020425186`*^9, 3.8431544042491956`*^9}, {
   3.8431544496685734`*^9, 3.843154449799135*^9}},
 CellLabel->"In[40]:=",ExpressionUUID->"8f149006-97bf-48f9-a856-9a54eb0f7b99"],

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"L2", ",", "V2", ",", "S2"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8431544089277177`*^9, 3.8431544271688585`*^9}, {
  3.843154584559061*^9, 3.8431545942212925`*^9}, {3.843155893888873*^9, 
  3.8431559013749876`*^9}, {3.84825389538888*^9, 3.848253900416486*^9}, {
  3.8482541178099146`*^9, 3.848254117951827*^9}},
 CellLabel->"In[50]:=",ExpressionUUID->"dec3584a-f019-4e76-b512-9ef4183d1e5d"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwV1Xk0lesXB/CTewy5rFRI/STRcLmVWVHsjfCmuJoUGUrJezLPEnW8GUOE
UpmvKSpHpgYhMlRc6aS6kTRQum4cIpLh99w/9nrWZ+219nqeZ33X2qudvfa4
CLFYrMuk/juVEmfzshRuGfZuaeo0LGPgtpjKKg86EcpcVVP/c0Nwaf5vdDZY
KBx5a0CcottvL3m+CKyDad424hZ1H1cRmgcdeSi6lThUZv7OfE4F6L//MrCF
+FKyqeFMwm3wP3tspy4xb1H8w6mQGngyUrZZi/hRPJ+acK2HkcynJWrEggiJ
z8ElDSAm15D/O3HYQ57KZM5DyJyOXLueWFxor3tAWjPkjytsVPpvPn4v/ZbQ
CsGt8TXyxMpnroz6RDyGfrPOTlnistpt2oKQNlhu+4+7FPFj/bN3/3V9CsWq
hXpCxNe3LT2tw+sEzyUWJ6Z5DIz2HMv2L3kGHb2PVo8Rn14h9mEs5zmU6tuv
fUfcdNf2F82MLnge7efzkljc9voan7QX8ErNbXs7cVqaletIwitYz19wppr4
rW5OzKbYv8Hwf/mfSojXvBwt9oh4DW32G19kEZdJX/x3KKQHVmjMmEUSP7nQ
4zPo2gdXphvDdhHHXL70OEXjHfCcu+QNiDfQYKfFeweF3r3GG4l9RS+c8i15
D/9ovFOWIJ4z1a4T5HwEo80CvaZSBnJleq2SFPrBdqvI4lvE2wci+9Qy+qFO
RcUrkzgu4hXLK20A2E25D/yJ5R6GmHxN+Ay8T1V3VhLXJCt3xf86COOV5x6J
EDs6tx/bEDsIn82inEZuMpC/QCHKLeILbJ2bV6on1sCGR19ChkChyoVlS2xR
K2r1yXUEZoUC5QJvkP6884SsYAT2q2SK7CeOV3TqUN4mgC9TYq5axP7O9wL2
NQkgP6/l9PB1ct9P3k1VXaPgIh0j7kj84WvvkeCJb5C/eOCyUgkDL8/HVSXp
jUNzqn3pVDH5PzW9hcVh46BpH6HbQVzuk1r2WngCOhf+kh1EHD5hMa8v+x24
SZeePbzGgOLs7YxZ3Sn4w12nyaiIAeksF4HMqSmws/YVW0QsBku3b6qfgr3s
/vqeQgZGuJ5DjuY/gOt8LsaPuI69Vv/BgWn4Jj4YnlHAgINE8ismeAa8Aw+v
7Mpj4C9J3YVsBxYOhsphdzYD/J1LLneEsjA0ujLmKvHfscPrrmSwsH28+oAd
cb9w0fZNb1homi4b+3cWAzOzy7gHDy3A0mQ7/aeZDKgO//h+w1YIA0Zn+grS
ST46avv327CxwSHv7NQlBs5LXPVTDGRj0qK0m8XEqRaBQkMX2ch8tHayI85u
2aTIfcHGzdnmdvcuMlBdl32oZJ8w1ole5fmnMjBQGs6f2yOCifxnH/gXGDBO
NH1Q9IcYShgpt+rEM8C1qCzme4rhssb67tdx5P3CyimzCWJYYX0sNIxYP5R1
fG+7GDrf+sl5eI4BLU7Nr/PUQpSseD+yI5bk30TjgI2xOFIyZeVGUQyITMoP
s3UkUOz47eA3ZxhwUZuW1JCUwg4Rtn2jDwO7eqIL5BSk8AQzroPE2tEyBiw1
KWyZ2Xu+1psBdp+6+1NrKTzgfedetRcDf553feKRKoVpptHsPA8G+r52RZX8
bzEOR856HeUwYHuDN6+sugRlHhyiIg4zYKniMiprLo39zTZWOy0ZmI4LqOm1
kcbZqEdWlbsYuDYcGZl/XBrpzIqP8sTsysLlmlHSmCBs2favBQP3DAeNLJul
8XeLsZRoioF1+9ySz5rIoKySo0KxCQOsMz5aApDFFvfVVRl6JI9dYQGPt8jh
ph7BnMUaBrYuUeWxz8jjjiMj7rcE4eD6Mzmz4KAiVuy+ZmF2Oxy8Wj5r8SyV
cNfHsbz1oeFwzk5k7az7GszUs22O0Q2Ho62njmvQ69B8R/D9jwIuNIgu3+1m
+xtW/MkyarzGBY3F3Etf/FXxnIF9eq0NFw5/M9hg5b4BO5w8y7VFuZCb1Sw/
mbAJI89qdyfbn4GK8/o9/D3qyKpZqZJVfBr87xlYZ+7SwG7Nzcsa58Og/knB
WOwhTcyO60pB0zDgmOvVcg5qIR535fRcDIWMaxpVbie08dWHarUtr07BhW+1
4d5BOnjQMuyBgfwp+FQSEEj76uLyb+xdVz1DoMks+TLDbMabc19TOytOwoI/
uj8kcrdg/dCKaQvRk8Ayql6Qc1IPB6hbnbsPB0PMsklLfrQ+prdV/jZzMwi8
7Y42Tp7diurCNjPh4kHwPlz7GFzchqOrXm/ssg8E6ZQr3bG5BtifaSK5ojoA
CqVUT7amG+J9sfIMZYUAaPBdZbr+OqCUucdXuzB/yFLMkTfYh2gmctRs9ZAf
1IZOs+hOxLkB8eEgJz9YvVN0RvmAEVYMB9yQbfeFyqcqca+7jFCwJ6El3MwX
4lvm1BUdjPFFbu8/U3d9IMXvy4nDb4zRhRV3/b6+D9mPCouUbE2wPOLI3YoG
byhWEX7i/84E+W18LmPsDSLjC5Y3OG5HyUHpVarZXlCkfut01uftyEsNl1Mt
9QQV5xKrWQ9TnDL0K0p87AE9O+6W7x8yRSOfAw0WP92BnxeyEfzM8OrjzJOS
yu4wVbF7m9KYGZZ4cljjTm4wf8e3KsrTHD3eZo/2Fp6AnepmpqET5qjIatdu
6edAq4Max82PQhFNVfMWHQ4sOUrXZAZQOHUiYLZZkwOOdK5kZxCFM7Y317ao
ceC779Jy7VAK9ynltbWqcGBNzOT0bASFNoP9bp0rOcAtr49PukShXV/1yHdh
DuiLWpdV3aXQ3sEm9fJLGqIkYoUGaygcTVzDKXxOw7PFjftW1FEYHfb2ZmUn
DbS89o/TjRSui30RxX9CQ5qGnDHVRqF+mFTA0noaxg+9e979hkKFkPvaJUU0
4JHl6yT7KAzyamXV59MQd3xPMLyncMShbmtXLg1KPk3y+QMUft6hPjefTsPu
qGsuHsMU5oa4VNgn0ZAR9/52toDCjbsXT/gn0DCYtEKcP0YhHaxSkHCOBm56
fKnuJIX3BY7WDyJoaM9pZnF+UGjrZL+zO5yGZYVze9J/UlhtG1U5fpoG5+ub
C/6apRAF7XGLQmkoLfOenJ+nkK2t+Ez1JA3/By2Idl4=
          "]]}, Annotation[#, "Charting`Private`Tag$2974148#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwV1Xk01WkYB/CrkS10q2srJCTXNJayDKOeN+vNVkqLtSJc4V5rydbFL0vI
HiVLk7KOnUS2iCJDrroJo5qIlK2krPPOH+95zueP9z3fc57vOe8uR+Yx5w0k
EikLn/+nbMLq3WzpioOOSvcllTwIeMBH3elJT4DdY1wzVOzWgNI8RXoO/Kkh
7vK/UzQ/2Aldzwc/xckwRewOVW9XHnoZRPb76e3BDhZZr1vPrYJ9lg35u7Fv
JBseXIl/AMpdjyrksMs2x7X9CGyADPfLZ3dhP43rpy24NsM/7nNV0tizhODH
gKJWGOffXbIDO6StjLqY2wbjcZTD4tgCG457+Kc/gVCDlmuU/99H30u/xnfC
X9GK3mRsuSs357yJZ8B+aL6yCbu8UVd9NrAbSpHqXl7sZzoRDz+79oKvpErg
ijsBxbrbQjXK+qDdwyzjO/bc0Pkcv6IXkMpPtZ3FDt3O934+lw1lQbK977Hb
H1r/su/2AJxLQKwhbAHrYnnv9JdwwUPmFRs7Pd3CdSaeAxdsFb3asP/RzI1W
jnkNPdOW1fXY8q/mCj2JQbCyQFkV2OWUtM9TgUPQ1Mewz8buShrynnAdBaWj
e9N9saMzbjxLUXsLhpfSuOjYe+lgs7/sLSxydZPtsH14k4J8it7B05IcKX3s
NUP1ptncfyFQjDwniH1HZMQiUfoDfBxdCVu7QIDB2NVRldsf4HF984MZ7FiC
Q2Kmj8FLqZ4tL7DF2wL1v8R/BMlCZVYCdkOy3EDcpgkoGfyqFYrt4Pj8/N6Y
CdB/fyvVAzuPSzrSnZiEtZVUXRq2Gmp9Ohk4Bb/V0o2X3QgwaeS1GHedgcIr
8iZHsdXWHRdEZ2fAt57LQQs7TubM33K6s9Az9IlHGtvPsd7fqn0W1p5NiX2i
47zjXu01A3MQlb2oGYL9/svIuYCFrxAiy3FPcCXg1fXYmkTtb3Anjf2Cid2l
os1fGPINOFxCPUewK71Tywc3LoBWpkGEMHbYgsm6juh3WKcqzUS6ECCz+uD2
quYPyFsQfurkTAAl23lWJOgHrJYkRRzA5oNtBsrNP2Dzu/gBUewZFmPKwfgn
WDB/0Xp6noAm7t06LaeWwNXLZm03tr1gMic8YAWgJP1WjyMBPUKa/Nz2JMTh
y1HqOUNAv+nWjL+DSajWjFswC/t1zLTCzdskVBBNTvLA/rAx30B5mIS6tqlG
CmCvrIqxTttyoY9hglJ6DgQoTf/8XmK9AQmQznDl2uF+/N344cRJbvTp8+FO
UWsCrgve8pW5yI0gdllh6DQBqSYXN0ylcSOh+wtKOdg5HcoyrJfcqLl2cKcC
dm1Tjm2R1UaU9W69UeUUAWOlYf1rx3iQW/VAn9oJAvQSDFvyj/ChKtPXgXNH
