h7Project_test1.nb 1.48 MB
Newer Older
himyss's avatar
himyss committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[   1528426,      27934]
NotebookOptionsPosition[   1506555,      27635]
NotebookOutlinePosition[   1506983,      27652]
CellTagsIndexPosition[   1506940,      27649]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"Mp", "=", "938.272"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mn", "=", "939.565"}], ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"binding", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Esep", "=", "5.49351"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range", "=", "1.6"}], ";"}]}], "Input",
 CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
   3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 
   3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 
   3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, {
   3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 
   3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
   3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 
   3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, {
   3.87957152299862*^9, 3.8795715245943327`*^9}, 3.880085368016633*^9, {
   3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9, 
   3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9, 
   3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}, {
   3.880087577450821*^9, 3.8800876498236017`*^9}, {3.880095497014333*^9, 
   3.880095545116588*^9}, {3.880535317453936*^9, 3.8805353221622753`*^9}, {
   3.883645073234694*^9, 3.883645082508847*^9}},
 CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"fIn", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"q", " ", "r", " ", 
   RowBox[{"SphericalBesselJ", "[", 
    RowBox[{"ang", ",", 
     RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"fOut", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{
      FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
    FractionBox["1", "2"]], " ", 
   RowBox[{"BesselK", "[", 
    RowBox[{
     RowBox[{"ang", "+", 
      FractionBox["1", "2"]}], ",", 
     RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfInR", "[", 
   RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{"fIn", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfIn", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfInR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOutR", "[", 
   RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"D", "[", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], 
      FractionBox["1", "2"]], " ", 
     RowBox[{"BesselK", "[", 
      RowBox[{
       RowBox[{"ang", "+", 
        FractionBox["1", "2"]}], ",", 
       RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"dfOut", "[", 
   RowBox[{"q_", ",", "ang_"}], "]"}], ":=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"dfOutR", "[", 
     RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", 
    RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input",
 CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, {
   3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 
   3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, {
   3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 
   3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 
   3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 
   3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, {
   3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 
   3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
   3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 
   3.8782888301901093`*^9}},
 CellLabel->"In[8]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{"fIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", 
       ",", "0"}], "]"}], 
     RowBox[{"dfIn", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
      "]"}]], "-", 
    FractionBox[
     RowBox[{"fOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", 
       "0"}], "]"}], 
     RowBox[{"dfOut", "[", 
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
    ",", 
   RowBox[{"{", 
    RowBox[{"U", ",", "0", ",", "100"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
   3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 
   3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
   3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 
   3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, {
   3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 
   3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, {
   3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 
   3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, {
   3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 
   3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, {
   3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 
   3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, {
   3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 
   3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, {
   3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9, 
   3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, {
   3.880086380215939*^9, 3.8800863803996*^9}, {3.88053533924759*^9, 
   3.880535339536429*^9}},
 CellLabel->"In[14]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVymk4FIoCh/E5Ci2WMZulsY1thkkzGNss/iUlZSpJGoUKMyUZUqZljjok
qUhcTWWp0HYKnXjqUMpSosiNtKgI2VIuSctJTvfD+7xffuYbo/3C1QgEwoFf
/f+M9MmCPJNq0c7CSbdxng5uzGCZRsnyPUov5RJHXHRQrSguZMpKPC72f60d
ctPBfU6MVEN2x4P50K62V6iDB0eeeH+WPvYIGLvs2OOlgwb3xL+HpZ0eXxOn
QmYF6KAxoyNmQDri8Twz1lAjXgc+tzXFfdIpj752zcT2Sh00aTvPnL6eiJR3
Xj6ZIbpYkO5198JyAzixFJ61GkSEz/uuzdU2Q3VzWSVFRoQvK3yUttgSo9kv
ytd2E/FXm3JHgysT00VVKfYyPVw8ELaxewkTxdpNswq36CHPeenyfyRMhBB2
B8yJ0kOqyoA1V8lESku6n26sHjatu/7qWDUTyqcKqvZePVB6BzwDfVi4ZRmf
tuGYHnZ+WkXqD7LFp6d/Oigr9MAn2ZZMT2Bj44/CK79RSWj+TdLQlM5GgMs6
wQd9EkJHD/Vkn2HjZ8xcgw4jEpJaBvVZNWzcMNW7c9vsl0+7tM9XfS7qLXfp
57N/+dksv+zDcxEWHL6tbeEvP5352UZlD57P7EMm8SRI/zmeWxTIAd+rmzvQ
Q0KWeLh2VygHAd/vp83vJ+HuWa8hXxkHORrF53OHSDDw/uo8Ec/BovoflOBR
Eh5krW9ZdIKDgcfMpYQpElj2zGkDTzk4ONLDbjIi433obZntKi5U5oo95/zJ
MCijpf+UcJHIqLKXBJKxUFNe/mQjFy0zxBTqOjJyrjLU9sRy8fvEcHLWJjKW
fT94+mEGF/6GzH0VsWRczfRr3trCBSeJdvh8BhnR9/sdS3wdwPFZ3WvyhIy7
uBLJDnAAhrxX5LeTQayUF1wKdoBZLmGuZQcZpSXfSIXRDlBcFK7i95Ixppo9
pspwwNi5UN0zE2TsjJxX+sdTB1S3vgpYQqdgLzGeHbDeERGVzCJxJAWPUvlh
reGOsB5x0YqUU2CsTshZsc0Rm6d6Wo/soKDqW8rspQmOqLDzvdCVQAGh59SQ
x1lH+Eh/rmzMoiCxvOoi650jsqxbM67eoSBVomE1udUJQc0vb04YUiHiaE0M
xjmhuPVAXJQpFaPqpPr2vU5Y0H5oZNCSisBrxptLjzihdNDOe3weFVYzeFc3
XXFCXMSMlOWLqLhbvonX+N4JR0fHiphxVEwQq71ObOEheJl/35U2Ki733acl
xfIg+J9p88eXVKy/9ahfvpuHIkJ3jctbKuqkzw/5pPLQ3r9yWucHKjKqRpom
L/EgWWXunKRJA3urSUDYIA/Lwg22Owlo2FS/J4Irc0YgM0Dn8J80hAmsxRPR
zjBKVyUU/EVDxLUWXmW8M5ifMkPr/qZBdtpK3eugM+oYa4tNH9CwLfpxQeB5
Z+icO8USvaNht77F24ReZxBVL/OZ5vo4Lm0Mag51gd/7hz/szugj61WcZ6bM
Bd5Od6/FXtTHf1aa2gXKXcD4XD+zrlQfKn7c97cJLli97sbn5Gp95OmanPyc
54Lv9dGzj/Xo4/KNmHb6axdMq+hdW8MyQLWm4crIta5Q22cb4XvHAH0F9j4v
NrjC/5aZeKjBAFpY6Ll4iyv+GLDxO9FmgEBFNM9ijyuOfVi5gDFkgJGBe4Yd
Oa6YCt3fP0U1hHFjbLdPlyvqZE6ffsgNsevIo+22UjfYZ+wosucZIY/ZvVUV
7QZSGolotsAIdXVfwjUUbjDh1TjYLDcCcZIR2J3ihhZZx974zUa4ELVLcOqy
GySdb/yt843wVGytPuujG47fV7cd1ZkDrt6+7ME4d5hp2+fPVKOjYsYzZv1e
d/TOXGyqr0fHAoJ9ZWGSO97UyMdFZnT4j3R0hmS5IyL3fNkbER07m1xY7dfd
0V4+tiFCScetQyOVNWPuSHY7uef5FB1e+xeJz3x3h2qGM7GYaIxmRW6XUo0P
iTCj6Zy5MTqlS9XdSHzIGpNN33saQ23RBXEJl49HUa8+EVKN4a0W8va0nA/K
wUJFFt0E//1Wvn2Xgg/5SfdlKfNMIBnV0lizjw/L+Gvrzy4wQWRXhS3pGB/u
mvi8cLMJ0qpocSklfIwZy3YE3zRB2+5mjR0f+Yg787huYbApQj8J2eKtAgit
vt4RR5hBm0RoaYsTwPpLjUPhdjNUcGq2BykFaJC06BrtNwNl26JKWZoA4SV7
+mQ5ZngwIPZJLBWAnr3z5Jk2M3DehMhujgsQEBP0Y3ipOV7/MNfymBRgS/Ep
XnKQOVLn9JbcUxei8EDnbu9Ic/QGyr48oQmh2dF00+ewOVSt8uQPrkJIj4pL
A5vMQWjYX8hQCqHeaRMpkDBwtd/T+9IBIWLMd3VXbGVAoqExPC9NCC2+96Zt
CQyUeaY6CvOFeNH1ga4oYkBWdbxmTbUQ/ROc15xxBlquF3QdURfhWUX7fJNc
CyifhCeRdURYPueeIvy6BWxHbZinaCJY2Z/rGmuwQJL9legLNiLQiwIS332x
gOulsp/VS0Q4fIR9Y8UaS5zNu0f/clQE3ffnWZlWVshZx362OlsEA62vq6Jg
BZVRZkZZnghDMcqcgiArpGWHasSWiPBxvGsWO9MKu9P+GRluEeHLdKeuHg1r
7Fi28fLSFyJ8zXG3a7e0hnxWQ9jltyLU2inVeZ7WiEjOfiEdE2Fj8Zva+fut
4fc7t7ab7AHl5NOmV2o28BWolPPpHrjFWpKqsLRBVli3ldzUA5Ju52o51wb/
Ao9CgpE=
       "]], LineBox[CompressedData["
1:eJwVj3s4lHkbx+dBZEyOScIma0O9ZEu0m/xueuZkhhB6qq0sOaSyOUdWI0Kx
WAkhVLKS7U0YSTwPSuggM4nKbqOIVFLkbLzz/nFf9/W5Pt/7vq7vGu/f3Hzl
aDRahmz+v+fac7ZEDW4HlmZQU4i/LpW0W7vplowTfqp5UeyjSzG2fmubfb8d
jHTsFOb0dCltaXXv2a/bIfFivM5E+krKNMFqulweh1zWRiY/QYfakbHJ5sMP
ONC7jjxvuKBNPQvWQpvW4SCdiIzd5qVNETvHWScscBBY5QclmWhT3iuqPFVs
cPCW21d56PZyKqJgY8R6Dg4RdzQKZ99oUQVlP9YcDsRBPaLfwIbQpNpe+LQV
BeHgeMH/bPQ6TWqCnv1KHIJDufWwI39Bg+IdncVsT+AwZl2RkFGiQc3+2OLM
SMWh4wDz4K4ZdWp3vftwxd84bOKMOYtC1aiEj4lzkkoc7AtPhk+ZqFE3DepU
tYU4GHTVVY33qVJLBQabf2/E4bWctqsPV5W6jb+Lc+rEQcwW4tT6ZdSKJ5F6
o2Myn7J7a42WCuWweM3C6BsOe20Fxu1iOhVk2WfvOYODycTZ0/FZdKo1EwIa
MSboHaMX9uvQqfBdyjVpmkxov9R3fPEHZeqZJM95gxUTpg5kj3XsU6L+HG+I
OxbJBJ0O+TapuQIVJMr49ZcTTBjP67kxhSlQ/Eofe85JJixR6M7mP5enFH9T
xgyTmGCgWjq2RCBPxYy4CzqzmeCjOx2Z2yNH+fV/iLUQMuHhMwMukY1Rtp26
MR8nmEAP/DvmUY6U1L3xcW/vNBMcVOwKsZ1ScjKV3HpvngmNM+XdNapSstLR
dy5fgQWrVLjLspMWyLWtN6N5y1ngt2WPv/rJeVKjgR1VvokFikdnfhXFz5Lv
ysMjAkJYQFMscDjfN0l6Gkj/LYtgQYYvueF28SR5Pz2R/T5a9k9LMYblO0mW
hOWsDIxngaXrhuriz99Ib7u6O4ezWNBRXqZmrvyN/LdrXhokZEGeb+jqBudx
sns6Pil8lgW50ckrzAzGSPwwY6xGyoItWufdCl58Jqv/ySIm5diQe/Oax6mo
z2Rm81WzSBU2FPS+XKFfP0q6pD54eFyfDRBpFr2f+Yl8tFpFPcaODfqXBWMf
w0bIe6zM3FOn2HAwaiYz3GaQHPSrfxydyAbLCqPq2Y8DpGLSgFzoWTb8kjab
P3h5gOQ8sD7qk8kGRiz95Hu1AfIR+5U9fpkNpv5izrnRN6SYY/xhSTMbDEOX
x7c0SMg3jsJtZzAOuDwyS3LY9oKUP/w6JG4JB3prAy0HGntJ45SlZVHKMp/y
tNPYvpf0e7hHM1CDA2V1WQ6x7B5yhLf4znGNjGd6uoP3dpNf+ZwMhj0HcjdO
iHyKukhsx8s36QIOjG0xiIwyvE+2NXp8H5bAgWM5HuG5vHtkhkWXD5HMAa8s
9ZLyyBbSULVtwDCDA8UdquqXRU0kPK55V1nEAcraotbLpIEU8P4cETfK/AQR
LIm7SdI4nK86CxwQuMTW4hqFqK22ZeM8jQsCrUmpyegllGGCQiUKXIBOYXPO
0xJkqGQ9UcbgAhXecIibWo6g9fvJn/S5UGzgm974+RYS4Isze7dyQaIc+MPl
+QZEsxdixVFcUFfezHJPbEd78KGO3t+54KUx/F8lmw5UzV6ZpXGKC4ZDTR/m
3nWgAOfotfFnuWB5YEfNdfwR6tprx/PLl+V7Ihe4U0/Q5YjWrP80cMHF+/V2
BwMRwiuem9TRHEHSWmrDNuxByTpTTqIkR1jlncYAQwnKamt725ziCCWZCro/
gwQVReVFVaU7Qtjbhvs6XhIkfLXtalaOI8TcJXNiiyRosChh3vMvR0hQqtss
1e9HDqaa11+1OoLV1mkY1HyD5reYLx1cwgNc8b4e88NbdGyPT/NUPA8ijHk3
TD2GkGrRiMQ2mQd3R8YXfw4eQhVvgxfjUnngVXNaZ/MfQ2joiMCWcZ4Hp3j1
K/rvDaH9Jy8KDUt5kP36bYPepmHEL+kp57bxwNbuCW6t8h6ZjvLO5TP4ILcz
5I+O8hHUH2d1EJ3nQyZ7A9f8709o7QrVtGMX+JD3nFlQ3PIJBZYP1V66yAe8
56NI7uUnNCHKU1Eo5QPNbu6nLMVRtNQYq2oT8iFZ+E7j0/5RZNH6GHPr5UN2
e1phEuMziqb7Fx3Uc4INa6aVxszH0PJzF16eueQE3ZvUgg/6f0Gl6uuiHuQ7
Q6Ft6aD4yDhqClnNNLm+A66l2R6xcPqGCg2L9be5u4CpSlu/WdckaoiZpQU8
dQHzK8+XVayeRmt4SvPf73IFnwGpUbTXDKruNEt58cwVJAJRWH/gLEptlVoa
7nMDq2vJ9BtH59C50PeBXn1uwO/wjDvBnkcx2t+pGe3eCY8hARtRXkDXzJZ0
hEl2gs1dh6t+HQtIcQLTbdrvDl8iPZPUfpOivywrYwuH3KFafMbdSWsRmXmX
Oy8c9YBztuNnpH8tolfculseHzxAPGjAOLKcBqIr0eYo1BP+KQyjkjxoMF3l
amv01RPqWS3i3Wk0WLwdUpMYtAumfO8M3W2mAc+SxYz5tguiquS90TQNHuzb
cOhwKAFBpf66B0ww0PQJqL8YTkCdT1P7elMM9gdcWvY0koDnr9K50zKeDNG6
ZRUjyzPe1Gasw8A4eWp2IYGAYXTHlTTHQHCLTM3IJuBLvPIfWlYY/KzkcrOm
jgCuYKswFzBIZJyRG64n4CI9OvaAPQZdGs3uqxoJkE/tXLnWAYMAfauZ2GYC
hC3q925txyDnx5UOnIey+ydGU+0sDCb2SsQv+whYKdHp/8zHAH7VXbvsNQEJ
V6yfVTlhkOLndhz1E3ClsiIv0hkDo+B7+iWDBBznf7ok3YGBa2KZ79FRAm6f
Hsin78SgIKW/tmiMgO++9q9/LOPhjFV00VcCFrpF6enusj75qTespwhQ8egT
a3li8Kj4Pu3QDAHjsXrV3TLWKZW65c8RIN6WH5CzCwPv6zZXHy8QEEgGfSEI
DG7cPDa1uEgAx+Sa86rdGPwPGOM7RQ==
       "]], 
      LineBox[{{35.51863317699764, 11.596563375425081`}, {
       35.5187070404136, -6.351023695319389}}]},
     Annotation[#, "Charting`Private`Tag$4241#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 100}, {-6.351023695319389, 11.596563375425081`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 
   3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 
   3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 
   3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 
   3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 
   3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 
   3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 
   3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 
   3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
   3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, 
   3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}, 
   3.880084507024222*^9, 3.8800853736383677`*^9, 3.8800860259425*^9, {
   3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9, 
   3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9, 
   3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}, {
   3.880087582924012*^9, 3.8800876543745813`*^9}, 3.880094554518929*^9, {
   3.88009550172042*^9, 3.880095549656839*^9}, 3.880450030900723*^9, {
   3.8805353288921747`*^9, 3.880535341553361*^9}, 3.880612842330372*^9, 
   3.880950027979465*^9, 3.881033736935156*^9, 3.8811977022974987`*^9, 
   3.8812013937018147`*^9, 3.881204995602592*^9, 3.881205746877109*^9, 
   3.881297072559223*^9, 3.882090675664824*^9, 3.882090736401456*^9, 
   3.882329813363209*^9, 3.882420972729521*^9, 3.882867302484498*^9, 
   3.88310580593391*^9, 3.883108710657278*^9, 3.8834686984704847`*^9, 
   3.883472605286237*^9, 3.88347925568016*^9, 3.8834809731872*^9, 
   3.8836374523846283`*^9, 3.883637494948988*^9, 3.8836441585217752`*^9, 
   3.883708392503702*^9, 3.883810143515602*^9, 3.884769131612815*^9},
 CellLabel->"Out[14]=",ExpressionUUID->"f6516faf-fd08-47c3-9561-30dd53e915ef"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myU", "=", 
  RowBox[{"U", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       FractionBox[
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", 
          "range", ",", "0"}], "]"}], 
        RowBox[{"dfIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], 
         "]"}]], "-", 
       FractionBox[
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
           "0"}], "]"}], 
        RowBox[{"dfOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], 
         "]"}]]}], "\[Equal]", "0"}], ",", 
     RowBox[{"{", 
      RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
   3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 
   3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
   3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 
   3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
   3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 
   3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 
   3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, {
   3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9, 
   3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9, 
   3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9, {
   3.880095506086014*^9, 3.880095529013947*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],

Cell[BoxData["49.82150997759732`"], "Output",
 CellChangeTimes->{
  3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 
   3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
   3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, {
   3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 
   3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
   3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 
   3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, 
   3.879571550250393*^9, 3.880084507942923*^9, 3.88008537507251*^9, 
   3.880085724042804*^9, {3.880085881510993*^9, 3.880085919139512*^9}, 
   3.880086027259701*^9, {3.8800860790573597`*^9, 3.880086104048421*^9}, 
   3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, {
   3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, {
   3.880086385464319*^9, 3.8800865107303*^9}, {3.8800875839389973`*^9, 
   3.880087671218701*^9}, 3.880094555917272*^9, {3.880095507297576*^9, 
   3.88009555113643*^9}, 3.880450032982963*^9, 3.880535343801962*^9, 
   3.880612844013884*^9, 3.8809500300512943`*^9, 3.8810337399875727`*^9, 
   3.881197703701296*^9, 3.8812013954517117`*^9, 3.881204996400365*^9, 
   3.881205750095643*^9, 3.8812970735405416`*^9, 3.882090676633381*^9, 
   3.88209073737057*^9, 3.882329815144743*^9, 3.882420973479946*^9, 
   3.8828673212577467`*^9, 3.883105806840324*^9, 3.883468700460279*^9, 
   3.883472606105728*^9, 3.8834792569402533`*^9, 3.883480975539918*^9, 
   3.8836374617939367`*^9, 3.883644159544923*^9, 3.883708393705941*^9, 
   3.883810144934224*^9, 3.884769133085472*^9},
 CellLabel->"Out[15]=",ExpressionUUID->"51ffc0e8-d7b3-4a69-8b95-a2da95048c0c"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", 
   RowBox[{"fOut", "[", 
    RowBox[{
     FractionBox[
      SqrtBox[
       RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], 
    "]"}]}], "*)"}]], "Input",
 CellChangeTimes->{{3.8800859130397387`*^9, 3.88008591646206*^9}},
 CellLabel->"In[70]:=",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myCoeff", "=", 
  RowBox[{"coeff", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"fIn", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", 
         "range", ",", "0"}], "]"}], "-", 
       RowBox[{"coeff", " ", "*", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
           "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", 
     RowBox[{"{", 
      RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
   3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
   3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9, 
   3.8800859424236307`*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],

Cell[BoxData["1.8472893558629866`"], "Output",
 CellChangeTimes->{
  3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9, 
   3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9, 
   3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9}, 
   3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9, 
   3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9, 
   3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9}, 
   3.880094557765129*^9, {3.880095510469705*^9, 3.880095552895302*^9}, 
   3.88045003501324*^9, 3.8805353471630363`*^9, 3.880612846206691*^9, 
   3.880950033016953*^9, 3.881033742237726*^9, 3.881197705328814*^9, 
   3.88120139709656*^9, 3.881204997887946*^9, 3.8812057515020113`*^9, 
   3.881297075361709*^9, {3.882090678142344*^9, 3.882090681139223*^9}, 
   3.882090738766762*^9, 3.882329817009076*^9, 3.882420975683346*^9, 
   3.8828673235243196`*^9, 3.883105808436598*^9, 3.883468702242282*^9, 
   3.883472608076454*^9, 3.883479259019322*^9, 3.8834809778288403`*^9, 
   3.883637636267747*^9, 3.88364416115516*^9, 3.8837083958289337`*^9, 
   3.883810147008175*^9, 3.884769134720018*^9},
 CellLabel->"Out[16]=",ExpressionUUID->"9f221de9-9a31-4103-ad87-9b04df8cd205"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"myNorm", "=", 
  RowBox[{"A", "/.", 
   RowBox[{"FindRoot", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"Integrate", "[", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"fIn", "[", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", 
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", 
             "r", ",", "0"}], "]"}], "2"], ",", " ", 
          RowBox[{"{", 
           RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"myCoeff", "*", "A"}], ")"}], "2"], " ", 
        RowBox[{"Integrate", "[", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"fOut", "[", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
             "0"}], "]"}], "2"], ",", " ", 
          RowBox[{"{", 
           RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], 
      "\[Equal]", "1"}], ",", " ", 
     RowBox[{"{", 
      RowBox[{"A", ",", "0.5"}], "}"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 
   3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
   3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 
   3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 
   3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 
   3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
   3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9, 
   3.8800859833274717`*^9}, {3.883637751241373*^9, 3.883637752391686*^9}, {
   3.883637811004653*^9, 3.883637814302787*^9}},
 CellLabel->"In[17]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],

Cell[BoxData["0.7088388229648961`"], "Output",
 CellChangeTimes->{
  3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
   3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9, 
   3.880084514207199*^9, {3.880085965594881*^9, 3.880085985349716*^9}, {
   3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9, 
   3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9}, 
   3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}, {
   3.880087588111286*^9, 3.88008767445716*^9}, 3.880094560272614*^9, {
   3.8800955121968946`*^9, 3.8800955547288637`*^9}, 3.880450039503292*^9, 
   3.880535349939876*^9, 3.880612851865893*^9, 3.880950035526105*^9, 
   3.8810337446842613`*^9, 3.881197707984967*^9, 3.8812013995845327`*^9, 
   3.881204999998212*^9, 3.881205753650358*^9, 3.881297078072654*^9, 
   3.882090683114286*^9, 3.8820907493071747`*^9, 3.882329819263648*^9, 
   3.882421007609671*^9, 3.882867325941373*^9, 3.883105810961122*^9, 
   3.883468704658401*^9, 3.883472610201914*^9, 3.883479261565939*^9, 
   3.8834809805222692`*^9, 3.8836378190031*^9, 3.8836441641011047`*^9, 
   3.88370839836441*^9, 3.883810150001431*^9, 3.884769137781955*^9},
 CellLabel->"Out[17]=",ExpressionUUID->"cd99cf10-3007-4621-9734-a1aac73ac167"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Piecewise", "[", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"myNorm", " ", 
         RowBox[{"fIn", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
            ",", "0"}], "]"}]}], ",", 
        RowBox[{"r", "<", "range"}]}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"myNorm", " ", "myCoeff", " ", 
         RowBox[{"fOut", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
           "0"}], "]"}]}], ",", 
        RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
   3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, 
   3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9}, 
   3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}, {
   3.883637849552927*^9, 3.883637864492828*^9}},
 CellLabel->"In[18]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$6395#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 0.7088375225314254}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, 
   3.879571608345409*^9, 3.880084516269706*^9, 3.880086015267064*^9, {
   3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9, 
   3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9}, 
   3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}, {
   3.880087591163252*^9, 3.880087675790471*^9}, 3.88009456141636*^9, {
   3.880095513424275*^9, 3.880095556137561*^9}, 3.88045004068221*^9, 
   3.880535351094419*^9, 3.8806128530849047`*^9, 3.880950036573413*^9, 
   3.881033746188324*^9, 3.881197709406109*^9, 3.881201401065322*^9, 
   3.881205006577002*^9, 3.8812057546359453`*^9, 3.8812970790113373`*^9, 
   3.882090684242483*^9, 3.8820907505636683`*^9, 3.882329820155367*^9, 
   3.882421008343701*^9, 3.882867333813284*^9, 3.883105812233966*^9, 
   3.883468706133246*^9, 3.883472611067889*^9, 3.8834792628799133`*^9, 
   3.883480982442588*^9, {3.883637822666875*^9, 3.8836378656838903`*^9}, 
   3.8836441657272778`*^9, 3.883708402250855*^9, 3.883810152138495*^9, 
   3.8847691387752037`*^9},
 CellLabel->"Out[18]=",ExpressionUUID->"a9008b86-55c3-4fc2-adcd-f243b8d12076"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
   RowBox[{
   "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f3"}], 
   " ", "==", " ", 
   RowBox[{"1.561", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8800865535980377`*^9, 3.8800865699855547`*^9}, {
  3.880087570285039*^9, 
  3.880087570627646*^9}},ExpressionUUID->"700162e1-a626-4c8d-a329-\
bbb787d8421f"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  FractionBox["2", "3"], 
  RowBox[{"Sqrt", "[", 
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox["myNorm", "2"], 
       SuperscriptBox[
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", 
          ",", "0"}], "]"}], "2"], 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+", 
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox["myNorm", "2"], " ", 
       SuperscriptBox["myCoeff", "2"], " ", 
       SuperscriptBox[
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
          "0"}], "]"}], "2"], 
       SuperscriptBox["r", "2"]}], ",", 
      RowBox[{"{", 
       RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.880095066018161*^9, 3.8800950760469503`*^9}, {
  3.880095479252779*^9, 3.880095482250162*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],

Cell[BoxData["1.5627722778696047`"], "Output",
 CellChangeTimes->{
  3.880095484411269*^9, {3.8800955177242403`*^9, 3.8800955604897947`*^9}, 
   3.880450045304723*^9, 3.880535359224338*^9, 3.880612865473521*^9, 
   3.8809500412555923`*^9, 3.88103375582927*^9, 3.881197712175845*^9, 
   3.88120140445477*^9, 3.8812050093948936`*^9, 3.881205757259108*^9, 
   3.881297081513501*^9, 3.882090687117221*^9, 3.8820907525847673`*^9, 
   3.882329822535872*^9, 3.882421010397458*^9, 3.882867336399544*^9, 
   3.8831058147939863`*^9, 3.883468708544591*^9, 3.883472613558511*^9, 
   3.883479265279602*^9, 3.88348098966891*^9, 3.8836379760830593`*^9, 
   3.883644168601171*^9, 3.88370843401479*^9, 3.8838101548530397`*^9, 
   3.884769141109425*^9},
 CellLabel->"Out[19]=",ExpressionUUID->"7d02abab-549e-4f97-9a0a-462a6f073f05"]
}, Open  ]],