CWCZVBf2M/jQq6magWLspo1yKavxfCiStYfjjK0TTHI5/pwPOV8bffn6CAH7
3Ro2rdP4kcrw8YZ6C9x/fbVTJ/UEEEXx868MMwJ4FiWnuTUEUftmu/4UY7zv
yliOipUg2iV93lQfO9xzqcXGVxDpJ73ynDfC/f6Xk1JeIYg06GJlR7AX+5K1
7ZSF0IVOthyPIQETRXxXq/YII/a3+8OOegQ4qywJqQmR0XBqTcuQLgFmQ1H3
xKXJ6FFARXUAtnqUyAGSChl9lZrSF8HmHlX16D1KRqXkQ+rmfxDw53XXLs9U
MhIOz7Sv0yZg9MtAZNGOLag+wGQ4SJMA65KydTmlrYijl/bygQoB5lTnOVFj
CvqnfkKLZxcBS7H+DSMnKeiUQOGtZBkCCqavXs1zoaBAW2qBNDZ39X2JfZEU
9Mo/pU1jJwH1BycOmT+hoO7f1VbPSBGgYOWeHKEvgjJMO4k8CQJIV7z3z4Io
Ipe6q05vwf0eCPF/9rs4MiU50CO5CPhjq1IZ9xVJJPFm6nDKYAS4Lidn3Tst
g4Ta3rjWlkQAs+Pj/jJzWcSRCigmh0bANRue3ase8kj2ytO5KKMIcOoMclGj
KyCphloZS+EIaOWVsHS3VkTqIwc1ndjhoLaFdWPSTwnFZlGlQhLC4ezXA3st
PPaiyZnLi3Vm4XAn+4nkYrwyMvPT27pMCoeq6zpD/cdUUWIoLTGpKgz86g8c
zTJTQ0SX1b0Fehg0d92bj7Hdh/4Sz5tvFAkDN2PtRrfT+5HiSY/rWh0suF2g
VuN+QR3psCK32zFYkPS1MczrkgZyCfDbUSfKgvEi/4t0H00k2xZ1Yz3qCrQb
JWeEh2uhc8L7MrezQ4HryJv3Cazf0bhs92UjaiiQDtVy5V7WRttG8+tOhYdA
tNiieX+UDnp0+lKIRk8weNk4PV6M+ANlTJ+IiJEPhndh6uchTRdR7gUfj2YE
ASXl5puYOweQ7OuzawKNgXCfrHS5M/MgWtLubBkRD4RWn52Ge4oB0XaUyOfQ
L0O2TK7kASuEzD+n6PJ3BEBj8BKJ3odQ+qO7+SWKAbDLlHdF7tQhNFTZy3Zi
XYLqXmrs4MAhpHlRr2l47CLEdaypytjroZHi7GStQxchxXfywtlhPfRiT9q4
WZE//m+lN8ta6yPKOUU5MQl/KKRu7PJ7q480Mw8ONof6Ac83LolWBwMkeZja
2DTnC/mqFaHZHw3QjU0VPy3tfIHqWGSx6mmIlm/yylJ6fGDo8MPKE1OGCCns
6Us28YH+u4G/ga8RCj72LDqwxRt+VFnqys4boZiEkYTHet6wXudTE8kwRmN1
3uzwLi8wVTUyDF4wRrbldepOpl7Qaa/i5u5LQzz23ze1ljFhqxO9IcufhgxZ
8sKdxUxwoN8R6rtEQ5yGhciefCZ899lWqR5MQ3lk9+GhHCbIRy8urRI0dPjE
L6JrCUxgVTbHJd6gIXbLl6bTXkzQ4T1aXvOQhgYmvzS5qDEhUjBmw0QDDXVw
rK4F/caEF1seW21voqHeorvdiVQm0CXVf4Y+pqGJuLdlj3YxIV1NXI/WTUMC
6Nc1ia1M+Gb7lv1mGOcrSC/5NM8AdE5CQWgU5z+bzuaZYUCsy7EAeEdD/cwd
XnJTDJD1bpfMG6OhHuV0fod/GWAZWeDsOU1D+4KKGl+zGXA79t2DnFkaSnXY
nvijlwETidsF+udpyMZ1iCP+nAGszLhSzUUaEuLX6rRpZ8Dz3Cckt5801F3Q
zghuYYDY/bVjmcv4flBMbPYjBjgWa93rWaWhyuVQqdY6BpSWey2ur9PQ3Zxs
+Q/VDPgPCluBWg==
          "]]}, Annotation[#, "Charting`Private`Tag$2974148#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJw91Wk41GsbAPAhQlFyhqhJQoojTCRr92PLPzKnIllKUhhJZuyhjPFPOZYs
WSo0lSVUlJZTvcRJhKgmEZJdWhTZt5ynD28fnuu+fl/u696u61nn5rvHXZBC
oeTg9ysqnpu/li1/e5tsR3WgiwMJlSG3cjYyL8P/Xa3F9lzMLP7tcOmFfxZ4
pb+dlmyxbS7+AbxPrTFywn4exyfGPZ8Aj/F8kT32MCn+MaSwEo6I1Nbtxj75
tFh1kvf0t5cI2h4LTH8GGytqk2x+5UMTt0bja+BrSJ3DDmyliAsjbLL2t0vK
jHSGQ+uhhF6/1gLbaK4z6Di7AQI+1w8g7FqDqIdfPV+C3rUXN42wi4z+OLWl
+BXMOzcE6GGPtB+5HFD4GiqpjYY62Hph9ytKc/mwI/pl7Z/Yp1aJ9vzgvfnt
qoeOizZnNsHryVf7lH7V61ikzE5/C6klr+XXYu+amrMoSW4GRy9+/yrs9HSG
5/f4Fuhue+Mvhf1Bl3dWI+Yd5KY0GSzDVm4eKfAhW8Fr51uBJdhHA83qb0S0
wUhZ8zmBX/1RU79+CW0H48F3fWP7SJgoHZD4M+g9CF5pLRrGNrbV0zzK7oBq
xza/r9jkj5hdBcc+AKO+ndKHXZfUzh707IRmo46EduyzGWm1KfQucLn1gfYG
W50JTtrFXTCwtquwDvvl1sHPfPVu2GzVs1CG7SeSFOZX2A0Tgr3VD7GlW/TF
pTb2gOmm/tU3sf/J68m8ndsD9dkDBTnYPy10yod5vXDZ4HPcOewr0h2MRPk+
+HLkazcX27z/dKdmZh/4Nw/5hmLHki0U3/R+sPQb2eOOLfs01Gwo/iPcdZvu
1MV+nKzUFLd0EKos5mbXY7u4vTiiHjMIOx/Mx6zBzhGQj/YmP0H/UkEdIWw6
qnz+KfQLZKuIy9Tak2BVJsIY8PwOb6jrrjCw6Qtu4zLD36FvUqnMGDtO4WCj
ktEwjLWptKpjB7g9CrSrGoZ3jpveLcY2H2BV3WsaAQ9Jw6z7e0noGeo4FDI+
Ci/yHcLFsJsTYu8l6o8Bz2z/wTE7PG9NfbGCk2Ogn+Eq1o59h32+pFV4HHLP
MtNuYEeOWy0YyEyAmeKJYGtshfkHmfO6U5Cgl7U3xJYEarb7sHTYFHy2uFrt
hC0Kf5hrPJkC7sU8lgn2d87xLy6W07Dgc1tOELtcaL1Bxb4ZuPm5SiZxDwkH
xJNbuCFzIFvzTf3SbhIaJHTFhA5QkJY4o9bnLxL41lIZjeEUJB1r99wS+13M
N5ULmRTEznDUV8PuE84313hPQQZpHls/MEiYm1/JcXAWQOYKEbkMbLVv0xM3
HAURc2VplrwNvqfGsr699kJIfkJxdaIVCQniF/0VgoRQ9Sa1bnfs81ZBgl9S
hZC2/ObjW7EvV2socN4KITIezfTsIOF++WXnQjthVNzhwqNj99+K5P/csxhR
D2WLlluSYHrOoiL/L1Fk7bDe47o5CRyruwX846IoXEDjUSB2ubBSyny8KLpR
qLvMDNsgnOJh+0IU8e8RJ1vNSND2erx0gRBDqU7eDcuwlc3o++xNl6DSqbsr
XU1IWDxJ+ya0RRy9KWUUvTfG+74T26JpJ47iGh3ir2BzfWYqnPzFkdjVw7pu
2D97W1JKboujB/LB2sNGJEy+StbfryGBXEx53AVDEgYLRU+XbliGtsyO3pI2
IMFdc0aCLiGJWhpzFJfqkrCz/UyurLwkknUuSa7ZQoLOGWljiqYkWsP7X20E
tlCn1rGXuyRRyaXmZx91SLia4Fnnc14SVRWLXH2uTULnUFN04eoVSDzbN5lJ
J8HxRvGCkpoUWuJtSQlVJ8FG1X1ExpKK3sXRiMp1JMzEBj7usKcitTm1pmPY
17+dPp3jQUVh3vqusthCd/PkNkdT0Ror+xBfBRIebRs0sXlGRSoVib5ya0lQ
sfNOjjKTRsQ50dD9NBIoEWztYZBBU2sotLsy+L6bTgbW6skiS/NlDTeXkGAo
pVYsFEFDe1NkDhkNRYHnbHJWroMCsrn0LHq2Pgp8qz9qF9soosU6D0+rFkTB
306L188fU0Z3ZT/YH4iIgsM1YR50pgrye7Gh4aFdFFSKyO32dtyIJJ92dGRu
iAL6Ck7apwA1JOzQzFQY5YLrqLE645g66qt6wpsr58KV7Ge0yXgNlB89vVI1
igulCQbt/D1aSDrr72x7Cy4EPDLelbWTjvjCbZ5CYlx4Upf7I8Z5M7I8eNJ2
qCoSvCz1y7wctFGOf+XVRVGRkHmdfs/7qA4SvubsRehHQtJoWSQreAv6KUU7
fPMbBwYKA4OYfroooWdnkVM+B6q2J2dwuVsRg/7qjLUDBwT+aus5x9FD62tu
8JdKcIBicl+Ad0If7W0fVzQhI+Dsykkb/hkDZDOiKMzsPAUsp8P/TkYZog7m
I5Ems1PQHalzBFKNkJhBU0/ShZNATbnQFnPFGDV3ZSwyHQmHPEm1EzWXtqHx
PxOoMbbhUOm31mJDESCPR91rx/PDIFuBRzO2Q2g5xyopQyQMysJnKMxXCFFd
lGU5R0NhnbXInNI+E5Q+qbuJWXEC7r5UjW1tMkGyqcYDOxRPQFz1Ty2FA6Yo
cLmr9NvgEEjx/3TU9b0p8jF0R09ag/H/L79c0dEMlTNuVsxCMBSoCtcFdJkh
0aZBjcaLQbB4TECu0sUcKUvMXLQWDIJ8rdunsj+aIwXr3qMLLoGg6lbImPex
QLLBg6mfKgKgfcfDO3u/WCDn/kqtM5oBwL8Wugn8t6OYJUSsw3l/mCrdbaT4
A7v3Wm+TsD8s/ON3L/q4JUqPly8NCvcDa63tFuHjlmjLuDyh9ZkNNQc0vbz9
CeS7TLCVOMIGqcPMx1mBBMqX87w5fYgNLswrEq+CCeSZ1rD86kE2TPj9cUcn
nEC7DNPUxJ3ZoHx2cmaeJBCdqRb+cjcbOHeexCWmEch71+4kF2CDgciuknsP
CbT1U/p43io2RIvHCA4+JtAgd9bQVZYNr1f8a7eqnEAZtINcORk2MGk606f+
JRCnckNW1Ao2pNNlTYl6AtVeeGDuKsqGMeeuN23vCfR0nP9p8wQL0CE5FYlO
As1S9Mp7R1kQ67EnBLoJpC2elXx+hAWK7CpaTj+Blja6JS0fYsHu6OvuPt8I
ZP70O22+lwWZsd0PLg8TaGy/7eH73SwYTFy1hP+DQLTT91aHdLKAcynulu4k
gca3h60abWPBC94zitc0gXK7PrjeeMeClXk/91yaJdDeUNN892YWuBVtzW2Y
J5AwNW9IvokFt0pYkwsLBNpkJJrX9ZoF/wEcc69z
          "]]}, Annotation[#, "Charting`Private`Tag$2974148#3"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0.002987464548829257}, FrameTicks -> {{Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0.002987464548829257}, 
     DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0, 50}, {0.002987464548829257, 0.00997193241052691}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
       RowBox[{"1", ",", 
         RowBox[{"296", " ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"2", ",", 
         RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"7", ",", 
         RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), Editable -> True, 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.24561133333333335`, 0.3378526666666667, 
                    0.4731986666666667], FrameTicks -> None, PlotRangePadding -> 
                    None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.368417, 0.506779, 0.709798]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.587148, 0.40736066666666665`, 0.09470066666666668], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.880722, 0.611041, 0.142051]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.37345400000000006`, 0.461046, 0.12992333333333334`], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.560181, 0.691569, 0.194885]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{
               TagBox[#, HoldForm], ",", 
               TagBox[#2, HoldForm], ",", 
               TagBox[#3, HoldForm]}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], 
     TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
 CellChangeTimes->{{3.848254130234454*^9, 
  3.848254130272463*^9}},ExpressionUUID->"7811f0be-f9d2-4836-8214-\
f2cba0890f96"],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
  "\:041f\:043e\:0441\:0442\:0440\:043e\:0435\:043d\:0438\:0435", " ", 
   "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\
\:044f", " ", "\:043f\:043e", " ", 
   "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\
\:0440\:043d\:044b\:043c", " ", 
   "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], 
  "*)"}]], "Input",
 CellChangeTimes->{{3.843156060540451*^9, 
  3.843156070864973*^9}},ExpressionUUID->"24682f48-fe78-4702-b7ba-\
c8a624310eed"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"P2", "[", 
    RowBox[{"k_", ",", "q_", ",", "y_"}], "]"}], "=", 
   RowBox[{"Integrate", "[", 
    RowBox[{"P", ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{
       RowBox[{
        RowBox[{"Im", "[", 
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["k", "2"]}], "-", 
           SuperscriptBox["y", "2"]}]], "]"}], ">", "0"}], "&&", 
       RowBox[{
        RowBox[{"Im", "[", 
         SqrtBox[
          RowBox[{
           RowBox[{"-", 
            SuperscriptBox["q", "2"]}], "-", 
           SuperscriptBox["y", "2"]}]], "]"}], ">", "0"}]}]}]}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.843154572190744*^9, 3.843154613927022*^9}, {
  3.843154855435098*^9, 3.8431548741800795`*^9}, {3.8431557366749687`*^9, 
  3.84315580667634*^9}, {3.843156074713861*^9, 3.843156077008526*^9}},
 CellLabel->"In[42]:=",ExpressionUUID->"4aa23bd3-9fc5-44a0-b942-5216f5789198"],

Cell[BoxData[
 RowBox[{
  RowBox[{"V3", "=", 
   RowBox[{
    RowBox[{"P2", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "y"}], "]"}], "/.", 
    RowBox[{"Q1", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.843154753218886*^9, 3.843154777141105*^9}},
 CellLabel->"In[43]:=",ExpressionUUID->"79b32260-3d3b-4bf1-a08d-0fea492553b8"],

Cell[BoxData[
 RowBox[{
  RowBox[{"L3", "=", 
   RowBox[{
    RowBox[{"P2", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "y"}], "]"}], "/.", 
    RowBox[{"Q2", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.84315471836549*^9, 3.843154722057902*^9}, {
  3.8431547555798607`*^9, 3.8431547724428005`*^9}},
 CellLabel->"In[44]:=",ExpressionUUID->"4d010334-98cf-4b38-9855-df93f1ce863f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"S3", "=", 
   RowBox[{
    RowBox[{"P2", "[", 
     RowBox[{
      SqrtBox[
       RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "y"}], "]"}], "/.", 
    RowBox[{"Q3", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.843154732355355*^9, 3.8431547847248154`*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"8b215324-d4a4-4be7-9159-76bd3efa9294"],

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"L3", ",", "V3", ",", "S3"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"y", ",", "0", ",", "300"}], "}"}], ",", 
   RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8431547892758975`*^9, 3.843154799841782*^9}, {
  3.8431558197216015`*^9, 3.843155820908786*^9}, {3.84315592502964*^9, 
  3.843155931597404*^9}, {3.847691824991763*^9, 3.8476918251596203`*^9}, {
  3.8482539905602865`*^9, 3.8482539940809865`*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"d20724c8-7667-49a9-81aa-abe87a7a5efc"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVVnk41GsUVpFIkmS5WUKYQUwYM2M7h7ImRZFdloRGzJj5UZGsZc2WJZKk
VBJF2qWuhHDjFolbJBGhJNwSd+4f3/M97/Od7X3POc/zKfqEOBxYzsfH95p3
/r9rnBZ+TFT2mngea47BIhWTpCbPHvv0O/BBE3Tud62AjLexx+TTn4Nj0Fo7
/671kPMxp50/vQeadIaFbnQqQ+7nc7NzaSPQntvwQ/ovXZBiKqV8S5sDpwWF
kanGbbCv0s9xMk0QN9slFtYW7YG2j943PGxWYco/96fk9PcCynoJtq8Uwtmr
YgvUv/aCeorLvYpoYcz+tFwkkM8JFgLs5AJZa7C/av2JQk9nsBcvmmZdW4d/
xO2LMlvlAXPtCfe/pEkhZ+IWv8AyX/ADYfq6GSmslVlWGWjrC13V6beprtKY
91LFOCLPF25k51UfV5XBFyHnnqVr+oGfy9XLYo//wIfSHO14hwPQ9bEtS++r