Cell[BoxData[{
 RowBox[{
  RowBox[{"PsiR", "[", "r_", "]"}], ":=", 
  RowBox[{"Piecewise", "[", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm", " ", 
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", 
          ",", "0"}], "]"}]}], ",", 
       RowBox[{"r", "<", "range"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm", " ", "myCoeff", " ", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", 
          "0"}], "]"}]}], ",", 
       RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"PsiR1", "[", "r_", "]"}], ":=", 
  RowBox[{"myNorm", " ", "myCoeff", " ", 
   RowBox[{"fOut", "[", 
    RowBox[{
     FractionBox[
      SqrtBox[
       RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], 
    "]"}]}]}]}], "Input",
 CellChangeTimes->{{3.880450259849861*^9, 3.88045026245728*^9}, {
  3.880450342004263*^9, 3.880450428007826*^9}, {3.8804505083503447`*^9, 
  3.88045054654538*^9}, {3.8804509533799887`*^9, 3.880450954981093*^9}, {
  3.884774116037643*^9, 3.8847741478580513`*^9}, {3.884774184233035*^9, 
  3.884774193651902*^9}},
 CellLabel->
  "In[228]:=",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"PsiR", "[", "r", "]"}], ",", 
     RowBox[{"PsiR1", "[", "r", "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.880450434981985*^9, 3.880450437069388*^9}, {
   3.880450467622654*^9, 3.880450475414855*^9}, 3.880450957309256*^9, {
   3.884774153822421*^9, 3.884774162978874*^9}, {3.884774206642138*^9, 
   3.884774255445444*^9}},
 CellLabel->
  "In[232]:=",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$4889152#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVz2s0lAkYwHEa02VMexqsa8yMl6aQ2C7SKc+zdE4J7UZSWmFy29zbZrXM
phVJVlHvuCYhqVwTWqnJuiQN00pRDSVjyKVdNTNhKLv74X9+n/9sbqR74CI1
NTW3//rf/BPcxbYBqQ4//C5aFy5XQGsPy9WL9SNslUa5J00qYOGh8BSL9Qvs
0O9qLJApIL8pjUllpYC99k1fSZ8CwrbxwqeZOVAzQOkLv6eAnrkQcop5A9Im
oge+JClgiWSI857ZAPTqQWanoQIKHxdETzA7gCqnqcZ3yaGyKkUSZv0Kym+W
Prtw9QMEQ3fO5FEp8Bx8moa2TEGEbI20tnIMGC9f1Lx89x5o7ETOm81TEGd+
MDLm0AScWyGyKPSTQx6tLTHUdgy4kr0PKJ2foFw433FlyShEtyVyIzkqGHuw
fc9mXRnciqJ76Dt/BnWGwSrzMCkUxoWO23ipoV8Vs06z9S0kFMzvUUyqo4RY
7967fxDUegbxXiwF72SJsqTs17DqWNDxvRZU9B7yvb+flMCwMmuf5v3FOENR
VmQEvIRdsiO/XoheipUGDcvEdn2wezjd0sSEhk6qybeFTs9hvIV78lGFJt52
+emRZVYPWDN6jZ18l2MG1TE0frIbaKD075d/hetSTwAj/i/Y8d572tRzBQq6
A92bOGJ40Ryg7m3FwCmZ//GgPBHUnWk9xFIyMPaLsf3lsA4IovIGxWIt9Bs5
oJOJ7XD4aFwdPVcbLxLz40EBbbAu2FLs6q+DAdfFRhn1LfBEy0qTZ/81flet
5e1Ba4bGyoQ8K4ouuriWaqTkNUGcusX3nQO6GCu9UlbiIwRaf+zOiFo9TDjF
50SLG0F2jU0W8PVRVrFRaJPfAORqA40GTwPUs6MaRkfcgfTcoHZ/liGeps5x
352vA2/SR0wfNcTU2qHEN29uw8z2ktkCoRH2FHRu2mZbA1KZ4/Hm5JXoI9w5
6d9UDUXbbI26/I3RrKixbLioEiqSeIzgtSZYn19uFW5dDsmeh10oShPsravo
s52+ARv7C28kdzExQ8W/v6W5FLLX5FV0ubAwRlpoeeB1CcQ3pWW7NLDQYdG1
lv2fi8HNyLPksRkbff545rHPrQi+jWg/yEhhI92vYr2z5AoUrOSadSrZOH+Y
6Tr3/DKYtZRm7j5oilrWkhGO7yVIX9ts8VRoiicppOYt81wIkmt0d1gQSOVb
v9r6dxZwb31kpZwnkHki8vX6pZkQluAxvyuDwJjTepnaapnA86jto18k8EkM
1e3TtADOKHnn0jMJzDq1o7Z1VACV9rNzWfkEhqw465zULoDZPxd6r5UROPBP
ag6ZLID0p/S01nYCna9Xbx5eJoDc4vCQ0x0E9mvk3mMvEkDxMbHTThGB/Kc2
xlwVCfW66SqRmMCzG6yjJsZJ6PfWDul5TmAd5SOwOkngSA2chqQEbjr0zSXG
eRJsamNNrsoIPFPNDOcnk7AlSTIbOErg5ZVU2ng8Ca6c/Oqx8f9+vbOLu6JI
OBrKMvnwgcALXrr29e4k8Lf+NlsjJ3D13WlXOxcSkpYPPTumJHDEMc+s0YmE
7Kri1JkZAnNUOkaiDSQUndQIvqsiUGvDkJ3XWhLK9gQ68ucJPHLdV2fEnIRa
04fGDl8IbOtMqYoxIUEoXzW7sECg/s8+S+l6JPwLrWpD2A==
       "]]},
     Annotation[#, "Charting`Private`Tag$4889152#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 1.3094303004261496`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.880450477448555*^9, {3.8804505437974977`*^9, 3.880450549561881*^9}, 
   3.880450904266193*^9, 3.880450960572151*^9, 3.8805353762901163`*^9, 
   3.880613017272277*^9, 3.8810337608134823`*^9, 3.881197746915187*^9, 
   3.881201407868651*^9, 3.882090691817799*^9, 3.8820907561724977`*^9, 
   3.882329825014078*^9, 3.882421014122815*^9, 3.882867339202798*^9, 
   3.8831058180657253`*^9, 3.883479269905888*^9, 3.883708437838564*^9, 
   3.883709942612533*^9, 3.884769144379784*^9, {3.8847741578122663`*^9, 
   3.884774256192465*^9}},
 CellLabel->
  "Out[232]=",ExpressionUUID->"8a5edc72-5750-41fe-94b1-2c3cc97f31b6"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0441\:0442\:0440\:043e\:044e", " ", 
    "\:0444\:0443\:0443\:043d\:043a\:0446\:0438\:044e", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"funcFermi", "[", 
      RowBox[{"x_", ",", "par_", ",", "disp_"}], "]"}], ":=", " ", 
     FractionBox["1", 
      RowBox[{
       RowBox[{"Exp", "[", 
        FractionBox[
         RowBox[{"par", "-", "x"}], "disp"], "]"}], "+", "1"}]]}], ";"}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"funcFermi", "[", 
      RowBox[{"x", ",", "2", ",", "0.03"}], "]"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "3"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883708607441079*^9, 3.8837086099331303`*^9}, {
   3.8837087412116117`*^9, 3.883708774272184*^9}, 3.8837088179574213`*^9, {
   3.883709003426889*^9, 3.8837090138726997`*^9}, {3.8837090905220137`*^9, 
   3.883709132535977*^9}, {3.88370917863596*^9, 3.8837091884886093`*^9}, {
   3.88370922072269*^9, 3.883709296948432*^9}, {3.883709583092265*^9, 
   3.883709583170985*^9}, {3.883709634187237*^9, 3.883709670147719*^9}, {
   3.884778654983848*^9, 3.884778670453229*^9}},
 CellLabel->
  "In[423]:=",ExpressionUUID->"a7903930-b537-4744-afa4-508c0f6775c1"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwt13k8VO/bB/BZyFb2pSJJCKlEKsw51wkhCi0klCxJC0URoYQkW4okW5ZK
UkSWyNJiLbKEkC1LSRgzzBgMnjPf3/PXzPs159zL57ruw9nkeOnIGRKBQOgg
EwicT5ape4rFpcvohSupzrXYhHao8xblZiUz8NCbJPPLT2o3TY2cj1I6BdeH
vr85zD+lPf1WP/Kikjtc+dqR/22aqh0kOSNjp3QDgh93aPEI0rW/1pmMHlWK
BoUlAbqF2Jz2pTTvBnOlVIhPPzD6sYuk8zEy8v0hpVxY87I8dFhhnQ73Kk+e
v+er4NWdfArT2UTnwE2H20VWdfD1wlm51cI+OiW+Z/qetX4DGXOsW33dM51u
mws7PK99B0WvF4yF1g4dEaMol4/YD4gwG57Z95isK9x+pmCP7U9wUblIufh5
l+5muYvZtx0H4HzzMK+A8hndvX1uX/c9+AVJfi5+5e8e6H5cCDzYnjQMWeSE
V6Hhn3Vdq+rrK4NGgXyaoV1RTNN97JS1XuL0H3ha39K9YViWss36F3P5zF+g
3tmssv+zOaV/xvwbduAfjEdP/Fs66U+hD6xTl7SchH1lRu5Tv15T5Jzmdm08
OQk0A+Xu7YO5FPPf7drKZyaBvlUubOh3HuXVxD19Ha9J8G7+0OnIk09xmec+
furhJLTS/J/5ur6l9IjSA553TILA+tfsLq1Sipla/9MpiSmo1e1JfWr/gfJx
/5evu62mYM/z1J21BjWUXfbF9BvxU2C77dv58LSvlBc+GevqOqfAcsyg0ofW
SnG8vXbbP+YU+HjlWhlcaafIPIjGhKSoQOv7WvTe7AelM5XrmOYeKmg6H9nj
EtNDicm5fvb4cSo82z13PMKwn1JOerpg4UUFZ9fDcnPrflHGTjRFmcRSQfpu
3nTf4WGKeD5TziCfCl/asiIufR+lAK9cIdJMhSoH+f06L8Yo5+0PGO2ZpMJf
Xotavp//KKa22m4J3NPA/p6yR9iHSpHMJ7dJrpmGjcJHwo6UTlN+rfq2+6H4
NHAnN58Or6VRrhU4Eh5snoZFTzmBdvFZih7vtjPCW6dBILycb601g7L61FxD
tMY0NBiZjublMSk/3n7cvkZnGjy6gruGZFiUDL7I2Ih907BzY0P+6vR5ipu9
FYvvwDQUPjor+wRZpOwtkjsZZjENb3yz+DfPsinfThcp3bafhsaEyxItNgTk
cfHNCPLZadAn54ZJOhIR59Um07fcpyFlr7H8P18SssNR3JLgPQ2blWWcrDPJ
yEJJf+mNgGnwCleI9h3gQmrWZMsuhUzDARMo9tuxColxuhLsFzkNV5/97U2N
40GUhHgP+SRNw26nD6tzM/kRjbbFlYTMaVD+YfyB5L0agYfUgtKcaQjLeVSq
4yqI1HqfW/0lbxr8RJvGWW5CyEHr4TM9b6fB9tBbST1UGLGW/rF28f00JDkR
Kx/biCD9bAtPgQ/TwJvp4bRIFUGc+798la6eBqfsit+O4aKIR3rlDUrjNKjZ
fJikfRNDwrc8HwnonYazN9UJKsmSiDCfHBo9OA0fmkCx4ZQUEj/++FHqyDSc
v5mZMrtlLZL5OsqkamIaZt+XfWz5tg5RvcfztHl6GmreZXfOvVqPvLl8a2lg
dhrC3SI1Hj2QRso1vd4QlqbBmlkpree1AdGToPKJEGnQHPm6td1TFqlnujpt
4qaBoPPz/VM+G5GOUjtJvTU0kKiIK51qlkOmwMA/eAMNpAu6hV+qb0aubqrs
iN1EgxF/q+Xujs3IAmnvjqeKNHBJ6PzxKFAB4andOlS9jQZha0pVbvxRRKKz
nul27KQBwXW/vMBTJUT87saHo1o0SHp0aDPVZQsid1DMeBVKg+hC/9MJBBXk
+baodEk9GuRZFxxt+aGCqAnxLCoZ0oCrIq3PoFgV0W5beG1kRoPAwpr5/rtq
yBHrIbG7p2hwfMWp6tEBdaRL287tsSMNbg532H7tUEdOSXfWZrvQIM5LrbXI
ZSdyob/B94s7DYz63zGOPNJA6FX633s8aaAYFkmz2aOJ+KRXqP3zpkGrmdO1
6l5NJMQ5f0DgJg1WZCeY3nu1EH7DrdoywTRY3/3u0CaqFhKz5dkDtTs00Ckk
ck3n7EZSxhP2H7pHg+6PJa3Ne/cixZcDc6Kf4B4WKmt/pouEv58uPJFJAxGV
/l3vgimI/SqHSoUsGqhGNXjHuCIIb/K+1rJcGjDsh08RjAHp/Z3fc7uABlNW
xwNCN2FI/k75EYtiGvx58EqDnYEhNnWkud8VNIjiWlbQKtiHbBe9Qij4SAN5
KyxSB9NDyCeH+QJq8PrGZlS9bdNDXtE/y4g10eC+SuSj+9wGyPKG23rQSwPn
ZLKcWpYh0ubKMOUfpEGTZu/LeTsjJOvtGcuOYRpEumw2ur7WGLE4YOh64R8N
evMd1h9KP4AoxBV77KbSYPBsk+KKuwky36/kR5yhQXAujaSgb4pkXOWJfrRA
gyXfF+3xKwcR76prjxyXaVDnX6V1eOwQYso/lraNRIcjpgJ2x7vMkNkn9W8/
89Eh+ObPoMdnLZD9X+92U9fS4Qn3T9nge0eQ9ZILQ2UydJCVcEjxUTiKTJ0+
P3Fbjg6XmzfFr6s8isQzTVaklengQ7q3mrFyDDm/7z3vn610yDr5XvDGC0sE
IreKFuygQ3bhgSxzKytkbNNqReM9dOgvHIq89uk4Un7Rf7uYLh3W7OV/o3TL
GrlfMrGnH6VDvLPv1pb9JxCdQ00mVw3psBj/LPb7Lxsk0if6cpolHba1EyYp
508hpz8v+144QYdbf+o+WZ6yR7QELwXvPkmHp8+Gmvi3nUb6M83jG53psOJ+
mflhlwNSMFX15JErHahXCu/8qHRA7mirZztepMPA1rxjeoccEfVm4XLWFTok
rbXKT7vmhHCtv1Xz+Rq+X59E/j4xZ6TbmfYt2g/PL/aOwUqhMxK00PpLIZgO
+f2CbbGrXJB2xVieww/oMGL/59vjf67IgS1r97rF4/m1ld9JqD6HVCqnuN5N
pIOUUXAV6+l5JHtrVsPHDDpw64lQB/0vIrLb1Bb6ntOB3n5XdPqqGxK3PV91
4SUdAnTWaF7yckdu7HwfofGWDg6UsVFP48vIjAZWblZCh13nK0Z0Oy8jrrtq
Js6/p8Ol9syAH64eyNE9zYcyP9MhdevHkR0pnogyMiwk3k6H4X0R0jZGXkgK
6oqpd9EhzKp7bybBGxHFJi8f7KVDY8PDd9ofvJElvbnWkBE6bK14D2pHfRBP
A39S+hgd2Lt2Fywq+SJj+4maFRP49aYWN1aI15E2Y4E4xiy+P49Pu9K/+SFG
JjHVIvN0oEiThD9/8EfKTSUY25boYHbD7+Cm9wFIltlGKxfuGZAcH95V2HAT
8T+mufaHxAzIKBaIW24NQmiW74xn1s1AUENCc3hDEOJyHPEVkp0B4au3VeTd
gpHDNkY9RkozoPjT7KNGTQhSa9vI76w6A+blYZGC128jlJOHdQO3478HVmwT
0QpFlE7bJr/bPQNRgS68TpV3kCSHwcZ2nRkQy58Zl48KQ4SdzixNozMgV0OX
+Od4F1k8c+mUitEMEKLLTCIUIpCWC8Fyicdn4Kr6OtJ+nnvIfjfew8W2MxC7
atX7Uv4YpMw96lab/QxkCB0zOBcfgzzzeDTE7zoDxIarrzTK7yPrr8iIbbk4
A5ERQ/lpVg+QmKvp+vqXZ4A3mXHBnPkAuX4t56mfzwxM2xUFbjGMQ6g+6h2P
/Gfg7+/pNfnMOMT5ehF3YeAMSNgEtOi+foiYB1S5TITNwDa+jUNbtj1CFIK/
K598PAO3a5tKb99IRKwLyDtdUmZAus25e+Z0EhL5S1P7UvoMvO24LE8zSUYY
EHfgVvYMzFJyP6fsTkVUL1UfDn89A3k+q3rb9z5BTqXOnojNn4F+9W8OHZvS
kFr2sfPPSmeA3JYktl0nHVnYetszt2IG/rX17D3XlI7ssC26XvJxBiqNY7Kj
z2QgCaUSEQ0NM1B4Y+LnvmeZyDnvzpzJ7hkQSbhUQTn7HEl9tqqQ2TcD97oe
nShUykLa2neXr/zCx/v2wCJmIgvR0XzUKDI+A2kuac8OR2Yj7o517eunZsBv
+ktTtstLJPP+XO9m+gzIX8vmOmicg6yePj6ptTADGqXqw+fkXyPYxjAGujwD
q1cTPV2lc5GrZu+WjEiz4DDBIpbI5CF9r9YK2vDPwtGzTcfzk98guee6t99Y
Pwt2C6tzs2kFyFAC3547srPA97K7NSb2LSJVrw0x8rPwU+jYswGdQiRQKdE8
Q3UWTAx0X7knFiGFll+O52yfhRd/9KaFjhYjYyEL9oUaszAat7Dxp0gJcnjY
5nKtziwYFLeVfc54h4SKRvg0o7OwTH/Zae5VipTtex/YpTcLf0I0Tg2blSHy
adL3x01moX47c1F0bTkya9ebL2g7Cw9GtQ+3c31AlCNXl0nZz8JjN53091Ef
ELv3lE9yTrPA/O05v0v6I1KzLqVN48IsrGxLMvMz+IQsGDf16F6aBR4dE/vE
wU/Idp+lIYMrs2DMdaKYeuszEt95csbKbxa8tqO/pturkS/c0Yv2N2chrvW4
2UJoDbKyq5J8LngWzp/ZYcZAaxHXWFlxv4hZ2Kq8dizyYx2ibTGw60nSLKi/
OzaMSn1Fyse4Jx2fzEIU7FAiUL8i6C21Z0qZs5D+9VzxtaZGxKDAVyL35Sw8
+flP1+HJN6TWJK3JI3cWPIMQRf3YZuTAcO1trYJZQEW88k4atSBm4uLM8tJZ
uBm0sjXfrBVpeaWTG1gxC6pNo613ulqRo/sdXAw+zoKRwgPdFy5tiLV3bufX
+lkoiNXhtoj5jjh2GZf0/JiFt4cpNykbOpGRy5cupf6chU0pvadsmzqRs3zx
WxwHZuH5UOrIbNAP5KLO8KO/v/H95KU1GK10IVNtfBavx2dhji4QaVfbjXhc
UOf1mJqF99jvlozYHsQ7OcCHxcDzc0kuCd/Xi7B2PVUvn5+FA8eePI+V70P8
mr6M3VzC6z+182syfz8SuCx1goebASLVud4x0wNIxOkCbUlxBjRtcL+gv2YI
EZzvonVLMSBw4UsTT8oQEnN/JTtFmgHP1Jy37t85jMR/OrhecTMDZKYULpWd
HUHW2l5pG1NiwNPaT1MU/lEkaeZx+CtVBkS6eec25Y8iaQp/FjQ1GDAjpISU
C/9B5CvWvJ3TYgCfgKm9e/0f5JnlrgvvtRlwhrXe/8ftMeRl6K2fevsYIGic
tyFUdBwpHJMuP2zBgALbPeI5PpPI7lt6VyWOMeDoh599Dk5TSOm6c2rdxxnQ
upVv5owlFak0KU4+bc+A5o97d8u9mEaw4d5jCk4M/H3j4aF6NRry2Y+8ZsyF
AR3GHcMxRTSk/pVFwCV3BqiulRDgbacjJvuvaWl64k8ptZcei+dmkKa+lEmm
FwM8UrpEH3PNIm2C/07eCGDA1Ke/9a7GDKTv8m00KpIBJQ/cFYoEWQjhw4cN
GTEM6L3agRT1sxAFITa7OI4BhlFRRe+L5pHzrz3fDyYz4PnaqqoW30Ukmv06
kZHGAMnHeVz2Z9lIvulfX/5nDOg+RFOfsVtCWH/t9+56zYAwKiK032EFkdZO
kjqQzwCywPmDJnsJKBrWyTxZxIDXk0RaaDUBva10qOhOBQPu1eRnnPpHREWd
dDR+NuHza7x6pnmNC91d4CUy3cqA0Nd7ixWVudETxPxprk4GhKtrPhMZ4EbT
nmzJ297PAJd60fAsex7085RjtP4QA2wC32yqVOFFfyOpbta/GZBR3zuftcCL
busVVwuaYsApj9mrw/n8qMVWC4FHdAaojW9RyU8QQK9ejxjPYTLAM/a2k8md
1WjZWlJ2xzID3rwKN6T6C6LGllRFFSEmJH7Z3bLgKoJeeKrKjYoxoUJKufHW
iggaPXNm5IgUE1qe8yCySaJox/3eDP+NTDhsIv3VeEgMZQ1KBd3fzIRtxUuH
NaPFURn1ow7PtzBhzZ39uhMggTp+a9jYsoMJlGiJwtgiSTR0A/fKiCYTri39
+vbPVwrNvoj1z+9hwnXkYuCowVp0mr8keTPGhO87qiaeUtehAUZP112zYAJx
lTNT8skGNC1+gBVxjAkjU62g8UQWrR5d35VmzYTg5cD2mayNKH/I/fgvp5lQ
p5BabTouh27/3ug14MwEfS91zwj/TehheV7LWVcm7LnxJv69mDya8OGGmKwH
E2rkBu88PrwZfS9URtfwYkJWY9OGdNZmtP8Uo9XIlwlnum91HnymgCouXYjx
uMUEAc0uN0thJbRA+8Samvv4/kL9mv5pqKAK9PDkuIdMYCuz+2SWVdCHL8u3
Oj9mQrVS/KnCZlXUR1rOhJzOhHVl3pW/Q9XQ8e+Hu9ueMuHCjMOnyYvbUNvI
YNeMF0wIjLNI1LTZjqJLv0P3vWGC2oagrLeK6uiborWSIoVMUEl2bPyTpY5u
cjd5NliC53P46A+t7TtRroHXn29WMaG7O5T21EgD/frhKqHyGxMSSn+8eJO/
C6X4Pr8X1caE3uPnMqKttdDcnV2yJzuZwJ9ep5DLtRt9kKGLsPuYUFsfm2bn
tgflsnVr/PqLCRLW184ZqO5FvcSe2CaN4nlJ0i5tnNyLWoeQrutMMqF5387M
y7d10C+UXXz8NLw+3zbamNrqorqMMwnds0woOVDsN7SHgsq6NBT7sJlwRVCX
JbcKRUeMYmaKBeZg/9MB/SfLGGpF+BQUKjQHm8edIl/c2YfWvZsRsRKbA3P1
rd9JEnroS5Xj6oz1c3DvVdar3Yg+KjMUVlUtOwcX757dfqJLH41KLDOLk5+D
O0Jeqad8DNDLArJumqr4/UKf5fPr9qNDn83ZpO1zENHCqLO4Zoge9b8V0bZz
DlyO5t33UTNCd0+OZHtoz0GkWLGL+AtjdOlbzu884zngqU+UKP1rirrf6fO6
eXAOKD2pbxq/HEQHQYjb3GIOZO/3a84VHEKr33hunjo+B5WJ0uevPTZHd597
WlBhOwf0+Oor8gct0KxNnfui7OeANF1/M7LZAg1/oH1a7ewcJBgaz0wMHUbZ
Jheoi+fnwC9aUGXLlSOoGznlxlf3Odi07sKJCZ6jqMVVQsp57zko2ilgnQPH
UEmruu4Xt+dAfMwNNZ6wQg0pT7Ezd+dARvRGzaX04+g1+VtZm6LmgOl0aXy7
nTXaNaXjlRg3B3WiJA2l4RMoX4dUr1UCnv/vuJ6yPBtU5/2snljyHIwrtuql
BdmiSXdyhSMz5+D6eN5NJcpJtNEt4ppx1hxYfMVad2w+hbKPuvZz5czBKm5R
ho2IPXpKTv5VQMEc9DW609m3TqNypQ+NLn2cA6mttqnXnzqiFk88c7fWzEG/
mKnptz1O6K3b5hJj9XMwtSpkX26zEzp0mG/4dMsc2O8WHc9ccwYV2/v7wIb2
OciLc/7JVXgGNZD9/Kb7xxz+vl//LMzeBX027n/jyMAcHPyo4phcexbtbDkx
KjiM57FK1exWkCu6qmT3wa+/50C3yV5a0+Ac6ho8vc5gag6qS7fIFnefR1Vl
nIu0lvB6DWkOJhxxR21I+2ToBBbwpKbk6ehdQiPGNgTncrHgXMXDjekyl9GJ
wh8WW1azwKFoadOejR7ohqTCkmEhFvyciYkOfe6Bmt26L5smxgJjofhDZA1P
NO+Q6cRaaRbMDG5q47O6gg5qKh/tkGWBzD+ft11TV1Dh9dxl9+VZcPQAssM+
8irq+bvyDr8qC/xdVHRUOr3QXTc1NrP3suCvsjNNKNsHPXNGKPwdhQXbVktf
oV/wReNNJ6avYiwIglTx7l3X0Tmp55WTRiy4xbpv69nthyovBym+NMXXe009
PKzIH7UesY90MWfBC5fbpPMJAWjZm3U2A1YsiL2igZy9chMdj2d+SLJhwcvN
U2/ntQJR6YDvW6xPsWDTQvmwRHEg6n8gitFyhgVi/Yl1Jp9uoTBEuP/pKgsi
1IY37hIMQYVv0mVbfPD9OdywOlUWgg5Jj7zq82dBSuOaALOLt9EQy7p6VggL
ridfCTQeCkWt6O+sVt1lQfZfu9Cy53fQLfdejohFsYCX7PTvk0cY+qU+irDj
IQvOJFqOX5cJR5PP3IymPGbBjtbxk+nscNSN5CFjksKCh5d4uQ+ORKDClGN7
zzxjAersqq7xNQq1ylt/OamIBb6Cw5HuKzGo8sHVyy9K8fneb5Q5cf8+Oj+2
FFFcwYLLeT2GysoP0GT5X1mtNSxYzCH/3HAmFnWratMaaMD7oVQiMlkgDkXt
qj9PNLHA805I4JuSOPTXw6wBnk4WWK7yDzmxKR4t0HjsJtHDgjVaI2ZHB+LR
kObwRfl+FtgbeU/lZD5ClfjcpdDfLDiSGLXPCnuMXvTfZX6VyYLhvkAfYksy
iq5T6ru1wII3bVF61nUpqFCx1IV7yyzYuINqvlCbihZQF0JfrpoHittw/sbL
aWhw5IT4O/556LmowENZSkOPqfRn1AjOw0FherHYvXR0zvFj5aDkPDQv0pYS
Pmag9SsFB6fWz8Oj11dnkxwz0cTkpz2LsvNAnP4nzc33FKV03mFKbpkHJf+G
6WqXZ2jQAbPth/bMw5TvI2uPCy/QY7+h3EZ3HrTexTiJItmoYvBOE1eYh/0u
ZfNlEi/R+nJxl2CjeXj8K3ebZF8Omnhi1WyM6TwwTP+mGjW+Qi8w526lms/D
H/HQMzc+v0YF1X+mlB6fh/S7oa9Evuahg42NW+ts5+EqO8ljxe0Nmn+usrTd
Hl9vxvogvsU36LHM9A7q2XlYH1Z31XtzAfpY0nWNks880Asv8VoWFKLvZCxM
p/zm4W7qUDH9eBHaJb/3bvHNeSCFRb+sIBWja3fwchvdmYdcyv3TQa4l6F6t
aT2hiHmQpPj9bdv8Dj2u2xX4I3oenONbTiyPvEPjjV6wz8bPg8/JjpYM3zK0
+FCMjnriPFBDHrADDr1HO4/6+LBS5sHuyFMP1pZyVOK08WzYs3nQKWroTKNV
oHE+Y/+yC+dhaIT/0OLUB7TwRouK57t5GGCaK/p7f0S/h7w7q1M+D+fNC0y1
SZ9Q0fthw18+z8PYuygFmtJnVOPR5U2xdfNgfO5sp8aHz+iRFGt726/z0Pvt
+G/0VDV6P1v55782/PeRvhcW2TXomzzhdYWd87Bzn+SL51a1aEsRy8q/B8//
lELBWb46VPhTfdvqITyPh1tyu2/Wo9E9rl+20eYh4ELgqtiir2juoAUvc3Ye
6oU26pnFNqJNv/caVrLm4QZF8evctSZ09QzvJzPCArTd/mvNsGpG1eanVyS5
FqCOdLqmX7kFPYi/Mw3wLIDg9DZs+8sWNEIgu/SS0AJ45od+WVPair4UuT+3
R2wB+C71RQ4YtqFfpHy1CFIL4P0iRUmuuw3lVziQHyO7ALYqzAF/gXY0jPL3
Rf62BWDXb7nWlNOJvtBr/e27cwEu+Ct/3uPwA60zLlXQ01oA7Wr3ykMyXegq
y7tpbZQFKNrTl6v5tBtVsvXoT8QWIOz3hnxHjx7U0OGEjJPBApgfHopdNPiJ
3nZTSZgxXQB7Jn+/NqEPfXpFpPO9+QLwKF6uNRnrQ6t958VCji7AhKRbTvKP
fpQrtOGeuO0CxAnfKPR2GUSDUs/d0Tq/AElyU2VhkUOonq3LhJn7AhSuXf6S
vG0YJa91OuzquQD79nVmbmkfRkPu20knXV+AdPtzkg4ao6iB2YnAwhsL0DHv
cu3K+CjKLWA12hS0AC8IsgerX/xGQ0PM8wgRC5Birs7H3juGGu47KL7+3gJs
mqphHhP4i/IsG/tqxi6ATT85uGXkLxp2TU/fJWkBlqRFXFVy/6F3z2v9+Jqz
AFZft7/LT6eiJls0KKN5C5BqOfdU3WYa5R/Znr78dgEqUhfFd45No+EnlS/s
LF8A/bc7pZtF6ajJesUWkw8L8C+q4/PHPDoq8GOTlnM1Pp5LuQXPkRk00kJ6
Jb4Rz2e57cH+rFn04Jq1zm9aFuCOV/eNJzYMdM0X8YaG9gXILLvZJSjORKP1
BWPZvfj1/B2TpMQ5NGY3cYvj5AIEXlSX8WctoBYzSxF+tAWgGNPN8ocWUZE3
C9NxjAUYN1vW72pnow9UZsvqlhZAt5OnVKRtGT3ye3rjL+IifHNOMy7qW0FF
MydDFrgXQQGCPXb7EiBW5o/ZNsFF4H54Yt3WZCIc6x5+ayi6CMbuzzsktUgg
Hj+49rTkIjx6s99T4zsJ4oR6hh7ILkJugNJC7kYuiCc1ebO2L0JP5c8ba1ZW
gVVVw08RzUUoPfU0qrKWB6T8a7GtexbhOM+DOK2HvJDAqOI/BYuQts6nxtGI
H6wLyi9d01+EIdtDiXFbBWDdpdL2GKNFeD6hMRgstRoSxwpSP5svwnSBw/ds
HkGweZZH7ju6CPeGW1vcVguBtOMrV+bxRRD9NU7mXiMMyT+faaicXoQlFXnP
QGURSPmWUBt9eRFOD18s80sSA5lSjPzw6iIw9xtS4/TEITlzDJJ8FoHlcEwc
pYrj3/eWZgUuwrZyv6MrJyRhvdMg43XIIpRnWi1fXysFiYfCNArD8PslNTsP
9UnBY/munA8xi7Ax+Opk2/V1sHZN4Fht3CL4u8a8ZB5dDwlzWxSbEhZBmLAr
79guaXjUeC21O20RRviVx0oENsBDb6n79DeLcD5LU3B7tByIO1Q1sQoXwTqp
fFhPehPEmZ7lX3m3CNd/XfnO93oTxMqVBAt8XIRwXxdL8wF5EBWw/yBSswho
0/7pTYGb4QFj1ZJUwyL47kxqMlNSgPtfrLwVWhfBIv3QzkvBiiBctFyg2rEI
yd7xNz/pKEHMk+dU9e5FeBBzumwHSwnuXWW6Ir8WYf3blnCVUGWIko23taLh
vhmQWzq7FVbzoQl2DLzedwZ1p4fUIHJmtN1xfhEe6qxREO/eBhH1WmaXiGyw
PN2pv6t/B/C/7Qv34mZD8PlmhQFvdQhPuV3nx8cGWmFasTJ5J9z17MDCRNiQ
cFP65YiKBvCeDAiIlmCDxL7l7qxqDQgzUiyLW8eGmvCDpvedNeGOjJdm+iY2
CK0IVd0p3AW3a8WVynayoW5kZ6Na4h7gyi93/KDFhr/Ty5f0nPZCSJLzk1pt
Nuh9357Iq6kNwZcL137fh48vobk+8o8OkGztLLv3s+F07wXuj426ELSf68HA
ATYsvrT69LCUArfWHxOYOMyGbUEr5go5KBC42UZ0SzasO3LbyeUNQCA1M4R1
gg1jH7N81ewxuFk9s8TlyAbuu83N5df3QYB77PQGTzZsvQcduRP6YPJpZ1+/
Fxu49INONoYbwFrJloYnvmxAf//70bxtPxRWrM7cdIsN3xEHsmKwIQSJ5Nwb
CmFDPp04UadlBOZnDvhnhrHBWUbgwMykEYyvDrVUjGED76lNjNhLB+DdaQW9
37Fs2LEle95Z2wRCCz9tz3rEhkQu0RkvPlPYZLfCo/IEz2/TT8WNFQfBOsen
TC2XDQ9dgtZto1iA0opk1mQ+Gy4E2Royyy1g9khRbG4RGzzyR+bf7zsM9xZo
F9Ur2JD+UZdcfvwI2JnFnKB9YMPcWalje/8eAdWM7YYF1Ww4krJ2p9bNo1B7
4MLGXY1sePeGax5Kj0FcCt9qRjMbYtKe2yWctARHWhar6Ds+XrCc+SoeK1hK
GGnd85MNw80hZdXnjsOusZMhuuNs6NI9UH7zig2QKOzL7Ek2ZPNYxKvvt4WW
e4knK2hsvC91f9ttsIMLe37shnk2OEz10Bm/TsLeCK/NhCU2yAd+zW76dgpW
DYgJfyQsAVMgZpj5yR4yQi3+6vEugZOVkILYr9NwuWeqg7x6CZ5HPY1qc3EA
dHvUp2qhJdgVUu7+dtoBujsakgyllsCH4pdhJ+IEwor6ZiZKS+BvtkNfOvwM
9Pv80hFQXQJLAbWTubtc4FXjzS2N25ZgW7ZUQMiICxhdLSeYaS2BNzvgcNox
VxCvt5kU1F4Cza59nhSJczAkPd/dTFmCFN/KkPqf5+DGZ623hw2WoEeLuP6i
3wU4KNX+RNR4CUTrFeZHjl2EdRc8I7+bLkHrsFqCsJYbFIrmnbE8irtSyOEo
/yX456C89oTjEkzl8z0+dscDbC7+3HrBZQkyNnudaNrgCfXe0RBwfgkMzXv6
TUs94VnErEu65xJ8eJvznJtwFX/+Z11/670ElwulNiTmXIWgNJvomutLcPxW
YedvOy+wL/pQ9DdoCaIj/9RdaPWGb1VXGhZD8fvvbzThe3gNKF+U+tZELAH3
k/sVKvY+sG4gkksjdgncBxs9Wniuw3feE0evZy5B4g2ypmJ+AOiJrT4bmbUE
1sGMQTTvBrzZUHU9NWcJtBhs5dqimxCloZjx6S1eLzlmQfJUILApXUXtJUtA
UMm8YnfzFpw3imj4/X4JJoUjUn+LB4GRHW2av3oJaORtLQtmwVDs8pRrQ/0S
fO/yMemaCQYFj+NrdzQuwYKih/KW1BAghlbA0fYlOLDGM+4bORTe592NThpZ
gnali83ha++Cahkl4/XYEjjKXelXn7oLCdXUoqoJfP2Z7vndX8LBq9uyb3h2
Cd71f7+4PjESRoZ5aQzWEvy45SesGhUFR6bec/EuLUG+tTG3Wlg07CDLq6lx
L4NAYq/GbdMYSF3TASjfMujdjMgt7oiB1WvDjlqsWYYvJLfxs8734a/a1PWr
EsuQN9679+e9B5BpVdZQrrgMrb3VBMrmhyDq4Nb3TQW/3/KRdVLHQwi8IEcb
3LYMEq38gmVR8XAyMHQt9+5l6LY2cPonlACN4dpqUjrLYJbow2PXkwA6DydA
BV0GSSUZWeOcxyD18sjZQ4bLcJ5c2GXnkIQ/T7j97E2WoZhZNTlpmAyzle+i
PcyWwVPuquNXzRRo/S5b/NBqGfatOnDZVOEJRCyNc/W7LINwRd5617fpYOwR
V//y/DKUB12Sz6JkANcoEnnNfRmCakMGRxsy4EZjjJiI9zLQDHWutUxnwuWk
3fIGt5dB/5mFrf+V57BNaHBU+O4y1PVknfixMQvGg+5m90UuwxGdU5s2tGaB
0/le9Wtxy0D+tuPFX71ssNIOgpeZyzA2c6xH9ewrEHu9lXwtaxkIoUQjf/Q1
tMh11OrnLENTKXayXjoXDvAqm/UVLMOZ2DVlQ2N5QPnRZCf8aRnmrOpcU8by
Yd7kmlxfDb5/jS3bKO4FUFwpN5LdsAxRMSsBl+cKYMfzKxf0W/HxZhUL/ooX
grzXuuveg8vQqf2j2vJGMQyMfUL0R5bhulfXRKd8CSTbXSQKjy3DfEr7g5iv
JSBhUBWWTV0GenkUkaBaCrxiZx71Li/DjqbjpUIbyqEmVNA2m7QCY+vN6uNG
yyFooUTWe9UKkCNuv2AUVMDiL/7nQoIroPfkotNjuyqYevOmUG/DCjQLntar
9P4IOQo2PkKbVmD0UV7SdepHcE0gU3oVVkD0RELc1PlP8Oum1WcvtRUYenQx
bsP5z9Buxm59obsCUKn4+Ex4DZRNGFEFbVagc2KA+8nxL7A7Ojm8/uQK2K6b
0Hdb/AIFO2iKQQ4rUPOiT3tTxlfI9ky0Y7iugPidgMC9rEZIYE00/Ly2AsTK
a/rU2mbw5nrw9MXDFWi4k31WltEG9Ge/wfHxCuhvabpvevI7uBvp/pROWYHu
H/t7S2u/w5nwEZF7T1fAQ19xL5rSDseE99z0ersCzJtqpQLWnaAp03tCr3UF
LrTURwewuyG3Qp2x2L4C8xXawklXe0DV/nZMUReeR9vfAJvJHpDP2F6nPLgC
YTR2RfjgTxBVvrVLiLoCV+ZOFOxq7APWulge91UETC2nOn1T5yB0Ku4d0lEg
YPqHPq/vfjgCI60X9TElAvZUrXrF8fsI0APSn+5XJmCBx2YcDguPglAn/1kL
NQJ2wsO3Qz9sFIxD+/6d2UXAZuX/Df+99BusNEQPXdhNwHhLXogTXvwG537D
3Mt7CdhSUcXmowO/4dbuN5f9KPj8wpmMdNM/UPY7iBFjQMB2dQwcfbB+DOof
lFjFGxIwI4bAFuTgGHSiEyVJxgRsD1fdhHDAGMzEW15/fpCA3WLH9W7vHQM1
I+WV98cImMyKepdmzF94ktXE+8eZgO29RRjMbB6H3KOk8xMuBOynuLVa18w4
lK/s/kpzJWAq5XqyqNQ/6DqeFsW+iO/fTuZ0lu0/EOW9IirqRcCiXXo+qf/8
B3KFWVekrhEwT1rAc435f7D9dG+7jC8+X570J1/JCTB9t//RlgAC1rfmx/yQ
2QSEuK6VQW4TMJra4osrJRPwQPxQgN4dAka4Oi1Aa56AtA+3+o3uErCTWx5d
/fpnAirW/ks7EkXALmoMlmdKTAKzvkLR9SEB+2X5bIv2+Ung8qKHuj0iYDGn
lx8xAiZBdNOWMc/HBOybgk7rlvuTsMM35mVACgG7PlNYM180Ca4qTjtinxGw
UplvNlnzkyDLHzvmlYXnJ2Hha8s7Bd/HP6VbZxOwyKj0tBzJKUBfyYvLviZg
VlFda1U0pkBsxxDrRSEB+/hiq32n8xTUC4kWRBQTsLiLP56/uDwFN6b3XXB/
R8DOi/noKftPwVh+ep9mOQGjtOX77HkwBZW7HD5Vfsbne6VEaCybgqsS9/3S
awhYR+hjA6ieAhXmh10hdQRMS2CA5d40BXElclkHvhIwQ/PeB/wDU3BOZzCi
vY2A1Y1nVJ9emQJZaeH9Je0ELMI+fWV0FRXaF2H5cSfej4PYnV2CVEArnly2
78HHfxu5X1OGCuKYveX4LwImLHFfrV+LCl/k7gk2DROwP3bWJe26VLhJrKrL
GyVgsn9EDz7ZR4XxT7I6Xn8JWPsafbuig1So2t8vS6ARMBHNVhaXAxWuKgl2
DdEJGN+e2vH3Z6igyoPer5nF9386pdz8PBXi6lPIESwC1iZrNiZyhQrnTU+O
SRCIWNPOL8fXB1NBTi0qnUUkYtss/l1qC6VCx+oKm59kImY/svDIPZwK2DeZ
pjQeIsY6Ir7P6j4VmLkHQ4P5iNi/WDiQGUeFnHv+4CJAxER/9Fz68YgKkod7
87cKETGbf/xTcylUaNy5+oKgCBHjzdZ4OppGhVuiFAWaKBFze791d0UmFSa+
J8UXS+L3hxpeU8umwkcrW799skRsoCaRIvOWCrUPJOoPyhGxawY2gYlF+Hjf
msWt5YlYBF8nxvWOCl2GBrnuSkSs2of3S3I5FfqDlhd8lYmYGelgc2MlFUYq
3xndViVie+mvvox/oML07m2/krYTMc0l7r/0anw/nn+2ZakTscHNtzb311KB
nZt+vUCDiP1sPh1cWk8Fni2S4g27iVjHH8VCvUYqyEqtGDJRIvbadvOqV21U
UDhaGkvcR8QynuYUKbbj+d+7Mrhan4iFKSarxnZQQYtnzHezERHbHd5KN+mi
go5+Ru32A0Rs+dgp7vhuPN+bdmI6pkTsTLuoXWcPFQ7OtbyyMCdibS9Ndu3t
o8IRzYh528NEbMph3SmbfipYX9pvePYoEWPvaZW5MkAFpz+lAwHHiZgRSSrq
7i8qXP+RIZpjj6/vrJTckVEqBIqdtC92IGIW+cHj6r+pEGou9eqjExHDbFW8
ef9Q4X5dxP6us0RMRG9VVcYYFeLJhg+GzxExP/CeOvOXCslAGJi6QMSIGnmf
5cep8KLkqg/3ZSK29rqDevg/KuTObK8R9sTz692spjVBhcIdf0VkrhKxe3O2
8T24q7JO5mj4EDGov+smMUWFzkeG/faBRGyIu6fbfJoKvd8JWy8EEbFN5Qd4
vuMeEnp/zTuEiFWQf0weplFh8s4OkagwIiYo63ZFn04F+ue/JxPCifjfAw2r
YtyslcyXmZFEzFktzVdxhgpcPmsNymKI2B2m7jILN39hW0zNAyJmPNKceHKW
CsLTkX0tcXg+VWNTlbhlXInX/iQQMe2/21V9GFTQtB7PFk8nYklv3xTWMakw
WP/EbCmDiFVeqfkuNEeFSG3LmdGnRMxgp0mVJe7f6z9QSl4QMZfz9fATd2yE
168nL4lYDV8EYz0Lry9bNTTsFREbaz9eao07se9h84k3RIwUcyjrG24jM9Or
egVE7CLLY2rVPBX//46wbmshEVu8kRqA4DZLu+DILsHPo5t59jPcJKd9jNQq
IjaKZsU5LVAh7zvz8Z2P+PgSWQH3cNsZvEIvfyZiB5tQoTLcxYpSYfvq8PoZ
NFkKLOL9Et+optpAxFZJ18pq4BbmCWoV/UrEggbt3x3HfW5sYv3INyK2XnpP
0BPckicyqhpbiNjRKvnqj7g/NRx3LmojYn0rQgtDuGVyPr0O7SRimernHOXZ
VGhxS8BU+olYUfzgwkPcAf2HRkUGiVhJgl/hG9yq5uTwhV9E7CTMJ3/BHaLu
/v3rKBF7+pApxsa9M32zT+EfIia180Wu2BJ+nkW6ZVL+4ud1f2aMKu49M/ou
7pNE7Mjzn5gV7hGnef7jVCJ2nndg3QXcMe25eUAjYrb5ZeY3cY8XrZsXZhAx
S4Pq0We4U32oEW/ZROzlOntkArfp36fqyctE7G5McCAbN+uETUcIgYSlPDll
sHoZP3+6NbJWXCRs1iX7pCrulZzrn9FVJKzXN7RsL+5XMuquW3hJ2J3XzOeG
uLmXE/NZAiTMbdcuigPuAncLq19rSJiT0P1/brhPDXAvNgiRsJiS9D3Xcb/7
cNkgSYyERX4Yz7+P+2Kw4Q9EGh+/2vVGOW5WeOsfmQ0krEPqukYt7tsP7FiL
siRMS3x1cjPu1HTPdWXyJMx3TUzCL9yq2UsqjxVI2OWy2h3juEvehOn4KJGw
+Cu8t+m4W6pSbXerkjA2PdSDtIL3S53KRQk1EpaoGbGaH/ffb4X+s9tI2F4b
VTcR3KT+LykFO0mY2qRa6EbcmmzmwHZtEkbgE92vjfsDOWh6jS4Jo+Vv1AXc
BwXWECcpJOxb01nyftzO6zfL52Ak7InTemEL3NObcjXC9UjYYVuF45a4A1S0
9c8ZkLCE0y+8bHDH7zV33mJMwrryaIgzbnms5+oqExJGD+Abd8WdZ3Tm9qgp
CeubwjzdcNdb+T3PNCdhJcgxaW/cC1ezxjYeJ2GaJzUmbuMO9deYX7YmYa82
vXx4F7dYSAVfvw0JG9Ukb47CrRb7XTX5FAlrOVswEYv7XeIpXb/TeP6yz1Qf
4d6f8dfUxpGE7X5TYJ6I+1T+ysW1LiQsDJM4koZ7/F14wNxZEmYe+kM9E/e1
DxLRnedIWGr4vflnuGOat+bFuZGw9uxA0xzcHyeP04S98LwvFZCKcJsxhojT
3vj1p2L1SnD3sN1Em31IWBV5u0cpbrpAiGaUPwkLFHiSXIH7hpiQwcUbJGzP
mGdiFW4B6cRjpoEk7GTOYthH3Aqqb7z4QkjYA5ll7Rrcb3bqho7dJmGWmtZL
tbgR7dr4ujskbMce5bf1uK2Me0tuR+D51NbOfcUd5sK7QIwlYVatKdRW3Gca
NqTyPSRhdxM73b/j1lPT1BN5hJ+HQ0m/2nEv0k6GyyWRMOy6U+YP3F3HrmxX
TiFh8spqM124C0vC2nY8IWF2DgJ7e3C7B7xdD5kk7HOyV0YvbtPB+krDZyRM
48Lr+j7cyvr9jmZZJOxjlOVoP+4hXr6ckzkkTMFRg/wLt2XcKV3/tyTsjbpm
9whujbkrA8FFJGxdmcT7UdyCNneDI0rwvAXTH/7m9MfGwq+J7/H8nJ5qjeF+
FtRwKaOChN3PiFnkOGi0X+xlFQnLNRV8/xc3JYfPrvQzCXu35cGWf7jXCW4k
fKwhYUq7l9s5Zl7e9bS+joQJB9X5T3D6cbf9xI+vJOxT59bySU6/fir0Z34n
Yb8WlpepuFcUvsgtd+D92rg5ZBp3752Bau4uEjZOm+Wicfr9EP8aiV78PHJv
XeD4ypuN+TL9JMzners7HbeFmJalwiAJ23T67QDHfN32KZojJIyYEV08g/u3
rtc+3d8k7Ahvncws7k+p4aN6Y3i+XK9vcuzvXLTtyAQJe3SGqsvgnD8qf+Xl
WRJWmipzn4m76Yicow+ThK3RfjTA8csirVWBLBLWNBGydQ63k99ps3tsfH3f
1pRzjPV70eOXSRi/QyuBhVtmX0R8KoGMSQ5Y63Pcuaq4/zUXGet1WPrI8dtz
X4OKVpGxA1+QZY5jGgeVKnjJGNd02N553CYPBC41riZjmeKBWRxXbHBYGRcn
Y898Hl9e4MxX5LHYLEnGROtbkziuPhg0V7iWjMltLqvhuNEvk3pDhoxdv/5Z
YvG/vAr/OcmSsU30OV2O219W/zGWI2Pdl8kOHPd2jw6IKpAxovnnLI5PezB/
zimSMak/YQ0cj/DydPVuIWNVi0bjHE/sUW55vpWMLaBtymzc7IfnP+hokrH2
kD+JHAdu8yvfqEXGUjebFnHMVRPxjmsPGZtL//WN49Wzr9580yFjLcyqFY5j
IipevaWQsZsFYlJLuMU3f3uRgJKx5fUF2ziWOUJNc9QjY95NI9Ycp/1dSTYy
IGPGScFuHCvcEn6sZkjGFOSCbnGs9mbnfeYBMtaalp/Fsa7g1Vvhh8lY2dsT
kxxXPgsJuHSUjN2+473EsR7y0PeYJRlzkJFcs8zJ/2Kxh+wJMjadPqHK8Tdy
nRvZFl9/h6o2x0eSfpwbsyNjPkcXDDm2+cJyKDiN5xts48BxvwPfqUeOZGww
jebGseP8Oht/ZzLWNKh0nePzyrpHDF3x/oi9dp/j66EBej2XyJiu28p7jpc3
RKNVHmTMeaajhuOgolSdp1fI2HPC6WaOw0eqNNyv4fONPfrFsaB/y/ajvmQs
bafJOMcPxH6p7vUjY22/3tE5TtQjbSbdJGM7kr+TVnDL9ohu/BNIxobvB/Nz
nOGxWboxiIwdrp0T4fhlmoFYfCgZU9m4S47j0uVQsmo0GYta2qrDcTRtU+ye
GDImq/8K49hxpFx+/wN8fT8Yhhzzf6HvOx1PxoYEJ45w3F8e1eqWQMboMsnW
HL/NU3bwSyRj6YdlTnFs9/BUYHwqGft+IdaVY/WweaGnaWRM1TzKjWMuv7gn
+RlkLMvypCfHr09/qWx8TsZ27bvtx/Hy1t1LpDxOPdZGctwm2xopnE/Gml3+
3OM4S+SijOxbMrbxUnwsxxZz6braJWRMJDIhkWOFccpXw1Iydi99MoVjVu8P
m2PvyZhprlI6x+mf1ly/VIX3l6VxFsfeRS/4Aj7i/ZGn8ZJjkxf6j8M/k7GB
YK7XHNOjfN89qyNjbxocCjg2ODHK/NlMxoqrpMo5XnswMPRvKxnz4z1ayfEE
Ki05952MaUT4feD4ocJhLdEuMsabH1/NMcp/59i2XjJ2ZditnuPf1PIrxoNk
jBXK3cjxvQ76A6cRMnaxxKGZ473vlQtujJGxJwdD2zi+Gxo3XThNxoq+7O7i
WOPiF6GWWTLmodXQw3HPYcKOfywytlp4Zx/HwXt2m61aImN/13sMcKy24aLb
JiIX9nMs4hfHAWM/co7zcWHqRrajHH97qz8eJcKF7U99M8Zxag93V8o6Luyt
d/Q/jt2I9TWvN3FhJsKiUxxTlMPfVqhwYQohhtMcrzY/mN60kwtjRmnROc5J
bvGf3MeFTfk5M/7Ld/yY9ZojXNjgoR9zHIfdPil0yJMLW2ektshxjZxLbeQD
LuzbuMLSf/Wc6NMs+caFtZ+bXOY4pMQy/Rc/N2bSn7DC8fTE2kDZg9xYuGXv
f7aT7z1lG8WNub+c+c+vJrgR/S/cGHZx8T8vFu+Q3sqzClM7tPyfKSdXXx3U
W4V52678Z3/y38aHN1ZhlR//5wYxkUcnq1ZhZuP/s6SCtoMigQfzZP3Phg11
qgkUHkxt6X++5m41y+/Lg9GX/2dxJyHv2+U82POV/zn/eD2+bx5s6P/9f+Ak
hi0=
       "]]},
     Annotation[#, "Charting`Private`Tag$6290888#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.883709244549595*^9, 3.883709297337487*^9}, 
   3.883709583707026*^9, {3.883709635758346*^9, 3.883709670568365*^9}, 
   3.8837099473258133`*^9, 3.883810158679089*^9, 3.884769146410893*^9, 
   3.884774461281509*^9, 3.884778671151897*^9},
 CellLabel->
  "Out[424]=",ExpressionUUID->"3a455965-da64-4483-a63f-6e48664099c3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0440\:0435\:0436\:0443", " ", "\:0412\:0424", " ", "\:0432", " ", 
    "\:0440\:0430\:0434\:0438\:0430\:043b\:044c\:043d\:043e\:043c", " ", 
    "\:043f\:0440\:0435\:0434\:0441\:0442\:0430\:0432\:043b\:0435\:043d\:0438\
\:0438", " ", "\:0441", " ", "\:043f\:043e\:043c\:043e\:0449\:044c\:044e", 
    " ", "\:0444\:0443\:043d\:043a\:0446\:0438\:0438", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiRCut", "[", 
     RowBox[{"r_", ",", "cuval_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cuval", ",", "disp"}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"PsiR1Cut", "[", 
     RowBox[{"r_", ",", "cuval_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR1", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cuval", ",", "disp"}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"PsiR", "[", "r", "]"}], ",", 
       RowBox[{"PsiR1", "[", "r", "]"}], ",", 
       RowBox[{"PsiRCut", "[", 
        RowBox[{"r", ",", "7", ",", "0.03"}], "]"}], ",", 
       RowBox[{"PsiR1Cut", "[", 
        RowBox[{"r", ",", "7", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"r", ",", "0", ",", "10"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.88370978236176*^9, 3.8837098757304697`*^9}, {
   3.88370991928649*^9, 3.883709930485785*^9}, 3.883721878173161*^9, {
   3.8838142442419043`*^9, 3.883814263199909*^9}, {3.883814546023432*^9, 
   3.8838145631924677`*^9}, {3.8847744698634768`*^9, 3.884774506177053*^9}, {
   3.884778677923297*^9, 3.88477871050943*^9}},
 CellLabel->
  "In[428]:=",ExpressionUUID->"41107c73-e600-4079-9938-9536a9f8a8eb"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS
IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi
IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A
Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD
6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9
nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa
3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54
nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o
5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF
5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq
TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9
+ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq
7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9
si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd
Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO
o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx
/rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd
arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL
pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu
93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum
KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs
X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG
sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f
KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp
g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF
43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM
DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR
mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd
qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh
FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt
fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475
EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn
KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S
9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o
OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6
zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9
BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm
zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf
lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx
yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C
4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9
/Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+
CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05
S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU
8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo
+Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi
RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs
99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj
w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q
RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX
PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9
5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s
P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8
gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF
kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu
iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y
c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y
xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN
W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE
RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS
I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D
GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf
5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt
zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH
ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV
g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y
wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU
mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy
t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD
SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv
zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB
XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z
       "]]},
     Annotation[#, "Charting`Private`Tag$6291009#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVz2s0lAkYwHEa02VMexqsa8yMl6aQ2C7SKc+zdE4J7UZSWmFy29zbZrXM
phVJVlHvuCYhqVwTWqnJuiQN00pRDSVjyKVdNTNhKLv74X9+n/9sbqR74CI1
NTW3//rf/BPcxbYBqQ4//C5aFy5XQGsPy9WL9SNslUa5J00qYOGh8BSL9Qvs
0O9qLJApIL8pjUllpYC99k1fSZ8CwrbxwqeZOVAzQOkLv6eAnrkQcop5A9Im
oge+JClgiWSI857ZAPTqQWanoQIKHxdETzA7gCqnqcZ3yaGyKkUSZv0Kym+W
Prtw9QMEQ3fO5FEp8Bx8moa2TEGEbI20tnIMGC9f1Lx89x5o7ETOm81TEGd+
MDLm0AScWyGyKPSTQx6tLTHUdgy4kr0PKJ2foFw433FlyShEtyVyIzkqGHuw
fc9mXRnciqJ76Dt/BnWGwSrzMCkUxoWO23ipoV8Vs06z9S0kFMzvUUyqo4RY
7967fxDUegbxXiwF72SJsqTs17DqWNDxvRZU9B7yvb+flMCwMmuf5v3FOENR
VmQEvIRdsiO/XoheipUGDcvEdn2wezjd0sSEhk6qybeFTs9hvIV78lGFJt52
+emRZVYPWDN6jZ18l2MG1TE0frIbaKD075d/hetSTwAj/i/Y8d572tRzBQq6
A92bOGJ40Ryg7m3FwCmZ//GgPBHUnWk9xFIyMPaLsf3lsA4IovIGxWIt9Bs5
oJOJ7XD4aFwdPVcbLxLz40EBbbAu2FLs6q+DAdfFRhn1LfBEy0qTZ/81flet
5e1Ba4bGyoQ8K4ouuriWaqTkNUGcusX3nQO6GCu9UlbiIwRaf+zOiFo9TDjF
50SLG0F2jU0W8PVRVrFRaJPfAORqA40GTwPUs6MaRkfcgfTcoHZ/liGeps5x
352vA2/SR0wfNcTU2qHEN29uw8z2ktkCoRH2FHRu2mZbA1KZ4/Hm5JXoI9w5
6d9UDUXbbI26/I3RrKixbLioEiqSeIzgtSZYn19uFW5dDsmeh10oShPsravo
s52+ARv7C28kdzExQ8W/v6W5FLLX5FV0ubAwRlpoeeB1CcQ3pWW7NLDQYdG1
lv2fi8HNyLPksRkbff545rHPrQi+jWg/yEhhI92vYr2z5AoUrOSadSrZOH+Y
6Tr3/DKYtZRm7j5oilrWkhGO7yVIX9ts8VRoiicppOYt81wIkmt0d1gQSOVb
v9r6dxZwb31kpZwnkHki8vX6pZkQluAxvyuDwJjTepnaapnA86jto18k8EkM
1e3TtADOKHnn0jMJzDq1o7Z1VACV9rNzWfkEhqw465zULoDZPxd6r5UROPBP
ag6ZLID0p/S01nYCna9Xbx5eJoDc4vCQ0x0E9mvk3mMvEkDxMbHTThGB/Kc2
xlwVCfW66SqRmMCzG6yjJsZJ6PfWDul5TmAd5SOwOkngSA2chqQEbjr0zSXG
eRJsamNNrsoIPFPNDOcnk7AlSTIbOErg5ZVU2ng8Ca6c/Oqx8f9+vbOLu6JI
OBrKMvnwgcALXrr29e4k8Lf+NlsjJ3D13WlXOxcSkpYPPTumJHDEMc+s0YmE
7Kri1JkZAnNUOkaiDSQUndQIvqsiUGvDkJ3XWhLK9gQ68ucJPHLdV2fEnIRa
04fGDl8IbOtMqYoxIUEoXzW7sECg/s8+S+l6JPwLrWpD2A==
       "]]},
     Annotation[#, "Charting`Private`Tag$6291009#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVVXk4VV8bJYUMhcQ5517jFUIihNxz9kspGUtJJHOSocwURTJEEbkkytSk
TFc/U4kyhUSRUlJCktKAZCj57vfXft7n2Xu9e613rb3lXI9ZH1rGxcVVx83F
9f/16ilXXk33c5RP3b/0lNmT65tfyJrbyh5BvDVtJ28HOKosPa4/Iyt7HAmp
VrYWDfipXH2UJLNCNgF9vLyZu7EsRsWHDPadlbmMipxyanfK56q8+OPJ+ilz
Gz0R4A+LzmtQ4Xs7rPRN5h7KbfK6N876rZL/JNf/q0w7Oh3YG3c81Fq1tCzh
rY96P3qjanlP5ccKtcOo+/JEwAg68+8uq/fJTbWjo+tHKkrH0QtF9F+BnNEG
AbkYpUG9nyjxt5hPttbYhmSRDpV852k0vrlJOFnrtLrr270PeZ7+Rm4Kn8Vs
+hQ2+rfEuB5TWkAXXnc1uj9t3ljuJ7QH27mI5ndNZ209aaeRH+79RcOWC046
x8l8+bigEZ37d/evCW44UsUnvPAqVZPrxQd4cIIH3Mu6PJy7FTYpBnmE7VVZ
AexrRbb6X5o3fZy5tE+wjhfW37CvS/O21zId9Tp50Z8f4moHLNtq/2pZfkxR
lZYWgCAbh7LyiGztL02uUW0lgiB2Siz2W7yGjrroK6mtTsKwca8a5irdrSOA
ZlwGpleB8lShOsPUY/OOb/az8jYi0BneOXHhL7/u60Z3bns1UfDadP+N/rVC
3cqzzY6yM6JQutYq4u45Ss9jRfCHri4xOIx559tafNBzCwivFMpaA5+H3BP5
hoL1Nx5W7TJ3EYen/2UaYr0rtzwTUxMM1l8LcY5DGTpwZ0ttaXS2Go8EuOWu
jJtsAYNwbpVdT99JAKYqkUoFDRsIDJwwOVohCW74u46Rt6eZm0NvC1+oloT/
MOmhgIdnmC5ir3vK7ktC+cu5NUqvYpk1JjoHJx9JglZQ4FXt/xKZHpU//IM6
JeGy5urFiJk0ZkOye/aJT5JgGjWlZ2F5kzmxPs05e1wSDvNwXdp2p5CJtTSs
ezAhCZf2hJpKbS9iHv0jzV6ckoQ3jDK5zGI2k+75pjlqSRI+tdJ9m77VME14
+BPzl2FQ8lmp+GFKLTMwZ7NV4woMmLGHtWXD65lPetPe8AhhkDEf6xxf0MiU
E5x0MxbDYHmNdyB/+2NmmKHl9zgMgwfMPzvVBzqYz0KLwtqkMbj5pKFjH383
U7GUn0dgHQYGWWuwiBe9zN07ddtUlDGIv+/s4crXx4z4eCjJTBUDXoU1at9C
3jALI1nWPuoYDCW+sPZWHmC+IJokkzQxELiffvGV/CDzX+XkQIk2Bqu26jZM
bR5iquyWLejSxaBz08721StHmDYTlod/bMGAdu9K6nGhUWZU/Ek1EQoDL+rZ
nMf2MWaxfPGkhiEGj4Y2CF95MM7sq+uv2r0NAxmf83/CgieYy+xWRgTswOD1
Hf+LAmE/mOq/dA3TTDE4m6RutMpjkml/wYO3wgIDm3Hdp4rkNDNWJb2jdxcG
RyOH/oltn2GyW5pSZvZg4LM6d1EybpY54DxlI2GLAd+B71dX8iww+f/K0nTt
MVitIxhp1/SXqXXJ6oPtQQz0PMzuK3UtMR03nboR5ozBQnlJ0Z10bjKxs9jr
shsGHqlr7J/685BVnm833vfAQFD/uoBp1ApyiEdgpv8IBrbXK81DH/ORQrl6
9//4YNB9gPFZ11SA1NtyOJLuh0FWgJX0ajFh0u1l+jYykIPXKb4tU0yETPZr
XukYgkHs82DH9hZR8r7gdNep4xiMFU3Mcd9aQ47elGPlRmBAcOm6y9auJSdi
huZ5ojCYeta/8o8BRk655jt5nsHA5JV1ZSEvjZwHl5ancRgs5j86fYchTXLJ
yKlqJnL0fvlbheqSJXkXP6SkJ2Hg5KL28XWdPCn8Nu/3fAoGzz/lq577pECK
33N2cGRhsP1ZYNFnSyWSuCTb2HgJgyU8n3vHv/WkXPAHJaVsDLjutUr2/lUj
lffkJZ3LweAD10hc33oNUl3TefpHPgZsJRZ3NO8mUme1rN3eGxi0yy1PXEto
k8xvg/U1hRi8ujkUOOq1mTTqyFWQKsYgh/fw1aUlPXLnbafE02UYHDOOnTAc
MiB3xcv8HL2Lwfuix8YBkoi0PTRoY1qFgVL5rwK1fYak49bc2tJ7HD3vdfL5
2Wwl3eWc5NbUYWBmINqcecGY9F6Sjg99hMG+vZIVxwRNyIB37yfeNmHQ4DXU
FvvclAyrzbGGVgwsrZPFzcYsyMjLjjXXn3DqSCPEKt5FxoVKS6/swkD/QPdm
y0xrMsnm/Rnfbo4+JwadSh7sJVlaOePdvRhYiU7r6snaklmijlabX3P8hk0V
6TyxI/N/SFVmvcUgZJfU1qZGB7Kw8x2x9J7jr20fv4asdCZLi65GuQ1jEJx5
geUx7EJWJhz81DqKwffYOfPuSTfywWEpc7VxDLB+ybpF0oNsMn5XnjLB8Xtj
a/7XTk/yCeOq5MwPDE65jkgfue1NPuc+eNJuGoPdx5XjVN4cJfsG6SN1vzFI
rrzuG6DlT76vGzCRX+DkcX7hbqV6IPkx+0pp3CJH37BZG0/3YPLrcQfxr1w4
KNA7s43fhpJTtvQTVstxyO1MtniWdYKc1xkY/I8Ph6c7wzLci06SXOJXjDFB
HBZnLBo3nIsieacOFEWswsHlWc+DVYHRpPBzmuiQKA6Na1T9GWkxpHjp2xDj
tThggXdMRyfjSOJ89sBtDIfl7ecKzmckkHJeB4xW0XEQCo6pV0w4Tyqb0AoD
ZHBo9py1Le25QG5UfCvcJ4/DLTEIT6tPJTcvzw40UMShqIBV8649jWQO27/J
XY+DR8fV+WOiGeTWRwRavgEHRjbjt8GVTNI0p/+6pwYO21ZFbOQKyCZ3RWQJ
dGrhsHuyI94pO4e0tbf309TFQaf9ZNuiSD7pqEe8St+Cg8P7hkkT/mvkIYl+
gwUSh6rT+t7J+jdIn1+X8x0NOfjhqv/Ci26RAT12fE3bcNCWwrxiDt0hj7Nx
XyUTHKIMtNb+PlZCRiW/6TlnhoM0/k9NwItNxvlc1vtpicNH05hB3PIumWRq
l7PXGoeHrPDqiSMVJEsZX37PBgeRN1rKP5qqSAdHxVsj+3H4dD/80l7te6QC
S8t0lQMOjgOS+bljteREO3zTc+L0c3sh/udjPVmxZJHi5opDYZydqirRQEbo
HNBKPoTDyqNWuuSPRnKbt+erGk8cbpa/KU753UwK5QcfH/Hm9FO88C1ep5Xs
fRVNX3UMh+cpsfz43XbyilDKQ70AHCTc68+/C3hKuhtddXULxmG17Vlhhchn
pFrYnRXJYTgIS95pOn2sm/xVUl1YE44DD93Ap8biBflgpNls5BQOAhOeW1Wd
XpIxeM934Wgc1Jubztre7iPNrQZT9WJx2KcIArs39ZNrYie03c7i8O1hhnEP
1zuy//58X9I5HMpM+eSVVn0gC37yhtck49D9XlAj+vEQ6aUoLj2SioNrfKa4
YOkIuclBrkE4neMnEn/+rH2UXEhVd9fLxIGrUIn3iMxnsrHVgM8tG4fhvzyv
+Su/kImLJneScnDwXfLfdy71G2mttc+iJh+Hkz+sDmxz/EkSR9x+Dl/H4dWQ
dp22zBQ5nOOXJlyIQz2jzpkS+UXe6T25Wa8IB9M6w8izm3+TAQLn3riW4hBv
K3a79dIcuQUyI5LKcaicE/xivuUPuSzkhkxNBQ7e92KSJNb9I58U3W0crsZh
Ym6F7WQZF3Vx6OEh4VocfnvJDeUfX0bZS3by69XjELm/uPRA0HJK3qK/yLUB
B6u5x2VON3ipL9FjlknNOFy593TilNhK6m7Nr8nqVo5e10/8Xt8oSJ34zp0+
/AQHO8aZxdO1qygjhdV6wl2cPDuEDOrwiFIC9vS3ut04HK+9b9DzUozqubD+
lGsvx99kR6JPvziV1bJZLqmPw59nYNpJQpJy/bO1ubofh6Ucp9isCzilorn7
8PA7HI7O6UwVm9OpKQ9HAeEhHEKDE/693StD3b/iXaL7EYcuSYtRfL8cFd0T
tst1jHP+hc2lLi0GZcofN33+C0fvIVf2CaN1lCiVllH9DYfgA3GirAQl6nVg
nv7wTxxEz0s4K65WofJulwwI/cIBRR4SHXmjRnkO3o/UncXB6b8Uda3JjZTG
2jZ51wUcdrW1Rt4o1aTmTF+2nF/EYYbs/5ybpkU9ihr2rOYi4KhE1cqUYh3q
bNUPwWEeAjIFrizjW9Kldk38LRXiI0Dr5cFr6qlbKExewFpXgICainWtb46Q
1AdbyRkXYQKejgXpmZkAVZikkHlehIC9RZYTH3iNKL8mTYPqNQRUvFS1sprZ
SunNU++HJAj4VqdeVoVtp7g2mp8WIghgjF+bbgoxodrc7RR0pQh4Im9Y8nCt
GZWS5dHqIkvAFbVzTTl/LajQkOjACAYB9f42ovypuyhH6xyZS4oEeDJyn3Nb
WlPG6vc7ytcTYODflVKkv5dSE3gV+lSNAPrVYNuv+/dRaz5NMsY2EhA9tqxO
pXw/tdAg/JxbiwDj+o777iYHqOGr6yPomwkg9Ee+aq9zpNqPGyvr6hOw61K3
VtAtZ4pt49K7m0mAk3iARpuHK5WpeTLKBxHwPLDcQdDGnYoUvqwWb0QA7ecn
R5VQD8pjvOJ1vjEB/HsN5DN6PCmLlucxD0wI8NV3qN7t601p509o9JkRwHr1
/Ta35VGKdpL/3aQlAUbz38P+1flRy+wUEoSsCZANH3hZFhlAjWuDjpINATfN
J0cu+AVRz0Uchgz3E1Aye2sqNT2EqpkITXI4QEDpfyI71X+FUbltafqhjgRY
2lC438VwKu562WiqCwESyzy/LA89RR2N6kgtdieAWRH//GZvFGXjMEa2HiaA
jLUorMmMpph6PF+GvAho3avJo38+hmKIy2T89SUg2yRrSK4ijhL4ucVI0p+A
g5Yz36fWJlCTHfu+awYRgOJH4x9Wn6Ne3wrIMg8lIKlHSp/KS6YenknefvgE
AVHhWj98vqZQN53uTJ0+ScB/gXXbh8svUskGj3OuRBHwcSKM4i1kUcGSw6bV
ZwiIjNzO+TkyKIfpxd/dcQSs6/1gPqJ7mdr2DL82kUDAKo0n/OhdNqVapGPF
l0RAnsSLA8XtOZRY/O4/cikE1M6Fiuxalk/Nu/reYqYR8KFe+oFqRwH1gUrY
Y5tBwHjNK/ffTdepVuLGkv9lAgL7fp2snrxJlf5+VHT+CgGpj82TFu1uU+k9
A7a3cglYubVi38SyYiqidI6nsYAzr3s8MebTpZR7ojh74AYBUq0PwizxcsrM
Q8NhtpDDv23n6MWPd6lNRub8YsUEBMjz9/J+qKAIac8KtTICXG/6B9SIVFPc
C2ecd9wlIN+q5S4ZcY/6/DJXyLWSgKX0yoRG5QfUs/LamogaDj/fg3cwqYdU
VVKf+6VaAi7uMA5y12igrh6ZFrlbT4C+cdfmNf8aqRjj1XVPGwh4FOszp/m3
mfKWUz0y1kyAu/Bl1suNrZT14va1y9oIUB5fbZ+d005teePaQO8gIJev0q7a
8iklV3nKV7eLAM3HVjrLdzyj+FOzcOtuAs7MMswSd3RTP32qWnx6CYBOJ+Y1
yRdUn0mPf3wfAYItyygf7CVVr/BdqqCfAG5pg2ouqz7qBpfAkwfvOPloM1Re
0fCGOj+wLqTvAwEizZ5nK4MGqMAaQ/mpEQKGorB1M36DlD3rYJfQGMcfgr/E
2Y5DFP0/AZr3FwIWEnJN1hwYoQa7qw+3f+PU5U4yrNRRquCne4XSJOd9+pz5
4hX/Z8p9tRh33C9OnjOudRm2faEU1R9afJwlYI99d9ea19+ocXOfLKM/BIi5
qu2sz/tJFXvjY3n/CDjxlE/ZIX6KOpr4WGuJmwbBPJFKl278ojRuB0YdXEGD
a74+4e3cs9R0q2xnLT8NRnyr3vNem6eqPnXihBANxNavZGum/qXCVoR7hK2m
gasIM0Ds5RK1RUH5v1diNPjhe2hB7wE3WjR6uaQtQQPNvdJ6tCYe9Mgl2jwN
p4HX0rYZwxW8KDpq4+VJOg0+b7CU9UvgR9tyB0atZGlQsnfu6gZbQcRXn7Cp
lEEDj8F1ae9CVqEnA5sjhZRoYB9rm/F1TgSd/zPS4aVCg4kRy3QYF0OWRCrW
voEGaw6UkXpia5GoPnVISZMG5gfTpIxPSKJe26/lsdo04DITvc9SJlBGSOa/
EV0aVEhHRSusk0L7043NjAxosEUZ4n2YsohWMXUpj6JBzo+Hkx0S8uh9T+7H
f4ac8ynfuDcpKaC8SXPNg8Ycvi4VrfWBishVZOFkrQkNJIxTXIx41iOFjbee
4OY06Ip4bLPrnSr6ZLFXMsyKBgY+7yf3CmxEt3243V9Z0+CCv5jfq52ayOdc
KVt7Hw1e3/x4cdBQC6nfObB40Y4GQWcsBoUCddDPNn7TSQcaYHyVcW0juuju
WGWGlTMNiLxiNc3sLSiI122kxI0G7b3ObWr5JNJdJ6IhdJgGDga7C6hIQAtb
6yK8vGjgiU5EeDsaoQeuXu1tvjRYqdCYEBG4DZ06LSmh5E8D/zNzPO7N25Fh
XrNrbBANnD4H8lfa7kTLH/qXjYTSIOqlxuhdbXP0+J30X8NwGrw0yDzm4maF
zv7tMMk7RQNnjeANZiG7kRntePq/0zTIsHGrW+G7B63aojjsEMu5/yPxcb1s
G/R8/wv12rM0SNThzmvk3Y8uhkaF4+dpIKPQt1Wkyh7ZZGxoC71Ag+Z3FqXK
7IMIq+wXf3WRBvGfFZfsTzmj/hfxLtoZNEgWeOnHZ+2Krkxpl168TINHstdO
5dq6IyfR4YWfVzjzT0hb4mV5IHmNCzus8mjQEmjmES10BH20ZLJKrtHAT11f
tOaxN7rpO/5B8BaHD/Puj7K2o+jI+YwNXndo8C9ANMZTyB+pFW090VZCg4dr
BjZ8fx+Avrf/fKxYToNiwQrTgMEgxP58dU1sBQ1qD6tP54mGokA+M+eRahq8
0WdWwvHjaLPiXLFhLQd/fVG1EhGB5rbdmM+tp0EIfz+X+twpFFGbe6a5geOP
LS3SD39EIa5NWcLjzTSIW/X2LeN0NIopZF0SbqPBoK5aRZFmDOKTuSC3qYMG
qQ8v6OQsi0OJ6QlF+7pooDAbl4PPxKNVQjE64d2c+af1FvAJJCKJ+bCdzX2c
/P1rUmNdTUZZxwJffO6ngd2Npu6dySlI6pPvQeH3NOhtXy+6fzAVKbxw9d/3
kQYWb6yvm1SwkFaJ+eXPP2nwe+vnKNnV2aiKsYMh/IsGfdT0uFPjFbQly7BE
c5YGM4d+V5uczEFG8ZsbTizSoCq5symTKx/tcpEdFxKgg/K6F/IBkddRbx8R
qClMh5O/uK8i2xtov+XaRRsROmyYP5pau/4mcjIQEM2VoAMtvlxEqfYWGi5f
nt2E0yHIP8KeFVaIPJSXFD7T6aBlqe1XtuE2Orr2l54mgw70xDvG5ifvoKlz
3xttFDn7w6r2m0kWoeBl4+Yn1tMhemr0wI9bRWgubORVjhodHrV4NDM3FqOI
H++cmzbSwZJ/SdiqpBhxebz+MraJDoSmfK6NfAmKGegJEtpMhxqJt7kpySXo
XHvrWRsmHVyaJkdHLUrRKmgUO4HocNhv/8Z7+aXoYtWDKzlGdHiedbR2w/dS
JLGhWrHJmA5fvk69LtYqQ1nXytljJnQYvOVrmB9QhqSJ4i1C5hz+31xPBReV
ofyUm80aVnT4tMkr/eL7MqTAl29pY00H50GB8I28bFR4Mvv1cRs6LFIN3TkE
G6n9SnfN2U+HuDO+7Y/V2IjtlTLReIAO2/3ns3uZbKQ9lBgy5kiHntRr9GlT
Nqq2jeUScqVDzof4AlNbNtrSFZmocYgOF51bubhd2ah+2wlxG086nOkvS9D3
ZiOj2qCc4950CKlOI9YGstFjzWPKOUc5epO71O8eZyPTwiN3G/05eK4dv9Qi
2ahT2p05FkSHz7xzvrln2GhXuuNjwTA6tB9Rj5eLZ6NeQbtdGuF0yPr4Xr89
gY32R+/p33uKDs0/Xt65c46NBuYs3I+fpsOujoCdr8+zkfMxk+9XY+hQIb7v
u2sSG42MGoU1xtNhb4vqvB2nNsrtKlA5R4dhwr7lHmd/3n77zovJdEh70Pvw
PAdvSfTT7EIqHZh+WrFDnH6OHf7ybul0WLu427CFc5+6mEXzjkw6MC58er41
lo3oVEKo1hU66Ftf/nA4mo3CZ8ULsnPpsG13yUoDDr9+dt5Tnmt0CAuwnmgJ
ZyN9L7VZ75t0CK6q2yESxkaZjBq53tt02K2vLCIXxEb7Mp6FXGfTofv0Lr1S
jp494f9kjevpYFNkF8Vlx0aaOolmJQ106LvrJSW8l41Svq8NWdvC8V+04lYe
KzaydNnQMdpBhwYXd6pqGxs92e4QHPeGDmIlgd3HNrJRo+j99tZfdPDPGUh0
52EjuQ7jXxvn6LDmikF3/p8yFBXTLZ35hw6ZoQ6BIT/LEDX7OdBzmRQIK/i2
SfSXofsDktIrRaRAIeBp9vaSMnT3VnCAqaoUtO1PONi2pwwVkJq0ThcpYAdf
Kn5eUIpKYoNFD2+Qhhte/oq+6sUo3sbNjGdGGgZOFfVpzt5GOgP5t+M7ZUBq
IaJuS+MtlLk+u6TTTBZCR/JV7d7fQJGPkjLN7skCtexm0/7Fa8iCZnPjiYIc
HKzp3bPPogAZHm09IJogB0LOJVo73+ahXLqrwtMZOfjrJmP+52UOUmi6lWF5
QB7E1N9+UnK6glI2NKr01MtDFA9LsHxdFvKYXt7drsKAFRHq/czvl5Br+ZRs
wgUGyJw69l6LPwP5RO/5a5rKgNA4yYw1XBkoeE9Fn1AaA56FrrD4PZuOzs4E
J6dkMODSmR0VzWPpqFR//s+lqwzwFEncGduajuYbll7dLGLAux/nLrPi01FK
j1BScysDdhay9T6uTOfk29czrp0BA8uzHsgtS0fXgrq2mnQwIKJHQ8p1gYWq
JFIWOroYkKit7vf1CwsN2K/xfPGSAZU8U0j2KQspjeBbh0cYsNlx0xXRCyyk
UXFC+vooA86yZXwj4lloS+zb+UNjDMihrxD4EslC5kpX2eNfOHztM691+rFQ
gLes9OQkAy7aSuhXWbNQBPP0/N1pBijfnzXXNWOhWOHh3qAZBnwyylao3cpC
mWXXzs3NMeDygjitQ5uFCqKWH76/wAAx7WFd2w0sVLT7kFHEXwZ4FTqJf1rH
QhXyj6WofwxoeZpQFirNQvXTivNLSwzAQg7yC0my0P8AI95Dnw==
       "]]},
     Annotation[#, "Charting`Private`Tag$6291009#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVVXk4VV8bJYUMhcQ5517jFUIihNxz9kspmVMSyXBJMlRmRZEMUUQuiSKN
ynT1M5UoU8hQpJSUkEppMBVKvvv9tZ/3efZe717rXWtvBdZhu/1LeHh4anl5
eP6/Xj7B4tf2PEPxBBTvFcG/qjU9l7d0kD+IMnMXs97OfVNbfFx3Sl7+KBLG
VnaHs3+qXX6ULLdMPhE1tiwXXmI+reZHhvj/lruI5o1+jL11/6f2/I83+6fc
bSRpm5RjKSiuLvBmWOWb3D2Ef/fnOB3UU89/khfwVa4N/d3Q1yr/NVq9pDTx
jZ9mPxrPv7lTU0tR4wDqvjgeOILI4eZtQxnVGodG146Ul4wh1TkjHzsjq3VC
CrEqgwY/kb3g3Cga/7YuRaxdLd9tCsXXESYVxqc0WW92PeTr+IVmM9qn8nev
WR/QHMs6rDKPzr3qavDsaFpfdkRkJ7Z9Ac3ZTmVvPu6olR/h+0XLgQeOu8XL
ffkwrxWT93fH9DgvHKwUEJ1/mabN8/w9PDjGB56lXV5u3UoblIO9wnepLQPO
tUIHwy9NGz7MXNgtXMsPa2841ab7OumYj/ocPx8gCPE1A9atNX91rD+kqsvK
CkGwvXNpWWSO7pdGVnRrsTBInJCI+5agpacp/lJms6sorN+lgbFku/WE0Iz7
wNQKUJ0s0GSYe23c9s3pt6K9GHRGdI6f+yuo/6rBk9dJQxx8Ntx/bXitQL/i
dJOL/Iw4lKy2ibx7hjLwWhbyvqtLAg5gvvkOVu8NPAIjKkSyV8HnIc8kgaEQ
w/UH1Lss3SWh478sY6x3+aanEhrCIYarId5lKFMP7myqKYnJ0eCTAo+85fET
zWAUwatm2/FWCjB1qTQqeNhIaOCY2aFyafDA37aPvDnJ3Bh2W/RclTT8h8kO
BT48xXSXeNVTel8ayl7MrlJ5GcesNtPbN/FIGnSCgy7r/pfE9Kr4ERDcKQ0X
tVcuRM6kM+tTPHOOfZQG8+hJAyvrm8zxteluOWPScICP58KWOwVMrLl+zYNx
abiwM8xcZmsh89AfWc7CpDS8ZpQqZBVxmHTv103Ri9LwsYXu3/itmmnGJ5iU
vwSD4s8qRQ9Ta5hBuRttGpZhwIw7oCsfUcd80pv+mk8Eg8y5OLeEqw1MBeEJ
D1MJDJZW+wYJtj1mhhtbf4/HMHjA/LNdc6Cd+TSsMLxVFoObT+rbdwt2M5VL
BPmE1mBglL0Ki3zey9yxXb9VTRWDhPtuXiyBPmbkh/3JFuoY8Cut0vgW+ppZ
EMW289PEYCjpuZ2v6gDzOdEonayNgdD9jPMvFQeZ/yomBop1MVixWb9+cuMQ
U22H/NUufQw6N2xvW7l8hGk/bn3gxyYMaPcupR0VGWVGJxzXEKMw8KGeznpt
/cQsUiya0DLG4NHQOtFLD8aYfbX9lTu2YCDnd/ZPeMg4c4nj8sjAbRi8uhNw
Xij8B1NzWt843RyD08maJiu8JphO57z4y60wsB/T71Amp5hxahntvbYYHIoa
+iexdYbJaW5MndmJgd/KvAXp+N/MAbdJeykHDAT2fr+8nG+eKfhXnqbvhMFK
PeEox8a/TJ0LNu8d9mFg4GVxX6Vrkemy4cSNcDcM5suKC+9k8JJJnUU+Fz0w
8Epb5dQRwEdWer9Zf98LA2HD60Lm0cvIIT6hmf6DGDhcr7AMeyxAiuQZ3P/j
h0H3XsZnfXMh0mDTgSj6EQyyA21kV0qIkh4vMraQQVy8TsktWRJiZMqRpuUu
oRjEPQtxaWsWJ+8LT3WdOIrBp8LxWd5bq8jRmwrsvEgMCB59T/ma1eR47NAc
XzQGk0/7l/8xwshJVr6r9ykMzF7aVRTw08g5cG/uiMdgIf/RyTsMWZJHTkFd
O4mr94tfalSXPMm/8D41IxkDV3eND69qFUnRN1d+zaVi8OxjvvqZj0qk5D03
Zxc2BlufBhV+tlYhiQvyDQ0XMFjE83m3/VtLKoS8V1HJwYDnXot0718NUnXn
leQzuRi85xmJ71urRWpqu039yMeAo8LmjeHfQOqtlHfcdQODNoWlSasJXZL5
bbCuugCDlzeHgkZ9NpIm7XlKMkUY5PIfuLy4aEBuv+2adLIUg8OmcePGQ0ak
bYLcz9G7GLwrfGwaKI1Ih/2D9uaVGKiUTV/V2G1MumzOqym5x9XzXqfAEfvN
pKeCq8KqWgwsjMSbss6Zkr6LsglhjzDYvUu6/LCwGRn49t34m0YM6n2GWuOe
mZPhNbl20IKBtV2KpMUnKzLqokv19SfcOsoEsYtsyfgwWdnlXRgY7u3eaJ1l
Rybbvzvl383V59iga/GDXSRbJ3esuxcDG/EpfQN5BzJb3MVm4yuu37DJQr0n
jmT+D5mK7DcYhNrKbG5scCYLOt8Si++4/try4WvocjeypPBytMcwBiFZ59he
w+5kReK+jy2jGHyPm7XsnvAgHxyQsdQYwwDrl65dIL3IRtO3ZanjXL83tOR/
7fQmnzAuS8/8wOAEa0T24G1f8hnvvuOOUxjsOKoar/b6ENk3SB+p/YVBSsV1
/0CdAPJd7YCZ4jw3j3Pzdys0g8gPOZdK4he4+ob/tvf2DCG/HnWW/MqDgxK9
M8f0TRg56UA/ZrMUh7zOFKun2cfIOb2Bwf8EcOjYHp7pWXic5JG8ZIoJ47Aw
Y9Ww7kw0yT+5tzByBQ7uT3serAiKIUWf0cSHxHFoWKUewEiPJSVL3oSarsYB
C7pjPjoRTxJncwZuYzgsbTtz9WxmIqngs9dkBR0HkZDYOuXEs6SqGa0gUA6H
Ju/fDiU958j1ym9E+xRxuCUBEel1aeTGpTlBRso4FF5lV79tSyeZw06v89bi
4NV+ee6weCa5+RGBlq7DgZHD+GV0KYs0z+2/7q2Fw5YVket5AnNI28hsoU4d
HHZMtCe45uSSDk5OR7T1cdBrO966IJZPuhgQLzM24eD8rn7CTPAauV+q32ie
xKHypKFviuEN0m/6Yr6LMRc/Qv1fROEtMrDHUaBxCw66MphP7P475FEO7q9i
hkO0kc7qX4eLyeiU1z1nLHCQxf9pCPlwyHi/iwY/rXH4YB47iFvfJZPNHXN3
2eHwkB1RNX6wnGSr4kvv2eMg9lpH9UdjJensonxrZA8OH+9HXNile49UYuuY
r3DGwWVAOj/vUw053gbfDFy5/TyeS/75UEeWL1qlerBwKIh3VFcn6slIvb06
KftxWH7IRp/80UBu8fV+We2Nw82y10Wpv5pIkfyQoyO+3H7K574l6LWQvS9j
6CsO4/AsNU4Qv9tGXhJJfWgQiIOUZ93Zt4EdpKfJZZZHCA4rHU6LKkU9JTXC
7yxLCcdBVPpO48nD3eR0cVVBdQQOfHQjv2qr5+SDkSaLkRM4CI17b1Z3fUHG
4j3fRWNw0GxqPO1wu4+0tBlMM4jDYbcyCO3Y0E+uihvX9TiNw7eHmaY9PG/J
/vtzfclncCg1F1BUWfGevPqTP6I6BYfud8JaMY+HSB9lSdmRNBxYCVmSwiUj
5AZnhXrRDK6fSPzZ07ZRcj5N09MgCweeAhX+g3KfyYYWIwGPHByG//K9Eqz4
QiYtmN1JzsXBfzFg95m0b6Sdzm6r6nwcjv+w2bvF5SdJHPT4OXwdh5dDurW6
cpPkcO6RdNECHOoYtW6U2DR5p/f4RoNCHMxrjaNOb/xFBgqdec0qwSHBQeJ2
y4VZchNkRSaX4VAxK/zFctMfcknoDbnqchx878UmS635Rz4pvNswXIXD+Owy
h4lSHur80MP9ojU4/PJRGMo/uoRyku4UNKjDIWpPUcne4KWUolV/IaseB5vZ
x6WuN/ipLzGfrJObcLh0r2P8hMRy6m719ERVC1ev68d+rW0Qpo59580YfoKD
I+PUwsmaFZSJ0koD0S5unp1DB/X4xCkhJ/ob/W4cjtbcN+p5IUH1nFt7gtXL
9TfZnuTXL0llN29USO7j8ucbmHKVkqZYfzY3VfXjsJjrGpd9DqfUtHccGH6L
w6FZvckiSzo16eUiJDqEQ1hI4r83u+So+5d8i/U/4NAlbTWK71GgYnrCbVmf
uOef21/o0mFQ5oLxU2e/cPUeYnGOmayhxKn0zKpvOITsjRdnJ6pQr4KuGA7/
xEH8rJSb8ko16srt4gGRaRxQ1H7xkdcalPfg/Sj93zi4/peqqTOxntJa3arI
msfBtrUl6kaJNjVr/qL57AIOM2T/57x0HepR9LB3FQ8Bh6Qql6cW6VGnK38I
D/MRkCV0aYnAoj5lO/63RESAAJ0X+65ppm2iMEUhO30hAqrL17S8PkhS7x2k
Z9xFCej4FGxgYQZUQbJS1lkxAnYVWo+/5zehjjRqG1WtIqD8hbqNzcxmymCO
ejckRcC3Ws3SSmwrxbPe8qQIQQBj7NpUY6gZ1erpqKQvQ8ATRePih6stqNRs
rxZ3eQIuaZxpzP1rRYWFxgRFMgioC7AXF0yzpVzscuUuKBPgzch7xmttR5lq
3m8vW0uAUUBXaqHhLkpD6GVYhwYB9MshDl/37KZWfZxgfFpPQMynJbVqZXuo
+XrRZ7w6BJjWtd/3NNtLDV9eG0nfSABhOPJVd40L1XbUVFXfkADbC906wbfc
KI69e+8OJgGukoFarV4sKkv7eLQfIuBZUJmzsL0nFSV6USPBhADaz48uamFe
lNdY+at8UwIEdxkpZvZ4U1bNz2IfmBHgb+hctcPfl9LNH9fqsyCA/fL7bV7r
QxTtuODbCWsCTOa+h/+rPUItcVRKFLEjQD5i4EVpVCA1pgt6KvYE3LScGDl3
JJh6JuY8ZLyHgOLftybTMkKp6vGwZOe9BJT8J7ZdczqcymtNNwxzIcDansKP
nI+g4q+Xjqa5EyC1xPvL0rAT1KHo9rQiTwKY5QnPbvZGU/bOn8iWAwSQcVYF
1VkxFNOA78uQDwEtu7T5DM/GUgxJucy//gTkmGUPKZTHU0I/N5lIBxCwz3rm
++TqRGqiffd37WACUMJowsOqM9SrW4HZlmEEJPfIGFJXUqiHp1K2HjhGQHSE
zg+/r6nUTdc7kyePE/BfUO3W4bLzVIrR49xL0QR8GA+n+AvYVIj0sHnVKQKi
orZyf45Mynlq4Vd3PAFret9bjuhfpLY8xa+NJxKwQuuJIHqbQ6kX6tkIJBNw
Rer53qK2XEoiYccfhVQCambDxGyX5FNzLP9bzHQC3tfJPlBvv0q9pxJ3OmQS
MFb90vNX43WqhbixGHCRgKC+6eNVEzepkl+PCs9eIiDtsWXyguNtKqNnwOFW
HgHLN5fvHl9SREWWzPI1XOXO6x5frOVUCeWZJMkZuEGATMuDcGu8jLLw0nL+
XcDl37p99PyHu9QGE0tBiSICAhUFe/nfl1OErHe5RikBrJsBgdViVRTv/Cm3
bXcJyLdpvktG3qM+v8gTYVUQsJhRkdig+oB6WlZTHVnN5ee/7w4m85CqTO7z
vFBDwPltpsGeWvXU5YNTYnfrCDA07dq46l8DFWu6srajnoBHcX6z2n+bKF8F
9YOfmgjwFL3IfrG+hbJb2Lp6SSsBqmMrnXJy26hNr1n19HYC8gQqHKusOyiF
ihP++l0EaD+20Vu67SklmJaN23UTcOo3wyJpWzf106+y2a+XAOh0ZV6Tfk71
mfUEJPQRINy8hPLDXlB1St9lrvYTwCtrVMVj00fd4BF68uAtNx+txqrL6l9T
ZwfWhPa9J0Csyft0RfAAFVRtrDg5QsBQNLZm5sgg5cTe1yXyiesP4WlJjssQ
Rf9PiOb7hYD5xDyzVXtHqMHuqgNt37h1mascO22UuvrTs1xlgvs+fc56/lLw
M+W5UoI3fpqb58xrXcatXyhlzYdWH34TsNOpu2vVq2/UmKVftskfAiRYGtvr
rvykinzxT1f+EXCsQ0DVOWGSOpT0WGeRlwYhfFEqF25MU1q3g6L3LaPBNX+/
iDbe39RUi3xnjSANRvwr3/Ffm6MqP3bihAgNJNYu52in/aXCl0V4ha+kAUuM
GSjxYpHapKT630sJGvzw3z9v8IAXLZi8WNSVooH2LlkDWiMfeuQeY5mO08Bn
ccuM8TJ+FBO9/uIEnQaf11nLH0kURFvyBkZt5GlQvGv28joHYSRQl7ihhEED
r8E16W9DV6AnAxujRFRo4BTnkPl1Vgyd/TPS7qNGg/ER6wwYk0DWRBrWto4G
q/aWkgYSq5G4IbVfRZsGlvvSZUyPSaNeh69lcbo04LEQv89WJVBmaNa/EX0a
lMtGxyitkUF7MkwtTIxosEkVEvyY8ohWPnnhCkWD3B8PJ9qlFNG7nrwP/4y5
51O/8W5QUUJXJiy195ly+bqXt9QFKSOW2PzxGjMaSJmmupvwrUVK6289wS1p
0BX52N72rTr6aLVLOtyGBkZ+7yZ2Ca1Ht/14PV/a0eBcgMSRl9u1kd+ZEo7u
bhq8uvnh/KCxDtK8s3fhvCMNgk9ZDYoE6aGfrYLmE840wAQq4ltH9NHdTxWZ
Nm40IK4UaWjnbELB/B4jxR40aOt1a9XIJ5H+GjEtkQM0cDbacZWKAjS/uTbS
x4cG3uhYpK+LCXrA8mlr9afBcqWGxMigLejESWkplQAaBJya5fNs2oqMrzSx
4oJp4Po5SLDCYTta+jCgdCSMBtEvtEbv6lqix29l/xpH0OCFUdZhdw8bdPpv
u9mVEzRw0wpZZxG6A1nQjmb8O0mDTHuP2mX+O9GKTcrDznHc+z+SHDPIsUfP
9jzXrDlNgyQ93isN/HvQ+bDoCPwsDeSU+jaLVToh+8x1rWHnaND01qpElbMP
YRX9ki/P0yDhs/Ki0wk31P88wV03kwYpQi+OCNix0KVJ3ZLzF2nwSP7aiTwH
T+QqPjz/8xJ3/onpi/xsL6SodW6bzRUaNAdZeMWIHEQfrJns4ms0OKJpKF79
2Bfd9B97L3yLy4d590dp6yF08GzmOp87NPgXKB7rLRKANAo3H2stpsHDVQPr
vr8LRN/bfj5WLqNBkXC5eeBgMOJ8vrwqrpwGNQc0p66Ih6EgAQu3kSoavDZk
VsDRo2ij8myRcQ0Xf21hlQoRiWa33JjLq6NBqGA/j+bsCRRZk3eqqZ7rj03N
sg9/RCOeDdmiY000iF/x5g3jZAyKLWBfEG2lwaC+RnmhdiwSkDunsKGdBmkP
z+nlLolHSRmJhbu7aKD0Oz4Xn0lAK0Ri9SK6ufNP770qIJSEpObCtzf1cfP3
r1GDfTkFZR8Oev65nwaONxq7t6ekIpmP/vtE39Ggt22t+J7BNKT0nBWw+wMN
rF7bXTcrZyOdYsuLn3/S4Nfmz9HyK3NQJWMbQ3SaBn3U1JhrwyW0Kdu4WPs3
DWb2/6oyO56LTBI21h9boEFlSmdjFk8+snWXHxMRooPqmueKgVHXUW8fEaQt
Sofj07yXkcMNtMd69YK9GB3WzR1Kq1l7E7kaCYnnSdGBllAmplJzCw2XLc1p
xOkQHBDpxA4vQF6qi0qf6XTQsdY9UrruNjq0etpAm0EHetIdU8vjd9Dkme8N
9src/eGVeyykC1HIkjHLY2vpEDM5uvfHrUI0Gz7yMleDDo+avZqY64tQ5I+3
bo3r6WAtuChqU1yEeLxeffm0gQ6EtmKevWIxih3oCRbZSIdqqTd5qSnF6Exb
y2l7Jh3cGydGR61K0ApokDiG6HDgyJ719/JL0PnKB5dyTejwLPtQzbrvJUhq
XZVyoykdvnydfFWkU4qyr5VxPpnRYfCWv3F+YCmSJYo2iVhy+X9jnQgpLEX5
qTebtGzo8HGDT8b5d6VISSDf2t6ODm6DQhHr+Tmo4HjOq6P2dFig6rtzCQ7S
mM5g5e6hQ/wp/7bHGhzE8Ukdb9hLh60Bczm9TA7SHUoK/eRCh560a/Qpcw6q
cojjEWHRIfd9wlVzBw7a1BWVpLWfDufdWnh4WRxUt+WYpL03HU71lyYa+nKQ
SU1w7lFfOoRWpROrgzjosfZh1dxDXL1JW827RznIvODg3YYALh6rfVojioM6
ZT2Zn4Lp8Jl/1j/vFAfZZrg8Fg6nQ9tBzQSFBA7qFXa01YqgQ/aHd4ZtiRy0
J2Zn/64TdGj68eLOnTMcNDBr5Xn0JB1s2wO3vzrLQW6Hzb5fjqVDueTu76xk
DhoZNQlvSKDDrmb1OUdubZLXdVXtDB2GCafme9z9V/Y4dZ5PoUP6g96HZ7l4
i+Iff8+n0YF5RCduiNvPpT1A0SODDqsXdhg3c+9TG7tg2Z5FB8a5j882x3EQ
nUoM07lEB0O7i+8PxHBQxG/Jqzl5dNiyo3i5EZdfP+dKB981OoQH2o03R3CQ
oY/Gb9+bdAiprN0mFs5BWYxqhd7bdNhhqCqmEMxBuzOfhl7n0KH7pK1BCVfP
noh/8qZ1dLAvdIzmceQgbb0ki+J6OvTd9ZER3cVBqd9Xh65u5vovRnkznw0H
Wbuvax9tp0O9uydVuYWDnmx1Dol/TQeJ4qDuw+s5qEH8flvLNB0CcgeSPPk4
SKHddHr9LB1WXTLqzv9TiqJju2Wz/tAhK8w5KPRnKaJ+fw7yXiIDokr+rVL9
pej+gLTscjEZUArsyNlaXIru3goJNFeXgdY9iftad5aiq6Q2rdNdBjghF4qe
XS1BxXEh4gfWycINnwBlf80ilGDvYcE3IwsDJwr7tH/fRnoD+bcTOuVAZj6y
dlPDLZS1Nqe400Iewkby1R3f3UBRj5KzLO7JA7XkZuOehWvIimZ/44mSAuyr
7t252+oqMj7Uslc8UQFE3Ip1tr+5gvLoLKWOGQX46yFn+edFLlJqvJVpvVcR
JDTffFRxvYRS1zWo9dQpQjQfW7hsTTbymlra3abGgGWRmv3M7xcQq2xSPvEc
A+ROHH6nI5iJ/GJ2/jVPY0BYvHTmKp5MFLKzvE8knQFPw5ZZ/fqdgU7PhKSk
ZjLgwqlt5U2fMlCJ4dyfC5cZ4C2WtD2uJQPN1S++vFnIgLc/zlxkJ2Sg1B6R
5KYWBmwv4Bh8WJ7Bzbe/d3wbAwaWZj9QWJKBrgV3bTZrZ0Bkj5YMa56NKqVS
59u7GJCkq3nk6xc2GnBa5f38BQMq+CaRfAcbqYzgm4dHGLDRZcMl8XNspFV+
TPb6KANOc+T8IxPYaFPcm7n9nxiQS18m9CWKjSxVLnPGvnD5OmVd6zzCRoG+
8rITEww47yBlWGnHRpHMk3N3pxigev+3pb4FG8WJDvcGzzDgo0mOUs1mNsoq
vXZmdpYBF+clae26bHQ1eumB+/MMkNAd1ndYx0aFO/abRP5lgE+Bq+THNWxU
rvhYhvrHgOaOxNIwWTaqm1KeW1xkABa6T1BEmo3+B0pWQn8=
       "]]},
     Annotation[#, "Charting`Private`Tag$6291009#4"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.883709869951499*^9, {3.883709931548687*^9, 3.8837099535027523`*^9}, 
   3.883711640492401*^9, 3.883712120004285*^9, 3.883721879279222*^9, 
   3.883810163021236*^9, {3.8838142471447573`*^9, 3.883814264108591*^9}, 
   3.883814563883505*^9, 3.884769148895431*^9, {3.884774475709745*^9, 
   3.884774506497497*^9}, 3.8847787111468678`*^9, 3.8847796307462378`*^9},
 CellLabel->
  "Out[430]=",ExpressionUUID->"1f9867dd-5b62-435c-8fd4-b1b0ed99a1e7"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", 
    "3", 
    RowBox[{"He", ".", " ", "\:0414\:043e\:043b\:0436\:043d\:043e"}], " ", 
    "\:0431\:044b\:0442\:044c", " ", 
    RowBox[{
     RowBox[{
      SuperscriptBox["\:0424\:043c", "1.5"], ".", "  ", 
      SuperscriptBox["\:0424\:043c", "0.5"]}], "/", 
     SuperscriptBox["MeV", "0.5"]}]}], " ", "*)"}], "\n", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"PsiP3He", "[", "q_", "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "q"], 
     SqrtBox[
      FractionBox["1", 
       RowBox[{"p", " "}]]], "myNorm", 
     RowBox[{"(", 
      RowBox[{
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["q", "p"], "-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["q", "p"], "-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "-", 
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["q", "p"], "+", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["q", "p"], "+", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "+", 
       RowBox[{"myCoeff", 
        FractionBox[
         RowBox[{
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{
            RowBox[{"-", 
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
            "range"}]], " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             FractionBox["q", "p"], " ", 
             RowBox[{"Cos", "[", 
              RowBox[{
               FractionBox["q", "p"], " ", "range"}], "]"}]}], "+", 
            RowBox[{
             FractionBox[
              SqrtBox[
               RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", 
             RowBox[{"Sin", "[", 
              RowBox[{
               FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}], 
         RowBox[{
          SuperscriptBox[
           RowBox[{"(", 
            FractionBox["q", "p"], ")"}], "2"], "+", 
          SuperscriptBox[
           RowBox[{"(", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], 
           "2"]}]]}]}], ")"}]}]}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"PsiP3He", "[", "q_", "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "q"], " ", "myNorm", 
    RowBox[{"(", 
     RowBox[{
      FractionBox[
       RowBox[{
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
         RowBox[{"Cos", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
           "range"}], "]"}], " ", 
         RowBox[{"Sin", "[", 
          RowBox[{"q", " ", "range"}], "]"}]}], "-", 
        RowBox[{"q", " ", 
         RowBox[{"Cos", "[", 
          RowBox[{"q", " ", "range"}], "]"}], " ", 
         RowBox[{"Sin", "[", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
           "range"}], "]"}]}]}], 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", "q", ")"}], "2"], "-", 
        SuperscriptBox[
         RowBox[{"(", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
         "2"]}]], "+", 
      RowBox[{"myCoeff", 
       FractionBox[
        RowBox[{
         SuperscriptBox["\[ExponentialE]", 
          RowBox[{
           RowBox[{"-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
           "range"}]], " ", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"q", " ", 
            RowBox[{"Cos", "[", 
             RowBox[{"q", " ", "range"}], "]"}]}], "+", 
           RowBox[{
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", 
            RowBox[{"Sin", "[", 
             RowBox[{"q", " ", "range"}], "]"}]}]}], ")"}]}], 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", "q", ")"}], "2"], "+", 
         SuperscriptBox[
          RowBox[{"(", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], 
          "2"]}]]}]}], ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.883472650234065*^9, 3.883472707765132*^9}, {
   3.883472768374175*^9, 3.8834727730285788`*^9}, {3.8834763893753567`*^9, 
   3.883476393819928*^9}, {3.883476594380974*^9, 3.8834766301142273`*^9}, 
   3.883479515801772*^9, {3.883481194077519*^9, 3.8834811948040333`*^9}, {
   3.883481372281888*^9, 3.8834813891601*^9}, {3.883481631881057*^9, 
   3.883481670046994*^9}, {3.883481795462813*^9, 3.883481798335828*^9}, {
   3.8834821201661377`*^9, 3.883482156692244*^9}, {3.883482198555661*^9, 
   3.883482201313931*^9}, 3.8835521525026007`*^9, {3.8835527323712263`*^9, 
   3.883552805972075*^9}, 3.883553233902478*^9, {3.883553370765657*^9, 
   3.88355348918934*^9}, {3.883555231506804*^9, 3.883555258874123*^9}, {
   3.8835553235529633`*^9, 3.883555356549965*^9}},
 CellLabel->
  "In[443]:=",ExpressionUUID->"2d742f3b-e2e0-47c6-baf7-86eb7d257d8e"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:0438\:0437", " ", 
    "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:043d\:043e\:0439", " ", 
    "\:0412\:0424"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiP3HeCut", "[", 
     RowBox[{"q_", ",", "cutVal_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["p", "q"], " ", 
     RowBox[{"NIntegrate", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiR1Cut", "[", 
         RowBox[{"r", ",", "cutVal", ",", "disp"}], "]"}], 
        RowBox[{"Sin", "[", 
         FractionBox[
          RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "500"}], "}"}]}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"PsiP3HeCut", "[", 
    RowBox[{"500", ",", "7", ",", "0.03"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883712189119072*^9, 3.883712228166119*^9}, {
   3.883712362962804*^9, 3.8837123842519484`*^9}, {3.883712416510069*^9, 
   3.883712498909937*^9}, {3.883712612951358*^9, 3.883712643109139*^9}, {
   3.883714107348063*^9, 3.883714113312005*^9}, {3.88371457739816*^9, 
   3.883714579261568*^9}, {3.8837147888832903`*^9, 3.883714789001294*^9}, {
   3.883714834851016*^9, 3.883714848633318*^9}, {3.883714887754726*^9, 
   3.8837149765658712`*^9}, {3.883715546733477*^9, 3.8837155632869997`*^9}, {
   3.883715811036685*^9, 3.883715878917733*^9}, {3.883716635269021*^9, 
   3.883716635618628*^9}, {3.883717037674549*^9, 3.8837170662076807`*^9}, {
   3.8837176367784433`*^9, 3.88371763688974*^9}, {3.883717721450417*^9, 
   3.8837177217422457`*^9}, {3.8837179369425077`*^9, 3.883717956506605*^9}, {
   3.883719301080915*^9, 3.883719305227438*^9}, {3.8837194648559837`*^9, 
   3.883719490480385*^9}, 3.88371958155225*^9, {3.883812433272991*^9, 
   3.883812436322926*^9}, {3.8838125983193398`*^9, 3.883812601707273*^9}, {
   3.883812811939013*^9, 3.883812836349537*^9}, {3.883812882942279*^9, 
   3.883812903565971*^9}, {3.8838145735474977`*^9, 3.88381457724702*^9}, {
   3.883814668437303*^9, 3.883814685118195*^9}, {3.8847745235898438`*^9, 
   3.8847745560991993`*^9}, {3.8847798331798162`*^9, 3.884779843366188*^9}},
 CellLabel->
  "In[444]:=",ExpressionUUID->"c4aefd0e-3506-41fc-bf66-96c712b2ce79"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"7.043641751400051`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.007653649747153992`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"8.809638700281074`*^-8\\\"}]\\) for the integral and \
error estimates.\"", 2, 445, 259, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{
  3.883721888925*^9, 3.883810169474214*^9, {3.8838124370058317`*^9, 
   3.883812439169436*^9}, 3.883812602653808*^9, 3.883812640655221*^9, {
   3.883812832071782*^9, 3.8838128381350803`*^9}, 3.8838129048860483`*^9, {
   3.8838142741990013`*^9, 3.883814288185184*^9}, 3.883814686293971*^9, 
   3.884769158604759*^9, {3.8847745263522253`*^9, 3.88477455670166*^9}, 
   3.884774671068194*^9, 3.884775015627852*^9, 3.884779844028769*^9},
 CellLabel->
  "During evaluation of \
In[444]:=",ExpressionUUID->"351a986e-db5e-419d-b044-3ceb4e8e662e"],

Cell[BoxData["0.0030205434873133113`"], "Output",
 CellChangeTimes->{3.8847746710834627`*^9, 3.884775015643466*^9, 
  3.884779844038706*^9},
 CellLabel->
  "Out[445]=",ExpressionUUID->"7ec08f6c-592d-4055-ab4e-6bd1d9cc7bda"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"NIntegrate", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"q", " ", 
      RowBox[{"PsiP3He", "[", "q", "]"}]}], ")"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",", 
   RowBox[{"AccuracyGoal", "\[Rule]", "5"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8847747087981586`*^9, 3.8847747426101522`*^9}, {
  3.8847747982444067`*^9, 3.88477480261311*^9}, {3.884774879671093*^9, 
  3.88477489967276*^9}, {3.884775002554412*^9, 3.8847750061597137`*^9}},
 CellLabel->
  "In[446]:=",ExpressionUUID->"ccada756-7348-46c1-b563-ab963b6bc06c"],