HFaxt7bWpB6Ent9JVBOyEk46mToq1R6CdH1bzm53JRxzvaLxe/oQbA8RrfE5
rYQVmjrpB7cy4dZAFuXkDyXkupO6Rq8zIf3PQo2XT5RxqlnR/HRxMJgnVSr6
uKpg6KHf54WYIVAj0bkmMYWEi2KkFw1OLHjI2viR+oCE/jZZyXrBLGjsOHB/
eIyETgHKdmFxLOg+9dPf3IaMzt32PfZVLJhfUG7gF1LH/PNys1n8bDAZJthx
iRoYfLh6lHyJDZZmT6x06zRwU/rS0V132bD7/GqFoWENZH8vjcEXbPB2KXlh
Zq6JN4VadBO+siG+vWXzcv4teH2J5VtID4PW27I9J2K0MKaHaS/2OAy6xA9W
Um5qYSI94tNcRxj0hdyMGxjQwsGle+nX34XBF7IFBVEb94TrlEX9DoO1xSFJ
S4vaOO61Z/gpnQOpv/ur9klRkDx9Z62UJQfENJcXamtT8Fyy8TGGIwdkkmxZ
7z0pSBfqf/g5lAPq2wbloJ6CG2WWX124xIEbrJVCUt0UPK1IOfP8Fgd0SzRm
JicoKNDxa7PPYw4Y/ea2FsttRbUHeZMr33Bg5x3h8MXIrehoX54kIciFUA29
l48MdTB83Y3PTHcuvKNZLsnt0cG2njtV0v5c2LndVet4kA7KneqRLQjhgrrH
iVSTAh2sSRb8UzqWC8PpbVaPZ3Xw9uSinswlLuwtfB+uIKqLdeFBqqGVXHha
Pn05WkUXmbMlxLnbXChpkBbAvbqYFGIkGfmMC67Tfk8aburirlfZebuGuNC8
GP51U4suhm60euo1xgXa6hSFmAFdjI/aKWP1jQsSm29Gma7Vw7MilvTSRS50
OP5mPGXqIdW+7n6sFAFGPmKBSvF6eCBioMlVjoCKw8r5sYV6WNP+u19EmYBT
J61nzVr1sFo7VoZPi4Bt987c+lONilLzSlFkMwJuPbsyqAxUpDZLx7yxIGBT
1wOxeCcqdstEhfvuIGBxbPDw9gQq+pLnt4ruJYA5N3OurIiKKeUES8uZgL4V
q9r5a6mofk/rrIY7AXdltTSefaBiWGVn8SNfAlTJpq4qP6nIr1E863CQgDPU
vUkJ6/RxuamvdlMQAWy7oyPmqI8yc98NLVkEDLimSV7ep4+XFntSHDkE7DpY
Yr4yRB/Fjg7WmoUToHmi6WLTOX0c8ctLvh9JwNnU3i7V2/qY07mnxjyaAKGC
L8tOtukjztpXVscQEHFpiTIypI/R1FN1v+II+HRTfL/lL318e/WDiFoiAY71
KqfLxWk45mc6qXOKgMZWer2gOg3/qCPyFZIJuDDkKdvsTMPqQC+TojQCxL6y
dpBCaSgT73tb8zQBxxfij546ScOhA/3jxRkETKzKvzpaTOPNn4nC90wC3DdU
vLGqo6HkzZFUcjYBrYr1glfbabgmdCPbLIcAhlanvtAwDV8UrRAxOUPAFYOP
BwIXaNg/UJknm0uApOVcTst6OqoeFXZ4x8PTzTvmN2+ho3PPACkjj4B2mxK3
ExZ0DI0cqNiUz/Nvm6nv86LjzU32pAwejrezVqIdoaPNG+vxdzy8/+W5hKws
OjIUq0zXFBBg6DA9OlFBx92/KBEbeVjylYWt9TM62q+27hPi4WnHwqqyd3R8
3ky/84bn39EzJc43T8c/6wSdT/HwVZfthNs6BtqUxwjJ/J+vL7+3Tp2B3kJU
qRReffs9JozEtzMwzpTV9n/9hu9NS4I9GFgqYs6R+J+fd+6KFoKBnhORLpo8
/tMfxvw3ZzDw+MULTao8fdr9oDX6KgN9KmcF+Hn6XfmUvaXvKQMr/o7wbuTp
Gx8wmqHfz8C0+n6lAJ7+XmNGM5k/GChyJi17Kp0AA2bmvglRA3xzqWLBldc/
ycnh+1YkA3wks7r8WgoB30IM5MtMDTC2SqfvXRIvftjQR1eOAbp1BS2bTeDF
/0GzqkszQKnRn7G9vPnxCk+tWFdugPqfd1WW8uZL8hiV3dxrgHp6D6VGePMY
H3tyiQqGWDul8A3YPP78/T6Zzobo9LYgwDmExz+R0vSFZYj+jJ91zkwe36Te
1ItlhmgTPTK6zp9nn6nxxzphI9RRy+U7zNsvo/UnopjKRhju2p/Rxts/qTOv
Bp4bGeG++JNrN9jz+pEfVX48hPce8aTfz5pnX/KX3pdXRkiuC3q6kkGAtNLm
fMtJI2y2ln/1QI+A7xcjfpUKGqOdZtXf7hQCrpUrPnUxMMbexZYcXzWefVXY
rufnjTFOL/7vZAme/SOpoNIgExQMqD3LGefCvD2lwDbWBDe8t6f7fOLCwrBV
82yBCSYoVWSYDnKBX/So6o4WE5zu7lXt7uaCpGf/h+9qgPE2/O1uT7hAXyxx
Mx8G1F66Lr+UzQVQOKM6U4X4o2zN300ULpgFKpq0PED8PHmr21idC9trKh2L
nyPaJ1tWVChzwcqyKd7qPeICrnViSnJhd8jchyJRU3xUU5aU8IsDPo9dzpsH
m6KY410qtZEDCV7y0nnqZijTWssM3M0BE78XLYE0M6xwGOp1teLAbEDEMaPt
ZijYOyRvgRwIYHe9G/QwQ9435J4whQM2CYmXNDPNkFMnMbhrLQdEKyZ1ns6Z
4Vv2jN2ntjDIn63fOdG4DSV2rOBsMA+D62lecdu8zFHQ+LWHuDYbNh5xZ87H
W+FKyl2u+PpQKL/a157I2YEz7mb85dFM6DiZdOfYRTs8odma1f9vACS/7hdR
6diNneyazQ2y/vDyWVek2DYHTJVIu6hf6QsfRQYoVT178MCFN5oaB73hJKF1
wcDeERfUZOsjyF4wp5/jeGTMCS12hlFlG91gdXePlVGkM4plJGy+POIMN/Lc
58enXZAm5cgOzXMC+er5cbskN2yktZaWBewFufHXhcX8HshXLJAffsEBxiJb
T18474nJ1sr2vt92QyVh550jsx+H3F6ZOv6ygy34xrnj9X4UyO4SuX7GFtbf
Dp4evOCNpdUx41MWNmD6QHns0H4fjPaTPf7CzQqeVFsto2/0xWtFAp0OFRZQ
bn/k/j/Dvhj7EzI+CZjD67jWzn9L/dBW48Vfzy5ugyBvtZSpkAPoblqQT7M2
A3ut775qDH90OuWvLSRpCtGp78++nvHH7siA3VHrECRye8I8Gg7iHl831oSC
CXylfL3mdjwA5RgjXoMBRiD/IHxZET0Qw/OLR53/MYCar8I/by8PwuYLKpXi
exhw+k79bovHQfiViP5QwEeHLvJx6+qUQ3jLMt7z4A19cN/iWZJhw8TAMAGp
T8lUoG+qlKwRCMat4RvGKmL04Fi9oHbVy2Dk/njV00nogsBk7CXF9MOoYpDp
l3BaB2abheqD3ULwGhyVZV7eCkUtSz+jxEMxSvNc7p1OCnjPCVucCA3Fp29/
9oVIU6D350afkO5QNB4fcoB7WvDDwriygMrChhqTZknWFrgvLLlqOIuF6mGm
A41mvE972Yyu3DwLidRr849ENcAucSg9w4mNB14fsc3nUwdLm3RbfWc2KuoN
DQsskAFFGcL9LmwMYly+yZkjw9bc9AQ1DzYuima+c5wkg8RlRmS9Lxv3PQiK
Ve0nQ9+z04FfQtmoP2eVy3eXDAECRtutUti4SeOG9JlQMni3fFo2mcrGe1Ek
XRKTDK5pmY+z09mYZi0W9vAgGWw3jBi8z2Qj0HK9Rz3JoK2StZXIZ6MsKXFy
504yzG4flS+7xMaLXj2hu9TJMLUqu9+6nI2+JT41MypkGG0zPjt1hY2NOqob
ChXJ0Ls3e4PhdV6+hx1649JkeOhnItJ1i43ysf/25guS4Tbpc0t4LRtzrM+u
tlxBhhtfsk/K1bGRFRbgMrtIghLO5+WB99ioGyts5TxLggJ6ToPoAzZ25MqN
Ck+TIGvB5HjtQ1684P7S+gkSJDd8NnStZ2PE8pHwsM8kiIvP+XfpMRvPRf7j
Tx4mwX89P/WK
          "]]}, Annotation[#, "Charting`Private`Tag$2974057#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVl3k4VWsXwFUiZEiSzEPmyJXZcdY65uKKDIXIVMnsmM7ZlSSUMmQoUSEp
VApFV0KikFLcEFEkZR4zXKFvf3/sZz+/51nPb+291nrfvV8pj8ADR9ezsLAM
kNf/748dVuYnirupbSsEjd9qJzX+tWuXTdJTqFB3/XdP7nq43BN9UjypEXQL
08zmcvgh/Xv6O9akLjAbzjU4kyMNV0duLiwm/gSBu9JmCzfVYbuf9KWZxEUI
z1H6uphhCAeLvewnE9nx51C5qWrUAVh8F/tsPHE75g3oM8ekPcALOHW2/NqO
Px1tj9j4e0B7SVK5ppMQVnl78kU/9YCHaRklkXI7sHAk4z1aeIKXY9Fdvlph
TPDgZ5EI8oL2729TNabFMLK4O6z64THoWo3XpCpKo6xR/0zXsg8kaVmGWh+W
xolVLnmagS8YB/I89kiWRjtBI2u3M75Q1p+qdn5eGtW79Nxq1vtBUv115Q91
MpjV7cUzttEfTOKLpTycZDGfu344czUAHgu0ccddUsD0sO5rhQeD4XmwyHfN
KgXs0C0ZnAoOhobWo8+GRhUwHN+pbkkIhs4Ly8dM9ikiR7qBzUBtMCytyLxg
5VBC9gzRuieydKAOhdPPxSmjAPXhFf5ROpgZ1pnvqVDGNVpT88S6ELDO4ZIY
HFJGVdmG6Fs7QsDdMbfF0GQXKsNRaqp5CMS8a965nlUFJ9LeSmXkh8CbctGu
qLOqyNf2XljGPhTa+Y8Xq5Wq4ufcF+uifELhc2Dpuf5+VVxvMnT/yZlQGFc0
VUPcjd1+CX/dKQoF3uzA+D9ru5GF/fvpvN+hoGQ0IAY1avhRdlZ487UwCFLW
+FCtr45y+dp7HpSFwxdtsz9itupo7RaiUPIyHP42dlKN9FHHiRuxnxPbw0HJ
JSqBmqmO93kYDzpnwmEo6a157YI6Oh3R9M9RjQCnWa+6F6V7cHRELF74VgQ0
rUVMSzbvwciPy9vrHkaANtclibP9e/C5x1tXw+cRILCz9DSNVwMPbBt27+iM
gFb7Vd2Xfhq42hwZApwMMKq8UlYvr4m5jq0lWj4MKHtVOCADmvjxv6DbqWEM
kGyv4otx0MThPo+SN1EMWBsdCDCO1cQv2jKR768y4B9RVeVX3zQx0ie6WrWO
AXKKNCfZZU0MGH5iF9DCgCuadvGxW7RQTJD66WIHA+hWxE8T1MK8er6tziMM
2BX1+vbrm1o4SMkOcOZlQlZCd7tcuRby5jifjhViAkfm+Lrzb7WwMlXAJVGK
CT9K+d3MfmthtudbNu09TLg16CradEgbZWaN7ebtmCBotpjevFUHFXlLJHRT
mTDbZLG0U0UHr/m3TP/IZMK7fbnOUaY6mMw83RtwiwkxVnultZk6WHY0qZi7
hIy3v/4o/4sOyl0XH7nUwoTWril+liWSp3uBt50JRY7G4c5bdLFmiJ0r4BMT
3FwmKPzGutjFdftRzXfS7wVvzhTpolVlzNbS30wo/JGm8vklybSWCYF1BMR4
D1/W6tVFKT3KbXs2AvT8Ug5O8OhhT4+8QwAfAYKTQ8/MFfTwiKfJI9NtBMwE
6onn0/SQBz9krewgoDBk8LtTqB7yKc4MrJMhffPa5hWJesjvqJNlI0/AkYiE
+1sK9LDMzTL7jDLpO6lJb+rWw4nI08YRe8j46PN/NEEf7WS4FXtoBLix9nqk
HNJHh1vzrlImBOjHqb0eD9bHanQ/ZG5OwGx8d8LtfH1seiNjq2VFQCuX6vRa
tT6qf7R9vGpNQFFitK1Tlz4aNlek37ElfSnKwls4Kdgg6ZqZcYgAytao034y
FPSf/SbyzYmA7Vc+9jdSKLiqueMLtwvpF1Q0lnGgYNXKU16RI6T/2umCyEAK
Jvue7udwJ+CecDtnzwUK/s5SierxICD2hlyAZh4FnYgU8UQv0p/7XmP8IwUt
84sEM48TICS985rZJAUtVNbez3oTMHeb8TuP3QCT64zNdvuQftl3rmuSBnjK
wuqBlS/pL5B66ahngPnyo6o2fgTEKYbLltsaYI/E0JqWPwHu999c4PM3wIoT
myxZAsh8KhLjvnEG6FwoZFpMstCjkP2NOQbYMPNRlBpIwC+1pjLpSgM07pr/
U0by+zJRwch2AwwO3iWxOYjMpxHM7B4zQHqg1L29JMdVvOrV2EjF84qhH3xJ
dtcRxsviVJyoqKyjk0x5FnB7TJuKQuynil1JFqLUs5nZUFFtTad+N8lz1dt9
8nyo2Jzurv6DzLdko5ZpGU3Ff386FMWTvDJk3rSQSUWuylJdQZJZCPfF3FIq
Brd85Uggn5+Vh5CzaKaib5YhjpHvuykv1X6+n4qcr1U3aJDMrXU/JmeJihfO
jjGOkfXhf1P/eC8fYN+GssZosn6Crr3f5uQBvZYfbIsn6ys8+2tLNgBeW128
wDxBgHgcN838IOAv9hwzO7If0sJyQbMBgI2TNyN2kP2Sf0jNuREHqN/3ldp8
lIBdhgdbTbMBoY1a70n2V60zcHW6HPCu8DmlEbL/Omu5ziZDgAeSzuqUk/NC
Sa28OLUCOBUTqLRCzpPk1pFeS07E52FFV1QPEyBbsG7zohRiOiT7O5DzqDCT
KPNWBbF6b+tOSwcClPSF9W/pIkq8jRxVsSNA9b26j4UNYrSSv2bFfjL/jtqz
ki6IoY7JrC5/E6DuaZE57434oG00bHofAVqLnk05UYgstoLtfeT6AYkrcr8e
IS7I+gZ06hFgeEKK2lyFqO8ua/VDmwDjx8X22Y2IQ1Nyc4MaBJibvY4x/4ro
uTNbtEiVAOvAxW83eGi4uaH6o6sUAQcqzy0HC9Mw6/ub1/1iBNht4OM3k6Ph
oHVylo0wAY4ZCrQZAxoeKHQKYdlKgEetY46JPxlvvfefqxsI8OL4USHMpKGj
q8L5tD9MOGZLb52KoWHi1IRlFLk/+f68uJp5g4Y0+0gTpTkmhPI+d55soaHP
Xtbs+gEmxB4RF8pQMkSZm5xiis+ZQPVqaT6hbYj3xruM31QwYcGbcZJibIgP
fz3icC5lgje9/cuAiyHabTnObXmXCfti4+7sSjFEqT/vjgUlM4Hn/qT6y0VD
NJlI2jLkyoRrCzV/TzQY4XJeSkH8HAOsf/v+qW0zwmjWtOoT4wzgYNlRmvrF
CFOD2ZSoQwwgOEIEdJaM8J9Jw8sNnQxwEZX/HK1sjNVaw5YWlQyQNkz2Fko1
xpgMtwqXUwx4kHjknNERE5wSMHYJ+01+P89uONjja4J9VRoOpnMRsCmsQCmY
YYIN72Y+845FgOfhqbbsFBMUic9aSuiJAGHlM5LL9SaYX6B9SL0yAi40ZVeX
KJji7nfWihgWAV4bviyKzZriC3+PBv6RcBBhHvZbijHH8+qywq4NYVBQ9Pld
XKgFely/MZx1OQRaz8c/PXnbCtMf7DhtphcMFzt6N8u2WiM2vPY96BEAH161
n+IzOoBPt88pJL7wge+b+9Ueddmiu+jVtiiD43A+XPWWno09brzYUS3n7AWL
Wun2zFGH//8ffPXLdQeuzi5zyqlDyK88vPz7pis8zDi8NDbriFsxInZLnxOI
lyyNWcU743znR6s1+4MgNtZxPZvVBVVy96+Vn7KD0VNvkm/luKL28gw3ttlA
cbiVe/oONwx+3yd5SHw/qOCnQ60dbtiSkvLBP9wCtpb7zw7ccsfdh6v3eW80
B1qVzKivmweq9pce5NM3gboS83U6Ip6Yvr1lq0mnIRTYMJ/1DXnizNERmkwq
Qse5N23/5XlhEE/bQ9YQA/Bxl780FXgUjQQTaxrndMFGdc5TXvcY8ndQQnvm
teBMwtesjl/H0Pb11UPPojVA4GpXiMuL43hAom1KQUUdptWm7zlHeuOMZt2V
RkM1EK+KWHdD5wTeo/Im2KirwONpzuXy9T5YnFpyM2S9EiQ/rbE2rfVBs9ol
vlfu8tCuGLm35JIvbi+IutfYuxMOq7jmXt7nh3djynw+NEqDjmSx4OON/jje
vfuw1YIknKxh3/3ogz+OzLJGTfuIw8bJ6DtSSQE4K1aa1H9WBBaaOGr8nQNx
w99nX+FjIbjR/Gf5NH8Qem2Pu1WLguC+yGkaFRSEXy8JppzVEoDuZRGPwM4g
FF3Hf1eIwg/zpgbFmZrBmPatXkbkCh884xTcNJQajA4/Mr8VAQ+o5//aI7YU
jGaVok3bvLnAKm4w6bIDHWuTav/9byMHmO1LstQ6RMdPg4cH+39vAuTR5ex1
pKONxIOLb2c2wV9Xk2LlXehY0iebUdq3iTyX6J6q8aRj+QaN42Xlm+Dzq+QT
40F0PHfEcCjh2Cbw3kgxNr9Ex/8ape9eaWEH9+Yf6yYT6DhqJGvB9ZIdnBJT
atOS6LjCcMPYf9jBcttPva8pdBS5/o0/7g477JZN/Sv8Gh1f7lgvWnWGHRaM
h8Xz79DxgvjAwLQGO0xtSuvdW0BH1kumF+8ps8PwW4OsqUI6Xjwz4+YtzQ7d
dmnb9B/QUcK2/vI0Lzs896Jubi+jY6GKyQv1MTYoVxhpjnhCR4UT1bnc39jg
4XjaebEKOqaJTmWPf2KD3NCR9Scq6bhfymq84jUbZOqkv+CpoqNb11HtvGo2
SF2hRj55TsfvzVzXUp6wwcUXI/pONXR0mNTeHHufDc7FpP/3p5aOGbaDKafy
2OB/VgZKag==
          "]]}, Annotation[#, "Charting`Private`Tag$2974057#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwVlnk8VP8XxlVE2pUlWyJLZEnIes+ZGTsVyb40w9gJQ7YZS4iUNXtFotJi
K9KmlEoI4VtaaEFlLVEZSfzm99d9vV/3eZ17znmee+9nm3vQAc/lXFxc+5dx
cf3/Wme38Ptb1VtCqyE7W3O5NJHa4vbaOuMWtPqsWsNO4oKsdwlMyYxncCzz
vFZL0gbI/ZzbyZ3xGgrIX8XikqQgf6x4lp0+ArScIihPVAPhAOmT0+lsEIv/
W2oTj2BfRbf9ns6Lz9PoVSqhVsDuPHZ3Ml0Y32TZx8kDFejAr73xlzAWvx1P
3ZNIhd7ajJuaTiIYeOP63R3PqFCdU1AbK7cFW/LP+tXuowHd8cqlDU2i+HZ/
fpOeizv0fu44pfFDAh/d+dk8EUyH1/9SNYkd0nhu12HB9BgfyNCyDLNykcYU
H/EHvxp9wDBoXZ17pjRmRi07q7LgAzc+nVJL+S2N4vzvPotF+0LG4zNK3Y9k
kFaRY9gb6gdGqVXb3J1kcYFf8KSDWwDUbe5Zm3xSAWsmO2XPrgyGxhCxz5r3
FPDyVbNjFtuC4UmX590v4wq4vv/LikG9YOg7Pu9lZL4Dy1fuC30aHAxzCzIP
uVcpYvZUL4P+NhiIL+GMxGQlrE/V6xm5GALtN8Vfxx9VwcYZKwF9pVDoFfCu
Uruugqf1Tt28Sg6F/qDriZ8+qWCoacbFRcdQmNxhrIaoivKXK0etj4fC+pKg
1KVFVRRdPm1yeTgUFCmDEvBADQOcLY1X5oVBsJJG9309dWSzX8SsHDoCH/aY
LEnYqKP3P4vlkb+PwF5DJ5VYP3V8JLalrYsvHBRd49OIInXs4t1UJa0aDl8y
OkybZtWR2dYHjOhwcJqhP3p4fTcu2Qytv7g6AloXI35Ite3Gf38KL5hIRMCe
1Se3Hv20Gx/lxRd2qkTA5u3XY0jrNZBkfUfnqHUEdNn+02kO0MAAq5qy43kR
QLmTd+OxvCZKC10bFxKJhBtPLw/KgCby1FeoDstHglTvvQ1JdpoYvyZfK2dP
JCyODx42PKaJkoqq74rsIuG2uIrS0yFNlFl/gMcoJxJ2xreUtxRrYcfzgMcb
eKNAyISd27ZJGxe+81xNfBMFM60Wc9uVtdGHO3bw0pco6DQvdY431sZQ244v
l2aiIGmfmfSeKG1MnJrpxzXRMGN7pubCB22UW+Ye1WcQDZ10aI+7ooMrex9Y
F5yOhstfc5T7m3XQg51hUHgxGpJ8RrO0BnRQ4/BMXWhtNOgGZNt/W6eL4jvE
QtqecvShw5+dwnTx5zfdAx++c/QJKUuaoIf5Dy/3PNFlApV7wD3bQQ8Th2p9
rlGYoJes1jIZoodO1bkdDEsmzKS+TSu/oIeaBgPxxa4cfbaS6EZ+fTyjnZLh
HcsE/U3xMQEy+mg1/iHZNJkJwnkvPz3T53BXTS1fBhO6CmMqYoP0UUZ6okGh
mKMvfaEx+VIfndkXPozcYYKI9PZCk+/66OV350TrQyb8LI/8W8ZrgHftISnl
GROuVmxrdtQ1QO/oh70VLzn6mtD9z84Z4PEfvZcOf2PCL7XWG9J3DHC+6/px
m59MeHFDXCi21wAnlyILhf4wIbnh6YAGD4H2QV0EiZsFP+8L+5X5EXjmie6U
/BYWzFmrFVkmcHg82P+BBAsWvpi2zhYRqLz5RChKs4B7XbScRRuBeiXsiu+K
LBByGxj6KQ+o6pW2uEaPBaIzvzaWACD98sd1vQQLJJPXkkztAW3ca94mkFkg
X02cO5sM+NJh/Zc0MxZoL5Y6G30BTKJ7zDPsWKB/6s6JqQXAazdemgY5skBq