Cell[BoxData["1.5707974356954326`"], "Output",
 CellChangeTimes->{
  3.884774737163644*^9, 3.884774825153105*^9, {3.884774882331399*^9, 
   3.8847749050795603`*^9}, 3.884775008642324*^9, 3.8847798515657053`*^9},
 CellLabel->
  "Out[446]=",ExpressionUUID->"0e719ae2-1b65-4be2-b75f-8339affd0c43"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiP3HeCut", "[", 
    RowBox[{"q", ",", "7", ",", "0.03"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "2000"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8847746263797607`*^9, 3.884774646217277*^9}, {
  3.884774749850868*^9, 3.884774750895873*^9}, {3.884775021237714*^9, 
  3.884775023547864*^9}, {3.8847798567088413`*^9, 3.884779857457473*^9}},
 CellLabel->
  "In[447]:=",ExpressionUUID->"944ca04b-356e-4d0c-8a5f-3da8872641bc"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 447, 260, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.8847747527875423`*^9, 3.8847750239682083`*^9, 
  3.884779859188314*^9},
 CellLabel->
  "During evaluation of \
In[447]:=",ExpressionUUID->"150f8423-52f7-47f6-9cfe-1ef7d7626481"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"7.2407683631478355`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00031992616436338195`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.7816518705436625`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 447, 261, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.8847747527875423`*^9, 3.8847750239682083`*^9, 
  3.884779859198502*^9},
 CellLabel->
  "During evaluation of \
In[447]:=",ExpressionUUID->"aaa949a5-4f86-4f27-b5ea-43471ac85dc1"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwUV3c81e8XR9EgSkRCRQOphIzCc4wys7L33uPam+te6xrXvUJJVlZFhJSQ
p7KlqOSLhJBEScus/Pz++rzO6zyv9znn/T7P5zznsIOvoTMTAwPDcxYGhv9/
53/80bnowow6/jEXfmpYQf6lYVJqRVPo++VXEi8frqBQ1q8u+4t+orEaHznS
/RUkqyZwn+b3F006fo7cWr2CIlrKGLYWbYG7cd/UTcpX0MiIUjmibAeDKEWX
sLwVdG558FKE3y6oePbyGIG+gl5QZMPfie8Bw8ABc0XyCvp7lXxptXAvGFT5
6037ryDxsr5DPNz7IC/5wqCb3Qqyun/glzSFF0bXquT7tFdQ6jPXTsO/fHCs
dwHxn11Bzf111wl+AiCqxyJizL+CvoxteFM/HoQwNffyGMYVRF0qPTQofhgW
XkV9KppeRi1bf/z8WSgM09e6SLMly2iQ9dp7pndH4O5eouUB0jJa4FTq3MN9
DOY/3//sYL2MBA8nXz9NEQGe79NpBuzLSEZEIk6pVRQkxazVd04vId3Tg96X
/opBhcPy77WHSyhKUUjZ0+8kbOWy0KiwWEKZal1i4RWn4O9MBcSILqFKbR8u
ysfToH9vd1/d0m+0IP4+4I34GbCWbgvySP2NBM+Lqn8vlAKx68dfXSr7he4o
/WlaUZSGnQSqqZP7LySj0ifB8E4aCi5Otcid+IV0NYP4OLhlYFzposilip8o
2vTpV3GKHLz682l7Uv4P9D7APNPNTxFWBk1M0q0Wke5g2+K3QlUoP+7l7iX4
CcWMW5uzL6nCvw8PnSdCZtC92aWn4tpqENVQ4vL11Ue0Z13kivtvNWjr43ko
lTSNBg6mnZ3SvAii8+WXyBsfkIW7cfjgDw3Ict67PcFyBKX4L0z+UteEhOJL
imlnh1FzRKL23jxNuCFT0Xhm7xASoD7i11fXguzvLk+ah9+iiVoB3J2rDbpG
ih3B2a+Q65+PWx6r6YLjsTlD8ZZWdI05xutdji54lr4ytVx9irrYed+uLuiC
2yRfyRfFJ0jssFaZTI4e7LK0Vn3X8QgtC5keGQrWh49KTpyL5DuIVl5s5lqk
D2ieVBFVVIJExBdTl57rA7134QjL8zxkdpbym+uwAVR9ubqbeVsMalRv6jB4
bgCWBvNs+6wLsWHvtvWJ3wYQdk4PZe0qxfP6RqcJhwwhJKVI1P3abcxv8fUq
NcgQ2sK+KX0XrMH3x+R7BQoNocb27b4Y8Tqs45jAcLfHEL7p1NnePV6Po7wO
uj8/eBmyqcyyEZ8a8L7vnnkWWpdhROyr3eWKRlwV1PDqc+BlEHxvdT/RphmP
RRuc295zGYxaqiQMaBgHb8n3ufrrMkzsaIwrSnyCOZLmbh47aASqoad9M5We
YqCTWS8EGsFQmerQpSvPcOfYPiWmG0ZwfIzLZ8/xVqwrfoeAW42gf+98w5O6
Vmzd2f9Wfq8xjOhT2hQb2vA0l9P25XPG8Gngv0vnJNqxl8PyufsOxpDVILKb
WNSOw/8KFJ6qNYbBlzCvF9CBGbVrXs8PG4PXLkV2//4OnHRNjfk2owlo7419
rnK8E++e+U/WRdQELrsc/u9dSCe+KuXpIWxgAtZdbT6ZnZ1YMPbfjYlQExAb
4lt6ydKFy17S+/IKTeDgPqNC6wtd+CT/USbLLhOYm73CQw7swvfdG6R5F03g
hc4xklhNFz7/UNv1LY8pyFl2BuePdeFnW8dzMpApFHQeHs9k6cZahv69eq6m
8FBy96qIaDd+VcC8wZZuCpNbCwSCL3Zjs6/XzvQ8MIXVmo36YIduPHFO3Clx
zBSc81T1mYK7sWsSzlZjMYPEvU32V+O68cJbw27GU2YQXjUSY0DtxkHCM+st
xmbwNkPvos6VbvyHEHYqMsoMztoIXi7etONa2OzlS82gu+fAz8GkbszKVnhl
qdcMas4fP9ob040zzKU66n6ZAbXDmebv3435yjtWCPzmUK1q2/TRrhsX/TI/
cUrNHL7FMgsoa3djEZWv1vOem/avsP2FZ7pxdTqRduuKOaylff0nwNWNZd7v
bXVuMgftC9eZBn904Rax8t9CU+ZgO/JWcepFF74Qek5kYqcF/DJQrLAr7cK9
7S8s8iQt4Bn94O1pchc22mufZmFhAcLcLys/G3Xhd3a/MA/JAqj3ztZVCnVh
h6rEHwO3LaDlxNRBja+d+PM639GMVxag+4/3xOD9TkzQrDLVW7UAB7/4cUJY
J46ZHmju1rAEFouaKKm1DnyDTyix5ZMlzHNc6Lo/2o6F3eofRXBYwZVI9hxC
eju+U6/xRU7WCv6KrG1jgnb8SN/XoC7BCl7Fq7xjzm3DgwnNB24dtQY57uKL
Zeda8Z6fJvfojjagpfi78Z3MEyxofdgoMdkGPI8RLquXYyzeOb8cWWMDyUzg
YDjegjVyichtwwZucKmtems/xtGqd14q5dpCe2acle+BRrzUHb0U5G4Hkus6
vR2FdfjvP8euxUg72E23fsr8uhZvlda87kmzA20vf86OLbV4T/5eJfuHdnD6
WxMb2fkeFve/Fa/DbA9jL10tRILvYEe+11zCRfYg5Xrlm1nWDeyh93Am7749
OKQG+t25lYMJcTcaeLvsoUHh+XptazaOXnCxYv9mD8IajspMnHR8/dl68aqC
A6jK8XQJWYbiouWJoEB9B+j9UVObHuqJb4l3qH9zdACy756RY4e1cH02bX46
2QFY3dJ966X9UL/HUan+IQcopKh8mNyfiv4r2Mms/cUBLqyzWc3b09DYwLfB
9g0HCBzmPvGiIgN9UWoMbzrmCHVd9ZJNAlfRtr16z8oCHWFfpkzTQHABYteQ
zjyc5AicUfGJ3Q8LEVfUfpcbuY7w30CHpGhVERL6NLUj45kjzEhVFD1LKkZK
TaEGUbud4O/UcYmoX2Xo0OvPL/OPOsFtr/6vi/3liPGzhc6Tc04QeIEey1l2
C7XtU1Tf4uwEtxaerpmcu4PKTla1HQl3AosLeyaDVu+gRLWDKhfTneCYm4y3
Qk0F0vJnVKQ8coKmM8W/n+28i8Qp/o13XjoBC31IjVJ5F+0qnJLtnXICyRKF
bAb1KtT/ol2Sg90ZOhXDJ/e5VKPaaZl7EsLOsL10981nc9Xoynr5SUM5ZzBN
JfrxS99DJqLJIlkOzrBbPdR5oOwekoP10gchzhDnLmfwbuQe2m/qJTyU6gxl
rt9uWbLWoDXv94WrRc7wkhGnWsrVoNE4XcEDD52BlNvYnGpfg1pyca5CrzOc
DspirUmsQQW1EvttPjiD3Ie3+e53ahCxuyg7ZskZzl5PONHSXYMcJji5ilhd
YFh2rv3BxxqktkymPzvkAmcs341Z/qtBR9l/s0+fdQHCpZPKD/bWIpajLqnM
2i5gr7OLo+9oLZo9/9+O43Yu8KPFCVdL16IeQ41EjSAXEE1ROOAAtajS/dFW
j2QXqOo4fH5RoxZRiWKklAIXqF5NiXPSrUW+V3M3Ku+7wNUTF8q79WuRfhVb
1MtuFxib8XM5aFCLJNuj1r6NuYB5ct/cu0u1iGt0IWTPLxeIue0qe0e9Fi39
sP0tucMVrh+VYspWqkVDO175Gwm6AiW4X6lCshY9OqSyGCTlCv756weWhGvR
ddk676sarqCblWlTwFGLInWPzDdYu8KJ9TnKifUaZOOc5Tbi7wrpOx8f5Zqu
QSiSZWY90RWSTyUouPTUoENXQhwF8lzBNEdx2+mqGsR0Z3ZCqdYVTpOn5iLS
a9D0E3Mbu05XqG/kDLbwqUHt//W8ix11Ba66bJshrRqUxHx3sI3FDWRy/df8
mGqQB7+g0cwBN8jQN+V1HbqHtKXSX2074wY2Z2zjJCvvIXZ7v14tSzdoD9XK
j790D2U2n33WX+0G+sde0Vy+V6HgN2XoR5sbBLu/m5+IqkKmczyP9464Qdnd
1+7fWaoQH+/aQ5Ot7rBOb2rS5riLCgNa7o6aucNt2dl6kT930OqCoViWlzv4
oKtc62F3kKHHp7JLRHcYEKda3/x9G221313YUu4O7zpCPPtnbiE3XYeMwiV3
sGBulXDML0MSoiwhTpkeUBY9dM5/oQjhsUvwpc8TLqbHx3RZ0BCvxWRzyZQn
WGndu8qvRUWEt8Hy1sueICH8ZmTPhxQk1Fsg+VLQCzSl3j+24UlECY++H7nn
7QVPFN/pUCwikG5m1o5AVm/4K1pFPXLQHpdziCWIH/SGF/yxoSp17pghpYXp
o6Q3DL39G/J2nx+ujf20bmzhDRt55EM73MPwPl/5Bdnb3pDjmcPy/l4cHtN8
/3r9og/cviZmkpdFx5zlf9csrHwA8xyb9IzIwBe3Cgo3+vnA13Thjo+WV/Dd
FpuA0Bs+4G3z4B6NLQtPHIjJ/a/GByxG157mj2ZhrrCCVplOH4jJz0Sc5dk4
Umpi7+/vPlAnyhO1IHYN36MxKBht8wWxDRFJhelreOrrIac6fl8Qjpo+/+hq
Dta6ZX/fT90XKi35l7m/Xsf7BaaMFm74QqjXNg9H/TysE74l6lKtLzCh9pAT
I3mY+J9waWWnL5i2vGH9aJ2PZ+lOvz1++IL7w891By8XYGrIM/aPWwjQ8i0u
/kZbARYpe30zk50ACclsYoy8hdhyy8+en8IEyDbKPXAhvBD/OrPFtvgUAZo0
tej/lRViqt3en4byBPCmVpvb9xdikXThRCY1AoTKyytMLxXiZ4+lDtTqEkDg
mrGnA18RtvqiWm1vTgBNEiN57FwRXuIzUt3jRADCvE6ipVkRpmk6/ffEhwCC
5MHJUf8iLBYa6EkII4BZ7Hlnl+Qi3FYWt3EwjgDjsWTlP/lF2OZt5pU+KgFq
/kSzFd8rwitbSo/H5BAgPv9gky0uwhmS9U2nSgigdbCrUPZ5ERa3b9cbq9rE
08n0lhgowh3pb6fSHhHAi5ojrj9ShO1aPoYothGAevaQSt77Irz65Tfr15cE
ePLmrbvg2CbeAZbCG8MEsDrEVT/ybhNPa5+0zjQBprfnJw0PbuKFHutaXyCA
aIZRrlDfJl65jFXFKgFaeb//fNxWhNfeXly02OoHxounP9U9LMKZW03jdnL4
wWGhce5dt4rwKSlX3sb9fuCjNOvxOqsId9mHVLof8QP/ZOP9u2KLsAMtEfaf
9oPOH9nXO9yL8J+WqwNd8pt27Mc72/WLcPbXcrdQNT8olvil9V6qCJ/mb/hz
XM8PjlIqH+lyb+JpddH+M/cD7caIQNdfhdghbOhIopMfcJo9lpZ8VYizB1d0
ZsL8oItJrmdHXCGWYN7xISvODx5s4Tlx0qIQ90jtD7qQ7gfWu8klp08V4n80
+bySEj9wfBisy1RYgJ21w7869PnBsgxPhMlKHj6kPJQ3MewHea8rj5sm5uFR
GRldm2k/6D3nfW2dMw8bCv2oMl/1A03+5uSMQzcwrLoT9IX9gelVfsFDnuuY
v9z8p2KIPwja52lZpmbhoRsPi5ti/aFPJTkg/nsmvpLBbSSf6g/OpL9934wy
8c7oV/eli/xhfrS0dWHfFbxipBl84rk/rHAo5YQk0/AbJvlV3oMBMLdObN2f
loCpK9m3s0U37ZzGg2uy8Vhr4Zc5l3QA3Fq0zsueJOMnw/caOTQD4Hnf1y3d
srG46p5IJEtAAPTW/dfT9DIEJ9vwbvzsCIAddc5uq0oa+KJRcLXfqwAYP1Rp
+V3kEGbUGrD99i4ALq5Z9yszAgo9S3sytxgAx9p8y5W6LZEL23bSB75AyP3i
lq+TQkDKjctb+3wCId/poX+bSCySc/gkfS00EA6H85KXD5KQxM7/nOxJgQDF
67s49pKRoMWDtp9ZgbCYZOFy5UscWlsNjON9HAii6le+3PVIQt+LnO5/6AiE
VYn335uVKGhW02j6Tn8gCBK2ju1hT0b/5UipKU4HQo8vuqSdn4Luy//Y4sAa
BNHkrWLGZCqq+PBB6gR3ECC+PqFPp9PRTcorx1+CQSBg4yN06b90RBu+15og
GQSVqTFj0ik0lBhb+FNPIQiOhT6QYPmPhqJFacL7LwZBJlN5+slDdOQd5kuu
MA+CbtOX9j536MjpsG1doGMQeD6uvEucpyOrbt0pRe8g2MHK83BENANp7T+l
2k8MglD2QaplfgZSfioQkJMcBOYDi4zRAxlIzn1XsUNmEHTwW0SMb7uCjj36
wvS7fDO/PoOsTUaQgP2oZEtNEGChU9f96VcQ145eh8SmIGDt/+DV8egKYq1p
ytBvDwJDcS0ek/EriMm84tn+viDIiQhZOcyUiVYZcn9MDgVB66utbWJCmWjx
VrJQ5WQQFNW6xvqhTDSrH24Y9CUIznjIpiybZ6LxFXeS0tImX8iL2uKXiQYL
zWu3MQTD0dJsSldCJnqpoTnZvyMYAs7v7uXJyUTti3Kc1/cGw4dP/L+rbmWi
5msiKo4CwTBhy/WTVp+J6oDXX/x4MORcD2R6ijPRndltN39LBMOrkl+VKp2Z
qIi2/KrlXDDUDlK79vdmomtynxiT1IIhe3dcsNbLTJQ+MXjGQDcYrEXMhIZf
ZKKEpA57PrNgOFTdSezpyUTREg/oU/bBUC37kCrcnomChkqfVnoGw5k/vLTP
zZnIi5j1PSgoGGyqRtmFajORk0j8YRQTDLyzDcOvSzKRZX+gwXZKMKjqGm1h
yspEhqFOsa8ygkGHZetEPSkTaR4yqrl+IxjeJRxl+e2diaBL9YNj2Wb8pQ/a
HSaZSJYgtefkvWC4df1Uh4RiJjrFK6y89GjTf5jSef5wJjr6hNMPtwaDHmf1
2MKmHvxuTEVJL4Jhd4n+W4PJTf0aPjAc+LDJT/WucvXrV9Ci/tWEh/PB8PpE
dnCM7xU08FmHzWgpGNS0hA8eV7mC8g408KSxhkDVT1baz/EMRLrvnSe6LwRK
if/1n97cN1wuCQt3HAqB9x5GgzsDM9DpGOqpjbMh8PNi4+eX/+iIi1ftfi6E
QHn3vOerJ3S0cm9VXk47BKhVa9mlRDp6Oul0wc8uBHblxcuvrNLQ5YvnraaS
Q+CsVP6btNvpSG588UNMVgh8ERtqvLMrHfGHlrnyF4YAj6nSJ00fKvp4e0+A
cX0IWJn11cYdTUMhu2YpneMhYGselHbGNxnlDmQ+rJAOhZui6wIyyXGI6K2l
qIFC4fj2D3/vtpGREwtD67RmKDQwSXVd+UtCJ+U8XwrYhsKJU4Zcxz1jEc5V
/phOCQUc1ib5yC8STTkscAaOhYLYbqG63zM+6MR3dR+FpDDg1zu6XyvMEeso
pAccyQiDq4KPr9spuGCvxMFQthth8I+J96vjihuuFHAmj1aHQcEt9Z0b5j6b
85B0LfK/MFBYf8jTbB2IdbK685w+hIGpSmfIQn4Q9prYXawzHwYc1oHLIe+C
8d3ggrv8G2Fg1Ty6yn4xDJ8qbn7WfCwcch1kpRffR2HdhS1dJRLhUPUk0Cxs
KRr7yGu/SD0XDnKeJ3/XbyXi6r7h/6x0wyGdleH4Xo5YLPFn6cufoHCwLMI5
xxnIWF9d6cd0TDh4PtCMbAkkY0JG/HIvJRzq39+zPjVDxjUiXEx5eeFwbtfY
rQAchyWNz/AotoeDhWCgf7lWAjYsDOU/2hcOh15fVdhXmoD95/HhXcPh8Muc
Z1zwTwKui9UVf/8lHMwTzzyeKUjEA71ZZ9qXwkEl5m5J7pdE/IvnvcxdhgjI
mhRpfns2CUtXeSpHcUUA052zb7sfJ2Gj1dqLzoIRsH7G/FjUnyQcqLamfUkk
AiyvcV+8JUvBmenKBmclI2DglMdfDV8Krh9JMhFQiIDzD8yTrIspePBovyXz
xQgQEgvOmn5DwUsEHvuvehGQs83+wnuGZLyv2cblrXkEsL07L6YuloxltpV5
PnaMgIKtHOpC+snYxPArodR783yEEIevfzIOzpMOTguJgLlALedT9GScPRsR
ERQbAcbdx3PtK5PxQ6lWonVKBAyqWhF2tiXjoeidCReyIiCNoW7PiaFkvNJt
kHKyIAJSPgJvx2wy5uXOoXHfjoBSb5eksd/JWM5uIutvbQR8LprvD9lIxmYV
x3M/NkeAXcd8dxZzCg5d8il80REB16W76hS2p+Bryg9K6/sjQOExm4zfthT8
KPXvnbyRCOg117SR25KCR/5Tuxc/HQEj1h/yr64n4zWh1HrvhQi4YdvzInMx
GfP5vGk0XomAngYbYZnJZHzuEd8TRaZIOA/zcqT+ZBz5vPrDT9ZI0Nw7+f17
UzJuea+25Q53JFi/RxfOlyRjhsXhI3YHI0H4Z6S/MyUZKzP5XtwnGgm6Yam7
Qj2TMYlrq1uvZCTsCyL/DddKxm3HcigkhUiYkpWLCD6WjDW0W3sX9CIhZkEq
M+wtBSdbmy2UmEfCpepw8Su3KLjX9yuHpWMk7DkzrNUdSsH6mTyXO4Mj4fbp
AsPa3RScUVYZGEWMhPqVA2lhQ0l4oEE5Wyo5Eh7tu/8lPi8Jm773HC7Ii4Qr
U1L1OQeT8LVvDOvG5ZHgZC5CfziaiEcYs/nZaiLB5hJ/gPrVRGxz7IltaFsk
IAef91+2JmIXX64Z/flI+PJh165brfH4Vuztbdt+R8JF7zMHq7zj8dwVJdHH
/yLhDE/k7hTueOzd4OYlyhkFlhEBPRs2cTiQ8fEPRvkoCCT5YvMREn6w15Cr
QSUKtlwozroeSMIrRz+d9dGJAs36F0tCu0g4UmtP2IhtFPzjb3e+IB+LyVec
N2oTosBNN1Lg879onHGUnc1pIArmPr77114Ugqs1bY92+EYDGyfLys0KWzym
03hDLzwa3sdtWwu3tsTs+txcw3HRkGbmsMt8jyn2MnnO9CUnGmTVJHt3b7mE
RRxlJ/a0RYNWYuMPJ1thdDOSI9eaNwZUvt0dYSPao1cxHpyfhGJgx+V2w6eB
joiB3E4hnIyBYXYBo51OzsiGEhFKVokBeR/+7fZn3NGB7E/Gt71i4KF2Rqkm
EFBmNd79+0kMaPU4NTwaD0attXxJ0c9jwO+MzjVcFIJ+1AdtbBuMAcbOuq/O
tqHIoPnEAt98DPxi0uFUfhGGiDjBueR3DDRx3VTVjQpHZh8IC/sYiLAQoFRb
KRKBEqefOxfuJALHw3blfZv/a0GXsMMfOYhAfnepfWNXFHrw6dh7UW4inA9d
vLRcGoVm5mKN6g4SoSDjfNnbjmgU7XV698oRIizRMpiK9GIQ98LocwUxIkgf
5o1RfROD1L7LqnZIE4H6pKrD15mIRv0//tt5jgiEqfIV+wIiCviV0aiHNvGI
xml3Bono5vLXM8OaRMCmdjtOKcaic2G5XwX0iLBF7iLZ3isWvVrTuO1gRITf
J77GjV6LRQz/ig99sSGCaM2u/PzPsehajMGohBMRTi/L+H3YRUKnGTeuBrkT
oWmMXdXxNAl1kCovN/oQIang8RchXRKy2WrBsRFAhAlsVXHQg4SW4rc9Vw0j
wsXS9IPmZBKibqtPSIomQtpBjkt9OSR0jOKg8oJMhM9sItdJd0no8c7d//ZQ
iHDh3Mm+gBYS8ndOCPuTRgTXu4ip8zkJiTz582smgwjKrhp19YMk9J4vgPDq
KhEC5La6K4+TUEbQ5/mmG0Tw8Iv74fmRhDT6bV3LioggIV7oIvuZhP6KDU7S
yogQ/thauGyOhGrjdWwiKohg7W70onHT7zbxbNj5HhFKgln0QmdISPC8vLF+
PRF+NEsNfZggoTdZ1f3nGong8vzI+7UhEkpaPKpzFBMhs32Bu/MlCSlp3+jk
aCPCCte9KK1nJPSrlFN1rYsI8hwdBpQ6ErrNQGmZfkGE+er13Uk3N/my3JDv
e02EoMSacO10EuJ6EFT/6D8ibGz8SxsKI6Ge3V8kSkY39eZ7kSTtQEIxng6V
1A+benfMzThpkJB0x9DxsBkiOC7x2fuKk9DcIb1ix3kicF/l/2LOTkKFEe2C
uoub/ZRc+VBsIRYZD56/LvebCOP9sSdnn8eiJyki9F0bm/VwRo6oxsai4Jl8
tpUtsXDvJPHvN7NYdEKZO2lyeyz03jYvLDkVi7KXGGMecsZC3N/AxAsDRORl
/87L/lgszJ381am6g4iEmg1mtU/EwnW3jcZDJTHov31djjISsbD3PZ/VJckY
pNJ734L1XCwIH3vIeFstGvHKUjXqL8XCzdTjGQGqkaiVTfnIjqBYILTu30tv
DEGhrg8LfobFQuZr9m5PwRB06tnJA2PRsZD3QPjvfmIwuhbCx1mXFAtGRtfS
NBSDkM/kzw2rG7Gw48+hU1ZF/oivoezdvdZYMHcpqNDX8EAXWRmYmLtjIf6l
5e3DT92Qv425iPnLWHj4qJ56Ws4V9WxlC2IcjoXUJ+f++3LYCUUY+LEbLsRC
8p5L2uUDlmh07rzyT14SZHvwZRzdJ4K2K2W5qguSYCmJJ6tW/3mLNH0hLVeY
BLlv2o7XvRHBqbJFI6qnSDD+xjyOTU8FK8axBGaqkmAWO2183mKM8wVelZ31
IQF/6rzo4ANn3EMQe0EJIMEE/VyvwE5XvNRK/vk+lARtdv984szcsK6HDCSQ
SbBjme8X84wH3niQOzx4jQQCg2enCdgXi+/8vSGWTwK0PaG0MICAzax1j8UU
k2Dh4YXViK1++N4WxoDjVZv5fXqj3cnvj+30XdhCW0lA0Xhs8PVoIE4txpK9
XSSw+8B+u7wgEDcs8ZofekmCE0W4cpg7CO/Oe17aNUQCd49Oot9yEFZYPNLL
P0YCmSATIewQjN1Uo38QpkjQuPGSy6gnGD/9LIH2L5Dgs++dL6LUELygkOzs
/ZMEyfafNUznQjAfbSrl6cpm/MNnP5aohGJ/mewh9y1kWNJk1iZ+CsX5lG//
Hm8nA/XsY/UNqTDcM6pxlJOdDNpMpfPEyDAsRF73a+QlQ2Hr5cNBjOF4/FFE
2W8BMnDTOs73KoTjG4vrIxLCZBD8RXkqGxiOzY9HcniJkGFjYMTyfnk43mfz
R7X8JBnUyvepoP/C8ZvMyNBJSTKsZkfLDzJFYNrzP5UCcmRIaP+UGSIWgS8x
RX0wUyTDnqdm0kK6EXin/F/uTBUy3DTMjHvrHYE7faO0+tTJcOY5PZpOicBx
ZX+jd14iA+vPyTKTogis/D6q7oIhGTTat+06Vh+B/+3994loSoYx4XtajO0R
uEkrmr/Zigzku/Okuf4IHBr7T3/Zngy9n9Xtp4cisHRDdLykKxnuLo/y/hiN
wN8X/j3y9iLD8pKGI8/7CFx1NGbhlh8Zumyux5gNR2APqw2h6WAyxISJnml8
FYGPX4kxPRhJhsMq9i3KHRF4unsjxSJ2M/67kG+/HkTgIgbik6wEMphP7ts1
UhyBbWQZfvenkOHlm59jy6kR+IAPUZSNToYbb8zuGPtH4KESBhv1bDI835kv
sX45Ame9I2aQcslwaO7K3cUzEdiQk7HzcSEZPmaOvVVii8AcmrHrK6VkyGxW
ebswGY57YxglpCvIYCA7rbPzQTimPIh18r1HBtW8YIPc+HB88Stjzp16MtTL
2blXGoTjJxZMTIefkGH3/rb9EeNhOIpOkrFqJ4NRyY4ZvaIwfK6LyfNqDxkS
94uIvrENw/fPbhnY9ZYMct+Z/vG8CcV+XuTtmiObeq4qMvxKDN3cX7Yoxo2T
YdFl1LhOPhTf2r21bO0zGRyfH/3HlRmCndXjRs5+I4MCZerBgEIIForeyuH3
a5O/MKfk2slgfGN+a+inf2Rgp77btu1YME7vYNYa2BsHrtYHMkZSN/epv/HR
HPvjwONbyDe9Q4F4uzRLnZZgHIgevKvtVhOASUUs/E9FNv1B7be6e/1xcOS2
hbuKcUDhJ0QYzBGwjeSOjETXOEgIUP5mddMdy6sYJrh5xYG6i9Lp2SI3zGWY
G67pFwdNrnn23gWuuNvvpCNrRBxURVrvn8t0xtI1BtLp1DgIumzwR9/bHrNK
XB/Mro8DLwtOODZpgGfQVE9IYxxorw51B8To4Sd64tgMx0FU8CuLwXPaONi3
pZyvOw7SQrKkLO6r4MmqydD80c3812u5JXew4YaTJw6UbYmHayv1c9KX9dAV
xUCOxO3x4DppqiZfaYB8Lj3e4rYrHnL/e3X29Z3LSNhb74soTzwcoET6s+Wa
ImplwOO7YvGwKz79ZqyyLXJvbq6hno6H4ZO9u2aodkitl7nMVzoetN3NL4uH
26PV+avUM0rxEBavOFKv7oicTjTb1hvEwzPda7WszS4InWc2yjaJh1/DPzni
aa6IT1tXI8QyHnZ/c/aztXdDfR4TEvLO8TB2437pxLI7OndnK9Pj0HiQPi+i
NfDbC3E3XlrKi4qHvRaN9/ZUeKPF7uy5aFI89Ck5zu628kFln0XeQGo8vEj8
2MNR44v2iF4qaSuIB9anI4llnH7I4UyYKkdpPEwm8RYH2fuh+/Klk+Z34uGg
vDx31F0/ZKL199C3+/GwHFfhyq3oj24Zij6Rb4wHvlYn6lWiP1q1MLaNw/Gw
n5n5uvRTf3TD827e/p544D4kdLdMPgAtBAwrOPVt+hkY/Al+AQhFMo9WDcSD
UYHCVaWyAESLOxOxOhwPec2vr7ANBaDJVGs+tfF4eNh4UW+QJRBJZ1EeUafj
IXy5+/A1yUAUn1dvNvx5k29L3QFdy0A0WPphWfhbPCicSS5cJgYikapdV31+
xUOj1hcJWnEgCn8gL/NoNR5GrxAL97UGouctzm+3bMSDCU97OGU8EPF30gN1
tyZAbYZv06eVQOTT93hvzo4EEKgWfinBEYSe/Pe5doo9AY4u7ac6CQWhPRPc
hqe4EsC/8OEFsmQQcphV/h66PwF+mPFUpaEgdH/Rm9YqmADJ3OSFOM0gxLKa
c5r9SAJEHxnP9dAPQqaMHS/NRBPgXgZLAxgFoVs7fngXn0oADY79NTuMg9Da
HsFdC1IJkOPfaNdlGIR0+LQq5eQT4MYeNVbipSCUJxSsTVZKgFvbZm2kLwSh
BbGbcy9UE6DoZof/Z/kgBFIvKbyaCcB/cKm9+EQQyji/JuKomwBS05FKbnxB
aEr1WNfdywmw4KskosAShKR1DF1XzBKA6/g7qaPfAlGCUTSLqk0C5CqQg0Tf
BqIhqzulaY4J8GKm2VGvIRCJOg+qDbklQNd+wcG8a4GoN+gU2TsgAT67M5Ff
6QciwWgLoYbQBNge/P5Ch0gg8k1IeMoUnQBZpdXXmf4FIM6rYxtXkxLg95Yz
PwMLA5BTwc6CybQEeC8wrvvYOwDVl8sonbySAMqhmp/95AKQWQM18lleAljq
fRHX6PBHd540HthVnABrOZo90RR/tN4102h6KwEGfginaGv5o/xhpdUvtQlg
Q6LUD7T5oem1hSCergS4yP5N40c+AclsOcDt8CIBvl+9HHpEn4ASWdXvV75O
AE7/xvEb/3yRGH/BD+X3CUD/vL0lutoH+Srq+Xr9SADXOV4HyY+eaExQ7aXV
cgI8Pux4/ZaMJ9JlkD956U8C6DlPyZjGeyDxVqH5kyyJ8PVeGAvmc0dzGksu
3/Yngk9l/29fERfkZJRn46+cCBlSxAv2z22Rhef8pVBaIih9VYjW2XIWdetM
VLplJYLkvutu9tXiSO7UW1bz64lwXvnckXEsiHi+t3TLlySC/V9lQzuVfXgg
OOPC+sNEMPx9K2wOI6xHkleMHk+ECpHza6XJRrjF8dQNn+lEuO29bFfCboJP
XRBet/mcCMJ1Iyw3qaaYbfuuR+hnIlhV5X+bj7XAPWkT0ozbkuDg6ix7Cq8d
VstJFI87lQS1s8qhcerOWCzAVmZMKgm2Nc2R6F+c8e5LsiAnnwRNlJK4kTQX
PMrw6fIX1SSQLxrQe9Xmip+NtFhf1EyCLzndB8wt3PCt+9muhbpJYLLGN9s/
74YD3S5GGJknQTnOydFm8sAWKoLxVTZJcH7/jnsnEz0w8C9RtzslwVrwO/GW
bZ6Yrb/0ZrNPEhDurAveW/fEP25HVe4LTII5WoD4ko8XHiIbPyCEJUHQpNGb
uvdeuESWuedIXBK4ORS3uNz1xsl73r+JpiTBf1yqJy+y+2DC/P33Q9QkGJpI
T/Hz8MEm7amfJDOTYNcJ6fvjT32wQoHT99ScJIhRy5FL4vLFQmEK6zP5SaB7
Ncze0cEXb7/MxaxckgRw1uy0R4UvHmBp4/1dlQRlaWlifjwE3DiRK6R3Pwlq
HIaKS6QJuLAxQPz2oyQo8fdJdtQj4IRMbZktOAnWOR+eqHQlYC8fYbBuSwIW
Y90zUVEEbKixrvmwOwm6XaYL39IIWE7ozeU9fUlw4ifH6P0iAhb8c8facyAJ
/DP2FvLdI+CtgyTX9uEkOG6bzbytmYDnqi38Do4nAW7TI4a3E3A/RTIibDoJ
BAvKxoJ6CfiB4874N583821V1VzrJ+AbipPUk9+SoJD9msqONwRM4mm8lvhr
k9/dJmUlrwnY7Tv95ofVJDgQOX7rZR8B6z53rzy/kQS9nmWDlB4Cli5VfpC1
lQK5VaS9w88ImC9m/5NvOyjw+PR6Dm4gYAbz792aHBSoLyOvQSUBz0h2vynm
ooB2bRWffR4B97IVvf+7nwJqCUbSR1IJuHYm9JPpQQpYG1UNUEMJ+NoT/e81
RyggkuvyrtSBgKOvi6yzilGgLz4/zEeLgJ0CGZhdTlNgT/KsxMJpAtbSHWJ/
Ik0BtgC512J7CVhC5B4v3zkK0HdnrBrN+uJ9TElCgYgCiVu+yX8q9cV/3tmK
v1SjgICfe3b3BV88WS8rI6JFAcPRmHOZaz64K50DSHoUIArqFRys8MGZqviy
jAUFnmlqfqrf8MbhAletabYUWL9a2TFR7I3tln1c55wocGKjxpxNzRuLVwhG
5PtSIFlT1LIi1Au3cUbfZImngInpwV62eg98vj+yUT2ZAiMfqk5GKXrg2rSI
10npFPiz96956TN3XLA9jIn1OgXmRb8webe64fB/AQ4c1RR4tKh1T6DIBZ+Z
cxfiHd48j7amy07Y41vlbufMxzbzyc3tl1ayx4LOrobXpygQcN6BqHvdDrNN
OJH4FyjwENEZ/a/b4Nm3tpOHtiTDTr/QE6BsjvOfGt8UPZkM4qwMtox6Opg7
xqjRQzIZ/m79p74YqYlTFS6/rpBNhpySymd5ty/isIf6TKdUkiFfnZrxnEEZ
G93VdpA0TYYHstrlPB3H8M4cZaHzscnQE+66ZpkKKNYEzkUmJMNM+C+1PFVV
tLIXGT5OSYaPA7zqq78voI9UBRLKToZVVb1MupY2ehInO6lakQxXK4p3NgwY
ohDCyZs6b5Oh//l28aIwK8S27XeY1EgyHN15+dmVBGtUmNdswDe+GX+l//eR
dBvU06PNODubDPpyBXpmmnaI/6iHHflPMuSe/3pZVsIB1TSdkfNgTAGVB0ef
3y52QBcNVzkMWFKAINTgF8vliHxjkrDg7hT4HOxSfWbBET0bLhNsFE6ByzEt
dY5EZ2RC8FkqFEmBxbKKjZ73zmieReZl4skUKNGIq1GVc0Fc0u1RxrIp4H6u
POzitAu63ZNqrKCQArsDbh18ctYVKdkbnRRWToGUOx46YnGuyJU6NbqolQJS
YtoldTxu6M+Rivv/6aWAQcbJ2HYrN0Rr8k9tMUqBnwetNe/mu6HGWUaFVJsU
sOpPtp/ldUe6Md17AxxTQOfx1awzBu5oips+b+6WAl/uV0UpJLgjNtVDucf9
U+BGdFJx4ow7Khz+5M8ekgIiT3MYn+7xQGcJ1Vq/IzbzLUw1qpL3QD0sIUKj
xBTYsi1a4pKNB7LJU1p7Fp8CXE/S6bkxHuinFMvr28kp4Lt75N3VPA+U1PPi
Ni09BTo+6r+DBg/Eb58VG5KZAg/Kb7Rm9XmgmmUrc5ucFIh4NHM6e8oDXaQe
OXMhPwV2NeYIqfzyQCNHvmwXL06BH1e4ma8zeiLfproJzlspUO9jWp7P6om2
GkY0rFamgElWFjLg9ETXZlVoEzUpUOXc517H7YlOxux063ywWY+dwfHOTfsZ
92tU1bSZv8/JMermeZPKHJ6sJymQH1JutovNE82r2H+LaE+BSKfstgtMnog4
LNLp0JMCwYWPas//9kBchMV8zb4UYFLdsu/ntAe6zdIQLDGQAhxLgyqEVx5I
KS9Gl2c4BQ40Ky48bPRAr6XUj/17nwLW9ewn+wo9kGsP+7/pyRSYYtkV0ET2
QH/sBt8+/5QCo1vW6SRHD0Rbzrtb+yUF7j652SAGHugo1Tk+53sKXJAc8Gvc
74Eaj5y0Ji6lAInBvFhucVPfpl/SruspECI1llrZuqmvQTObLkMqdH180yGQ
6Y5CZ8nT0syp0HNIVTnT3h0Vce/NZOJIBbcuH5fan26osuTxvstcqXAig8Vb
p84NNUi55RTvTwW7898Yab5u6KXB43y1I6lgK9+jcWHMFY1MuB7OEk0F7FnW
1r+5r3z05Sz5eCoVJItMbeTBFf1Jc72dIJ8KLCiJYSTLBW0T4BT/TykVjG6p
s59WcEGclc1Vx9VSYfhNKcodd0aiPXvud+mmwlDbL8llgc37w9LcstMpFfRe
pL4nhzsihywXZUv3VDCZvTdtzOqIvI/saavwSYUyYwbethwHFKfi0q0TlgqR
+7wcH1fbo5ro3QNUaipMyqp8M4+zRWzLTp85H6WC3JaFVe4jpog3gcPLsWWz
ftX+cQlWEyTM3bhQ15oKq2epemvfjNA5KY5fRi9TwWbrj2DlOkPk6vvoX/ZU
Kpg5X7meqqWDnn3axXWAPQ0MVAQs7f2lUMjQAyVhxzRoNeL/aRKjhQtBLHa/
WxpssAqZvYvSwT238lo5vNOg+/GxvYQQXcwfFqfxJzgNVigvf/ucNMBP9hsa
vk1Og5vH0qmwYIQ/x7ZnPk9Pg59llwJuDBpjzjm5/55mpkHwlABzQZMJdm48
uPlUS4PoZnUpiQgzvNPyq3NibRr09PHrd76wxFKtdreiHqZBfGjbaM41K2x1
YmAuoDkNvvUk3tK3tcbV642+dh1psHCXT4JrwgYb3UgKkx9Jg7iNJQGLQTsc
tfVP0+nxNFDWjt4mJWaPy7x8/x2dTgPeoRym6gh7vKpgQuZc2MTrFCT58Djg
/PfCafOMVGiA8q2SZxxx54WrfR9YqND9jlqm7ueIF+/u5BxipUJhSlJ4e5Uj
Vo3+nt3GTYVJ5QPXJw87Ya8Zp+FGPiqMw0GJEFMnnK07dKDmIBXyLs+k2SQ7
4VlBXJgnuon/V+3P3lknvCdRcurKKSqk/WbiHeF0xue+lR5NlqKC+qnLnFPn
nLGj6X43ohwVNnIV+07YOeNUnHonWJEKtspcqTUkZ1x/nOGrlwoVXLLSxv1u
OuOx9IDTjupU+Dr85pEHdsbbV2b8zHWo4O9Kcbo+7IzP2Fnc1zOggtLSU9LG
ojO26HqxdMGECqPzi7tzmF1wnISyvIIlFT4/7HVy4XHBd6/dj5C0o0KB5vGT
rsdc8CCDSIuIM3VzXjX55Uq64A23XIaDHlQ48WYxY4uCCxZ5xa7K7UsF/nt0
zUIVF2wgT4pnDaQCnRZe5n/RBYcX/e5kDKNC9cx5zkh1F1y8w33nShR1cx+v
1Wm54IJ7/UZ1FkhU6HTM8jqv7IKXhvXSpxOpEM2yOvZb3gUfVGl9NZJKhenM
LpfF0y5Y444M1ys6Fd4+keY/JeyC/TnvmHRmU+Ennderdq8Lzg0XyHmcS4WI
00Y8sYwuuG2S9q6ukAoH2gQk8zff+9GnTojTS6lwCMWIpLx1xnLh7ZE+d6hw
XdaWba7JGf9ot32hXU2Fyo3H13GBM67csyYgep8KFwJbRnbHOmMX60wflkdU
0KWN8k/ZOuNDt0/hqcdUcB45sHZewRlngqNdficVMiVpejlfnbBu6t97Eb1U
GGYvsbrzzAlvH7rKaP6KCvpuzeKWWU440rf35t53VDjZdkyyQcoJyzS5/Fwc
p0LUu+UDARub/cfCqPZymgozAg9Oz3c5Yqf8sx+TFqjAamq1RcrYEQvO9Z11
+UmFnfF7gvfyOuKhsx4JqitUWBdmCn495IB1XuQf/8eYDjbfO/btNnLA0n+2
eQRwp4P/5dJ9GZL2eEH9ZqM+XzoYZrAmeH+0w7euKLCeOpgOAQ/9OIOy7TD/
Cb/KWZF0+CxdoOoyY4u3WowsWCukg45N8wF0xhq3lAai88rp8Gnj9DeBSCsc
+p2dxnsxHZToKaTtbZb4S5LqmTd66SAtm33PTtsCDzysDNBwTAf5N7nFPedM
cQl3zIpkcjp4h/Ra1dTqY7VXwkzbh9Ihf82l3JbxGA7iLvqr+z4dcgWIV0zq
+XGZueBq1mQ65Ak+yWwd3Ym3TfIuCn9Nh9bFo8UVW/Yg51WWbwcZaSCpHqZt
oyeFRHb+GT2/jwb8Xi8H6o5rIKhstBjnpUGbrXFd0kdNZKYbNkQ6QINHFdTj
lHxtRMlYetN9iAZbRpeOCjPqoTm+7z2mJ2jwQlhkTu2pIWJ6XK2xfpIG6WOt
259RLqMDtj4d+RI0qKiR1V/WNUI6xfNPP56lgTVXE8vRPmN098RMQwDQICZd
9NlMsRnqeFEiw6NKg9mbObIReuZozNfxfuMFGmgt1n5iXTZH7Pcnqhm1aVCZ
lm3YJ2+JjpkUnCy9RAPz55f1RgYsEVqxrtDQp8GXTgOODE8rRFB4V5ZuTAPd
nF4STrFGSWM5R6TMaPAqYLyek9sGFRLNbg5a0CB5v1b1ixwb9KrtbZ6AHQ3G
LnAHKGbZojmXzANPHWjgZltxY47ZDjHtuJzj5EyDc29d7V4o2SHJS/2ZFR40
cM0vdVO6bYe0vlE59bxp0M4swvR0xA450i/RfvjSIOiMz/HWHfYoUoqNPduf
Bozf/80hGXuU+bYnRT6IBns8dz6WtLNHlSGUHe9DaMAa99LzaqI9atuvkUgM
p4HE7Fdhj0p79Nu6ndQZQ4Mfr70VdBbsETtDHIMniQaf2237jVkd0LGbKtHs
8TS4a3ro7dOjDkhJjfFPTSINtJ+kG1IVHZDJDA4zTqbBaMp09SNDB+STFL28
kkoDOcnSOhVnB5Qophh0I50G/3lnkkWCHFBh7/oPlEGDOCtaiQfJATX4NBKm
MmlAD3Fa257mgGyjrF+aX6WBo/kLS1qmA2JJZRDvz6HBg/b2788353fV9WLK
xRs0oLBOkptvOCDj2xc/NefTIPxa/yHHPAf05+FnNakiGtzk2CX4NNcBlXSk
3rxdTINra8k8Q1cdkPbb0wyHymiwftjs2226A/ox9do6+xYNthfJvJCjOKCc
H0FNbBU04Hx6SjAx2gEB4/795Ls0wPd5M6/6OaBZjubg1WoaxCsLHvV2cEDp
grYDvrWb9fhIs7IaOCCZk0ySM/dpcOhSWmvgJj9j50vTrR7S4PJ3Rvaq4w4o
Xkvj6+tHNPhVHfilkcMBiZvPa2k2b/Zj84mbBb/t0RtX6i3cQgNQOFJnN2yP
woPPsMg8pcG2r9ZTTE32qPtKyFOhDhosBEl9/Rdijwg3+Q7mdNHgeYpgkuNl
e8Rb8ziS4/lmPCXd1hZxe+Tycovcnz4aHF4ql/UbtkO73pdl+b+mweBdIufb
Sjt0f17z5+zAZjwpsT6NaDu0ZQet6u0wDVZP55VEHLBDhar8R6unaLB2MV3/
UYwNUjfEpKMzNEgxlX/Js8MGLdg5TOTObvbfWmETR7o1Uoy+lZv0lQZnn7nI
7KZboZEGaU6HZRqwNRWPX/C1QFynLm1wsdLhZMerHSKlxqhJYdEqZRcd/D4H
TvYxGCMH7SuNjLvpsPidkK5uYYRq3IaDFrjosLrWbviX5TLSLXb+0ilIh/Gk
9OGvmvqIwhs9HC5Jh8bZsk8Jey8gr+IMtmNn6fAqluWTSLgq0j1Vjl7J0iF6
6Wwf87gy4lLrLz2uSId3w5OXnmkoonxfIf8BdTo4MhdOeGhIoNqOjp2nrOmw
lboQ+EBHGGcavFMctqXDDYOQktVaURwy+o0Q50CHSTIHU8N2Cazwg/e/EddN
v/zQaI25DO4U8CxO9KdD0NlVh/tWyng0kEPhQyIdZHzuSFdtv4RbNoR9U5Pp
UL38OsLVXRcXJcvdlE2jA9ef8pMTbXrYpdB+OzWDDq8n1lQqzhrg78/rBs7l
0YEhVrWiueEyHjDp2jZTQIdyubxjpQZG+MGH0XP0m3T49jrkEnwywpHLzEWf
yung/EIqR3m7CWYRNvPOrKUDx5ywUcBBMzx716sQ1dPhdLJL82KuGX4uF/tm
7iEdtNxS9mdxmWOa7h155cd02MHc08CzZo4Dhlu8vmA6JEzo/h12scAmTm8K
rj6jQ6Bdj1JKnwU+EP6HeaGTDr/Io0GUTEv8b+se+ZweOux2VjPDi5Z4Iv2o
l9oLOnyv7tr7QMMKl5Xqvr7+mg797EyTLfNWOEnCkfniWzp81Bb81SJjjT2b
QuS+/0eH532fxy2jrLHEq8J89fd0IFbus9X7a43fvegymxmngy/+XnH1rA1O
6FnkjJ+kw1+XU4Op7jb4TCfvC+GPdDB3cDAWy7HBo62Q+OwTHT6wuSl6tdng
xCduyvZzdEjOS1LSm7fBko9p6xtf6FDTQyvt32WL3z9qqM//Rgf6VJ/lwglb
nPRgwlfxBx0UHBg/lV2wxVJ128VGf9FBlvOw+6qFLR6rlpgOX6YD61vRwo+e
tphSaZa/f22zHw7hj56htlj6NtGs4c+mHjpPT6URbfF46S1O0w06LLzo3akd
Z4uTb/b3/mbMAEJkSXE52RafLVhJyNyaAUNbE5tLo23xRO4hZaltGZBZ4Vuj
EWSLU65prL/akQHecSrBma62WCaLUE9gy4AIvemsNGNb/IF+zZeDIwNy+JXO
yCNbnEp9Ilq1JwMefBf/d+OILZZNmZ3S4coAg2vWFzGzLZ5M3J0/vy8D/vVz
zZRN2uC0ODmz5P0Z8JRvWsuyyQbLxdpxivJngLq+tv90ug2eikrq7RTMAH5d
9VktOxtMDb+X4HI4A7I/vmi/Km6D5UOGgPlIBmhZyVYP/LLG0wEM68XHMkDu
UdZr1kfWOJ0gUq8imgF8R9Y+qodZ43Pe+r4fTmQAc8mto5lnrTHNpXBK8EwG
5KdUV6XetMLnHbvyHktlQFmnzz+Dy1Z4xnbR1EomA04GyJDNGaywgjn05pzP
gE9Pm/Nc9CzxJ2O3BDmlDIh7pniA8t0CZxhuzh7IgNM2LdeO0yzwrPbEfa6L
GSCvOuHM02qOr2hs963TyAAZh4GzFFNzrHRBQtRQOwNecnszNsya4UwlYl66
fgb08+oLZTCaYThzKGGnZQZ4bn8adZbDBM+f1IDb1hnQbJElSkkxxtlihDV1
uwzQl+5/cYrZGH8RfuIT75wB7ycaeJ8uXsbX9tmZMhAy4MnnL9JaFQZ4cb1A
ZCkuA1a9Nu4fIGliMefKZ66JGaBUE7lsrqeBnV42/K/h6o6nwovipIESlZAQ
kbIS2ese3sOzPZvQUEJLQkKKCknW25NISUsZqZ9chYg0VNJSyUqoyB793p/f
z7n3nHO/3+/93HMD35/PA5U6FQ9PeXvcWfAqpyYrD/7YCXmuKiXiOluR6RRm
HrSInnUcDUc4Ozv0qeSNPDg6yd49EqGOm6eiQpJv5cFQxP4V9b4qeNGeU/Oj
ZXkwdvdPKjVDDscaMPU6KvOAvXd58Jz6n9rg909ZXJwH3QqyvF9TKmirqk6E
xus8MLg5y/yQa4HCMk0Xc94K9o/dS5UftUKF47b8FZ158PPcbMK1K4BkmoPb
f33KA9lrdwNbp23QwsEcs6q+PIiP2LV7LsEemXRw32z+kQffNp/ZRaCSUBS6
dpj1Mw/UDFSWzpY4oL5VjwsTf+dB60CKE2pyQm1VY+KEGYH/v/Ruff7aDS1V
FiqumMuDgcHKe2qh7gjOr0Dq//JgVV/DTbWv7qhix6ZjYospcI9zUtSojYy4
Qr4fX0hQgHLducUkwxN1hIfEWEtRoMCLE6gy5omkXh+RLF9NgeLfxz3D/b3Q
2eJ0Al1WsH7DSaMhRW900PHB9UAVCvB9Ix4XnvNB33RN1ouoUSDotlcE8YsP
8llblXFNnQKRz/cFHzP0RdZf74RPaFFAvk131P2dL6pq1H3P3UoBUtnTuqGN
fkj7+k0SQY8C35L9zH9H+CGZ2Gubc4woEL9pxm/lbz90YcdmhpEpBTzXv94j
r+OPhKyLl342p4CECa8/MtQfxaqrxp6xogA5iTS6nOuPfi6/1KthTYH0q0Zy
fW3+aNcfJe+XBArUit46MTPrjzo6uA2xdhS4X2TymKgegJxq5A0UHShgfvDX
lkfOAajuErOo3okCUzV3Ig8K3mfDNJk1Ea4U+CXiMEDICkClB6kpUmQK+F2J
i7C9FoCUPVaPVnlSoG/rTNCRugBEM87ZHeRDgReN+yrrXgcgccWVr0T8KfBI
ctkvk+8B6PSiTCjdQQHjOL5050gAGu8XK3MPpsDDRZL/8ScCUERb2obJXRSI
q54SzpoJQF/uLsnmhVDg/VNEuSrAXswzC4RQCmQkny4cFqxvOSl8eDBMoI9G
5NCeXwEIhZz6nHOAAsv+aVaJ9wSgCtK8s/FhCjTuOPJs4E0A0tyaUPM5kgIP
LJ+kCD8OQPlrprXOHhPwR2bd9b8umEemYzmasRTQu2H0YCInAJ3v+iv+Kk6g
Z+jjhK6oALRQHxV/PIEC4TYygbLkABR97fcPxSQKIEa2dYlWAPqRddi/4TQF
XG635jEXBaDg6KHmiDMUoHZ4GP5+64/e+EeYrEoVxMn6mfeK/VGtWqhs8AUK
pG0Zcblv5o+2i/ekLs6igPXcXM9SIX9U8mv3RGmOgG/D8+cGH/khyoOgt5M0
CriOn/DKN/dDogUfiXymYP81zR1pY74o6Zx/BZFDAfzOQG57iS8Kc/em5BYI
6mcf3Coq6os+G75eZFJEgTvh9i+dyn2Qx3pyVFcxBW6pXa1M2+GDLPucyVrX
BXpluDmqFHmj1YlEycZKChjSdT6ckvJC6bsfJx2oFui1M3pevdgTzdvByKr/
KJBAjpi1NvZEA6ss2oLrKGA5GPRB1ssDPby6/cJUCwV69m70049yR4+naR+O
tgn8tZ6QcmXaDT1xmtL4+YICpUe1P0Uud0PPf9U0f35DAZHQhkCFTS6oy9hu
aX2XQB/HI7kuBg5IqNkv+eIoBUT38DmzXYCIAyePb5SnQuQT+bfnCeO1JLOv
TzgKVEjo6L8os3UFds60kVm7gQpTn1yW9nTIYO9tyyqXqVGB+SPwxJ0Najg0
Lmd0SIcKMZFvWtKK9XGaaNGhe9ZUkE/TfXQ9yxpnBix5uI1IhXD9Sy7eF2xw
zo39K0rtqPBK+1y23jkCZrprX+c6USFf7aGmRKQtLmFWDiR7UyHqTF6p4QYH
3LKlOcQ5nArjaxqmFlrdMH3I0uz+ASo8zAD/Qlt3HFJWLqV+mApHXJ5Hqhe5
4znj/If/oqgQt5iRXupLxk9npakHY6iwmujkw7hFxnScEfH+OBXOb+LPWol4
YF37WNnyRCr0mZakc4o98Jz40PCGU1SwTa1NR2MeuPn57obMZCqsjO7NS7Ty
xHt8XI6GplKBpaNjWdTmian71FrX5VCBGh7p2tXmhXdpsC+l5lFh2wvRkTPL
vLHOsGTcGJUKp3oOXbxo5Y2fRM+qtbGoENRvalN92RtTTI7OmnKpoJm45NuL
195411zfqyt8KuTF6lNMhHzw9Jn2pNNFVOiIC3837O6Dn9iTvIeLBfWHX1/c
HuOD85bXagWUUOGc6KeCGroP3vli+6KmUiqErDWLSa30wdqUa53bb1Jhpm5L
Q9YrHzzls+F2wW0qTJSc4rwe9MGN8rRzEnep8PFHfZCnsC/O6xIPjK+gwr4r
Wx+vWOuLgwtP6/dXUeH7xWtvFjb5Ys3QCVGv+1RQiHg0vsXAF09qHPxS9x8V
BquyPmQgX9ww/K1Sp5YKz92omWokX5xzxzeTXUeFo8bU8AkXXxwU07ZnWT0V
6GkBqsJkQT5Tgml0IxWUcpOwrQBPzFVLfmuiwj1zeUajqy+ur9va59JChaFb
x31SHAT5zl6uefCMCv4+lXMnrX1xIEmesvkFFbRcd318YOSLNVbkhFNfUWG/
0xK6uYYg34slIPyGCpUS1Soi63zxY0qCzOEOAX9RuQ3SS31xtu+foQ+dVFhh
qrY2+rcPDly/v97+IxV+ZA1Mq3X64C1fPrEqPlOh5wS/ROuhD/5b6BGp8pUK
RcZXizPzffCj0Ga7rG4q7L3mXe98ygdnaVopzvZQgddrqHI00AcHjJSP7e+n
Qpm4s9Y/Ix+sflej5c0PKlw94MiaW+mDx2LyC6yHqCBniA8d6fHGmfMZLuv/
CPSbDm18nuaN/R4JqaWPCe6X2uaaZm9vvOlc7MzfcSqsP81a8FDxxrUr9lx9
PkOFY89D/I3ueOE/602FUxbT4FuBw7hcpSee2qF8U3UZDcptIrNTIjyxEHeZ
f6MYDfK5t6yDFD2xlEJHmagkDdKtVjyhJ3jgbQrHdmWvo8G9Vp2x5PVkbBIY
sEJPgQYvmnDu+4fuGLjW1e1KNPD69Gx6ebA7dleQkpJRo8HpGqPvsdvccKTC
TczdSoN3LInAjkEnHBdIPWClRwP0V+FqvJQTPs1NkP26nQYttQakFn1HnKPg
eETVlAYSIhr3Rg6RcJlCv1IpgQZpSdb0iUdE/EtBJemeHw1K2zt/8BdM8USg
qKb/DhpQC9THdvwzxgvcX29ngmgQ/77VrXXeEK9UrNWxCqGB579/3J6/enir
4o7PDYdocJRiXPHvqio+rEizaE+hgZOTfa7jtXUoNihx4Ng5GqhvfeqQ1amM
kngh1LXpNCja0NIi0qmGshT1h/wu0uDGI7OIkCZtdEvxBecLgwahcFfqkLYR
GlYUmx26QYPxNuG05GgbdLblTeru2zR4q7CXs9iWgOSPF6zuuEOD1CyH4pbV
RER6aayJq2hwsfm6x6NiW3Q5JdQ/t44GV+tvHf14hYTMdfV7l9TTwDz2yex4
sANq/zgfGd9Ig5gaPvXSGkckZEhLD2kR4Ge+tjuinNCO/vp7hm9ooMPsC7YS
cUWjlGxCaQcNBh9em6znuaJ02PFC6b2AD/l7z2wN3FAVa7RvWRcNOhdqryZp
uiMXu9qoxK80qHBJ/X3+iDvqGT2/8LubBhHPBiyi77qj1c4qMh/6aRDiMl/z
VI+Mrk0NXXIdpMFx+5zszYfJCIqrdeqHaKC69uNlhxIyOrzgZnvjDw2yDRqH
Hq/1QEuur3+l/FfAD6tHSNLBA3F9+wNpE4J6Hs/Xi8V7oKdlSdFJszT4eHDe
7+8bD7QryFFobJ4Glxjnyj4teKAJMZnM/UJ0aNqgHr9b3RNdrPom+2kRHV5S
JyVOOXkitZCbRe5L6NB9/oiU/mFP9J/kCd3GZXTwX3s56niWJ/KoIf5nKk6H
rpFzUc43PNGPMCn7WyvoELBpFedWkyc6vfZT+0ZJOngfim7gfPVEso+vBjNW
0cFkma706klPdOvwscHl0nTIsNg0L7ncC9muR7GnZQT4xHVEVfBCn5rEF43L
0cFWJP0HT8sLHYvuuBi+ng6y7j+9tU28kLhK4bouRTq0Ld2pg2y8UEHboWIP
ZTqU3ri+r8PBCxnHm+o1baQDY1ml9airF3quvuSh+SY6KCEXMoXshfa+fkkq
20yHfY0LkQ8EePYU942aJh2mV7c9DXPzQnnaYbtY2nSYgaGX+Y5eSOP99iEJ
XTpMZh+x303wQnXn/h1P0aMDDIyY3jb1Qr76rSKT2+mwf6+qUKaOFxrpomcf
MKLD17F4ixklL3Tuwp71X03o8Eej6OOchBdSMNl61cucDmsclkszZjxRec+0
/lNLOgTlB+171uOJHHMbay2BDpb2vxkFzzzRN8tcx7s2dAgO0amRveuJ4gYD
O9Rt6XB+cFTDiOaJigl/hyUd6WBX3lGY4CWIH9Rzu+9Mh3SRVaXZOoJ8tMNl
e9zosFBQ+mtaxBON9A1EVXrRgeJz9MlIiQeqk1R/E+xLh3q55CXnj3ugPJMQ
Q9EAOrRoK3xiEjyQUcbnyYCddJDO4yZbvCEj0XJ5/8V76LDzns+jbiYZffjo
++DmXjro3XY5rrqDjE7ptCcKRdBB/UbMQ26nO2p++UT4SjQd+hb/ohsddUPs
aZEQt+N0SC1NlTzV4YoObrRumDpBB/s2b5Fbxq5oVfR/qU6nBP3PE/s3jjij
ANmy5X/O0+F+N63OcqsjGgpirbXIp0OCyt+EnWuIqDa1I7b3Eh1yLROL7xAI
KOf2ms6sy3SoHJJYceOoDTIUzmJ/uybwe9myGJkmQEmXUzakVdDh3v01sVFV
Zkjy5wGN9qd0YGs8cFeV1kD6cVaWYX/pkEQN3/xxSBdTJHYl9UzQIS7a3N0w
V0/wXiXjXdOC+lLpyyQ0tuOqtgZr/wXB/ZApC9jsZoTNVZ3sHEUZ0MKI21F3
xAJzqw+mPRFnwHjQqesPhy3xgktWs40EAyQDtemu+xGui3vlaL6aAV7lLFkL
dWtMfO7rpq3AgLbQlv1rhwm4OORETokSA7KUv54RYhLx0mn2KzUVBnAyNx9a
Dra4WbXLU1GdAbInfOr00+ywy4m9fiu3MSBpA5Z/+IuEb61MZWXoMyA18g+P
leyApS5f/bDUkAFOi5sklkg54vbng4H/TBlw4PZYMWmjE/ZRO7r7N4EBK+9M
4U/yLvje/bzCg3YMeLeFdi4t2wXLuVV8HyAx4G01znIRcsUfTkzu++bCgOp7
W+Zn3rpic8l1V4PcGXB2cuRYq5kb5l42G3jvwYA143c8z3PcBPPUyYh2XwZc
tDrO9Njijuv25l93DWDAfka9aZyHO944UzfUEsiAaHfm2+R4d3wmu1vHficD
IrsVww8UuOMetcVH6nczgDXwx0ivwR3bPthUhvYyoHXiZNOLXnd8xc3+z3+h
DLh1yfYHYQkZh8VnHKs4wIDKM7fiL1kK5lfJGxXbDjPgTcL6gXM+ZKxZ3DZ+
I5IBC3fudxseIuNMs19GGscYsO/GT/btZDIefiEVVxzDgDBrUvofChm77tO/
rxLHgNes0vCZIjIum/Gc4cUzoMnb1PbpHTJelRNjLn+SAcc694YFPSTjqE2M
RPopBiTWftpf9YSMXz+ofrg6hQEKZxM3vGkjYwP3DwtZZxlgsUf3blU7GdN6
Z9HyNAbIhLeeD35LxhPxislp5xmQ9+27zzMB9pVCj0UyGVCzkCcl/IaMq4t3
iZzOYoDOoNnf+RdkLG+eQpzLEfjL2Opcw1MyTnhZdC6OwoBTzbczfR6R8eV3
nS4DNAboW0i/+l1Fxs+7JGT8mAzQ3MEqiCwl46lem64mNgOCS4QOdHLIeOPw
8SvGPAaUrJzr0rxAxs5/bxy+ms8Auyb8IyKOjGNmvxnJFjIA/cus4oSQMX+R
7L/UywK9nQ1v1TmTcbOYc9PEFQaIizBiP28n41Gp5OzQaww4cXb16LgcGa+X
q/LtuM6A39lTVivn3PFhdeWByjIGjPwNHnGrccdMHe+yTeUCvW6Xl6ew3PEj
g4w4WiUDJn42r2yOdsfShL+iMQ8YwCPvqMvf5I6tHDVe9dQI9HmrnxQ/4Yb3
k4NZXljAt+pm22V8N/xgZ7OGQQMDlms0H7fvdsW7ErmOY20MkMsvV28HF5xx
5tXqkJcMiCKba4q+dMblGUs/trcL+rcU+Ta3wxkvZUUeuPuOASJ5SZK7Ipzw
jUpi5tFvDAgZCot6uccBd9Sc8Pr2nQHPhyPjat6T8L/6WwrkPsH9nj9i/9OF
hD3a5W5u+8mArf299v5b7fHUyFDbr78MmGqdLkp6RcTELTTJw6JMaDy6T3Y+
BOHP7N68CF0m2L5zze6pVsE2SpnbJPWZoLHsiMPYJkV85ZL+83IDJgwd11X9
1ymDI0tOic2bMmHXlX0DeUmL8eKqdaeziUxQ0sbJmpUSSOuVy6EKfyZ0SVNl
zozqohyvv+L+gUwY9P7wLiZWD/19xy6ZD2ZC4sGwpNO/9VFtV/93u71MyBS/
wXf8YIg8hpID3h9mwsA+i++6p8zRiWVV9gtnmJB78FuP/qgN6soI7C1MZcKI
ObtMLpOAbFaKnLE/z4R/yqv9xzcS0Yq17rU5WUzITuw8S7S3RQUbBw1UWUyw
L48z2xpmj5ZcyWlv4jCBkpR7679+exShYRx5kM8E/eLuXbdDSMhg29nrlUVM
6HN8uvSCuwNqslTaSLrFhJYl9Z8S5xyR9qMGPFTGBGdW26rCICeUQzwQlFvO
hBufU2XxAycU4FTN/FDNBON8LZeKMGeEnwcbnfpPkJ+3tuP4fWek5rHkjWot
Ex5LiPSILXVBI34ekofqmXDxP7ve2DwX5Plp6saqJ0wQkzVZbtPugqp35jtW
NTNhskdUsUbCFSl+tx0IaGWCJxLCXURXlBI6dO5fGxPaz2QbXD7uivp/5Kle
fsmEIL+OXcuuuCLnQ6aPSK+ZMCUh1STy0hWV/f4SPPxWoHfQYAZt3BWtjU6d
y+1kQltCY+R9GTckundVvNhHgR7hNjZX9NzQnCd38vRnJqyu5aaUk9zQb8Lm
mKkvAv2P+K74usMN9Wy/O3qkmwlv1y9s1zrghjpVLSP7e5ggsW5JMzXWDT1b
0zwc3M+E09fZUopJbqhOxPNAxw+BX2LCXzQku6GKsc8DLkNM6FB3RhcFuOR7
WGjjCBNepI6uiTvphrivx75b/GFC2fvjJ9Ji3FBOfdLuijGBvk8G19SGu6Ez
5WJftCaYQGx8sqAU4IZii6iBRVNMuK6/89lNOzcUQdnwQX6WCXMbLM4d1nVD
wWdKffPmmeA0FXZ1n7Qb8jhm+FZMiAXPZCs3MQV82IXUeSQvYkHcsb7Q5a9d
kZmn08upxSzYc6iL2HjDFW0ldLhELmPBgZmy5c9SXJHK9t2t/WIsSDS6Fafu
7YqkVYdIO1ewgJ0TfP+jqisSXXP8ScdKFiy+czRibMQF/R7NfNS4hgX21acr
I+JdUE+3LLKUYcGnw26lH81cUGd7YU2FHAu0J689fjXpjOruVt8rUmTBilMH
C6L3O6OKQoLhemUWZLp/ETWSd0Ylec/v5m1kQdoP6c7ip04oO6rnZvJmFoix
3qJaJSeUsueI1rQGC2yj6mhJDY4o1mOmJFKbBQmSY08V9juiYH2pyzv1BLhM
iaxe5IC2jpqzLc1ZQGp+umhw0h5t7H4iW2nJgmpmyMfVqfZIpp1M0wYWOIfc
iz2/yh7N39mfs96WBe5GXsJ8ZTv07CglddqVBavqEnvVVYiobrfS4qNkFuxK
DFRJ4hBQBfla8oAnC74plcZfWUNAHD2c+M6PBSfGH665M2+NIv4MRlXuYcFV
xTPm7jEIiR212Xk0lgV/Dl8oUn5liEw+W91VPMGCGsf6guhYAxTmYL6kJYEF
6455OMSs246eqBhc35jMAjfOgoij/zaU0r5p8vUFFrwb1zjTfmETmtsulm10
iQVy+/8OyX/+UqtVsKS7u4gFGifeTydFLtQGrFhkmH2FBaJui2tSD4nj6p6Z
D/3XWbCvW131fZAcjqENqbOqWIApytuyt27GIxMvamdbWaCg27BjSsEIK4Y8
W1XynAVTkb3XLwUbY+cXzXu9XrHgkI5NfQDXBJdefSR+s4MFY4ojxi7LzfF+
v3Kf4G8s6I9oPJ9zF2F6w+1r4j0scJKjpoiGAX6y7cZcVR8LzI9qD2j+Bawm
VlwoOSTop6DyuuNiG/z1Pn2kboIFvR73b84LE7GkOsX60DQLYgrDx16fIGKr
vGzqujkWNK1b/u70CBFzI9LNooTZMPbq4DmV57a4tePsRaXFbPjukLV6ysQO
z9gkf21ZygZ2h+qTiAI77L8+PlV1BRtOD3g++LXXHqenxb5/sZIN55T13g48
ssfVY1HaiavYEMbVeu60noRlnh1ofyPDBt47xZ8b60nY1iRsU/I6NmyvPLw9
ZZUDjr68N05HgQ36q6SKVQIdcHtikFKqClvwfu3fM9/rgFsCDk1tUmPDiV9N
u5erOeJHJifbG9XZQH7uWx4Y7IirZS7e2KfBBthn0T9IdcRlf7mpS7TZcD9z
cG1ZkyMuab+xq3grG5QVar5emXDE+WU1ZrZ6bHh262hUi4oTpmc9k+7dzgY1
7UunZByccNbBTyNnjdiwYdUq+7SDTjjVcahZzZQNzdFCeesynfDJLXOFDeZs
uPlkR0XLVSccvXTFyb1WbFAndWUysRM+2LPed7E1G6xslc8lv3bCex9r6V0m
sGFidV7u2e9OOLDAfDnRjg0tH0P0Lv1ywl5JTr3fSWwwsQ84/G7SCTsF7sBn
nNjgI57zafOcE7YxO8BSdRWcL0qNTRFgM7mEY/XubFg81+GqMO2E9ScyXEI8
2aAlmaPV8McJa75hbxbxYYPtVMePi31OeOPdUuEiPzYgY8PWxHdOeF3Og482
O9hQYJvGpDY4YanDLZXdQWzoHTW79P6mExZ1/pCdsosND08kPHCnOGEhzcHw
jSFs0ItysvoX7YQnl80QHu9jQ1FLpvhPDyc80iumtCdM4I/RiVPyOk64r37d
lPABNhgFz56mijjhrksa7ZcOsaGPxYzc1eGI354yvWEdyYZ/Mgp6qcWOuMHc
f1dyDBuE71zbKGzqiGvWhZupxLHB7PV/6WHzDrh8Mk76UTwb7u1sV3etdcCF
5cxmodNsoAYqXnto6IDZuSWFBSlsII5/SgkaIuHcI9WJcI4No+J2iVfzSfi0
Vue20xkC/aO0iyLm7HGc2IC48kU2nPx2y22+2B4f6Z/swdlsuNY/t/aQsz0O
LpJl/aOyobj07pn1OXbYYr2v8Kl8NriSk1e6/SVig+nQj0qFbPD/d+vRnlQi
1noXW1l7mQ1Hd2nef7aWiOUp9PCFawK/Up/39mkT8JR4x6uTFYL+/Oyclays
ceWMV2HiUzZERtej+9Om2MLWIfBXKxsqvopyNg6b4MfZljJ7nrPBT+Je5Phn
Y/xcTT3D/rWg/yCtH8HVhnjAdfLo6s9sSPra7yzspYcViljWJb/ZoLFX+v3W
DGVcOHxxVn6MDSn6c9M7TypgDZOUyovjAj86rEx72iOLjdoiNI7NsOELlyEh
v0cCu0+ar7JazIEvu9cXPksftjrr1PX1tSwHrscI6USMqiJxejvbTp4DUWc3
PqBrqKPcr0+87itwABd23tcP2oL4Mbeb+Soc2NJiY3i7WhtV558uC9figFzB
N9NWrj6yGoyO+KTDgWV/2souXNmOGg3C1dy2cWD368cGKTcNUPtTMtPAkAOs
xGk7xl0jNDS28fQ/Kw6cLbzTpUI3Q1FWsmZR1hwo/dZ90D3VHE2nL//bQ+CA
y4nCwdYoC7RU6e/+FhIHou1eDVmCFVImNbrRPDhwJvGbmsJbQFfy7ouJenPg
9mFj7oyFNdL5fLM+3pcDTUoFTHahNTKLohvvCuQAaTtn6E+oDfLk7t+gFcqB
wikxx/Z2ApIOabvVHsYBY9Xn4vStRNShsd0q/gAHatJHjnulEVHAvYXAp5Ec
6GbN8Km6tkghae9Q5DEOaCjsUBY+ZYu6iC0JcrEcUD3N/2LZaov2tNPY+xME
/NWZNC4KsENqrFkNySQBX0FzR09w7VDfzt33q05zoDf+4gHeRztUot5ECj7D
gUW6uzX2y9qj8GHtziWpHCDkdeS/cLNHmhV5+2+mc8CTLmT98qw9GoqfmvC6
IOCrJmh+T5U9ihRtWHs5hwP8NdQlGpIkpP9Co9iJwoFNATO3PYxI6C8t22CM
xgFyLG/7rD8JVQWO17OZAn7PBQhviCeh46o7PG04HEhIIy3/j05CJoN13T94
Ar4bfzU8u01CM2XqUbkFHAhrO6zq0UhCNcczhU2LODAiepHn8I6EkqxGc74W
c8Bg7IHW3V4SgiV+yuklHOgf/Wd/4TcJLXr28LbudQ509r0dfjNJQg15qujd
TQ4IR46ysmdJKNX//POkMg7wxBccagSYpPwrSL2cA7HCpomBUyQk3u813FbJ
gSs7VupG/SGhZzcfJMZUc0C/nfr1Xx8JXYxWXqH4HwfOD85fFH1PQq7mqZyG
hxzY6jF2N7uJhKQWDWkerOOAFLubxLpLQu3N5Adr6jmgFGX8RINNQtTsew7/
NXJgQ8ZZRbskEvLxUXy/p5kDqSacmrFgEpJTPBMm3irwj1zeBRMLEvrwfWDy
Tpsg/vDBT3kZEuKWuqb5v+RA8P3UqktD9ij4aIWM8GsOTEgGWrzB9kjZRP5K
yVsOCAX7Ex5k26Oixt6GyQ8cqPAV03+8yR7tzXTyyv/MgV/NzL7xn3ZI3fPO
d7uvHGDObywXum2HSr8mLqL3CvyS4Dtdr2WHDl7tzrUc4ICjTHJFbq8t2nqY
pNI7KKi303bZbq4tujO7Bgx+C/x2LPfEdmFbVC1z/WT7DAf28Z4VLb1GQPGf
pSTi5zmg5mNGsnQmIIvLsVwVIS4IPVmb/HnIBtXp2fwXuYQL56+IZtDUbVCT
8/uplVJc0BneqJV3EpDcadWw86u5oD0R32a1FlBY+aF3Imu58NKis0jHByFx
+UVVU+u44C2mbipcZImc+zWPdatyIXp+rT99rRlqT04crjQWxD8vTcmN00dd
VRu6A3dywXOLGpphCSHdwXDyu91ceLp33QGvC7+tTitW1JH3ciF/+NpXRkdc
rcpZUr5dOBf+C/NWaisWwnvJRwO3HePC+nUJobHNcnjw5+MOkTQuEMWkra0C
tLH5Bgm7pPOC/F+ibzqStuJMD9/KqQtcuKtSWvJTbhvWuf+TMpzDBdUNZTsI
s3o4MlWa/I7NhVt7XuP5fEM8oRzaWnqLCx8OPrjzmWyBJZ/UP5K7w4XH2VvZ
MtKWeMsBlerUci483G2umtNuiQMqP13eU80Fmv6a8t8EhLGDZ5L8Y0F/tsf2
ys8C7hwpi05v4MLmb28NlZyt8Shl5YGJJ1y4J/3jzF+2NVbreurb3sqFd/t1
b07o2eD0KNDLeMuFb1G+kceIBHxJlr956h0XTjD9krXOEPCDmlnF0A9cEAdd
6glMwENL74nbfBHkd1q3FG8j4iU3pIXLvnHh1duI5tJ9RKxEjppU7BGcr9vA
ay2TiMkcnZ7pAS4E7/vb5zFOxBFw4cP+n1wg7wx7rKBsi8/2Drx8O8yF713a
qzxJtpiXYddE+M2FgZvxi0cP2eIq3csP74xygaXWqDiRY4tfvBGu2DDOhaWi
S3UD79jigRM7Sy9OciGt4V+AygtbLLzhYcHsNBeK/8asJQzaYvkGeUb4HBfW
WgWq4kV2eHt43MV3C1woi51lU+TssPPKjjO2wjxIXy/RU6tlh/eVb48vF+HB
71Vt95CFHU7yy41UWcoDnWphlbWOdpgxPxKaLcoDJdJMgpW3HS4rdA6aF+dB
W86Z2P+C7HCLfannAQkehC19LZkZYoe/Dy1zfC/JAyuTMGZZqB2ey90H9qt5
IFvac0djvx2WMa43qpTmCf4vH1yn9tph3U/KOqqyPFALzr6ruMsOk5KTVHPX
8eDIyf8iOX52eLf6p3X/1vPg/T3jQ8dc7XB8q6nUISUeSPVe/XjV2g5TIhlL
PyrzYBFzHTLXt8M31o7PkVR5YDrDCt+mbIcbH3iMVW3iQc2hxwkZy+1w186y
H2pbBPtXWvQ4/7XFU4tXfs3T5MEmObOdCR9s8arSAx1COjx46ftzfF2tLdZ0
e/rssC4Pxq92z2vn22LiX/X6T3o8OMaJlbt/0hbHWnXfrjYS4I2Fye7bbXH2
d3RF3VTQfzw3LVTcFpek87hUcx7MDSRILP9CxB/a/c5HAg+W9F1Ql0sm4rHj
Vae6bHjQKjp256IrEa9QlI51tuWBt+vw9evriBjtf7FniyMPfpQEv50vIWBq
On9rqzMPRI9r3FsTRsAD1w7NHHLjAWvxMdNMNQLOGVqeV+7Fg5TpilMvaDa4
+yjpkdVOAT/l6lkfAqyxEUX24rfdPEiIqD1itdQaX6jo8zu7lwfJISVWe24D
Npg8+/tpOA9cdCYDLSYQTk18tME7mgfyJ6rj2sYs8Adezs/JWB68kVMqyNKw
wLp45z32CUH9FQ2vbu8wx53CC65fk3jQP3ih40KlKdZMM0s6cJ4HrxtONEoT
jPDz3PJPyXwe9OppvPher4M3lqeUqF0S8Kt4bSzmvRY+/oYc3VQk8Eczsbrv
pwZWlv29XOIaD/Rzft84KaqOo7ja5sxyHvzZ+X7DWXcFLHO1mHWrmQe30Y+U
RxM/rYJrGD4fR3nQ0HlLTHnDNmTj6LSIPM6DesoXIdWxbWhT58LNJ5M8cF91
W+NJg55gftq35O4cD5pWBjZk7NqOTmgZVKQv5cNBn3fJkceNUOD9/p0LonwY
NpU37DA0RmDPWR69nA9Z0f8+K/8xRktDFoXslOLDrfSV7SuDTRGV/XKVkTwf
jJrdaGKSFihuy9mH1xX4EHj263H3uxZoR5VxuMoGPmz6OQEfyZZoYzu/boUa
Hww3LH8Wfc4KLd3lcTBFnQ+M3o8/d61D6MfwErmpLXyYD7xzx+kaQmVih458
1+HDnOCvcTgYEJWhvN5/Gx8OZAXP6xcAOr7pzZPn+nyoL9u+pPMLICtrc6UH
xnzYUZDaUeJnjVRejDzVNeND6s8Xp5tyrdHioMKYYgs+9Pm8u3ej2Rq1xom1
5VjzwazsMrdc1wbdWvowbimRDyIF9ftbdtqgPGqkWqIdH+K0ImdzL9qgmI1q
L/+Q+KCm85W35L4N8it7l7DfiQ/5N6lflLttkIXVhc2fXfhwiN/M+SJKQBue
Wb32cOeDtG/HlKUOAfX1F2taefOh62RxSethAmqJ8e8o9+XDu4mmx38vENBN
EYkUjQA+KMpKSdy5QkA5uXU6+YF8sP+morlQS0DRG6LfS+/kg9CfILEPbwjI
7+bmcxm7BfkylvTbDBCQufnHbUJ7BfrZeTsbTxOQ0tOsTzGhfFD2pktWLSOi
Rb426T/D+JAYpO5Vu4aI+nrGt+8+wAcH4dgMN0Uiehp17UvHIT7YTM8fCVcj
ohtCQRecI/mQ8UVTcoUGEeVkSRk/juLDoyKEjbWI6JhCQ7dxDB9Q+Va1YU0i
8ik9nnXzOB/gc/hWnS1EZGaiZaYaL/DXbIn89EYiUnzS1ctMFPB58OpRj/VE
JOSVl7vyFB/S9nYuM19FRD3fbC3PJvOhXHP1fMViImo6Mj0wfYYPNPttNY/H
Cah0/gb1SCofXB/cmAntIaCsC7ugN50Pay23VV9+SUBH10kPBVzgA6d8ndWp
BwTkdbWJ8fIiH/SezSnNXCIgE8MEgl0OH8g/ZI3WpRFQR4KN5hIKH7T7Gb88
Qwko5rHYqgYaH/jPfZjXbATzvdiryRQmHz7EzDUrKxDQXTdmlzWHD2tSB1Lr
Rm2QO31noxCfD3aF4zY5T2zQr0/qN3ABH440ancyGDZIO6LyhOUVPuiHDi2O
1LNBLWWJu+ZK+ODJ6fHzmLFG4ZME+/+u88HKtns2u84aXTnbLm16R3A/jE/9
IdpaI+X8X7cNagT1pk2e1W0DVNtbRR+r5YNP3oKkcytCQdpJJ+8+4sOnU7/U
Tm1DiH1/hdO2JgF+8sL63LAlkn6j0afVzgexD6/mFgzMkZjYXgXVAYFfnv60
/7vaEJW4aYl0D/Lh515Xi2gwQHb00R8Fw3zQ0BxoNzywHZ1VTb6nNMaH7bMX
tRbf10MLlnwP+QU+jAc/npc5po1GozrTV0nng2SGepR2xXqUcz//yEuZfCD4
LelvmJVFukL7fbLX5UMZvTXZxFoaHbw4riqxIR/65ZuP/c4WQ31XV2NRzXxw
Nzur+9T/W+3ZkffFTdr54Fp1N/kwZbJW1fBSZqpuPphW277QNxHBux7rBiw2
zAfpwyOtGsKr8ILoJNQb58PtOMfiLzelMc+tdnOKWT44WJ87POkthy3o51Za
W+aDwWb8o2dqPf7wyXn8H8qHA6clPyjQN+D/AcFH/ys=
       "]]},
     Annotation[#, "Charting`Private`Tag$6291814#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837176480580683`*^9, {3.883717692050766*^9, 3.883717722110422*^9}, {
   3.883717949566876*^9, 3.8837179569436073`*^9}, {3.8837193022389402`*^9, 
   3.883719305670232*^9}, {3.883719468726447*^9, 3.883719490908146*^9}, 
   3.883719601662781*^9, 3.883721888939764*^9, 3.883810169483489*^9, {
   3.8838124370208*^9, 3.883812439178928*^9}, 3.883812602672359*^9, 
   3.8838126406661654`*^9, {3.883812832086575*^9, 3.883812838151223*^9}, 
   3.883812904902255*^9, {3.883814274211401*^9, 3.883814288199401*^9}, 
   3.883814686310783*^9, 3.884769158613853*^9, {3.8847745263666162`*^9, 
   3.88477455671101*^9}, 3.884774651458539*^9, 3.884774790970067*^9, 
   3.884775064853197*^9, 3.8847799008108797`*^9},
 CellLabel->
  "Out[447]=",ExpressionUUID->"174b245f-7a18-46a5-b159-f307aa64ff21"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"data3He200", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He202", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20.2", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He204", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20.4", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He206", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20.6", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He208", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "20.8", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data3He21", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP3HeCut", "[", 
        RowBox[{"q", ",", "21", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.883719850800653*^9, 3.883719902989337*^9}, {
  3.883720134128413*^9, 3.883720135586239*^9}, {3.883814502128789*^9, 
  3.883814504255754*^9}, {3.883814691243874*^9, 3.8838147196798973`*^9}, {
  3.884769169786854*^9, 3.884769171964299*^9}, {3.8847702801149282`*^9, 
  3.884770327360165*^9}, {3.8847745728459187`*^9, 3.88477461279918*^9}, {
  3.8847799141990757`*^9, 3.8847799163431463`*^9}, {3.8847800875174103`*^9, 
  3.884780145716983*^9}, {3.8847802976815434`*^9, 3.884780307389687*^9}, {
  3.884782230900197*^9, 3.884782294847342*^9}},
 CellLabel->
  "In[603]:=",ExpressionUUID->"63a117cb-1305-4d2e-b025-0ad6c987fd15"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0000791948738078914`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"2.3668176374909086`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 603, 422, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782305365546*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"9465d3b4-1b38-4ebf-bc22-88bbd52d910a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0001573354471129591`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.7092163110592647`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 603, 423, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823053866243`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"0b9eb816-b1b2-4b32-811f-9bb82b64a253"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00023338235990624377`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"7.003028294619188`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    603, 424, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782305397482*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"262fe223-1353-404c-910d-084ec0298319"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 603, 425, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782305407886*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"9cb325aa-ebd5-4549-9d0d-b98022a6d892"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 603, 426, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823076993713`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"fcc0885d-5e57-4972-af78-f4e5710cc5dc"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 603, 427, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.88478230773837*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"628c3573-0cb3-4ad3-b8db-4bf802d04964"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 603, 428, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.88478230774963*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"57d5fcf3-4ecc-4dd7-bb38-0a890cb778ec"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 603, 429, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782307759842*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"61acd072-3dbd-4bb8-95d9-4290a58cd457"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0000734584576026655`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.081778415823932`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 604, 430, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782328893737*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"f51a6b8a-cf5d-46ea-907b-41fbcd5d7b4a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00014592207081987803`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"8.12074298563242`*^-7\\\"}]\\) for the integral and error estimates.\"", 2, 
   604, 431, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782328947494*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"85cbb774-40fe-468e-976f-9828d5aa2528"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00021641031947836867`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.2074528261062135`*^-6\\\"}]\\) for the integral and error estimates.\"", 
   2, 604, 432, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782328996009*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"195eabe9-19ea-4a0f-8747-965163ff2458"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 604, 433, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823290337553`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"18165ac7-cdf8-4e80-8ba3-312f54219eff"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 604, 434, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782331960101*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"79ad0044-cc11-4662-b4d4-ce25bdbd0a14"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 604, 435, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782332019404*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"8b87d834-5b28-4536-a721-633b16197312"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 604, 436, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782332033766*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"59d03b30-6e84-4206-91fe-c6d79842a4ac"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 604, 437, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823320489273`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"e855d257-912f-41d2-b5d1-1bd4b86f686a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00006814631305719454`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.2815555262308867`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 605, 438, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782351847468*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"79e9db2d-f110-44ea-a514-e1b9608ca443"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00013535394201995656`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.5495579906798547`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 605, 439, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782351895396*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"ccdf8f9e-0f69-487c-8b3e-36edddb2a225"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"20.481982943053282`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00020069793324029354`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"3.790597034900445`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    605, 440, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782351908492*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"e095782c-b44f-490f-a41e-6ea0cbbcebf0"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 605, 441, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782351922793*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"398615ad-481d-42e3-8e57-61038bf6a356"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.000063204226483691`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.4208604462618098`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 606, 442, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782372999529*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"be43fab0-915a-484b-8c47-0e1e07aa5f7c"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00012552304813424716`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.8264282143555806`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 606, 443, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782373051207*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"3a1602a8-6c9f-4ead-b3c0-66fbaeafdfd4"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0001860842161417684`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.20157462053777`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 606, 444, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823730711117`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"77c001c0-123c-4e78-b852-e0be646b38e2"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 606, 445, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782373084207*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"e1837700-add2-4091-a5e3-9f5d95e72cfb"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 606, 446, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823736092997`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"9276ac1b-34c8-4c4b-94ce-a1e1e2b03519"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 606, 447, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782373660181*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"3d3c3553-af7b-461e-8a60-628621c8450c"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 606, 448, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782373672831*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"73b8f87d-3637-4454-9e17-076bb769eeb0"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 606, 449, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823736853943`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"e31fb47c-e5b1-45f9-96cd-88f58e454115"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.000058620216449225565`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.2420455198411854`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 607, 450, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782393692024*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"9eb97211-7708-473e-a3d2-4b62c5c32111"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00011640541551831349`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.4707227024890405`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 607, 451, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782393738637*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"29062eea-5e81-47e2-a691-6ef72caa57f6"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00017253318195860286`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"3.672806416430988`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    607, 452, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847823937512207`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"fba75cd9-e413-423a-aed9-2b0162ea30d6"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 607, 453, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782393763154*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"c0d868f6-b64d-4cfb-b967-ed8b09410e7b"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 607, 454, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782394290783*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"2e16603a-e4ff-4fc3-83f0-eb7d860317e7"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 607, 455, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782394893518*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"c60b7153-2d59-480d-9463-28f86f507f11"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 607, 456, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782394937601*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"4073b901-547d-4911-a72b-f7ea754480cb"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 607, 457, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.88478239494976*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"6b173163-5e87-40a5-ace0-2e3c5c20018e"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.000054349359356117025`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"3.931151298299397`*^-8\\\"}]\\) for the integral and \
error estimates.\"", 2, 608, 458, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782414418189*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"86dfa5ca-523b-4938-a582-9cb753857d97"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00010791155604886867`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"7.817117198331585`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    608, 459, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782414462489*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"1a64f4e4-ebea-4533-86c3-868fce33e5f7"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"21.125362051570516`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00015991149330583785`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.1613226661182558`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 608, 460, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.884782414475542*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"9a224a6b-8830-4cc0-bffe-0a88e274d635"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 608, 461, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883719910539632*^9, 3.883721892681364*^9, 
  3.883810183675187*^9, 3.883812456027113*^9, 3.8838126456031446`*^9, 
  3.8838142911177483`*^9, 3.883814727194667*^9, 3.884769161759054*^9, 
  3.884769431068512*^9, 3.88477032793221*^9, 3.884775162823778*^9, 
  3.884780147162554*^9, 3.884780309327629*^9, 3.8847824144900923`*^9},
 CellLabel->
  "During evaluation of \
In[603]:=",ExpressionUUID->"563924c0-2437-4725-ba2d-436e906cb3ef"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListPlot", "[", 
  RowBox[{
   RowBox[{"{", "data3He208", "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8837190138043747`*^9, 3.883719031090042*^9}, {
   3.883719077405293*^9, 3.883719083901246*^9}, {3.883719146512808*^9, 
   3.883719147083137*^9}, {3.883719324105036*^9, 3.8837193242313643`*^9}, {
   3.883719560527952*^9, 3.883719573051358*^9}, 3.8837201251772203`*^9, {
   3.8837204903826857`*^9, 3.883720492897325*^9}, {3.883720790657291*^9, 
   3.883720790924884*^9}, 3.8838145127332573`*^9, 3.8838154136877127`*^9, 
   3.884775491644857*^9, 3.884780453590612*^9, 3.884782447603668*^9},
 CellLabel->
  "In[609]:=",ExpressionUUID->"763b3918-bc83-44af-84f4-82b8d9fdad84"],