09iAJT+i8ZTHA0sXFshWLFvD3oY4MBPi3kxjgcJ0ukyHMuLP/VRjezoLFPVE
9c7rIN5R1ul/6cUClRfqfhbWiDe7X5kl+bNAbUvTUSlXxJHY2JK6QBaoe1gU
/fZBtFI+59MZxAIttkfruXhEzxJi4VYopz/Sj49haYg+hwJox46wQPcki21W
iNjauGs3EcEC2Jon96sG8YJJ1pR3NAvIvtuItnuIDiOERR+TBYZ1VbYlzxBl
ci/0K8WwwPifTmDof4hx7zaQ/WNZYGrSkmT6EXHin7NJfhwLzLMPnJWYQOyz
t391KZ4Flv0f6mZmEZecdmSeO8qCfbL+z58tJ6HmXbvo+AQWWAWxh86uIyH/
6NVY80QWHLiTOB8iSsKXpTPC8xw+uGKDgIkcCRmOu93zk1hgt/fsDnF1Ev5h
j5ZLHGOBY4ECadqAhL6zJs3HOewyWO/QYkZCx9O8S+857KZECj5jS8KAqX1m
ksksoB7pTAmmkbDXhvujCYfdmxzPGQWS8FH/9WpnDtNXfW0QjSLhx2p5fnsO
e9kwuqaSSFhXtOm3Dod9ihe/PMkiofl1ytgqDvuPnPhXdJaEBf4Uz2bO8w7v
EhYMukzCH2JCFE8OBzPLdxrWk3B1zyXaL07/jKeqhlsekpBP4pirL4fD1jc6
f39OwpwNUv+1cuYNdzQNffyahK0bFP2FORxZ/vJE4TAJsy99nbHg7Cv6G7Us
cIqE2434pf04+2Tt+XaH/JeEUX0id49w9h17NKpHmJeM0m7Ka/05fsQ/5xmb
FCDjX397GxOOX8cOSYoUKJKx8KT4sVaOvwT9eZvvHjKK/lh/05zj/6xPJFPf
kIxMgWTjG5GceRm9HwZdyXjw8oG1BCc/UhFxWfV+ZBQ77/bIiZOvt8yd5JQI
MjrK6Cd5h3D8P5Z8cWc2GXuvZ7LVOPlcfmK3/VIxGWskLzR882PBvYxPfL1X
yZiiOtt12ocFOwt1AyKekNFFd1vUBQ8WrLv2Xb2ZTUZ/YlfBJQcWtNSc+ZzL
TUGt+Y11121ZEFdvmu+9kYJrMWyi/AALftwv+7NGiYKiqZYvKJYs+K/b7qG9
GwX7wiJnmJz3N+3VCoaiPwUZL7SxS5eT53e1Mv8iKNieektu8x4WNAzzp5Rl
U7BX8+9jO1UWFM4+2PvtCQV5DwzveS/Jyedf/6WmHgouD15ozBBlwSquLddP
faDgq3u8O+WEOH6sCt2sPUfBYfZQpeRaFriKy/cnKBniqk+7qBLzTJAmZ/qI
nDLEX+wXcYxuJrwz1hedKDFE4bBi45F2JuRYjD2/f80QN024Uy2eMoHblqLq
8dQQLa8aB/Vzvqcj3uzfVXOGqCjqXyZbxoTK9EOJlENGaPg+1s0viAlOR1fY
v/M3wv5io52jPkzgO1KhGBJphAo32dn27kzwcJnqKck2wmu903u5bJkgqhQn
Nf/YCMdGVj46rcOE460l92sVjFFN60wdNxcT6Cs+sCVmjFFozmpbTEI0CLCP
Pq9fNEbhkgSnPdHR8HBc9pzFahPcTi+6+yUkGsR6A42jtptg8/bcSClaNPSW
/st9aWeCKx/3nOOCaEBCQv3kPRO0Dmw0LZ+LArEol4C5JFN8GTQ3rUqPgg9H
hi42ZJnixTnFjfrOUVDK8PkYdtYUpdN28JEPRMH2gLAD03WmaLXwvlMPo2Dn
oTTt8SFTJB1zPdkhFgWEUSP3AJqhf/nhsrM9kUDbKF7ctGCGs2l8tFTtSKi4
0t+ZHGaBXE0rT0eyw6ErJfUWs3wfhm217BgWD4MTrwbWyHZZYc2JK5saw0Og
+2kvawPlAKqbR0dKrDoMn9d8Uqt5bYO2pjaBfXq+kBKucl7X2hbVFazrwiw8
ga2Vaxs1boeDCU4DT0tosLrvtak+ywF7HvmNBii4gsBYHq9wggOe+m/kVtkm
VxBZsGmZTnHAQTmaKd+SC8hJd1MqchywQGalyNgrF8DDrYTANQfO/yA7wSjJ
BcJW3tEYfeuAznabFFOHnWFA67RU7h5H9GCcXNSqdILqApe5iRlH5KrR3OxB
d4ANfEpJRn8ckUzbJxBt7QCMyD/rzy05YvQi38Y8wgE0HfPlD6xxQhNhasjy
LQ7QKNptd1vWCfUuCard77KH9mLKzSQHJwwvneZN0reHr+WKDIkHTljAfXNT
pLQdSNbOTexLdUZz4Zkd/YIHgV/2tqJ+pjMqVZckOvAehNmiCN8dec5osXjm
ceecDXQlzn5dcd4ZKfNlvuP9NhBr/2vw9m1nxKSNW66U2cCHxanX0qOceq5V
bb932UDJ3pHHs8YuWGDjJO7tcAAkJl6dKeF2xVsSAaKKzVZAv3+xgn+1KxY0
iav/q7eCyswjdeEbXfHPunGePxVWoKsh+HyfpCtmWa8q+ppuBXYxB+cX97hi
ZcrmZGcnK8ha/5/DIX9XjBtpP358fD9wa3QLSvW64rhr56E39H0wzmrPPH/O
DQP3c1f1nbKAypa8yqmLbigUY7rlVowFHN5AazOodMPaq+cEOnwsYLqcvfzd
bTfUvlisxgcWMNe+PVygl3NfxqHdbtIcVm6Jc0nkPoSSJRIP1pubg/TN3Ts8
fQ9hD630U+BGM6gK30fL3ULFwyMRdTGdxvBf8U6zY+JUNLE/w0W6bwx/nvDv
Ct9KxaKFzOtQZQxGm55xOchS8bnWxiyXdGN4XwOlYruoSOFpH+bdZwxrx9Q+
lplScUD1r+9AjxEEOm9yvR5BxSNj0lkyQ4agjG8cul5RcdZAvOeENAW48omK
xTdUrLzlziO2mQIvJy78VhmgYoPpZrcbPBRgFYScyhyi4hpe4qzAGBnav/N3
WE1R8TSFHWtcSwavYgP4j4+GCjzR9W+QDKXzZbJv9Gi4+qaIr7UfCTbdDJwZ
PE9DC2+u/pTbADvTLUUHLtDQcvga9VQZgKGnErmvgoaF5NTqnDSAcMGx7PYq
Go6yiLxeKsCbI/RddXdo6Lhfmc7HD1Ci5Ryc1EPDxroWKusQAYq3Tb9zztZY
Rm3qSRIyANI9mXF/qjt2U1Vqr9bqgvD+eFF7D3f8vqUm/GGJLnwbGjAne7lj
0+L6G7VpulDEn39NJMAdTyTzt1n76sK0I1/g0wh37Mw9/TNGWhfOz01OSWa6
Yzapfu2HAh1YptXwu+e+Oxq1DbYQadrwqNZ0mbaYB57flzuqXqAFhqHKhe6S
Hhh6bZvPYLIWtGoKqKZv80DR5nhyargWdN/tdxmS98Dkq/zu5XZa8OHJ4dtp
Gh6Y+bc57IqQFsy/yQ0a3OuB/YOnHN2KNEFj2eD7E/EeuNrv9czhyxpQYR11
9/0XD5yZ96VLjapDcH6fYu+oByYYHWXc6lcH7f7dZ1omPDCw8eJPhRfq0E7/
zqyZ9sAVsaEV5Q3qMBnhYXD0nwdOfNP2JB9TB/WSvQ+3C9IxycxTNEhWHR6M
b2vxN6TjPQdb9d3+u+BVYnvPnzI6uh/SmDRYrwaW7JrLypfoWCpYJ/p7hRo0
++XF0a7QcZ0XMy13WhWqranKbTV0JDJK+148UYXjW2ePFzbSMYV69JZ2gCro
3tuGe/roWM39TOX0AxUonYmsDlvlidTPvDbxQcrgR5M/ORXkieYdIVTTJUUo
yTrhtznUE8V93AVXfFOEnqZvZjrhnvjc1Tl08Z0iaEvW8yWyPHHYk+Fi06AI
vP2YLJTqiR9BwGn8sCJcOOh01KDME2UCjbMWBnfAB5P0iJMvPdFJsZKZ36MA
1io/PeR1vFBgzb0Pon1y0P6xS1xI3ws3GFV/fPVMDsjZV19xgxe+luwX6bsj
Bxq/aCZDhl5IO+oq0lYsB0J3uxWLrbxw+7cZK3svORgwqp4W8PHCK5rRHdNz
suDj6hu3mO+FXdx6t7fJykJc2sfTr3554ZAKz+fiAhm4FEC5u2LOCwsUugMz
T8hAh2XF211/vTCn+6viZ5YMiKwNEslY5o3Nv8yDhzxk4Eb6Yp7xOm+8qWLL
/WeXDHzOkMi+Je+N2keXiKud0pzzt3NKkZM3/hcnray5Rho2578OdX3ojfO9
LyyXLkhB/FxdgO1jb1yxu6wu7LQUTDhlee5t8cZ9aRsuJmVJQfNWM3uDDm+s
5hU/foYlBcFX7upKvOHUV1gWQbGVgueNxcveT3ljg6Cl5CleKUgY9sh02eqD
jOhMXeqQJPxQ+3HVOdYHpRpfuWysFAfJexHLzmr7oqCxY/flVyJQ94N//uZy
P7RgT72VthKEzFsPrIyb/ND0fVzlv2QB6N0Ra1Z70h/bj1hOf51YDy7KbqVZ
5gHoYqiTvndgNWhLVQnV8QSi3/J1KVaBfMB8wKta0x2IxDfLqgXgAZ7vCRe3
ZRzGde93jpnVLYfZ1lUPAp2DsG130zc+Ky4427Y0HyMQjCNTr6plzy8QNDa/
cXxwMCod4YmIof4h3s6LuQf1BaPn9r6BOLtZ4rexQVWRZggq7RzapNT/k7jL
L8T35VQIVgyemCtonCbUL/zaLTEXghll4+6XwqaIfcnDGVl2DKRQZkS+yE0S
JuYZlloODLT6LeDnKzRJ4Dod/gFHBvoKSr49tnaS2JWfcUzelYEpDXw6e39M
EJsv6bAeeDAw4/Kb23b3J4j+p5m+k8EMlI+2/nXYYoLw4dE3ND3JwHvGB1+Y
xY8TtLavy76nMdB+Y//au97jhFN6dlNOBgPf7tY0P+42TthY68foZDHQq2E4
QdlxnLAUHNH9mM3AO5mDA/6G44TR2+y5pBwGmqzTSHfcM04QxfoNinkMdFAO
q+nVHCe0aCOh3fkMLK7subdTYpxQlT21K7yQgfVzszefCY8Ts4ajkhcuMvDK
/ASE3RgjpvhyBswqGOhW/OjFv8oxYrTD4PTUZQYK6HvqqOaOEZ+yRu3zrjJQ
TKvDoT5jjHh7MEdQr5LT33x93pmYMaKRTqzpvcGpz1XiF2E5RtxUGGuLqGeg
hl4rbQNljKiezEmRaGAgoTesetxgjKioJYwe32LgloX++iiFMaI0bGy57x0G
/m68+nr11jGiSDv34bp7DFwtYch9d+MYcWqBiK1vZGCSmrdGItcYceLhmJ7T
AwYyYoOU1rFHicSk3D9LTZx5fcd5oqdHif8BeMB1MQ==
          "]]}, Annotation[#, "Charting`Private`Tag$2974057#3"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
        Charting`ScaledFrameTicks[{Identity, Identity}]}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0, 300}, {0., 0.006964071401958928}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
       RowBox[{"1", ",", 
         RowBox[{"296", "  ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"2", ",", 
         RowBox[{"224", "  ", "\:041c\:044d\:0412"}]}], 
       RowBox[{"7", ",", 
         RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), Editable -> True, 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.24561133333333335`, 0.3378526666666667, 
                    0.4731986666666667], FrameTicks -> None, PlotRangePadding -> 
                    None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.368417, 0.506779, 0.709798]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.587148, 0.40736066666666665`, 0.09470066666666668], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.880722, 0.611041, 0.142051]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   InterpretationBox[
                    ButtonBox[
                    TooltipBox[
                    GraphicsBox[{{
                    GrayLevel[0], 
                    RectangleBox[{0, 0}]}, {
                    GrayLevel[0], 
                    RectangleBox[{1, -1}]}, {
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> 
                    "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, 
                    FrameStyle -> 
                    RGBColor[
                    0.37345400000000006`, 0.461046, 0.12992333333333334`], 
                    FrameTicks -> None, PlotRangePadding -> None, ImageSize -> 
                    Dynamic[{
                    Automatic, 
                    1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                    Magnification])}]], 
                    StyleBox[
                    RowBox[{"RGBColor", "[", 
                    RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
                     "]"}], NumberMarks -> False]], Appearance -> None, 
                    BaseStyle -> {}, BaselinePosition -> Baseline, 
                    DefaultBaseStyle -> {}, ButtonFunction :> 
                    With[{Typeset`box$ = EvaluationBox[]}, 
                    If[
                    Not[
                    AbsoluteCurrentValue["Deployed"]], 
                    SelectionMove[Typeset`box$, All, Expression]; 
                    FrontEnd`Private`$ColorSelectorInitialAlpha = 1; 
                    FrontEnd`Private`$ColorSelectorInitialColor = 
                    RGBColor[0.560181, 0.691569, 0.194885]; 
                    FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; 
                    MathLink`CallFrontEnd[
                    FrontEnd`AttachCell[Typeset`box$, 
                    FrontEndResource["RGBColorValueSelector"], {
                    0, {Left, Bottom}}, {Left, Top}, 
                    "ClosingActions" -> {
                    "SelectionDeparture", "ParentChanged", 
                    "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> 
                    Automatic, Method -> "Preemptive"], 
                    RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
                     Selectable -> False], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{
               TagBox[#, HoldForm], ",", 
               TagBox[#2, HoldForm], ",", 
               TagBox[#3, HoldForm]}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], 
     TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
 CellChangeTimes->{{3.848254011239259*^9, 
  3.8482540412635517`*^9}},ExpressionUUID->"14ff9157-9eeb-4936-a2a0-\
cdc327ea0f91"]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
TaggingRules-><|"TryRealOnly" -> False|>,
Magnification:>0.9 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"79593e79-7454-48b7-ac4f-c8e0391b20df"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1835, 40, 174, "Input",ExpressionUUID->"03437ec1-8e8d-4132-9ebd-bd698daabc4f"],
Cell[2396, 62, 974, 20, 28, "Input",ExpressionUUID->"6a7dc0c6-be0c-48fb-a1d8-5e115c4bba2c"],
Cell[3373, 84, 653, 14, 26, "Input",ExpressionUUID->"11c14549-6598-4f7a-b43d-46f1014014f5"],
Cell[4029, 100, 1196, 25, 28, "Input",ExpressionUUID->"e1e79645-e32e-4b68-b5df-7ab484da6ba0"],
Cell[5228, 127, 1023, 18, 26, "Input",ExpressionUUID->"7db9fcbd-2e07-4390-89f8-64abec23f5fc"],
Cell[CellGroupData[{
Cell[6276, 149, 315, 7, 46, "Input",ExpressionUUID->"67a1328d-5221-4305-a01d-e50843cef26e"],
Cell[6594, 158, 442, 13, 67, "Output",ExpressionUUID->"2421d1b5-e428-4ca5-a582-2db7153aba37"]
}, Open  ]],
Cell[7051, 174, 721, 16, 26, "Input",ExpressionUUID->"9caa66a9-5aac-4de1-bb03-8033da0edc88"],
Cell[CellGroupData[{
Cell[7797, 194, 272, 5, 46, "Input",ExpressionUUID->"52cfbebd-057f-4c95-bdc8-b59dedf6cbed"],
Cell[8072, 201, 659, 21, 69, "Output",ExpressionUUID->"cfba0267-a092-4ef6-8c42-92733cb13d89"]
}, Open  ]],
Cell[CellGroupData[{
Cell[8768, 227, 5964, 100, 67, "Input",ExpressionUUID->"cde6bbb8-faa1-412f-aa16-d218f4ef9a75"],
Cell[14735, 329, 3523, 77, 197, "Output",ExpressionUUID->"7b0cfd5d-f03c-4b28-b49e-874682901456"]
}, Open  ]],
Cell[CellGroupData[{
Cell[18295, 411, 980, 26, 47, "Input",ExpressionUUID->"b46d647d-fcbe-457f-8cb9-0e3c2504df7a"],
Cell[19278, 439, 362, 6, 54, "Output",ExpressionUUID->"43a363be-f864-48bd-935f-df34040d934c"]
}, Open  ]],
Cell[19655, 448, 1198, 25, 26, "Input",ExpressionUUID->"f2516471-e981-41fd-b4a5-b1fa86962326"],