Cell[BoxData[
 GraphicsBox[{{}, 
   {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`],
     AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJw1Wnk81N0XHiJbC2nRPtGiUiZKlPKklHaULKUme9ax74x9jDFIi2ghXmlF
q1BNu0plKVHKhEKppE1p+fl9nHn/eT9Pd+49597zPOece7+m2HtbOEkzGIyO
QQzG//8/8F+30ZN/IblHihON6B9wSn2slFe8BMtDUFv6unmJBCvDruTN3azn
CYRHYuqDo5dit0mwGqwPneFX3IonPAGFZSf25IyUYCYyFZErWh9HWB27bmfb
vvKJJTwV7z/na7bHxBCeji2L5bI/xkQT1oRn5REfTX8u4Vm4EtlVdKskkrAW
zLtcan85hxOeC6OhP6Y+HhJKmAVVRf26mYVBhOdBLrF8fM+SAMI6cE+YYyZV
50tYF7M5pw1He3AIz8emgo0Gu8d7EF6ADQdcoxkhLoT1YL/dU+lBrz3hhfg+
OqDd18SOsD5ETXHMrr7NhA0gFLR961u+hvAiFJx/pVg1ZCHhxWiZfy1GxkXl
2gA2hEdRj+OXpCWEl8DrjXHvyvlrCC+Fjk2A4SJ9C8JGaG0e1W54eQth4PLq
W/dNs20HMBeoLTDpUn1lR+PLYKlx+If3MjaNL0Nl2jru/JU7adwYfw1qBK7/
CHONIX6a9Oemtz2NL0fJlh0amVmEuctRkX1c5XqsZHwFBAdude3VloyvQOOW
L54NRyXrm6BL1fFpXovEvgkuda6QvdSxg8ZXoi5B7alOOfnLXYkt2VIwMN1K
46sQKau+gpNtTeOrYJvzd2mcyJLGTfHo5JtLcjfpfLimqPpdFXF820YaX42F
jgIL8bjVNL4a7wcvffbyqTGNr4Hiyh/qQcsNaHwNFg5tHbPNZBaNr8XDjQrj
PG9/vzowvhZvC2eUG0ZpUDzXIc7ZryFixfwBzF2HaYLnW/rkl9L4etT4y41X
D19O4+uxesWMsyciV9H4BpTd++CFwWtpfAN45+Y//TFkA41vhPzPMuW9q8xo
fCNGtj1LDzYxp3EzBHs6DhrCsBjAMINdWeSvQcGEuWawfZoT2XCGsMgMW3Lb
ai4VEGaYY4ql7Z0ge8l8cxzYf6Qx/g2tzzXH7J3NZvW6hEXmcEo7k1prTv4w
LHB5b8XdFB75Cwsszrn39whzHc23QIVia1Fa4Gqab4H2JzbL3feupPmbwH88
k+XJo/PBJnx3rUpqsQXN3wTFRwl35FiLaP4mvDihdvbkXl2avxm3dz+YO6t3
Js3fjA9g289qHkvzN+NEaOV152UVSwfmb0ZxuJuPiYoaxdcSc+8EBS0/O2MA
wxIHRcbm3RbziA+WOOA85dYMR70BLLKEcsFYizdSi2n+FvgZjV5sOdmI5m/B
yN/6xnu2LqP5W5C1NNZI7TXxTbQFcT4O3xQmraD5VnDxWbJcS8WE5lvh9Dv5
RVplhLlWGBxUsP3A2JU03wpB3u+Ov2ARZliDMZkdPEOaMKxRcEV4xDtNMt8a
B/2yX1s2kz2RNR76Rv0a+2U5zbfB/uKi2MRq8g82UHGX62oJl/hvg6+Tx8Sd
7KP9iWzwa6zvhAtnDWm+LaY6j/xqNpv0A1tMd+L+WeK7gObbYtWQw8cd9tB5
imxxpdnW1XLJbJq/FW/kjyaeWaxB87diUeD7z7tDRtP8rfjRG1FicOfXgP5E
WxHp+ueyjpMUxX8brrXvfeqROIbivw25p2pPLq1Vp/hvg5mN+bydvsQP0Tas
GNyqfm+vNs23wzCmfpzlHh2ab4dzWxT63g9fQPPtUD5515+Riyh/i+xwVcpH
7f5QA5q/HQfb17aN4BE/sR1WTw85jD62mOZvR27MkcIxboY0fzu+Pjjk4l1D
mLEDe45uyI15RRg70Lh50r6LGYS5/bgi1cD+K60n2oHFm2ZhnSJhBhtTRhZv
K3hM/jDZaFPXXOywUZ/WY2P6V1ebN6l6A5jNRqrNzWPjMyX5ig237gCPXd60
/xw2lLcnClImssgeG3Iuz+VULWcPYDEb/8bjpPKS6WR/J26dCvFPHjSF7O9E
kUHCimc+knjsRJVad77HBQWyvxPnf3MqkhRaB/TI7R8f6vk52+ffQHxzdsJx
VO1nw+tUH0U78WZbril0xg9g8U5oHQns0FVSJ/7Ywz2naFzg7OkDmGmPTZZt
Flc+zSQ+2SNJ3XGv9sY5A5htj+9e4w7MnMIiftnj8Y47eSk7iZ859lg7u7E7
yFmH7NvjU6dDs/VcXbJvj1GWgW3bSgkzHOAcZKzjJjOf7Dsg5+NhuwmqhOGA
mScNx199Q79nO+CyA09nWSRhrgPm2zpUzm8mezkOeD4ua0aZksS+A9wjFrOC
5cg/sQOGnjTXHX9am+w7YtSVB24yfVpk3xG9MkdveUlT/YIjuhbK3Ch6SOfD
doSv79wAoQvpjesIBa+GU8svTib7jkj6Iiuz3YXyo8gRzHtN4cN/KpN9R5iY
aB8qGDSI7DshUKXE8s0V8UD8mE7IdSpbOfba14H4wgn7VqS/WseVp/g7Ye48
u52dsqrEPydwMgPDX3hRvs5xglJYwClDt8nEPydMXpSv4e9PehY7YY++0oXy
j1OJf87Yc/vZ47mTZhD/nDEnQr/63x9N4l8//pwz2J4/i+w7w1xp25BUEfGZ
64wTRhtV7h3WIvvOiD/qNsd26hyy7wyLJMvKNHPCYmeo9GXNuzyDMMMFJ981
8kcep/lMF8heNdB62EDrwwX2foKSjjKJfRd8Vh/etnAz5SOuC3Z+y7i84gT5
n+OCHiuZgqU3p5F9F7AqUqPe/Ef9htgFhQsj9P1sSG8MV9j4tTorPJhI9l1h
mcLsHpSvRvZdMfjm+glDNtB5s12x5O7ukePPKZF9V4wemljSc5pB9l0xrdX6
w6Xzb6leumLUs98v1l5pG4iv2BUv92es9UwnvTJ2wSnIfWWElCLxbxfcuPIL
2l+RfrELrlsWLxT7UD5n74LMG6/EqtPjiH+78CO6C4N4k4h/u3CbNXzWnj4m
8W8XkqxiQnNCSO/iXdAsrHn5uoz4y3DDuVfDtGsrppJ9N1yPCQ0/HTGN7Lsh
z2Gpn99vwmw3fNeLPPBWn/TAdUNHXbBDki7hHDdEbJyvd+AD/V7kBm2HHG+5
XYTFbghL0k7nFJI9hjsYdRlnVIrIH6Y7FpTEr6zgkr9wR6r5wqLKKVPIvjv+
GR5KGDaX9MZ1h41xwx/2A8pvOe7I774eXjhdoj93BG6IyEtbO5Lsu0Nn2lWd
OStJjwwPjLNLiDppIk/2PaAyZra2bCnFBx54O3kFSyX3wwBme0A382Iz+8g1
yr8eeJ/RPjQ4qGcA53iAq2FoXG9I9VXkAa0JBzL03pF+xR7InhRQLBijTPzz
xBlxtQoznPjF9MSta85NylmjiX+eqO67EMvfRfpme+Klw51HZa3jiX+euOl0
pE8sPYn45wm7QyezbG5I9O+JJdvsEjelMsm+J7p6ZTeXK0r474Vp3EVzaiwk
9ccLM55OEOx3IQwv3Hyi05O3mjDbC+O3zG0a94vW43ohS8aedSKUcI4X8g/X
RMhkS+z3t+YlVs+z3pG+xF64ditu0/p35D/DG4eqWekTc2l/TG9cijled320
pP55Y8g9HaZg00iy742qT/VqZmwVsu8Nf7XVh1IFQ8i+N5o8Zl79NHEw2ffG
5BMapeuU/w3ER+yNbY1heqFXPg9gBgfP/7pjzfGaAazMQZPKMtXT8a8pH3NQ
OcFzWlH+twHM4qCg7s+FAiUp4icHsJ6iZ/p78AA24yCIIdResmcI8ZUDhW8W
zewW4huHg7ik+ukGUCX+crBg5gK9i3ajBnAaB7ZxI/wuLBhDfObg4Mc0j483
ic/FHDyKqa/ukyH9izhY3PGzYud3wtUc+Goc2ZG+T1LvOXj1QutjZxvhbg54
LbJfL74mzPBB1Ph4RS0hYWUfXE1PHL69i9Zj+iDp+eAfBv/GDmCWD/yPZtiG
3Cd/4APV1Zaf9liQv2Y+aLWMVr5wkPbD9kEc70dazhnaL8cH403vK54QUn7j
+mDQvKaHCxOH0f59MPHUhPMrjyvQ/n0gO3bm7IDdMrR/H7QLJ1xYnf+X+lkf
sESK9z9++jKAq31wye2qdtyGFsq3PjAV3/yT6Hp5IL7dPtgt/VyQYdlB8fdF
mF6Fb0XQd4q/L954sne4sCifM32xfu3c8qA3MgOY5YvT0ZNeuG2gfgy+eK8d
Y567Y+gANvPFUvMJEzcmkr7ZvljmtiFdeeaIAczxxUT3fKVJ6ZL67YvQ0a51
OhXE7zRfaNxZa3vz2Cjisy8e5xyQkragfFDsC/XjChdeXyYs8oVx57qto5sJ
V/f7k+SjrnqDsNgXnma65wc7Eu72hWGZrOPTO7Q+ww9dwWO9VD6QfWU/7J0o
cvjcKMlHfrCeZP52RTr5z/LDl8Fy9S5jSH/wg3TXRkPXlmG0fz8ox5vta1tF
9ZHtB5nFGfN3u8nR/v2wafRvV+stg2j//eu9YDJnav8dOP80P/z9Vv70XcA3
yqd+0LvcN916QecALvZDZN53ZvLlh1Rf/XBbQ+XmR/cnFH8/hLbq/CuMf0/x
94MS982lcZr0/tDthxlldVVZusQfhj/GJb9ac6Fdmvjvj2WH+kTpfqRnpj86
r79sUzpPfGT544Tou+L1HNI3/JEe1bLHSmc48d8ff8PerzEtIb2z/ZFgHzh8
9j7iO8cfwz6WKLaajCD+++OHafq1CdcIp/kjrfzTxKlSpJccf+RJ39/bpkS4
2B9aqj7O7c30e5E/5jzr0TWLJFztj7ejSj4/6yB7Yn8k1+YuuDOFcLc/xNJf
lDpnS+pfAAqUAh6OHkX6Uw6A5c7X6U9ilGj/AUhZtf6w+XGqj6wAXNd1DExI
l6X994+PFG2WNqHzMwvAsE+xkQez/1C9DEBV6zSdwx50/pwA7DHcOePg1I/0
HhSAHjv5Ped5rwZwWgDKi173HHvJo/tMAKKePDo++lgTxT8A719rlI+/1EXx
D8DdhD9PeBuJL9X99tmd6YKePsr3AThxofHYyrFUj7sD0PJg8U3nf8Q/RiCW
BvGfyeRTvVAOxIwfJac2MkjfzECEjGs/YDWM+MwKxF0dl8YJ96jeIBCPlgcp
ZWtJ+B+IZ10G1TULhhP/A+Gwz8P1fgthTiA4vU9mrR9L+YEbiIjqUxElIwin
BUJvSuvqDRX0+5xAxOl+i+f9pPWLA8Ee+5/JQjHlG1EgDjaW3/L0J3+qA+H2
7FjppHJF0n8gTq3TqFMqo/6jOxAPSvM0zwXRfhlBMHg96MKiPjoP5SCsso1b
YruOzosZhNCJlgWJb38PnCcrCDk/LINGf6Z8iSCstbk1Yuz97gFsFgTGkt0l
pnJvBjA7CFXuXYvqr1UPYE4QBmU8qR32XUTxD8IP/c2HJ5+m+09aUH9GPXy3
/UEXxT8InP9k6oYbfh3AxUHoSrl85mnlT8r/QdDpuWqi+4f0XB0Eh6Ar0w69
ofosDsKrEb4e6qpUP7qD8ND20le+FOmbEYy3td7Xf52UI/4H40m6rLrjMNI7
MxhSN0aPSJ9G/TkrGM98rSbO+kQYwah0v1NWtov0YhaMIwkHxp7bQ5gdjNTE
pJ0uHMKcYCxgmHsP+UvzucF4XzZv4lkjwmnBmGY0au5ifUn9C0Zg07pei/fk
X3H/76cO+sK2I/9FwVhXqbQxNIP2Vx0MjcaGSvMM0qM4GBW7O95Mc2DQ/oPB
7Wk5tlX1N+W/EBiOuL1SccKPAawcAj2FNzpzPn2m/icE039d3jFWv5P6nxA4
Nt2paapsov44BLXtJz+ajqoYwGYhiLpyzlFPn/IzOwT+ySezlT69pviHQF2V
sSPMmPTLDUFrkZLJs1FfKP+HwKmzbOnFuz8o/4fArKb558RZxL/iEDxOLL9y
XI3qsygEFhXKk7Z3El+rQ6CUObc8PIb4LA5BG39p479mqt/dIRjSmzZ7719Z
4n8oSi138v57IdF/KIqeRwbZBlC9YoaCJfZIz71PmBWK2G21J+a8IIxQSO8w
exRwjLBZKDY/kB56lkWYHYpx6V9064NpfU4odIv3hfJjyD43FJfvdi1XNyf/
0kJRfGe8SnqHNOk/FJNfjr9nt572VxyKYw/f/dJUoH5WFIp1DHGR5wzKd9Wh
uKTYKtoiRecnDsVJ00VZVnl0P+kOxYgdUivuz6fzZ4RhDVc64kh7C/U/YeDW
az/y/Vo7gJlheHz+3yGtXxtI/2GYwPlWful4LcU/DCy1x78mRlO/ZRaGlItL
1lg5UP1lh+HRs/EvfT8TnzhhmP2uTmD4lfppbj8ecmPMzCLSc1oY6mUdXJaq
Uf3ICcPh60Wqy1SJv8VhGKswMVh+F+lbFIYbt4apjuUT36vDsLHp8JzzfvS+
Ig6DVON1uWsaEv2H4bfZB+u7mYQZ4dDcPaVTtpawcjj+7LIz2vGYMDMcCgd7
XOzTCbPCUf8l5bnJWMIIR2PnP0GLK9kzC0cNq2nF6Rjyhx2OLZyapWck/nLC
cVt+3KqgKbQfbjjOdU68zdpG+00Lx+9zVlbTNem9Nicci/i2I7OKqX4Wh2Pe
kKKXDAb1u6Jw5OWE/DlvTPW0OhxOjEXR6nhL/U84MvRe7rSfTHrtDofhc614
26l3Sf8RiD4xX9Ol+RzFPwJ6V3fczdv4lOIfgcCUzx+T84gfrAiofRwjd9/6
HeX/CKx6elpzXKMk/0eg42Hx8rr19H7F7l+v56iRbjTxkRMBjWajiSfdfpH+
IxCi+jYsTfoP6T8Cwprru+YZE79zIlCwPDG/J530XhyB4OERZinmkvt1BD7K
vG5ivZLoPwILR4Z9v6xH+hFHYJTTjEfZtoS7I7BLJtlJvJowIxKfZjzTniFL
WDkSUZdGDDuaIql/kTDc9e2s8huyz4rEyJy7kWVDCSMSVw48efxwJPWvZpHo
GTZX5XgF6ZEdCUbt8Ca7cT9p/5GYdOJP2mA9qp/cSGwtVFviqibJf5H40/Iy
t3jvJ9p/JCpXfH637AzdV4ojMbRGnFMppHwqisRGff25v/c/If1HwuO7nMGx
+kuk/0isi5jfpGR0neIfCdGMaKb233qKfxRgu23up0jSr3IUgm5p3BQtpnzP
jMJXQUVn59FPlP+j8LI26Runpof0HwXDeeGHzu8lPZtFQXqNe9Dz0b2k/yjc
5p95uWYD8ZkThff7vyus16P6w43C8BdH+KPuS/gfhc56hV81spL37ChMWe/U
VPKWcHEUhGxr08AFpB9RFAp/S09rMSVcHYW+5l1yN+cQFkfBadvQWwn3aH53
FBxs/7OY+ErS/3NhN6Xiz4GDZF+ei5FGZ+QWK5B/ylzEfxM8mDST/Ffjoi/c
J0hXmvbH5OL5uMCsqdm0f00uZB68urqyj86HxUVlzbAN0bO6B7A+F3rLeAwv
+3d0flzoem1ebMui90FTLiYeSXG8m/uCzpOLnuOjQ5RtHw5gay7u3KqSPR2W
RefLhdPMrcM+pt8ZiLcrF0VVPoXOjAbiGxf1n7m17nNIv8FcqMjPP/NhHPGJ
y8WDzzoq1qUfBjCPC9Z8ufLpYfQ+ksaF5Rnkb2glfmZykSWc0j1/GPE3h4vI
gDf6076Tvgu50J7ivGH+PuJ7MReqCrkF696R3ku5CMx4Yq3/ifQh4kJr/bnk
wqNU3yu5CHcSrlw0iPJBNRf/7j8/GKxMuIGLi+YM3ab79HsxFx71LeqVuoQ7
+u2zv62PW0/rd3Ohrlc7b8F4st/bf34f52+tyeml+heNG/cuHxjZSvuRj8aZ
wFcTfNopfylHI33r1sK/56h+qkVjUf6vEa4bKd8xoxG0eGjqmej3A1gzGu7h
3oNFk+n9lxUNrqkls44nHsD60bDxNfqyPYvyK6KhZFqwP+vbzQFsGg37Ks1Y
93KKr1k0Gv97Ff3X+z7FPxpDlIXezkkNFP9o5ArVpEaJ6L3KNRolr/zbXv+l
/M+JRnxUTt/hHqrHwdFYmVuXJV5JfORGY9OmGpnOncRXXjRWDddwr1xB/XZa
NN6qd63hvSN+Z0ajfXduVccG6hdz+s8r2CrO3Yv0UBgNj5Llv7aupHpeHI0l
g7a1P31CuLR/vdZMtXtqku+R0Qj5pt7zS4VwZb8/gwN2y16n31dHo/ig7sHN
Mwg3RCOFqXp+8iqyJ47GQWXBHXsN8qcjGowLRtpPrpG/3dH4vO/q6wYm7ac3
Gtfrq0oD19J+GTEQ3dQfbWJC5yEfg0+TcweVatL9QzkG7u2vv8RGtpP+Y5Dw
om9LyQHKl8wY/DyJGRoqpFfNGMzKapS5cK6a9B8DnoG1lLi1lPQfA2+5jsot
MiUU/xhkBWrY2xhQv2wag7reHYlpFaRfsxiE2XQ+YRlTvreOQbq9hX5gl+R+
FYMT0T7jFplRPXaNQevE+NfhOz+S/mPw/PdHtSOKpOfgGLw791PnYTHxmRuD
H9eUtvRMIr7zYvCi/vmN7eZ0n06Lwabd2y6NMCF9ZMaAURhx7fYPif5jIGz+
7/N7F4n+YzD6dLXS5T2Ei2NQVTvaY0ok4dIYjGk+9KZhKmFRDFQPfwjeyKf1
KmOQuS/z98liyX0+Bqe+tlTeyiL/GmIwtmd35Oh1lI/EMUguWjX4ciXtryMG
jQlJ7yxGkT67Y+DzzsV5tBf1u70xuGqT1/jFWfL+F4vpC36qak9pI/3HQs9b
1ei0RTPpPxZFP4dIt6nVk/5joeBlXOu94x7pPxZTtMI7r6UfJ/3HIvdIsKL0
iMsU/1hwX1XozdV9TPGPRZXe02dXzpJ+EYtFiTMil5bT/dc0Fp++PP1k+Jbq
gVksavpaRrx81EH6j8XRKD9zHzfiJzsWTVcrDusXUX12jcX4oqx1hmsk/XYs
7g1xXrcmifgeHAvhsIiLaenUP3JjcXjetKpQNumDF4vOo5nd475K9B8L9QfW
Q7XXSvQfi+o1agoaToRz+ve/k7NexZhwYSz2loyzu94iua/HImtLc3S+KeHS
WCx/KTpcHSDpX2Mxz3ii/k8P8q8yFn0tnpXO88j/6lgUzPv+syGF9tcQi0yZ
bV9LHWj/4lhERmPftw90Ph398RkyY9UrvTek/1iovGQucV9N+bE3FsmzR2Ut
sn9O+o/Do+oNz0q/1JD+4zDuyQZpy2s3SP9xWDk9KTb5aSLpPw7rjf/5Hbal
7z/MOFRNkvv3bxW9b2jGoWKYKDAzgvTLikNuV87MpSxJ/o+DteYRLYcP9P0e
cRjOdNz/0b2d9B8HnUHfmiyPkp7N4rD5lbfHu0Sqz9ZxeDXHIDRYkfjNjsPt
DzIdtlOI/65xaJn3XvexLOmbEwf2kcjT2RcIB8fhpEtAwWRt0g83DvZt6yZb
+RDmxWFpsPTZpjBJPxoHqRSD0s4Nkvofh10Bs4s2v5d874rDe+Pz4hQLwoVx
GBx63C4rgfwpjsMDUyvboXzytzQOt2y+yDBElJ9EcfhdElwxXI30WRmHezlO
D6ym0ntvdf/6r4V3iz9Qvmvoj5fO3gN5EdTPiOMA+5lXsypekv7j8N+qnMLY
+aTX7jjENZ71PPu5ivQfhynLx1enRJWR/uNR3jxVee3fDIp/PObbbmqZxZTE
Px5vl3adyCijfK4Wj7KTxZNrZpJ+mfHYU73ohvzqZsr/8cjO0FloKN1K+o9H
/O/1Fx5MpXqsHw/jhmph/iDqrxGPrSMcLsnup/psGo+Mmo6Zyg30vdEsHm3f
NYY3ioj/1vE4vWEt37CA6hU7Hls8DJ0Fi0kvrvHQPDP29+/DEv3HQ1zXVHf1
MeHgeKQ6ZKdlPCTMjYfRiGd3HmYS5sXj+Zs5+ht1CKfFo+fM07D4bLKXGY9H
w32M7p8if3LiUTphT/6d++RvYTymzQq0aNpH+ymOhztLatHdMbTf0v71MsyO
D7Ok8xDFY4Hhxusft9B5VcaDmWwxBNMpH1bHI053RV9ZZiPpPx6hh1vWjiig
9wdxPLScmcVGKnSf7YhHWpRNo+OmEtJ/PFismdu2yB6j+MfjiYIo9uXgWxT/
BLw9qXPY9B/pVz4BmslrXLNEzyj/JyAu8PPopPmvKP8noN31XFDmVOIfMwHc
F0Ge779T/dBMwLn3maOSk0jPrAR4TAnUjH9KfNZPwM/troplT6hfRALmnX34
oyua9G2aAMf3vvtqGkgfZgmYtebivdH1dB+0ToBouo3VpcUS/SfgxuGf9ffs
CLsmIHrI2nXTzAlzEsBQErazRhMOTkDS0Lzg01tpPW4CkteHNDJ0yR4vAUI1
VfHUi6THtASMWjBbrqqT8lFmAvKP6Z+LraP6mZMAqd71+nkh1O8W9vuv+Kxc
v5XyW3ECDuRzZn8dQ/1LaQLO97KHTQG954sSMOzEvLggedJrZQKu/tnw+9uC
x6T/BKQEZz/yG3mD9J8Ay2HTLjuY5pH+E7B47YqzcfXFFP8EXBbM8VeIvE3x
T0BZSNXrE0zK7739v7fizzpp+ozyfyLUm8f1NU57SfpPRJ9erfrvTVQvlBMx
M+U/ze5m4qdaIs6ZZGc80yb+MhPREaI1NmAJ1R/NRHyesHWL2SC637ES4el3
GrfCSQ/6ifi47s5spQKqX0jEuJgPK0zDST+miUg/sNBT+Eei/0SsPSe0b9Ok
9x3rRNj/zNBe+Vfy9wiJaPmq0pIXSdg1ETeNvVNfnqT1OYlIS9G8WMGT9P+J
yP9ZNuK9GvnHTUTJI65sO5v85yViwb4rp7850f7SEjFqhX3biLnUj2Qm4kh0
08rma3Q+OYmYdqxv2FgT+n5TmAi3ghVhaeWUH4sTke1l177mC+m1NBGDA15X
j/x1j/SfiDLNJTU9x8pJ/4lwvldjtcgnifSfCLZ91bpA3QsU//7zgLxPazbd
d8WJiKuZxb81nb7fd/T7L71q/uc7kvzfHy+tjM57k4hvvYl4dab17PVUqscM
Hg6ts2s885L0LM/DTOYicVsP6VmZB73tv87fvkf8VuPheWjGbXc74j+T1++N
bNfF46RvTR5OBj5UszpJemHxIPdgcO6THaR3fR5M9F6N33dbon8eeuZK3Wh9
QdiUh6TltaYdRwmb8TBynOWiovGErXlIviWuYZrS+mwe/luR59E3i+y78mC+
5l7e/buUfzg8/M46rNWkTv4H87BZZWquzjLaH7ffn+YtNoGatH8eD1lPNsne
u0L9bxoPCkrNG0Pqn5P+eZBxWyCyOU731xwerDTTy0NMKH8W9v++QeAj9r9N
+udBYCC1sZx9nvTPw1+DrgPh02Io/jxsXcDao3CH7keVPLz8EXP+gQ/l82oe
dCtLmTfHkH4beDCNyg8dZkTvV2IeAizfpngy6f7VwcMN6x7dHWeoHnfz4DGj
awvro6T/42FSxsL3iY9Jz4wkPO6o+zU1kPpF+SRY/ZL3yXtJ/FdOQtFFo5HW
0qQPtSQc0Tnx1+Y1YWYSWocea00KpvqmmYTCN5OV99+RfC9JQrvqsXHSDwjr
J+Hyj/NLJyZI6n8SKr1knRR/0nqmSThuJ3hy6BPdN82SwN/c5+xYT/5YJyH3
fdjD0xHkLzsJ72fOaD3cSftxTcKjM7sL/k2i+yknCT1O5+u1NKieBifhmuu7
3uG9dF7cJMzu4zCrdlA+5PX7E5vf9JNPek1LwowfysZGwx+Q/pPgp8sZ6VFJ
3+9yknDL77+Wz2HHSf9JuKrQdcl4SQ7FPwmHQnbOOn6P/n68NAmZ95akbo6r
pPyfBOObHP0TmqTfyiS4TZUz0G0gflUnoW0w82n5cuJfQxJ2vvg5c8gOqsfi
/v3Ff77pPZzqS0d/PAvKsqMriM/dSRg70lfOQIf43ts/fi975UUP6icZfJRF
Xj90x5X0Ic/H041xqV0apB9lPtZmmik4HySsxofo6V1/Vg1hJh9vZ/7LV7xB
WJOPXN2HB/29JfWfjw+cyHmnn9P6+nzYCy0yTssSBh/qWsMeqH8h/0z77Q3O
W+ZUQPXTjI/OOY4eXhq0H2s+quS3X6nyovzF5mPhJ6ve2eOp/3XlY1f4tx3F
io2kfz7OjEgUjiil9+FgPqbNWGP7Xpv0yuXDI8Hg96W/lE95fIyfsPZKzmPq
j9P4CLUSnf16/hDpn49bscuPPWs7RvHnY7fO4GVWatco/nwc+mb0Yn57JeV/
Pg4cyv0m1Uv9c2n/ft4P9jqx8inpnw+2RsPHA5uov6vko3lo3uMjqlSPq/mY
cSC31GAp8beBD27GhxmuN0jPYj4q17B5q0YQ/zv67d2KybebRfWqm48ABb/X
tXKkl14+fBhrk0IKCTOSIbatmlWnSPqST0ZTtrvUyLkS/SfD7V3g9qkjCKsl
o6zttkrOJZrPTIZa5tD6usmENZMxalnq/dJ1ZJ+VDHa2ucJHkH/6ycCwbV7F
/8h/JGP6LN/j1QLJ/T8Z3/KH+mxspP2bJWPXrx/PVU3pvmqdjMUP/Nf6cCj/
sZPR2L6z/D870qtrMt40WyxQXVhF+k+G7njGt+ceN0n/yTj13Jr1/P150n8y
jo+0N1h7LYH0n4yJhxvezbU7Q/FPxvuopVHLQ0UU/2TUTd/JaNKg94+cZBhu
4p1pviLJ/8kYXuC2ZsMF4ltxMjTNnZbM96T7cGkykn/m7Vj/4gXpPxmTT7fr
6n4nPVcmw3J1wcry58Tv6mQ8Dzuo9UKe+N+QjMtFkwptpEkf4mS0+b3SKr5F
uCMZXVPby3+sJz11J+NAu1PKh4MS/SdD3VO79VsxYYYARh5z/07gS95/BOhN
mq83eqak/gtwOvmzvkEqra8mwAtFpdCIq5L+X4CmNvtWv8uUfzQFeCAT2bg0
lvxnCZCfu8JGxYj2py/AMAODGZ+n0v4hgEje5Oi663TfMBXgivp9s7GT6PzM
BJBeY5j+TVJfrQWQc05xVeVR/mQLENC10OXxKoqPqwCTPpSM3JhcRPoXwNOo
6cP1Fz4UfwGGqD0pCn5H9yOuAIlCoxUh+vR9iCdAmaONwcpl1J+lCfAv3bGY
H076zRRgzvXBTlrT6O+tcgRQC8rW25FG9aNQgFk/teefP098LRZgeoaXV1oS
8blUgBs+vIVHBxHfRQJY3qoIT1MlPVQKYL5ou9etz4SrBShZ8L3uXzbVswYB
ZketSslSJj2JBej0Mc5K2CDRvwB6d3V3WVgS7hbgzpZDzjOnEe4VYPGaSY9r
r9J6jBQsOH6t8owGYfkUSD168rDEUtL/p0DvgFXwdivyVy0FwdU7Y8KsqN9l
puBQzuZ9J09J3n9TUPBwz4mlF6n/ZaXASXtCx5dwynf6KdA5yHddqij5fp6C
yaXjF2yqJr2apqCi+MqsYGO6v5ilYOHeZdccpag/tk7BkrHue4bGF5D+U6A1
z1FJNGs3xT8FU+VuiTcaUL/FSUFH9hRmyKPrlP9TcPTKh33jTUi/3BTU5o+q
fryA+MVLgf3BX3Pl99eR/lPwx7yu8GkF9dOZKThv/h+Tf5jqS07/eKhXgPF8
6q8LU3B2jZPU70Die3EK0nyNb2ySvH+VpuC+Vk3ehO+ERSm4Wlk8/QWf9FOZ
gpun/BdO/kC4OgVKssn/KUyQ6D8Fr5Rlfq8fI3n/ScG2O6NLdZol9T8FRWH7
X6X6E+5OwWs5ne8PGshebwpCf17jPBsq6f+FMD7TPXW9FvkrL8SIdY11mzpJ
n8pC1Avim/k2tF81IU7l5dUI4ug8mELkvLMzL/al89IUYk8L/+QnLTpPlhDR
vMFrD4XQeesLUZvn9TDCmu6zEOJCjIbG0NEXSf9CuGQ4KE2fR/XWTAjRR9PC
QPnDFH8hOp0mZ42ZfZHiL8S9kSaVe43pvcpViHwrzS/fdUm/HCGqQ5ZV6dfT
+3OwEO5drqs8lepI/0L4phZuNu4hfvKEmOcTZX1wP/E3TYgSOdaxpV9Jz5lC
zDlt+PSGFOk5p99eWVfv8TLJ/U8Ivvyi/AVDSS/FQvz4pvLjmpBwqRD6V4f9
uiCW6F+IhbJFavbSEv0LUVNiujfzi+T9R4jvDW2cS+cl9V8IP4RU5a8kLO73
3yQoY78l9fsdQsziKnVp3yH/uoVYoXs++1Ur6bNXCOnt8s8sz1O/wUiFn+eg
jxOWUv6ST8Wf8rzX4TzKb8qpuOhe3+GWTfcPtVSMqTq0quUv6ZWZiqclB2Jn
h90h/afietbd+EER1A+xUvGixqopvpTyrX4q7NefbmbFCEn/qVi/52yHtmb+
0v8BG0FgBA==
     "]]}, {{}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1000.}, {-0.002270981926794168, 0.011567351451276332`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837190332791157`*^9, 3.883719085713951*^9, 3.8837192435752783`*^9, 
   3.883719426358539*^9, 3.883719727998137*^9, {3.883720126901369*^9, 
   3.883720140188383*^9}, 3.8837204441223392`*^9, 3.88372049409147*^9, 
   3.883720792625421*^9, 3.883721999865437*^9, 3.883810282500098*^9, 
   3.8838125764798803`*^9, 3.883812748735682*^9, 3.883812908933188*^9, 
   3.8838143920562887`*^9, 3.883815414726983*^9, 3.884769522900024*^9, 
   3.884770970679729*^9, 3.884775492538864*^9, 3.884780455601738*^9, 
   3.884782448626782*^9},
 CellLabel->
  "Out[609]=",ExpressionUUID->"2e74f3c4-c33b-4e10-8192-c1ba8f5efbff"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{"Data", " ", "interpolation"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"factor3He200", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He200", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He202", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He202", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He204", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He204", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He206", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He206", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He208", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He208", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor3He21", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data3He21", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"factor3He206", "[", "q", "]"}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "500"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837198033492517`*^9, 3.8837198142666893`*^9}, 
   3.8837201466788797`*^9, {3.8837202350374317`*^9, 3.8837203071630087`*^9}, {
   3.8837204509451942`*^9, 3.883720459114644*^9}, {3.883720840342484*^9, 
   3.883720845315361*^9}, {3.883720903692583*^9, 3.883720903859585*^9}, {
   3.883721122463702*^9, 3.8837212045718317`*^9}, {3.883722118084847*^9, 
   3.88372216127608*^9}, 3.883812589139306*^9, {3.883812774473237*^9, 
   3.88381277530464*^9}, 3.883814519532838*^9, {3.883815420044084*^9, 
   3.883815479915234*^9}, {3.884769528098181*^9, 3.884769534388286*^9}, {
   3.884770992856086*^9, 3.884771033872036*^9}, {3.88477550216118*^9, 
   3.884775538379278*^9}, {3.884779937502994*^9, 3.884779942646675*^9}, {
   3.884780060851905*^9, 3.884780077228714*^9}, {3.884780463582588*^9, 
   3.884780507041526*^9}, {3.884782458767555*^9, 3.884782507317051*^9}},
 CellLabel->
  "In[610]:=",ExpressionUUID->"f395d881-914c-4fc7-9c61-ed68156165b5"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{82.56557857416203, 0.00021819514683807324`}, {
                   85.11977887730755, -8.942840483760155*^-7}, {
                   89.13042924376052, -0.0002083621739409473}}], 
                  
                  LineBox[{{165.08070635043237`, -0.0002083621739409473}, {
                   170.46784494870712`, -0.00015688494907006745`}, {
                   184.4644286791638, 0.00021819514683807324`}}], 
                  
                  LineBox[{{191.62729198309327`, 0.00021819514683807324`}, {
                   203.020725346189, 0.00006030394190873052}, {
                   219.76113560065238`, -0.0002083621739409473}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAJdL3skGqa0DR0RJyeU8rv/JJ9988
mm1AOGbIA7Cg8z4fkEDrI9BvQCl0Z1zMvSQ/z8+h7tj9cECYYuUKPzAUv2NV
5aPnAHJA5yR+aBv4G79Ljbs64RlzQAA2KmdfYhc/B8PTjSIgdEDzLPFYdwgQ
PxerfsJOPHVADnNd3Op4F7/Qd4ZqTlN2QPF520QNd+2+XULQzpVXd0DmgGcH
NNoUPz6/rBTIcXhADAjYht/05r7yOcsWQnl5QAVPBLOjBhG/UJlGjI97ekAm
9YHuLRX1PgKrVOPHk3tAFVaFs9LMCT+HuqT2R5l8QE5oRorJigC/YHyH67K0
fUA02YyjU+EAv+Mix1Pxyn5ASsj1aQ8UBT85x0h4d85/QNli3KUtAfM+8Y4u
P/RzgEC16DykiqsEvzC5WaBQ94BAniBwzvLT0r7EVTO7FniBQEtyS1eCvQI/
gkvWRtIDgkBKl0ggEADVvipAmrAxhoJAzBh1fl86AL/8jSeLhhODQKCBPWOY
ves+t9rVQ3+Xg0CBiV3rsjv5PseZMrbhGIRASygwTkW58L4BsliZOaWEQFZt
qIEz2fG+JcmfWjUohUDW3z75aH/0PnM5sIwmtoVAsDtpItMv4z4WHG94gUGG
QLHspNlngva+ov1OQoDDhkDMao5t7DPHvlg4+Hx0UIdAgXkmpJLd9D74ccKV
DNSHQHoNA2B+Js2+7R07aA5ViEBzbEJHYJryvgwjfasF4YhABUQdGS4I4D4V
J+DMoGOJQFOYzKbU8O0+SIQMXzHxiUA/ZqUlHNHnvs9T56orfIpAaJ/37dgt
4r5AIuPUyf2KQKWV9WCo+uo+20mob12Ki0DA5bMKNkzSPmBwjuiUDYxAIcno
96gY7L4P8D3SwZuMQLQ4FaVtO4k+E+KbdVgnjUAmgTKxPPzpPgHTGveSqY1A
eF7UCwK/zb4ZHWPpwjaOQFW/xn5ihOW+G2bMuZa6jkC4EJwE3H7bPuxlH/f/
P49A23rAKjIY4T70323m
                   "]], 
                  
                  LineBox[{{29.8745792893799, 0.00021819514683807324`}, {
                   30.63899351148703, -0.0002083621739409473}}], 
                  
                  LineBox[{{57.064944224971455`, -0.0002083621739409473}, {
                   59.687950678030944`, 0.00021819514683807324`}}], 
                  
                  LineBox[{{111.31593094600508`, -0.0002083621739409473}, {
                   117.88162301124503`, 0.00021819514683807324`}}], 
                  
                  LineBox[{{140.53215120875274`, 0.00021819514683807324`}, {
                   150.21017881295487`, -0.0002083621739409473}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828061#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0002083621739409473, 
               0.00021819514683807324`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{82.56557857416203, 0.00021819514683807324`}, {
                   85.11977887730755, -8.942840483760155*^-7}, {
                   89.13042924376052, -0.0002083621739409473}}], 
                  
                  LineBox[{{165.08070635043237`, -0.0002083621739409473}, {
                   170.46784494870712`, -0.00015688494907006745`}, {
                   184.4644286791638, 0.00021819514683807324`}}], 
                  
                  LineBox[{{191.62729198309327`, 0.00021819514683807324`}, {
                   203.020725346189, 0.00006030394190873052}, {
                   219.76113560065238`, -0.0002083621739409473}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAJdL3skGqa0DR0RJyeU8rv/JJ9988
mm1AOGbIA7Cg8z4fkEDrI9BvQCl0Z1zMvSQ/z8+h7tj9cECYYuUKPzAUv2NV
5aPnAHJA5yR+aBv4G79Ljbs64RlzQAA2KmdfYhc/B8PTjSIgdEDzLPFYdwgQ
PxerfsJOPHVADnNd3Op4F7/Qd4ZqTlN2QPF520QNd+2+XULQzpVXd0DmgGcH
NNoUPz6/rBTIcXhADAjYht/05r7yOcsWQnl5QAVPBLOjBhG/UJlGjI97ekAm
9YHuLRX1PgKrVOPHk3tAFVaFs9LMCT+HuqT2R5l8QE5oRorJigC/YHyH67K0
fUA02YyjU+EAv+Mix1Pxyn5ASsj1aQ8UBT85x0h4d85/QNli3KUtAfM+8Y4u
P/RzgEC16DykiqsEvzC5WaBQ94BAniBwzvLT0r7EVTO7FniBQEtyS1eCvQI/
gkvWRtIDgkBKl0ggEADVvipAmrAxhoJAzBh1fl86AL/8jSeLhhODQKCBPWOY
ves+t9rVQ3+Xg0CBiV3rsjv5PseZMrbhGIRASygwTkW58L4BsliZOaWEQFZt
qIEz2fG+JcmfWjUohUDW3z75aH/0PnM5sIwmtoVAsDtpItMv4z4WHG94gUGG
QLHspNlngva+ov1OQoDDhkDMao5t7DPHvlg4+Hx0UIdAgXkmpJLd9D74ccKV
DNSHQHoNA2B+Js2+7R07aA5ViEBzbEJHYJryvgwjfasF4YhABUQdGS4I4D4V
J+DMoGOJQFOYzKbU8O0+SIQMXzHxiUA/ZqUlHNHnvs9T56orfIpAaJ/37dgt
4r5AIuPUyf2KQKWV9WCo+uo+20mob12Ki0DA5bMKNkzSPmBwjuiUDYxAIcno
96gY7L4P8D3SwZuMQLQ4FaVtO4k+E+KbdVgnjUAmgTKxPPzpPgHTGveSqY1A
eF7UCwK/zb4ZHWPpwjaOQFW/xn5ihOW+G2bMuZa6jkC4EJwE3H7bPuxlH/f/
P49A23rAKjIY4T70323m
                   "]], 
                  
                  LineBox[{{29.8745792893799, 0.00021819514683807324`}, {
                   30.63899351148703, -0.0002083621739409473}}], 
                  
                  LineBox[{{57.064944224971455`, -0.0002083621739409473}, {
                   59.687950678030944`, 0.00021819514683807324`}}], 
                  
                  LineBox[{{111.31593094600508`, -0.0002083621739409473}, {
                   117.88162301124503`, 0.00021819514683807324`}}], 
                  
                  LineBox[{{140.53215120875274`, 0.00021819514683807324`}, {
                   150.21017881295487`, -0.0002083621739409473}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828061#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0002083621739409473, 
               0.00021819514683807324`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNl2c8FmwUxu29s/eIkB2Rcd8hsrcGGkbZI1lFKRpI2UVIXiENGhqS+zYy
k5kt22PzeOzZ2+fr0/md6zr/64i5+NtcIicjI5umJCO7VkkdlkGWCKlR6PWi
pgT4d1v1pFFAAnx56X1hJ+kRjG196OVo+wjWU0cNqac8hHVKUUw0pfEQ6Ige
zfvyADa5pxYeeh4Hv+nTLo34x8LR29nxpjIxsM/aUYmp9R68yK6WNe16F477
x+pWzkZDabrm93cuR0Hj6VPbyv23YISvE82jpJuQ/sMea4RXODyu/SSawSAM
7s8febskFQxXpZgNi7kCob08cyW7vB80Z4pPnXfygAJZOjwKP1yglvwPuXfd
DnCd2nT+WKkV/NXprJ/0TRsu+avfshvnx7cCW04Uv9PHj2pTS0tOWuPuWeYy
wfXTmKF8dNhr+BwmLWlIvbzljIc0K5jfv3XFFZUHs6NCL2Ear4Erb4cvYyZ2
lJg67Y77jSIGL6R54KR3aZvzMx6Y8MulA816YGEFK8b5LA/se9HxFhONBx7R
pTosJeeO93XNnmRwXcaHxzllWBrdMEfYCc/z5q6Yevdp4p0iZ0z7RJeGtfEC
zuAx72ljcMIH3FcMxKXO4CxSBud9aTss0DqycUDECrdej6vJkzPC4SxWv0+q
Hsdsyfk7uFsJTyp3cuR07CK9nb7ePkEZyFNJvDbJown5mYJs6x314WMG3+wY
KWPIpk0x4uRiAUmNZyuPRVtDtZ7al/T3bCHn/Nc9Y3V7+OBknURR2inYEiza
2vr8NLwzm/bw1Nkz0HfYz6Ks8gy0JqQIG/edgbysn60FC87AWYvfNnuyZ6Dr
jcDTZ3xOw6B3ssrS/qeghspW2JiGPaTkqrNwbbWFxF5DQq+GDbzQ6cFbEm4F
uydknNa1zaHm1Au5Nktj+PyQka+hjgHUvr1LnsqhC89Q1A44lx2Dz7aS1l2s
lCFhMo8th0ocMva2Oq5WzYMERxvG+HIB7DVKX3vslxzOCbDtkwxWw+7X378S
oNLGC4wCTS8odfGr5uPxoEwfXy1t2GoVMsRPg9iKL8gb4R79iwU0k8a4XHWA
elHPFPuLPeY3MTTD7K3gp82SGX6d1ZxxDJpjCitJHyENc3yv3s9yd9AM+8cv
+uYpm2FL3r4r2ZqmONHOLElkzxj/4J+8tXbTCF/0XY7zqTPE6dpq9KD/BP6R
knLzWpUezp76Gu8XfRw3DBqTKVhqY0K5uz2FtzremJK4E+ypgnOOPmxf/iCL
T2/l3j+bIop5Wvg9+3UZ8AK6R6n/YQvcv8ZHdfoiH7z886XNXo0krOMiicva
KUDPtYMp2tJHII3SYuuNzqPQkV3Ag/6gJlz/z3xP/4AOZLm4W9iSCSHNXaaV
2sHjkFOHIratVBfmTz/X1rTXg62x2oGe1Xrw4t8XMvprerBL/4ni82U92PJj
gpG+TA8mxMqlPjDXgwM3KTLfv9eFRZ4s2SHTx6HZxXLBa7MQGs+XdUd+0YGf
uB65ch/XgvhgdnNnvAbMC6968rlADZKuqI/RP1GBG/l9w6ktCrCkNHmWR08a
sjiQoYpMMXjuRJDzwCAXVMyvuJysQg49KLakWiqW0fCzDSohAXYsPs9jaWUs
hKmaf1VP+R7EBU4Tqi4DMrg7TCz4xogCPmVh1kpVpozdjhu2ydYcwVG3i7/n
xKnhFLKEDREmdZx50mtMw0ADr4ErWiaqxzArUcrkbu8xzEeVPTujrInF2W7E
6+pqYos/dZCXThOHqt9e+BhzDOcsxgzR12lgWzeZzx9q1PFdOTX6P3eP4gKl
qe+AXQ0/GptxoPY+gr8fCoutTVfGh6L0SzqPK+KbnwoE9dgO41L1T77pb6Sw
zMUQlj5xcVx2XzPBgEwAB9l6J/HnsePObzeN+BPJsBLLT7HMlRaw9aK8nkBD
BS/Qnwjm/cEBTXc790IlBKA0UfG/G/fEYMDx488GjkpCcuK17yZPpaGr0Z/P
WkWH4Vld5nGZcwpQvKzJw/aMEhTUovV6b6kMQ96Eq/AdUIGB9QKaMbkqsEA1
pf3RtgoU4DHTtRA+AkOEz4cEMx+Bb7QqzLUbVeCNd6pJ52xVoPvh4u+sxcrQ
f2bxxe6AEuz2/O9oQKUifGnHdcY7Qh4a7tyXC1+RhWujBjrV8tLQ3aijfPCI
JGyWH3esZxGHORIPzz9IEIKWobFJiW3c0LFQpMh0ihXepEyiiuehgJknVA94
nxsFZ5noMhw8Scia8d6bw540eE7pdYd0MjuuNDpMy5/HgwsEJU8+OCOE9f1/
LXrbiOFzv8649FVI4AYuJzfRGUlMLiJx5EnrIbxfH5Jz0VcGTz8kvxeIZbF6
xgPypzWHceVql/2NMDkcEViRnvlHDstXUkmarMjhL4Uvpkq+yWEfv+/ZSE0O
K3+VEpZ1P4yp5Q1bztnI4t8BdZcCdqTxQbJGaW73Q/jKS82apKeSOP1iDykv
UwI3nnyleD1ADCfuq9Efg8I4z+tN2qcLfFjAR3oj0IoTLzGUKV6DLPiGagDv
yhdKfPRrYyqvxb85KSU91f1qwe6OX6mT2QaIyL2Yx/2GGhYElx1it2SFcfxS
jbe1OOFCwZV5dI8XKoYlKm/cFISm6rcEg5hFIUm+mU+tSAwa6Bi4H2eVgHEw
wa1U+yCkEbdhtVaUhDOZ0k7hk5KQooPUDs5LQT+xKC/zDCm4MfoX7z2Wgg7x
X5NPnpGCydtMX9CQJPQvlY2Ml5OEDb6NX9xPHIQH227aPJCRgGTUWgOvh8Xg
3TaZvjkvUag+9vf6sxwhWEY0o3eS4oejTMEXzIK44eaPmev8qRzQ4TyVzF0x
Znia03F/apYKMhfa/f6ptgVefo1l6xIZBdRnX4dSoWEkhKxSlIQ20TuZ/rLX
U5T4d23NGrU/I/ZqkZedNWLHH54s9BvncGJChUx/1gce3H5B+d2bcH6sEheZ
LbYqiHvZXLkSuUVw3FXzFl1/UbzwPTtC/6AYdqNU+81ZJIZTDg+YkO+J4cXH
0Yy9IuLYau5B5iy7OD5CW6zI8FsMe7Oc/R7tLobl8Yk2/hZRTM5EZkrJIIrZ
F8doS7WEcb6L77IGnyDOUKTTgB/5sLyCcCUjOw8WKzuj4qnJib27ld8mqbNj
h1d3dRXFmbBxHqt0Vg41fks5a15N2kOOqvkSctFExPD2zTX1Fw3ozTN6qOI9
AZb7pp6HaWwAUT2bEsMZctjCEq0xs0wLOXOmcxkLmaGV9B1lmxvssJ45kGZh
6QCU6J6JS5TkhnR7LXOyfLywCnic8Kzjg+c6y6MqZQSgdpS7RNBxQZjMmvjt
KZ0Q/OTraCB6WwgKxRwzqCsSgl0RW6/FooXgLwOQ/5jlXw7VjCxtLAShMtvh
63oGApAYfz6WcYMPph/gSt9154WjZiNUFNnccJp6IP5xJidcJGsW++jJAZvT
QooqmNng4QGhtwuCjHCGii6zZZIaJowxJaXfIYNCxIhyVrZ1QDVy6VnzziTY
Mc7Vv+7vj1SeVyVrb0yim4uC/bZFa4hQEaTpsPcX9a62dpUtUmG/RJXdK+n0
eN78o/spIjNe9TyttrzGhvlerGh1VHLgsGSb7iI7TuxJfZVu+S0Xdq/b+1jb
yI3DXYo1ifk82OPuDeup47y48hM1WUcGL+7j82y+/44XU5dV8Cbc5cUpGkXl
fPy8OLPVeuyvPw9+P8xpURbLjbl7b1PZe3Hhy4vDD/y5OPGdsb32QwkcONRB
bohjkA1nP2WacKJgwXx/OG7m0zJgxD733rCTGnO0jwn+DSDHp/wUTBr7tlD3
ZfPY+wVENCaYI7IW/Qep0dH8DhqrAIxGf64I7U2Cm9SKwqHTK0C7oXCdeGcX
mOTKhzNdoIAVwqOGhZAGyjv80PvYTw+7EzyzfQ4xwwq+WcodFjZIT6fi88mR
HXZuHtbYCOGAp5zeOjudPwDvWCqusrJxQovlKOvWOE74wjdoce4XJxS0Yr5v
2scJC4kHWy6/5YQjcT05hqacsG/wZHVk6QF4M/aDvvwcB+SfN4uZWWaH61L/
CdX9ZIPMN1V672yywJdC+zVRLExwmCHXe3eUDl4JFsFkEdSQu9SoS4hADmvU
Ypke2u2CHGf1WL/8VVBPuLfuWTgDdO9x2l9u7wS/DzjrzgvVI0TgnpmCk+i7
87ydnBwJzX4+2LcTtIXeX7hZsnCEDF+ayx55dY0Sn1+9HZARTYPPibbcsjSh
xwvKX5gO1TPiQR8NV/NVZpwxpmbV1syKn0hw+NgVsOGwWLWvzhrsuOvz946o
THb8hUwpRbqVHUs9sOTX62THu52dSOvlP45OC3/atWDHvVRq4eMNbDj8QiBX
FQ8bZo/rOlUQzoJLsswVroczYRIF7cZfVQac6pi5PF5Mi9vWY5U9iVRY7vIe
nz05BabuuRfwsXMPUfPm+e27baBrlks2fA1ERHmd+2mV0AQ6NHGrI9qhCb2O
sHvmdvcnUIwfd+2SmgB5++TnXj8gAmabXb/GhnXgflbx9Pi3XRAfxhxyW4Yc
fvDz1sytooRnkrdOhorQwANi7rY2OnSQuo218yg3A+RJ9Lkwm88IdwQ+7+9O
M0G28x5GbYPMkO6UhG1WJAvU4DC+FNjGAq8I5V7WaWWBJxhleCojWKCiCxlX
Uj8zjDm5V8k5xwSjv49wB79nhNL+J1OeKDPARgMTQ/YAOtgjon2UL5AGsixR
a17ToYKFrwxCbvSSwy/39k/VpuyDcOIHpvvKW2BZhdGEIWMFnDdW5mf6OAdK
+ETcZ6lGQKKEkqSXQBVw1Y+8ZP/8F9qM6lE3mBlDbxWUb3cIL6J4pl5PUvAq
Gq6NLQh/uoXcv4kPsQTso6x8DT3rYHKcvVobnxlJiYW4rvZsWlPjK4shGXzT
NJi6pkbqFKDDr589aftsTY8XjQ8d2hZhwLG9R6wyChlwv0aod9MUA+ZK26C4
PcKAuy75xfkkM2BCxtba6j49plQ/GqwmTY/NhnPc1tjocF9VyoOc7zRYODS1
Sl2RGk/lOvFZ+lLiOjvCx/VwclxkHlvlUrWPSpo23Bv0tpGVc1NofMwaopOV
p83JISKi3Cp4JjuFroRel8oa7EOkoM/4jtwntG5drVVt3QK+eRLk51+MAq99
1TV0ZQ5YcEra9gSQQHLe/iH7xXXwU+xABKXUDmiuqWR2Yv4LdGPB0EVzcmii
83X25xgFjCT9PHlYnwr+ip3Qt/CmhvO1T+KenaGBU5IfX0vS08LEGtbVxHBa
ODiZk3SkhBbKV70io31BC+kLX/4ocvinE3OuOv2mgSMLaiJ7HDSwidgpS85H
DRvea//nO0MJCTUlh1ruU8CrRkdTZTfJ4Bvhptb1G/vA5OB1e83qbZBE9qr6
bv06+CGsGNyaTgJxX0NCyKLnAWXyxt+XT8cB9b1ovxXRLiBWLmP0s74QiL5h
fOIp2YK4dUeZfT1HEF/CA74SphkkUSlKfaWYiMKSj09c/m8V7T3QF9E6s4kS
ik8VFNTtoBlJGgulyX3kIk38ItpNhlV0btNlMVDgNHEyFS1mSsyx71H1ZYAS
p8ZG/ncmiApTee8/Wuuiwl1BbTubf6mwcjSMukiiwkYy+3Xlb//pwkMTMkeo
MLP5gJv9HUp84FVvm18eBabn2ViWTCHHUkN1LbmnyPAjcxfypbE9lHcpdw22
bqPSSArUd30DRTeeJdtaXEF5nCmXHNSIiH9cSuP4u2n0UmOE2rdmBHV4mQiO
Brajp2V2HAmrqahQ/LtgXeAv8B/LRqHCjSHwt16nP3WGAN4zm9ZPGy+CqofH
Is8VkADZIq2UFHEN3JGN8mff3gST51UfZnzfATHNSJ5CeR+kmnWeKpUmg0fu
jGx4MJFDbdMPQ0+ryOE8yG6qMaSA9NXq3kNPKWA6xV1hjwoKqGWQa+9cTAGj
MjxyzfwooJ8yu4/cPjnUPCriEXmBHIY6elRqpZLBfEcOpWSdv2DFzKGXRLkH
vhBe9ZJHbYOikNLKPrQBaI2dvY9UrwIyTtYcq9Rl8PywxGBT+Dwg/z0pQ544
CThoL51pXhoEPHpcz7/x/QLVh1wfvbtwDvB8m3QwvdKMKNePUX+0HEQRL5ai
08knEROl6ZOpJ3MI7O5GbcwTkROpXn5mYAV17T8Q9klaRz5WFyPrabZQYSNT
67raDpL4esfjK98e0jZSI2W83UdvbE+lUyz+RQrz728I+ZBhuVha52OfyPBo
u8jYaDsZpjj94BJfNRmWsBZZPXWPDOtJPzx6R4QM67LEJ64K/UU66xS922/2
0L1FpfP+xB3kRq/Cc2lhC2XrbRzNKdpA/iru47cOryH7tM4LO9dIaHRPtG5N
YwnxtetmvFCbQUte9COm22PoHBj7fkqxDwWmC22ohjcgP6ZW2NB4H4iE/z3p
eeInaKCZP+Rq1g9eS/s83TYfB39L4nfSNGbAE7vh38PdiyC+qV3ElJkE2DKJ
GSB8FVgFWFfCknVgmkt5gpC3CQTbPbWu2W2D1g/+Ttv/fHC7fUNTsX8XnHj4
MuRl0R549aChoU5mH5SmRU1XnN0HP62f66Yd2we5AdGRUk17QHKgZYWP+d8+
A9DkCNUuYK1+OPi29F9uOUJ3vUS3AFX55+Tif3+DXlTC8luwBg5qRVYp7JLA
YEE2MeQff74RlntDCHMg4q7ha4FgAshzoq9Ibh8Bdm6RErtc3eCDsv5nxpof
YLaEYnDoYxoisDSv9lI0oXLFgoTEwF40363aGtYwikQn70OiyBTqmveNIFOZ
R3Wa8d3jYUTELB/i9LKIhAIPv0/qzV9F7Qk5+0ke6+jG9Ve/Exc2UHrVgJCm
8hZiPflD7IXSNgodejKfNbONDKg8ZosddlBMaPRDiegd1D4gt0vpuoNarejq
eXa2UdevquJRs23EVhty56nDFjolaKUme2gTmTh7cot8XkfsF1Pi8hjXUOm7
QpFAuRWUTrd+okFoGWW7pESWNC2gH2MyTH4cM+iay4RtrsgEyk5yZTT6+wfp
5bszXbrVif5s3zblq6hCU6BAdSQ3C4hdJThLlDeAAU4Xd+nKbkB44vXyqvcI
+NrSqDGmPwk871h9Xx2cAfRabre3ZBeBlcD2XBz7MqjkTc1+94cE6O/Zz90M
XgUn6Mu5eLrWgIIiqfXI1jo4kPd0Sml4A6ROlmqy390EzrxoMWpmE3zgyh4Z
ZdwCkV5fjTXmN4FxtF6mzoNNkCQQnGY7uwH+1jHk32bcAJ+4y9L8ltfAoEvp
mzM5q6DnrJ0eE98KqFP9vtbrsgxes3QoM1IugQhj94W7q7NAeE9fQSufAPxU
nln/ER0Dmrk/R5Sm+gF7T07EuG076OiliFa+iwC2LWu6+uU5mrMb4rwRUo9s
l/5m+at0IW0x4DTjOoSO58cFbWSOIz+RhumFn1OIpjB8SuHLHDIIFHPqsl1C
zBw2MT5my4i0XB/HgUnIKG681n5/BdnFTFhq0a4hXyR40rFnDd1PKjIi+Kyj
mCOZlkV166jrecUq68Q6ar18m1Gydh1dP9GaleS1jqg1u0887VpDjE2ce/x0
ayhgm3jhNtUqyn8jGFr7i4RuSZTLOLsvo6PQvzb+1RJK1iBwvVSfR85l7+ZS
IqfRpvRadWj8xD9fajnS/uPS6Id75T+P96KQIgEp0c0WlPWLK++tzzcUSu81
aGX7H1AaKFXJ1KwDFurwlV9dJ6AaNLxkqjgICJejTbnExkBTkGOzzNokiDQq
zxSLmwH89J+SF7vnwYdFzu9mnUvgcn5lwJzWMohfmD7LdIEEzplqK1tarYCH
9ZfQLeZVcE+pIHIrdRXEi5hr5U6uAht2xLm8vwo86AvEVkdWAZ3ORqRh/CrQ
05Bd5qBYBb/SBClZT6wAwZ7/OoLtSMAgJjyU/OgyMFgKO1vXswSkDjOnB63M
g5Drdzw562fA882XIecdCeCk9vEb+WVjwGeog+16zx+w8B/PWsVGFyhIZ8TH
O/7dr2MxzAepvgA7GdPk3tN5SHP8/IUJhlp0zdlNReFaBzKyknkZrdyPXORw
Afw1gqZoDryLt5pAlg95xT5mTCF5ddKm8/PZf/13ZJn83ALKmSHzbmhYQm/7
qdgmFomoY5qrJvLnMiqjHbVXCSMh0aMxMHSFhC6UFH00115B5Jo6SZo2K0jt
bBLRSG0FObh2WNETSMjFTcQz4RIJtUuUv/D7tIwOPD1r/6mHiPq1P9n+yl5C
xb4dawStBaSl3UPpljiLcEW3eNF/U8hkRbEdXZ9AYoEh4Vpio+gS843gM2AA
tajurm3udKLx5mXZq0KNKClOocxIphQJU5Gucs/lgZ4PgrLHZmoAf5Zofc/J
djD/7acuvVsvsIpd92k9OgxOtr+ss+oZA59Fay1v/pkEB+VgvmHBNHA2V4ev
ZefAdXU1JS+3BeBZ/i6N2WIJxBA7/CKuEMGJiPyRMtZlUJaS6nv21jIwfPps
zK96GQT1yZ6N7VoGK4yG6GPZMkizEfbQ8F4GLWkzaeazRPB45G9qqg4RpKjO
TXC3LALBpQd9RzvmwVZao9zBh7NA/bHyqgr1NHCz3H57XncSnDuTyatuPAa2
0QPtJ8ZDgMd9j+dwWQ8wMNnIria1gYDwvN8DbD/AI/OyNXG3l2DdsL/0fFAJ
uvPooNvgm1rUdWm/jSejHZUTsOf6wV5E/MTWLOQ5hLwO0nwrkx1DFYwCI94L
E2i8AykVBE+h1nrKDsaKGTQoLipIqphDUk9fP/a7uoAOhVrMu/QtopuDol/v
zS8hV43hOHV7IlpNu7fcGENEcTVedkWJRPTVDCdv+BBRV9n3CiNhImpj5GTU
M11CSZsR1ON0i6g5r6D50LV5xMXkeizun78UVQMJOnem0RHTky/EZAloJWFR
pyR9HPVfLi2f6R5BpJHfham9AyiDs+r6maou1LRyyn2I2ILs5GhrFISq0X+m
0wYPCl6gX/3F+t7CJWBnczYuIfUH2NE+2zvxsA08frLS7PisGxSNfibb9x4E
3pXGn5ZWRkA5d7zn/u1xcFHxdUVJ3yTobRGeF16bAs1x/DFMrTOA5lJL2JzL
HAg21mKffzMPwsZ/y1C/WgDS8tFSO6cXwV6baJ/bp0XAR6l7tLhqERwlNPTw
3lgEko+KLb5NLwA3jzmTMJoF8IzOpoCibw6AB1fcfrrOAvh7Fe2+mgb39ecd
fD8SwK6raENy1ASQzx72DxQeA8QIk2PiAsMgdIfwqPptHwhwC/10kfI3eCRa
E2R2qhmQvN3HDTwrgYLuYz2hG7lgfl/2x/ecYtQdzZLUFF+Dyl8sOKsrtaLr
JqNuW8e6UHlqT6hPdj+6LTfCnF46jFij2Ehax8aQg3Z1+a1LE6hXKE8z9ywB
XVP05ERs00jRwrI9+94M8lUzVPjy5V/+FRdSj+XOoaTr5vkHdOeRxtK16o20
eZQVE55+PmceqQ+bP7l/bh7ZxjC7hbbPISXJNsPV3Vn0Jnrw+a2xGaRHcSDC
9u40ktEBxpYzBJSh+3ZqnWMSSev2cDrTjiOD7vbLss0jSOwGL/FnyyByeUU1
yId7UNJCB0t/SAeyTfwRdZauCXVoOuye6K5Alxe5ltczs5Hq9wv2m5TF4DTz
R8e51GpwRe2F6mnvXyDo4JA+/WonsAoL3Nnd6AV3d68uZZf+AU7Ft18QWEbB
J83uGFnOcZBfHGVMMTkBGn5cWJ2IIACZnNd6Ez1TQGJ2VuMzaRqc7Vtjqmia
AUu5VyHz+VnQZtHZf+X1LDBZKG/x+zALHhrOuepenQXB9yIahxZnQB9NXBVR
agYwqVCEtQlNAx4Bk5TIbgL4szWYnGM3CWK4AlPds/71yP2TWekfRsFX0xXy
UY1h8G3ASUcd94MDPRTLJlTdwF5Qa7yNsx3USe1IrezUg5/9snYaauWA+Wla
bDVdBviSRH6RaPsWPUg9liT3pgrV0vTpBjX+RFP24kp6jR3I68jHo1ShPYhK
fL5xZXQAOQwY6lbtD6OSPgXj8NFR9PY4+0xM8jiqfqwdb8EyiZre69SKWRNQ
JtWH18unp5DtIXlgITqNxh13uPxeTqPu+pcXVJamkSz/L1aZ1WkU7H7C6uGX
aZQn/kbKUHMa7dfknh2/MYVK9jqfpd8hICKPt6i69SSK537sIzk1joCKEMHe
ZAxJ1r1p04ocQY5fpRVucv1BfmldfecmepFPbu3w5ZDf6LGZBdoqbkVLvmIc
i4fqkKuqL93e6Fek5+AxTyeShoLMfSZOPX4DrPFloS/tlWB17/GC9skmMOqb
31n7uR2cv9Moco27GwxopBReVe8HMalZ18VYh4BaqqL6n8YRkFBUGCJ/fgxI
fRqTeVg5DpLCHKwTFiYAFcOn16fGJsGfqqc5WVkEMKJDnvKZfwrEETPyMhyn
wGWlC18Hz0+BgNgn018PToGycbpjdMUE8Es1oFRvdxJwl2ZOX2OfBJ2v3nfZ
EMdBmJiK837mGNgsOeCixDsK/gfHnayY
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.884782509121031*^9},
 CellLabel->
  "Out[610]=",ExpressionUUID->"f6260ccb-835b-4576-b72a-def9181f614e"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{81.86379594675348, 0.00018813428336335552`}, {
                   85.11977887730755, -0.0000905127748115839}, {
                   87.83663777436423, -0.00020179096005041135`}}], 
                  
                  LineBox[{{162.43333830425175`, -0.00020179096005041135`}, {
                   170.46784494870712`, -0.00008933305365099853}, {
                   183.0799733363903, 0.00018813428336335552`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA3lxn+Ir/Z0BYWkgwvagoP5CCM8ip
YGlAjBl3odQn1j5taNOXK5BrQGJTKOU4zim/8kn33zyabUDU2JtXzIEPPx+Q
QOsj0G9ASMoGBjaMID/Pz6Hu2P1wQGscMvUAWhq/Y1Xlo+cAckDCUD2c9dUS
v0uNuzrhGXNAil3y6GE7Gj8Hw9ONIiB0QMZhO9ARcfs+F6t+wk48dUCF1nyJ
9hYXv9B3hmpOU3ZAImX93iDi8T5dQtDOlVd3QEhkhkaWNxI/Pr+sFMhxeEBl
/U6wf7wCv/I5yxZCeXlAWkfC1eH5CL9QmUaMj3t6QBlIcUOw+wQ/AqtU48eT
e0DEkn7UMIr9Poe6pPZHmXxA8IzP+fkWB79gfIfrsrR9QAnF2AGJeuO+4yLH
U/HKfkCSTsTJ3DEGPznHSHh3zn9AzNFkeQlz0b7xji4/9HOAQIqeLQKDVAK/
MLlZoFD3gEAXJjH+WRfwPsRVM7sWeIFA0FBuJwWm/T6CS9ZG0gOCQLUDnVbm
U/a+KkCasDGGgkCIz8L0TgH0vvyNJ4uGE4NAXvtl7+vP+T632tVDf5eDQE8d
PBHtoOI+x5kytuEYhEDhrEQyRC/5vgGyWJk5pYRA3gHe9EpMp74lyZ9aNSiF
QFhQyCLLafc+czmwjCa2hUCKCB9ku7fcvhYcb3iBQYZAgXMZW/sl8r6i/U5C
gMOGQH9pzxLrKeg+WDj4fHRQh0CiWN9YAsDoPvhxwpUM1IdACrfLE37j7r7t
HTtoDlWIQMNI41AI5uC+DCN9qwXhiEDC0qxLP0jwPhUn4MygY4lAorkko2pz
yD5IhAxfMfGJQBrm9ca4Au++z1Pnqit8ikAUfUyIvOvOPkAi49TJ/YpAkWHP
4wXh6j7bSahvXYqLQIwL6IAmNt6+YHCO6JQNjEAATcTqGWDkvg/wPdLBm4xA
cOIDzRmO5D4T4pt1WCeNQKn4j+/VktM+AdMa95KpjUA8HXhh5W7mvhkdY+nC
No5A9ihJakQjrL4bZsy5lrqOQF7cFHXQ6uU+7GUf9/8/j0C8nwZk6uy9vgSl
hjs=
                   "]], 
                  
                  LineBox[{{29.75920410918251, 0.00018813428336335552`}, {
                   30.516511580791004`, -0.00020179096005041135`}}], 
                  
                  LineBox[{{56.49444726964637, -0.00020179096005041135`}, {
                   59.178443974679176`, 0.00018813428336335552`}}], 
                  
                  LineBox[{{110.45943556397565`, -0.00020179096005041135`}, {
                   116.72326958362127`, 0.00018813428336335552`}}], 
                  
                  LineBox[{{139.64563039200175`, 0.00018813428336335552`}, {
                   149.48006033652624`, -0.00020179096005041135`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828122#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00020179096005041135`, 
               0.00018813428336335552`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{81.86379594675348, 0.00018813428336335552`}, {
                   85.11977887730755, -0.0000905127748115839}, {
                   87.83663777436423, -0.00020179096005041135`}}], 
                  
                  LineBox[{{162.43333830425175`, -0.00020179096005041135`}, {
                   170.46784494870712`, -0.00008933305365099853}, {
                   183.0799733363903, 0.00018813428336335552`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA3lxn+Ir/Z0BYWkgwvagoP5CCM8ip
YGlAjBl3odQn1j5taNOXK5BrQGJTKOU4zim/8kn33zyabUDU2JtXzIEPPx+Q
QOsj0G9ASMoGBjaMID/Pz6Hu2P1wQGscMvUAWhq/Y1Xlo+cAckDCUD2c9dUS
v0uNuzrhGXNAil3y6GE7Gj8Hw9ONIiB0QMZhO9ARcfs+F6t+wk48dUCF1nyJ
9hYXv9B3hmpOU3ZAImX93iDi8T5dQtDOlVd3QEhkhkaWNxI/Pr+sFMhxeEBl
/U6wf7wCv/I5yxZCeXlAWkfC1eH5CL9QmUaMj3t6QBlIcUOw+wQ/AqtU48eT
e0DEkn7UMIr9Poe6pPZHmXxA8IzP+fkWB79gfIfrsrR9QAnF2AGJeuO+4yLH
U/HKfkCSTsTJ3DEGPznHSHh3zn9AzNFkeQlz0b7xji4/9HOAQIqeLQKDVAK/
MLlZoFD3gEAXJjH+WRfwPsRVM7sWeIFA0FBuJwWm/T6CS9ZG0gOCQLUDnVbm
U/a+KkCasDGGgkCIz8L0TgH0vvyNJ4uGE4NAXvtl7+vP+T632tVDf5eDQE8d
PBHtoOI+x5kytuEYhEDhrEQyRC/5vgGyWJk5pYRA3gHe9EpMp74lyZ9aNSiF
QFhQyCLLafc+czmwjCa2hUCKCB9ku7fcvhYcb3iBQYZAgXMZW/sl8r6i/U5C
gMOGQH9pzxLrKeg+WDj4fHRQh0CiWN9YAsDoPvhxwpUM1IdACrfLE37j7r7t
HTtoDlWIQMNI41AI5uC+DCN9qwXhiEDC0qxLP0jwPhUn4MygY4lAorkko2pz
yD5IhAxfMfGJQBrm9ca4Au++z1Pnqit8ikAUfUyIvOvOPkAi49TJ/YpAkWHP
4wXh6j7bSahvXYqLQIwL6IAmNt6+YHCO6JQNjEAATcTqGWDkvg/wPdLBm4xA
cOIDzRmO5D4T4pt1WCeNQKn4j+/VktM+AdMa95KpjUA8HXhh5W7mvhkdY+nC
No5A9ihJakQjrL4bZsy5lrqOQF7cFHXQ6uU+7GUf9/8/j0C8nwZk6uy9vgSl
hjs=
                   "]], 
                  
                  LineBox[{{29.75920410918251, 0.00018813428336335552`}, {
                   30.516511580791004`, -0.00020179096005041135`}}], 
                  
                  LineBox[{{56.49444726964637, -0.00020179096005041135`}, {
                   59.178443974679176`, 0.00018813428336335552`}}], 
                  
                  LineBox[{{110.45943556397565`, -0.00020179096005041135`}, {
                   116.72326958362127`, 0.00018813428336335552`}}], 
                  
                  LineBox[{{139.64563039200175`, 0.00018813428336335552`}, {
                   149.48006033652624`, -0.00020179096005041135`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828122#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00020179096005041135`, 
               0.00018813428336335552`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNlmc4FmwYhr323lsyQlKEkv08kpURKUR9DTOysoVUVskoEiHSMEJWouR5
REJZ2dtr773316/r3/3jPq/jOk4hSxdjGwIJCckkGQnJ8zgGubK8SFg02cip
6R8JYxVWPu2L/cvsR9Lv8yOgpeyckBJvBByJ1/WktXkKVdaz+t/EhMPNF6ec
f71/AgNaNGL8Xz+GFJwtLhv3w2Cr15maeL1QWDkoYjNKEQJb0z+oBOUHwSb1
aSh74RFc6NZgqhh6AE9LeR2n6bsPzzltXC6a8YP+RYtJRzd9YGk+r8w6pRf8
TrYz8JjfHRa2qB7lPOsKBwOxk8ScA5yXr0qzCbGB+Xl2L6Mu3YTv9EbbzmBT
uLxw0D5UqQsl42b4+u1lod4lWvcrpidwYMu7Hg9aLWxf5/I1tuEitl1JOOU6
YIbn1uTYNE7/h3nsyehyxm/ip3NjQoNtlrgkYYkrzcYav37GF/Yx0QbvZ5zb
u+dli+t0njnq7driEE1lgYOTdpjFe8SOjdMOCzIe6EQV2WIKpl8XZhlssf/0
SAfDcRs8IR5AIsJijbcOZQS8/mWJU1/dCmAzvoUdF2mqnTxuYH62lSU/umu4
V5/s0wevK/iw3qw4RdVlrPIY7FjsGWGOqIinQ1a6OPNBSthulzqm6fIn0SCe
wce9i+O/bAhi0fsiaXomHPDZmqEy0VUWOosFzdYUA/ig5o+cCLUmDDqSUnpO
RheSnMoIpGu8AJ8kbVyPvnMRuulNZj4/cgkSmzyvXYu8DFN3LZjlMk3ggAnr
hoGHKXyU9Tz627IpvCj50dtS1AzKvbsXv8xoBm0j/husLzSFrJm0revsppBJ
RIufSskE6nz2tmM9ehmKnZjMix8yhqHnzlxxdLkIUctXbaNcQxjtPVIqrKwP
z/YovGaN04E+9D6pyzUaMGstZukBUQ12cxnvPe5QhBx07FpdkzKQ0l00r+Kw
CISrpE42ZGTwgPHtiLIKO7YnXmbVNhPH0dRMulpDsniPrvtuh5gilkYTUc4T
AJfL8ZxMo1fHQNxKScRcA38ezZnQMNHCNVE2DKz72vincZTAu4vnMV7kLmEz
1MVN5CkP/dd1sVEFf/WUjh4+bsydafgvz/+Ebv4buthF2WiP2kIXRyQpP9P2
OI/HH/++KaOngwcFBbeMR7XwcJIsLtHUxKRNBn1tnudwGRlfpbvfWYxq1lgV
ywD+2Bf8h0RbCb95eqWuNlMOL/qfuMWzII0zyWf43xqJ47QrhjmbT/jxywC5
8XZzCpxi/iTsMtUBiP3Tdv1SGA/shZRnyDRF4ZcrLpNXLkjCuGcFLUKWsjCm
ULWKuUEO9rZuHk4kKkA7K7LQpy+V4fYircrElCrkWz0eOtkBoc59eYNHuWrw
6d/KQx5KZ+Fx+nQaxZiz8C2PzEW3/LPwKr9p+GzKWXjg6n0m8OpZCO/PpmtN
qkHtgO61Nm01eJTuhJrhNoDMeZ5xClyq8IO3Q37dnBIUGtwZXgtRgHHTfUZi
k3Jwwc4sX4D/FHRL9WyekJSG39otr5hqS0AjBvs3mkwi8M/+N7OZp3zwT6lm
UsMaA0Raqg5snqPgwhFiH6cUGZbv8DKdN+HAB48dLhO1BXG0o0OywgtRfIfj
TpJ0kATO6RNZ1ac5iXseiniBKBns6E56kdPiFN6Y/maTNXoab4mH7KocP4Mt
tTrzho/LY7KkF699xuRxxhqTW4aZAnaMGLwx8EgBZ+i5HjK4rYCLSLr3emkU
cFJAooWwgzxmkyg1vBpxBp/73M9u7iGHhc5w0HiLncYL+8T34RmyWMfO4kHr
rjR2NghWajeTwg9KHPUsPSUwbTdTWsB1MWww1Sf/RkAYCzyIUGoJ58O5ykul
q6WsOESKr8KimgzXl6b20VC3oCEm38YznXtg1Unr72wME6wT/CQ88ZMLth+q
XFm7JADVPcToqWWPQPtjiUUybmLQqZyTnWB1DBa4Oj4m2T8Ox0ynk2tUpeBp
I7cdApM0jOs1eI4bpOEXtZfvmS1koHiCsKNPkQw8shj7kqpHBr6T25M0b5SB
T+dKeKKey8CcveKL2qIy0P5IRnfKU2k4T0erBKNOwgfidNE+xZKwZZrLJTz2
OHx2ZPhS2cljsOdndSDxuRiUodYmaFUegQ36yitxdYKQa9Xg/v1bfPC+T9CF
UgIHvK7G4W5FzwBf2Ze/tCclgYlz3jcq9btAYLdoa4HnCiJw5dHNiFPibSmd
Qk5mFnw1t6ac8gcnXqW0UmfmOYRP3mJ3eBUiiO1/0osSq4XxkE/uplKtCC54
XV6u81gMJ8ebV7qSiuOA+qyGyVPHsOjL8YFSXgnMaemW+b1YAht3VDe8JT+O
TZXzFqeojmOCymJqb4UElt0OASEy//qj2nrw6doxvN/vwvNXUxyT3n1oSLUk
hm+NS5GTWYnijciVtZ03R3DBqnZvar4Qvh8ayk0qLYA9pde7qMt4Mf8Lkuev
mTgxmWltsZUyCxZiby20TqDGzWx/xErhHqoRXgvneTeMik0F2Nd+jYJPhmfn
3nzcAzFrA5KvxKkhprvSVfGEGQ6WEve+YnZYtUzgrs3mhkJVo5XOGoegFd9/
uUoPBeD7v3okDpJC0KbsemWojTBMuEo47WN7BF485a5nKSUCmXaJjbTfRSCX
cyhtD6MoNONx+NstJgqvtdxsKSQXhb1sOoaZWSLwfIqbTgyXCCT2M8p2GB2B
7Rda9K9fEYYPJG6jaBkhKMS1zRJYIQC5sgKoDP4egtwtIYuZKTxwPGKJXVOW
E1IUy4rovmSF9P5P5Dw+MkAcGGjyYYUCDg46EMuVd8GdoktVVjuToM9K1nMC
1KG0Kn+bzvBlRPBbS1b5QYLVHiv86FuhwgwRUQ87fjPiW6xZZj6JrNh1E7Of
eM6BqfxfPLNU58Y/nmV3NWTw4nLFd5Vk3w9hl8Z1iSf3DuNYQeGnPYMCOCiN
a67UQxDPsNJ1j/4WxB/5W/qllgVx6sHk6bZpQexJJkcbXSyI/XsNf8ZcEsTT
7IknGCMF8M/BrS4yocO4tm75GcntQ7jiSprWdzte7M7b2J8oxo3/hp59l5DN
gXNahdzk9lnxWHRo1XUxZnwraLG+4AotbhofhoYy5Pi2zof67qYdRGfwJZZS
YR75aZAzGRpWIbncmQqgMwrKe6V+JTmuA8P47bXXRwnQtHhKIaGDEkocbvtV
dpoeurd1SZ9PZIbzq9Shk6OskDFDPvzbKjv0UwnKnP/JCS+eXf3ocpEbyr0/
qTr7kgdSXjyl3R/DC89KOHCGn+OD/R9MLtJm8sHfbcslmhV8UKq/sXQpgg9+
3LaejGDigwlvmpyu6PJC81JCgKEaD3x5P37n0BoXPGdXf5fJiRM+4lNyostl
h6LxH+/7f2OFX/09DjSSmGEhL32SeTY91C/puJ5CpIJRcV5izKOkcD86825Q
2A5g/cTXtsK3BAJcxJ1tHveAOF2h+RL9RnTaKqnEgHMWBQYGLttRbSLx0wmq
/C0kuJ2nec/OmgKXsDD2rX6iweJGG3w0GQxYPuHpZY80ZmyVpBezrsKKhZzI
RvTfsmFRe5Jlk0Z2HH7WlfACceCGsdxMmbuc+HeffiX5GCf2zYwLi+bhwodd
yPoOGLmwxFm+5hO/OLH+xyS7GDVO/LPFr0jvAQcOFr17me4xO5aN/nSf9Sob
trsOk8T2WLDh+9L0EDdm3Dc8N1gYyID5RexLL7XR4D9lxLzkOQrcHvxZubyD
gE+d5Nx6emYHjfIPnGeJWkZsNZdUBuJHkJq+qXD2g3xUSUVk6Y4fAMVD+eqz
Youg+kJUqoP1JvjCaljnL0ICDSLPBYkRyWCQ1/XOsqtU0Pur/VJEFC18X6I9
Ue3KAF37y88/3GGCUoZtBEd2Ftg26SK7scUC7a7vHg7MYYVrMhx7nyTY4I8w
G9NKdzZYVET7OCSMDWYLhZRftmWDtqHCzjwsbLAQ5NlpPWGFBpabHi3NLPDz
iGyhzDQzPPLc4nxSPhM073p4bVOFAc7P+C1MP6CF64ZUxOfBVPCq58mDt0bk
kL4pR8R4ngQi1Y3bzo3bwOx0YLlt+Aooe2sRaXZ+Ejg2cnFT/GoBI/bZj051
VqOkDKrfajyjqFPyaKqq9BIasstd2GPdRJeYoq1I3u0j4xfkd0vtSHHdAyN1
cw0KzNZvJHiOSIV/hhtWcsrRYuELgioaqvT493xwPdcqA5ban1f9acKEjW4c
tiw+yYwlZe6JPAtjxlyvVZk2C5hxt9UQ/fwnZtyLb9PP3WfGTszZDyeEmfHx
WzTmYQpMOFt9yS63mwGfqojVLZekxxPJ31vXFWnxScWUGANyanyj89ths1gK
rFAoMCg/T4pfcJEHRx0iwd83Erq/62+j4kk/p+Wjq2gz8XJdSskMUr0WtRQ7
3o+O0DztNZIsQMxN2rlu/O2AZkKFdolqAoALCWmBMUvgcu7AOqfVBqhZbVbI
H98Fksa/+BOoCPBO4UX5OjsyGGb/LYI8igI2TWtTMHj++zcTd9lVbhpoE3TN
RsKDFvbE56T7hdDB/kQTKSFderj/NiwNV9DD7R6o3TxJD9M/t3q/qaSHimzL
HRcM6eGVvgrrX8/o4LrxDZ+SJ7Rw+4NvWZQqDWR6VHjOIZ8Kfra2m6GfoIAr
QvlMzeNkEPXZ9scWE+Bq4Orna0X74MtEYElh0RagJW0/Be+tAlLOpNsix+eB
XmbXg0PHRsBEUgP5AXczKJNSafxmXYqYJazPfKHuQ9JN02LJ5ZPo5Ku7D2mj
llD0wfaO+aN1BH7kOCxK7SA/R1bWwbADpHiq9TzPDwLeqlgmpwonw+MzJoG3
eCnwj8VHBHdnSsyhFtl3MogKy3hbcKiaUuPi9zHia2PU+NNMzYCDDA3+euy1
pIMCDS4omznqvUON00iZyf/4UeMao0gNwzIq7HKFiz3+OyXWivg83fGIAvfK
Mb7sYSHHMjc5qrac/vWN2CdBl0yCTRwwU676HqJkztugpdpC4sYhQkefr6Le
X2uU6z0LiMLGbQJfHEc9UnSVeWe7EcWlINEh9hKkcU+pMkPpD9iriGWgNycC
22uvE5XfTQHqVTV2W90lYKj9+J7i0zWQQZ7pKvRkCyS3xwguK+6BxC7mfRld
Eniq9J45Ry0BFpTsZZOzkcFR4q2qpaPkkGTpdb4NOQVUPRV1JDSdAtrGZHHz
MFDCXR+HllB5SvhK6OuhHlFKuDoj34+6KCAPoW3j/kUKSKt6K3bvOTnUCNZo
zE8mg1KOChuvPEjhghSZpQo/AToqLY2Lyh0A/YUcSprhHTCc/dvhk+4mMLkT
3qvpuwpcBX7Th/osgo0PF4r5MyZBgrftpbjjRDBnNbfka9oIYr2UBE8rvEHz
TstvbVha0aHoq+LyI0PIK9vnysbuFDp6fl/ZgriIvNy87QQjVxGv9cd+850N
9FCedFRfeAe55hcA5u09dIo4caNJlQRf9mkT8zAiYMG1eT5XWVJM9032v59D
pDgmNOP33jUyzNLB2Cb/jgx3SLZX8X8mwwu3m0Kno8lwko/Jqq08GY6m1EgZ
zybFDoG6p88tELCofNqTDjIC9qB6kTredYCscuIVvl7ZQ4qnG9/7RG0jNEHL
I/NoA2k1KGo/U1lF8wblU/W/FtFNVSjAazKN2Ky0h16ODCOCvsL5xcQONMp8
LphauRy9tRc0Bs0YGIiwh6aSd4LN9DpP5/5hYGclmby9MQUaeCQcP91YBDqW
A+sHz1aATYncOgpbBw5DX+esVbbAPkGwXCJzB9iXxfzHU70HBBzXjbmjDsAN
EY9O/0AS+Lx0++dZWgJ0o1RzUbYlQOuQtd66GALUZlgwa4j+5wG5Zv0f/iNA
OBcnKrNHAndPPXCucSGBAX86dpycD0Df918j/tl7gPv9bD9d8g54XF35UEpr
C0ABSZqP+evgZtbG1NDwCign+zVTOboIqDRkps0DZoCxBF9iyfIoqDRx0lbx
7gOM2XckI7MawOit94Jy0jEgoirMyHq5Fr3R4/1zr7cbfdcvlJRwHUGaZTu+
ZYVTyH6WSZ/rwwLy5ZTcmUlaRkr/BTeZS60hUa8n6kZBG8jCnbdj+8UWYogN
aTp3fQdJ8ZQ/IPbsotMvk65dpdpHufpKmG9oH5088cH8ju0Bmtt5e8b35QFq
cqu6bHH3AJ3puN5FtbmP4mdfDVic2EdXiT9JKFn2kOU9v9cRWTuoF34lVdje
QryOka9oqTdRkc8pxYKuNcTDSFLv5raCosl/ehzuW0TaxdMNi4qzyNdI4IKe
7zhy/WTaIRlKRPt5O6Z/htrQo9spUvtHf6DNG+enjQZywVMvZQXa7iYw8WX2
XWF/L7hZeLikp2QE/CIzyGRVnwIUf/R0mQLngaairtS7/CUgGWK6wTe/AtwE
KGm0l9cA+Xu/5EOlG8BXnfe+hvIW0KjGIYI+2+CeZjpd+50doL1XrmXIvgte
TJGGnXfdBcxxAhoGgbuAPSV0v/DsLghdP1hPLf3H8ZvNL8L4NjjaMjEaVr8F
TKNfyiW5bILHXPz5l1rXwTMDF23H3VUQ9TFPWm5xGbzKySkI/rwIHmQTNAxS
Z8GTG6KJcc8mwDdQ+2dUdxicrD1x4Pa1G2w6O1ImX2oA7r4zjs1iOSBRP08g
9D+E5FVcxkUjW9D01oVxPdiPrJbVY2prR1B43S7v3c+TyPPch6RmkzkU4fCG
5F7zImrKkr5yt3oZUVWJH+0PXkXf3O9+s6JdR1prs08MjDfQx7N8YlHmm4jq
UZbBH/4tVCK2yWv5egtdG2wFDp3/uE0Pq5f82UIRzrGtnfe2kBdNEifb+CaK
ZdPktmbaRHnbHdfdt/7dYzheGpWxhqjfqlqk8q+iI9Xf3A/fXEaH7iYYUHss
ImD4VyO5fBY1s0WmR+pPIroXbLqqaSNoXnnjN/fzfpQ5WMEclNqKEtiofj1n
qUIxatra77cegdzA+UsMF6rB+nFxJ/LwNtBd/OBVmNgAsGYvikwqGAFMl2Jp
l9gmgYcH351BqVkQereps2VjAazmFVQ9L1wCVz6YcXDJrwB/7YPvn0NWQXeX
jplK0hq4Pdv9H7/nOrga3sdyh2UDGHGqZRCdN0AUjU7mSMQGGM2ojAy+swHO
nGGNDKDbALbcW2knndfB2f2agddxa6DUg5vVLngV0FEktperroAYtlf8N6qX
wIWLldZhAosgYtRKrCFtFoiVHQkVLZ8EtjVlTKtJo2B48C1OP08EvmGUo8rv
O8GN6rSsk5QNQDjyx5PXwsWA6pLlRsjzPHSigsB189hvNCdVDPwpO1Cxgs3c
UN4AGvkd94AmYARNVtkrFNhNoE++ZwwQwwziWy/oaLCZRyzo5URu0SJCAY26
jhTLiI58mdgvsoIcIkIYdZlW0SC9h1545Sry0A1mYFJdQ6M5r7hGAtZQ4zGt
o7nBa6hnI34/7+IaGud1q68dW0Wubzi376ivIjGGuttv7FfQQtNTqa3/lpF0
7dRopPASIvwaUxvxXEDh7xlML5rOondh1ipKC5OIgdl9R0R3DLn9aJ6SvjuE
LMmcnVb6exAHQ0XKanILKg1NQWV3fiI3ruNj7etJiP7nGpc5+gb85T0ZzxAa
QXK+5KtA/k5QbK1E3bg4APh10g9ty44AW7O03u+fx8FU/azgq9UpIHSx1uDM
9CxYfX8jmjFqAUQzPZqpmF0EiR9NxN1HlgAXTuX6k7kMDjhbTfeUVoAXdzDH
74QV4K1kmRn4YwUIPVJN3vm8AixFzHQ+uq8AoxtnR4L3l0Gp1BMhRrNlkCui
bm8QuASCzbWzan0XATor0rAVMw8kSJFE9sgMqOsZzdWcmwT07uou/KVj4M9U
OOcRg2EgKzgq9PJOP3AM4mWb2GgHxbsd2aIZ9eCqTMBrG4Nv4FTo5w031Vi0
LV6jeabnB6oMe/izOagZCaa72DSNdKJzVS2ZyVsDiKVbp9+wexh9DWdZztwf
Q1rOL0i+jE6icAv9k9TBM2glrVB/s30OERRdo0raFpDSktHOp/JFpF+zwr9j
uYTEKSeeVnUtIec+/hX6w8uIc37y3A3ZZXTCTl/tF8cyGi3oy2quXUItAqdY
o/SX0Dp7jsnTt4vIhvFCfNKrBeR+q84zMWkOKUbla3cbzaBjm09mRvAkgqmx
EVsLY+goP5Xe5uQwKiRNz4myHUQNQn13AvO6kPVfJYI4/oti9KRZ+42qkdAh
Ja0zq9lo5e4RDgaLXPAtxfG4c1A1iBEIk1wp+AtWZ1p2ouy7AEP/rXetHQOA
5bWrs4fHMAjz0/Qk0RkD2lj5Z8XABHiyRl/KLjsNQvojqHhUZkGIt0zUl405
sOdCJH66uQBqtIS1WxUXwZVT4r6c8YvgpHd89c2aRUB60tjyzu9FMKjfx2v/
ZhG8s/90jEJ3EQh9Ck378WwBXA4fchNQmgfPlLMMxF7Mgtv6LqyZ76aBCZ0N
lYLzJJiKU1zk3R4D1PwpN+QujICkqZOBL+eIoJB6b0eY2Asa/iYXM79tB8dc
Lh/QWTeC+2KfKSnO/fi3P0F/ZVnfAItgUS5vu0LEo+/wylX9FwrwGCS1ffQX
1X5MPfEgpxPRJvKKnY/uR8Cv6UF25BCy7kvu4xcaRR21LzRN/MZRUI43s8HL
SfTZc+RFgeM0uieeGjm3NYPaNtMd5JTmkMALY99nEvPolGFP/WDtPCp7+rpz
mG0BtUnUZyvSLSADLxuidd48avrcxF9FmEd3q55ejSCfQws/0wd+f5tBfTd9
GY3FpxGF5qJS0cVJdF5o3UNaZRytTMSl5M6NoKITJP2pjkMoQdpHbiOwH+UU
tcSrD3Qi3mNcl2LIWlB5lK1T6UENoojM0auILEFKNAGpXAaugGXL0VTb6ytQ
EXp4PqOyFugNyCj4qbQAn8QU3/DBTuBR75mRo9wP4qxsE52FhoDP0RNilB4j
4Or0sN6b6DFAZaa+3eM8AZrpu6x26acA9zmejn2baSDHf/RNotcMkJSSWjL4
1wPG+vYky+JZMJ01XbBEnAX6/6kvjaJZMCZXRLJu+C+t2h9mx82ALhdq0ssx
0yCusqdnX2cKZIhZcrmXT4CcZg1fkdUx4JHAUS62PALykqXUBcqHgOLJfH+H
LwPg1oynMSG9G4Ro5/IvmraBTJfXM555DaCk87/qj86VIC7FIr7xaA7IKQ9o
2wlMQ3WXw3PFbmEU22TwX0Ldb2QqvT76+1cL8mJlEmJY7EQJ1bK8ZK19KG1i
54tHARERv/lKrNUNo3dK3LwpuaOo/bpzSorZOJonTk1VV02g7R/1PyLnJ9Gx
dVfhI+1TiCF8ZMvRcxoVUB+eYm6cRrMy9wleA9PoemG4b3X6NCrjeGI+dXQa
SaR1iD6xmkKf1Q1iyK9NorAgaUNH9gmkJC1A4fvs3560aic+aBtBn8diB+3H
hhAlvcJz1eeDyNBhMmubqhdVvbyZFaXcgeiqv9sLK/5FwdzX6SsO1aJbbtp1
Z0TLkK9qsq3/o3gUfJm59sSXT4BfzOvtE4lKQEIiH/DVoR64xdK2eR5rBWoJ
N2nvj3aCAqldNTqLPrAjUNyjCokgL7HycPiRf94jN7HN0D4CnlV7Rd0zHAMd
hdHOPNHjYOW703j7Pz+SJwv01zCeBMOU/B8z/06CCaeC0k2GKdBFZPk+SDkF
/p5eTi//PgnynCz9PkhPAj838xRz6wmgxKdmoWUxDrwDVdPucYyBNs83Iqmv
/nliy+HemekhQKD8wnaIkQgiu52dKpn7wBXZzqJM1AmqvK1TG2RagSj1OWft
uXog3D4xzHm6Cryp+07x430h8Hv7AeJ0d9RFX3L74OAzOmwlwPpM+Se645gj
RfjSgAxvNZ0/dKcVaS7QVLJXdiLT9B2O8LZeRLg0G0qMH0QawqIUUg+HUMGn
pE/JFCOotBnKWJqMIj0a7jo5pzHEfUAvelt3HP19FDUzNT2OdBQJEUYGE0hw
aP1it+s/fnKTRQ4mE0h0c6I3dmccrTGFOoVbj6MEoT/PxGLGUKdx/YX+0FG0
4V9j9FVzBHkUrXMatwyhR6f1Kn5IExE/Wj6Q/dOHiqcvVGbNdKG+TtXN+IY2
ZBfAHXrevxkZjrgpMVLVIhqlzfdd5eWoZ56ojq3S0ceJguDA6Negu/xweOzf
r8Bq64suxUo1YByIsUkubQQ6Ome9JJ+3giDbwAWGyE4QbHTjx0PNXvD2UOJk
T/4AGNFsPyY8QgTqd4INZsEwsAqvYbp6ewSQM1NIPb42Cmi0zAQEeMaAFdv7
IsvkMbAMS7hkxsZAUMF/cpQrY0A5fNZht3oMDB5lS/xzfQykP9KK+YVGAVeu
+2DHxAggxk/TePcNA363qCvZqUOASvycxNZpIvAS9Nv/qtYPPHrDku/Xd4N3
h+nDmzk7gNq9eYmxYy3gnen43zXBeiBEU1DhnV0FqPQUpe6zfwFr2R5k39/H
AD8SKm8TnyzUG2NqsTdbjv4H3ti3HA==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.8847825091556*^9},
 CellLabel->
  "Out[611]=",ExpressionUUID->"48efd146-8086-4a53-bb80-4bfac6ca036f"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{81.04942434396085, 0.00017900841047381757`}, {
                   85.11977887730755, -0.00016484444533174987`}, {
                   85.36332978412736, -0.00017244328955571636`}}], 
                  