Cell[CellGroupData[{
Cell[20878, 477, 1591, 38, 47, "Input",ExpressionUUID->"2340e0ba-ca13-4073-9b8a-6f8ba8116315"],
Cell[22472, 517, 2994, 69, 180, "Output",ExpressionUUID->"0ec5bebe-3bc6-47a5-b407-e82fc1ddc060"]
}, Open  ]],
Cell[CellGroupData[{
Cell[25503, 591, 955, 26, 47, "Input",ExpressionUUID->"f1e481e6-bf4f-4d88-b460-30ffa444b7b8"],
Cell[26461, 619, 312, 5, 32, "Output",ExpressionUUID->"2cb18a1e-beb5-445d-b2e9-3a6fc28e1c0a"]
}, Open  ]],
Cell[26788, 627, 1203, 25, 26, "Input",ExpressionUUID->"3bcffe89-b392-4789-908e-125efb410038"],
Cell[CellGroupData[{
Cell[28016, 656, 745, 21, 47, "Input",ExpressionUUID->"a0c8abc7-3920-4712-8409-6a31ba8cf5d3"],
Cell[28764, 679, 3507, 76, 206, "Output",ExpressionUUID->"2cf73a61-ef6c-4611-b88f-0f5a1198b439"]
}, Open  ]],
Cell[32286, 758, 154, 3, 26, "Input",ExpressionUUID->"4a482f08-5be2-4e85-9e7c-9533e11608c9"],
Cell[CellGroupData[{
Cell[32465, 765, 951, 26, 47, "Input",ExpressionUUID->"2964588f-362b-4640-abcd-8429dddfcd8c"],
Cell[33419, 793, 336, 6, 30, "Output",ExpressionUUID->"e3615178-f343-49ec-baa6-5d4dacd72f9f"]
}, Open  ]],
Cell[33770, 802, 758, 16, 26, "Input",ExpressionUUID->"befc8de9-0d27-44f7-947a-f192faf5f8d4"],
Cell[34531, 820, 972, 20, 104, "Input",ExpressionUUID->"66d8126e-9920-4e9d-b7a9-2d8a88e580f7"],
Cell[35506, 842, 552, 15, 47, "Input",ExpressionUUID->"6edd5cae-065e-4309-91cd-7ace061191ed"],
Cell[36061, 859, 569, 15, 47, "Input",ExpressionUUID->"159ab438-0475-49b4-8561-03f59d837d6a"],
Cell[36633, 876, 1169, 24, 48, "Input",ExpressionUUID->"f932f825-b20b-4ea5-8a8a-c6167060a32d"],
Cell[37805, 902, 32564, 616, 212, "Input",ExpressionUUID->"2a3471ad-d9f2-4cae-b572-f7864d7b08db"],
Cell[70372, 1520, 27305, 535, 205, "Input",ExpressionUUID->"a69340c8-3d55-4b01-a082-5e602758e073"],
Cell[CellGroupData[{
Cell[97702, 2059, 235, 4, 26, "Input",ExpressionUUID->"c1f60bdf-85aa-40a0-b042-625e18a6bd55"],
Cell[97940, 2065, 661, 21, 69, "Output",ExpressionUUID->"81848ac6-4afc-4119-a924-06272c3ec87f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[98638, 2091, 2715, 58, 90, "Input",ExpressionUUID->"28022c76-1dc5-462f-aaaa-deee655910d7"],
Cell[101356, 2151, 1047, 32, 70, "Print",ExpressionUUID->"1adc7663-3373-4163-beb3-72b128641479"]
}, Open  ]],
Cell[102418, 2186, 444, 8, 26, "Input",ExpressionUUID->"6103cbcb-41e7-45c9-bb09-0b31a318aeaf"],
Cell[CellGroupData[{
Cell[102887, 2198, 1515, 32, 44, "Input",ExpressionUUID->"8a103e52-246e-4acb-9af8-cf678ec594f3"],
Cell[104405, 2232, 315, 4, 30, "Output",ExpressionUUID->"8a7b2f50-860c-496f-ad20-c255f9749b45"]
}, Open  ]],
Cell[104735, 2239, 975, 20, 26, "Input",ExpressionUUID->"276d1ca0-d12e-4d61-981b-3fd39751d1da"],
Cell[105713, 2261, 1232, 25, 49, "Input",ExpressionUUID->"9301a705-e9c1-4859-84ac-1b5ce87ba920"],
Cell[106948, 2288, 642, 14, 32, "Input",ExpressionUUID->"6283ebe8-6c2f-4f81-afdd-03a59b159407"],
Cell[107593, 2304, 822, 17, 32, "Input",ExpressionUUID->"a4f06394-1c16-4af5-affc-5ede58072227"],
Cell[108418, 2323, 951, 19, 32, "Input",ExpressionUUID->"dc085a4c-7718-4290-b4f6-21ef20f426b3"],
Cell[109372, 2344, 711, 13, 28, "Input",ExpressionUUID->"a126e6ed-cce1-4072-9d3e-c6df0794243d"],
Cell[110086, 2359, 39564, 732, 205, "Input",ExpressionUUID->"3cadc262-eab7-4fbb-884f-234f08e0bbde"],
Cell[149653, 3093, 1405, 29, 26, "Input",ExpressionUUID->"7d92322f-b234-424d-b5ae-4f47a8aa5809"],
Cell[CellGroupData[{
Cell[151083, 3126, 4307, 120, 95, "Input",ExpressionUUID->"556c9c87-cb3d-46ed-8dd9-1fc8b0a73f7d"],
Cell[155393, 3248, 488, 7, 30, "Output",ExpressionUUID->"c4b29f81-a005-4330-bc1e-c64e9841dc4e"]
}, Open  ]],
Cell[155896, 3258, 795, 22, 49, "Input",ExpressionUUID->"51b4c549-6998-4369-96d3-3b8ae7dfd07c"],
Cell[156694, 3282, 540, 10, 26, "Input",ExpressionUUID->"09c4113c-9755-4ec3-b2ff-9af9bef1e6bf"],
Cell[157237, 3294, 2744, 77, 72, "Input",ExpressionUUID->"c0fbe9b7-0355-4a6c-a36f-2cb1b091ebc3"],
Cell[CellGroupData[{
Cell[160006, 3375, 247, 6, 26, "Input",ExpressionUUID->"a8fafb7b-4ec3-4516-8164-2e04b61ac9a1"],
Cell[160256, 3383, 3015, 46, 68, "Message",ExpressionUUID->"39469be0-005e-4827-a632-1196ac7faffd"],
Cell[163274, 3431, 2271, 70, 37, "Output",ExpressionUUID->"bfd655d0-084e-451e-ac0e-1bb7f767e6cd"]
}, Open  ]],
Cell[165560, 3504, 546, 13, 32, "Input",ExpressionUUID->"73bbfeea-4784-47c3-81f6-e61e2038869a"],
Cell[166109, 3519, 498, 12, 32, "Input",ExpressionUUID->"3d2e41df-5350-4ec0-9780-19143fad94e6"],
Cell[166610, 3533, 548, 13, 32, "Input",ExpressionUUID->"8f149006-97bf-48f9-a856-9a54eb0f7b99"],
Cell[167161, 3548, 607, 12, 28, "Input",ExpressionUUID->"dec3584a-f019-4e76-b512-9ef4183d1e5d"],
Cell[167771, 3562, 26331, 513, 206, "Input",ExpressionUUID->"7811f0be-f9d2-4836-8214-f2cba0890f96"],
Cell[194105, 4077, 547, 12, 26, "Input",ExpressionUUID->"24682f48-fe78-4702-b7ba-c8a624310eed"],
Cell[194655, 4091, 1056, 29, 34, "Input",ExpressionUUID->"4aa23bd3-9fc5-44a0-b942-5216f5789198"],
Cell[195714, 4122, 418, 11, 32, "Input",ExpressionUUID->"79b32260-3d3b-4bf1-a08d-0fea492553b8"],
Cell[196135, 4135, 470, 12, 32, "Input",ExpressionUUID->"4d010334-98cf-4b38-9855-df93f1ce863f"],
Cell[196608, 4149, 420, 11, 32, "Input",ExpressionUUID->"8b215324-d4a4-4be7-9159-76bd3efa9294"],
Cell[197031, 4162, 608, 12, 28, "Input",ExpressionUUID->"d20724c8-7667-49a9-81aa-abe87a7a5efc"],
Cell[197642, 4176, 32715, 619, 205, "Input",ExpressionUUID->"14ff9157-9eeb-4936-a2a0-cdc327ea0f91"]
}
]
*)