                  LineBox[{{162.31644847291, -0.00017244328955571636`}, {
                   170.46784494870712`, -0.000032637686326565465`}, {
                   182.6671803592869, 0.00017900841047381757`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAdPYqdzXfZ0A6QpKJhnYnP5CCM8ip
YGlAB9T8r3VGBL9taNOXK5BrQLEw8fU9Aya/8kn33zyabUAX/IxYzW8XPx+Q
QOsj0G9Au4mbjPQwGD/Pz6Hu2P1wQLHw5ZZbPh2/Y1Xlo+cAckC9HGroUfUD
v0uNuzrhGXNAuaXSTh4FGj8Hw9ONIiB0QF53V4p5YtK+F6t+wk48dUD5w3t3
hCEUv9B3hmpOU3ZA5CVUhDDKBD9dQtDOlVd3QPUvM7DGPAs/Pr+sFMhxeEBd
5UYuFkcKv/I5yxZCeXlA++eoYKto+75QmUaMj3t6QCqAKpumpAk/AqtU48eT
e0AMzvJFyZvZPoe6pPZHmXxAS4ekMpWmB79gfIfrsrR9QC6WQocwDOc+4yLH
U/HKfkDk7whebu4BPznHSHh3zn9Ap3LV4U3t9b7xji4/9HOAQFlA9JGVQ/e+
MLlZoFD3gEBmZV+hITP8PsRVM7sWeIFAvs4NzI1E7T6CS9ZG0gOCQM9vImpN
+vy+KkCasDGGgkC08utY+YvLvvyNJ4uGE4NAksOUc+BX+j632tVDf5eDQHva
g2aEYdu+x5kytuEYhEDn36tLVz32vgGyWJk5pYRAuv8WLRuO6j4lyZ9aNSiF
QI7NVOATlO8+czmwjCa2hUBm8bHi02rxvhYcb3iBQYZAEvkXHGCc2L6i/U5C
gMOGQJpNDO6MM/I+WDj4fHRQh0DCUad1JJyovvhxwpUM1IdAq8Da0eGy8L7t
HTtoDlWIQM332VbdlNE+DCN9qwXhiEC60O1KGw3rPhUn4MygY4lAuCy4dfir
4b5IhAxfMfGJQELMJKiB3uG+z1Pnqit8ikC3lULbdqfoPkAi49TJ/YpAYPe4
0Ru40T7bSahvXYqLQMYoD48hJum+YHCO6JQNjEDgT+c0rg6YPg/wPdLBm4xA
+sk/qlJU5j4T4pt1WCeNQFPUbqRS3ta+AdMa95KpjUCFlQiAw03hvhkdY+nC
No5ASu/RDJ1j4D4bZsy5lrqOQKv4wi5/idQ+7GUf9/8/j0CiSeTkAhfivpe4
jbs=
                   "]], 
                  
                  LineBox[{{29.611314654588234`, 0.00017900841047381757`}, {
                   30.35134474951544, -0.00017244328955571636`}}], 
                  
                  LineBox[{{56.06557492587089, -0.00017244328955571636`}, {
                   58.78589981654573, 0.00017900841047381757`}}], 
                  
                  LineBox[{{110.02251419064865`, -0.00017244328955571636`}, {
                   115.99144080284637`, 0.00017900841047381757`}}], 
                  
                  LineBox[{{138.21898232434722`, 0.00017900841047381757`}, {
                   148.23663129801685`, -0.00017244328955571636`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828183#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00017244328955571636`, 
               0.00017900841047381757`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{81.04942434396085, 0.00017900841047381757`}, {
                   85.11977887730755, -0.00016484444533174987`}, {
                   85.36332978412736, -0.00017244328955571636`}}], 
                  
                  LineBox[{{162.31644847291, -0.00017244328955571636`}, {
                   170.46784494870712`, -0.000032637686326565465`}, {
                   182.6671803592869, 0.00017900841047381757`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAdPYqdzXfZ0A6QpKJhnYnP5CCM8ip
YGlAB9T8r3VGBL9taNOXK5BrQLEw8fU9Aya/8kn33zyabUAX/IxYzW8XPx+Q
QOsj0G9Au4mbjPQwGD/Pz6Hu2P1wQLHw5ZZbPh2/Y1Xlo+cAckC9HGroUfUD
v0uNuzrhGXNAuaXSTh4FGj8Hw9ONIiB0QF53V4p5YtK+F6t+wk48dUD5w3t3
hCEUv9B3hmpOU3ZA5CVUhDDKBD9dQtDOlVd3QPUvM7DGPAs/Pr+sFMhxeEBd
5UYuFkcKv/I5yxZCeXlA++eoYKto+75QmUaMj3t6QCqAKpumpAk/AqtU48eT
e0AMzvJFyZvZPoe6pPZHmXxAS4ekMpWmB79gfIfrsrR9QC6WQocwDOc+4yLH
U/HKfkDk7whebu4BPznHSHh3zn9Ap3LV4U3t9b7xji4/9HOAQFlA9JGVQ/e+
MLlZoFD3gEBmZV+hITP8PsRVM7sWeIFAvs4NzI1E7T6CS9ZG0gOCQM9vImpN
+vy+KkCasDGGgkC08utY+YvLvvyNJ4uGE4NAksOUc+BX+j632tVDf5eDQHva
g2aEYdu+x5kytuEYhEDn36tLVz32vgGyWJk5pYRAuv8WLRuO6j4lyZ9aNSiF
QI7NVOATlO8+czmwjCa2hUBm8bHi02rxvhYcb3iBQYZAEvkXHGCc2L6i/U5C
gMOGQJpNDO6MM/I+WDj4fHRQh0DCUad1JJyovvhxwpUM1IdAq8Da0eGy8L7t
HTtoDlWIQM332VbdlNE+DCN9qwXhiEC60O1KGw3rPhUn4MygY4lAuCy4dfir
4b5IhAxfMfGJQELMJKiB3uG+z1Pnqit8ikC3lULbdqfoPkAi49TJ/YpAYPe4
0Ru40T7bSahvXYqLQMYoD48hJum+YHCO6JQNjEDgT+c0rg6YPg/wPdLBm4xA
+sk/qlJU5j4T4pt1WCeNQFPUbqRS3ta+AdMa95KpjUCFlQiAw03hvhkdY+nC
No5ASu/RDJ1j4D4bZsy5lrqOQKv4wi5/idQ+7GUf9/8/j0CiSeTkAhfivpe4
jbs=
                   "]], 
                  
                  LineBox[{{29.611314654588234`, 0.00017900841047381757`}, {
                   30.35134474951544, -0.00017244328955571636`}}], 
                  
                  LineBox[{{56.06557492587089, -0.00017244328955571636`}, {
                   58.78589981654573, 0.00017900841047381757`}}], 
                  
                  LineBox[{{110.02251419064865`, -0.00017244328955571636`}, {
                   115.99144080284637`, 0.00017900841047381757`}}], 
                  
                  LineBox[{{138.21898232434722`, 0.00017900841047381757`}, {
                   148.23663129801685`, -0.00017244328955571636`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828183#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00017244328955571636`, 
               0.00017900841047381757`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNV2c4FmwUfu29KTNbVLYo9Dy2lJVZ9iyVKFtRSlJSRIQiiahsQviepzJC
SvbeXnvv7evXfV3nus75ce5z7nNuQSdPE1cSAoEwSUYgfN9kOyUe8RS+CBdp
TLz0FN4LHUgXpXkKncqphUMSI+DYGd6FNLoIGHU+RKzB4Qmkvvr4182kxzAs
BT/ULw+Hf4dcys/+eAQ35Q4J3y8OgwMPAltUYh/CxBmFgRGHUNiSWpK7x/8A
dtQLsx5rDYGXiGHGx7bvwo/hX4Im1YKgsk6M8869QCjAzTNYVekHqz4Y6j/Z
9YYpDFRB7lq3IIe0Yk6J3A1Y5qTxkZbgBp/KkXS+23KC5iyjgmeNbOCyNeUP
SmFT2MCaVFqyoQV5Eu/QMZ0Qhlwt73oXLBUw2XPylMw+XRz7yiCAlM8EJ0dz
JRomW2K/2wrqOu42mE/au8laywH/HnvwJGbLEQ8HZvj3WDhjDlGfJEY7F+yQ
b9tdw+KKm4qpfbV9XXGWQxCbV6QrZtMoTcHWrthX4Yu0wKQLfuXqo7as6IKD
FCzs5w2ccauzYTK7vBNuikDzibMOuNHN4upnEnucdd9Pw37WGhdmeRnyfriI
bw5aqD9VMcesx6U/Mn+9gG/u8hzYmutjVx2fg3Ylbbzj/aG33k4VuxgttUpq
SOJ0ivjcrbo1pN+kQi2TIAZ3H5qRZZ9WgkeWT01cE1eHBqLOb9JUdSDcuGPd
3XQOBgiySO11G8KBmr/HHx67AMtFh4/eSjGBd0Q9lD/9NIWDTqoMexlmsFc8
VvyQsjmMC6gf9wkzhym3DXJsI8zhTy7H9w3nzeHClRsC1r/N4PafGnoNNjN4
m5z0pryQKYzN+37lwsEFuOOEv3HmG0PPu0rtST6GcH8+auu37nlYwrhJ2CHq
QqrQQMcb1lrwDI9V5ZViNfhLVySUdPs09Ojn3qB5IAfDCv7yGUiLweYT9lbW
DxnhtDJdduY6DSbe6bwxSymCT/1JaJ66LoMvNlnFfHRTxEvnpi3hjArOeSx3
VNBHDXO59avjTxr4sf06dWCcFo7cutBrJKuDZ8PZVHWCdLG0X8eEte9Z3H+3
/0I4rx42R9TF2V56OF2JezgmUA9LWs7Td8jr4VI//L0r/Sx2OWeoWvRXF1ty
9F8TrNTBaT0XGj3dtfGafdSNKxOauP3oMc3T8hp4wpqN76qFGnY9YTd8M08V
P2847iYUdAo/taWmHBFQwKnW+/SmltJ4cl5pNtZMDDPrKOpwfuTG+3dyrvrV
kGC3hIzJuQUCfIJX2hqUuGA+qS5TS4IIJA7728XxnYBn25AFa6Qs9Dp3RfNB
pQKMaRYPWUxQgvrMj4we8yhDk92KpHdQFbbufeqoJgFQZm8t9LM9hKdMdwuO
nFCDOVNMGjW+apDyo7qI4zM1qJp1rU3eRw0qhbssZB9Xg720K2J71yHc5eJ2
9DwOoGiE4cnXr1VhSEDMV8EqZchDEflT4+MpqB03cL7aXBGmldp0d/2Vh5ce
sTVQCMtCVdv7HqyfTsAHycr8IYNisJRWTIhrUwBuOo68XaM9BDXPi8bmOJPD
a/JrQf5JncjzdtT16lwaPHut8fp43WH8abpRrJ9TEPde8kxu2hHFa89Pzbre
P4ZZH/5YYXwrhUE56ehfUVm8xMawUoLl8NCL9QhhbgU8PfLVslbuJH6R4KF3
iFoRR1+3HTROVMTCooyX/McV8VHHe8N6i4p4pOzFH7UyRSw4I8r2UE0Rn1by
pxx+ehIbxP39gJIVsLtJRwjzbXms0XDqyllROXy5s1JcN10GNxbLTiZsSuIH
pE4Kja7HcGLQI/zfazE81S/Bb/VBCJvfblkPFebDNLmvcgzb2LGB9p8/OfPU
+Ccn3b25F4uIbyQxX0hhEcTkapAVM1DDKMmmYyVFbHAtOmkl84Ab5tHQxvPM
CsCEQOEMvUMi0MPz57m+dTFIkbvboBsuAYN9IvXIfhyHr9us78WkScJz0x42
kaLS8JHywDkjERn4XIKXTTdMBkoqnLma9EUGPiPQjP73DwO/uxd/fCQDKaS/
nG2TkIE3rx9Ss9SQhtVxQWw8A5LQmDCYHXziBHxErAVV8scgK73iw/bto9B0
NtVR8okoDLY47l0xLvRvPgR/N/EIQDGmFjdSJ26YHmQiIW7HDv/s9I6F3aGH
k88SZLdECFBRdqXbuW8AjBxfMLMKXkSttusJ9dTkuGLyzg0bZyacL+DG4czJ
gefVjvihY9w4Q9WJ9GjfEZz7ZWU/I1oQd0VN8PAHCGNVhxB7DQFR3JZP9zo+
TAyXPhzrvJ5xFI+uPSUfDBbHb1/4OvYySOBhD9tiLnMJ7ODXYchnJoFp7lpt
S9FLYEUSv2Hze+IYlr2LMcw/il9FLJ0JSftXhzBpsnhJFHe6eWQq9Apj8yIR
M5fjQjjHZdqHylgAZygY7tGl8OKrUaNfj9ty4otuIYcuTLPhK3HM/o4ZjJi7
TLzMQpcCl2VErad+2kBzfclSFEatiLJIOTMndAa88MIKqaMHwK/0w4O4fGr4
SPFBrlgoMxTqea5Y68EOL1BPXTFi4YQGA212vY48cOfwjeyIi0dg/AtP/fP+
AnDF9r8o6ShBGKiiU1t+SwgKh57qvMAnDMssnBo2ooXhPYaNRYNGYVjwVtEu
pkkYqvDxVLx5LQzjWjwfdssKw4nM8lrNl0KQ85uAp22NIJwPGTkvVicAFRlN
ioXV+GGSsTrZ5jteyKjh//004oJ31YffbCQfglkDOZ5V59jgl8dPyU8kM8GS
icGzLleo4Wt/8X5GGhIYQ744byq1As4pB1XWKjQDVVJTUbO/Y8jWvpippH4T
TbQkHvK5SIYFiO1Zkbs0+Ijml4xNfmZMviz7nw0NG7ZtRWJKRRxYzUXnwqHD
nPjaJfEzjtLcWLGbL8N5gwfHzgpFWF7nwyaDpqzuj4/gSyOChfX6/LhRqDAl
tpQfm42/iBqv48dtrRz9bff5sXt7JpPD2BG87Ti27bnCh0UH08N+FvLivtVh
7Q0xHqwrmMVraM6FLZWOkNVpHsYVY7/P7GyyY/3qRSnyIFb868go5VAWE17V
E1vSZ6fFQVfDVjLOkeNZ+3Xrk193kdKpxAs0JYtI/PYTuZovLSi5OKFdea8P
0M09Hy1YWAYXmPb3zmrtAxvuUwaPoshhm++4SnsBDQwlo4sev8MIw3KDznXe
ZIHZvZ8GpdzZ4JTXK6ozxzlgOc8L1e2Ph6D50S12PuJhqKI6+l2ghxOyOgs5
6IVzwRf/OR3+MMMF98dmqVmouCGrYhyHZA8XnM079NjxMhcsz3hb0prDCQ+f
TiiyKzoMBY8nHXty+xCE40JPA6k4YFli/odJOzZIw5s/w/qIBZ5aK241pmCC
MQZ5Kf5faOFAqamAowQlNDzK2GHsQQJ7KZ0OvgtvAXKrNpdb4fNgFX0wQw7t
4IJYjfEbhhaUIZrXfdJtFtVMlj2rebuBGLuO1mRaELDuR7L+gDRybP7Aivl0
FjVe+3pmIceWHhtROjQlfGXCkp8TQ8cvsWDFyPqgd2msWLySeYytmA3bdVHV
rj5lx7LW1w7einPgh8n8VZxPOHBLaooxbQ4H3q7VGqh9yYFfrtN801LnwKPv
P3ZyFbPjzP9a7X0X2DA9qZI45zorPisuaXP+FwsOy/ZbavdixrTad/HwMAN+
8/HwE5+XtHhU7Ia8ERUVNogyNpjXIsNp868uhubvow9pBR7cietI20YtVeTL
LKJ5ydPMLNOFer4Ubl7v+w7qO+g+zjSMAV4OKd0k62WQIJsSmkO9DbaIlFny
2QQ4+0zyUR8POWx9HSh07xwVbFTY8GSXoYXd5v6qPjX0MJ5OV/cyORPki2rS
7/Jmht4iv0NenGSBjgMGjU01LFDbVUI4WpgVflOZf2NjyArzxt0k9XVYoXaT
4ACBnhX2KrW8SE9lgVcFcuzGKFhg+w5V9PSZf/ph96c2N54RPvA2l7nlRA/5
IHPXAZEG2rCpayyJU0GOmuRLAfLkcEgowEGfkQQ+7nP35Q/bAfZXH+VfL1oF
wcr9Imm+M+Aw83Mpt4oeELvN2xam8gp1fLMw/GHWj4KiNBf2DWYRV+0Ldepv
qyhikM+omnEHhcd8MDa9T8Ck44ZQWIcM33lKoVX1hwKLz9At9rJTY5o58/A+
VlocvhVygrqaDr/BO1khIgyY5olxuaEsI65uD2y7MsmIJ/VOGRecZcKTbn5k
JCZM+N3Un7M8FEx4pVXuQa4zIy744iShf5MB5952CLeXosfuh/nkhNJocWGM
ne/zv9RYLF2w2QhT4oDZkMoCH3KsKHVlKHKDBHtFL5BcTtlH2W7qb4sot5B2
+KVqmlMriHz6tXxl2DTaqr6xkTTYh8JlXlJ+u1uI3tv/CIq/1Qp+vzJ1N39C
BOZerdurIYvAQmYyfY1kHWSNRBSKnt4B1astbb70BKjrk6Bsf44Uup0wC00z
Jod/1psUT3NTwlSJbuamNCq4rkQu3DhODWnDX/bZjNJAs0+/JvzjaSHJ9mzz
8D4t/B5tFSjFSwcHX+tofpunhc18/gI1/rSwq/C2h+xXGujPal1X9oUazm/o
DFbfpILE9oaAa/MU8BvzUrHNPz6X7u/8GNAihX+IBtLF4gRorcC+xN+wA15e
CD9NQbIBIqpZ0/+QLQOBGblgje9TgFWbzz791QA47MNc94SlCrym9i0VGqpF
iRNvlBrph5BP9sKrFb5ppC/uUqA+uYTK7qw7OIStozj+kmvKPdsouHz/c1zv
Pmp/uriVBElw6931izv9pDh+VKRsUYscH2VIvyVwiwL/1Doh22VPiT90KLex
MVHhsh0Vp/vBVNip4cSh0E9UuGozLEA6ngonnwh7ZqROhS9Hcgpa51Di2oiv
wLuPAq+zWU9aNZNjreqjIh5RZHg+jzv4FTcp5o3wPaTlT8BXtO1nss32EHeJ
iamM1xbyO2a/ZGayhtY/6D6YJSwhHr7sKXf2KSSnEie+Pj2ICh/dSsncakBX
8sQJn8uLQMLYrDenaCf4emNfLPT2GDgc/oRT6/AccHX1453LWgbtRFdF3Yh1
IE6g3owS3QYaZ5xB0K09wGs91t8hR4AcVw6mnYNJYGViUaNaHCl8zqhxvsef
DDY+39dUECaHhFqRtrk4cjgtl9uq2UQOB47tvWH5h0auHUJ//8XLur9axYqQ
Q9pxcUrKYDLIWI+mnN+RwrcMYmFeL0mgzJcBp4BLBGho1alweXIPPFNM005o
3gZWi1EnEv03AOGHAYfA2L97G3n97A3BReD0pkjCymcSqC/MJRd5DYFCeuKI
T9ZfcOux8s3MAn9wIYBEeDyuCUn4pVCUZw2i8JZ30X3hEyg/U83TemYeDab/
Sk9dW0ZeP0Za4pXXEVksfSOb6hbyPFec6rK8g2q1/cyLLPaR2/NfE09lCbj5
VAidKQ0JbrAUH6/MJ8EEnmIbezFSzJ0TcNL6KinuDKl3sQ0kxSPOfV0pFqTY
oOhh3QgJKb4tYhnpHUSCJ0XzGY7UEfAPuoIvln8O0NdmifHSsj2U9vPR92Lz
HaSoH+x7I3sTzVxmMimqXkOUd+0OrXxYRu/+Ojw8XTaPqFSqHNl7J9BsdkRE
ff0QqoeNWEKmFeWvgs+iTYVIHlUMeHtXARfq5A8kS53AIyIt6CdxBGidlTnF
ETMFHE7YhLyfWQDmDnizc3EZZHbcoDMrXANMo0mt4vKbIM9PyHXDfRuYZixQ
SFvtgqd1tJ3c63tARN+Sfk71ALASnjWOchAgjSfgd3QgQC9nzU2/YAJ8djer
9tgNAnT0b1jdkybAsPAJ1c5nB2BVhvqg/vI++M1x1zBxfhdoM2gdDEnsAO93
V/0ojmyBKTKdYOHmdaBWwKK6r7cKbNqvRM9ELYF90qeLweZzIGBB4PVl7Qkg
wbYimEkYBhwZ79kjZdvBhI7umNjdbyA2869CdX0hWrvMEZ90rxmRdWerfqAY
QJ4XZC5dZSGi1/4cera908hCduvlJ/FFtKB7WD2ocBk5ZO9URJCvoYG5P/bD
nBvoSJjrOJjeRM7XIoKFfLZRxiVCaUfhDjp62ED59vtdtFvySYRSaw9VFs3R
mMTuoeNZX6M4Xuwhv7GFtIkze8h0oc5A5fUueljgpWL1eQeVuOju2tzaRhM/
soUFlzaR1BtLuzPSGwixHKSvyKyhfgePYsHdZVRDYbwp/WoRtV2fkd9nmUW1
VwKbsgrGUTLjdEIE7zBqXPZTf1zdgYBd8jrhfC36sT75fis4BKwAVcH30nWA
RodOONWvE1DWeZ1uUhsGNgpGDS+fjQM175qB0NgZ0PHVoTRbaBHEao49vHJ+
GXzdumRiC1bBtNubl3Hra6CoKBR/89wAhuvSkxofNoHuhsl11VdbwEDWODRa
bRucX6rHU6nbgMmcyaKydBvIKdXr6oRtA2P/487PaLfBsZvVotZ6W4BKtSRa
UWsTdMIMUpv9dZC6MC5TdGcNSHx3t6v6tgLGFINXMlqWwA/LDeWFGwvAWDVQ
M3piGsQc1Rdm5R8HNo0KQhuCw4AQ+eCJ724n4D7D5/yZ+hdIIsSL7VdlglF5
SX1zcYRKfh4dqRhvRpFG5Yq2JH3ISftGltPgCJJqvdfu+2ACDUsOnXjTP4Ok
6HQvOxEX0GmK58MZP5fQ9F5h5LrbCrJyknZ50LKKWIVUc34S1hFvKuWF2cV1
xD6wGFuduoESP3mMdzJuIv2ZwBpn5U30OGMhw0Z4E9kOPZhxb9hAq080l5Zk
NpDLkwWpjYvrKNfa/Km09hpSkZldnN1cQZQjDuBQwDJyWxcp4Pm5iCYEybta
2+fQgs6zu6XNUyiD/XmJ+TMisvulLovZh5FhRBITYaoLSbA9G1om/kGW6kQt
70elKNPDu4j1UQ7wPNw1Pm/aALSvW1Jr3ewAW6o1GsnXBkGiGHjjTxgDndtv
I6UYJ8FiaEQ7ap0Bt79TfNXTXQDOXRa7C9JLYJouwKExYhnEmDq3tOSvgM/l
NJWyb1fBpb+NC0Wma0A0w6GipnENRM1cVQ6gWQdkgQ9HHvxDNeIZXc3fayBm
+DpXhfkakFxnvhaZvgqa3+edWa1YAblUnverUpaB1tA3fwvjJdDH+Nid4+MC
GG8oT79iPwvmi9rK+X5Pgqimlayru2OgJUrFjHNzCDiP3tAfj+8G0/lHSdXJ
m8F/EcWJDKnfgPZB/v4nrzsoL+9Uxz3lH4jYcHc2/0Mzes98UZNkpRsFGShJ
LqwNIfPM6Vd7/40hI7rnfum6kyjorupo3JMZ1Ll66pf5nXkkTHowlxmxiOQ/
5Vz3zVpCobZzz/VfLqNLvzWFV86voNHEiuZvv1fQwbOQ32mcqyhFTGqU78Qq
orjzesKQehW5JzqFT+WsIPbLDUEnj6ygwcMMirTWy6hvUmy77vISyjtnm2Ku
tYgCL21W88zPofveGdz3KGZQHL1Po3LnBCqRrrS47P7P/5EcMyz4M4S6d6mE
o5l70Gb/qRQP3RYkMET3RTmvGskrM3pKlaWhtyOBjx+8KAFXy12NE2l+gUPV
qhoDCu1AKnver+ttH1gVDrk/2zUMXm2/yqc8QQTvraSNvdQmAU2Q3o8jjDNg
MEnjTN2zOTDUXRRA+3UBEL8seJyqWQRDfyNpftxdAu8GHjtco1oGlCEGlSR2
yyCe5mfryP1lcFelon7F658eePpkZ8guAyZmtTvLaAmQS6l9vcS7BHS21xN6
zy+CyWvX3hLfzgPtWmNdbstZsOSiEUdRPQWin0S4cs2Pgzk/pzTv/lHQtSh0
7GfSEOBQfnrvkV3Pv3z3uJWzraBbR6+UlaUOpDnx75rWFAJ/Sn3eZs0MNNkp
Fxk7XIUmtvMDf7E1o/5rTOfl9juR3m/LisvJA+j733y1Ps8RFKkQ81PHiojG
qm4u6FBOouzm6Aai+zRiDXwTvhI+i+SdutQOm8yj/Gnt6321C+j4W6kRu1uL
iCWBoiW+eRHd3J1vMiBbQhTJPV9VKJfQB+WxuISeRXQ+7LMez/1FNKL/fXlu
bQHFWDFJ58bOo+Abq87Fg7PovydcnIcHp1HxUods6atJtBLn2SXFPI5OpRh4
I6NR5PbzzZ6S3RAi7a5ubg7/x+/1d4kUbG1ovZcynn6oAeWa0PC2Vpcjkwn7
6Z4eC2An0MF9waICfLRf1Di+1ACaTMGt4blW0PR9XppJ5F+/lCzJzlAMgTO9
V5NK6kZAnQLsEDMnAuahaJWh9xNA8k0LGs+dAjurjJIHN2cAYUzOq5I4C3ZK
br6OoJkHaQPlt0u754ElXuwIMFsAr2r5eRYDFkCQPv/d4//0YEa9Ik3k2zxY
sw4rrSTOgcvlx0VKymeBV0Jj12eNGdBfcciK8sEUKOVl+DwfPAHsU6aUoSoR
VG43kXpXjYAuo69ksdxDQN3JplArpgewx+zIsua2gfZ0j9lN2d8gMjCKt+rn
N3Aoh/I69UEqqGyo4NYPz0ejF0kDzqVWo+fvPu853PiL7vy3x0at1YF26E15
DTp6UTzXoaDMiCF0Wlc/4sXWCOr4c5w9WJaILC8uDKSemEBeM5ucw8RJxLf3
y73v4jSKVXpMuXF/Bv2Xefums90sqq5zkJWYnUV0erJ8Esfm0ABHghE/5xyK
76n8nVYyixjlTVuFqGaR4vuz7cN0M8jPKO7c/M8pNKKUf4ELTiLfbwOGM77j
KEVhOz3+1hjaCdHJm1QaQQlV9EZeKYNoYonPKD+oB2UIXVpe42xHbzqzs96S
NyGgTOIdFl2F9Mnpxsnb81D5qPum5LVkEHi7KT7AA4F7OnV8yk8aAIP8fND5
Hy3g5VPOrwMUXaDywEj8DEk/yE+xXHvROgTUFk+QZKyNgD4xbxO14THwhcZe
1u3FOGD55OVeTzIJ3oUWmldLTYEIwdA6X45pYHOZXAgVTYOqk948OtQz4HfG
yp37rDMAHbAn57VMg/fO5lXdetNgJ7btQlPgFMCuCuP8rpOA9YWeJxvTBDAx
+2SReocIGFrP9djnjYKb9cJlIXnDYOrzy/SbZIOAdKh0xuViD+gvP0c8uNYO
OvT73Kj1/oJPHFLaj0lqweJ3LVa10BJAZvyMem/nOpg6jpprPxej02sN5YHL
1WiXwb+OUq8JGenRSv5NaUNRPevZ1Vbd6O0R/8LKX/3I2oOKbHN5CKW9Ollz
tmkEyb07qF7zHUMDd0/4VI4QUd9Hnjt7LBNo571XVw1hEvESCvg7sidRwBuJ
msx/vma/QvP6TaUptCbtekyYYwqx/XezxTN3Er02O3fsG/kkunRGR0meewIx
Z5a/jl8iInk3BkG752PIIDnoUeLqCKIXuVM4KT6M3v+63dznMIA4difNQwV7
0MOLFr0Vb9uRRfnN1yKTf9HJ+p02zFSH6AUSabBsJQoO9EwO5U1F5UNSE25H
s8DF5AUW0T0MpvcItOsV9WC9dQ21xTaDxC90+Ch7B4gJGtQdN+kBAwIdlVVa
A+Axu6b+x4UhgFHtQlTkCBiYXB4lro4CJnm7T0yiRDAVX2zJxD0O8M80qsjm
cdAP+sM69SbALMPEkeX7E+DkOdPoyMAJQOHnzEEtOwEYxZhifD6OA8eyt6OR
Y0Rg28PkXDA2BkTSVT8NZf/TY6bUgly1EfBw5IuDcvoQmM+JsdMs6weXou1X
Jnu6QbZ6kZV+RTsImFeZ3XVpBtoFFTYidfWgFfd4sUd8A/3hfOdPZ2SDV1Pk
x9TIYhBMdJ1OkitF8TW8pLM/q9G5GSmCXdFvZPREt7BOsBVR+pRpVct0og5S
695fOz1oY8vXtSlgALGuLCUZNQ2hR8uP6B/IjaCIzlGza06jSF1or4PMZgwZ
Jsh8GOYlosHrX24rvCeiDkaVpT9zRNSzS0svvktElaW/F63/EJG+7cTIMVci
YmqWurf+fQx5DN3V+G98FB2fPXOVvWMEralcUxaIHUZjAittEYJDyCpWVWGF
th/d0qz5QBrejRhopq/JfW9H2i3uDVzVzaiTbC++5OQvRGL+2Jku7QcaFbeY
aqovQptkOy5xrveR0umk+1s1uYDlvQT5J6tvIHtO7Una7zrASXnX8WfgX1BU
qndfzboNKLb0b3QRuoDdj4r9Xode0L3T5G3rNQCevtTIzoofAtFvq64a1wwD
qiMm8MiPEfBJdWoyLuLf3nGo/GjkHQNm3qedPfzHwJD2x2ScOAYYmm3a34aO
gW+GCgWPT46BEvT4aGT+KHC5zTtnvD4CLP/SmzDQjIDcwDtvQmaGwPCy61S7
+iBQz/uySmXVB3aeVqoMHe0GOu1/yq4Wt4OqRd8DS5oW0KQkebjLsRH8ekBx
Me96NYCo1P5eZBmQCGykXeZPBbesi87MDqci1zhHOYX6MpTcnmclfLkacZlN
pLoebUSjplC+ov7f341H6E6eb0dGoUEF1c+7kLiwduj3p71IWDC9UV95ACkH
rykU6Q2h1QTinXtnhxHpH608ssMj6H+rcd6A
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.8847825092124777`*^9},
 CellLabel->
  "Out[612]=",ExpressionUUID->"6648e69d-28db-4459-ad5b-75114b6ce1bf"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{135.798282093093, 0.00017667838859122942`}, {
                   136.62145931312745`, 0.00016643522773614943`}, {
                   147.90574806087213`, -0.00017454873267488198`}}], 
                  
                  LineBox[{{160.57452957426486`, -0.00017454873267488198`}, {
                   170.46784494870712`, 0.000017420399424024084`}, {
                   183.03759877219323`, 0.00017667838859122942`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAvUGY8BGxZ0At/EPNVygnP5CCM8ip
YGlAAKfRMx2jE79taNOXK5BrQGni+KgLmyG/8kn33zyabUB2OUnqubQcPx+Q
QOsj0G9A6GbzrYvMDT/Pz6Hu2P1wQDCk3OK6jh2/Y1Xlo+cAckDIyMDB2hLY
vkuNuzrhGXNArvweZxVuFz8Hw9ONIiB0QAYXXGy5yP++F6t+wk48dUBUNosK
s54Ov9B3hmpOU3ZAD8OwGclxDD9dQtDOlVd3QA3m3oa/Rv8+Pr+sFMhxeEAH
WKDJSe4Mv/I5yxZCeXlAKsAQWlLmzL5QmUaMj3t6QIGjEHOLSQk/AqtU48eT
e0AxAAE48njtvoe6pPZHmXxArZZM/v92A79gfIfrsrR9QFa9YCNGavs+4yLH
U/HKfkC/RmYMk1z0PjnHSHh3zn9A4rmeKHPF/77xji4/9HOAQJJ6sJhD4Na+
MLlZoFD3gECwa9bcxu3+PsRVM7sWeIFANJKfziFDxL6CS9ZG0gOCQASH+FXJ
1Pm+KkCasDGGgkCIdqBcL9/nPvyNJ4uGE4NA6+3YhBrO8T632tVDf5eDQG6i
+JxVTfK+x5kytuEYhEDqn/q/baTmvgGyWJk5pYRAOZd0fz4R9D4lyZ9aNSiF
QAwoy/sbWsU+czmwjCa2hUDvQYqgG6HyvhYcb3iBQYZA0qHYu5zp2z6i/U5C
gMOGQNycLqBqku0+WDj4fHRQh0CHtR2v3l/nvvhxwpUM1IdA8PVKcIA04r7t
HTtoDlWIQOzk68ytHuo+DCN9qwXhiEBitSR0eVTMPhUn4MygY4lAzlib8RhB
675IhAxfMfGJQEMy4Il1Q8E+z1Pnqit8ikBe2AGHFRTnPkAi49TJ/YpAy6mF
DUSR2L7bSahvXYqLQAaltnvUOOC+YHCO6JQNjEDVj1oGgBLiPg/wPdLBm4xA
HMZVJ973zD4T4pt1WCeNQFEqwo1OlOS+AdMa95KpjUC4Pi5SE5CYPhkdY+nC
No5AprvGWntG4j4bZsy5lrqOQMY6ygzqitC+7GUf9/8/j0A1NLf2XdzcviTe
jEU=
                   "]], 
                  
                  LineBox[{{29.452085551381217`, 0.00017667838859122942`}, {
                   30.254473170486477`, -0.00017454873267488198`}}], 
                  
                  LineBox[{{55.360013124887594`, -0.00017454873267488198`}, {
                   58.43387332000294, 0.00017667838859122942`}}], 
                  
                  LineBox[{{80.24971304491409, 0.00017667838859122942`}, {
                   84.50138186215766, -0.00017454873267488198`}}], 
                  
                  LineBox[{{109.0743119046838, -0.00017454873267488198`}, {
                   115.46067524658542`, 0.00017667838859122942`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828244#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00017454873267488198`, 
               0.00017667838859122942`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{135.798282093093, 0.00017667838859122942`}, {
                   136.62145931312745`, 0.00016643522773614943`}, {
                   147.90574806087213`, -0.00017454873267488198`}}], 
                  
                  LineBox[{{160.57452957426486`, -0.00017454873267488198`}, {
                   170.46784494870712`, 0.000017420399424024084`}, {
                   183.03759877219323`, 0.00017667838859122942`}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAvUGY8BGxZ0At/EPNVygnP5CCM8ip
YGlAAKfRMx2jE79taNOXK5BrQGni+KgLmyG/8kn33zyabUB2OUnqubQcPx+Q
QOsj0G9A6GbzrYvMDT/Pz6Hu2P1wQDCk3OK6jh2/Y1Xlo+cAckDIyMDB2hLY
vkuNuzrhGXNArvweZxVuFz8Hw9ONIiB0QAYXXGy5yP++F6t+wk48dUBUNosK
s54Ov9B3hmpOU3ZAD8OwGclxDD9dQtDOlVd3QA3m3oa/Rv8+Pr+sFMhxeEAH
WKDJSe4Mv/I5yxZCeXlAKsAQWlLmzL5QmUaMj3t6QIGjEHOLSQk/AqtU48eT
e0AxAAE48njtvoe6pPZHmXxArZZM/v92A79gfIfrsrR9QFa9YCNGavs+4yLH
U/HKfkC/RmYMk1z0PjnHSHh3zn9A4rmeKHPF/77xji4/9HOAQJJ6sJhD4Na+
MLlZoFD3gECwa9bcxu3+PsRVM7sWeIFANJKfziFDxL6CS9ZG0gOCQASH+FXJ
1Pm+KkCasDGGgkCIdqBcL9/nPvyNJ4uGE4NA6+3YhBrO8T632tVDf5eDQG6i
+JxVTfK+x5kytuEYhEDqn/q/baTmvgGyWJk5pYRAOZd0fz4R9D4lyZ9aNSiF
QAwoy/sbWsU+czmwjCa2hUDvQYqgG6HyvhYcb3iBQYZA0qHYu5zp2z6i/U5C
gMOGQNycLqBqku0+WDj4fHRQh0CHtR2v3l/nvvhxwpUM1IdA8PVKcIA04r7t
HTtoDlWIQOzk68ytHuo+DCN9qwXhiEBitSR0eVTMPhUn4MygY4lAzlib8RhB
675IhAxfMfGJQEMy4Il1Q8E+z1Pnqit8ikBe2AGHFRTnPkAi49TJ/YpAy6mF
DUSR2L7bSahvXYqLQAaltnvUOOC+YHCO6JQNjEDVj1oGgBLiPg/wPdLBm4xA
HMZVJ973zD4T4pt1WCeNQFEqwo1OlOS+AdMa95KpjUC4Pi5SE5CYPhkdY+nC
No5AprvGWntG4j4bZsy5lrqOQMY6ygzqitC+7GUf9/8/j0A1NLf2XdzcviTe
jEU=
                   "]], 
                  
                  LineBox[{{29.452085551381217`, 0.00017667838859122942`}, {
                   30.254473170486477`, -0.00017454873267488198`}}], 
                  
                  LineBox[{{55.360013124887594`, -0.00017454873267488198`}, {
                   58.43387332000294, 0.00017667838859122942`}}], 
                  
                  LineBox[{{80.24971304491409, 0.00017667838859122942`}, {
                   84.50138186215766, -0.00017454873267488198`}}], 
                  
                  LineBox[{{109.0743119046838, -0.00017454873267488198`}, {
                   115.46067524658542`, 0.00017667838859122942`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828244#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00017454873267488198`, 
               0.00017667838859122942`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNl3c8FW4Uxu11kZW9VQplhoz3RUZGGSUZISNFIrIqNChFJKEfUlHIrIgi
7xsykpmV7eJa17w20a8/z/nrfD7f8zznORIuPlbu1FRUVFO0VFRHnfIlhx49
hNxLKnqc5x/CK+oyS/KcD+G8V/jfiewo+LqJIWG/ZBR0uOl0WfDOA8hTreei
UHcfzp2+58iyHAlpcx3vhjFHwmKFVvITQgTs17Be8N6+C8en9i+49t+Bumpd
xIGC2zA/AWsVzYTBpqfDjNWXbkEx/QJpwf4QeGRkQ3rEMAiuRlPS5T9ch+1u
zjwsYn6wySJ49pmMD3zAnhympOgJTST+Eqvt3KF0aMifmCJn+PJ8FY331XNQ
0ITo2zZqDgPdU6eH2yGcA/cPfz5FBS0ua1AyvI/hvR/1H2hoGmNDvlc5NsAK
i08b2ocfs8FmcI7xfYw93ubQuqeo5oS/0tK9WhW+gNVJ+c3vTF3wy++puQWH
XDHTp67G3C+uOMfAzW9+1xVf62Kosttxxb3XK2vP/usrpt8rrlRzxfQvl32b
Q13wgPGRrzzxF7BFlYXQhSBnzM3N9crW2xFPenDQC+baY7rwK7k6H87h0q/X
RP/EWuPAhRMcZuZWOG8wdLZ2+yQONS1+zG1mhKMLlP8S3urg3R9jeUyqKtj9
Lv3AE0ZRHFwza1tXyQWti95Q2wIFKCaveD+bXRPK/DzezxOhBw+95EoJYjGC
MoKdD29wmcKTvRUVhomnoPaXoUTmegsoNFG3vvbHErL58Hn3kK2gtlH+ICXh
NJSgXT/psnYaSh9pkafdewYSy9KEL1NOw77uKsWW+NNwEOgZ06xbwSekGGPb
A1aw/jV7/fN9lvDAtKVr45w5dHeofXze4CSMb0V/texNoN27b04MmkYw8WMm
S9jicbj5OkLd64EOjFD1UyXzasAOQu0jZg5laPLBNuK++EH4m3j3TftHHth5
N6WAxmsDiZSsZmkOiuGmrYhhvoNyOIzFKM67WRkfjtjrwcN7DH+f2BZhImpj
A1qGjAIuXexq0iBqOaeH+TaeVjmH6uOWVVm/hm8GOLmF3sez1BBbXzVzFnA0
wit/rv2J+2yEm5Z+X7lYb4RvOt99S//YCJtx6k08ZzXCV7NH03eMDfFX5b6l
D8YGeEKqhKuaQx+LqMuikjd6eNJJgCWIoIvfF3YkxiUBnP/UIMmgSwNTuIfF
zo2oYsOHX+pUa5VwnsnOpdeSh7G9o67kQOY+fP5sXKqcBT/uDrp5z/b4Lsrn
lbN+FUMNpx9L76eK4odfK/e0M9VKwYc9JNWmDhnY5Kglc7NQAapZPv7UnqMM
tUgECtlKFTZ3MjxZyFKHNwyD5O+80oAs3r23vLW0YIJ+8Jl3wdqwxuzU21Nn
AJx3GT2a1AogyBq53kIGUD5vONI8D8BmvvjEPVwAFtxIUxGT0oYz8mMJQuOa
kI04HTFgpwHLz/z0n3isDt/Jsi9aRajCI3PtOp8NVGDHk9xTHH2K0E/rpB1I
OAKhGRIoPnYInnU5Wp70WQrmUwnd39YVhotJUavxjJzwGklCqCx6HSzadt89
rrCCpvWi+ZdP7vnHi4aZv10AU8pkGAfLJHD/l81S1aMHsEvhm0Op1jI41TL5
P8c9R7BWqhezSIECfjN3bDifTwl/kNS+UKyvjM89s3IwVFLBPUxrbtrDKrg6
Sl9fwfQoBjPBZ/0Dj2LNOUDhdDmKV0M2Vur2HMVyEe7Plu+o4EVf6pRnFco4
R7NdXvWbEnbbNLg8kaCI2RQ1Px3QVMC33KdbPwccxpD+reAdBRn88H3ApfQP
B3BGxlrDFTopLHUu6Bv3ZVFMV5ym657Ki83s4siRV9mwAOdMr6f5NuIquEWI
oW8FTysX/AYPU0PJyU1ewuQeSH2Qh1Nrixem/elS//ZcBO6TeaAgPSwBCxny
ieSCfbBi1yyDU0kaLrT6q624H4Jv6naPUvRl4fEfMtev/5SD1/s2vChrh6FT
w+WE5dojkDn5SxmbujzcfyzDd+SkPHxyULqBjVke8kT5aChcOQLP+H1Ua7lx
GH7ykjxnekwOts6yBvXky8C8kd15+/6D8O3uWxWPnwfgoqsVJ1/EPrjD5/GN
mk0SHnO+cFlrQBT+EtlJsnESgElZOxeVS7jh/lFm5S89BFhssMBXcYQKRu41
feKvNQqKHmq/rH9ORuOmf23tOWlw67TN7FoHK55eGRjNi+LGe7Q1rTxt+DE0
dXWnaxTGiuYKNjWe4njjSWGBjLokfsrWdlb8hxQWpFKOMRHcj0m7vMHchw7g
j+Se1vzlA5ijhFOJM0Qa//fWwZz2izS+rBE6w1IijVNOx1b7eEnjrC+EcCXi
AVzkkF1Oy38AZ1v6nTrGvR8zWHDQVndL4R4953Y+D0nMFac6rPBDHDfYD7cM
0Yli+dbQUAlFQTwIzlioSfHiZ0rALm2SExd5ED/J8RL+zRdxVewoDc4rf1Xd
GE1BP4bGlV7dzUFj7Gclp8oXga8duOM1QgXLbw7b1OxhhgsJdOW/PTlgREtH
0QY7D9wajdDa9uSDpOxkEBMoCKdb9zKdlxGBTGphISq3xaA5+dhM6Bdx2P7M
md8tXAKe+T173JdDEorPG8uMeEnCagZJj+h4SRh9utGDeEcScmbLVpG0JSGB
SLUpUy8B9RZhz08xCfghQOWcq4k4vHf8YinDM1Eo3PnW9oy+MNRouSV8tUAA
ztUPlFf08MLvY+OMKk3cUK4yM0v3GQcczuIaOOnPAi0axJ9Wx9DCnDmVeEWu
TYB6vjXKUkhAe3VVXOxUA+rb/LQq07qIgrFqq6LiLvI9hXJ/RNJj5Utqw0zp
BPyJ+31KcQ4HnpANDsg6wY2pDdzLTuXsxVcCbeTJVXxYOTCg+dkTAbwmayVi
zCGEP9JJiFC0hXGeoP5FLz4RvL3OmhmRKoJ9nOitqRtFcPfulbXETBE8gsqi
Rg+J4PdbeTmeTsKYCakaRRsJYemVvXJXJwSwnDmD97YOP/50TJr5hwMv3pdb
OsCkw4PXZfn2ByxxYu6HQa+CFtmx7TXJ3PYyZhz1PCbn5Qk6/Jsql7HLfQfl
2Cy6DLJRUNJ8zY1r2X2oaZvn6mTyL8BDy+OnHLEAhs/YrK1GbwFplsMlB/1p
4HTMQeo6O0Z41mjo0OoCAbaZUz4GcHPAQ3dbmB5scUIq5lL++znckLKaS3dD
YC9sOm53UtKEF2bSdfntqPHBoBfMV04S+eDE3OaCgAE/XJXA8Qqu/NDY6lKp
pBY//LSQeE23nQ869FraJ+/jgy/An8ARdV7Y5yBz4jbnXggEN1UDP3LDUZq4
yxbiXDCBcFJLxJkDXl4jsZTNs8Lb4sHZHT1MUO20bfH0Azpozz9wrZFABaXY
XkQpE9dAOy8t5TU7GdSfi3YMeNoGVF91GTZ/6ET253sOjmfOIs/8i98rlNaR
LOeFqK+lf9Hyr5225DFa3O1xw807mxHb0SfqSooQcGWrfQhFkx1zj4ke4gnj
wCzbrSA5jxN3P88Nac3kwqnfJWWy3bjxyfya4Xez3Hj++IsHDJo8uKBLF8WZ
8+Do41u25TI8OCexWDWlmRs3Heu3HDzGjYlFAydqr3HhW0nylmLBnJii1/Vd
w4IDxw+H1XzdZsO39XMrglkIOIBBZ6qxixHTth7cF+hBh3Xry1KrflBhm7T9
Op/Yt5DX1Thfr7MU1Dj9R6ySmoQOOW5rV0vWIpaRPzlybzqBxs06PpXMacB8
t8rthM4KuOCQWz3lvA1k3a+sK3BQQ6ejC/d8Vekg0XcT0woxQqUlVsNHpczQ
PVarNYKGFa5l3m9022SDZNrvMv8l7YEyGZ3SZl4c0HvH6qZ/Pwe8o3WFh12I
EyYVDHEuHeKEV35aSNxg4oQbLo+2Y8o44DqXsX+cOgcc69Q0bRDcA3c1q77W
+7LB7Xtmj/OCCbBd7NFskzozlHAOYdL6zAAliNmXcndpYXpR2ffTPNQQsYod
/Un7B5zuTE36+WoV8Prxibvsmweur/MvJHeNAIvUe19HeiqAlws4NxTdgYRt
ew6ebZhAVkX3+jVKlpD36lf93ap1lHAg1185dAc9Jt4Ssvaixm6qmvjoCC2+
UEC+Pc/LgK8+7nVaZGbChxUP0gWXMGPhzsSZ51wE/N2/R8RQghUz/W33OjfE
is9xCbA+PcGGOf4Yl7x0YsMWnbsifPvY8GSiCLN/Miu2OyrWxPqVgF973X7E
nciCR2pa5e8cYMbRkrmn2QIYcbPBBQXR+/RYf2Gxr8yJFj/SPr5wmYkaM5zm
bA1i30E1d3g/KNSvo222b+lXTShoezddQ9xiGkl1+Ft3fOtHLRWlEVSKxajo
8q0Nrp120LYyHTJ7eBzEXaz5ZsC8AMKevbkZ8WUFvGM9Sk7O3gSv9S+oVuvu
AgP9To9NbWo49Hrn5Ov9tPBijMcXxg46ON7/dZpZjwEe3Cox1fZhhHk92hrr
Nkzw/PvTyVZbTPBSppGSsjUzVCG4rRteYoYHshjJdCrM0GDRfePdFybYyUrI
UN5mhNsaf7LPbTPAyPqar+GV9LDLus+jxIAOnmh+rZ7ynAbKMN665lhBBW+z
/cy38NgBwYrFqRx7NsFHWiVC040VYL1WpVXmswA4O49kr2aTQMWVuvB713sA
o1C22EHZfKBv+eporEEbuqlW/Kygj4iSraMd9EzI6P72otGkLAVVCITyXg9Y
Q07n4yJsA7fQi0xPH/Z9uyhPRn4topwKv774usZbgQYD5yFRcV9a3BdgQpMS
SIfpfbR7wnXpsZfb2iOJVnpc+fRURagoA06hLV3Tk2fAHnGuHK3UDHgjdSlW
LpkeWyZ06LAv0WErOz7GH5x0uCCkhGz6hwbH3ld+wVtCjdXyiryPaFNhoobo
vJT6DrImPeC2ydtElpy9wpFDq+iJ3XWW3wNLiMHFSWfalYxSxv1/f+gYRUxp
SuFTep0oWatS+7hDFjLpKepPFmoGNaOX/UefD4PRckOxi9xTIDz+jX0yzSJg
PnGn9lDdMiAlPgu2M1kH37WaeUYit8CnUZd+c98d0KqrlS5ATQVJEd+NHgtS
w410N7duahpISlSi7Suhgc/+1F3hVqKFq+ymwsnBtNDK5wITTxQtLDVe0exw
poUSja9qPtHSwlEK26aCHw1MubdwzLjwn1/8+CwcXU4F1+Z5/RhU/gKJXhfN
y6/+gGtX6yWFqzcBV3lw6NfXa6BPvGfg8YllcFE0oLPy9gIQ2vdkqffAFNir
2aH9+PkI+MnNn1/a3Q56ktQZBMwzgawHQ/XZzh+oTThzcXCrH60xVbudMyeh
yZrDVr/OzqKy3NkKz9tLiPtvyFL1ixUk+PTlPsWb6ygyFKeqcW6hZ7rS3Uds
/6DRn1WOZ0/uonelnlujU3/Rl+wlRvpnVLhksYiPno4aq3ZOnX5+nBp3myhw
XLWixtpGvoJIgRrfdpdjNxqmwm523iqmTlT4cXf7Op/7X1T45qliVOkOulW2
H+l83kZ01mwDV303UazIVjTVxBryVKFujBNfQSPcA5xmB5dQwqv14e+EWcRn
HvKjIYKElLcJD8rSBpG9Yoe99XwrInpWH/Pefo0IckxuMg11IPaOVERg829A
H/pRc5A8Crp/Gs2nyE8DpoxC/3XxBXC37ojorg0FzA2FVi1NrIDs885xL1XX
wfAlcjab7iYoBX5J7NTbIFS3S+mU3x+gMMXN7hC/A4QekSyL7XdBJ5UjzbfW
XUAxpX9OnN0FdGzqi57FuyD+GNt/L/ftAn4Lo8hCvR1Q3byomcvxB9gAgfSw
p1vgUVG263jTBkBy5oFWtWvAWtrKZu7OCkBP+6uuM1OA6HTAbae6+X/cfAcK
D0+DthmSKbXtGKBc1jnP/bEPXNeJcLTabgL0xR7H7n15Dd5KVOUv7NSglZeR
MoM03eiavEhPXu8I+uTr4aIUPIG8aVYIuJmM2LhfrWy5L6L7Zp3m3z9SkLg+
4Ztc/QpKqah62PxiDdnXpo2tKm6gXPbIL6Xhm4invA/O3ttCWb/36RhobaOe
q/x7TmRvo7bWK5LW37fRsn/q8eyEbRRdetLVkncbDbc38Gmc2kLFi2w9PGAT
NRHjaG2n15Gcku6U6pk19NxPv+7RvRV0/U6WUMstCrrorWTOaLiIlJqlx3x+
klEyr2xcQu0EonuRmLMaRUT1Hy5fkzT+jZ6yMZC70xtR9EJOERLJQO5c147z
BlaBWoGZ8yaxHaDem+qWBP8QmFrpcusWGQfbVLGrefNTQL624tCza3Mgy4L+
o07zImgMutusUUQBXW05Ma22KyDN/cH454ZVcL2P1t1xYw2IUr1kHyKtg4eE
ryLccRsgrIvzawplA+TbD8R2//PT0w6uonMTGyCz/pJAQ/AGkJHavcVRvw6q
P7MUHexcAxfj3V/uy1wFE1WI6ZvaClBdSluwSqKA0XXnu99rFoEYgUC7+WgO
qA/rlmbpTYMKE1oLmopxQGXJE8RHPQKE31RPtOp3A7qTabp7ixsARcJtf/po
BvgV8Ge/vz1Cbh2Ham3d2tGA6DoX21IfosFc3Bc4R1HScccKVd8JZFHgI6X+
cAb1xCRQXbGcRyGTHRIXhxfREYXpowpuFNTUzuMsU7yMzpoECDL+WEGyUMtd
JHMVRYkAMR+4hgzgRnBB2hp6Pd4arFm+hh7izzFHnq8hwtSwzEm1NWRcey6K
8N8q2mRi97uPV1Blo5XtrYJlJGtsmat/kYK6KhUe1M4tIi8BWfa2J/OI8S6f
Ou/aDIr0JsbM7J1E254s4Y+2R9F2V7HIA/dBdPXzKndmXCdK5CzRWBCuR3vH
BUzE+jPRowvFLEinHDiP5YjKr7WAsMxBrXy53+CHx4zafcMR0HA+/lmR3jiY
3Z2pYKKaAk1CsyDqOhkQ3E4G/k2aBzzHeOz/K1oEsSG/7NdHl0Baetvtx6MU
sFS1/mQ8bxl87F88Ia69ArbWZBNpE1cAW1Y6y/LHFSAjLJKymrQCvodLhhfr
roA7HN99/EuWgZixHT/vEgVo9+6l7NlaAjsZ8lEXfi0CQ3HtB8Lb88ALXfgo
9ZcMVN4TlnO+TIFtn1M/NVVIQFqoUmhPCBHQl5tGl+3vBxuNo4QIgQ7QKswT
nt1QCzw1iqjlZ94AzzD2/uH4UpTieBB3JvxEksjl14OvXcg5taEo8OIg6nP5
csfNdhTF+8gU9tWR0PvsAI6LlCk04Gx/6VkHGRELJM61usyjtPJMwc9mi4gv
6syTKfUldEfK7kXB8hJirzwxdeImBVUGjio/bqGgDH2rnyOzFPSmNdQCdFNQ
5GT6rPK/v7QpoX1yhJWCWF/kv19yWEL87scvpIQuIvNSwSyxsXn03kGucDdo
Flns7p5lqZpG0io+icfrJtB4wEsPhydjSN9tT1r6wRHEKFgqn6HYi1y/6rSr
dbejSutvtQXZ3xE/yfm4ws5bJJzedOS+fjEolxWPGnraACQC56MTn3WAF3yM
jXfT+8DL/5hk/7wbAUlpby87tY+BLVmZD+SvE0DHRDSh020anPLusNxbTQaS
6/cN77XMgbCXRi2D//6sxg8hjd6+i+Ava3JsysI//ocYVLvBElDRyBiLOr8E
ZA+EoAzTJZCnL26XyrwE4p30s32eL4JsYtKU1vK/fGeVwW3kOA9IqwdIo4Gz
YKj6L22n3gyw9ptwymuYBLp7yuqK95DA86mQJwNio+DnFw8dA9ohIAli1xdu
9oDF7IA7Z762AdI5ni3xohqQy1DA7suUDT5ZPDz189R7ZHv3SfSbiVrU78Ff
XJfbjrTeMvLHS/9G4Wdu1S7YDKHTMaXOD/aOIj81reyUhnEUnrqyZ0N7EmXX
Vo8L+Uwj2uSmu8Znycj4MUkzZX4WsbUdamNWmUe+G0HOt6UWUIvUu6re8gX0
U6hdbGZjAVm4Ok6FDy4gTs24TZfLC+j0JSMRy/R5NCvRMrAeNod8JY2qyeyz
iCWlSuqF1QwaD7yUYmI+ha6zZZ9aYplAfk2jRpoxY6i0r3DZq28EedXyaiT9
yw/vEpLFRba60Mchz0KWh63otyHxRkN3Nbq8eXuynS4HQQZD0tapPBC7+YPZ
MqIGSIveljw31wr8t07rWKx1gdTCv+/evu8Hk4VCBJboEcDnaOtMwzoGLO9+
/RlxhgSEJd9E3nacBEF2Acyp+6aB7lozA8iYAT7X9EUzO8ig14BgNvhpFuxU
ekwPG84Bnz+VKvci54Ca4/TZ+//83s8sfSyWMAdm7RJ791vPAsqA7JGPFmTQ
8WVqzZd6Bqx87jP28poCU7s7y5cTJkDX3vcyk2Hj4OzUG5dd5VHAaXljvcRv
GGxy0JP15foA05Ev9T8yO/+lAaqbzL+aQbtndI4DfzUY/njF2mA+B2St2g4F
xmQhibZHC6kuVei8OXff2dEm9N0ghsmMuhM5e8QrXrXqRVEyH5O4zw6h8pdF
emfCiUiopU6n8+UY4tpTMjh8n4SYz7JEXpefRD+L4zS0X0yh+0L/7WmvmEYb
JsZYLX4GOczGkG8JkdFwuMlSuC0ZLYdtbq3+y+l9GZ2VlxdnUO9hF5K66Qzi
ngpRizs/jXYa1O84yUwhnnk3V7tP/3jiJ4JjNCT0wq/ajYZ/DKXFBebZbI2g
geAJDU7nQcRnT9/mGP4bFSpHRMY5d6CyoAGOK/uaUNFrkeECwyp0ujxynSLw
Dj1wmJC3Wc0AyEqcXcYMA6eBRocw60bQd748nMXmF2AbMrvzxbgHzE+X3TVd
7QcRp8kXow+MgCPW97w+SY6Ca1aFdT3TY6CMnFehE0QCK8fXD5LqJoA918KG
Z9ck4C1aeK74agpoxDdfOLd/GsQF+o5Wu07/46JPK2T/rz6j9beNMA2SbQ4f
FQiaAo7WoG8yfRIYNzCmzUROAL6iN4a35UnAbdAlqvDlGFD/O7C0t58Ijmpz
5zc0D4Pl/wzcouP7ASHK4Wk2Ww8I28zSZzb/BYSd5X2d6xrBexcpSe733wA5
8m6S/tA70HeBUsWtko7mrOWOK/RXoFexmSL3iPVo352zVa41bWjMJXTe70IX
Wg3MGrREvcj2gM/hgy2DSNv8yBHqmhG05/FK0rr3KFKUKWV/PDaGsLu/2ZIY
CREtwsfWxSZQYNN7K3HiBJotfCqbduEf/4vf9U6/mkQWVcdHSGmT6O4KhZxv
M4keLpryf26fQC2VNVyNrBNoZqS7zopAQvHWtHUebWMoRplxttxpFEm9um8f
VzmCmisuTtoODqLBwxb1bxZ70fTHfEazb/90G6CtZ3quHf1ISH5p/egHWpqo
Cfss/Q1xSgg8L4zJRSH8XwIPGSSDyey+fcrVn8GxAJXrE3m14GXG8rRjUQuQ
qEgPOP+uAwxP2KUfxj2AtPVjii62H0wn6G2lEIbB9X0eJBM+IkhjNDexDBoF
L5xnxg0yxsArhUfk/YnjoDBbUTf2JAkoPWt3qvpBAlkL5Kt5TBNg+YJr6Djz
BHhd5df3vpkEfvfQx/395wcv/Ed2Lr4eBxdzhEvFPo2BgaWwqJ2no4BXlbhy
ERBBdvg8V1LgMKCPasiUFR4AdbrkBcOg32CnKyPQ7WknuJNJbssKbgPmjfRT
3l4NIPbz1KOYsxg0PqA5N7k/DxRUqBOSmeKRve8069+1T+jZNyRxtKAGXSm/
oykj2oRIhx2ePBX6hfJtDzfvLHYhyXOwZDKiF939fuVqZvMAmjv/K9S5ehg5
81Xvf32YiP7YLYaUnxhFzjUXH7+UH0OMtJ1mTCNjSNiza9Hw3DiibvPeNk0e
RzI4MTgnbRwdYPgvNPbSOIqI6J9s3R5DuRahzv02Y0hJXLyoLGwUvX9a5rnj
R0RTQvVCrWojqITzfOvL14PI5pFmlWJEHxq4N6RkJ96DGpsnYW94BzrwIJZV
0K4ViRVFqeS416P7G89+l19DyGIycnw9Nw/tF0Ti5O77gFolai/yLQZMpXZ6
TMNVgH7jneRQ4w9gQ2h5zVTcBm7IygaRTnaCeW96euX8HrAjUaL563sf2IkX
3O8bNwj2PFfgO0UzApZSk5fm2IngSZTs8uAMEZRXT+zMJ4yCiB9sVHeZxsAf
X97eaKMxsGOak55sMQaa78lr10uNgW4ezuu/qv7th4y4Ep3cKAil87dXdSOC
pgu8DE1XRoCc/buwM/FDgGshZshxrR8oyx+fsuLoBfGiLvsSJ7vAb3XqDxqR
v8D8KbnrQ6RmIF1zpftjQB1oizr4ZuNFJWAddRXlE8kHGlMhl2Suh6CYp7qk
GukPaJy+0bBP8xtS0yr8bFtYj+DtaM/+7hbEM9R3crjtF1q95i8DdrsQ8bkj
aXbmN2IdmQgkxPUjvTQ/65ixQfR2x/io0egw0ulTSaX7p2+pUk5ZS3ciEm5n
oQ7uJqKwfk5bv393/GFRhWadxCgyr4jVfLBNRE5an7KtM4koi2VZzUGQiEjr
G8fMXEbQMeX05++3hlCrBcdV+4EB9D+k69z6
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.884782509239921*^9},
 CellLabel->
  "Out[613]=",ExpressionUUID->"796e557f-9d1c-4af2-99dc-9a1e00b85a64"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{133.38875723135834`, 0.000157242083618923}, {
                   136.62145931312745`, 0.00010471974104308554`}, {
                   147.05016163347497`, -0.00015931868842834464`}}], 
                  
                  LineBox[{{159.94776923937317`, -0.00015931868842834464`}, {
                   170.46784494870712`, 0.00005899124872378568}, {
                   182.40084226282505`, 0.000157242083618923}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA/GM16oSdZ0CLJKE2K5wkP5CCM8ip
YGlAgCEBOVPDGr9taNOXK5BrQOHomNTZ+hm/8kn33zyabUDaafpcGHkfPx+Q
QOsj0G9AUuFXkvlX+D7Pz6Hu2P1wQK6Pzs/3nRu/Y1Xlo+cAckDaHtjhmQr3
PkuNuzrhGXNAWNF/1swUEz8Hw9ONIiB0QNyoYmK+ugm/F6t+wk48dUBKyqkw
sAsDv9B3hmpOU3ZAWww+EDNhDz9dQtDOlVd3QPpKnzixDN4+Pr+sFMhxeEDR
0iRreOwKv/I5yxZCeXlAcFlMn24H8T5QmUaMj3t6QCa/xTxmqwQ/AqtU48eT
e0D7Zy7+/9n9voe6pPZHmXxAsuThTkIs+L5gfIfrsrR9QPT+sk9CgAE/4yLH
U/HKfkAEkxhIxyjFPjnHSHh3zn9A3ui9OlkyAL/xji4/9HOAQNhTFud5JeU+
MLlZoFD3gEAucSlI28P4PsRVM7sWeIFAETciHitN8L6CS9ZG0gOCQDGoyGG0
e+6+KkCasDGGgkCKw/QYrhH1PvyNJ4uGE4NAz93ed6/10T632tVDf5eDQFUA
e4VNZfW+x5kytuEYhEBbbo1xk4/BPgGyWJk5pYRA/qyYltrS8T4lyZ9aNSiF
QL324ZsAGOO+czmwjCa2hUCImADDtv3mvhYcb3iBQYZAEP0kpU/J7T6i/U5C
gMOGQJKM5MSyPNM+WDj4fHRQh0AYdgOUvyjuvvhxwpUM1IdArMKARcO3wD7t
HTtoDlWIQGZw6OSHnuo+DCN9qwXhiEBqpcqkvrrbvhUn4MygY4lA9zlesbkf
475IhAxfMfGJQIlhJU8TZeQ+z1Pnqit8ikDw76vvyoLLPkAi49TJ/YpAOWTb
TvL15b7bSahvXYqLQFAzDr2ae7Q+YHCO6JQNjEBBs8p1hcPjPg/wPdLBm4xA
8PcM1AbJ1b4T4pt1WCeNQD/hePLM9ti+AdMa95KpjUBibfmkxN7ePhkdY+nC
No5AX0OnLfl1wz4bZsy5lrqOQJI4DBrp8OC+7GUf9/8/j0DSZzkYESikPrN6
jXE=
                   "]], 
                  
                  LineBox[{{29.3373687482867, 0.000157242083618923}, {
                   30.122398112923495`, -0.00015931868842834464`}}], 
                  
                  LineBox[{{54.752919941546985`, -0.00015931868842834464`}, {
                   57.903160329655734`, 0.000157242083618923}}], 
                  
                  LineBox[{{79.73686313252843, 0.000157242083618923}, {
                   83.68858773202341, -0.00015931868842834464`}}], 
                  
                  LineBox[{{108.43650321489851`, -0.00015931868842834464`}, {
                   114.6746520741648, 0.000157242083618923}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828305#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00015931868842834464`, 
               0.000157242083618923}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{133.38875723135834`, 0.000157242083618923}, {
                   136.62145931312745`, 0.00010471974104308554`}, {
                   147.05016163347497`, -0.00015931868842834464`}}], 
                  
                  LineBox[{{159.94776923937317`, -0.00015931868842834464`}, {
                   170.46784494870712`, 0.00005899124872378568}, {
                   182.40084226282505`, 0.000157242083618923}}], 
                  LineBox[CompressedData["
1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAA/GM16oSdZ0CLJKE2K5wkP5CCM8ip
YGlAgCEBOVPDGr9taNOXK5BrQOHomNTZ+hm/8kn33zyabUDaafpcGHkfPx+Q
QOsj0G9AUuFXkvlX+D7Pz6Hu2P1wQK6Pzs/3nRu/Y1Xlo+cAckDaHtjhmQr3
PkuNuzrhGXNAWNF/1swUEz8Hw9ONIiB0QNyoYmK+ugm/F6t+wk48dUBKyqkw
sAsDv9B3hmpOU3ZAWww+EDNhDz9dQtDOlVd3QPpKnzixDN4+Pr+sFMhxeEDR
0iRreOwKv/I5yxZCeXlAcFlMn24H8T5QmUaMj3t6QCa/xTxmqwQ/AqtU48eT
e0D7Zy7+/9n9voe6pPZHmXxAsuThTkIs+L5gfIfrsrR9QPT+sk9CgAE/4yLH
U/HKfkAEkxhIxyjFPjnHSHh3zn9A3ui9OlkyAL/xji4/9HOAQNhTFud5JeU+
MLlZoFD3gEAucSlI28P4PsRVM7sWeIFAETciHitN8L6CS9ZG0gOCQDGoyGG0
e+6+KkCasDGGgkCKw/QYrhH1PvyNJ4uGE4NAz93ed6/10T632tVDf5eDQFUA
e4VNZfW+x5kytuEYhEBbbo1xk4/BPgGyWJk5pYRA/qyYltrS8T4lyZ9aNSiF
QL324ZsAGOO+czmwjCa2hUCImADDtv3mvhYcb3iBQYZAEP0kpU/J7T6i/U5C
gMOGQJKM5MSyPNM+WDj4fHRQh0AYdgOUvyjuvvhxwpUM1IdArMKARcO3wD7t
HTtoDlWIQGZw6OSHnuo+DCN9qwXhiEBqpcqkvrrbvhUn4MygY4lA9zlesbkf
475IhAxfMfGJQIlhJU8TZeQ+z1Pnqit8ikDw76vvyoLLPkAi49TJ/YpAOWTb
TvL15b7bSahvXYqLQFAzDr2ae7Q+YHCO6JQNjEBBs8p1hcPjPg/wPdLBm4xA
8PcM1AbJ1b4T4pt1WCeNQD/hePLM9ti+AdMa95KpjUBibfmkxN7ePhkdY+nC
No5AX0OnLfl1wz4bZsy5lrqOQJI4DBrp8OC+7GUf9/8/j0DSZzkYESikPrN6
jXE=
                   "]], 
                  
                  LineBox[{{29.3373687482867, 0.000157242083618923}, {
                   30.122398112923495`, -0.00015931868842834464`}}], 
                  
                  LineBox[{{54.752919941546985`, -0.00015931868842834464`}, {
                   57.903160329655734`, 0.000157242083618923}}], 
                  
                  LineBox[{{79.73686313252843, 0.000157242083618923}, {
                   83.68858773202341, -0.00015931868842834464`}}], 
                  
                  LineBox[{{108.43650321489851`, -0.00015931868842834464`}, {
                   114.6746520741648, 0.000157242083618923}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828305#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00015931868842834464`, 
               0.000157242083618923}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwN1mc8FlwYBnB775WR7K1sWZ0jIZlRiFKyUkZRVqESGaGkhYhISVaprM6h
JEL2Xo/nsffe430/3d+u3/3lun5/EafrVq7kZGRkE5RkZO37QRlvCiPhJ1E+
cu+ISBjbWjI8dCwSOhSN/knufQjF699+f3DhITyXmh9TUR0BP5R9fJbOFQFf
MehmVJqFw6u/U+wHfR7A6cUs6fGwMGijTZsyF3YfetW+8ZG+dQ/+CJ0pqC4K
hZYzV1q33IIhZF4Xb2K6DTkZNNpkPgRA2shygaVjftDj4eHT5G2+UO5Gng6P
5w14JttC86mAJzRPcr9PFnQFOl30YqzfcIJrPH7jvgYOsLI/XHhm+yyMjx1Z
3T5hDLOLBxkamI5CoioOo7rCjj0LllyWo49h71G9DUNVY6xs56ejpWGFSUPc
4zqlNrj0VPVfoxR73JptMMM56ICtxdLWrx93xLVPTO+pGl7Ge5otse77lzGh
I3r313UnXGRzSexVshOuSMlhr3rghGOTqmeeKzjhHptlr+63l/EMp0tHJtER
f5/Up/4+cQm3PeTtUC53wDYp5LqaRudxKLWo/o2Uc9g+fQ+EV1rjf7mj32l/
WeGGnYaQnAsW+KhLrBWB/xSepgFdAx16mMFwXTTghCY+ykw6cMFAFjda0PN7
/V5DYx+kynXuisFwt5vdIfqqUCK212abDsCWW7QCosEn4Cl9qc8fQ0/CsrpZ
b10aExj1RbVjnckc0m2WsT0/eRpyjXQlBBpYwkAvF0omMivoUBa6RRloBe07
0kO7862gTcZIy/dsKyhibV8T4GQFk16+6YkYtYRyl4dOd6pYQtcn+Y9bLU/D
0ucVf+KizKF2et3eG2FTWMFAKnjifwqOt9ud8HhuCGOaZBS9ok7ANfeGaKK9
LmT497CGVlEL9n3k/Zz7XAX+flp/RHZDBs7qOjrJDvHBj7drq9yOV4DC4Gs+
Buy8+EhNQMCJz1L4daWe5YKVEk5yE6mWclHHbNl8VqPk2vgm5NG2FoKYa0dD
79n54zgZPIC8w3o43Md5lf6QPr7ic+yEPLsBzpui05IvM8A0AdkXk/gMccD1
qZw+RUNMJuQYKEVhiLN/xL+5/sQAv76ZMmw9pI8bfe9u8S2fwC8LCx5ENuth
dg/aGWLwcbwidCA8dxviLT7fg18/62BxN66V03KaWNL13u4xXzV8kiktx/mZ
Ev4xZO9ufUwOj9K9jczXFsNa/tOLT4N48PpGSJFmzRYKdd8tVXYlh3j8eYdn
5AGY8ak1F7SKwtN2lkqXfWWgPg1JtO65AmQR1gi3fqYMv9jQb0+zqsFyoau7
XFpHISL34f3LrAlfj5uMcERpQduOVGee99owI+zNhwPXdOBKfeqV6y068Nlb
84ywQR3Yc/bQi2+J/9+Kx5pOK9pQ+4ysrimDNhThKryQ3aQJR0SltZ0tNKDk
irvd6GN1+Nju13uBV6rw2oKf59XrypDtYmRsnKAipL3SS8tpLQf3BXRz2Y5J
wupPQbceUYrAAs2H+l0+B2AD70KW51d6WLxzoyKangQamL0WU3z2kQt366JO
FTsevZBhpKssgOXf+E+oMIpij/QCfn85SXzGesTqx7wMjhZ1ea5gcRivefMn
yYgo4qZLNZlxl5WwiVzPQoCbMp6fdB46d0QFc1v7j1woUcFuAXrK16hUcfpc
msNBTlUsk6sjgEZVcKlzlPLxUBWsau9cqzqkjHv5k6XKGJWxR4i2YiCtEmbO
tVQRyFPA3D/qr1Fty+MNqrfV3hSyeOYo1c+CRkns63vEL/6KGKb37v504psQ
jl6mprp4hRcL1/UHs26yYQMDhdRsSkrsz15kPfqDgDJcywz58Ap4oZ8waHqP
Dh5Rcrg8Sc0Jb7zyD+7z5oOMd/w+6VwTgkJaWWK3bonCZxqMX8vnxOGz311N
Rw5JwcMhGs37u9Lw8GI6jVOMLLRkvMD0uFIOfoQW7HVp8jDi7bXD9uKHoVW0
de0Ty8OQfTtZqVTqMMyd6onhypGH1EhTvrFbDjrdjC2aKJOFi6KsI0fPysDL
q4ml+h+l4JItVTb4JQEVKx7fHX0nBj8cDdG4aScC7W6S3OjrBaF1nPACZRYv
pPlldpDJnBMe+/OUS+ALI+RhjixayiODEqRzs9+LxwB3106fyY8RNPAy0cQr
YR+5BngYhpAz4Gv36NTGB9mxu432UYIPD6Ya9Y5syOPH6/dndCmjDuHfiqyy
z7aFcbRt2O30IFEs/aFlYLhMDH8ZZFForRDHVWG3g/NCJHCmM7h5c0cCr6mH
Jo1pSOKJtkDnaBVJHGKhqp40K4EVnNOv016VwHeiFRJufBDHZG2J+ewFYlit
KMKw4p4ofmx5tKBWRATv66Q+ZDkihO30uncd6wVw1kJV8AdJXuxvHpL5xIQL
K0sg5cOGbJjf4eHdXAM6zH5AToG6ZB+NCekrsmfMIpVX34Yc32AwnTjOHBiw
BO6J6eh16pBD+YNJiepTdDDlkF9h7AE2mE9oZhcO5oTV2K2fLZkHNm9/fRBz
lQ8OONf8KyMJwF+ub7YJFIegQ2pust1PIXjsgkPkmcfCcGaD+mw5gwiUuKd1
uMVKBEp1HIx9eUUE/mpXXso8JQIFbI70828Jw2QqJ8WPt4VhVlpLCFWKEKQp
su1NnhKEuDr8jNmUAExtVkwQzOCD38Ny2qp4DkCmOmXh2DNcsGG+k/e0Izu8
xXsq9XEsE+z3lEHzgjRQ6KNYiSnbPrjQc0f99o9F0LvnoWuc0wL62Y9z5kUM
o9qDXhIFWasou233azYjOdY9J6JutEODA8jiFY49Y8L0q1ZDjkQ2HB7dKamp
y4nVZNTUvzlwY/twjptf1Q7g13NPPOd+8eJ/YZ3N21T8WHtis+LyGj/2FXtz
KeGFAB7sk5+bHBHAUUTqlW/DAviuQASDfLwARgmRrBdn+HF0L8265j4fvvU2
0T7oLy/mPGU9/8zqACZZ32f7+pobh0etP0nP58QCRn8ZPsazY0ql/sajkSxY
8NPBYsMcekzNJyPn95QKj8cf/Hoqaw8pVjL8nZtfRt+vIYVwcyIyIvzajXQv
BU8pemMTrSfAHfUK34qANTDq5XjpiiIZNDM5Uh4wSgXz7h/qu2ZOD6cVwiwz
LjFDYHlQ0CKSDR6/Zp7AJsMBBT2yGA8lcMLbPO5tyhVcUKzGxP7Xe27YlJ5E
TmHFA0Vz6L8Ol/JAvUnT8zxDPHA62keU8ycP9DqtUkzjwgN1yqhdOmq44Uwg
nzf7LBd8LljpvNjDCc8dshzTT+CAyzS0nVcOsEOKGQsddyILZIs4/WLkJCOk
0k5UfXqNFp7h2XE/Z0MJl/uEhWUU9sDeannHlN8qUC/dljynNglCM9eEH5U2
gt9i7L/mPNrRbZLy/oeIacR4b/Q7v/Qakipra0hW2UP8jwaNv45T4OOp25UJ
N2nwZNXACGMxPf5YucZQlc6EE+4Sn9kqs+K9O9PGRkVs+KGTP6vcC3bMMlfE
QDLgwOtGCfgg5sBPyucFxck5cSbF3+cjjJxYntPHbXyIAx/uWlI5HcqBx7iL
Frsm2PGj1gy1GhF2TKBYZpyUY8PZjH6NPNws2PrycEJ7GCOOO2mWZplDh6tU
XPwfJlDjOK7KsxQGFJhl/kHo65Rd1ECSUE7zXEPPdC5LvRafQ0sOdM+KowZR
ecHw0vuBKHS3/V8Oz/t+MD0sVi7wfQb8ebjbHmWxClgcJxNil7bBx6897w35
yCGxXvuX2z4lBAExXVRZNFBqveiTBRk9DOIfT7JlYYR/lK/0HKxjgv9OBDCm
yLPArhnN5hY1Vuj8wtP9L5EV3tholzXjY4MhzZ9CijjYoLoI6ZR5BSsMV1mN
iNpkgY587wyOEpjh657yaq9bTPBa1/uSQ+UM8JOpWBtjGR2sL8mU/hJAAzWH
Kb9qbVPCk/bhx+xNyeFtQevsyLEdkL5uHcCzuAZM7Ko5+P4uALJjT4uMaEdB
g8eMViduBpSJ7a0sa5VoXeNsmlAeAfnqpv0Zr59BN95RtbHqrKCZuNL8jtpN
pLyEDFR295BzwA+J1FFyPMjh6ynKSYUb7b+vxJDT4LHW61VbubS4PYFa1IWF
HpP/5OFIkGDAXb62grLzDLjWo6as7CojfvMwie/LM0b8ODL68pUbjFiNzPI6
0x4Dni5TEvwMGbAE5D6irUGP/ftNN6ymafG0OOWyowMNNq1ltLidSIXFerpr
LRMpcMXTiVEJZzJ8b4n4/jznDtLh+G3IcHAdqdOPKh+eX0SSW6WX+DQmkUt/
TUt/bT9qHc+dM+KuQHd/fHFR12gEtx7lpjDODwNRTrJLd/RmAKmA0aCLexm4
TpaBb3/WwemWoU1B2R3QFFn+I4eXDFpVsB26OEkOGV8dKQ8Oo4QjMaBnf4gK
Mm08kXu+Rw1LrC9HveujgQW9oQH2frRQkeCZkPGXFj640PrxcB8tpLh0+p/f
e1p4tp6C+bMiLeRPWFbpDKSBKoUvbseEUcPSPzMnRC2pYGGNAHvCBAUUGhCo
czAjh+8bp7ak6feBKRmhwEtqG3xnIFXakK+DXCOtZNvMJcBxiVz/r+oMML5H
EfJmnAjudSr8811pBU3F+6nyW+bg4I3V8u85rUiRt2lL8D4RxX07ZmzrPI3+
dQkM+C4uIrmptlidlVUkx/TzgEzBJuqkdr4CeHdRWlUB53FOMsxHLxhId5Uc
/6xm4eSLocAW/WmHi29SYvKeKlosRoV3Ts+e+/OKCks/FZmkbqXCu1cd4KUm
Kkz/eumKUwIV7lyO6zXgo8I9k/uxRHdK3KLYr58XRoFtbrSA/P9zf9PxnwwQ
IcNfJgV/K17YRTtfbG0lpbeQVow9V3LhGlJiKhggI1tGmelBu8V6c8iVTOu+
qO4YSlQfuOwk1I90euUj7MX/oPsfVaWvDH0B6ujSn0yLDuAftzj3KJMIeOcO
0P49NwVOduRJ8/csgInGwhNtZitAfektVLm/DsSGoGDutS0QxDl25wnFLohv
qbqqpLcPsk9EZi0lkMFA1pDTcZbkcI5quF9xkBwe5bqzVqpOAbldpf6l2FPA
q1SPXAmnKOC8VJeCFDUFvPudg+VtHDnUubr6mW2UDHKl/wktYyaDP5Lamxq5
9sASyxH2nIptQNbK2u/AvwkOfdx9QqO+Bs5/4D3mzrsMdokDGYXP50Gt/uLU
8fwJwNxCSK+NHwYWGhpHdl62A881Ws33nd+BaYhqPyOsQpVS94UV9jqRrv2F
I/OhRBRQLfarUnsSrcRWTE6+nUcDrdGrN1qWkI5ScGrx81VEYewR0MuzgX7H
5A8Ym2+h6Zdr9GbqO4i1700M999dNNlJv9VCvY9EzFz7i8b2UbzjOSN/NTL8
YYdCgmhEhreHrtL+OkyGXS8wVz+s20fO9u+sBAf3kINIxW7S613EBfNptel3
UMRqbP0hmS20HewToEKxgXr5/ZPFU1YRVf0gMtxeQrUtLOb3ZReQ+vEoMm+n
KaTifVbbXnEECb6Jc/mT0YeWcniC2OwbUU11A3XenWTkKnOeZS6hBhQ0+Hxw
I+sGnYv3Wj0OEwE7nWr+LP8EqF9UZj9XMgsUVWnLJe8sAut83Sxz0jJIjhdZ
UGVZA6F+oxoSa+tAQcTNXPXFJuCkz8g2ndoC/ont5zTmt4G82ZdHH97ugGDX
eEMtyl2w/7f3dSDbLvhmSabS/3cHeHYSRWtVdoCC46pZuNk2EFVvVVIT2AI1
c6rnW9I3wM+60iQu0hrI9x886DO+AhLOn/+w92UJaGVtcbhbLIAAbebH+fen
gUfwdZpKoTFwz8hauC2KAOx84fLF5A7AaJT9Mnn1F3BqkH7gUZ6Met4N3t+7
/hcxscVfd4vuRhnxvOTclcOoaPDWyPDeGIq4m76dtjSNDDPakgmGC+jMmRaq
yctL6CSrmEet/goaE50xjppaReNPMxomzNdRfqBtuIf3BvIsOrF13nATHaO8
MN7RvonGSK9463i3UNCq6NIW+xY6Q+P3lLpqExW+Vnl9VmoTxQlzFgud3ECv
2WJrnMTWEdlXqNCOV9HiCzTcLbyCqjobSvxNllDlLw0eA4MFNC+UQVkiPYM8
xoeXH4SOo4d92zZFSUS0masrJcbeh2STe6i+fmlGUZrnyAmkEnSddqLWhqoI
JPuLOdlpNoK2jUuRTyq6wR27yXZFvWGQ4GSl4T8zCj7e9+HXOj0FSIIRw8GX
50DvzhzvG4ZFMPVlU7mxcAmsY0abpUMroK+z9+dFy1Vw5umF7xwGa4DsQwj+
vb4G4ofeLU5fWQc8ec2Mpc/WQUMrj6dI6Do4MJQ62i2+DjjTZgMtYtbAqxev
dnILV8GnFWJtdfIK4Ft6GspjugweFZykKa1dBD0Po6esuBeAz9QVNx7vGYDs
MnuW3SaApNomp4LICFC/zgnzrIZAwSYTxQhvJ6D31mu9fqkOiMgHT+KEHJDx
JpCBgqMU3RusUD+i0oQa1Du6fnzuRlqRUqGgnIDmlzvmdcZGUMs2kWPg3wR6
e/empc+1GdSPKtI0CuaRQEGyqY7xIqpjcjM1jl5C8Swh354kLKM0JYmG244r
aPLtqwX+lRUkWn+OWcFkFTUb89KLua4ikcs3zNj1VtHzIn6HKuIKSrYZup9l
tIJODFSmNfstIyU9QY1NzyW0TfSqdVNaRNlKa5vdcfPoFdWFlRLnGRR6X/fF
6uwEomeSOjmoPorYB4SPeZwaRo/kuJO1nHrRv2bzrpLlFsTfbk5hjX8iQ8no
B486IpGZ3v7NNHsMGg7R7u+fbAYVLJX+r0K6QcZMugxQJIBz0m/knWdJgFXY
5eWcxzhQplztt347Bc4OXvecipwFg4c1bwcyLIDfs1QT9iKLgKg0rdJEvQQc
34TmpXxdArlX/LKFFJaB04ipkK3PMgCBFJ/77ywD8jjNkknzZXDVT67g7PQS
mNYrJsRZLQGa2zkOyQ8XQb2RrT1zzAKotlumIqucAztFgRWsvDOgLt213lZ8
8n/3xf8pnB0F/5SfJ2WGEIGukwxKrhgA706mf3ig2gnCez57fV5sACInBJrj
7paB8iFxNpO9RKRqf4YoK/wTjYGZj4llzagst1CoRaYbPWvW+kl3agilJCof
1aEgoYgds6/14mNIr7s5PotyEp3ncP5O/XIaJbZMyLB1z6KRNTHWnsp5lGdu
EqOTvYBsPHXcYrUXkXQ+385O2iIitPW3oaZF9Ng55Uli4yKCHF01ja8WUe/o
YQ0L5UW0lN9xJyJlAf1j9YF/P82jkoPPsmr+ziIJWX+r/hfTyEORXOvPgUm0
lHg6h8V6DKnpWFTN2ZCQ8CMrJl1JAgpX0d8ue9WDbqcRTTiyW5G8m3AhZP+D
nty163E5U4QUFWUu2FC/B+30lQ8GaKrBWK5ymtF+M5B+ZOyeXNkFwv0XeaJV
B8G4+5eAV+L/u6QvwGt6bQR8mX7F/Sh6HHiK+EtHdEyCzYvuDGXt00Dpc+P6
zP1Z4DLt+6Klew7IGn+r4+mcB5WSdrbftRfAz7TNzjqHBXCfycRUwvJ/xzLG
jyvyLIBo5szAvPPz4JFZUA+ZyhyI5+UkiH+bAdxqcrQNk1Mg673GlwdtE4B8
w0wjM2gMuDB0lWuQSCAp64bcyoFhULzhyCKi2w9YPiqFB9B1ArRrvrOq1gTi
AlP+3eT6CaxZJEqdjTKBton+5/DOQlQae/gWfehvVBbUMPxRuAVp28bI5hp1
IdEh/u0eiQG0rd4qunNmGMnEvZNeGCKhLwYpiV0KY2giSJ7P79gEWjx43uY0
5RTyupmnWx08jeZMa+QYs2cQf9isvlHwLEpIOuoVvzuLTL7EO41IzyGnzUQF
w71ZRFxhJ2aGzqJfetcfD+TOoCdx0t8qoqZR1mYZxzTvFCr6d4963HECqb34
kbfqOoa49Z1GOI6MoDf3+w2H8DCSeL/NwmcwiK5l6995Ut6NUrwdxo2XWxGN
33Az11YdKpM+1rL0vhy51bXYavlEI0enBlN/la/ARJfOh5RSA8JbZGOqJVuA
GsVJ1cWaTvBFPnGy7lA/GMwnfa56TACppg49+QNEICOsRRhZ+n8HL24V/64b
A723E397OEwAOh/qmW85kyDXv5HXNncK0NbTZLRfmgYG6oMCL35Pg6Uj5D9J
fdMg+kSr0cTbacDFb61VIDANHlUTWoSNpsA7/UzPbdlJYGlcl/n3zzjYSU6T
7xcdA2fZxTOUj48AgyEbO39pIkhuP0Nd92MI0DMOWQR19gKqa2qVdjkdwFY6
oTzIoBnQd8f6EG79BrGa5BbljsVgT3MmKVgiDJ1XU3xGX1OCBtbDiut9/iCV
2hLhXwdakNHdrNsssBP5WY/FeQn3oZ/nllQu5Q8hT6kZG8W5YXQo8eh0ZBMJ
NU20bYn7jyLbLTqfzIExVPANcp2jmEBvlD/u2Q1PIBLze1J04CT6MCrE9rJm
Eo1zvuenqJ9EpevFQPDhJKr1pnZl2JxAOQ6x7anz4yjm7LabS+cYypi+05gX
MoqmZaRIaZMk9C//afb+ISJaci3ulBcjIOw+tcG60Yfktm8IN1zqQrUPsvo3
Y1qR1DqbHmStRzdVbnB51lai6pvviIt3chCin/mudywdpAZdls2pqwCv6o49
PhteC/R+3dD4KN0CronTaqp0d4ARGuGO8hO94HLfpgzTpUGwFLH46zrrMGjK
Lku5X0EEfFy+tJrKI6CpLsXwm+coKAutSq1xHwMdFuGPZ8TGgcmr0/Rur8dB
ZcefW4ot42BMZj+L4ec4yFBpfH3r+jiYvRGqlNc7BpzirRLzqMeAqDxLvejy
CDChyTzumk0Ck4ddPL3FiKCB7uKPBm8CODpvuyEnMACuBq9eKmToAfkckfEc
Je1AQsrYflqhGXg+1Nz5vlcDBA6a/EhvKgO3bSs/rxSnguoHJ953jbxHT5Vp
jtvyYpS6CvtUx2tRUmrGKvlGM5qcpvH+aNiBHMW655LO9KAh5symN5wDSCop
o0QTENC9xFkp95/DqNbYMeokBwklVYdlOciOID/6m8OttKPIh8wkOujDKCLY
N8i2MYyh/hQPcq4jY+jalP9FcY4xVDbymz39+yjifcXc2SY0iriPP/5bYjqC
HFMs6ed0SUiX5YJ34f4wkpT1zWmOJaDVLGYfi54BdHVrvZfTqBdp198y8bnR
iXrGL5e/c2hFo0NWapxHG5CKANlqr+cv9Kn3nGLvdDHK4XLSNMEPkWBa99QR
h3wwfRfcPXG7ErRJXibrF6sDOmei8od+NAPW7GvG5l/bgbSl6zFVr27waDPz
kllfHxDKG1dRWRsE1qeyDct7CaD3zmv5PjoiKC049MGOggRGbg7KF1aTwIz4
ePm62QhIGneNm309AkS9FEirhSMAeh7ZOxgzAjaiVdV5ZEZA3qNFDc3HJNDH
wHg7BBFB/4gT6WbpMKinCu0BDwggK0Pfjh0OAhZNTalF8T5QSWfw1rSqC/wQ
/Xua71A7oDDWSVj9v6+0bnHunFG1wG/m6JWmk5Xg0GwRl8WjAuAF+2er+nwQ
E297QeBUEYqMh/pBGlWozMVO0/B4HdpPcCmMCW5Gh6toXOUl2hFvQIr6pSdd
SHZTQbW4uBdJJnp7P4keQD99oo6+pSQg6+qK4Cecw8hS66J39eL/zlZba9tP
ISK5uyfjktlIaNJHL/mhOQmp/1G5amVNQjU2qW4yEiSkbXyoqRURkVoOrs0X
IyLyf+2NRdbDSD3JNvCiLQEFNl8Ou2M7iFLTz77I/dSHshuffQTfupGrwsGJ
5eAOpPw6xh0wtCKhEgG1M80NqKLwh2yg3m909Plx7EJejo7xeTxjjshG8kou
jJWyT4E4bTXBQrMYTKSICAf9qwJvf8y+EDCoA61Z3M1Nas3A6fXWEbqXbWDX
su1DR0UnKLZ8JxyT1gN2b3v76an2g8/GruQ7/oPgia/ezzP/++uvfEvmwTUC
QLWFkn0xw+DXp1tHhWaHASP1o3f0B4lgkI1qx+wAEVyo4SlRHhoGBXdeDj6+
NQyGaZXX6rsJ4PYmvtHFTAB6+QviZvKDgMO0p+3MZB/ojI0YirHrAZ8yM1ti
wztB+pSDZaFvG3hGjMmdl28G96NoTFKD/v8707sx5NxP8DVMTIyZ5xu4kujM
KKmUCirnjD7406WhSVeh5ANy31Adl0Htc72fKMtWenlNpQ41Bx1v0OhsQh4z
7ie9GNuQ7+MPZ/WWOpCSz91zr192oyJaxfdgpRcdztPp+Ek+gLLKZjZyygZR
DJ1WlhozAa2vsq/jeALSQCxbXwkEdJS6gNeJYhi1FBk9f7VMQGvdIze+FxPQ
Td2ghixDAvI1CEh8aT2EZO8xzijUDCB9leKUQVIforhI12Vd3INuelHOHQRd
aLc8czg4qh198+icuJbSgg40pJ4k7jWgjqKkB3J3alBV8p8IyhCM+lps+yNK
ipCTWd6QYlg8Mnv2eUJBOgv8B+if2eA=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.8847825092665443`*^9},
 CellLabel->
  "Out[614]=",ExpressionUUID->"780d3dab-6e4a-41e2-9ded-d5f760178b6b"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{130.8265728342719, 0.00016051126030531247`}, {
                   136.62145931312745`, 0.00004916665438263525}, {
                   146.65347447828645`, -0.00015543215198632554`}}], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAjUDqpOvZY0BS4OAEcF8kv3hJ+JX4
TmVAeIu8BRVDGD9bAbm7/VxnQCBmPt015yQ/kIIzyKlgaUDyXQK76Zsfv21o
05crkGtA7w+X1WanEL/ySfffPJptQJ9ElRNe5x8/H5BA6yPQb0BCWqZLuUve
vs/Poe7Y/XBA08rBr/HFF79jVeWj5wByQJ6Z1wUX9QY/S427OuEZc0CDRAZh
jfoKPwfD040iIHRAisLuDr9hD78Xq37CTjx1QF0peND1d+u+0HeGak5TdkB2
sxarOMoNP11C0M6VV3dAi6igUbzK674+v6wUyHF4QJKiQXhtCAW/8jnLFkJ5
eUCuHqNdO9b/PlCZRoyPe3pAMM74DJn8+T4Cq1Tjx5N7QOA+SAr+ewK/h7qk
9keZfECEIUCWpRDavmB8h+uytH1AsYT/A6rSAD/jIsdT8cp+QAkQnCkVQuq+
OcdIeHfOf0DUpPkoSqr4vvGOLj/0c4BAgmskC9mc9T4wuVmgUPeAQHu9hdPF
uug+xFUzuxZ4gUCjIK2ruRb3voJL1kbSA4JAhFZxqSePtL4qQJqwMYaCQBlw
DLSzsPU+/I0ni4YTg0AyRzyeX/Xgvrfa1UN/l4NALM5sW5nh777HmTK24RiE
QIfM1IEOr+k+AbJYmTmlhEC/wYlYZvLgPiXJn1o1KIVAqaUD18iN775zObCM
JraFQHz6yNVLWIO+FhxveIFBhkBF3X5pGfLsPqL9TkKAw4ZAp1+lotFW2L5Y
OPh8dFCHQF33a/UvIeS++HHClQzUh0CHI20Ab+vkPu0dO2gOVYhAqrQ1hhPn
1z4MI32rBeGIQNInMevpdOe+FSfgzKBjiUDm2qC9J62bvkiEDF8x8YlA4FE3
PypY5T7PU+eqK3yKQD1exckBfta+QCLj1Mn9ikBXh+l0PPrevttJqG9diotA
A5k1k8Kp4D5gcI7olA2MQF7NGOgsIsw+D/A90sGbjEAekVTyTiHivhPim3VY
J41A51p+vt+vvz4B0xr3kqmNQBRk/LLLKd8+GR1j6cI2jkAimXx0be3Uvhtm
zLmWuo5AKtyaIT7b077sZR/3/z+PQOEiwkR/2No+G7Kb0A==
                   "]], 
                  
                  LineBox[{{29.16981650750437, 0.00016051126030531247`}, {
                   30.021072266651835`, -0.00015543215198632554`}}], 
                  
                  LineBox[{{53.96778544371722, -0.00015543215198632554`}, {
                   57.56754980234498, 0.00016051126030531247`}}], 
                  
                  LineBox[{{78.99819222741765, 0.00016051126030531247`}, {
                   83.09720780658525, -0.00015543215198632554`}}], 
                  
                  LineBox[{{107.55350953507964`, -0.00015543215198632554`}, {
                   114.38693270109015`, 0.00016051126030531247`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828366#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00015543215198632554`, 
               0.00016051126030531247`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{130.8265728342719, 0.00016051126030531247`}, {
                   136.62145931312745`, 0.00004916665438263525}, {
                   146.65347447828645`, -0.00015543215198632554`}}], 
                  LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAjUDqpOvZY0BS4OAEcF8kv3hJ+JX4
TmVAeIu8BRVDGD9bAbm7/VxnQCBmPt015yQ/kIIzyKlgaUDyXQK76Zsfv21o
05crkGtA7w+X1WanEL/ySfffPJptQJ9ElRNe5x8/H5BA6yPQb0BCWqZLuUve
vs/Poe7Y/XBA08rBr/HFF79jVeWj5wByQJ6Z1wUX9QY/S427OuEZc0CDRAZh
jfoKPwfD040iIHRAisLuDr9hD78Xq37CTjx1QF0peND1d+u+0HeGak5TdkB2
sxarOMoNP11C0M6VV3dAi6igUbzK674+v6wUyHF4QJKiQXhtCAW/8jnLFkJ5
eUCuHqNdO9b/PlCZRoyPe3pAMM74DJn8+T4Cq1Tjx5N7QOA+SAr+ewK/h7qk
9keZfECEIUCWpRDavmB8h+uytH1AsYT/A6rSAD/jIsdT8cp+QAkQnCkVQuq+
OcdIeHfOf0DUpPkoSqr4vvGOLj/0c4BAgmskC9mc9T4wuVmgUPeAQHu9hdPF
uug+xFUzuxZ4gUCjIK2ruRb3voJL1kbSA4JAhFZxqSePtL4qQJqwMYaCQBlw
DLSzsPU+/I0ni4YTg0AyRzyeX/Xgvrfa1UN/l4NALM5sW5nh777HmTK24RiE
QIfM1IEOr+k+AbJYmTmlhEC/wYlYZvLgPiXJn1o1KIVAqaUD18iN775zObCM
JraFQHz6yNVLWIO+FhxveIFBhkBF3X5pGfLsPqL9TkKAw4ZAp1+lotFW2L5Y
OPh8dFCHQF33a/UvIeS++HHClQzUh0CHI20Ab+vkPu0dO2gOVYhAqrQ1hhPn
1z4MI32rBeGIQNInMevpdOe+FSfgzKBjiUDm2qC9J62bvkiEDF8x8YlA4FE3
PypY5T7PU+eqK3yKQD1exckBfta+QCLj1Mn9ikBXh+l0PPrevttJqG9diotA
A5k1k8Kp4D5gcI7olA2MQF7NGOgsIsw+D/A90sGbjEAekVTyTiHivhPim3VY
J41A51p+vt+vvz4B0xr3kqmNQBRk/LLLKd8+GR1j6cI2jkAimXx0be3Uvhtm
zLmWuo5AKtyaIT7b077sZR/3/z+PQOEiwkR/2No+G7Kb0A==
                   "]], 
                  
                  LineBox[{{29.16981650750437, 0.00016051126030531247`}, {
                   30.021072266651835`, -0.00015543215198632554`}}], 
                  
                  LineBox[{{53.96778544371722, -0.00015543215198632554`}, {
                   57.56754980234498, 0.00016051126030531247`}}], 
                  
                  LineBox[{{78.99819222741765, 0.00016051126030531247`}, {
                   83.09720780658525, -0.00015543215198632554`}}], 
                  
                  LineBox[{{107.55350953507964`, -0.00015543215198632554`}, {
                   114.38693270109015`, 0.00016051126030531247`}}]}, 
                 Annotation[#, "Charting`Private`Tag$7828366#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.00015543215198632554`, 
               0.00016051126030531247`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNl3c8F04cxu29Q/ZWGdkS6i6rECKRFRJakvQjhMhIVkZZRYnQIFmV6k52
kb3n19fe62uF/Pz1eb3u7q97nvfz3Ik63T7vQk5GRjZFSUam/7l1unY9DK4M
3txjaQqDA4Fu5i8iw+BGfr4N89Ew+PJuseHJslD4RpsiVOtwKLRuqz3nGhwC
L0UV7kjXPoSfT3NfP7kRDOu6vBi8uIOhbT576B/JIHip+gP+aRIIw+titis1
/GHR8ED6YU4/eML1IfHJ8D34WaMlJCfTC54bclk/4HAXanp+Gr8jcAd6z2kq
Bn6/BQ/EXa7LNbsOIceBpAIyF/iVtDhxvdURkmiXN88lWcPSL64vNKfNYN7y
9M8r5/RgvM85lxOjcvBr/JNmcF8cdyxHCLNdO4W7p3bc33UZYoN4SvEKtvPY
NtlswFjUEv8ti3qW8NwaA7I61bwHdnh7YLRapNkeJ3KQP/Q77YiLfOeqPw85
Yt4o+csMypfxzzO9/NWnL2NNYmjdZ8HLmBjX2y713RH34THJikOO2Pq2LZFY
bY9f5rnET03Z4XFJPU27ahtsWHIG6zpZ4fprhOGqPxbYX31Eep3dHFdqcat3
qJviwNvlkjKvDHHW+uKuNNLFbFmChMnKk5jBs2/xrroSjuoKJ4UxCuCvcW0u
96hZ4LX7j++dnJKBbcWJV4ID1GD7xIVkEfFTsJyjeempoC70Ne1QvpxzBmpT
VNld+mwIVQymf580MoaXBu58dHE6Bxm2akke/qbwruUsmyydGdT2uUTha2EG
/YFgsJirGZRyd37w/IQZZC1/q7TUbwqLL0XSlJ0xhcwfJK+u0Z6D/ybeX3WR
Nob5zw6nm5CdhS1X2sfrE/Xh2X4reeNFPRhWfyUvXlAHUgRs1bhKnYJn+v8t
SmtqQFRqWRlArwKleY/c38iWgdzkk+IWeULw2OzcLKfKX0DbGJNbV8GGqdgd
eeIfiOPvU6aDfzeP4rggwUeEHmWcIygbKG9wHEvXRhhZ65zAiu03jltiiPM/
VBw1stXCY9S/iswStDG/gGumfYgODvdTmd06qoslmMmdHyXo4oi0liugSBcn
FQMLoSe6uG5GwmVERhfLd3+Jmo/SwZnd7VK6xdp4lXrU2yNHC2c85Nj978Yp
bGpwvsqDHuD4MH/30TUNPFNNeVQqRw3HWwXf8TukgieGL6SphyjgBIr+nZR4
KVzEdCtsgUYMy9XdvzS6w4m3Pq7pJPttouvBA5MSP8mgdmVcDM1Fbugc6faU
1CQKVx1UJgbojkDqUwgZ/DoKH3Vo/f4XpAg3CDQ/a9qVYYLtv1VCtyo0u/DF
yPmxGvT3Ub2RNn4cDnmMRXXOqMP4+iTR+ykacOdOn8buggbkFmPha13UgAUv
RwSupGvAltFJRbptdeh2hplnnkkd5rM+rrvVoQYZGgrun7c/Bvu1VWbN81Xg
YHiEmXK9Eiyu99oTLFOANDiTX3pXFrqGqme8PX8ELjFXxfn4i8PrNtKD7ZyC
8MI2bZYbzwFYYkfYPa5HAekCc3ntOmrQy3nqD2IBVBgOfU8j3TmA13l0BO3l
BfCbkbG+Enkx7MazeMlvXRKznLR+nOMkhRsuei/IuMliYaojrReZ5PEgS4Pn
QoYCjlDK73cLVMTHjgc43RJXwufcFJXdYpRw6A0F05TvSvgjx0BE0yclfO/b
kZQEdyU8+Io8imZNETMl6ycQziji4/RNVx1uKOB+Y7MRvwo5/DXmbaKerSw2
XZ/vly2QwiddKQ0GKw9hNa83XcFZ4ljglD5Plo0Ilmx+ock0wYs/HDQd517k
wHxeZy00Gmmx7/M9JqWHq2iz3bkm04UAtuMKFnfTyGHNEy9hw3QWSHVe9o9o
IBdc26v01z/LD8ueECq8zUVgavc59pqfYtD56afL+TMS8DF77nvNX4cgQ0/i
iqf1ERgI74WZp0jBvuXXcChEGkrX7zVz8svAsovd3BuXZOCOPEVRgLEMfCDe
2RU/Kw0p8kVeUWhKQ7Wd7Z17UApere/zvLJ7GL7hCZtZ8D0EkzSmqqbLJWDW
wEWPkloxKJj2sVM6WwSSr+YF8JcKwLTcItBNPAhlhShH2Ec44BNntTLRB4ww
435Bi7EAOTz6mOmn7NgM+EZ4d2zXfgClBYmtAqlt1EDPEZmjS4u5ig8g/1Ns
+EG4PadmCifm6+nrpc/gwVUFkrkxZwTwVuhc4ocoYeynO2NgpiiKC7sX6+mu
iOGgmwkp4VbiOK9P/wA7mwR25uRN+hAhgcWbA//wVUpgMdPDxO7vEniMfzyZ
y08Cnz6KvUu2xfFTOTF+TV1xrOe90tRgKYZPbT2I51ETxeZXT3m8bxPGVyj6
8izHBHB3b67w2XxevHLDy07/ODcm/CHrSojjwL3jygmZIczYhNQs8+cjNc5+
ayNvdH8bxWgzWTlyTqIfko7M2hytYIdLR468ahUMMHzc9XAih67+5FFscXTw
asj18jeWrPBHxwea3VYOuJ6yolJdzAXvR2WMnTfggYtz4vNm0XwwJ/F1rvc9
AVjU5tASQyME3Z+0sYccE4YerXspRRQiUDPgnKeyughMhDSHF4AIDK0Sz0nj
FIG7mcLZJG9h2JzCop59Qwgmd7IG1tIJQk+/5Qs1lvzQOYk9ZciGFxpPSsex
CByEtRHFLzYzOeFX3/PWTSR22H1ZSOCmBgvUGzr0n40+HRzm0+Ick6SAbsf6
FSIbNsBdPcYo/psTgOqxSymJpRTR6D8lGzo9i2TUvA+nZWyhk0oXNcziKPDF
qtPnm6no8HODpMFFQWb8dvRwJuskGx7SKJNMoTqAxc+RGE8SOfEXv6FUn/vc
OLnzY1t640EcrNI1NtzGg2FqxaplNC+WoZ5Wp9jkxefPiD6q4+LDNZZ5hzz2
eYq83QSzbvLii72DvwdzebB7WKTGtYyDOMdDm8zQnBu7ORkd1GzgxGlm2XWJ
jAdwouNUpwYfO9bP+FUksc2Mbd8XTtX60OPP8z+sE75RYfLuo2k3svdQZ7bF
unnyGuLWFpA8MjCBvrC7XjNwK0GGRcReYvAIiBtOIElFr4CSckq+g3vbwLHD
ZzHnAQU0kBRapSmngWvSHh+1shhgFkWDJrkiC5yn/r7Mks8Gy68EGdowckDG
rC8fBBQOwL4oia5KHk6YcCjV6E4VJ6wxjtCnleeCAXHqfsK2XDBWaLSARZ8L
kq12ORLWOWGd3i8ds+uc8MP7n6N1mQfglGmw59ksDrj5jmzM5w47pLZhf+DN
xgb9FfW4G+mZYcGgzJP3ufRwN2L+syM1DTwjdG/8ohwFFNHtriPa7YCLBku8
38RJ4GbH4dKRxEnAsJWrbKndAD5elKHKfd2OuHNzzyDRGfSusP4d4xYJsdc0
h85E7iCZearQ7z3kWJwjqiZZlhp3ifu/4jtOh1VPKBucWWXY18OhQuwiM2YK
/tZTc4kVjwkweKkGs2HBQy4M30XYMd/lKHKdaHZcwDb0RLGKHaceo3z9uIYd
c72PJY0nsuOtHB1fb3l2bGeVzrOdyoZTXDLrfN+z4pMbN14yNjDjnd99UnKp
jPjI/YvvTgjS41avs2bmDjS4xbLLU/UaJf5PykJKSYsMd5l+dmed2kKbKPtf
FNcqYjYRf/0TTCFjJXmznWsdaC7GKSjTHIHwEm1Tz2cj4FskkJ+iWgRNultH
HLfWwOs8gW5XwR3gqeBd0rBABqWHl02ln1HCnKfDjPgvNRT67HvZkJcO5uaY
q92apYeqBPOhUjdGOHNYWOtdKhMUiBqQar7NDEP/tSZ8mGeGFGo7u00cLNDC
2LqnZpgZunkwrQtZMkOOwk8nHHyYoPRBrtRNA0ZIZ7HifLKZHk4yW14zY6aD
g4zpeTwMNHDaqfmERCMltLx+2DndhhyaX22H9n67IMcmRHpwYwN4rsrshoIV
UFbf0HUYT4GK8in6g0W9wMnwJNORL+mAkGeYuoE7ESG75rik+wT6j+rOxtif
JcS4/e1sqcQ64j2e6pYnu42SwVetpe49FAWdPTeZKDCJc2OlcJUS2+qMFKo+
p8Yv/ERNHfZo8NngZbJOATrsiLdpOJfpcK4IT+V/fvSYLwUpHP1Cj4/rlcya
vqPHbOXfM5vM9ufTY6I3C+mwvc8tqvJ6WuweTSbAmUGDl9OXv0SpUOO55NLd
oThKnKM/6nTtCzn2FM/T4nfaQ/cqjK/aUGyjW3sCLlwO6+hNnJbbf+HLKHqu
+6gsyzQ6lGSR9gQPokxt1halB5XI+regjNq5WpDayUZJrjkM0j35fkY4ToN1
+drWF47LYH2jvii7bQ1cs13YYfq7BXTYMugCG3ZBWrHglk0GGZT/zlVvJkYB
bZBXH7pFCUn8SOtmABWcXBO70Gmyr/v4LeljBGo4m1RDClWggZlfxcR8IA3s
sHxkF8pMA9/80nPqfU4NOS6U/rabo4K7S5G/X5NTwT9H0tnHhyhgqCTHyMYj
cli68ivgJDkZrMm9ZaLwcgeUcdwOKF3aBLf9K9M9KNaAYAvBwIWwBEyGpapE
5KYB3bJOeJgrAeiszdj2szYB6cVLPm0bb5DTcM8N2gsdiPbq79fnKonogqCf
wQjrLIpRZKl5E7CMipUVwzXU1pBjVeGjG+820ejZ2ITOP9vo4R+D1zyp/9AV
nc7ZOw/JsOG5zNjwMHJMn9qde86cAk+QUY+uTFNg+68jbBr6lJiURi377BYl
lpte8+GzocT3l57WhLJQYqs161b5aAqs8XBhjqOTHCfiprGvs2Q4xC42wydn
30cLMqWuQrtofI/ex+7MX9SdtVJvKL2BZEUsdHtbVpH63Gixvt4S0mu8eyBP
Yho91U8LFgkfQRlXTtPKRbUj+WWbjID0j+hHpsqXaN46MBRPzLz2qw+0NFRP
GjSMgWOjjUBifBZM9B/SPnJuGYhvfOdi8ySB3yIEroLzG+D9xly9+vQWcBWw
uNsmtwOegc29OMF/QDV0ejGpcA+8NI/iZvYkgxnzp9vK+sigz0vTsyHs5PCH
wRXD/U8F3BC2OWgwTQatG4iysVFk8FQ7VS7L7h7gGQYurhH/QH6MWKcQ2gHW
qZHpItl/wQHV1FI5rU0QSClF3vpiDSgHqxFP4BUQgYJYfJwWQcR3Upj45hSY
7ln1Q+eJwK0tVo+fqRs0Ttkb3UupBM2vz6GSuk+o7NPLvRCaNnR/d+i5r+Ew
+kAWyb/LOIH6Ai2E3STnUJicnPOJpSWUNP0gICtpFb2bvHwv/98aetm4yE8Q
3URtbwIYkv5uIbHr/8yZQ7dRKAPHtbvlO2g7ZlR1IW0XGXgbur0W/4ek+g7+
KTP/h2592n1yQeYfOjqz25v9fhdZqRRYNnTtoA92NXRDH7eR7bNTt/s0/iKS
zJh4iv8mErTtFvrqt45urEW2JmuSULHOvKly7TJS4jmUoqy7gGhJraJZBVOo
xsuoPniAiFQJp9rMUS+iLWFI1xJtQO6al4oPajxDr6hTe/jf1QB/ya6S87Vd
4NJvUeEduRHwrGIoIeLHBOC4PfZPam8WZHPaZr/wXALxubaFfJ9WwFIcpiWV
kEDjGzeHKp918JhIuDu5n4NNF5fnY+W2wAhNePdP3r9A0rn58bXPfwG73zi1
Kc02eNNqWiizP5uVn95+ur9+w8hSlVrgL6iIP0reqboFpt9q3JWj2wQLH1IZ
qZPXwcPloxp0kySQlXXh2tPdFdCFn8i83udSPsHu3dWj84DA/UwuxHgKBLlp
resrjIJR7e4M8t/9YFONdqp0vQVc/vSGk5XvC0iux02v0opRbRHho5FTM9L/
QLmxoN6HbFdv3fNVJKLK9xUuX2gn0ePr2j/FEmYRw+BvEn/1IjpCzhXO+msZ
lW2L/FvwWUVP3qgky82TEDeXfgi12DqqSyMkXufcQIunc7K4KzeQTDR9WaLU
JlrQuVWpariJcBTnYRGJTfTNbrBW+8v+/nRovwXdBtqIRtHt3OvoLqnMaXGC
hJ4ezyyM8l9FadcTeI8OLKO7L6UuzjEsoQMCDwcaBeYQbbUq1cXeSZSSAElW
VqPInkyuJsNkEBn0H8wyz2tH2pN7tWElVYhKOQIeXWRHAdJRF1eiq8Dv9JJQ
I8d2YB87L9RbOADkhpPFWpuIQKBNJO8HzSSgi9Nlu0qaAZOSWVoL0QvAN2ph
FYwugdRPz8OVjFbABL+gQHLAKliwc7hm/R8JiNuFGHPJrYGMqeh4/rdr4I2D
yQOvsTXQQKi8OTG8BgoijwjPPl8Dwb46hz/zroEKCXkhBVsSeGm/tj7htAqc
dj67sqqsgOaU0HCvtiWQyF6SPhq6AGwkhiU+s8+C5YfVOiSLSWC9Qxk1bTe6
nx8c6zQuQyBaKXLerLYTXCg/qG+z8Aus/VjR+KVXCBYjb04jnWK07q2lFyTb
gE433RA7LdmFLMJ7D8a7DKE5M/7lIeFR5DYmYT/QNIFcTZB7gOoM4r4T8fyy
4TzS2vZ1S6BYQuxlT3g05ZfRxKnTsVxHVtD8obfFuTMr6N/upR88XqtI8cGG
t2rtKmoUj3/jObiKyF+SBc+Xr6I/Cf/p3XBYRdvK7WOmjSuIozBiLJdyBYV/
yfZlpltG12aVSZe+LiIJRrWAAIZ5JMvVJNXKOIMUP3k2Pq6dQJNhtp7PdEcR
WbTROIXoMLq/eqym9EY32q4WUlb724QqI5btBNAPRGcV5NnZHAoOfzx1es3m
J7gSL5CpE9sCbpCUGnWVeoBshcG/HyHD4InCk7dkaqPA3ZQmvct9AjzQDla5
s9+/8mS1MeWUc0D+Z1FUtNkC+Eu2uzciugS+Xm5wzptZAp3XZB1Eg5eBll7Z
y+nRZVBhbPBJlWMF7HwZMmtnXAFu3rdZpFqXwXT3oKTKlWXwcRB9C61aAlYq
l1s9phZBNOD1mlicBxoxFt4FWbNAbolBcY1hGqRoF/N+PToBlGJizYo4R0FK
9Gy8R8IwGJqaDzj7rgdktNiMeoe1AiZBRStaz2rg+OYyeVZbDngFBdtCqYrQ
7y9PnCUi6hBRbWfjeW8bkl61nnqQ34tCIv/cl+MmoPykQPlV0VF0wk3bPWp5
HJ0QU96UD5hCE2nLhjM/ZtCeR2Zwbv4cqqJuCNM/s4Cs1SJdP4YvIk6y9V5n
lSV0/FAyscFrCfHXtbjxPFpCl72iaZyuLaHr2VTsZ/n2+atPkt3RXESL8xVK
5jP7fkkPHyLpzKFBB/GrUiYzKJfbaoibdQpt65C4CmLGkUukt9WzViKKN2K/
KVY7jBgXH5t2P+tF7GI8VcUS7Uh9rZAtlPEXYgtM5m1V/Iyezlwej/SMBZIb
K58oniPAeMD1ts/dRrC7E5H+IbUDXGPz871a0gd+PjRdOn+CAGiddh7yzRLB
9a8T39gdxgFNjvMJr/hJcIshKNjAfxpkIF26m3yz4CTZt+nnV+eAigNVQ6zj
PFBi3qZepFgAtlzEdRfjBUCVzOqcDheAnsnUDuibB3Mc82tLQvNA4cpk8zm2
ORCcYe04/mkGLPuKqwvSTYMN4dKnx3gmQcWQ0Kry1BhYSy5Jqw8kguNFidcj
aocBn5ltxJZGH9CumHV3v9kBZrnU7mq2NQLZnzp7t6MqwGn1b/hl6ivg7LMb
mnynEP1RS+J1cK9Gqgpy/KkyLUhk+MhO2lQnOv/6v/sTl/qRgEn2Ej0gIC58
tc81jYhEXg+Y+/8YQ3cclYZuZk6gSK1mUW6tKfSrtiL/SMo0ipcG5lJZMyia
o3cv0GE/v9svkfk0zKKxv//SjSdm0csmEVbJwln0LbrvO7P0LGp0Xx/fsZhB
HRz1H2uPTSOx1bDvnC2T6EFpj4vNoQn0gLheUQvGkO+RtmQVYSJSO07Lrvhi
GB3Etyj6s/tQXnVYDrzaiSKLfW4PjDcj36nHrLsfqxHtz59t4c+LEOOzWeGh
nTjw9UfR9dX5ctD56d/t9OR6YCOSMN1Y2AqcuLOucvbv9+1U9jXy7/1gb2H+
4pwYAbS4XCbfUCWCkYXJD1fYx4BDcLmqUOE4uM2YJfiLeRJIHEtU/HVoClix
xM6Z7L9jYmiIQZeCpsEW+XPv5h/TIETvUKdV4b4P/jvTGW41DexfZgr/+DwF
bopLZim0TALRtCQuQvYEuJ9ApxapPg5kHntvZCaMAtZvmVmnSkfA9YiMR7Im
wyC3l+ZL4UAfeBseGmIv3gUib9sG6iq0gpxKpr8MEvXgyImC/lL7b0CUwK16
kS4VcFuZrte9ykcBvE6PCX9+oon+fBOulQYUiCbVxvvb0IfsPbnU4G5UMsFo
RjnYj7b9P0xNjQwjA7kfG9GVI6jNX4xS334UFVHVrVbjMcQm1hFqNjqOjlu9
TlmtmUBZdNkED5f9fh54a3qhYhKx5hWYLndOInn5+RznnEkUQv2KL1FpEt3u
ceiS9J9AgWVRyaFh4+jMqDv6YzaGyt8NWTWOEVGTPj49pz2CJHucNKyJQyj2
JveYyEwfys/VvS/wtgtFGW2vuXq2oRcKlYFNPg3IPDugyfrXT7Re9xrpNnxE
BvmizD0jsUAp56Fzku9nUF/R4zVjVwOKGMsmeoqagO1/HoIbre0gZHmW2Zmx
B9yy7Nio3+oHg0BhTHw/906Yv1084TICHmZY6Gw1EgFK/MHlszMKelUeSSQs
jQHrDiqmlpxx4MQ1/9hDcAI47Lx662Y+ASpYU1p89SdAF8XXXPrdcXDa+dnY
Gc9x8OpCxjbXuzEwMePymyp3FBzzaDAxciMC+rh7YT93CYBz/KHQMzwEaKOa
Q17L9YNIye7Ua+bdQLkmFLirt4MGpv6Nyt4/4NGjkL8TpGqQ9m+yq/H7Z3CC
6oOHZ/gzMLlQoP977C2KdTFaUmTA6E0mR36vVT16m3FeOOlWC+rzyE2a9u1A
J3cz7Zf0etCJyKb27dp9fTuH/XRWh5DFFWoeshEC6hL2OFTJRUTFh89p5XGO
ouyaKykc/aPIMV+Qmu7qGPp6a31F4/MY2jGsN2NqGENle1TR0a/HkPb23SC/
fQ6T3g6Enno1iowrcv0XfxHROz4KzuNoBLkSLqg6BREQdXpHbtiRIXRdLcbS
cacPSd07KDcd1o0Ch7Utg5rb0ZI076BzfTOi1LwSJ/+yDhnNm7TUeyOkP9t0
xqTrHZp66tQ7lBQDGJhm8YtPJcBKIkCUtrASfJpLPCZe9xvYXQ1YDdZpBa1T
z41b5zr2eYh9ddiiBwQ6Z+usefaDhZOyOTEnh8A7rzPvX1oSgKCSbVTJpRGQ
fvEoUU+RCJaiXnrKNhPBCf33PUOqo+DpWiT0ch4FATWup97bjII+I5OJYZ5R
MNCQ03vgFREohEaUjy+PALn1b2XRbCOgUuRw3+vdYeBVePk6Q9AgUIl7Wbv4
sQ/cgl1Xep51AzLh3zVcmh1A1/7Fq7dvW4DTdqC8ac8v4NK/vqLAXwkcTRL1
zV1KwCkn98tRBfFg7pjl+EO2XNRnIRGrpP8NvT9fXXXDvAZJaHsRWb43Iusf
nV89x1rRngmtxqZSJzpgL3nm9KkeVEUX8qWNsh+F/ztVvOI1iOJ3FjoWnwwj
ngu3tZhzCIhJ8nTS3PkR5OijJ9vXOIKMBm4UfOQgotbzz7qGxIloK5DKxpOM
iMJH7/Mxvx1BCsz2ryaFRlAxgWKy4QoB/T1axiFMGkIH/Q5X8fwaQKJLWS7y
xn0ondpvafFRN+pPyF8qCu5AqmoigSE6rQg9k46jK2hAsibanDnR1Uhi4/TG
u9vlaLRenPowZy5qfPF+u9wxCqizMlH+d6YIZDk//fjEvQJwm7XopgTXgYEk
jRsp+k3Ar//kH3GrNnC5TeymjnknEA5zHTZg7gFhNbZVzwP7QMgF7ec+rwaA
i0fNVeZbQ2Dn/s7d0OFhkHEqn4/ejwDUj7bE7LUTADvlCn/3DgE8dAu0MCUR
QArZw5nycgJw1QqSIJkSwCsG6fg6j2FQNWneuzA+CExmF9KP0wyAA++jw293
94IO95a0E47dwDRBhu5AXgdwNXhSyvu5FaRfyGqRlP0DTNfTw0Jf1AL9BNZc
vTcYJCWUhTRVfwJ1ZRK63OSxgK1e2okqKBt5+2wvCh34gs7JnnUqrK9ERQ2s
AoyGv5CVDfkgy/1mZL842n7gTRtq1g+i8THvREU593Pkf3YjlVm7976TvSjP
vOPgzYp+9PzVMbm904NIQjl2S+LeEMLGTLS/jYfRK4ZZZWL98H5OOvi7TQ4j
0vxaxX9vh5HA7+ggDrZh9JqWEOMsuH9+0LblcccASve0PJKs3o/8WSmTI816
0Vt35TZNsW50Xlv3rmFRB+LJMNigp29DylL6qd12TSgKsDg0W9SjUl1ZtRqW
StRkJO15XuUz4mE3sHSXyUaUK+rZuRURQIJuxmFArhDwhrhvdND9ACWfWT3D
K6rB7bZXp2e+/gYmInpCv+RbQLxzTgBuaQNkA68d7hzvBAbk4K7k/j1fcq4s
Imr1AkNTw6Ggnj7wP3fCAvo=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.884782509292411*^9},
 CellLabel->
  "Out[615]=",ExpressionUUID->"83315f7c-f84a-4d59-ad0c-433212e5c4d4"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwUV3c81f8XJiM7e+/snb3fx957l325uPZ1FdKSrBDSoiFtTRLKeNNAKJL4
ShGRFLJCEb/7++u+zus563nO+Xzu50iFxruH76ChoWFjpKH5/6993e37LDQL
yK1fhmM0LxexaKV8/0ZeQixxb5+8PZGLuh7a7H4xtYL+pF+jZT2ai/JUBAKv
+K4hke1riyWpucjhzrfzB7v/oMSV3hNEci5ik6t772O6iTb95VtOkHJRT+UJ
Du3qLdSoX1W2EJKL5Jy5zfd30wL6vKFb5pyLstjSgibp6aDs9ovGCYtc9K1r
PN3dlB5My6cW0vRz0U2b6nq1akYgrOrFlEnkIkZGoQ8Xf+yEr4GRNVLcuYj4
8ugSiwwzFNO7s/ygo+Y3c1WdPssKB1+sc6dM5aCs7Xp7rz42aPJrYEQfctC3
ZonIF8wckMXbarnvZQ7yuHTgnYspJ9jaifzJq8hBPMI2bCrV3KDyRO3YhGsO
svjzV/irEw885PznHWSUg5L+e6BY9oMH9AxcCvVlc9D7s/w2TDJ88NDig8zI
ajY6zfPt2ORZAfgz/G73+5Js9HLpQlG5liBcwsOuFinZaOWd0xX3PkE42Xwo
jSUgG3kWPWlqZRaGotmUL5My2YiX/cTaxXRR2BGlMfTofhaypyupU6qWhDUa
k4ic6yfQxNJPk6xtSSCkoj1Mx06gtAmrV+NOUnDl+ItX7AEnUFXbn/fnf0hB
lpOrcxXPCcRyNGSRUWY3TP479ngyLRN1bWqofD0rCz08fVnntY+jT2eFaAZ/
ysIN2qGrZMbjaE5jx0AnyIHvvacnng1lIM7w9wcf/JCD3orCIZ7UDOT9Jrk7
1VQBbtl2XFCvP4bGLz0jcX5TAufOPWFp0kdRukTlwGVhDWj/5cifeTYVnYg5
aypopQE0hIEpNsVUVPg073ZxvAY4m6yEn2xMQVc8ktIzX2qAvPy/A1FfDqDn
2ZYypLg94LFk2cCmuB8xLXxL0nmuCe86Hs9INpNRaasyT0+UDpiJS43LqkSi
vbVcc5RiHTCZ75YxjIlAkrfX2sWe6sB/2f82fe4T0b1TL9LimXRhieWvQbFm
OHoZuG+C+5YuGPOc8ly1DUUrm3nVfpN6cGq2oY812A89W0g4uYNNH6Q/Rstd
ZvBFRye9w+9q6cMRYTvxE/e9EVuPtNC/DH347kQcOcnoiWTKnx2tkDKAqag6
laanTsjT4IfLdKAhAM98bXiGNhJW7VMsyjIEF9qYp6xt6uiLZB2dwQNDcJYJ
Sm2+IIdimDLq8/4ZQjRrs+KHYztQ5pCQhNpFI/j47NH9JTo1bN+9vT74wghm
H0WXaO3Rwpx4qv/ITyM4p7FbKd1ND1+8WZ31ztAYlpuZ5W0iEK5NtpunDBuD
R9uV1ZhYG5wWpd4pRmsCA09/Gx63tcMQwFfZrmAC3xLzC/xFHXCP5biXYIoJ
nHnakah3zxlP8qQ2N/KbwnN7m/GgOndctTPoXJipKVxgPiJfnumBEzYsE9mJ
psDNUJfw1tkTb05wygY9MYWZaik2sSEvzFNzO3+HJwLJUpvauHpfHLNnyWQy
DUFY2r9/bKF++OUjo1+vriLwGZWU7mDaiykP37rl/kLgJ/HoT6H9Phztncaa
YwWgxjaj5nolAAvyS0yu+wJ8EPFMf6cUiF9+eNEUFQPweHLtb1JNIBb1Yo9z
OA1gl3JHc+VJEH7jUdHHMQ5QPuElEtIRjNN4rO4cWQFQ9cvLqvsXjOXezxxb
2GkGV4Nyd/NphuDD7lpa/WpmkJ3qnsZ6JgQrcf/HamFuBpypXt8aX4TgwXfp
k4+9zMBd+Hn/qYUQrObWfuZMuhnsMP9PpdIyFH/kjI5jLDKDUx0lNo3RoTir
b5fNgWtmEMt5wmqrKBSPufit+3aZwVRf2ZzYYCjO37XV9/qzGRyxbTn393co
1u+tvGO4aAbeaTYHWXgJuMh5dq+ooDlY2MS6HbcnYGOOYq0CZXNo8qS5wkEg
4O9vdNi2TM3Bu/X8jS+pBFxa8HEyzt0cuPJ0w/8UErCZ05HmsXBzmKse/uxb
ScDzbDJnXVPN4Ydexq7txwRc1tMZ15ZvDk9DdELwCwK2zo+10awwB3+vs8zP
3xHwkgO35LXH5kCrdN9PepSAL7PWr/N0mMPtsVS3L98J1H3c9y7zozm47d9c
2Fgk4NU8mqrfc+awOaetn/yHgK/Z38gg0lpA6Qwzh/U2Abuy2O8b4rUAyvSu
OS26MLz5el7LVsECDvNnJl1gCMO3c0+zPTWygMf7iVf3M4ZhTzv9KUUXC+Bl
qt/fTcVpmD83l4VawJWu5OVz1Ph7ncfOsu63AK+WSoFP1Py+OXLx6bkW8CFN
zjj2LwEz2HbbzF20gIWl1PLAZQKu2ZkgGfjIAk6NvHWZ/EHAgR28f96+oNbT
lvXb+kLALNlP36EhC/DfSq+/94GA66wDqx79sIAc/UHSr04CDmWkOy61ZQGG
XzWS2p8RMEf7rX0lXJaw9Jlx70QVAT874ahNJ2sJX3cWXLh1gYCJVotsFH1L
OMKQLS2ZTcDcDGenJh0soWNwZcUhiYBbXhq2eAVZQuPBQU7lQAIWsMyM18uy
BLWpVasJdWq9B44izuWWMNF6Itybug/3BPk6wh5ZQuzflsqotVBsPndDvOSj
JdBka+yPfUrdJ5+4rtu/LIHlYyRb4PlQPNSmux/TW8HEZo/+++RQHHO2482s
mhVcK9jcaaoSiutoilLpLK2gQkT6/GWGUEwb7Ssr7GcFfqo3z7d/DsFn0Uy6
zXEriBE2e+eXF4Jbv7OoVA5ZwcHMpxWxA8GYxeP9UMOsFXA0BDM4XQ/GXs3l
x3tprSHcKz6HOykY/yhWGdlUtoZRj8nEcbZgzGvknOdz1Brojd11c6IDcVRB
8Xc2RRvIcvW4XvZsL65d8yvdbWoDlbyq2TMme/FWiDQYetjAtcjxC4KtfrhU
9/G5iEM2oNE67CzQ5otbxgasn7+zAXbxxGLtWm/MrSl440CaLXBWhzdeTHLH
jYOXQya67UBLeVNu0dsCh/EGvyoaswMnI+acITdzzOEupYiW7eCzO0dsrJMZ
Dn5zbaFc2B5uqn1y1MgzxfQvbx/xirKHw+/U/swc0cXO1TWXOhkdoNaqhVQS
IoLX5pNoDwg7QGtMTcRIEw+uUNEJl1VzgKyA2KO0Lkx4+Va9SoaXA1Cmjn/Z
uP3N9Pzlpkaj6w5wYI+GfDOnJBo/2T78wMwRlkrsjRqndFDe62yTAC9HoGcO
dojK10PaO+2uskY5Au0bVQ86NQOUldEdGVnkCGwsXWI6BGOklNq3JjXmCDUC
7UG5NmbofV3xvr4lR8gPDN/FyGiO0lfc8WFGJ2A/0l4z3WaOeuM/ZI2oOoFl
fLjVpT2WiEL8yHcm3Qmed/kKqM1ZI7Hr5akWRU4AGqFoo9QGtY/7f1685gSp
Xk9lnxnYIqGAsevO3U4gOjKo+irVDrV4TGoxCTuDadK3iKQBBxRRfONcnaoz
jMtcmHYhOCLOXuJGmJkztD0oVJ+Zd0Sh9jPP2yKdQdvBXNB90wntNJt3O1jv
DH3qj0f9FlyQs+L7nN4eZ7CK2CwJ0HNFZ7ka8O4JZ9g/2WV7geKK5CaOqfaw
ucA74bJS/RlXFNdFDJOUdoGgX8VulyTd0JMah3KKngscluWmZ/Z2Q5bH+ZjF
Ql0gve6u3e9nbig/+i9KPOAC+7hefUr+4Ybee4ztf5XvAu4BNUp/BdxRqMyd
ydh6FzBaOHlcMNYdVbEVijzvcQEGv2XxJ6XuaHGF7M4/4QI1g7QP9z5zR62h
4sFBjK7AZC3MW7vtjiYHiw4yc7lC/MPq2+ESHojJge7cYxFXcOM6sC1v4oFU
cHJNgJwrPIgmCW74eiAXre9vdu5xhcyWk8ujZA9EvrV3ptrIFQaZR4re53mg
syJv6P2tXcHeVv30iwoP9OwUkmR0cwVJd7H9rbUeaJSuxujRPlfgb97yH2n3
QDtSZHz2El1BJfe9De+QB5KbPUumT3SF0Lpy3egpD2QfzFz44KAr1Fv6KH5Z
9ECxAwfv+Ga5QnS0dJXXpgcqsp1/uaPYFRTZylq+0nui2qbgL/fKXUFnqVS+
ktUT/afxfsP7piucEuOZKuL0RJvXrQRoq11Bt5B37SGPJ5IUatC82+gKypYX
ArZ5PZFlgZKzV7srpN5XstxLtSNpL0Vt97lCjMS3s6Ncnuhk8q4Td0ZcYeCm
p1oVuyd6MHOswuObK1Rb7Gdp3umJ+gNWGv8tuAL9qr2yAI0nWn1HHLq14Qrd
zf1FDaseSNh6eMmN0Q3uf1Z+m/zTA5k+c+DY5HSDMjF7FvKoBwpVa1G8KeIG
N+1uXevr9UBZlRpWrnJu0B9iUVaMPdAd/mvBfzXcQJIoPl973wP15PGlXzdy
g0Jv/SuGZR5oYSv7nLO1G6ifrTuwmOmB9Kdj3lbuc4O++VPrxV4eyH/f2Iwj
0Q2aEi7NXDPyQEd73RjWEtzgmTL/hq6kB+qo1zV2yHKDFIdM76pJd/RD+Y7P
7yI3cGdK2Dzy0h1xVIgkXSl3g700Ox6sV7oj7xyaquVHbrB6VVD7/T53lLZJ
fnWp0Q3yHS4x6ei6o8sJU19s2t1gx3HpW9sc7uibb5fAxRE3aGij8TnZ5IaS
FUtPWDK6A5NsVHgrkxs6fHRssInTHdbG6Wuihl1R1pCSgo6IO9ye+yTDeof6
fJ1o65LVcAebRbNDulauqGF8ftfOve5AnGh2oxl3RhsX7Mpe33eHNt2PXVw6
Doh+sfSnWYM7lI/seR7cYI/YbL8YP3vuDkXdK0+2DeyR6Or+saohdxD6etUG
6dshU/frMvm0HvCyc6WATt4GHWPZfuDs5QHt0Y/2/uw1R3kh9jQdQR6Amm0z
95qZo5KGM26I5AGTFXZ2tjVmqJKosqJ+xAPyxE/cuFIC6OVzPwOuOx4wt25B
9+mcMdp5sPbF+00POHhmvZwtSgsV/Iz6z/e6J3wfuxDzPuy3qeW9agaxB56Q
PsPJZnd0wHQz5o/meL0nuJ3+J3RR4FtLzHxOQVS3J/Sc/Mx06CwDtl+8ZZ62
5AmUJ5UOI9nCmGlt6l45eIEszYgPjZUKbq1X/Rhk7wVE/10pB7nVcEpK8k4Z
Ty9IvyBWVPdRHU//oQ+9F+EFGx+/etTd34PbN3cLNBd6wdaf58e4OXXw8R2h
x0Y/ecHZxJ+5Wq5G2PDFnQeV37yg+nNhyyiLMV46vjhCXPCCD9g5POK5MQ5l
OKb7i84bYvxP6rsomGJgqvi5reQN8Z1nrvlFAF7vnBZ8qe0NHYpIZ7Me8KNc
descU28wTh8irjCaYQlWXMHp7g3bBNeP2hVmeIt91Esq1Ru0XynuXmw2x3Vv
ZY9PZXhD82FXM15aCxx3KvbRnXxvUK4uZiw0t8CfOf+xaFZ4A73n7C25Vgtc
+s5Sf/UOtf5LhkyrTQvsWJIf/uyxN4xfbooo17XETTyireYd3uCt+N/1vzcs
MWWAMMf4zhv8Cjvl6EYssfKZu8LdH71B4/gIkzGHFS7jN0r2mKfmE42aM423
wu5DGZUC694w1Pr1F9MlK8xyvqt3hNYHdIMVV+leW+FUob1KYXw+UBB93aJQ
xBoffahltiHhA4+Lo8utrKxxlhW7b4mSDzxhESj6GGONC0a+xSnq+ED54E0p
pxJrXJrYeqIV+UDIb2HXS0+scfnOsos+9j4wyHAkuWXQGldeSno87+kD7Wrn
1tp+W+NHr+XGRUk+YFOFFRJVbXB9EM36Y4oPDG/2Dola2+CW38McDkd8wCEg
B+762+BXJx/LTuT6QPhwTxNtog3ukSowTi31gQ/Jof9ZHLfB7+uJHpxXfODp
xWsfk07b4I9OQLp1xwe4nIteFF+1wV++Ch0zrfWBT7kKpy/dt8HTqcvnPrT4
gKhrjN25ehs8v+vNg5jXPnBT/72iL7bBKzduvqIb8IFK1gVR7lc2eMPo6Key
UWr/F8xHujpt8I5+v+U9Mz7A/bUrLKPLBjNHarG8XvaBrOmcp/pUm3OLTSp4
ywekbqUPz3XYYIHSb3prTL7w0/PudMILGyyu1OpcyOMLit1fIreabLBs64Vw
WXFf+Lfj+c+KWhus4p2U3qTgC8RN5wTfKhusNet42kPLF8Lqs1dlLttgwwy5
qh8mvrCuFXOYscgGmwnStB2z9YV3s8V0L4/YYNsHw0OCHr4gr7NJc5V6nzpb
Pp5/GOAL6WO5Ag/8bLDXx3wGm0hfePvT0OanhQ32TyCKjpJ9QXzvriJfFRvq
9zhoJR/yhTilnUu/uW1wguZy8LUSaj9tDM72H63xgc6eA4aXfOGsfMFWUKM1
Phx4s/DdLV/ozxSyflVmjfPz/Jq2m3whScas7LCnNT4tqfX+bIcvXCzRkDil
Zo3L6th+qPb7wh47u6klRmt8ewIL+E/7gn5/5T6ex1b4haFcUgOXH2Q95nZV
WrfEXX3buS6ifhCuiBhLXlniPuJwxTc5P5gNaks8XWyJR0vy3/Ia+8EIR0ck
QdYS//2xpJhI9AMG3tKvx4ws8J5y/EWx0Q92dPc4tSqb4e9lZ96zvfKDRgOu
DJsZwJfLott/vfWDOSPP1Zc3ALOUCdx7MuEH2VG6GzGigCfOxx8wY9kL5uRT
ClvbJrj0rASHn99eqFy4tOOOrQFeKz5ilLO2F2JaH7jfAjX8oNhLLZp2Hywc
9/lBWFLBYcXKUs6s+8B4XaELKpVxX9EQI68EFR++l7ZnhyK+fUq9/4r1Piih
PxXzsm033lswFll/Zh9kVluKNZzhxs056Ow3LX+QFOlsEbvIh3yj51vOmfgD
Z7JNI14WQEtOl6ZtbfzBdeFn4rCtMFLg2dC/u9cfvDe+Hno5KY5KL9WNxB/z
h2gLRSauX7sRqUZV6s9bfxg4kPc+P1IFMZz5ZFf1nz8Yx61+0SGpoooDJ8n7
JvxBzXyf4oFINfTBeOZF829/cGzL1glR1UDQcZ2YIRoArVyp9husmoj/k8g9
VlIAMMw13a0k66Dqlq6BpqQAeC2dPDs1qIMcr6b+iz0UAGUpdm3qBrroGHHI
ua8oAOhvd6pYrOui2YWSxdL6ALi2HXKhNkAfZb83E7ZuC4DUV+8TZ6r1kXTd
gvlaVwCIPWpL0aE3QD4HnUv9RgMg96mVvH+lAXrOwKInzhAIOwzOWa29NEQB
3xuCejkCwTM4msWbyQitd0XkHBUMhOT1AwzH7YyQatGr4QnlQBA9aHjZ5pUR
6iRTdpTqBMKd8AWjsW0jFOq1W9kKBQJN2+guK31jdF74WPot90Do7PgncrrS
GGn9U7/h6x8I0rnSWpEDxujt2OgbZmIgBJW8NmCkN0H0N4wlYlID4Vj6Zb5L
/iboSvZPG7HjgWDXG1BWesIEGZLKEt7mB0LREzsZj3smKF59vU2jIhCuOl2b
V1s2Qb7T+gO1VYGwe45vaZbPFJlfSf2m/yQQvCW0Zjl1TZGKz7P1JhwI+pN/
P5V5mCL+XRssZl2BYNvUYEmJM0U0HUZirwYCYeV9/d/GLFP043C6ut1YILQd
73tAvmiKBnSbzd7MBMLD7h0h5x+aopb5fx5uK4GA7zpzqbaaots3TYkftgLh
1+5arPHWFJUEHknxYw4Ct9el/w4Nm6J0/ta8zzxBMPp5asRywhQR39JcChEP
Agl+9dm876bINcvs4ZRCEHCRE9RcZ02RoWlGW5RWENQv3qksnTNFMqvP38+Z
BMGuMyO2vlSc4wHdt0TbIOg2o2cLocavh1uu/3YPgi9XdpCXx03RhNgJlrSA
ICBnU6IlqfV7PrwS3YoIgmPrfuvTb0xRXQGjegY5CNiXawTtqf1XWNmYMR4K
AoEDR3qsH5mivH/ZHnnZQXA7d93pySVTRHnSGc5REgTaCo4HW3NMUWAsc0rJ
xSCorSwnHUw0Rbay9nn8t4JA6c83kW8+pkjzc97FsuogOKOsdorG2BSJnul+
IN4UBCsGiS+7xEwRoxNbW2V7EGTzXV6m/WeCFuid3su9C4LmkZb08WET9LGp
YKpqJAi6RhnOnKs1QQ9UdrE8XgiCqHLGpGyCCTo36SKqtxEE256t+m16Jgic
bc993hEMIewRp0uZTZASY+6dEPZgiL98exbfNEYSoXdqrnEHg+9SEZ0n2Rjx
trxunBIIhmGnLdZpI2O0lczyNko6GLb4Itt7O43Q8julobvywVDq0vGCNt8I
fVd1+DKnEgwup7eag5yMUP/UyaVEvWDQM/h9+0qXIbrpxS6Q5hgMB2dZlX0e
GKDyalXJJrdg+LRnu+5LqAEqYndW3PIOhmTJr24dfAYo7VWhUUZIMKCExzxH
9+sjZx3O4Lz9wdDZxLbKKKOHVnl57pRVBMMFZb2z/oba6PmNPRUZN4IhUTD+
6bXPWuiUrus5UlUwOLsPHmU/qoUUfAtOGNYGA+G+5qbtc020r3xn6MeOYGD5
flb3nNEe1Cq1KSz8Kxh+jXSufuBSQXlqU/kXTEJgZFJ6TlJIDHljusxj5iHg
omO3JRQsgna7Sh+MsgkBsBe9YHZTCDUlBkUZuIXAWS7uASFtfvSrdthqOCwE
vD9W33hxiwN5Gr3dEswPgU85S5d440ZMJWzrE85/DIHxd4rekbsFcemLy59m
xkKA0Fv+G3UJYSaUZWs0FQIpfSS7mTgRvKDjJTn6KwTa31x7VF8ljlt3L/fu
ZgiFm4utmc37pbH2lY9GySyh0EvuyHpisBvfFn5+q31XKERYOdmK/t2Ni7mK
j0QJhwLr2CCzbpIsDt1WU3+oHgr+u5q/9Noo4ME0/nIanVAQ7UhpllhVwPar
/xjdDUPBeGV5/cJVRaw11zO6YhkKaVdvGZ1fUML0I6RCw72hkONf0lYQrYpT
vN3/ngwKBYfGPW2VO9Tw7DsD4uewUFBsfG8ueE4Nf+hkMj0aHwrJ87eF9tWp
45t1N+deZYZC6W9RLaFpDSysWegnkBcKPqceywrI7cGF95NfRZ4KhRj9q7Sh
hD34wHXLS6xloXC+4Vjy6H978KyECnPAlVC4f4rCzsmliYPLeZIfXA+F187m
yvdtNLFtyYSj28NQYL+leeDhQ03cxN7VUFkbCpKVjvd2jWtijdxqmZWnoXA4
vR8ecmphoaNHN8++DIX08gvNLSQtXLgREfn9dSgIXFedUTyjhXcccBkw6A2F
T+IBlj3NWvhHrPi9T8Oh8I9UmFvHrI0DZxgE1cZCwc+4KGlLRRv3h80dPzIZ
Ciec7v933FkbW38Z+NU3Ewp3JsV+msZp48Z9Tfukf4XCw1V3R7V8bawxdK0j
aSUUSo47brrd1sbX3U9qvfoTCk4nWTbuPNfG+XZ7WSPpCaAscndicVEb07wy
O/CUmQClJ69+nWDUwRRQ/MqyiwAb0/3ZLMI6+Hsjp4s/LwGCNFBvpLIO9tdb
f3ZfiABtYd+e/jPUwX01Y3Lb4gSQONFp89pWB1uqdZS4yhCAP5dlvNFTBzfc
ebB1VZEAR+M1VL8H6mBV2bOkZTUCGB56cdg9QgfzcpMWlbUJcOloyJOxWB38
d8skJcyAAFKMnaiRrIPHf3JtXzQlQBf7mthUsg7u/G/qxAcLAhxm7/ltdUAH
P3j1lI3DjgDCPhrfV/fr4DM1BaetnQnA90l6nZbqn34lRPiIBwESLl6TjUjU
waH5OlfrfQmgcr4mQS5GB9umMissBBCo/38uwyhcB6sTPz9QIBCA1++C1Xl/
HczvUa0TEkmAHZUHpa3ddfAmOtF0IZYAU6e1PQOtdfCEip9FP5kAjWovP37R
18GvhVS7WFKofMlKdW8UdfAjRlo3i0ME0AuK+CYjpIPPLg8MHcwgwOkrzKzd
VL3Tv9wOrM0mQPmDxsCeJW1MeJM+NZtPgEX0MNTxsza2f+YaI1tCxT0m+R3a
qfO9JbMccI6q18zeg533tTF/6Xrq2YsEWKLlKXp5Whv/O9pD03uVANHm3uLy
Kdq4ay+FA+4R4OfxJzetjLXxIxvbMynV1PkqfdfRE9XG57RFRavrCDBxtOMq
/quFwzheKkq3EWD4Yb/H8cdaeKuNx4p+kDovbqGPEzxaePLBdLfxCAEqnx1f
a/iuibvLG92TvxCAqUck3qBJE59PJgR/+0EALinVlu+BmlhT8fHBzm0CqF5T
fMJ3dg8W5M/eQcsQBk/FiiwvBO/B2zv25RqwhIGzyIwIq9Ie3PNpx7kq3jAI
2Cm/v/2pBiYWudfkK4bBZnruc4nz6tjxkJzBK7UwMItaHecWVcdapL/4nxbV
v8/EUfOyGqaxrHwTZxoGKbv8aVcvquKytcXvrh7U+N7Ff3BcGfcGFkvwHQqD
PXFN/JIM8rjwKKF0+VgYsEkJz+imymHHSh3m/qwwuHLrmPbsT1ncOTW8VFgU
BnG0j1fm3srg1hjpdqbrYSBHHii6nSeNa9Iex2x2hUGk1b+v7c0i+MzZD0+/
CoYD/BhQF5KlxZ4Nt9Sei4XDMMvdEtWMfy3cH1OvVUiHw9fpx0GMT9dbCsXE
CwJUwqFSWuLvfr/5lqzrxOAhFA7m2m0HQnremKbUrDF2E8NBo69G2t+fHukO
vD54JzocRqu7doddYUQrv8sXshPCgSEwQY88yoQSDeCjZVo46PCHn61wZUek
1pz7LQXhkDLHUzdOz4P2vRXyrKkNh/13Q5jpXEVQ68dak79Pw2HWpY6elyCK
5KZd5M1xOHwuV7wzTBZDS9sn/r57HQ6ZoTWTonkSKG/PUsXiaDhcFHROsmqX
QgsmBXkGk+GgOrjU7m4ujbztFSjHZsLhVKnWY0qTNJIiBNpwrYTDn7HG9itV
u1FDadecBjMRtjgHHsrFyyLxq+FDKRxEGKsjf1IdkUWZ92naWnmIIKpmQmaw
kkMu7bqlruJEKCvyGpbllkff1ioNE7SI4HtV+mdDiQJypDeVadAnwprxeT3x
OQVUwznMTmNKhG7ioetaVorokOKu8VO2RIgvIS50zisi3n0Hsx8GEOG0YuUj
K1lllBbBn7gWSgRT0szEnxhl9CWpei+KJMLdx9l3HGuU0d38adVeMhHGh/0y
MnRUEOeFDAGBFCpeV1AanqSC9t8Qow06RIRrL2353j5QQeYtHgPz2UToDzyZ
7i6uim53zTfrFhAhTCqr38tdFXEM5d46XEIERvc3XgPHVRHlq0xx+zkiNCwE
M76tUUXDv3AaxyUikP/BpPmYKjLd3BvmXUmEirOD2brMaug606rT5VtUPjfu
vr6loYYSpFSk1GqIcPPdpvzyATU0qNrBsr+eCLt+pVi+OaeGjA1DV5qbiFBF
HLoj8UQNVVr/+8zwnKpP/b7LU71qaKfH+Q6nDiKkR06AxHc1FBOkVX2mhwha
R/5kfvinhvqj35Z9fkeEpY0KEhOXOtJPicqUHSJC3eh/i/VS6uhyJn1c7Cci
HJK/Kjypro7oi6/4PBknwvfZfs8MI3VEumRo9u8bEb5kBFUWWqqjvjsflKxm
idA2zr4i7aCOdOoSeAsWiXCSedQOuaijsuesWwOrRIC/vde+uqojmt6b06Kb
RBh9/JWWk2oTR8zehdFGQAGjWEadozrqmf707B5jBGQa3+t4ba2OWBT3l5Sx
RgDL71MgiNSRDWkXKYczAqa6bv920VFHmXdvm+3niwC+ltVvCYrq6PmsmVCY
cAScfZvKe1CEWk9tZMFNIgKiN/ccjmNVRybxlE4kEwG/VSlqAn/UUNoj9gpV
xQjw3O58WjuphhoWbx4QUYsAd877P1zfqqFVTXBh1oqA5WDJtp9UvbUow3Jr
ehFguihtcqKcOq8n5K1J4whQbasNFDuihh6ssg72m0XAI0aW32eC1dBPvRv3
W60jICC6l3kWqSGFVNMTDxwi4DltZ8w+MTV0bSNBO88rAu6/cBfL6ldFX4xZ
2FL2RoDRr0mSWZUqEj987Wt4UASkOlYx8h9VRedpBkvMoiIg5oR6VYasKho0
iyepx0XAlQLSYPZvFcRznMlcLCkCho8r9r96oYIKGYwW19MjwNhQS392rwrq
sR7o/HYsAj5dm/Sp2q2CmHNiKwayqPqqMPbv/6GMMlkqXB4VRUD69dFZ2STq
87SL4UHE9Qg4MFwulpqghBpcL5/wuhMBO9MGhjKVldDvYr0AiwcRYKISJco3
pYgSeElsEg0REPzqpuULD0VEFOolDXZHwExqZ9sxcQXktvuCvNVyBLAqNb4f
SZRFhWGa25rrVNwlpuERvyzqudE9KPkvAgQXviQTnskga4WtE5uMkeDQGnek
9t9uZKxKmHwsHAm9dksfDVKkkYKe6lVp80hQs88gzR8RR+yEU3OpNpHwZJho
LXue+r4rXDR45xgJy32NrtwPRVHTtyf9R3wioXS1boFjWBi5njWl/xwTCdzP
3jafEBFAKb9dIs6do+J1QVNskxzo9WOyKttcJLSqF967OlfS8mBsIJWwFAkk
lw6ZuPS+llJWvfZna5EwIee7cvDpWEsgYSMwakcUXGTL80UMv1qWuDOL2gWi
IChzIYM2datFmHxm+ah5FOhKusQN3GTH25fW0H82UeB+8qh4aPguPPnaL1/d
KQoeTmq+bD7FiR9IicuO+kTB7rEbLxUsuLH5u5veRrFRcGXgdRMu4sMkjYan
v89FwRHCeEflExHc9oZRSvtSFLy8wCd7lSSKBaO9csiVUZBI2lG9R0wMd9xY
8v51LwpsDPY5KaSJYxkR1ZXvbdT+CvWfbmdL4vSGg/vkO6JAu/VesMKQJH7v
1fU8vCcKKoP/nKiWkcIZRRHFE4NRkDUnYj/1TAqPMVSqffoZBWo1t1/oDkhj
3WsLZ4QXo4BZYpKexL8bFwL657saBRknwxu/ee/Gxgc/dX+gIYHZubjFl/27
camgshYvIwlmTgXn2XLI4J9PUsvcWUlQXrDWT2crg8sW+KN6+UjgcJ43SapO
Bi8WhPexi5DA9EZZ1/EfMthWuVbPUZJqx+9ZlhCTxWvhboyvlUjQdH+5VOWQ
LHamq4jdqUECSZHYt0lVsvhmxfyAlQ4JPCOuOn37IIs9R05ee45IsF1uKOYk
L4fvpXxkobUiwZK47113JzlMx69IRvYkyOQf238oUQ7vfXxg+JALCSoKPY/3
nJbDNa7t0ORJAqfshj5UK4eZ53lv//UjwWEa1qChfjkcfJKwyyCIBIZ/HdRO
/5LDu9ppRp9EkWD2+16Ww7vlMZHgYrUSR4IB9j0vbhnK4xaay/c0KSSI8Dwi
sOIij/kuz/IkppLgcpPVTgJBHscYGR18eJia3zqzZIUij1/+lzsxd5wEvd8P
Rl3NlMci+/+zU8klAWLbUZZYIo/JPPLVpEISzHeZsUZelsddj5IF75wmwaiM
UXPmbXks5fzyyPR5ErAIzz/seCSPU35yT8teJkFy1d6vGvXyuC8nxDnsGgm6
VzX6HjXKY3m5R08qb5PAuZPw3KtFHh9+sSU6fp8E+wM9nytieTwY7JQp8ZgE
Vk939KlQcdWt8p8BDSR4+l/cz0BqfGb5D/eLzVS+Ted5W+vk8Sd9g2cfn5Pg
b5FHihG1vtZgtpRQJwnuOEeJjt2Sx3lJgzk+b0iQ0LGvBF+SxxOcsgtn+kng
uKH08VOxPDZ4kOQzMEQC8x+Dy7pU/kUOz1u4P5PAtTRo7A1Vn+/fOeXcJkhg
oD2TnkfVD2UFFZyaJsHaHBcrxVUex/nem0iaJYFIfZyvhIk8vqj0R893kQR7
Mpe53RXkcfemVYHxKgnUvSoM2bjl8d+3JROSG1R/peRep79yWPHqmB4DTTSM
/Bk9yT8uh32TVApm6KMhfKOiXb1dDtcJtOvVcERDXf6tYO18OTw1w11wlica
DonOYolYOczbFDSRJhgNflnVR286ymFy8J98C+looOfo5wjfKYfV7qhMDOhE
Q9rjwq+SMbI44GCq3lPDaFiffyO+y1wW5zu1519C0TAT9sWc+v7EPxaD9Ih2
0fDy36mI0kYZfNPwdP6afzRMzoSzLq/uxh/YvoyPhFD74+lSq3q+G9OPqei1
EqNBnu5fN0vBbhx6vH08JyEakjS/yhaK78biPX90hTOjoS9w3N1VWxo7XbbO
38qJBouwOo+JVSmcnnB6fKIgGvR+r84caZDCH3lV8++ei4YrT58NftaXwmcD
gseN70aDxoE/DodUJTHHr/aTQf3RIDbKcjNpWAT/4yr9cl0yBrb8/7F7v+PC
A2/vVC3JxoCg276Jc0JcuOok9YRVjoEdrAUsTiGc2JfhJ9MnnRjQvzJ0T3qU
Hdesm+3hcYiBwY4vKQIMTJg49uvYseQYUK580hQfvt7Se89hd2BXDKhFH34s
77ZqejMqZO5ubwzMn33bxCr3xzRd7kD9n4EYqBR6WuyzumGqVFHpcGYsBixO
q7mcfkmDMk//SepZiYG5SxX3HUwZkX7arZeGErEQZX/Z/KoHJ+LQay7MkYkF
I1GGRdtlTjS13O87qBgLjdMGz7iLuVBJ7NZsonYs2NvGvalt50azwV58d+xi
oZed5TqPCB+6akNHFKDEwqkMeadHgULI1UBAnDU1Fg7557rlDQihLSXlwa1D
sfDh/KsAe1thtJfDw/pbdix8iTh1k1NJBHF/qJR7Uh4LdAfV+xjei6LW9rrR
2xWxUJNyYfmhnhiKa+g6e/FGLFRdE/8cUCaGusuXGDMfxsJuonRjua84ygw1
n3Z/EQu/A7hd3zZIIE1P7yvWnbFgGqVrlMsgib5YkXwM38TCr2Nu1+JVJZGJ
YkmH1FAsXHF2I+emSqJZ4ZtH+D7FwqUdusNNlyRRGdszPebxWBi+eILlWask
Wv01fmvhRyycQ8dAkE4KXR//HTT5KxbaY/56hUhLIff3zIL/rcSC0tCrCCJI
oYd1e3LwVixcIHgcvZ4ihQJvW8FjujiQVn6fPF0ihdjK/NZvMsXB3L20x1N3
pVDkoWORhdxx0DU9r8b0UQrxx5+RzBCIg08VjTEqv6TQy+A7/yWLxgGjwI/t
nXTSiOzeXBQlFQd6Fheel/NR7xnLd7YBcnFQu6kR+F1OGvXpTNG4KcdBXU6u
z09daXRY/k+DpUYcGE5XPrhuJY1UhNgT9XXiwELwEIHXQxp9ZJFSVDGMg3ci
gvsNg6RRzqb2uASKg8nFpG/8JGmkO297gccyDi778By/liSNJsf83XbaxYE5
R/W56YPS6PS7BOYNpziQNFd7MpkhjcxfZLbNu1P7W84bKcuRRgu151MnfOLg
hFQHC0uBNLp8896eQf84YHszYa5ZJI0cz7fOvA6Jg+v9EVVsJdLob+7A1WZi
HFQZruufp9q3D373q46m1rPq3fm1mHrPxW5y3UiIA9LSLP/cKWnEEMTZdT45
DmTM3Yh1+dKo1lUmIz8tDuK0N3+bUuuHmusbHj0SBw6v515lUfvj1HZcSsqk
6j9h+CyZ2n+LbHBVRG4cMDiEhCpR+cUIUEL3FcZBCGv2/K0oaSTMnCPscjoO
6GTuBc4HSqPOv+X95ufjYKa0r+afuzTaP/swT/dSHPAGrvz4QNVXZvSFuVJl
HPTQv2Ii6kmj/t6hv2K34mDPhm9Cjbw0Un+8TWKojoPkJw0VPfTSyJWfxvTL
kziIuCj6+t+iFEpIpeFqfBYHvY0xXpyjUqgG0dYnvIyDxFOquLpGCvVX0uY5
vI6DjoJDZx3KpdAyw44AubdxEJPfpjyYIYW0e3bQfRqKg2d5skXNzlLIU51u
sO5THBDyrIKEtaRQcgndneLxONga4Svz4pdCdb70LjY/4+BwrX3JwWFJpD/F
UF6zFQc7i8tTZjwkka8tY1wBXTxIBrtPjqlLotS7jGaRTPHQuP3g9UcWSfQs
cee0GHc82O2G66rpEsh4i0krVzYe5lWNJ9o0xREIsHUHOcZD5c/In/EOIig4
je2yoVs8MERoRRhMC6Njn9kS+bzj4eXx2tGiY8Lo+TV2ge6geLh39WPrTLUQ
stTYRdBNigfBsfM7NWgEka0d9wZbWTx8vHih+VAwL3I7KKj8bDoe3BN/Pw/r
ZkLCr8fJW7PxQPyaPHDozk40wX/3mflSPFyKE17vyWJE5BoT++7NeOjq7U1m
R/ToNaVae54pAbS5r6Tvsdk2nbk76LEtlgBtGkyamgdmTN+6Nx64KpkABcfU
2dk/TJrW/LlSbrE7AdjuyunVa3wxTbOJ+pqtkADTwnhTsrPblOXrBplTKwHe
qoqdzOwfbFESliqRsk0A0pHz9rr311o42hjqXtgnwMUx5yzOsT8tSxE/hsOd
EgBlWYmasm+2PHvyWKrKPQH+W2r+L1WDBtu7WVdrBiSAgXNjaW80PY7Oie6z
ICeAXpCRcGUSG3ZVd12ZoiSASOVpT+4odqw9qC2YcyABThzS7QvZx4E3d28F
9aQnQMb2fSsXEU6cj4t+eWYngPzy8sdzk1z43uoTDuLFBPjw2evQdVk+vFl/
QXHkMpV/ooSPxhE+7Jh6yNL1agI4nQtPsRziw7MblmmGNxMgcOUw45EMfqxM
OzDF8SgBrIpaLrS8EMBpz+tpMmsSYLGnuHJylyDuOl4u8qc2AXrOjwyq7hXE
JEaC29enCfDwc3+b4owgrmJdaqp/kQD5sfT8HItC+G/PhyGV9gQIaH5cGaYm
jO0Lny5d7UyAlJMb9d1RwvgH5zGF/DcJUFTpmd79URgb9odZ0PYlwNkQFrMw
ThGcd9o2cH9/Apj1UAT2WIpgRX7O0uChBFh2rir8cEMEpwwtP/gwnAD/iMnq
99+L4M7zQ6/tP1HjCaxROdsiOFLkyrb2eAKs8V228HQTxQ2fMoSrviYAdwBN
rv0BUcx0magj8S0BxtMdDEzKRfFtSbVo5p8JcM764keBz6J4fZwr6/BcAhxZ
uNq9/VcU2177XbH8KwGEk4rkJ/nF8Pmw4cbIpQSQGmjt6dQQw99lmwc/ryTA
N43NrNu2Ylh/umLRfS0B+vzfmB4PFMM5tzPZOv8kwJiP9oovWQz/FxUpb7KZ
AFzSe24pZopheWVH85qtBCA0vvD5fVoM759VD5CnTQRkrLf55KoYbr/Pk3KR
LhG0WjNnY++LYf74tRIuxkQw8nIVla0Xw0SNkftZTIngs3Hh5EiLGK5bbOnc
YEmEnJoQw+KXYpjxceXXBPZEeJt2S8G6Uwx7U7K2pnYlgoJntPff12L4pg5J
aB93InAKP7lxmmqvrjpp9/Emgqlh9iPtDjFs3bDHxUogEcxPiXSPPhfDZ1P5
SM+EEkFMiPy7uEkMfzP8k6kumgi9Q3nqzrViWHfz05Xr4ong2x2eylMlhrOa
W58JSSWCera/7ptLYnjw8PUPhbsTIWrs4tljp8SwHOQs0MklgtTOKB3nI1T+
tDGsqQpUPlut3FqxVP7PXeTmlRKB9dV1NQ0/Kv9MLTOCaiIY7+PNtbKg8rcS
8P9PPRF+tu6STlKm8mfc2O+kmQgXRhoWjnNR+XeOFj/XToS0YD/B5t+i+Ib9
zY57Bolw6u9vzicN1Pkem7/obZwI9JcuS5wpFcWz9bpkGpQIHBe/C7jGiWJt
2Q5RT8tEcL2YUj4nLIr/27dr6Z91Iuyx5QqSmBfBB0t8Om7ZJYLav/uldlgE
P9+eTtxwTgSDjGWv7H0imKirYXPDLRF4fYXng+VEMEtsiqiLJ5UvbZGt8i9h
7PaRqaPSjzpvw4stXAeF8ZdaRVH7sESY++hJuHBQCGf+TFxcJiaCxPJe0W1d
Iawg/az9UlQi9Ke+eXJrQRDHn7JPXIxLhIH+tdy2QEG8FRXdfj41Ebiungnx
kxXAIhL3E6YLE6Fh5crwHSIvbvH6bVVcnAgXp1sHdjHx4tB8ExGj0kR4zqO1
k/42D6768+ZV4YVESA+IGAqe5Mb6A/PCutcToV6nq1fDmQt752q8ynyaCF+v
nVAbHmHFxcuPhaQnEyHJ/Lrcu5S/LfOh5HT8LRHWaR+eKri83mLfrzHmP5MI
gVwM99derLbQV9+/fm4+ESxFT9N/YF9uSYm7pc7+JxG8T/uPHdaabgmcKbNa
ZydDVUXWYdXu16aNvn63z3CSwZ//1N4AkwFTwU4BVi0eMigV/B3kPzNi2n+z
tC9WkAxnf1jq8PNNmVqFFe77Kk0GBUqt2ETToqnK2LHEt3pkKPkTY0Gp2jbN
dYaBaEMycDf0Z9Dcp0Hfmrd0mU3IQEt4aPUzgxZVXDy4aWFOpt63U6KrinSI
Z29y9lNHMhDD3q4lBTOihNdaP7xdyEDJYk8pUdiJevSXHFfcyJDnkW8o8Wsn
yhKI51b3IYPDhZZx1WRm9Hcg8tL1EDIYuHLhMwQ25GMpT2MeRoa41zt/uQmx
o9rHU6FjRDJoM0pFmfWwo9iSUAXhGDKodjUaPVPchb64+D8+tZ8MxaU/fwhN
cCITLMyvmkqGltb2l+17uFCZ2nBK10EyPM46Qpo7woU82b1NGY6RQb7vSnK7
ADfq6HJ5nXaSDEdd6/kMdXhQkSf77p8FZLjGENzBTOFBvqNd6fuKyPA2KC7l
QDUP+rFopWF8hgxrjzYW3BR4Uc1Burx758ggedw561gILzrI0PZVtIwMAyKe
9zQv8CI2IeNz/y6T4VjFgSohej70ofLPQuxVqr47Fcqj9PjQZZV6+9FrZJj9
/bveLIoPqYPmVsttMuwTPDNr18mH3CMUwo/WkKGyLuPeUBI/El6calmoJcNC
t8K5yTJ+9DXtmmBIPRmcKtve+LXyI0qheI9ZExl+F3eLH2IUQCaCn2RrWqj4
XWMDZXkBxFh54Yh0GxlY/zS8sbMWQOee8GrRtZMhWmgr7uURARSM+vOTOslg
fsMtj69MACm8PvXtaxcZ+v57pfK6RgAtujuB5xvq/tTu9R57LYCefWIpe9lL
9dfj3Ok7JoAyiJ3L2v1k4K3eZ6q7LIAcFk443Rggw+WsN+r7GQQRb5rFLb4h
Miy/TkgX4BdEn+hoabOGqf0ctJIRlhVENwpa9q6OkGHlgoP8YU1BFCeQXksc
JcNtueMnLEwFke5VA46hL2Rw2Ra6SrQVRNtKaxE2X8nQSNY5+M1VEHXW1rbV
T5Eh3tGTq9tHEBWZkkUUvlP55e8n8AYIIr9O9eTzP6j7oHkx8XmwIJJ2n3vL
NEcGC/TK6EOoIPoxUqWQ+osMojWLbY4EQfQ4PDJjZpEMuqIstgJUPP2X7Ce/
FTIssW1csw0SRJapX3W6VslA0poq+rZXELHTXT1l+IcMF051cix6CqLB/MCZ
qg0yZEjdEIt0EkSX+UUtRLao+zeT1uxgKYgiKoYvnqRJgrC1vx6nDQSRhtK5
1Y0dSVDyrY1lj6ogWn/s6RrDkAQ7qxf220gIojYT7qpPO5PgqXf2+cFdgiiv
o5fOiSUJ7g+diB/dEkDubgUBzWxJMKM1uxE4K4BERuzrVXclQUj0MxPf/wTQ
vflXJA7eJHj97/Z18l0BlJxy/OVh/iTQ424aeVEigEx3mIn/EkwCg7vLrJdT
BFAvX9O7XjFq/eg+nzkkgM5fSVUGySSw7eZ9sU+Kui+KeiceSSfBMUmdL7tp
BdCScY1+sXwSzB5lPHyyiR9xGA846iolwX4bkg3TGX6kbLQaPKKSBBKcOU+/
RvOjMAPDXFnNJPDM/C53kJcfDeo8H35qnAR96s6/U9z50JL25FwgSgIXr401
JXE+tEubcQe9eRJw5L8hCnznRbaa9krONklQfSGcu+gAL3qm1p824ZYEfpnq
DOkneNCg6kphtmcSLBweXLKz4kHLKvzXVHySYN/pt40f6HiQivLe7v3+ScDJ
UjMmd4gbXZafEGGNSIL1TXXBHcFc6JjkUpNWOrW/kPE0xs/s6LIE77v/DifB
UOvz9TQ9dvRMXHfq0LEkSFksyc08xYaWRNPYO7OS4FPDnierBqwoTGhHoH9x
EqSt4ezbB5mQLTf3dubNJOjXnS4brN+BOOk1zQb7kqBl1CgonPuH6XkxD0fn
90ngLhlYOqo0bSqpR/Fp/5AEq0w8PWqWk6Z7SHWxdR+TgHIxKuv20idT9z7D
srOTSaDRJJKhbFFveuaixbL3ehLwB15YWF762iJeF7b19m8SdJ0+1pz+4lvL
zd4TzDb/ksDwWuNPXDTTUrejU0JvBwVYZuWrPWV+tfwX6egowEYB65XIQzs5
f7cI63jdGJKggH8KbWH/1e2WSuf9j1ykKRAxXRxbS6HBSpHnGjtkKHA6lqg3
y0+LjcqH39UrUuD1Mo9CqvcO7E8buHVOiwLJkoWF48/p8aTwEWZOXQqEOa8k
bvsx4BjtCt4cfQp8KHkiZPaLAR+KmFBKMaFAapBdnTrvTnz5DdHH14Za775f
a58tM5abzg7ts6PAgMSYEc07ZvyA5k6srSMFemdr2cV9WDDW+nlc340CtxOM
zUgBrPjLhfhHgvsoMLj3+Ft1N3Yc+biosSiAAoe0NfOPdLLjxZ7qdqZgCpDZ
EuKKTDjwDpqVT+thFNDtv+V0RWoX3k1MYR6Oo8DI26c9UUROHNawq9IykQI/
UmmP/jzHiW+y3DJ8lEQB9m+D1S6dnFjh4Yfo7BQKhESW5cfLcmESbSz9choF
Gg7n6Ci7c+G7HvSXAg9R/XcPPHpwiAurrWu+1cmgwJyvz1eVd1w4wb6LeDWT
Aj7Jmovif7hw9cWQbbZsCsRnqJT3SHBjbbMijcmTFPged+jF3ihubJg3V1Jy
hgJXlzyrYua4cfqnTOWtcxR4FJA4gVh5cLOa6MuoMqp+3psa7fI8GN7b/4Yr
FKBZDOCa9efBGbITBfeuUkDK0jjuTDIPfnEgVU7wOlXfr7paS/k82Fr0ts+v
2xSYf+R0s66eB+fEoYW9dyngPhrlKd7Ng1+3Dua036dAyZSRq/ZnHszCEyel
+YgCp15uj63P8WDHcIZnl2oo4Dh2ySHuHw8uqL/ozvyEAliQa6OIlRe/Zdb+
SamnwGKC33ywIC/m9O8+/uUpBaam98uO7ubFbg9CRR2bKFB8KKqCSY0Xl9D8
ra1vocDGnj1BX3R58YB7sdPuNgokEj+eCDHlxXw3FL4VvqDuUx1zYYElL/Ze
w4f/vqJAa+uBrCg7XnzezkeA2EkB7UyZ+N+OvHi4fP7huy4KqNFy2u5x4cXC
8ydsTd5Q9dMz5BJz5cX+IDZ+u5c6P/lrXQ1U/HJJbSpvPwVSXr74uOLEi8cm
HbiPDlDgxGUulUl7Xiyp97Xq5yAFouwKm3Otqd+PuWkWPsNUfV8ZnJoCXnx9
hOvT8xFqfi7eq2sGvHhK9Q5FbZQCgupiy3gPL5Y7CuxlX6h68Ss16yrw4sj+
oRsMX6n5rcsi3MV4cZVMvGniFAXOMjIrqnHx4p/7GYc+TVNx7/20XXS8WOX1
pXjbHxRw0p1YkP3Ng+NEdJhqZykwfcNxzWyKBz+K7amQ+EWBvTee8IoP8OBF
TDA4uUiBGHRY5GobD6aElZBCVykQt2Pnk7nzPLiuTpHu7ToFTGZurHVk8OA1
prZygw1q/sODOfHRPDjtfw2XeTxUbxTGmTEYZuwUWiTJloiE6r4noiwJyS5r
kYryM/uiECWtSkpRUSklhITmViplqxCVhGwtolT25Xf/PJ/33vN8n+c99/O5
5+5wvYIYA5j6g4uXWSnjlXNJO/kkBqhFJ0pILVLGp90WzQ5IMKCfN3Hlhbgy
HjfqvBKnMkDqB0e887kSriLaHB9IY8B0jWQNO0cJv31447s5OQZQyi2fVsUp
4S0q63igwoAWZFvwy0wJ1zMzrHmyiAHwY3mh0XFF/NGkrkbIEgYoawwvsAxS
xN2fau8j6TCgaaHc8lFTRVzgpqFsq0/Uu7UF5CYFvCmaGvjMjAE5+acPkSQU
8PA1lOIwCwaU08x/rc2Ux6dnxSgUKwb87Ij4EWIkjy8/MX7bDmMAtxmjHdos
h/PvDIy+2MyAU7ffpnzaRcN1vz0/8SqAAeKeDw6WO0rjlYVPuncHMWCRvIzu
PVwKd2U/MpcJZUDWXNbIyVVSOE+q9KNjBAMCk1Y4ClQk8TfLcnXrYxhwZnp1
zYaXZJwbEi9qTGZAVKQJFA7NiBrbsaHmIgYcWlJZG2zeI3r9yMpyUwnh98iR
5KTaLtGbbPP4ijIG3JH9Sn/69JOoKdRA7WolAz4dd8yM0m4Wtf5QxaKeM0Bs
y7VX7K+eWOfU4HHpDwyor2l5u0SyB+vqGGjjtTPAMcyuWtu/D/uCf1ky3MEA
jV+PivbeG8B6E96XvvvCgHX/mZ+qdx3Evso+67g2yIDEvgQfvGwE+6WZuWK9
GBPG5W8knuBNYb9nzrEKSUy4mLYmxuXYNDbSeerJUgoTcpmXpfwzZrC/OUnb
ZWSY8M23Xz+I2DfGDWMEbcpMaI8Ndn7eJo4m6PtqHNWYUNzoWqq2nYQmh8MV
RfOZ4BBQ3NDxhoSm7wdcz13IhLL59bSGajISX+fQcGA5E9RrH9zVyKAg0qKN
8/r0mUBx3sqiUyWRhBgK9jZiQgxV+oYDWxJJPjP/h5kSvFTe9w9uUkjGWWsh
bS0TZPZYv9z9SxrJGmuGx61ngpJ4e2noNiqiKagVjSAmXOL/oxwsoSK5Flm7
DxuZsLLJWrrsgAxS8h/be8OFCTrD0j9Xtcii8PueB1zcmPBwaFvvL2MaqpIp
Y4xuY0Ipc1fWnmQa2vUwVmjvw4Too6SfoyZ0VKnQEj/kx4QVKqmHpOLpSCHC
LDl9BxMM/w3syH5DRw/VRk72hzKhj1wUVb5LDslFuZ09sYsJawfJpmIFcijk
eWGGxW4mkJ/K2peNyCFabPTVpCgmRFhYR+yLlUfBdY3XjQ8wQVXpjGlikTwq
0za+3fofExriBh7PG5RHQW8Hi3U5TNh4cF3ebSMFVKrn/KCRx4QXR33z5uwU
kMzB/EqmkAn6EtkK5B0KKLBN5vGiQ0zw26v5pCJWAZUYRz57kcCErZhd4LIU
BURNevUyKokJbYbqe62yFNCODr0GtaNM+Gt+fmC0UAFJpQ6823WC8HPhtEFU
kwLy77H/KHeaCa8U5zbqdyugQusbn8vSmDAUkTZ5YkgBUc5QenakE/OxxObX
pUkF5PstbEDyAhOOrZPV3UZRRPfg2Y+CTCbMlg9lFskpIomMpb88s5hgfn7Q
rVxNEfkMx/+dvUK836qZGrZQERXYfxm/kcMEs1/f1pdpKyJy1oYZlxtMsAh9
+6xYVxF5/7siPpZH8K1s0vLVV0R3ncUks/OZAJ6DbncMFBEpN1BmUwET7FsX
e98iaq8pkdxwIRMy0g79diSev+O+SPn8fSYk944pnSL6id0WzENlTEgr93RN
IvS2i3doDpQz4YF81q0VBM9t73VaJyuZ8O9bw6Ikgnf2XqbOGhET3Db13ztJ
+NkmNaXX+ZiYh0P8ZRsIv3k7fFckVzOB1bdv53kij5nSh6YrXxDzGq2WlUfk
5U5Xt2h7yYTJhczXsUSeN8PY1nF1TDAZSZ2YIvKermzDljcyoeSH7wKsWgG5
Ka+xff2GCQoC4ysrixXQjcj0Taxm4vsqWuVTm62Atqpvd615z4RQ2R2XvVkK
KHd/iUd0O1GbHNZzDlZA4zXKPvM+M6Fr8sGElKMCusZsCg7vYcIflQuLbsxT
QGMNprvk+5lwzoX83HlCHjkvOx354CsTFtkGj80+lkejzVv/kxpiwuPMaj+2
gzxyMG1IvDnOBOX84KNymBySyTE8qD3FhIXye8XPTdJRrUoK7/IME8JaPg1a
l9KR87h9TBqJBfuds31ZOnTkgj8OjKOxAPuqPL78pyySN13sNynHgrofzWES
mbLozTWBJ0ORBRXlH6M+2csityTrLXvUWLA34dbh8AsyyGNLibWXFgteWXU/
emxIRaq4kkWTNgs8276fn62TRq0mB0y3LCOeb5951BEpjbxUjPVsDViwYx4M
xeVKId/2m6orzVngkyLmd0RSEgXuzvwluZkFlb2NTthxEtJqn/hxyJEFtqdy
GmnqJNTl7D0w7cwCrw1783pzxFGIiernETcWSPWkvDcvE0NhYyfqPvuxwKRa
jVuaPYNFHo6/URbNgtM2T3QZon8Y4+pu/13nCf+h1jk3HN9hQ05YX8sFFixU
1IqrXfsWixhVirK9xIJ1HEOPdf61mL9TVZzWVYI/Mi2+YGsJtvGfXM7H2ywg
TXg0Keq+ECk5lHxzEbFA7mYx//3ePlHqnyMxjx6zIFg1svBx0IBIMitgyrCa
BS51xZ4Xt30TTY5I0qkvWVASdNhpoclPUfclH5PqtyxokJrpmQ4ZERX+mmWu
6WNB20DcWo38CZFBZvPc9QEWhHavTTx+bFKUa5d3ROU7C/qWqteKdk+JMi66
Xfw9ROSfsGaL3+IZUdzG3Ef54yzQPWA/lmkpho8Pse01pligX1eUdDdbDI+5
sOX1kRkWpH+m18ZSxPFdQ6NdO0ls+Hj0lsmxBnHcJcNBQovGBlvtR3qXtpDx
lzaLjp+QY0NjhflB6m0ybvNzRHVGgQ3b7R2STSgS+GqbS8s/qrLh/tvuNT4P
JPAFg0OOZxezYXFGwN4+aUk8Pb26maTNhrwY6Z3XfCRxhQ0Z/gd02DBBrbKs
zpPEJdI3RLnoE/081FTnNkjhP9DZ09JmbLDgL224EySNlwc2tOSvZsOZsLtL
Om5J40lxkvO3WrLhaWP0l4lf0rg2zs46t54N9npZeeNsKv7rc1G3JbBhoc1f
ya6HVPzR7HedTzZseBFWd+DLOBX3xgLytTezQf+3Vufe/TK47o70oeeObPji
m939N08G/yt4bbp7C+H/0201j04Z/OSjDeX33NkgZxtwQWQni/t3cKfct7Mh
VVdWrYIhixvM3MdGvdigLLKsFeTI4i/W6T5fF8AGClX5Q8C4LH7WP1C6K5AN
0VW4GXcxDQ/mZzglhLDhl8pU438babjxpbcndHeyIRm7hBmH0/DpSpmmV+FE
/7v3bfKSaXhtu63qvkg2DAdvaO++TsMzpvjeCvvYUORnJ93+hIbv0izLvB/N
hqaL+Ku0dhputnb4s2cMwSN2zF3xDw0X89PTnoxlg4Tku1FnaTreyA3eeZnF
hgW5SoN2mnT80sWLecBlg/tH21XThnQ8sqL5Rw+fDTfyIl5FW9Nxy4+0lclx
bFCXP1R0xZ6OUybtYgzi2ZBRe2h5kisdb1KPK21IZAP77voKA286fsWqfHx/
Mhuium7fOxVAx6N8fq9VSWEDK/SVVHkQHV/LMYh7kMqGNIsLT68E03HpC6FP
fU+y4bmPRpcjcd5afokye5oNIU5BlVf96Xju+3ebr54l/M70uFV50vGYcbnU
jeeJeYpzT7/mQsdh/ubXAxfYYPc2/4jHRjpOtzykdOwSG06ODOs1raHjH70q
thtns+FQzyKWpj4dz2P9yXh7lQ0eCf56SvPpOPO80afYXOK+k2qKWiTo+MYH
OxfPv8mGNfYyG/4bpuFKbVkhlbfYsLJap/VnGw3vHG27vuMOG1bPqB3YKKLh
XAtHo+tFbNAx11wclEjDN3smRG8uIc5zSuO0wmi4KrOq+EcZG/wjc+nNG2h4
Yamx1aoqNlSKxRXJjcniwnfh/HciNoy8jqw53yiLO/+7grOfsGHq66UjX4l5
GjBXtsdfEP7y0yZDN8viJR7OR0NeEfkpLWaVzZPF42MP11Pq2WDVHFin1ieD
LyoZc3d+y4a+VYfGmjkyuIfZp8AP7QSfoYAhlUrFT+xTubj1MxtUDR8r+LtS
8Zqbzi3Pu9hgomx2ekqJilsveLS5uI/QOxIZsTZNGteiZJkeG2bDy8QXD2zj
pfDB1kDyejIHPr7KvXtbg4LrKmasv0/hgL++1J+cGgk80OkNS1+aAxH2gS2x
/0ngTTgMqtI5kF7+K/JyDRkvz1vybkiNA7sbasaNgkl4ArfnxhUDDsT2HR19
9GxWVFWi2a22ggPB7FvGXdMzotGhbZrHV3KAsT7hQZDZjCgi9NlJjjkH1ld9
yRm6MCVycb7Odsc4YJCZIxfuNS7SWBTuKOHOgay/g7ON536Lip98/xnO4YCW
39jvRk69CB1I/qLE54D3nl7n8y3PRPVaOm2PhBz4HkVPPxFaIRqIC3isnMiB
rpnU1DXPT2ELsDdn8BMcUDqbEXPW8g2WVFG6Zl4uBwpjpMrd5/ox5Uh3o6c3
OKDQuPNj7duv2BX1Ya19tzjwb1/4WY2r37FKtp5MdQEHJnker8FiCPtlkfkp
6iEHri2MN5XMHsF87x889KKRqM/6lY06TGADIQuZB95y4LSfIrdBdRKLVaqI
XNDCgcaV3N3szkns5IE/22I+cGC5xnLlhshp7NnKXbqLeon+W6ac+CFzmFsn
SfNVPwdUc9BwN00MfT6RLR/7jQN3gt1CqeFiaOLn+/FXQxxg6/Y69aiJI+M7
TnWMCQ44vPi4yHsnCVX6fcW1pjmA3/f1+ldCQptlD5fUzRJ5oIKRPyQyCo0U
XV4iwYWuhS1l3ItklKFnur9Bjgs7XjzxoZdKIN33DWFsRS7cC58ffHBMAt1P
jvRZqsIFOwdVKxtLCmrsz7HhqHNBuXVb0+YSCiJfV1NdpsMFyaqqFTnpksjx
uP75al0u/LHnyVe8kkSnGOvUQ/S5cKlHxXxqUhItsA9ZmG3MBV/3D3bTXlIo
xJiRvd6UCyUJ1akNCVLoltqRJZ/MuCCXY/6q6a4Ushi4u0zdigsZEx9kVk9L
If7rxzcfrOXCKxM5hTNa0qj6QbO+J8aFWxrG3jRbaSRzpT//L3DB74DX5/xQ
aeR6ZGJFmi0XzpR1eB+Il0bp+2mFpvZcoN3G2c7Z0qjDe/GqN5u50OI0s359
hTSK1LezoLtwQfvisfLA79KoUNG7PN+VC2Kebcppc9JobCLS2nEb4bctjd+p
REXYF0HV1+1cOBaQ5YV0qCix9hSW7M2FI99Gc4vNqKi2OOfxMj8uUHiXw6w2
UJFCZpnNswAukJTOpDc7U5FnwqtnIUFcmEf3aonzpKLLez7Zi4dyoS4/Y73V
Dirq3Tb8MnsnF3Rtsx2oYVRksI7khEVwQa85cnw4nIr266g2fIrkQpPflMPP
3VRURtPbytvHhWUdrph4JBVN/7V+q76fC1vFvdsMIqjItmPLtvIYLkx5/Xff
k+iX8jzonSeDCy/eRRReJfTe3P3P6x+LuA+uZaOsFxWppSd9SONyodr+C+3c
FioKEF7wWyXgwpDVrr3rbagod9edjjdxXLDyeDYosZqKvrvggdHxXNB/qnyv
dhkVmaxp6qYf5sJ2wU6bChUqYi7uC72TzIX8a62XW8WpqEpqvM8xhQtGq8Kf
LP4pjci/ZCK+pXLhjeG8u+dapZHj+4Xfk09y4fLJ/iBLkTQ69dhkr+4ZLqRe
SojtzJFGC0577g89T/B9m25t3S2NQji7R8QvciFZNvaqqaM0uhXMj71yiQtk
A6WmOj1pZLHqGrvjKhfkZ46dOt1FzJNG6SQvlwu1E/FjoodSqJr0kq9xkwsa
CvnqtqelkGvzz4Ned4g8jp44uXWtFEqvFCOPFnBhdtChp40uhTpylA+fLeKC
tFTOpyOfJVFkrNXRt2VcqD/OzpnkSqJCf2fZ/Q+5wDq9A3XaS6KxjYHH5aq4
cCJyg6eFoiRKVD182ukJcd92y17KX6Wgy2VvLjyv48IN86WJpgUSyPXhF6U1
jVyY82o7tTFGApGq/h7Le8MFCW4dmjOXQLuezBcee8eF0Sg3j5gyMjKuDwpx
6+TCJjOF2135JPS4+5dBxwgXxrqC70oEi6GYXlKuyz9C/3CLj4SyGNIZUFn4
eIwL/8o3uWw/MocdHbSUz5nmQrBN0ebWTbOY+9jBPxGSPJAKs8z4WTiF9dIU
q/6q88D90+ntmmtHsXT5pat3LeCBht2bKwVJ/7DNSqsL2hbxQDfkgJvh27/Y
3Xk+VyqW8mBd69PiG8F/MKb21cSDK3iwfCTOdDv7FyZtabqFtoEHZyIsmM/F
+zCjULfPSyOIfmNPWgICK0Sr2msUayN58MtKvfNjRbXIchtmt38fD+K7jUKk
NtSKNtoa3qmK4UGUeE731LVmkf9SCne7gAe9jcVftTd0iVJ7ylWTzxDn9e7B
yY8HRWf8VjqsOMcD/2NX5BPthkQZzdf5zed5kIKu+S2rGRblVp/pWXyZB83V
Qf0GQb9FVTl7i8pv8uC1bpdvrv1f0c9QrS3fq3gw8rjvgdWDCdHf9vSDp3Ae
ZD5TDD3uNyma3EYvsXhK9EtuLjKYnRRJbpzUSKjhQfW0wXrqumnRIp2Wr5pN
PLglyLnx+MKsSOeS44KnLTw47WDxRMNwTmSg8mRrRBsPdjw8/bHg4ZzIQqKg
rOQTD9xs3ibahIvhLr3JiVsGeDCk2Tw5sEcc9/CfffDnGw8sQ2wmmbfEcd+W
2B8XBnlQ3M4SHO0j9oNnwe79v3nQnrXGO9iHhO9d9/5w6l8esB+Ox+qcJuEx
JS4PV43xIMvfdGJ7DQkX5q7VipvmwaF1VEuJlWQ8cUHxtmVzPECcvJGDQWQ8
5axecp04Hz4LxXVSTpHx9ETVoXlSfPD7skzm/Q8yXhA2XFmoyAf5DcrJQyck
cK2xsH59FT78uxLAcy6SwM8c/aiQo8aH7FajPLMmCZxZ8HznOU0+rK/2yb8s
T8G/wtpTcov4YMp9cEjLiIL7NhdWJGvxQbZUq9BkEwVfP54pz13GB5dDXa4z
bApekKJo/Wc5H/5LcFuXd5KCay1MDttrwIcbPxusWnMp+Jl70yf6jPjQiW93
SC6n4BI2MQ93rOSD5uTXyMpaCs5sGehpM+WDO2/Fc2Y7ob8rQM7NnA8X6V+/
lXwn9CeaLGst+MT+wTaOHafg9cc2h9pa8aHt4OczJRKSOLZIdLxqLR/qgzXm
MeUl8cJCs/LVGB+uSxlVls+XxLVtb30pAD5YLTU7y9WSxM++W0TXs+WDcvvk
34e6krhkxNk1V+34MMo9dp9vKImzJ6khGpv50Evqe/3UWBL/nhqXmubIh08x
Uo6pJpK43+J/ZbQtRP61I0s+EHV9UWT34a18GJS56XVrJcGzsUt2zo3Id9Wj
gCEjgqd1uwXbgw8apSelH+oRPLvrgn578sEw93Q0fSnBMwXHIn340DL39MwP
TYLnRFlpjx/B93JpzDZlgkfLqMt/Bx++T9+n21EJnuKrMq1BRD5k9aulMxTc
327e6q2hfBgIedt49RcFb2xLDXy5kw8U46MLtL9QcIgkpWyIIPyFQYpFEwUv
nmaVVETy4aHU2LzOxxRc5+TPz2b7+LBV7e5zzQIKnr4klHo3mg9lp0LSBi9Q
cI69y47sWD645tIQfR8F//6++sh8Fh/05b1VTngQ+nus7p/m8CEp44tzkTWh
d0pHOlHIh2+SpQOfSYSe9sVVMwf5UOlRG9/cK4HrlMoHMBP4sN/JMcTzuQQu
/XGyKOIIH/K+fl7CiZfAuXv3f+pO4YPRyT/i6oES+OBsn6TfcT781Ti5Zp+1
BP566Vu/LWf4YNGNs6cGifnfd5Oy6hIfWCsU3btsyLi02EKT/Cw+mGj/6XRT
JePcM2d8da7yYQyrpO/pJ+E7Hgjuqd3gw8bdbjkDiSR8mbiHz9Q9Pki6qjXw
S8Rx13qkGFHMh5y1R/ftFIrj/POGr1pK+PC013vT9k3ieNMKslXBQz4UFXlc
dm4Vw4W+xfODq/kwu/UOOeTNnKj1vsL7F6188HT6eYiKT4nE46ZPmn3gQ5Sp
Taj76imRkePXTVfa+XBeq6RH+/akKL4Lf8DpIu4jlX7C9OSEyJgefd7oOx98
rpWptduPiZJ2NXiemSG+H49NaQa8EVGR6UO5uTk+PNg1/45qx2/Rp+ncF3tI
AhCn//J1WP9btCqNb2EnJYC52xauPmPDos+4odq4ggC+nN79Tr3ru8hCPeVd
gI4A/DcyXJQYXaL+OnsPfScByKRmrui7+xTbSTv/onaLAH5rnqMt83uJ9ToP
WO51FYDu0milQEoj1t2QvPDedgGUL758fsntFuzT65f95kECUFWL3lvyphNr
bnYklg0BaIxPjzys+I65q2T+6GYJ4DX9e0GBzCD2xuNHQAJXABfc8qKfeP3E
Gt8ds3kRJ4CenRlz8G0Yq22rl3VOEUCW1rnMKcYI9rjdJcsrWwD2ll/zanTH
MLQgW2HiqgCG8sI4L0rGMJH/cPzFXAGQaca2T2Ecq+w4Gd5xSwCat2SidN0n
sLLONyahJQLwLVCFQL8pbLXWkhyJBwI4oha00uT9FFYSdED1xkMBUJ7JeV5y
n8aKuxUnv4oEMDiU4WAPM9jdHvfqqFcCsI47uDRvbhYz0slZrVAvgBUSM/Y6
u+ew22F/bhY1CuCWQ8o8+TdzWF5fWurfZgFcX+uq6O0khpbr9s6eaxXAWr+l
hZI8MXRjl/mBNR8EoK4TpON7SwzlDrRs534WQH6R2vFhcXG0VG/ZS81uAVSt
/tRtYySOrkUwrB/1CAB7v/f45u3iKPub6mKxbwKYp9h+Ty1HHF384fn18B8B
eDN9D3WuIKFE+xtuk/8E8JNexyM7kVD01X8VUeMCULsy7tmzi4Q2ep097jUj
gLH7KfdaL5LQyuKe0bo5AVSsHjb6XkxCGnSzICAJQTZo3cuaVyQ0/PTtKn0p
IcQ4rZe69YeEPi5ccukyVQieGfOX50uS0TP2fooSTQhTrw5fCp1PRvea8agk
OSEc6EoMb9Ijo4vG8u8nFYQQrrHn08QaMko8umNDtLIQuiU7mz7YkVF0793b
PapCeOl23iLKnYx80Yyy93whqE2lST0IIKONF50F9RpCqCG9sysJJ/6v/mX2
w0IhdEb4/t65n4zUXX9sLV0shJAVOjL1LDKSyLd+qK8thN12Ok5fBGQ0REnR
ztIRwsjUH3JBPBl9CPpwTGm5EI5uMviyMongr9T7l6QvBCO9mr7wI2RUoMbe
MWUohI7LtXKeR8nowoGammhjIVzMMw+YJM4T69VMe00Ifr2LfS7JZBS1fNdF
bzMh7O2ob3BPJCOf+FJyw2oh8Ke4y5UOEvwdEvs2WApBMSF3JJVL8Ft6tJZa
C8E41mFl9X8Ef1oOMlgvhMbG3R0lewj+oZG8LCSEP2coM8EhBP9mGyVlGyH0
6wQISr3I6H3OaV7yRiGEnrcoeOlERtWzXb1T9kJYfgzTuIIR/D4mLvsdhGAu
xniy1oTYL0viHvQ6CSFt9ENOphYZJci/1vJxEcKaqH1PcHmCP3JRSoOrEM5q
/a7LnCEhW61H/mXbhYBnFlqmvCMhYx7thYG3EFQUZckVOAnNb/Vbme0rhCv5
NJOKPBIaOjYpfiSQ8ONKKTZkkdD7foc908FCgITzxzn+JFS94ULL/jAhDEiE
ul0GEsoYW3PTZ7cQtBnvVRMpJJTgnqzQuEcI+aHxapv6xVHU3VaOTZQQDJcs
af32XBzZhjKcDf8Twk3Gw7RTh8TRUGPx72k+wS/7wefDDzH0Xp/kdyBOCM/G
m9peVouh6kS3Z32HhPC9V4HFuyiGMqx/pTcmCUG1wWh560YxZHtjxborp4Rg
Nnl2LFtzDpO2UqoMSBNC1Sr/v7H3ZrH6ulErzXTC/8sfS9Q3zGIev/E16ZlC
qKSFyb8OmMHC1rmbpd4QgoLTYFY/bwpLbGIasKuE8OFP58u1XmPY5p1+t1bj
QhjaKnYhs3YUo40jvT9PhBDbkBhfS/yvn11I1Y2qEYLBHZ/IBPV/2PWIzCVh
TUJIcRo6Xl09gr2Yxee7fhVCbvjwhaOlP7CU07nn6T+EsL+7xsEp5jvmonNU
re6nEG5dSz2QsOIb1urgrmL/Rwj12s6z6Zf7sYGzvfLrZoUQGHq9VxDdjUkb
UqX0VOJgXD/8uNL1Oqz+0c/DfWpxENL2aJWx3wvslGuTRI56HDxfuLT5kdIT
bD4zk7RocRy8fLdTpXf+bUz/yYpZZYM4ONj5CC6rPRINbVMSvDWKA8mDFKeo
F9Wi4v7RqRMr46AIswu9OPNSZE17PEFdHQf79NZGJJW8Fc1m5bJr1sRBqL29
Sq9ji+ip6dGxROs42HJuz3qFz62ipGf7mDbr48BQNb9HJuqDyNHL/d8cioPp
5xJSLZPtov8BEPpcVg==
       "]]},
     Annotation[#, "Charting`Private`Tag$7828427#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{612.2727272727277, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.883720849774865*^9, 3.8837209042718687`*^9, {3.883721147029759*^9, 
   3.883721206057273*^9}, 3.88372200428364*^9, {3.883722130758728*^9, 
   3.883722161815539*^9}, 3.883810284796789*^9, 3.8838125900189657`*^9, {
   3.883812751688027*^9, 3.883812775823365*^9}, 3.8838129122125807`*^9, {
   3.883814393937422*^9, 3.883814417980858*^9}, 3.8838144827763453`*^9, 
   3.883815422969491*^9, 3.8838154838757772`*^9, 3.8847695351040497`*^9, 
   3.884770981625286*^9, 3.884771036181451*^9, 3.88477553993146*^9, 
   3.884779943163752*^9, {3.884780499717718*^9, 3.8847805075371227`*^9}, 
   3.884782509402404*^9},
 CellLabel->
  "Out[616]=",ExpressionUUID->"1b6220c6-8e5d-466a-a53a-173d2d94d679"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{3.883815422919569*^9, 
  3.884780512761602*^9},ExpressionUUID->"4110d7b4-eea5-4a31-bb44-\
0cfe6630cd3c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"NIntegrate", "[", 
   RowBox[{
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"q", " ", 
       RowBox[{"PsiP3He", "[", "q", "]"}]}], ")"}], "2"], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}], ",", 
    RowBox[{"AccuracyGoal", "\[Rule]", "5"}]}], "]"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{
   "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0430", " ", 
    "\:043d\:0430", " ", 
    FractionBox["Pi", "2"]}], "*)"}]}]], "Input",
 CellChangeTimes->{{3.8834727230390043`*^9, 3.883472778461499*^9}, {
   3.883472906019311*^9, 3.8834729185553007`*^9}, 3.8834795181208553`*^9, {
   3.883482126787499*^9, 3.883482144273522*^9}, {3.883482217276063*^9, 
   3.8834822215965557`*^9}, {3.883553556768044*^9, 3.8835535750728827`*^9}},
 CellLabel->
  "In[617]:=",ExpressionUUID->"745956bd-cee1-4b9e-be2b-5f3aa5cbb78f"],

Cell[BoxData["1.5707974356954326`"], "Output",
 CellChangeTimes->{{3.883472908023087*^9, 3.883472918894421*^9}, 
   3.883473756965157*^9, 3.8834757830588627`*^9, 3.8834792781630487`*^9, 
   3.883479533577456*^9, {3.883482128229415*^9, 3.8834821479579477`*^9}, {
   3.883482213433366*^9, 3.8834822220822163`*^9}, 3.883482304860508*^9, 
   3.883552155575693*^9, 3.883552817559989*^9, {3.883553485870138*^9, 
   3.883553491492589*^9}, {3.883553566280285*^9, 3.8835535819873037`*^9}, 
   3.883555220826889*^9, 3.883555267047039*^9, 3.883555362002153*^9, 
   3.88363813017135*^9, 3.883644174744585*^9, 3.883708442549859*^9, 
   3.883722006966009*^9, 3.883810298337451*^9, 3.883812786670486*^9, 
   3.8838129141849327`*^9, 3.8847695385839157`*^9, 3.884771039644198*^9, 
   3.8847755443882933`*^9, 3.88478051636689*^9, 3.884782513938888*^9},
 CellLabel->
  "Out[617]=",ExpressionUUID->"cbaf6ee5-f669-412d-9fb1-b38517626ae8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiP3He", "[", 
    FractionBox["q", "p"], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "500"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{
  3.883472743984514*^9, 3.883472924970978*^9, {3.88347309426296*^9, 
   3.883473122916423*^9}, {3.883473518202753*^9, 3.883473535921042*^9}, {
   3.883475379960205*^9, 3.883475413817233*^9}, 3.883479540293125*^9, {
   3.883482628916453*^9, 3.883482639204176*^9}, {3.88348280564531*^9, 
   3.883482805868981*^9}, {3.883551977573111*^9, 3.8835519778662252`*^9}, {
   3.883553499627589*^9, 3.883553501936421*^9}, {3.883553534820649*^9, 
   3.883553539257779*^9}, {3.8835535897178802`*^9, 3.883553606156753*^9}, {
   3.883555297363455*^9, 3.883555297498726*^9}, {3.883555364375175*^9, 
   3.883555364607202*^9}, {3.883638118282078*^9, 3.883638143800375*^9}},
 CellLabel->
  "In[618]:=",ExpressionUUID->"84ddf410-1206-4db4-8163-fea78d05a9fa"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81PkfB3BJ/Rybm8bM1zkdYpZJo7bDfN6uRK5sKTlLrhImDA1mUiEq
IRtDMqNFUdJBkiPHomxI7kFFtsK4DVbY+f3xfrwfz3/er9dfb83TgQ5eoiIi
InHC+f8em/lpfdB7hJpY6J7NiMDgQu7FXWbcOqT3TWYxWOhwKb63CvcjqkrK
E/UQeo+Z6osk2gBK9HGqpgodUZUnIsYdRryVaD1Zofv6qPko/jsKK82y72Bg
sG+hyyaCxkf+NTbbrgv9Pn4Pg0eaRp2bjxdThF5Ju2KzxJlFOfScybaLGJDy
WjU2KwkQ88SBEXehXV4Q5ijxi6h54mjKl3AMbtT6NDqs/IvYKrB4TOiKtucZ
QbQVVOcWiqsMw2B8cO184sgakv58a05Z6ERBrkYXaR3429smetIxqBKbmZ3l
rIfkE56inSEYdEmlD4jyxKC/8vvnpWAMJuSpjXJKG4GSHBgjJ7SaZkKGfrw4
DPZ46qjQMNitTb5KrZOAURaeLBGEga1+13mbFUlQ6j6zcTwAgygjLeNztE3g
1dBETvDHINWsSYdRKA1pb0yvm5/D4NHhAMX4ERkIFlOqm/UT5pEGgj+S5CDF
d7lH20eYt3+HxTRHAUZ7dSQEHhgUUH++XjRSBOeSl2WH3IX5Jq1kEZ4irPuW
4ZXoKsy3DMXLKCmDp9H42xknDJjHa/ikeByMi7w313DAQNI59TRlmwokdZF9
pewxuOPm072/TgWWtp8q/mGDQZHXphqrFTxkRHc3sSwxGAh2SvWlqYJ+kOQb
ecDAN4wkESStBmRuX0maEQZzjLWosEI1UJ/WEJXdj8Evl3N9YkfUAXOrK+sz
FPZvCldtJ2mCzlfMo1dH2K+rfmqSQ4RugycSl+UxYH1ydZIWEKHd/PsvS9IY
FH8X1JAOb4GinIWKU1IYyC1r3/ab3wLi6sZ24mIYdKjfNBy23AaM4RR64RwB
TvodY3TNaEP3yAPs6EcCXL8wMTRnsQM2jWY4jbUQoCIi7rBC1g6ws1m/PvQd
AVQTX2H2FjowaiLS5l5DgM/PVKvfZuoCTy6oObWIAD4/R9ZXmumBZFlw2LVY
AqRvYPnz2HrwWMxywjqaAE3SuM6lCT1IMNB8LhZJAB1Nq7zdbH0wlbL1tKUR
YEHr+JYeOhkKfxRJWjsToNzidcOR5p3AefDUYJVEAEi+ImUeQgEXxa23ixvx
0DioTBW9SwEtw8DOwBo82JIKgqrrKBCslPBh62s8uDa2de5VMISGST6ZXoQH
xooqR++ZIYxRh7QKUvHwwq+MgpvaDd15HXnn3PGgbcJ3HTu3FybLX/pUTqiA
3KxjcbInFR7L9h8YX8CBmqvm0bgEKnhU6kYvTuKA1Di2EPmUCh/nHC+ufcPB
ocxLyHeNCs4K7ytXunHANC1ooWYi+Mrla1a+xIHgLVMQ6gcwPZ/K/p2OA098
uyKRawzjqs9n0NRmoL4OPxIlawbsveLya73KwAmuetx/whISvkSxRf0UYdBy
oH35oC0YTdGq1XXkweswg3+69Qg4D9YqSzXIgHH5glhrwFG4OfFjA65SCqTK
vogQvjiC4ro0Yry3OOhOWwQcuOYEIgvm9z/v3wD7XuHfGIm6gP4CfTS0UBSe
WLpvbQh0g2QXQ80PESJQKSm7KhfvATD6P4dDAz8RviyPV1x3CsYfhcnvTFxC
WleWaeU4T9AvUbxVEixAbgYSKXE+Z6D00j2OVfssktth82d9thfgzi+4azyZ
RoFGdoH+M95gjw07phyZRGbsONJVPV8gS1J9c0THUb08M2djjB+YUj5u2Tkg
/HtBv+ZYd56F6Bt/9Fdv/wdxlRRSRWX8oTKGEJo2NozCekqpRM/zwHSs9s/9
6wuqH0riPecEgFFl6CB1+RMy+0AUFe8JhMgYc/pGXj8qCygPGk4Ngiux+XP/
tveieByzl2FAg4PLdEaFVTcif+DcsxigQaL1r0NDHR1oajlbW3D1AhTnN5v4
FrYjf6vyQhfNYJAMuvPVu68NVebvur74Lhist1D4odtb0DvtJk9rvxBQmL+Z
8WxHM5om7F13WSwU6H/bqhVdakJ8VYnl8UehsLHWJfXF8F8o13SOL2NFh3C0
axu3qA4ZhFONfOfo4DarOzV9pQZFtN2PCb8dBoqHEwtU3KrRQMZIyln9cCC+
KcztValASiGxP5N7wmGKKDKNDZchCZqJO41+Efpef0pQ1y1F7ZGuarGaDOCn
5ZDHWM9Ryb9HcyLfMuDJTsVSP62n6Pe7Puq63hGwSi8M0TIvQo3WvYvSspFg
//BOpO+JAiTQ8G4uKIqEnWm63x6K5yPk03pa2yoK7NTHW8aU/0RuFWmOvJko
mA6XOOlJ4aLfDCNMDyYxQZLVEvcsMQt1RZjobLjNhIS/4zI1GVkotFZCrv4P
JmSrL0tmeGWhZ3bpg8aZTOBGVU3kHchCpLMlF43ymNB+osWLPHYXaWRPPqFU
MEGX47uwankXSUicwYjfmSCovYtdkM5ED+x01w+NMuHhsar2DcsZ6OCdmR8c
PhP2lLwKyfmWga4So1+qzQrvP84KELzJQKtG9xzwq0zQsBHjiYdkoJkLPdfk
FFnAcVzidvDYKOlVdmCbMgvSrUpY801spC/i43hLhQWteWcU1EvZyP/mPHGT
OgsqcA52N5LY6J98+WpxHRZM/capaDFno6sTvbmNJBY03NvGp+xiI6Ih90as
PgsO6eq+uq/BRh61+ifFDFmgz7mhnLmcjlbFF6BuDwt8njpziT/SUZZd1fbL
+1jQtPdm+YuudHTgToy0sRELVlgDbrb16aiv33p+DbGgQ1by+tTTdPQfYhHR
pA==
       "]]},
     Annotation[#, "Charting`Private`Tag$7828548#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8834729258228273`*^9, {3.883473095599835*^9, 3.883473123190859*^9}, {
   3.88347351932442*^9, 3.8834735366214542`*^9}, 3.8834737585433073`*^9, {
   3.883475383272345*^9, 3.8834754141793947`*^9}, 3.883475785600163*^9, 
   3.88347928049052*^9, {3.8834795360621023`*^9, 3.8834795409546947`*^9}, 
   3.883481049015133*^9, {3.88348213000602*^9, 3.883482149808962*^9}, 
   3.8834823076685038`*^9, {3.88348262594995*^9, 3.8834826395791683`*^9}, 
   3.8834828067191467`*^9, 3.883551979062615*^9, 3.883552157232203*^9, 
   3.883552820474572*^9, {3.883553495490841*^9, 3.883553502250049*^9}, {
   3.883553535849196*^9, 3.883553539582345*^9}, {3.883553583678729*^9, 
   3.883553606637355*^9}, 3.883555222558572*^9, {3.8835552924387417`*^9, 
   3.883555298109735*^9}, 3.883555365107902*^9, {3.8836381245192842`*^9, 
   3.8836381448521357`*^9}, 3.8836441765580606`*^9, 3.883708444251793*^9, 
   3.883722009072154*^9, 3.883810300105698*^9, 3.883812915718704*^9, 
   3.884769540098538*^9, 3.88477104144629*^9, 3.884775546470796*^9, 
   3.884780518778693*^9, 3.8847825153977118`*^9},
 CellLabel->
  "Out[618]=",ExpressionUUID->"0546d6b0-c065-4599-9d2a-8a70f75e9eb9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:0430\:044f", " ", 
    "\:043e\:0446\:0435\:043d\:043a\:0430", " ", "\:0432", " ", 
    "\:043d\:0443\:043b\:0435"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{"myNorm", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}], "range"}], "-", 
       RowBox[{"Sin", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
         "range"}], "]"}]}], 
      RowBox[{"-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], "+", 
     RowBox[{"myCoeff", 
      FractionBox[
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         RowBox[{
          RowBox[{"-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", 
          "range"}]], " ", 
        RowBox[{"(", 
         RowBox[{"1", "+", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", "range"}]}],
          ")"}]}], 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], "2"]]}]}], 
    ")"}]}]}]], "Input",
 CellChangeTimes->{{3.883553088487125*^9, 3.883553204351302*^9}, {
   3.88355330604659*^9, 3.883553336624708*^9}, {3.883554701880843*^9, 
   3.883554702178334*^9}, 3.8835547380022697`*^9, {3.8835549196871843`*^9, 
   3.883554920825925*^9}, {3.8835554152361717`*^9, 3.883555450852108*^9}},
 CellLabel->
  "In[619]:=",ExpressionUUID->"dbfa69a4-38ff-4a4c-96a5-19b8ca17951b"],

Cell[BoxData["7.120584955419883`"], "Output",
 CellChangeTimes->{3.88355320708495*^9, 3.883553338644999*^9, 
  3.883554702930024*^9, 3.883554738336375*^9, 3.88355492156914*^9, 
  3.883555224381851*^9, 3.883555367634069*^9, 3.883555455167295*^9, 
  3.883641230673229*^9, 3.8836441782104187`*^9, 3.8837084461065474`*^9, 
  3.8837220105114594`*^9, 3.8838103037971277`*^9, 3.884769546016932*^9, 
  3.884771043152464*^9, 3.884775549246008*^9, 3.884780520821107*^9, 
  3.88478251701832*^9},
 CellLabel->
  "Out[619]=",ExpressionUUID->"72abeaf4-4581-44c1-9c9b-599eed9311d1"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
   RowBox[{
   "\:0418\:043c\:043f\:0443\:043b\:044c\:0441", " ", 
    "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "3", 
    "He", " ", 
    "\:043e\:043f\:0440\:0435\:0434\:0435\:043b\:044f\:0435\:0442\:0441\:044f\
", " ", "\:044d\:043d\:0435\:0440\:0433\:0438\:0435\:0439", " ", 
    "\:0441\:0432\:044f\:0437\:0438"}], ";", " ", 
   RowBox[{
   "\:0442\:043e", " ", "\:0435\:0441\:0442\:044c", " ", "\:043c\:044b", " ", 
    "\:0435\:0433\:043e", " ", "\:0437\:043d\:0430\:0435\:043c", " ", 
    "\:043f\:0440\:0438", " ", 
    "\:043f\:043e\:0441\:0442\:0430\:043d\:043e\:0432\:043a\:0435", " ", 
    "\:0437\:0430\:0434\:0430\:0447\:0438"}]}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.881200608210786*^9, 
  3.8812006318545837`*^9}},ExpressionUUID->"93967aaa-fb32-46f7-b27c-\
892da0b16278"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"mom3He", " ", "=", " ", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "mass", " ", 
    RowBox[{"(", 
     RowBox[{"-", "Esep"}], ")"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.881200816587983*^9, 3.881200826759004*^9}, {
  3.881200881516077*^9, 3.881200923308035*^9}, {3.881297678198907*^9, 
  3.881297685451997*^9}, {3.882421016135722*^9, 3.8824210170180607`*^9}},
 CellLabel->
  "In[620]:=",ExpressionUUID->"fd99e280-b87a-49dd-a288-5fe39a52e19d"],

Cell[BoxData[
 RowBox[{"0.`", "\[VeryThinSpace]", "+", 
  RowBox[{"82.89392719144146`", " ", "\[ImaginaryI]"}]}]], "Output",
 CellChangeTimes->{
  3.881205023432626*^9, 3.881205761610588*^9, 3.881297109064865*^9, 
   3.881297734940659*^9, {3.882090705797106*^9, 3.882090717899979*^9}, 
   3.88209075798248*^9, 3.882329826488744*^9, 3.8824210175629473`*^9, 
   3.8828673410587*^9, 3.883105819927225*^9, 3.8834687129164677`*^9, 
   3.883472616774363*^9, 3.8834729296089363`*^9, 3.8834792828777*^9, 
   3.883479566953698*^9, 3.8836412327415657`*^9, 3.883644180105177*^9, 
   3.883708447794322*^9, 3.8837220122198153`*^9, 3.883810641024633*^9, 
   3.884769548126718*^9, 3.884771044735566*^9, 3.884775550936934*^9, 
   3.884780523198308*^9, 3.884782519027088*^9},
 CellLabel->
  "Out[620]=",ExpressionUUID->"ef908ed1-b737-4b67-a82d-c94882734c36"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{
  "\:041c", " ", "\:043c\:0430\:0442\:0440\:0438\:0446\:0430", " ", 
   "\:0434\:043b\:044f", " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", 
   " ", "\:0432", " ", 
   "\:043f\:0440\:044f\:043c\:043e\:0443\:0433\:043e\:043b\:044c\:043d\:043e\
\:0439", " ", "\:044f\:043c\:0435", " ", "3", "He"}], "*)"}]], "Input",
 CellChangeTimes->{{3.881033769215639*^9, 3.881033785832822*^9}, 
   3.881033912603038*^9},ExpressionUUID->"79a457e4-2694-4aff-b91a-\
36c1c1457a0a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"Integrate", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Sin", "[", 
      RowBox[{"a", " ", "x"}], "]"}], 
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", " ", "b"}], " ", "x"}], "]"}]}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "myRan", ",", "Infinity"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{
      RowBox[{"a", ">", "0"}], " ", "&&", " ", 
      RowBox[{"b", ">", "0"}]}]}]}], "]"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0438\:043d\:0442\:0435\:0433\:0440\:0430\:043b", " ", "\:0432", " ", 
    "\:043e\:0431\:0449\:0435\:043c", " ", "\:0432\:0438\:0434\:0435"}], " ", 
   "*)"}]}]], "Input",
 CellChangeTimes->{{3.8810339163716393`*^9, 3.881033972483519*^9}, {
  3.8835525860221863`*^9, 3.883552651904613*^9}},
 CellLabel->
  "In[621]:=",ExpressionUUID->"21c7637c-3a09-41a5-b3ab-b8f8756d6a35"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox["\[ExponentialE]", 
    RowBox[{
     RowBox[{"-", "b"}], " ", "myRan"}]], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"a", " ", 
      RowBox[{"Cos", "[", 
       RowBox[{"a", " ", "myRan"}], "]"}]}], "+", 
     RowBox[{"b", " ", 
      RowBox[{"Sin", "[", 
       RowBox[{"a", " ", "myRan"}], "]"}]}]}], ")"}]}], 
  RowBox[{
   SuperscriptBox["a", "2"], "+", 
   SuperscriptBox["b", "2"]}]]], "Output",
 CellChangeTimes->{
  3.881297096239375*^9, 3.882329828068823*^9, 3.882421019139493*^9, 
   3.882867342790469*^9, 3.8831058221678753`*^9, 3.883468715045041*^9, 
   3.883472630074232*^9, 3.8834729322842073`*^9, 3.883479285022437*^9, {
   3.883552617360506*^9, 3.883552660978874*^9}, 3.883641242649755*^9, 
   3.8836441901028337`*^9, 3.883708458176134*^9, 3.883722021639851*^9, 
   3.883810324676392*^9, 3.884769557826625*^9, 3.884771053774629*^9, 
   3.884775559993281*^9, 3.884780532288571*^9, 3.884782527425642*^9},
 CellLabel->
  "Out[621]=",ExpressionUUID->"a3cf3011-1c8a-4059-b0a2-968dcac48dbe"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Sin", "[", 
     RowBox[{"a", " ", "x"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"b", " ", "x"}], "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "myRan"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{
     RowBox[{"a", ">", "0"}], " ", "&&", " ", 
     RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.881200495133235*^9, 3.8812004979799643`*^9}, {
  3.881200554925774*^9, 3.881200564433354*^9}, {3.883552698903925*^9, 
  3.883552710055686*^9}},
 CellLabel->
  "In[622]:=",ExpressionUUID->"2a836ba1-d54a-4276-b9f3-4a104a1093f6"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{"b", " ", 
    RowBox[{"Cos", "[", 
     RowBox[{"b", " ", "myRan"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"a", " ", "myRan"}], "]"}]}], "-", 
   RowBox[{"a", " ", 
    RowBox[{"Cos", "[", 
     RowBox[{"a", " ", "myRan"}], "]"}], " ", 
    RowBox[{"Sin", "[", 
     RowBox[{"b", " ", "myRan"}], "]"}]}]}], 
  RowBox[{
   SuperscriptBox["a", "2"], "-", 
   SuperscriptBox["b", "2"]}]]], "Output",
 CellChangeTimes->{3.881200566098689*^9, 3.881205766859289*^9, 
  3.881297104639103*^9, 3.882329829671001*^9, 3.882421020938382*^9, 
  3.882867344672193*^9, 3.883105824494817*^9, 3.883472631849029*^9, 
  3.883472933666597*^9, 3.88347928700062*^9, 3.88355271284999*^9, 
  3.883644191905717*^9, 3.883708460019032*^9, 3.883722022458856*^9, 
  3.883810648191587*^9, 3.884769559704506*^9, 3.884771055479411*^9, 
  3.8847755641952887`*^9, 3.8847805386122313`*^9, 3.8847825313769407`*^9},
 CellLabel->
  "Out[622]=",ExpressionUUID->"57db4fec-3f75-4aa5-a0d3-6b15bcde7bf7"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"TMatrix3He", "[", "k_", "]"}], ":=", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"p", " ", "myNorm", " ", "myU"}], 
       RowBox[{"k", " ", 
        RowBox[{"Abs", "[", "mom3He", "]"}]}]]}], " ", 
     RowBox[{"(", 
      RowBox[{
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["k", "p"], "-", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["k", "p"], "-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]], "-", 
       FractionBox[
        RowBox[{"Sin", "[", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            FractionBox["k", "p"], "+", 
            FractionBox[
             SqrtBox[
              RowBox[{"2", " ", "mass", " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], ")"}],
           " ", "range"}], "]"}], 
        RowBox[{"2", " ", 
         RowBox[{"(", 
          RowBox[{
           FractionBox["k", "p"], "+", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass", " ", 
              RowBox[{"(", 
               RowBox[{
                RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"]}], 
          ")"}]}]]}], ")"}]}]}], " ", 
   RowBox[{"(*", " ", 
    RowBox[{
     SuperscriptBox["Fm", "2"], " ", ",", " ", 
     RowBox[{"\:043d\:0430\:0434\:043e", " ", "\:0432", " ", 
      SuperscriptBox["Fm", 
       RowBox[{"3", " "}]], "MeV"}]}], "*)"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k_", "]"}], ":=", 
   RowBox[{
    RowBox[{"-", 
     FractionBox[
      RowBox[{"p", " ", "myNorm", " ", "myU"}], 
      RowBox[{"k", " ", 
       RowBox[{"Abs", "[", "mom3He", "]"}]}]]}], " ", 
    RowBox[{"(", 
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox["k", "p"], " ", "range"}], "]"}]}], "-", 
       RowBox[{
        FractionBox["k", "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox["k", "p"], " ", "range"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", 
          "range"}], "]"}]}]}], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox["k", "p"], ")"}], "2"], "-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], ")"}], " ", 
    RowBox[{"(*", " ", 
     RowBox[{
      SuperscriptBox["Fm", "2"], " ", ",", " ", 
      RowBox[{"\:043d\:0430\:0434\:043e", " ", "\:0432", " ", 
       SuperscriptBox["Fm", 
        RowBox[{"3", " "}]], "MeV"}]}], "*)"}]}]}]}]], "Input",
 CellChangeTimes->{{3.881033977845848*^9, 3.8810339795737133`*^9}, {
   3.881034299194148*^9, 3.8810343272795763`*^9}, {3.881034608568304*^9, 
   3.881034692687162*^9}, {3.881034784166951*^9, 3.8810347952400923`*^9}, {
   3.8810348409016333`*^9, 3.881034881737472*^9}, {3.881034935763405*^9, 
   3.88103495049362*^9}, {3.881035061115604*^9, 3.881035092839991*^9}, {
   3.881035468416505*^9, 3.881035481765575*^9}, {3.881037944040091*^9, 
   3.8810379482351933`*^9}, {3.881037981288925*^9, 3.8810379843458767`*^9}, 
   3.881038021731368*^9, {3.881200578723695*^9, 3.88120059045376*^9}, {
   3.881200948721171*^9, 3.8812009940828753`*^9}, {3.881201567326044*^9, 
   3.881201588162565*^9}, {3.881201755288425*^9, 3.881201780770088*^9}, 
   3.88120234175987*^9, {3.881297769505846*^9, 3.881297778077227*^9}, {
   3.882090823944269*^9, 3.882090825369204*^9}, {3.8820909020622263`*^9, 
   3.8820909232220993`*^9}, {3.88242290969197*^9, 3.882422920378888*^9}, 
   3.883473253871093*^9, {3.883482453547862*^9, 3.883482478458909*^9}, {
   3.883482510803965*^9, 3.8834825189751062`*^9}, {3.8834827231464853`*^9, 
   3.883482723661664*^9}, {3.8834827542344427`*^9, 3.883482754813789*^9}, {
   3.8835543507923527`*^9, 3.883554361931973*^9}, {3.883554415089562*^9, 
   3.883554418297936*^9}, {3.883554453655249*^9, 3.88355448079436*^9}, {
   3.883555120149898*^9, 3.883555136186659*^9}},
 CellLabel->
  "In[623]:=",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:0430\:044f", " ", 
    "\:043e\:0446\:0435\:043d\:043a\:0430", " ", "\:0432", " ", 
    "\:043d\:0443\:043b\:0435"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"-", 
    FractionBox[
     RowBox[{"myNorm", " ", "myU"}], 
     RowBox[{"Abs", "[", "mom3He", "]"}]]}], 
   RowBox[{"(", 
    FractionBox[
     RowBox[{
      RowBox[{
       FractionBox[
        SqrtBox[
         RowBox[{"2", " ", "mass", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], 
       RowBox[{"Cos", "[", 
        RowBox[{
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], "range"}], 
        "]"}], "range"}], "-", 
      RowBox[{"Sin", "[", 
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], "range"}], 
       "]"}]}], 
     RowBox[{"-", 
      SuperscriptBox[
       RowBox[{"(", 
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], 
       "2"]}]], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.883554585129315*^9, 3.88355459015775*^9}, {
   3.883554759551602*^9, 3.883554764717204*^9}, 3.883554794748934*^9, {
   3.883554831789584*^9, 3.883554865191403*^9}, 3.883554906168315*^9},
 CellLabel->
  "In[624]:=",ExpressionUUID->"b024508b-6d27-4ffa-ab07-de4ed8a4b834"],

Cell[BoxData[
 RowBox[{"-", "0.4718922843178722`"}]], "Output",
 CellChangeTimes->{{3.883554853046928*^9, 3.883554865596673*^9}, 
   3.883554964408291*^9, {3.883555153142915*^9, 3.883555160597527*^9}, 
   3.883641242822588*^9, 3.883644196431122*^9, 3.883708469410604*^9, 
   3.883721104568775*^9, 3.883722033276618*^9, 3.8838106545924997`*^9, 
   3.8847695683439903`*^9, 3.8847710590365877`*^9, 3.884775624079982*^9, 
   3.884780543215971*^9, 3.884782535286302*^9},
 CellLabel->
  "Out[624]=",ExpressionUUID->"33da0b6f-6e0e-44b4-bced-a2d79464be09"]
}, Open  ]],

Cell[BoxData[""], "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8812015487577887`*^9, 3.881201561277553*^9}, 
   3.881205988917266*^9, {3.882421421644279*^9, 3.8824214264649963`*^9}, {
   3.882422925136129*^9, 3.8824229409038754`*^9}, {3.8834732509337378`*^9, 
   3.883473251891506*^9}, {3.883555002964867*^9, 3.883555024582602*^9}},
 CellLabel->
  "In[625]:=",ExpressionUUID->"5f437c91-8022-415a-8eed-7828551b0fce"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd1Xk0V08bAPAvP1uiJFvllaWIZImEME/WG5WUivwsiVCybyFbElmjopKl
RNH52pLKm0u2tCcl6V4SRSVLlhDfd+77x5w5nzPnzMzznHmekXP13evOzWKx
ruHBzPLpCzfyZCqN3tlIVUVo0WStgPLaE57p6LmXSyXjxjB20QbPfGRYr1vO
OEtn4F/htBK01rqwjHGrhr8Hn2c5ipW+Usw4Upxzn1NQjewUFQoYX8o0M/qb
WouKvQ1yGJcvT2n6E16HfEYH0xg/SekgpjxIVM1eG894LF7oW1hpIwopHQ5l
fKqpXHmmoAlV9JscYyzIvc87OLsF+RxUc/j//jDN/p3ahsoEblsyVoi+PO4f
346OTVfrMq54ZKA9Fv4Mlcpar2fcrn/6wU+PV6hJRWcuHLvMYGXUlvLXqFAw
rp/xeI9bflDpG8Sv5NTOOGq1QP9EwVuUIt6Wybj5gf0/m3M7EfvbvmDGgvZl
6/yz3yH3ab8DjLOzd3uMpnahO+0OYoxpnYJEtaQPyCRNefwk9rr347dPxHej
2PSzzxlXiF38+SO8B3EsJqMYPz3f4z/k0Yuizmd0hGEn5lxqz9LsQw3b+m4w
VvVEh7TK+9Az+YZAxgH85yMCSj+jPSUayxkvmmnXjxV8QfXnOrVDsQvFqd0Z
MgNocE3xXAi26eCZXvXcAcT9nZ9knBzfxfLNHkTbDCNNGEs1hZuMpH5Ddg1K
24Kx6zIVOlOWDqEJvYipIGwn1+duqklDqGrMic24iEsm4Xj8MOoT71rDWBMa
nwyH/0AV6NxgALblI/7dXz1GUbLUXy0/Zp3jOiUxNooaXENf+WKnyDq/VDAY
Qx4Bxl6Mg1wfBts2jyHr/rZsH+a+X/2aazrH0RfejD5v7P4R6nDY1G9k7Sku
54X9Pi25JkNvEu0SSS30ZPKnrrfk9qlJVBxlK8u4yv9CRTfvFLrO7pDywI6d
suToS0wjtmPKlBu27EJt7oLOHyTHP+Xogi2W5z4mHvEHNUl7NTljC6CVpmrk
H9Q9q6rEeDTG54eTxSwqEywadsSu51mv33BwDm1Jsj7kgO0olNkVF/YXtS3N
/b4f+4WwzhIeRxY0Pl7atgO7w0o052UkCwyq7HgYf0j6pXg5lwU1L1WBwB7g
LTFV+8SCibRj1ebYfxckY+wcuIBX3SDRBFvl1+z0HXtumGXp/jBg3sfLRwP7
D/CAQEbmJTXsNKErgbIhPBBv1VK0CfuCZQj3j4s8MKkTXamKnd+qJhvzjgdW
5yW2qmDfq893KLXlheiKcVoRe5Ad27G4lw88FqTbZbCN080aSqwFIIjzIU4Y
O8by7u0OHwFoPljgIcTEz6uQtZAqAHTCguVSbP1I1tF9zwWgz+uk8BJsLa+6
pRxiCfiZh8byMO/fRPPgAWNB8A5KXj+/mSb5ZqR/8WwRAvdYCadv2KZVyV3q
tkKwajRH/Ct23Im5hkOBQpC6tfLZAPbil66sikohcLS/odWPPfM6U+9fNWHQ
Hkid+IQ9VCpwplppGdzfEqnage2uPiesKSwCvq31GXXYO3vO3pSSEYGqY0bz
D7C1z4obstRFIHF8pdt9bJ5eDe9Xe0TgfkmDRg329TSPpycuiEB5new9Nnbv
SGdC6ZoVUMye9yvEtr9TzlFQEQVnTZmSM9i7lN3HJSzEoKlbTnwH9lxycB11
QAzuXLLdaoF969eZM0VHxcDcQMzOjDnvbvGqzQliYG2sf3E79kOjoe27WsTA
G8kt6mEr2h7PPG0iDpobHc6pYLOi/bXGkAS8NoxJEcSu6jwV3K4rBY0hV7e2
atLkNlGVcp5oaeA66aQjg+0xn3ntpp0sKNKrnzhp0KRv6zet8l3ycLFqOv2C
Ok2eO8S3fsF7HfTeHonMV6PJI20RRzU9FeH3UG/49U24//OvsjluvwGiHUIa
s1Rx/a6IuTQcpAJvrepzbTfSpMtvQ9Xd3qpgJ2r1V1QF95u8FumZVDXY3Nbi
lLuBJqvT9Hs69mrA/t6kvaJKuL4fGu65tlMT3khmOievp0ny6c2JJIfNEOd7
uLldgSa9LPQeedlpga3B1Jpl8jSZe0uz5vgxbbhXfEt3pSxNnv/9KNYvdAuY
3bT+D78MTX4tDQ7xDNABH8ewdD5p3J/NM3Pi4raCzWDhmsZVNMll/bE/PUYX
2AfGV5yTxPnbfo+r4KQe6NuEJFmI4/qRnNnVcVYfbDfVZz8UpUm/Q0cez5ze
BgkRZae3i9Dk51htN3TRABZqT0efFMb9Ievyx6RCQ5jvofYUCdJksYjKybar
RgAuLllD/DhfAWvNlMoQKFd8tvzAQ5N5sgXShrYAyw6U7xzgoslHkXMsz9cA
2xJN3w8tUqScFf9fhYPbwdfIzjVrniLvvlJO7u7cDldrUm44/6HIlNZFDVlH
YyADlX1eTFJkVuDwMZdPxmDoPfTEeZzC/63Mcnl7E9hE/Pz8c4QibyvzPg3q
M4G4wH4xie8UyTfJtarRyRQeVqiaeX2lyBKNyqi8b6bQzT8sZdtPkcqupbsX
TpjBxgt9Qro0RfbseFC1/4cZkHpJSVYfKbLjRvgmFGgOadq31o+/o8g/1TYG
8hPmEMjXvbb9DUVy7gfUJPhYANQLDua/oEgrDXOzyCkLkA/55fNPO0W2Oap7
HQ8kYIzbrTavmSJFj3jWXQsmYN4o4us5bCfPQuHXoQRk5nSuDMWeDlhZpR1J
wCB7l5c19rrEmbmFeAKOV9pzOE0UGVNFpmRcImCTfU+XC7Y+/56KmgcEzORk
68s9psgEoSTuoToC6NwZTWHsNyse266uJyBK9IrSbCNFekprz0Y9JiDIsVj4
DXa2ppQx8YwA5/9+ao7BnnToe/vxEwFNo497exsoEg6vUhTuJeD3Tqu6Z9jJ
R/eGoc8EmJtLXKzFlvdvli4aJGBCMsgkHdsm4Zb7iV8ETMdaJxth5yZ/rs0f
I6BGcMROBXsoY7VgxwSOz/TFOgnsmKspbJ0ZAvQ/7K8dISnyeUELy2uWgEqd
xVPd2JLFi3uvzuPzbIaNW7Bdy7befLFAwFUVSb5KbHaF3wyHQ4Bby9m2XOz/
Ac18+H4=
       "]]},
     Annotation[#, "Charting`Private`Tag$7845092#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, -0.46442719450540115`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{559.7727272727277, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8812015630303907`*^9, 3.881201591546351*^9}, 
   3.8812018022929296`*^9, 3.8812023460460243`*^9, 3.8812050330769033`*^9, 
   3.881205775010165*^9, 3.88120599045111*^9, 3.881297111623495*^9, {
   3.882090700825438*^9, 3.882090722076212*^9}, 3.88209076758456*^9, {
   3.882090806567244*^9, 3.882090827735465*^9}, 3.882090926856447*^9, 
   3.882329834861843*^9, 3.8824210246961184`*^9, {3.882421424311038*^9, 
   3.882421427395227*^9}, 3.882422942256439*^9, 3.8828673483991213`*^9, 
   3.88310582824716*^9, 3.883468719240418*^9, 3.883472635429822*^9, 
   3.883472937376811*^9, 3.883473261103238*^9, 3.883479290650078*^9, 
   3.883479572045383*^9, {3.883482514947854*^9, 3.8834825219709063`*^9}, 
   3.883482727811558*^9, {3.883555003820224*^9, 3.883555034254137*^9}, {
   3.8835551555269527`*^9, 3.88355516211535*^9}, 3.883641244931951*^9, 
   3.883644199397297*^9, 3.883708471353747*^9, 3.8837211081075697`*^9, 
   3.883722035374963*^9, 3.883810670141837*^9, 3.883814402300542*^9, 
   3.884769571462653*^9, 3.8847710607538357`*^9, 3.884775625849698*^9, 
   3.8847805452396383`*^9, 3.8847825371915703`*^9},
 CellLabel->
  "Out[625]=",ExpressionUUID->"3374f384-18a6-4832-9703-7157360c30cd"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
  "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
   " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "8",
    "He"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.881038328963751*^9, 3.8810383435032663`*^9}, 
   3.8812010317751303`*^9},ExpressionUUID->"5afa8d22-b29c-4441-90a8-\
81bd28869b4d"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"myNorm1", " ", "=", " ", "0.6514573663189586`"}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"myCoeff1", " ", "=", " ", "25.351749791847226`"}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"myU1", "=", "35.89034438287419`"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"mass1", " ", "=", " ", "821"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"range1", "=", "3.735"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Esep1", "=", "24.81432"}], ";"}], " ", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"1", "p", " ", "separation", " ", "energy", " ", 
     SuperscriptBox[
      RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], 
   "*)"}]}], "\[IndentingNewLine]"}], "Input",
 CellChangeTimes->{{3.881038361675716*^9, 3.881038510654389*^9}, 
   3.881038542239026*^9, {3.8810385811464567`*^9, 3.881038582638068*^9}, 
   3.881202373054678*^9, {3.881204956477566*^9, 3.8812049617064857`*^9}, {
   3.8812051557204742`*^9, 3.88120519865994*^9}, 3.881205241019328*^9, {
   3.881205781955861*^9, 3.881205790558261*^9}, {3.881205869160103*^9, 
   3.881205874137602*^9}, {3.8824212226474*^9, 3.882421226902269*^9}, 
   3.882421273134424*^9, {3.882421312846766*^9, 3.8824213351452217`*^9}, {
   3.8824229615522623`*^9, 3.8824230104073553`*^9}, {3.882423141890733*^9, 
   3.8824231435749474`*^9}, {3.88242332196012*^9, 3.882423328788576*^9}, 
   3.882423489257834*^9, 3.88347327550917*^9, 3.883479579677216*^9, {
   3.883553641142914*^9, 3.8835537245189447`*^9}, {3.8835540039421*^9, 
   3.883554031665704*^9}, {3.883554073329533*^9, 3.8835540897355003`*^9}, {
   3.883722935484701*^9, 3.8837229451382933`*^9}},
 CellLabel->
  "In[626]:=",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"PsiR8He", "[", "r_", "]"}], ":=", 
  RowBox[{"Piecewise", "[", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm1", " ", 
        RowBox[{"fIn", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", 
          "r", ",", "0"}], "]"}]}], ",", 
       RowBox[{"r", "<", "range1"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"myNorm1", " ", "myCoeff1", " ", 
        RowBox[{"fOut", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", 
          "0"}], "]"}]}], ",", 
       RowBox[{"r", ">", "range1"}]}], "}"}]}], "}"}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"PsiR8He1", "[", "r_", "]"}], ":=", 
  RowBox[{"myNorm1", " ", "myCoeff1", " ", 
   RowBox[{"fOut", "[", 
    RowBox[{
     FractionBox[
      SqrtBox[
       RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}],
     "]"}]}]}]}], "Input",
 CellChangeTimes->{{3.8837230413164587`*^9, 3.883723061116477*^9}, {
  3.884775643754422*^9, 3.8847756614859943`*^9}},
 CellLabel->
  "In[505]:=",ExpressionUUID->"fe2e92bd-99ee-4847-8c87-958f9c8e2ae0"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"PsiR8He", "[", "r", "]"}], ",", 
     RowBox[{"PsiR8He1", "[", "r", "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", "0", ",", "10"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.883723094703141*^9, 3.883723098630258*^9}, {
  3.884775666884411*^9, 3.884775682862565*^9}},
 CellLabel->
  "In[507]:=",ExpressionUUID->"11a1b2f9-f071-4cbb-8745-8b989c037646"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI
0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/
P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD
3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0
za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3
nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv
LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty
Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz
cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w
q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u
8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj
oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902
nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI
E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz
+mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9
LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp
r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd
l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC
2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C
zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ
WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW
AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3
IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP
E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb
RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i
oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg
UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A
8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE
MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB
AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA
3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C
bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg
/ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj
B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k
GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj
6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z
wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ
MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF
TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU
7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3
ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P
B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK
3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7
109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi
R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ
Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT
GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT
/PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW
12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h
SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G
cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2
naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ
/yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T
ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm
/jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO
PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx
3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB
kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI
UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E
bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ
wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC
ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ
AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe
LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB
gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps
m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv
ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta
+ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF
z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR
u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7
alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8
i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV
qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95
Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64
KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb
6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3
w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS
T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27
RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj
1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer
+3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA
2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F
zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd
MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV
QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL
N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY
04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/
D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s
3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt
FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM
1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY
46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ
OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab
SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP
VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+
u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs
CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B
NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA
XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219
CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6
EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea
F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb
zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX
7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI
WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c
Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83
cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP
LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD
tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG
FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY
LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577
YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe
YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW
dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv
XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj
MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK
3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai
QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z
Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd
jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn
2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf
zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX
z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt
WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls
nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD
2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7
nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw
w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj
6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN
sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4
VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF
XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl
KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq
+qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm
Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX
FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6
76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K
T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6
8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx
52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB
WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY
9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8
+pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU
juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t
O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w
bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj
LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry
JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8
oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP
a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ
NDieNYT/AXAvkZQ=
       "]]},
     Annotation[#, "Charting`Private`Tag$7079790#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3c4FY4bxXGRbK697r2ubKWS2df7lkgidY2yM4rIikoSQiRkZMsmUiFp
ISuSrahkllVEEbIqv35/nec853nOn5/3vBQHT9opBjo6Omd6Orr/a2agA/NO
pyjtvONvhf6EKmNTL9nwOPkMsIR/vVd7QRk3X9WGksmX4KJqy/CNM8qYWR9D
YiJHwoZC38Z+Y2U8+9959xVSGlRwOKnsFFXG3g2XxHnSXegePXvz95kduGVw
TGaO9BxspgUydD4pYW5btvc3UivUeafwVzIp4FLqY/nR6FZ4SLu5rPpdHvWc
28ffrrUCz25L7Hovj7OEFbOq3jbg+BnSrVEsj+r/HdGMjOiAhycXpxgM5bGn
7DeDzI9ucHzN+dIoRQ6D2hQNdtr1wonQv6HGe2WxtCxy8Oz2AZji1SwIqNmG
M7wz0Qb2A0DpnOj8ULINZS4YaMsmDoCE099D+9K2Yc5ettzxtQHoYt3CBhe2
YUJr9GnL5kFoUNFyn1DehhfGYxcOWg/D3S6ppx3FUpjN1h7Ko/sJ+jg5XJrz
qOgMb9Jmz43DX+N2PcYXFKTL+1U1GDUOzDaTLlOlFExlFBtqKxiHJmNCS28O
BV+3npa4+34cBl7eJPaEUVDW9HfeKc0JUFA0XDYyouBXF5n7I/SToOdTqnT8
ExldE67U9sRNQYCQgocjJxk9JuXGK0ungfrEOmcnjzh+sv3I0tA6DSrpjfki
q2Jo0n99e+fENPQd0zEWHhVD9fYvlyZFZkDec9Tk+AMxJDws5BaImIF2U072
PgMxTA2gaF+0+waqiR+V6yNFsYEonKbBPQdBFhX7pwREkJUSJjOqPg9alDt6
Fa6C+Hpv/I5A3XnojFrL6TsuiOEnstTEafOQ7EHbzqwriAxxzw5auc2Djzr1
YTJJENf/zjp/yJyHdwOdDGffCeC3IbPiboYF2BWaSxvWEcCOVBm5+o4FEEyz
DriuwI83udvlc08uAuO62VAMlYjP1cQfH/H451sN0vt5iThh6wm/Ly+CbC58
38lARK0HRNPjKYvwI0F3G/dnXvx6yPoKR9ci0L4uul/K5kWd0LnuS1pLcO2y
ZdCSBC+uLnOdpwksg8ON9KtqsjzoMGhaR+j4BVUiSsG9jZzImvHZ3fvjL2Ai
vGO+UMyJFZYeYqNTv+BZnrv0jpucSBiIuFRFvwKzxSzjExacWNBftdtbbQXg
6V01658cOPWOXDyStwKe989WnJHhQNee2bjnl1aBlWJhHpjLht7NYQ6eMuuw
et5ZoPINC0pM6DH/2r0O/8W0tw6+YMF2hq0lAbgOxKrDVsQSFtyGMQuRFuuw
cn1m8mEIC36sSgouiFqHpdpR9XsqLLiv/E7Wxx/rIC7qPR+asQV5Ml4P6Dzb
gEYh9mA/X2Z86MVuInToD3T+XlwYP8qIHenESw/M/4Bv4/NdB4ERp5pEsvc7
/YHuLNVnz5UYUURY7tvZoD9Q8MPDuoOVEcMadEMbHv+BJyVs6XeaCWjOG/TI
VfIv0MnkxVG1Cbj+aIH4YuMvrO3Qm5rSYMDcy24zysfpcJubyPSCBR0q129d
jbChwzG2xpbHhnRYz1jMNOpIh99dW63DgA4/xUyQY7zoUDzXOGLfNjqUyLE5
Ph1Jh2115gPnxzYhvcm4KbeGDs3M2/h0BTYhgUMli1eSHo8tKL7kj/kDIdm/
jy3N0uPE1ttHWCrX4ajyM2+FRXrcMi419CFrHSQafOId1uhR259J81nkOlSN
zfT0MDFghoX/znt26/Bz20fjBxIMyE7VuH2CfR0c7j82On2UAfeIRnxrdlmD
fc89DvU/YsDIFf/ROKVVoOv9hDX+BPQX/zqnNbEMYdO1uf5XCbj4SPeG45tl
2EqXyaBxnYDK1Ed2GbXLwKtk0fQ4iYB2v2avaKUtw7aINwfLyglIorUQ9hov
g4FW45G8KQK6zdG0dtUuwa38fOvrNEZc15WeSypaBGnf036m8kwYZ7AW4lO4
AEqaoybZykxo/OTSFb2UBVChO7FjRpUJGdYNBqUiF2B/9KGpIB0mvBRkfJvg
vgC2BYqm96yZ0Jc+Yo/+ngVI7vu5gyGWCeNNyqcnW+aBaU/Ql7JFJsxNapt1
m/kBE8sp5mwvmNFiKIxQPDQLeft2+wy/ZEZdLubv4S9nwS6mK7asjRlTKrKf
Xy6ZhQEpplaTfma8y7ZedMdvFt6YnNO6vciMnmur3Zv8s1D70JCsJL8Fx5f3
rJaafoMUd/qZIylbkLFk2uDq52kwmHS9kuDNgjHUNUelPV9A7wr1/gE/FjR4
/45wnPIF9vMPDfwKZMFA0YTUeI4voKlrpG4VzYInB6tPa0xNgXzhjkVqEQuG
SGwl0FKngO3UksvjIRa8KKrfmb45CR0TV0z7D27FlabwErmBCTgyEacgIcGK
k+vX9S1rxqBDYaLPWooV0+1MzV0fjMFhH7XADHlWtB7rMgzPGgN9hpEeITVW
HPQc6fwcPAb7yQoXiEdZUTjYVUhabwz2WDfXs4Sw4tvfPUWDbz+DWN+a2eIk
KyYbuC9XLX2CmZcOwa8fsOG37AKNlvIRIMX3u96sZMOC1tD92skjYGp7xMy0
+h8XLibu7bg8ArWrGvKfXv/zZYTHigdHIEGJp29lnA2Tv32J/TMyDFopdTIy
Iuw4dOPxt07eYYh2Feu+Fs6O09JKcQU3BmE7z3txHTsOVK46eUz9aT9MxUyF
JJ3iwDnjkke6+f2Qybry5YsbB3684LnDMbYf2BmFKqL9OHD05BXocu6HmV8W
eu/jOdDSy/mEo3A/FA4Ne5xp4sCHQi66gUEfQKx4si5WjhN3O9z8RDr+Hlhh
2X5okRMFRXxa/Hb2gd8+WZYn65x4qlXFv4fUB1M6VqWx9FzIn5WZqcbZB436
Dev7ubj+z3E6lW+94E+LuXVXngsFS+drxwt74dupbc0X7LlQNPZaNFGiFzqi
zWR5urkwp5kgZyn8Fg7OWa5ImnFjm4Cv+jv1HsjiC+0NOsGNp3gvTn6R74El
rXtlQ1bcyBHgEsEs3gM5Nzackx24UaqP66ozfQ+sy9zu3+rFjW5SltYeSd1w
32H4+fwNbszb4Dmwta4LuPvtAmrruXHD8mGYNLUT+hud6C0VeTBgN1vYtHwb
zO8bELmyg+ffnTuWssjfBlsajFVydvFg9YNXvpz0baBap+k8pc6DbbSAExc+
tEJiNXfnOV0enH8oa8RxrRWMK2tSo2x58K0So53h+Gt4Vcin/CKOB83s9kxU
3muBx9ebbMnLPKjdZmgdeKYZig3ahSJWebAv1SloyrwZ0tnfvp3b4EFfvWct
tgeaIThuVK+agRf3MbHFBZGawTB1fbs5Ny+y/2y/FPy+CcaKlDejFHjxmU70
fZ+DTcDZcjt7xZ4XN1cTuhpUXsJppvOfurp4Meit25/dmg0gQmr9sPGGF802
45j2KjZAl7p4t+w7XhStAntjiQZQPdv8ImSQF1k5r31PYWgA5l7+DNWvvMhx
zMa+rL0eCnOemGXREzHyzZvmH3b1MKG12uauQkQjHubPC+Q6cDx3+TF7OhFN
D8UGPSDVgOqukcdymUTcHpinSNtaA6w/8YleDhHLqG7ZLIvVUO7N/DT4DhHL
VwsyS15Vw2+v+GdLFUSMMvzi0+BRDcmeRdVD7UT0cXY9tb2xClrP9jbc/0NE
4yTva3fOP4cdzgpdhvZ8+OLoXgst9qcwcobk+cCJD3l/1j20Wn0C0WeJ3Jwu
fFh8G5RiJp7AtPfGsW4PPtweI0WjvngC+QHt744F8OFu/6lnIp5PQDDBbdg8
hQ9NeeOOyL1/DJs192ZPdvKhCltKo0N5JXTzKrKd1+BHGy7tVvOECtB2d5/O
2MuPBB/lO06hFVDaUtrSCP9y/UM3An0r4GbAzjBuPf5/O1V733vzCjCcUv1z
j8aP22P5bfjEKqDt+b4fY278OMfX8Lux+CE0nzzeezSLH9+wb5kpbiuH6tKQ
DEWCADbYZHsb25QCs6GZSAqzAJobcx7t218Kx6Zl0uhZBbBmOEXPS7YUvlA7
k99z/9thoQEKc4sPgJgmmBAsIYBcpNmC1agH4BZ6/3qfhgAyxajy6tbfB9ET
788HeAkgmUjaoaRxDy7Tyx/tGBbAV1aRsZouxTB1gK1f+rMA+ptwNZuaFMPR
67N2VycE0DCJNBqsXQxSXGWeqt8EcNa/IJSTvxg6xFRic1YF0CAkZOJPYxFI
qGt3+RIFkb+Tf4wkWQSNHjRD8UOCKLP0/RDrXCGwDvnre1QK4vmSgoyzFfmg
evEuR+xTQXQ+vg4P8/LBnrf/bVmVIGYbLPgy3MqHZ/p7bBbqBTE2445Lm08+
nH78w9u3UxBrQmVO/tiTDw03nTL8pwSx8dbehbCavH+8OvI9XEgIeTO+Ysbb
XJi8Q0nMDhDCyGJtPEfOgdmwz2uEYCF8cuLdZ3/eHPjpkGvnEiqENs1dGbGM
OUBHoijsvCGEn7SEbaveZINICrmxMUUIkzQO2HE5ZcPRCNL8ZMW/vuVfWpIx
WVDjLG6oOC2EbM0T++3mb0OirDDjczNh3H2YpZV9JQ2sbaWLxk8Io+u5pBDO
sTSQStxtwGktjE+TT+yhdKZB5aZRnKODMDIrFBlfyk+DvvchYpyewkhVG/74
82gaEK/NqjheF8ZurhMBm6WpkPC57hRHtTBe686YkbyYAnHpp1vsySJoKaTQ
36uSBBcvhPgEUEVwImPpHaNUEtjSskgp0iLoSXCW1iEmgSLr+4sdiiKo48KT
9GUhEVov6cqqaYggu8pQaFdZIjBYSEWy00TQe69jEtv2RDgvOGbwNFQEX6Vf
z9vYfQssE2262L+I4E8l+TdJjvEg9ohV1G1GBGUNyDm5pvEw+uapc+ucCE5q
7zhcpRsPTly89OFLImg65bSVVzYePG682r1JL4o+TiM/LebiICR4R9qCmCi+
j9T/u88/Du6epXd6TxNFrQvKv45pxsLqgcK17FpR9FJn3wGs0RBQnR3a1CCK
0SWdhLrFKKDblc4x3SSKhlbtU0eHo2ALKZayq10UM8sSMkvKo0Bgze9Q0wdR
HCsN0FI5EQW7HximfZ0XxcKh+pZbJTfAg39JfSdVDC3Df32VtI6E8cn9fo0R
Yvik+yZ7xo9w2J/dlScfJYY3rI0YiwfDIeeEZWfCTTFkjuQ2f9USDrbt3pKO
Sf/+sACTdtWccBgoz+kg5Ishb7inxeSxcHh7+S9Zt1YMmy8mEs8+uwaNPFWt
LUtiKLvTn786Pgzy/tsp2mkvjlC0MmJ3LgQaj7CGbjiJY8wRWYKTYwiM2Y3P
yLmIY9CsmImvaQhQQ5Kqwj3EMaqk68hz1RAoeLVmgZfFcaQlIK934yoUGjem
PkoUx/Nn9bX3Xb8KxfYmAukt4ih3q3ztxd1geHDtPI+zkgQyaqbIRYgEwuxe
m5BryhKodqdnNIYhEBSXDizm75bAsvLsB0UzV6DEge/dJw0JDDTVMOGrvgLF
8CjVUk8Cy6vTSD3WV6BgbZ50xE4ChQ3+K23KD4B097Pb98RLoGbxn1tacBki
zBwPE5YlcG+WKKfZXT/IMx6yPrUqgfvF5qRYEv2g5pCZR8vGvz73oNzOQD/4
+d/B+CgGEio0OEXHmvqBtbTCByI3CZkK8z3n6Pxg18pPBykFEjpnTrQTbC7C
SGqIv649Cfmo9QnKkhdgz1Du3YhOEuYzV7TZD/sA93aX1bIeEnINtyzadPrA
bND2g/29JKRslWN2fuEDBdTqCdkBEvZ93PUiO9MH+Nz6SG1TJDwqvEkrsfWB
9QDCYWY6Mo5eDFASHT8HH9lUG/SFyVjxLeT1tmVvSJXLeNB5mIyBvlwxrVpe
sLSoVxhqREbWy9HHMpS8wLj2520NYzIyZildukTyAmYTg+hCGhlvaWe+siR4
wfmANdcrFmR8pcBjdTLFE2jdx2WVnMnoO1fWqvHCA9jP8+VHh5DRSUxO103E
HYLqY1IPPyejVtfr8gABV5gZrk9cqyJj0faOH2J0rmC+sRhXVEPGl7OKdj3T
Z0BR1TKSUE/GsTMY4/XiDPTfk/avfkXGzOATNomnzsCulDorhT4yfjqF5VbP
XWDKfUGC7QcZ00dUGC97OIORqFlhmxQFLayjXJ+wnYLUie31VtIU1L66GjO6
7gQTD1gGZ2UoSHuZLy8w4wQBWMPNpUDBG1OZBfdeO8H9U9QAk50UjJF29LwQ
7gSs5Qu0of8oOFWtIhHC6AQtB27SfTenoE7muQg5VkfY59FixRNJwdLlYOE4
DXtY75/Wa7pBwW2VV5ay5O2hUod918VoCsquFTdXidqDtPAxluFYCqruyRAX
/nsS2JsGKouTKRifH+Tm+fIk9At/58ACCiZw2Q36HT0JXs189R51FLylQHzs
/MUWssUcpDqWKZiY3DMm9twKNHcrbHdYoeDQuHlMcZ4V9B1aUltdpWB0R52z
XrQVsFwMPyz1m4Ldshbez+yswOtNybkABklsk5LU9t1iBRi+WK/IJYlh3Z5C
2paWMPYjzCZGVhI7g3bRP2O3AKmXRclHrCSx/LfDbVqeOXQprhYMWUviHfGk
VIs4c/BL1n/kaiuJ6aH/DXgEmkP7menucHtJbPlaSNdkaQ7nuBW21jlLotdq
TZYgnznU2ZRe3uEriRycLk6WkWZguVp5kjtGEt8x7GdgCDSFOKVG+be1ksgY
ReedGEODYnWrrSH1kngo6LVS2hUa1OksfdnZKIndwQ2l99xp8N1CujC+WRJj
6Mc614xocDj8BulYhySKupuraXDRgHmUxtfzURI7zk1EaSYeg8tx4386lyTx
tILi15Wio3B6kfFNqzwVYx/l1hK+GoFtyYEua0UqOpFC1Na6jcDcPqz9hxIV
j2tNEhieGYFeN+EV/04qrsqIWhhdNwLpewzV9mpUtL1mqtsqZwSTDnSFazpU
5Ns30anvZQhObzf85GyoqPOEZv+X9TA4PPxJjoyl4ruIxdcyvvpwNsTkt0E8
FX37lCTUbPXhvEnlB/ZbVLywXiVpqa8P15fP34xLpqKajfrigJg+lGqsbaRk
UpE5Vryl+dVBWGvYfH/nHhUtj9cK7ZQ4CHFv2WOaWqhYMzJ34euALqTnu7uE
t1JxwLD7rmGLLuT7dunot1OxQz7Yt/GRLjwRiFtv76Ki+rxmwli0LgxZEl16
31GxnDlZfRF0QWZcWGdsnIrRU09L9O8eAOVKf4mCSSqG+7ES65IPgOa1wbVT
X6h47rG0uF7YATCUySyfnqHiHaLw4DW7A3DOjSyxsEDFoipLuzaBAxCw9+pa
xSIVq7J41JoYD8A1jrE+32UqJnoVanb91IHUsvyo1VUq2qQ6R/F260BeMKNz
1ToV3Q4/qzZ8oQP3jp3aH/CbisKx8iPJ93SgUvKVuPZfKpKHPSfm03SgdlF6
bXOTimbX9Ootr+vA/wBRdxJW
       "]]},
     Annotation[#, "Charting`Private`Tag$7079790#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837231004454937`*^9, 3.883810676838584*^9, 3.884769578140485*^9, 
   3.8847710668265333`*^9, 3.884775635158951*^9, {3.884775677484971*^9, 
   3.884775683376411*^9}, 3.884780650180135*^9},
 CellLabel->
  "Out[507]=",ExpressionUUID->"43514bb0-011a-47ca-9735-bfd24e2ad828"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0440\:0435\:0436\:0443", " ", "\:0412\:0424", " ", "\:0432", " ", 
    "\:0440\:0430\:0434\:0438\:0430\:043b\:044c\:043d\:043e\:043c", " ", 
    "\:043f\:0440\:0435\:0434\:0441\:0442\:0430\:0432\:043b\:0435\:043d\:0438\
\:0438", " ", "\:0441", " ", "\:043f\:043e\:043c\:043e\:0449\:044c\:044e", 
    " ", "\:0444\:0443\:043d\:043a\:0446\:0438\:0438", " ", 
    "\:0444\:0435\:0440\:043c\:0438"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiR8HeCut", "[", 
     RowBox[{"r_", ",", "cutVal_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR8He", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cutVal", ",", "disp"}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"PsiR8HeCut1", "[", 
     RowBox[{"r_", ",", "cutVal_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     RowBox[{"PsiR8He1", "[", "r", "]"}], " ", 
     RowBox[{"funcFermi", "[", 
      RowBox[{"r", ",", "cutVal", ",", "disp"}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"PsiR8He", "[", "r", "]"}], ",", 
       RowBox[{"PsiR8He1", "[", "r", "]"}], ",", 
       RowBox[{"PsiR8HeCut", "[", 
        RowBox[{"r", ",", "5", ",", "0.03"}], "]"}], ",", 
       RowBox[{"PsiR8HeCut1", "[", 
        RowBox[{"r", ",", "5", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"r", ",", "0", ",", "15"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837231463016157`*^9, 3.883723168424961*^9}, {
  3.883724248255582*^9, 3.883724248801641*^9}, {3.883810683590686*^9, 
  3.883810689266737*^9}, {3.883815507574993*^9, 3.883815529342301*^9}, {
  3.8838170810815372`*^9, 3.883817088629632*^9}, {3.884775691890417*^9, 
  3.8847757379627247`*^9}, {3.884780653606538*^9, 3.884780695341119*^9}},
 CellLabel->
  "In[514]:=",ExpressionUUID->"e4b1105f-d069-4328-b182-1cb800c3aa9c"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVl3c8V+8XwG0le+/5sX0ipJTuOVJkfJOKUCI7SqLIKCNESVZJQ0hCJaMy
Uomyk73J+BBCZCv8Pr9/7n29X+d57j37OY+U/YWjTnQ0NDRXqI//v5cGar+Q
biUSKpoTk/+MQom2FEE/3S4vaA28G1xWbQfI991esCsUPtDIBMRXe4LPkZxO
+q54cLx01cutOhi4ZgTiVzvTodrI8QRLdSz8KDt8YaGzAFx6b6xmf00FfdJk
/1xnBaQwk7Zrl+fBaueuu7OdLXCOEIuLzCmHSr3nGc3pIxDy0eEHx1oTiP4o
GbNXmYYi/5sFmse7gGb+4v1as2koM8l8sftCF1CYlIzUfKdhsuMJG/lmF7za
/uDV+udpuLzgVj32qQuIa/6X7p+YgbKjxhqPlLrBVmwvXWPob4iOGOalWe+G
ZvJAzKOpWRhdtXfddbcXvuwq/Wm6OQueEWZ/5HN74Z3uPaTnngP1B7MtTNW9
8MD88J+zu+bgvGyL5Z2VXrC/+tF8V+gc7Bl78KHWug/+NKSItgj8gSbMPtAh
0g+852xzmPXmIf9Tvf/InQFQYn5adeTEPDzjeFfnljUAmD42nOw+Dw31Ivy9
5QNwruu8iEriPLhrMFn4zA3AlwOB0UdG5yFPtT/wrtkPuCSW7JF8YwF2Gqtb
FzINQmtji7pywyJs/8zhdb5kEMbP8pteGlwEc93Vd6pfBmGDwdr9w8IiHEBr
p9HGQVDaO/TUVGwJtK7aDyhRBiH0+W/eSx5L4K740V6MfQjUg1mXyziXQebe
o/5k2yGI36H//rD5Cvz2eDn0fmUIVHutDPa5rkCwRs0K0g5DQ9j5VuWAFfju
X21YunUYmLoSf21JWwHmjf+uRwkPQ8C1EZHKqRUIi9J+n7x3GBzrgwN3ha1C
1BOamMCAYdByer9PsnAN4godO+X/DEMr+/da9qo1UO1uZlRaHQbP4mHz9a41
qGdjbJCgGYGcbSwePRtrUKwcxzbGNgISBZYpiUZ/4dndpp99CiOwZXNxY8vw
X+jhQgXPUyPQfV+tfI5zHXI1xBk4S0fgQesLDh/ZdSg8oPpy9tMIWLPL265p
r4N4wn7Fiq8j0HddbIPOYR1cWx/G7moegUEPFh3et+uA8j3J7j9HYPwApUjL
agNIEXS/FjgpkB1ky/z+/AbkZiVTBvko4FbaYwGhG/CmTP3iB2EKTKk2Lxq8
2AA9kxuah0gUmBX+qGG1vgHWZcIbT7UosDKb9DogbRNizmzeu2hJgRJlns3N
t5tQSbwWdjpFAX/nmMNhdZvwoHv330N2FPjXGzYdPb8JtnNzVUMuFAgeKeb7
Lk2DUU2Gu0/4UGAw2GcfF5kGvT59NvvmRwFdcU2nY7to8Mbbq/kaVylAZ/X6
TacxDQ6un9Ruvk6BsMZnxwYv0eC4xB2SaSwFKO4OAdJBNFgw+VrRIIECB7dK
PXWMokH7qetnVO9RgOnAoz/jj6lyXwe7pocUiCyJj5urokE+8Lc9nkmBcYsj
JRrNNDjtavXxWxYFDBfYhi730qBemgPsekEBFtUotbXfNPjl4qPUntcUuJUR
9J1OiBYlaD/n2hdTwEjzLDefDC0eKijqOFZKgS1fjprLk2lRa/1V5s4yqr4j
sr3GurT4nyC3dv0nCuz35hA/bUyL8Kpr5dpnCtDQr9p5mtPidZcjJ2UqKRAo
3TCWeJYWOyZD6IkqCuwpeKv43JsWr13+rf+mmup/3SfnSq7Sok3OZQWRWgpc
PuP1pz+OFu80530uraeA5tzJnbMPaTH48SXf+QYK/Ak+eIUukxatajyqRRsp
4JEquCFXSovbjdLUdZsooKJGp6v9hRbrs/VMdJopMPnp13XjRlqs9Z/9J99C
gSzT9iqbLlpkPriqx9BKAZcfH7d6DlPtXy2VbKay3IUsk9ApWpyYfRwf00aN
x0bcncQlWhz/zZes006B9JiAlkwaOsyTSdfopbKduBNfCQsd6pO+nXHroIB4
7mHLel469FpQkZmkct++3Q/7xelQnM7B17qTAg++SQ38VqDD23Kip99T2dJm
mxSdBh0mZXJ2snZRgH96wYF3Hx3+VGcYPkzltsCBTDkDOlQY/3othMrxrDUT
u83oUNhU7VUGlc0e5asYn6TD6lOK54upzKny8IKNEx0Ge6V/LKNy4/uwggsX
6HDe5n5aPpWjjT0WQ/zoUMaKhz+Jyka9J3YnXqfDyyzyouepvMVdNyDzNh3G
h/0p1KBy1ZrSx+IkOjyqn9o/SdU37CYvbX0aHT7a45wcT+X9wht6/S/oULc4
/KcSlWlyfkb8fkuHbSHGNYVU+z9qN9fSltOh7VcOHTKVA2tLWXnr6FBFVEsv
ieq/vVYZpnJtVH1vkgfmqP5eG78dv3uADvcFebLto3LxFd92o3E6jGkNa75C
jY/mfaOTF/7RYT6nl3AFNb5/5DVTQpjoMe39ndTv1PjnFYkNJXDSo5fhlo/f
vlOA3DnrXEyixxw2roqH36j9wLknu247Pcro6+a4U/MpZ6lyqm83PTo7spJV
qPkmx5/kRfsfPWYUqzEF1VDj/yz4Lc8JerQTCz/NRc3X9J1uK7Jn6HG50s08
8Ss13ub7rhldpkceXxuZcxUUEEgciUp4TI8hHDfOOLyngKDy27CVTHoUFRuX
fFRCAeGKiCCbPHp8WboRUV1E3T+reFm+kh6Zb7CaLBVSQNbE0+79OD1qFNT1
FVLrVW5E96TkH3o0PlG2EJJNAQV/Hovwv/QIyRUf9j+n5nvWO2NTdgYkBfxw
fZROAQ2Gda0RDQZUYfj3X959qr8eNu44tI8B37YvC/JS+4eWeqrKK30GZBm6
leZG7S977PSkfa0Y0H7Y7s/v29R+VRbFti2IAZs2u7+cDKWA6SV+inodAw5u
7+gucaXAkW3jA0mtDLjpU3zayIkCR9NLuv/1MaBnwJPyb2coYNF06nvVbwbU
HQ4ivbKmgI3K01JrPkYk+wS/ajSmgDtFNS7UjhFtlvp+pihT4FwAbfTPs4yY
7L1x6rQ8tZ65WyNMvBmRvoGpk1OGAl7oE8gfwYhFxycph6n93O9RmUvOC0ZM
EssoUt1CgRvHDYmWJUa8tuV8c8TQCAi/aRSmo2VCA0d5aZa+EcjlOb68YxsT
VoyEuV7rGIGOltN5cRJMKH+H9qd2/QiQzC5Jmx1iwm19LjLrhSNQ8d8TpqZk
JmRf3x9aHDoCFq9II5tPmVDIcmPff4EjMMma80k1lwkVAwZ2tV4eAa6GN1fu
VDDh1S1FqwWuI2BnVDd5+BcTNjD90K34bwTW9Rcbv+kw41Yu0lkS3wjEZvq/
WNdnxopr/Oe+U89PEhNNJNmMGVWqe2nOMY2AyVcW3dtOzJibZrzktzwMD/Qk
C01iqPxWJG+iaxh2o3FS/Q9mDLw9cVUseRi8tdNsa0O34Dc/+mxajmEwSmVf
MI7egndiAh6GMw2DNHNgZOPdLThGr5K1vj4ETW0W+a1ZW7BsrFKubmoItnuy
0g80bsG0m86W7bVDMJ7pm/lHeCvetS18WhIyBKd4D0+LFG7FXz+SJSjjg3Dg
95q/xwgLnjm7rcZC5Qf4HUpU+jzFgh/yHJqB/wfkppF7eJZYkO39PWk+mh8g
eNxOu2TLNnRn6moLax2AqeKvy/Tbt2FqVDSjv98AJITGXkq+sg0lvE/I1Xzu
h2E+OY8vbKyYKJVnbn2gD0J0zM4I72ZDs486Um94u+HQ6ZQ/u/azYU3G9erh
5S5gD/513dyEDbdLpNRs9HTBo8rwzFg7NszPfr5jM7ULio1KfzFFsaFcfsSG
jEoXzFrK+Mx3syGTR98LTuiE05cXbzYEsKPm/rnXS57tIJu0X3QynB1rTKQn
TMzbqfreecUcy44XNyVaq7Tbwf+fYtP+DHb8JBNNK0vfDnevn+YraWDHY5xn
voUntUFDXPWTZ2IcyLTybGtBVSvsyU1+c+0TB/Z+X5y4sa8FDnQ2rs/UcODL
H1U34+Rb4DANg4FtCwdeXtB5/JarBRyOenTDKAfmug0nmYw1g36AVFAwIyfG
MM5fLIhtBk+Jpae6ypyYsCPs6f7JJvji8mS60ocTK2f/JRnYfgfDf9rcgQGc
eEhz4GqI9ndojG3T0gzmREZmvh/jPN+hu2RrcEYUJz73KN4NtY0ws+0Sd/gj
Tny6nnGSQasRBPMO7dKv4KSOljl1nwW+wbmVueAaNi4cahsITVurgz0XnfnH
uLmQVRP5z3fWwZbJnhf0glwY+ImS7PymDp71VnYQ0lyotXo1dNijDgY+3lV5
q8WFePGZzfJoLZiGa3el2XIh//bnp+z7akCdO0Q1IJ8LdZuuvX87XgU0txa/
3H/HhSZK+T+b6qqgkd7N+t17Lnx5iJGf51UVuC8eDZ/7yoVT3SWvtnlVQUYX
qdeFOmz2q1sfqln/CvxPaiKO03OjgMvfZT3Rr7CqzDlANufGzArz+yvelbD0
WDhEw5obw7dRallPVsIChyxJ25YbS2/Ej+P+SpiZ13Y7cJYbbU9NGm7hqoTh
9w5L1le50WaQpMaRVwF1xkXskc+48dw+kaae+c/wwP00DC9yoxubY5lNXDkk
9bsO/1zjRtXm13KkwHJINPUOn97kRmmhic+MLuUQoxFZv7KVB7W81zaF9pVD
6N/8ExziPDimaP6Ssf0TuN9i9NTR58FuA7dXnokfQefFy9R793iQxPLN8/Hu
MuiVfPHk4EOqfI3uCIW/DPzvZacsPOFBmiLfgGOL76EoJPPR0WwebBIsWcou
eA/qlqn32ct4sCzR4ZC66ntQZEyMjRjiQaMbH2xvqJYCv21AsI8KL/IatHYy
mRTD2za/INkdvNgtfUVhY3sxHDe6cq1tJ1XuOagkyF0M8TsvB6oDL567duJJ
YVcRsLFeuDJjRuUsct11lyJgKLH3dPblRcbNo0NOt97BHLeRnUUFL/Zz7oiX
/PUGus5JN7lV8yK5ecsZxqY3UE69awQ18CLNqzembG/fQKz/C4msDl5UkXzb
ER70BtSGWX+sTvKi14jTE17+N+CR/93mMQ8fBiWd8Qs1LIRJU/OTFEc+lHh0
pfhyTT60ZJPrV87yoZpKXqpbfj6U0jPtZbvAh1kHVhyvPsiHqKJ3wlp+fOhi
J//z77l8UJAQ7Llxmw8N6MfTLXnywWWmx1L5HR92NGhJejrlASXazsKLmR+H
zOzcNXVywWNSRVqNlR/52U8dShPIhWWD1elpTn5M9Sp02DP/Cljo48PPCvPj
Q+60oNmcV6DmV/nGjsyP1dqVIc6ir+CqkxyP6TF+zEitUDRhfgn8xNR35Sf8
+ODTUkjK32xIfVj8cOIpP0a9adJU68sGxdUwl+dZ/Bj+gXf6Z1k26LwR25Qu
4Ef5e0Lvaq5lg4OS6Xbhr/zYIT/x2oghG/L4C6K3/OJHy47tJEX+LDD87Ws4
qiWAWyX/rEgdzwTRHeIRW3QEUKFmx/iAVibMeH2pUNYVwKScRLUKoUxIXOLU
8TIWwJmtNAx/fzyDgfXs7Zu2AniRwVlfzeMZeLH28QhFCWCRWHHitbgMeKCI
Aya9Avh3JobG/k86nHMfE/YcFMCYduvrt7vTAV5Fn0gYFUBhv7Ox3eXpQFHr
bur+LYD71edTWu6kw/bdXpXODIJ4KNt2Tk81HSr1M7KCyYJ46/ARnU3vNJhy
2OL9JkgQF487Nn7mSYWZlAMfPoUJYttxHSbSxhP43R3MXB8liMaddC9X257A
H9PVh0MJgkj7eOiB3vUnsLx38gt7FpW/hj82Gk4BOt4G/rNNgpjjcYf9V/Zj
EPpyp1RMSgg1u1Yj39o8BOHNegZFOSGU4PDXDNrzEET3bDHVVBbCMtbW7T4C
D0E8L3jEaKcQbgwoyP9qfgCkRxdZrxgKoayUW9fkoQegdunY6ZaLQvj52KWP
HJAM+iQBuhsVQuh0d5+Ol1ESTNgbZO2tFsK/q+/aA7YnQXSa7+HZeiHsWj5P
+5w7CVrFux5YtQthwbdojzO998BOKFlDZVwIhc/+2G/vcQ/82EWcmtmE8ZkQ
z82LD+7CyxXxGhErYbwtbVz8YWsimO4y9WiyEcb2wy9YX88lwJ/LQbzh9sIo
f4BZ70N3AmjP/7CbcRdGzz75etWcBKiaTl0tvyaM/P5mkWdNEuDHsLSyc4Yw
cqQ4anHfiwfub3Ixeb+F8eRXk7Dj++Jg47fas7oFYUzJPjdBkYuDSe69ZZRV
YTyl6BISzxkHFZamk4IMInj+lVjBAUoseFN89UMERXCIIW+N5nYstP2t2TDT
FcEJfd+mi9V3IEnJ/cJ8vAhW1NRknDS6DWH/XY5guy+CAmH3xPaRboOnZ9Bj
+cciGN9prX5kIxoOvUuoP/lcBEexl8xSGE29P5bJf3kvgitnYi9WiUeDtRXb
YCJFBFuaLewUN2+CaOTrI1paopjmqNX1ZygScnJfVa7uEUVKZMSVt5WRsLv9
hdYHEEUN17GuR88i4bh0lugBQ1F8Y+Ik3302EqLLUsfNToli2S1JOfqFG/B3
Ni74fKgorsUqvl5ivwE9VpfyMhpF8WQz4yut0+HgGuwl49oqiiozEp+IA+Gw
lOl5T7lLFH0mzts5K4UD98K5wIIhUQxNPlvEsxwGRjFOh8oXRFE4wT52OC4M
SiosBnuFxXCXu80RtW/X4b6yNiePixieKt7cEWsVCubG32I/uoth+XSfaKFe
KHC7n+Fy8xTDYJEE3llyKNzKieL+7CeGxzZu5BbRhcI1xR7eC9Fi+DQhVs3/
VQg4ygcI1eeLoZ4UHUMBcwjskPkgff2fGKY9ES7UfRQEM/vNnm6nFcdDpIHh
JJ8gyLEflelhFMe714r/CJsFASmdTXYHhzj2f+Pqz2QKAkGp0/I/pMTx9J0O
7ibva7Ahvqm810Acsz0yru+xuAp1wro75+PEsfkh9yLHngBoEn8tx5Akjgk9
hccH+QOgQ1pMkO+ROC57KpEH5v1hSGl1TStTHKet22zO5PrDyp78cv9ScWSM
MXYIkvUHuZNSJnQj4ujuoys6LuIHoQ9pHbg0JXBrf/bqL3lfiHxy4bi0tgQe
/pgqs7nVF2Ke9h/UICTQyHh6dfeUDyS/KFEwPySB5sv9IxL5PpD3/uLM/VMS
yLv/5sG3Oj4w0DvkJxkugXufzba0Wl+GPaIVsaodEpj0eoBIzveGYRnSwESP
BF4tt+LoSvaGKOUI5YwfEqi+sRyhEeoNXXuMqgQnJHCcI2oIjnmDr1XLX9p/
Evg3/FpEzpIXWBtf1JjklERunR7FnP1ecC8yJKVMSxJfRtyvvzDjCW7R6l+F
tCVRYnnxHn2PJxCxI7989kpid999hryvnjCadFB7B0pi8bEV06OPPUHz+da2
Z4aS6J42daHkP09o+Rq39c4pSRwf7xKdc7oA7PTpl86ESiJeNpOfET0PTKuf
js2FSaKHlNqPwaVzsDHTrx5yQxJrPx8+xth8Dn73CM2lRksiW/yDc8Ph56Cp
IO784D1J1N3BdWpszh3i7UOcbV9I4t7KEIaBFjfgr7CztGmTRIcM1YKRd67A
Xnxt13SHJP6dWN9x754rMOU+4r/aLYlDpacnvXxcYTm5q+3RANUeeQeFHC1X
6Lp4xKxvnKr/9PLQ1hIXeCCFRifXJbFwZt3H9qsziIdI6FjJSWHKHe3ba2uO
kOu9RbpfQQqLpWZN2AcdgXCeYz6jLIUZ3BzJB746go1xZaurmhS6r7vKCsY6
wiM+F/cre6SwzVlGz0LeEYRych8kHZbCVQ3VmS2nHIC3dd9quw91/clfc7L9
ZyDjq9wPKz8pZJW3DNauOgMaxRxf+wOkMJ3Hwc/t9Rk4+ngodjRYCvXPhvOS
Qs9AnEu4wuJNKTRvGe2eUzgD7P8aTvA+kcIn+5kSOwPsYKvsqXdHq6Vwp9Tm
vWzqrOgmBEYvaqXw50epKcLgNNSxSQ/QN0jhN+bg7k3p0xC99JPxbZMU8gl6
vKTvtQH2Gm9zgR4p9OiSuM32nw213m8t9E5R5d8sW9d3nwLR/FJ1J25ppJdL
9l7dbg2Bzx5XfeCVRmP5zINpHNbQnxxszS8gjS9/Bj/2mLWClFD90GoRaRx8
q6DsV2AFksdbmhVlpZGW/G7o0G4rkF2e8JzZJY31hp5hL40sYfs+ode+NtLI
9fa3s02UBRTKnP1LZyeNJjlV7GLnLGA3S4lBjL00CnWK5NKZWsD+TsvBDBdp
NFNwYAc+C7C4eJ+r5aI0fnioS+v71ByCnglcUomQxmqbuL6SquPQxMavPZQr
jeErq/sM5Y+B+YJT+Ll8ady8qMF0nv0Y9PS8bV4ulEaJyV7u/MWjQHlu7sZe
Io138xWPJn85Su3/dx/urZRG/dOnhkYdjoKUD+/G3U5pZM3temucZQZeA9yV
RjQyqLQ1zXW3wRGoqTr1IYdOBiPzCf9rGkdA/HVmEQujDGZyB3j3SRyBuqA9
L+u2yiA/h/zRT3OmIC1lf9eIRwb3coT82zxhCs0O+S5GcjJYZPnZWoJ8GNQm
TFmNTGTQRI+73GrFGCKak5lyDssgs7X2q0sdxtBXMkLDYiaDBIv3q+I3xhB5
03ex1lwGo6dR8v1FYxhUfjJgaCtDrd+T5zKmjSDWYybP0EsGlaX2GA5MGcLv
+Whzw/syeL16ekcW8yHo60qzePxABqcaDOdFfhlA3Yd3J+YeyaBk60xKfqMB
ZNwYtEpOk0FhYSHe/fcMwFpE8/REjgy13wQJzcsZwNf9vc5RH6j2+EkYeB/W
h4dxildqh2XwiO+izsibAxDpQ/iJjcrg6VcNRYaPDoDPyWP+F39S9WVXOfft
+gE4Ins1UGhKBk8s1i8pHzsATCVNwWcXZVB2+kaz7rweXBz0jdq6hUSdv125
CnfrgYFq1QNDMgm1fip5VHfqgiXToeNNqiT0KVzcWVOuC279tWwn1EkYzHcr
bSxbF2JufQt23EVC02tX6gMCdaHjZ5tzkC4JhwJqD9HL6IJj6oj6W3MSDpg1
+jtfRgjloq2XvEZCzQ+cZcw2BCSOh4Y9DyZhkNpd59GdBGR+YiC2Xyeh/bRp
yCI7AXXnt+TvjSThX9o39C8/7wOuOo4ki3gS/tIJ13RX3AepoeIO0ZkkTBCb
5vtLqwMf5/f+XW4koXnBm6dF7dqQ1lBkf6yZhBUHGqSfvdOGsGcadbmtJOzK
2qApTtIGwxPKyU5dJOy7JCH/n7U2tJUK72odIuHO7cz71IZ2w2TIqlfuAnU9
zbZjhYu7gJ+zaNJRWBaVAjtaw3drweq4+tFyUVn8bd3N2yCmBX2fc0tEJGSR
tzHFX51eC9K8MyNbZGSRReifkG3jTlDpvCuHZFk0uzp5RcN5J+xPuWQvgrLo
ZBDU9vyhJnioqPc0O8kiWpRvlItqwOVl4TVbV1mk0LAvdtBrQGAFvfCMmywy
3Yt1YvulDrcs261YPGVRVI6HtbdEHbLCrnTv95fFvwflexcs1WG472NXYYws
fne5n7DxaAdY3DbuvFski4dKjUrN96qBjaXmskypLH5t1F5WkVMDRxkxgYIy
WbwsYVArwaUG3iUzFo2fZbH1yo49rxtVIXY0roOpgcrh6SiopAp1+7rafQdl
8VJHt3TbJBn2zTi2WW2VQ/W9PIRYvDLwvzdIL9smh2r3FRyjPZVh5oaSpwS7
HK4YRLuQTJUhRWp22yi3HGoxBkAjqzJsHA/Q8xSVw5veDc30N5Xg0/u4gghV
ObQ7WLGj4ZYi6EZ9jC00l8PG7Ip9t17Ig7BF2ml+SzkMuZwpUBojD3+kw1T8
rOWQYU8DE6uXPKSXGdYQtnIoQqPtL6gtD3SzbZu1rnK4Y8yV/3uNHFRa/PIY
DJDDu3VTzTEzsnCQJPgfW7oc4rHjk3CUBG+mv0o5Zsjhw3OyFhvaJCAVeS+V
Zsrh/vNTb7ulSMBg9P2J6ws59PxwqHpsTgYqLkT8qXwjhxoCud4WCTJAvF9I
8q+WQ9OC0FsevdKgdbR5+OeUHE7Qu0elBElBpkhQEfFbDiMjQ66/d5MCvlGV
6Ltzclj6Ys19zlwKFnwjd+otyeHns6pxz1WkoOAxRKZsUv01L7ig3SsJqhOv
yObc8vi2fby2X0cSFIJvXqnYJY/ty3oqZdLiULb3GaPJHnlMJHanlvwVgyPL
n+LbdeRxIvRGwkSbGFzxWHw5riuPqmvc8z9uiEHNKbshdhN5fMdgEiYxKwqu
2lpGJ+3kkfHLTa+CWhHI/jMkshApj91FLzgCnwgBkfsv6+otefzGmLB45JoQ
tJwV0GKOoe5PoK8/YiMEa4MmR4QT5HFql69zkwj1MP1eFIaP5fFmFadN7QNB
mHxxezo6Xx6j1N1FvFMFQMlJ+5Nsjzxmw5cLe2r54I704bXrffJ45zdJ42cu
Hyz8sN85PCCPuxoHvhYm8sFH6+gXKSPyqBne8OmFHR8cPfIjSWBaHu3v5Pdx
r/GC395wz600CthWILj1sTov1HA1S03LKmCp01h+Rgk3kL+PnjJWUEC3/sP/
MTzlhvjotaRsJQUMdP0DQdHccIqZxO6sqoDx96cyq2y54fc/n7WB3QpoEOI+
nsTMDfzjoq1Nxgq4FvNbQuEUFzh9dA17c1EBLULjbOUEOWHm/KTvwUvU7y8L
Huel54QrYufcO3wUMI1xsGxvHwfcDLxwdCVAAcV8Yg4xRXFA3h4fSZ0IBbT9
tSokO8oO/95dL6t8oIAn8sesTZ6zQfzrlIWWSgVMx3qXs2bbQNRWctyhSgEZ
T8aXPCNvg2fs6b0LNQq4OtDZz8myDYrPP6vgb1TAJsV/WV6VLNCv/DLWuksB
7RTns2x2s4BCVonK8BTVHs0048dKW+FTapvjHJ8izk9kJamrMsOgiZStj6Ai
dj3ameDExQw0q+et/gorou7Yv76P80yw34z5MKOkIhbY37g3UswEVbR7dgkp
KeJCoMvh2QNM0GD/ZKsuoYgZDeH00w6M0ENyy411VkTKnUrnHWX08LfpXRbf
WUX0isi1b02nB9Gr9E8fuCtixcrE6t0oerBpf5SU4amIpuLDRwNP0MNg+Pfg
Yn9FfNAVJFe7QAc/xzSPDcYoYtZg7UfYSQcLWZvLqkWKqF0gcT2mgQbGLPRT
o0oUEXfIsJ0tpoEuhtuHRt4r4hLr/vKTGTTw3k44+V65IpZGsW+PCqSBUMGd
e9ZrFfG+qigj7XYa4Ix0C6zrU0QN84OLSUqbhIpLO40TnRJKp2doSE38I8T5
RLM/Mijh5/lYm8tV/wjOSnszQWYlTM36ITL/9B8xLz6bVr9NCQ98dItxs/1H
lHaw6KnzKaHKkZxRva6/xCF9DN+UV8IbiXWzl5vXCAfZF1sf/KeEVs5z1XcG
Vwj/r6fd5I4ooeCzfJbd5StErBN3fcFRJSztHLViSV0hyp75RdefUEK+0YN6
KnYrBK/cIY71M0r4UvKJpe3wMlElN8pr56OE/2Ja5Y/PLBFKChKSck+UsPD1
wj9umUUCa1qCC9KUMMLgL/d95kXCwjViiMhQwo1ArhGcWiCuZ02nn8hWwlaJ
geV/bxeIPoUy2ahCJZxw05oRMl4gYhStlKeqldDBoD7tU8A8MaeUoFUwS+Wq
k9dvLs4RXQ14kGdeCclXjPZ9+DFHlHvMHLu0qISDfUUeLHVzREyB4UWtNSV8
Up1XNJ8yRyjtoXlZSq+M6cbMrhuGc4S94XmpSn5lFDQT/92VMUu0uRiwtuko
46koZa0n3TPE+62LwjtBGdXM3n1QfjNDpL9IV7ynq4y/VeXKRmNmCM/f6/qW
+sq4KqehO3RghmDzfRPSZ6qMIttYvGcLpgn9CKllir0yEsqe4Zg0RRRn/B1a
jFRGnuTpZZ2gSUJL79Ky0S1lPN90tr3QdpJ4OzTFmnpbGSVMd+09gpNEgfjA
LqN4ZWS++9/0Cu0k8fJ++e2Uh8qYXZ7Lx3hjgkiNDtc2yFXGxJW4S8NJ40TU
JY64+63K6OA+W3yrdYzYwhOZOd2ujL73slbsiseIiHyasv1dyjix8vS2xeMx
ImxmbmyqTxkHZZ6JpbuMEddc23R0x5RRQPXOi3fro4TXqeTxiRVl/BtytPyN
6ihhfYA6K4qr4D0/w3rmnBFivW0Le6WkCj5LyenIiB0hUp1meo1kVLB/WjvL
3neEGIso8bVWUMHTqT0LcHCE8Ko1fe2nroKWdN9SA4eHiZuHA8WL9VUwe4+W
ZY/0MFFq2f5P84IKKu16Hc1dOkjYTJTWlV1UwbzzjHb+GYMEjX/q/QOXVNDu
oi7vRswgof/QXfO4nwom6KffsXQcJFr6ac95X1fB26PPp805B4lJ++29+Ukq
OKYh4vW8Z4AQOX+jZHu5CrKrovngpT4iZtN5560KFXwZXbp872gfQRevn//z
iwpezWuf8FHrIybfMWan1qpgDBPXUv5UL1FKE3afu1UFB0sfG3O49BLWicG+
S6MqWJPImqjj0EPcf++38+M2MvIIPLwvfKWLYD1slS/MTkbMNJJ+Yt1FBA/u
JvtykvF1U8kOg31dhCvjCkmNj4yDWp1atPRdxC5TH950cTKKHzHaLRjbSXQM
e82H7yAjP3vX61d5HQQfy7n8/06Q8SqZY78NSzuRoXfVf9aKjAGh4fHcM22E
+tUYvYRTZIys+TA93dxGHJ7Na+86Q8bPBaIrfA/aiIiOxVWHc2QUcpRvl1Vp
I1bSg/b7h5BROuS7mdCJVqJnb0Jr5gsyyoYPv6etbiZcL2c8Mswl45UAPRPh
183EUu5bp6k86v8vsdAeS2omuKW7lne8I2NMq4wyybWZMN4iJvqhnIwyDg/b
cVszUdaW6djaTkbB0f4B4kQTYcReTPbpIqNB54HZg7pNRJdB7ZJgLxlbEkm3
3ZSbiIXSX5GnB8no7/ewbhtNE0FOU3s1MUnG/97pcR83/06U9ej6RE+T8Vei
5DF15e+EEe8xUJ0lo3lu/x5D2u+E843LzZcWyXi9NqdRIreRWCiPeCCwQkYp
z4SRgbBGInQtyaF0jYz6kawX2082Epya2So262TUDQtSoddoJFLOly5ubpLR
Tqq03oWlkfgfYrUCbA==
       "]]},
     Annotation[#, "Charting`Private`Tag$7079970#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVVnk01d8XNYtknudn5r1nTpE+56DI8E0qQonIECUiosEsIhFFkxBCpVBC
KlFCkrHMmUPGzCQ/v3/uXXvtc+85+651zt0kx7MHneloaGiObC7/3xd7az/K
xCQRRqSRtb9hqtiaKhig134OFqrfHpb2UkXk++Yo2B4Kb+wMok8cU0W/A3k/
6NtvQvPRz9yy21WRa0rg5sqPDKhhDxCO+aaCP8v3n53/UQjy9EJ+jzOU0VBm
vGf2RyUop5mJN52iYOaB/dYFnlXwNrAtJ8+IgrSXC5u9GD/CrdUN4pksBcvb
Aj9Pq3+C2hOStZQBMqpd3Vowef0zxC9+XOewI6PoOCV8zKAenlRzzuraKuHK
jx23Zn40gy9BaZ/wUsAS9S0OjxVb4I/Kjiw+CwX0u96udPxiC5C0dk66qing
H/2Aii/irSAQv4s/6o88jj8r+53t3AZVmj7zL/zksTtst77d3A8ouS/J6B8p
hxUqBtO17D3Ayy6w16dSBq9c4ykLdugBZ8vBPtfHMqg7PBi+o7AHcs9JlATF
ymDp3XDhLMte8Ki4dkLwiAwWMlbvDb7/Ezok8nJHJ6Wx+YzMfhG+fuASWBfu
JUljlcHjzKaMQXBK0w6bSSehatzzsaWaQbg+x19xKZaEqe2vlcWnB6Em+yi/
tD8JL5ypKXHfNQQ8jUT8WzMSKieP1dO3DsGj0gZjuRVJvDtOXtjOOAKnfd1b
nlhJolfCi713XUeh7OyNmDNG4tjbVXKt4vooUP8urN6WEkdTuQ/fRopG4Xro
112T62Io96bJRoNmDO57LB6ReCWGXUN/ztSnjMF4bAFPkqwYGu7cfvtf7TiM
2+zSSWAXRdGfpSOOlEmYtdqp77shhDRz3im1FpPAoe4c490nhENMSiaq/pPQ
677SlPhBCJ8p3322/mESXPI4HhuGCyFxJdA35cgU5PR45jlsFUJ7sV10DaHT
MMRGiUFJQWyi9sbdn5iBg/Gd2ded+PHjjrJf5hszcF89YbV9Hz8W691Geu5Z
EHwur7hHmR/vWu7/c2rHLNAnyAQFrPCh4+V3ljtCZyGxIm72aAIf/qlPFW0W
+AO7OELu/azmRd7T9nnMBnOQemNIe9SIB5WYH1UfODIHM6F5nYvKPIgZIwN3
POZAn2nivSw/D55uPyNCSZqDgAbxgsEhbvy451LsgeE5GCl6ntcVxo2+Ync8
71ydh31rNjEpn7mwpaFZnVy/AMVuQ1u3O3Pi6Cl+c9++Bcg8G222Yc6J/xhs
Pd7OL8DngVPrQzqcqLSr/5G52CIkUjmk6Lg4MfTxNK+v5yKcC0jAjUscqB7M
tlTOuQSiwl8eNOuy4001wzf7LZehdDTjufjAVlTpsjHa7bYMgXPXNXwqtmJ9
+JkW8sVliDr/3n4mdSsytSf93pK+DD/Xv004HduKF68MilRNLEO+ZmS0Ugcr
nvwSfGlH+ArIuy2wsnWyoJbzm92SRatQ9Hcjv2eJGVvYv9WyV6/Cp3/0PhOd
zOhVMmC53r6JV4YUxd8xY95WVs/Of6tQfjbj81g4M0oUWqcmmaxB+rtBNTFe
ZtyysfBvy8Aa2MapdTfuZMKOFNWKWc51MNjNb2F1lwHvtjzh8JNdBwdqZOyJ
IAa0ZZe3X9Veh0G/Qrb4kwyb/Sn2j85pHSp6RqWsVBiwz5NVl/fVOlDF43JD
qulxdM/Qay2bf8AZkrOkvEaHyzPJzy+mbwDdHm/eV5dosZTMs7HxagOW6qN/
tTjTYqBL3P7wug3Q7VjK5TSnxb9d4ZOxcxvA+tvOYZBEi8GDJXzfpGjw/brO
kbEaGgxvyDrU50uDwdk8alaiNBiTGfSNTogWT9N9sXJ9vg4mmqe4+aRpUSqp
2HVv9Dps+XjQUp5Ki7drA30Pb9YdPijbZapHi4oTlEgGwXW4JFU/knSKFh+6
KJdnhf0FzzTBf3JltGh2iIXptdMaWNwvoJgepcPr425uAXtXgJNy76ydMx22
Le2fpZNdgYY34YVnz9Kh688YajHDCph0HdmZFEaHFBvW8ZSPy6Av/M+g5wkd
ejfz5hgbLoNmisnRs3/pMMzZ5K2SxRIIJA1GJz6gx5EtX9tjwxZAkPwqfDmb
HsXaeE99PLUAwpWRQXYv6JF3PPan8IEFEJ9RPC9fRY+Ff4R/S4stgKyZl8Ob
UXqs21EUmFEyDxoM61qDGgzIMFy5qrYwB+a+/EPqdQyoI7Gd9DjsDxzYOtqb
3MKASs3lS35n/sDBjNKOv90MaOmc4HziyB+wajz2rXqaAS8tNFyNIP8BO8qj
Mls+RpRaeOrD3DYLHkMqCaEOjPjc+nj9d8osXD1sTDQvMqLtwQLZzJ5pEH7Z
IExHy4SVPH3iu19OQz7P4SW1rUw4qSg+uDVmGr43H3+RIMGE/WEJr4y1p0HG
wlfKYh8TenxJmSNSpqDyv4dMjXc2+ZWlkFb7SVg3XGj4qsuMwScsaAd5fkN8
duCTdUNmnDU5fvPlzDjIMNFEUS2YMbNUv6Po6ziYfWLVu+7MjPnp5vd0osbh
roFkkVkcMzaY+YQ7bozBTjRN/vKTGfWXroWOLYyCj3a6fW3oFoy0jpsyp/sF
Jmns86axW1CPLknYZWQEpJgvRTXc2oIs3nHSqXUj0NhqVdCSswWvBqOCT+II
KHux0fc2bMHm/2KuPZUbgdFs/+w/wiwo53+nUvvQMBzj3T8pUsSC5L0eOi+q
BkHj4puQ1HIWtJ+R4S5+MgisAwr8pGoWzBw+TtOROAilz+lBroMFe1OPJJ4/
OQj8pqXxqhssGNpX+4GReRAaQ2Q095qy4nRj0+6TFgOwZ3o10HOQFR8E8y6p
rfZBwL4kpQ8TrCg/rd9DM9IH+enUTp5FVkxf1/v8q6kPBA87aJdu2YonU5I0
13P7YKLk0xK98lYsS5K2MzjaB4mh8b53LmxFrrkJFePwnzDAJ+f5cRsbmkU/
blzHHhA4+15MQIANWTp/d6uL94BZjfXXU5JsWHEn0SRhrRuKA2MoHBpsuOzs
EVFb3A3Xfs6M21izod5QrKyUSjeo575xnc5gw46r/som8l0QomtxQnjnNnQ0
3FenptkB+46n/tmhvw0HbZL2POPpAPbg32GWZtswUJGt6OBcO9yvisiOd9iG
9ff0koSL2qHEpOw3U/Q2JPYYX0/RbIcZa2m/uY5tGPnkgIsE/IDj5xeu1V9k
R0392eeLXm0gm6wvOh7BjjVmUmNmlm2b+m88Y45nR+8NiZZq7TYI/KvYqJ/J
ju+lY2ll6dvgVthxvtJ6djzEeeJrRHIr1Cd8fpglxoFMy1kshdUtoJN/5+WV
9xzY9W1h7OruZtjzo2F9qoYDn/6svpYg3wz7aRiM7Js58Py87oNXXM3gdNCz
A4Y5MN99INlspAkML5KCghk5MY5xzrswvgm8JBYf6ZE5MVEt/JH+eCN8dH04
WeXHiVUzf5ON7L+B8V9t7ksXOXGfZu/lEO1v0BDfqqUZzImMzHw/R3m+QUcp
S3BmNCc+9izZCbUNMLXVlzviPic+Ws88yqDVAIIv9u0wrORE2oG8ug8CX+H0
8mxwzTYu7G/tDU1frQMdbxf+EW4uZNNE/jM/6mDLeOcTekEuvPR+6I7LyzrI
6qr6TkhxodbK5dABzzrofXeL8kqLC9E7y25puBbMI7Tb0+25kF/58THH7hpQ
5w5RuVjAhXqNV968Gq0GmpiFjynFXGimVPCrsa4aGujdbYvfcOHTfYz8PM+q
wWPhYMTsJy6c6Ch9tvVcNWS2y3S5dnJhj7rtvpr1T8D/sCbyMD03CriuLRmI
foIVMmcv1ZIbsystU5Z9qmDxgXCIhi03RmwdqmU7WgXzHLIy2vbcWHb15ijq
V8HUnLb7nlPcaH9s3HgLVxUMvHFatL3MjXZ9MqocLyqhzvQ1e1QWN57eLdLY
OfcB7noch4EFbnTfdrLcLqECknvcBn6tcqNK03M5mUsVkGTuEzG5wY1SQmMf
GF0rIE4j6ssyCw9q+axuCO2ugNC1giMc4jw4omj5lLHtPXjEMHrpGvJgh5H7
M6+kd6D75Gna7ds8KMP61evBznLoknzycO+9TX6V7sAQfzkE3s5NnX/IgzSv
/S8eWngDr0Oy7x/M5cFGwdLF3MI3oG6dlsJezoPlSU771FXegCJjUnxkPw+a
XH1rf1WlDPjtLwb7UTZ9llHLDyazEnjVGhAkq8aLHVIXFP4pl8BhkwtXWrdv
8l59SoLcJXBz+/lL6sCLp68ceVjU/hq2sZ29MGWxiXOodWGur4Gh1NHLxZ8X
GTcO9jvHFMMst4mDVSUv9nCq3ZT8/RLaT0s1un/mRWrTlhOMjS+hYtOrBNXz
Is2zl+bbXr2E+MAnEjnfeZEi+ep7RNBLUB1g+7kyzovnBp0f8vK/BM+Cb3YP
ePgwKPlEQKhxEYybWx4dOsmHEvcvlJyvKYDmXOqX5VN8qEp5keZeUABl9Ey7
tp3lw5w9yycv3y2A6NfFwloBfOjqIP9r7XQBKEgIdl69zodG9KMZ1jwF4DrV
aU0u5sPv9VqSXs4vYCjWweocMz/2Wzh4aOrmg+c4RUqVjR/52Y/tSxfIhyWj
lclJTn5MO1fkpDP3DFjpb0acEubHe9zpQTN5z0A1oOqlA5UfP2tXhbiIPoPL
znI85of4MTOtUtGM+SnwExPfyA83ffH7xZDUtVxIu1dyb+wRP0a/bNRU7c4F
xZVw18c5/BjxlnfyV3ku6L4U25Aq5Ef520LFNVdywUnJXFn4Ez9+lx97bsKQ
Cy/4C2O3/OZH6+/KMor8OWA87W88rCWALJJ/lkmHs0FUTTxyi64AKtSojfZq
ZcPUuY+VZD0BTM5LUq0UyoakRU7dc6YCOMVCw7D2Mwt613OVN+wF0JvBxVDV
MwvOsXXzCEUL4GuxkqQrCZlwVxF7zboEcG0qjsbxTwac9hgR9uoTwLg227Dr
HRkAz2KPJA4LoHDAqfiOigwYUu1o7JgWQH31udTmGxmgvPNclQuDIO7LtZ81
UMmAKsPMnGCqIMbsP6C74ZMOE05bfF4GCeLC4ZMNH3jSYCp1z9v34YLYeliX
SebfQ5juCGb+Ei2Ipj/onq60PoQ/5iv3+hMFkfZB/12DsIewtGv8I3vOJv4U
8cBkIBXoeOv5TzUKYp7nDfbfuQ9A6OONMjGSEGq2r0S9srsHwhtfGBTlhFCC
I1AzSOceiOpsMdckC2E5W4uyn8A9EH8RPGiyXQj/9SrI/266CzL3vdkuGAuh
LMm9fXzfXVD1PXS82VsIPxzyfccBd8BQRoDuaqUQOt/arXvOJBnGHI1ydn0W
wrWV4raLyskQm+6/f+aLELYvnaF9zJ0MLeLtd23ahLDwa6znia7b4CB0R4My
KoTCp37qO3rehgB2EeembcKYJcRzzfvuLXi6LF4jYiOM16VMS96yJIH5DnPP
RjthbNv/hO35bCL8OR/EG+EojPJ7mA3ediSC9txPhykPYfTqlv+ikpcI1ZNp
KxVXhJE/0CLqlFki/ByQIrtkCiNH6kkt7ts3gfurXNyLaWE8+sks/PDuBPg3
rZpVNy+Mqbmnx4bkEmCce1f50IowHlN0DbnJmQCV1ubjggwieOaZWOGeoXjw
GfI3DBEUwX6GF6s01+Ohda3mn4WeCI4Z+jd6f74ByUoeZ+duimBlTU3mUZPr
EP7f+chtKSIoEH5bbLfMdfDyCnog/0AEb/6wVT/wLxb2FSd+OfpYBIexi8pa
FAvLeuXyH9+I4PKJeO9q8ViwtdnWlzQkgs1NVg6KG9dANOr5AS0tUUw/qdX+
pz8K8vKfVa3oiOJQVOSFV1VRsLPtidZbEEUNt5H2+1lRcFgqR3SPsSi+NHOW
7zgVBbHlaaMWx0SxPEZSjn7+KqzNJASfCRXF1XjF54vsV6HTxvdFZoMoHm1i
fKZ1PALcgs9Ju7WIImVK4j2xJwIWs71uk9tF0W/sjIOLUgRwz5++VNgviqF3
Tr3mWQoHkzjnfRXzoiic6Bg/kBAOpZVWfV3CYrjDw+6A6tcwSCFrc/K4iuGx
kg21eJtQsDT9Gv/OQwwrJrtFiwxCgdvjBJe7lxgGiyTyzlBDISYvmvtDgBge
+nc1/zVdKFxR7OQ9GyuGjxLjVQOfhcBJ+YtCXwrE0IBEx1DIHAJq0m+lwv6K
YfpD4SK9+0EwpW/xSJlWHPfJ9A4k+wVBnuOwdCejON66UvJH2CIIZDK2yapx
iGPPV66ebKYgECQdl/9JEsfjN75zN/pcgX/iG+RdRuKY65kZpmN1GeqE9bbP
JYhj0z3uBQ6di9Ao/lyOIVkcEzuLDvfxX4TvUmKCfPfFcclLido7Fwj9Siur
WtniOGnbanciPxCWdQoqAsvEkTHO1ClINhDkjpLM6AbF0cNPT3RUJABC79E6
cWlKIEtP7spveX+Ienj2sJS2BO5/lya9weIPcY969moQEmhiOrmyc8IP7jwp
VbDcJ4GWSz2DEgV+8OKN91TKMQnk1b+295WuH/R29QdIRkjgrqyZ5hbb86Aj
Whmv8l0Ck5/3EncKfGBAWqZ3rFMCL1fYcLTf8YFociQ586cEqv9bitQI9YF2
HZNqwTEJHOWI7odDPuBv07xG+1cC1yKuROYtngNbU2+NcU5J5NbtVMzTPwe3
ozbtvpYkPo1M+XJ2ygvcY9U/CWlLosTSwm36Ti8g4gd/++2SxI7uFIYXn7xg
OHmvthpKYsmhZfODD7xA8zFLa5axJHqkT5wt/c8Lmj8lsNw4Jomjo+2is85n
gZ0+w/dEqCTieQv5KdEzwLTy/tBsuCR6klR/9i2ehn9TPeohVyWx9sP+Q4xN
p2G6U2g2LVYSt928e3og4jQ0Fiac6bstiXpqXMdGZj3gpmOIi/0TSdxVFcLQ
2+wO/JUO1natkuiUqVI4WOwG7CVXdkx+l8S1sXW127fdgCn/Pv/lDknsLzs+
fs7PDZbutLfe793UI++kkKflBu3eByy6Rzfrn1zqZyl1hbskNDm6LolFU+t+
9p9cQDxEQtdGjoSpN7Svr66ehHyfLVI9CiQsIc2YsfedBMJllvkEmYSZ3Bx3
9nw6CXamVS1uqiT0WHeTFYw/Cff5XD0u6JCw1UXawEr+JAjl5d9N3k/CFQ2V
qS3HnIC3ZfdKm99m/NHfs7I9JyDzk9xPmwASsslbB2tXnwCNEo5PPRdJmMHj
FOD+/AQcfNAfPxxMQsNTEbwyoScgwTVCYeEaCS2bhztmFU4A+9/6I7wPSfhQ
nynpx0UHYJE9VnzwMwm3kzZu5256RXchMHlSS8Jf70gThNFxqNsm1UtfT8Kv
zMEdG1LHIXbxF+OrRhLyCXo+pe+yA/YaH0uBThJ6tktc3/af3Wa/x8x3TWzy
X61b1nceA9GCMnVnbimkl7vjs6JsC5eyHlS/5ZVCU/nsvekcttBzJ9iWX0AK
n/4KfuA5YwOpoYahn0WksO+VAjmg0AYkDzc3KcpKIS21uH/fThuQXRrzmtoh
hV+MvcKfmliD8m6h5/52Usj1atrFLtoKiqRPrdE5SKFZXjW72Gkr2MlaahTn
KIVCP0Ty6cytQP+HdV+mqxRaKDixA58VWHmncDV7S+Hbe3q0/o8sIShLwJcS
KYWf7RK6S6sPQ+M2fu3+fCmMWF7ZbSx/CCznnSNOF0jhhrcG0xn2Q9DZ+app
qUgKJca7uAsWDsLQY0t39lIpvFWgePDOx4Ob8//WvV1VUmh4/Fj/sNNBIPnx
/rv1QwrZ8ttfmeZYwLle7ioTGmlUYkl322l0AGqqj73No5PGqAIi8IrGARB/
nv2alVEas7kv+nRLHIC6IJ2ndSzSyM8hf/D9rDlIkRxvmfBI4y6OkL8bR8yh
yanA1UROGl9bf7CVoO4H1TFzNhMzaTQz4K6wWTaFyKY7THn7pZHZVvuZ73dT
6C4dpGG1kEaC1edZyUtTiLrmv1BrKY2xkyj5xtsU+sgPe43tpTf79+jpzEkT
iPecemF8ThrJJB3j3gljmJ6LtTROkcawz5NqOcz7oLs93erBXWmcqDeeE/lt
BHVvi4/M3pdGyZap1IIGI8i82mdzJ10ahYWFePVvG4GtiObxsTzpzXkTJDQn
ZwSf9Ltcot9u6gmQMPLZbwj3EhQv1A5I4wH/Bd3Bl3sgyo8IEBuWxuPP6l8b
398DfkcPBXr/2qyXnXL6a9geOCB7+ZLQhDQeWfiySD60B5hKG4NPLUij7OTV
Jr05A/Du849m2SKz6b/duIp2GoCRSvVdY6oMav1S8vz8Qw+smfYdblSRQb+i
he01FXrg3lO77Yi6DAbzxaSP5OpBXMzX4JM7ZND8yoUvFy/pwfdfrS5BejLY
f7F2H720HpxMG1R/ZSmDvRYNgS7nEUK5aL9IXpFBzbec5cx2BCSNhoY/DpbB
INVbLsPbCch+z0Aoh8mg46R5yAI7AXVnthTsipLBNdqX9E8/7AauOo5kq5sy
+Fs3QtNDcTekhYo7xWbLYKLYJN8arS68m9u1ttQgg5aFLx+9btOG9PrXjoea
ZLByT71UVrE2hGdp1OW3yGB7zj+akmRtMD5CvuPcLoPdvhLy/9lqQ2uZ8I6W
fhncrsy8W7V/J4yHrJzLn9+Mp9l6qGhhB/Bzvh4/KSyLSpe+t0Ts1IKVUfWD
FaKyOG3bwVsvpgXdH/JLRSRkkbchNVCdXgvSfbKjmqVlkVXor5B9w3ag/Lgl
h1RZtLg8fkHDZTvop/o6iqAsOhsFtT6+pwmeFPXOJmdZRKuKfxWiGnB+SXjV
3k0Wh2jYF77Ta8ClSnrhKXdZZLod77zttzrEWLfZsHrJoqgcD1tXqTrkhF/o
0A+UxbW98l3z1uow0P2uvShOFr+5piT+u68GVtdNf9x6LYv7ykzKLHepgp21
5pJ0mSx+atBeosipwklpMYHCclk8L2FUK8GlCj6lU1YNH2Sx5YKazvMGFYgf
TvjOVL+JIzJQUEkF6na3t/n3yaLv9w6p1nEq7J462WrDIofqu3gIsZtk4H9j
lFG+VQ5VUxROxnqRYeqqkpcEuxwuG8W6ypiTIZU0s3WYWw61GC9CAxsZ/h2+
aOAlKofXfOqb6K8pwfs3CYWRKnLosLdSrT5GEfSi38UXWcphQ27l7pgn8iBs
lX6c31oOQ85nC5TFycMfqXBKgK0cMujUM7Gdk4eMcuMawl4ORWi0AwW15YFu
pnWj1k0O1Ubc+L/VyEGV1W/PvotyeKtuoiluShb2ygj+ty1DDvHQ4XE4KAMv
Jz+RTmbK4b3Tslb/tGVA5rXPYlm2HOqfmXjVQZIBBpNvD92eyKHX232fR2al
ofJs5J+ql3KoIZDvY5UoDcSb+eTAz3JoXhga49klBVoHmwZ+TcjhGL1HdGoQ
CbJFgl4T03IYFRUS9sadBHzDlNhbs3JY9mTVY9aSBPP+UdsNFuXwwymVhMcU
EhQ+gKjUjc33mhOc1+6SBJWxZ1RLbnl81TZa26MrCQrB1y5U7pDHtiUDSrmU
OJTvymI005HHJGJnWumaGBxYen+zTVcex0KvJo61isEFz4Wno3ryqLLKPffz
qhjUHHPoZzeTx2IGs3CJGVFw09YyOeogj4wfr50rrBWB3D/9IvNR8tjx+gnH
pYdCQOT/zbkcI49fGRMXDlwRguZTAlrMcZvnE+m/HLATgtU+swPCifI4scPf
pVFk8zP99jocH8jjtWpOu9q7gjD+5PpkbIE8Rqt7iPikCYCSs/Z72U55zIWP
Z3Vq+eCG1P7VsG55vDEto/Ernw/mfzpuH+iVxx0NvZ+KkvjgnW3sk9RBedSM
qH//xIEPDh74mSwwKY+ONwq6uVd5IWBXhBcLjQK2FgqyPFDnhRquJtKkrAKW
OY8UZJZyA/Xb8DFTBQV079n/H8MjbrgZu5qcq6SAl9z+QFAsNxxjlmF3UVHA
mykT2dX23DD912+1d6cCGoV4jCYzcwP/qGhLo6kCrsZNSygc4wLnd27hL70V
0Co0wV5OkBOmzoz77/XdvH9J8DAvPSdcEDvt8d1PAdMZ+8p3dXPAtUtnDy5f
VEAxv7h9TNEc8ELHT1I3UgHtf68IyQ6zw9/isPKquwp4pGDE1uzxNrj5PHW+
uUoBM/CL6ymLrSBqLznqVK2AjEdvlmZRt0IWe0bXfI0CrvT+6OFk3QolZ7Iq
+RsUsFHxb865KlboIT+Nt21XQAfFuRy7naygkFNKGZjY1KOZbvpAiQXep7We
nOVTxLmxnGR1FWboMyPZ+wkqYvv97YnOXMxAs3LGZk1YEfVG/na/m2MCfQvm
/YySiljoePX2YAkTVNPq7BBSUsT5S677Z/YwQb3jQxY9QhEz6yPoJ50YoVPG
PT/eRRGHblS5qJXTw1pjcQ7fKUU8F5nv2JJBD6KX6R/d9VDEyuWxlVvR9GDX
dj8500sRzcUHDl46Qg99Ed+CSwIV8W57kFztPB38GtE81BeniDl9te9gOx3M
52wsqbxWRO1CibC4ehoYsTJMiy5VRFST3naqhAbaGa7vG3yjiIts+hVHM2ng
jYPwndsVilgWza4cfYkGQgW366zXKmKKiigjrTINcEa5X6rrVkQNy70LyUob
BMW1jcaZTgmlMjI1SGN/CXE+0dx3DEr4YS7e7nz1X4KzytFCkFkJ03J+isw9
+kvMic+kf9mqhHveuce52/8lyr6zGqjzKSHlQN6wQfsasc8QIzbklfBqUt3M
+aZVwkn2Ccvd/5TQxmX2842+ZSLw03F3uQNKKJhVwLqzYpmId+b+UnhQCct+
DNuwpi0T5VkBsV+OKCHf8F4DisMywSu3j2P9hBI+lXxobT+wRFTLDfM6+Cnh
37gW+cNTi4SSgoSk3EMlLHo+/5dbeoHAmubgwnQljDRa405hXiCs3CL7iUwl
/HeJaxAn5omwnMmMI7lK2CLRu/T31TzRrVAuG12khGPuWlNCpvNEnKINeeKz
EjoZfUl/f3GOmFVK1Cqc2cTVR8OuLcwS7fW4l2dOCakXTHa//TlLVHhOHfJd
UMK+7teerHWzRFyhsbfWqhI+/Pzi9VzqLKGkQ/O0jJ6MGabMbv+MZwlH4zOk
Kn4yClqIT7dnzhCtrkZsrbpkPBZN1nrYMUW8YVkQ3g5kVLUofkt+OUVkPMlQ
vK1HxmkVufLhuCnCa3rd0NqQjCtyGnr9e6aIbf4vQ7rNySiyldVnpnCSMIwk
LQ05kpEge0Vg8gRRkrnWvxBFRp47k0u6QeOEloHvkkkMGc80nmorsh8nXvVP
sKVdJ6OE+Y5dB3CcKBTv3WFyk4zMt/6bXKYdJ56mVFxPvUfG3Ip8PsarY0Ra
bIS2UT4Zk5YTfAeSR4loX46ElBYyOnnMlMS0jBBbeKKyJ9vI6H87Z9mhZISI
LKAp128n49jyo+tWD0aI8KnZkYluMvZJZ4lluI4QV9xadfVGyCigcuNJ8fow
ce7YndGxZTKuhRyseKkyTNju2fSK4hS8HWD8hTlvkFhv3cJeJUnBrNS875nx
g0Sa81SXiTQFeya1cxz9B4mRyFJ/WwUKHk/rnIe9g8S5WvPnAeoUtKb7mnZp
YIC4tv+SeIkhBXN1tKw7pQaIMuu2v5pnKai043ksd1kfYTdWVlfuTcEXZxgd
AjP7CJrAtJQ9vhR08Nbj/RfXRxje89A8HEDBRMOMG9Yn+4jmHtrTPmEUvD78
eNKSs48Yd1TuKkim4IiGyLnHnb2EyJmrpcoVFGRXQcs+324ibsNle0wlBZ/G
li3dPthN0N00LPj1kYKXX7SN+al2E+PFjLlptRSMY+JaLJjoIspowlO4WyjY
V/bAlMO1i7BNCvZfHKZgTRJbkq5TJ5HyJmD7u61U5BG4lyJ8oZ1g229TIMxO
Rcw2kXpo204E9+2k+nNS8XljqZrR7nbCjXFZRpWPin1aP7Ro6duJHeZ+vBni
VBQ/YLJTMP4H8X3g3FyEGhX52dufP3vxneBjPV3w3xEqXqZy6NuxthGZBpcD
Z2yoeDE04ib3VCuhfjnOIPEYFaNq3k5ONrUS+2detLWfoOKHQtFlvrutROT3
hRWn01QUOinfJktpJZYzgvQDQ6goFfLNQuhIC9G5K7El+wkVZSMG3tB+biLc
zmfeN86n4oWLBmbCz5uIxfxXzhMvNvP7stIeSm4iuKXal9SKqRjXIk2WcWsi
TLeIib6toKK007023NpElLdmn2xpo6LgcE8vcaSRMGEvofq1U9Hox56ZvXqN
RLtR7aJgFxWbk2Suu5Mbifmy31HH+6gYGHCvbitNI0FNV302Nk7F/4oNuA9b
fiPKO/X8Yiep+DtJ8pA6+RthwnsIVGaoaJnfo2NM+41wuXq+yXeBimG1eQ0S
+Q3EfEXkXYFlKpK8Egd7wxuI0NVkp7JVKhpGsXm3HW0gODVzKXbrVNQLD6LQ
azQQqWfKFjY2qOhAKvviytpA/A8LX+DJ
       "]]},
     Annotation[#, "Charting`Private`Tag$7079970#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVV3c8lt8bVopUeJe993jJSIT3fc5tZGdTtuwiibJS9irJKEQJISQrFCXK
NyvJzkooihDZGn5+/zzP5/4857mv67rHuc8RcLpg6rqXhoamaPfx//f6ePt/
wjduYzOlmf76ncEy/dnsQWpDvmjuiRJp+ZGtLLB8cGIfikDzF1ILqp/6yPob
l3ykHUpBvccKxaWqYmTxi2wpWx/zEKE73t1sNV/280vDC6sfq9Dmnzt626M9
slrCc5+WP75BRuPj/QyLHHJbH5XuLH3sRXntoic71LPkmjUe5ffkfUEO0Vp3
oqty5bk/1804SS2g6zardprLt46SvBxK6DVWkG/o+v2gd5cUUuS0XhhabCIb
Rx7XnJ9ex4YzZJuWcX+RjTFDmlSyqeKN/NAPezn2QFpBcpQwvZ4S2+0v8an3
acHhvMS4dibleKy5Lta7vh849Hq9fP7jUfZTznVojzgAf3u1lp414lQ0f24H
e385CMVDJ2fOVi2rhFNMznAeZwTh2kQf9opOVR377F9K6oywrGJV2jnQrcoU
9iPSwoARXhFYLcTe9Knea44uTHJkhJxYIKQpjqo+16v/QRfPCI0Fcqn072dV
l04L+a8MM0LoYoj6JTF6iv3lteudV5jgBRfk92SoU0TS1bnnopkg7WDGfHL3
Ccr881tP6JOY4Hx2mspImi4l+I9Et3o+E1x6ePjqeqYJ5U6kPUtdJxPYZPum
5pc4UjqTWx8U8DBDuVqLf8znq5TUpyS5ZjFm6FgbyneMDqdYD5x5MyHHDO8M
O9QDb0ZRvrP/+cqlxQyTZKeUV9oJFNocWckUb2Y4ZZzDVPM2k9Lx+uqL8kBm
UL/x+NUd9weUpC8dBu8jmMH8sKCnmWcehVfM9cKBdGbwYBPmVjtdTJnWqaIR
zWWGLVd14kz9E0rpuZ1kjcfMIORbozF9oZKiUna3+lojM5w2FWnU/feMYkiz
T9uhlxkC7/1dTRFvojibeg+jaWbYF3I7NLv5LcX7ykPBikVm6DY5wkFVb6cE
5g958m8yg4LttHK48XvK65kY6zYaHAT3v2xq2NtD0boiEBq2Hwcf+sFss6GP
8o755cPjB3FgmzM7FDg7SDHOt2xbYsIBNbTeQit9hDJ4fHm+iIgDYcf5XoOx
cYrN+xv4M+w4iHO0kz73fZIycUZUkYMHBwa5UbHRbV8pbutN1j0COEhNYq/t
5f1O+XHdJjReFAdybOVCBv9+UHz41h+qkXFgnJ0oGYItUdaeJrVtyeCgMefz
naMjvyjBOuSFSgUc+OG08gQm1yg0n97izynj4KTTqVNXXbYo0RcdFQUxHCTT
3LJVC/xLOUj323pEHQcft490dnHsoSZl3glN0cYBptIf0zBES2WRkc3XM8CB
Fn+X7/UD9NTM5o62vSY4WNXipLN4cZDKd9p1od4CB1a+jUUidMzU/PkdvJ81
Ds4f2iqqoiFQJcMzFckOOPj7+o9U9VcStZzlmM0XZxyw/hB9F4vYqQolH0Kz
PHCwwstSoibMTa3HzuWbncfBkIoqa6Q5PxX17Ws/5IuDrA9pi80rgtT/3B8s
NPvjIIn9TXvnPxGq7h9lQsgVHLQqnaCfj5GgdiX1KyqE4aBsht1NKUeaai5y
wWY+CgcKQl95d2TlqMN1DGH58ThgH7Snf7RylGpvmJ9vm4iD2SMfpFvElKhf
p7B2UioOln6aZt3+rEI9GzC80JmOAxsWJaqSLKIuHrpEiL6HA0NHMQI3hzrV
L4dJiZqLgzdL1xkY9pygbioU26wV4IAkLaRy1lGHeq1dI+xJCQ58G4OLz+kZ
UGntx/Ndy3Fw/OTJiUfnjKlxvwLbeapx8ELBf9mf0YzKFEtcHHiOA5PLBlI5
3JbUVK4yQmIDDi6f+OUeX2xFZa/QUdJ6g4OB45kPnNvsqPc1v9j8a9nlg9P6
Yqhzhio4fDWs9h0OFt9z0NUwuVCLzrMXeHfjoAAxakhpu1Ol9z5tFx3YrR/W
ylP793lSq9JOLo4P46CD5cSncOsL1OPk74T0cRw0FCTeKZTzpTY0RigZfcFB
fgONSRTPZaq6OY8t/XccsAzLooDwQGrr92dhjfO7/eH62L3VJ4RqcNW0IGAZ
B1srmpVzYWHUXvxCu8w6DiZyr703EIukniqMXfy2jYPuhYs091RiqGMqgsSc
HRyMXXry3KIznur04aXS6X14GNm6YdqydJP6zfmULY4BDzqyGxqvHJKpXpvL
YW2MeFj8HFr9TeI2VeWiG+sMAQ8rdef0uavSqQfmRh7TsuNBatrNpXooizro
ZKQmwIOHVIlq82e2OdSC0eZBTBAP/rf9NnxVHlIvmR/3shXDg66MREpNRiFV
/X3pnmApPJQFdT3fm1hCxWkJpKfL4SG7+kfGB4Vy6virO1I1inj4x1Iyy2FZ
RS1VOvimVxUP6vNKRbYJNdTgimunlgAP+vQCWJFpHVVHYmWeUQsPH7WtC5Te
NFBZ89wjyPp4WLtZnHM65DX1K+cYm64xHpoZUmP9E/6jVqUaP3GzwMOtkIyW
RZE2atjht+pR1ngwAJ9n3Y6dVKNo5aFcBzw0jt8wriztpvL+e3K+0QUPR2MV
bC5k9FHn/QVpP53Fw13v7+ni9B+p9T/TMra98ZBvZFvYxTxKjfM4dIT9Eh4q
zB7SnX7/mWo5Gdp8LAgPobylEvXlU1Rh69XTZtd2+TR+pqtYm6b+6vVY9Inc
xWPpfO3dNUtt0v8UmRiHB3FdsUelZovUxP9MOEpv7uoxLI3s7lmm2lJbytpT
8LDTWMH2bWmVKlmrovktHQ/x2hfObGRtUreOlA/vu4+HZFyfecyPP9S2R0IX
BPPwUJdpqyj/jwZL48/YB4/w4C3xSFBpkxZzuXs4064UD3telQU9C6DH5Anh
Mlcq8XAt/BUNy+1DGM2Ntf8yavHwNUx9j6sCDuuiPWdd+wIPwQdYruIOEbF7
IeM/+5rw8M7J8hjdGVbMc800evktHloSHqqnGHBiKt6tnMzv8LB/SPTB92+8
2IFvqhVS3Xjo4wDROXFBbNCh4oTewK5/4nKq+ikRLH9IeNR9BA/rJRwzQJLA
fE3u+kR/xgMwRcxOBkpj0MFI9/ArHg4/YwtUM5HDmDQisppm8SDNn3q4z0oB
+/RiXXZ8EQ/Oz/dc9ZpTwkoVPFt+r+zWrxfP0CQnBQt+8tmGYwsPDnIBo3cj
AdMRNV9W/Lebz3vtCiIeGhjrg7YYc1oCvGZqXffo0sK+slG5fQ8QoI3h5zHe
93pYVVJl5S1GAoxU2uxsXjPCwhhEtZ8QCLCnxMLzSbgpZhSROdbBRoCoe/sp
KY0WGO9vJt/v3AQo0lKRGky0wub9IunpBAngojIlsXTAHquf37gnJEaAq47U
mJmCM1icq5e8mhQBBH5tv9dvcMEsxyda7eUI0CBW223i4IEJn7KwC1EkgOag
O0Et3wv79aH9111VAuhdiIg06ffBmnSwuGew6096yIOm1Q9LfF3FM3CCAFk/
39ROUgMwWxWxp7/0CEB4LHCTx/gKJvk0SwdnTICH5k6qlw+HYVtk3Li0BQHO
lPo9EhiLwNbvc4YftSbAgk7+IxGOGGyVWURY2YEA1PSBExFf47HlcJlWzIUA
8Z5DMUWWidjiivI5zbME0D5c+5WnJRn74arJqOdNgEK5b7yufbex7x8NK4z8
CFD7+klUr1sGNq1rZWYRuMuXX6DZO/0eNvXCed36KgFGq5JCuZpysM/S3ncd
IwgweG3IwjXnITb2IJDiFkuAyzF297h2CrFhfORnzwQCdFyat11ZLsEGI29G
XEwmwOeI8Tc2KeVY31q6SEAaAXTaCtZwoVVYt3teW0gWAYxEJM+xl9Zg74dL
PSNyCGB7PJqvzqUO69B/xhRXsMtfrprlR1MD1trwuvJmCQEOGId9OeP9GvtP
ptM8tZwATwd9w+54/Ye9zh3cyKgmANf+486nFluxV8TJzOw6Aog6+7RSD3Zi
L6J/UPNfEeAoWb7V4Xw39nxjbaK4mQA8/K2GF1AfVnOWJqq8jQAevp4vAm4O
YlWjB8Vq3hNAlUs55rXXCFZ+kqWjvpcAGRPllpT1cay0ke9800cC0FA2624J
TWHFcpK4ljECOOY1jvTCNFb4UOHpu0kC1LGV9a3OfMcesiDLnhkCNP88UOkn
vYDlxOpuDf4gQLJXSe4c2zJ2f8vs3tgSARpP+m+R6VexTE97NLW2qy92+Ztj
wAaW/slj6ts2AZysg8KLr/3Gbhv5RS/sECBRwtMjkIsGJb++Kr6yjwhMl3yD
dT/vRYlH495tMhDhUV/Tf7e46dCNghTvf0xEuEXOSuL9zoDi2O7j95GIsHqX
Um5lzYSi4x9VM3AQgZVmb/z3VjyK+F15ipmXCNx7mU7/7ieh0PMvt0lCRBAr
G7u+5c6OQj633OcUJ8LIvvb+rnRuFGTSA/zSRBDXSnvwqJEf+TePfhGRJ8LF
zBDOpWwh5HdsJoasRISods5W3j+iyOfRkoQchQg3mrIjy+clkTfH705FNSJs
XItMex0vgzxv7PehaBHBQCrd1ipQHnn8ZSaq6xPh3nj/5dncY8jtAmettjER
lP/0mmRaKCPnSWGrkxZEMLyUnddVQkWOZjJ/TK2JULsgf93NXg3ZvVV+cNqB
CFYqOk/KLTSRtZKmur0LET5ce8j033ttdKrYcNr5LBFe3S49JDGmj8y5rOLO
ehPhwsJE7qKBMTK56Uy+4EcEV4sEqUW8GTLcOd91KZAI9qI640MnLZH+xcCL
wVeJELhAUmYkWSOdLxGksAgi4JTsvUaC7dEJi5vPomOJQE7dz/jz/Rmk3ppu
fSOBCFXuFlvyHS4IKef9TUomwtNww5/f1T0Q5XFpTloaEWKH/37e1PNCo/yP
H5zIIsJe2ZXfFcY+KDitOHv1AREo77Pa2d77IvbDRfcf5hOB/2GFiWbBZfQs
vPCeafGuHtWdpYavgchyIz9rTxkRym5LeS6nh6BVr4eZFVVEWE9zrWVwC0Op
U7l3HZ4RYU3w9a+A1ggkfzong+klEbQYj88ZB0SjnvfZ6Q1NRAAVw4fpIXHI
R+N+mtdbInzTnqalHb+BmOuy7nB1EMGs+Ffi49xbqOxI5u2OLiI8ufnMz3wm
GZ3Mz0gN6tutp+3MKmO522ieIz1FfIgIszJcmkVVaUhi/+2kmMldPDeXxSKL
e6gtOOXWsZndfKYEZCj6PkBuS0mJX+d29azg3xrZ5aL80ZsJ6qtEOCnKLyc6
nI80TBJuLG8SofQxF13to0I01XL9es7fXX+mioPWwUWIvyo27h8dCbrozZ4f
YSlFjWIxsU8OkYDLcZPvWO8TZH8/KsYWRwJuNbofoVfL0R9CZPQhFhKMJP0Z
dIivQFlx4VH1HCQQybRFqtqVSOVfaORZXhJY4kxH929UoiG/axHsQiQQDhi8
/y29CgXMhoS3ipGA5vyeIwESTxGrw5UwfykSVBzbbCx7/BTV9AeFisiRwIz+
CPrEW43M9QKv9R8jQabUkcI7kdVopdH/aqQKCU6WZPJkj1SjlGOXQ+QRCd5x
5HBOCNcgucd+VyY1SJCyMq1v7VyDuvl9g5N0dvlMVjST0muQd5pPEDpJgovX
9oWxva5BjIcvBC6akMCV4qjsPFWDSsPPB9y3JAGBKkWd/12D9DY8/Q1sSKBO
SaNLZ6pFs17nLv92IIE2QUBDkasWxU15XCpxIYHVXb2VeMFaJHba3c/qLAly
b044IJFa1PLe1feANwk0g5QeLQvVIlcNl4vPfEnw50N2hSRfLdpX5+TjFkAC
+qd/7V3YatHDI2cusISQYEtk/CsDYy1Sz3fw/i9sF08TJxxEU4smOOzP+0WT
wNM/gGHfrxoUesvWS/A6CWp3o7E8WYN499t49iSSQPROjHdYdw16GWx1LiyV
BPwVjIbTDTVo29XSY/weCTIiMjK+3qlBd0fN3W/mkmA4NetEe1gNOm5i5kYp
JEFTzIARp2cN8qcYu2SWk+Cr0dUAZ6wGLRP0HC3fkGAqNdw2abIaDXkJdp9r
3Y3PvVBstbUaNbVso9DO3XyosDmhsmqUFPyYr2iQBD4wd68suBrJTh3+vDVH
Avd21excYjXyrvxgd5/IAlMPdA5P6TxFc0YWNl9dWECd0VfZs60S9RZLv9s8
ywL0hOctZyorUT0tnSrjBRbQ3iYuXs6sRPHPajkVg1ggYE4xY92rEonzsY/E
3mSBj1/yViyIlch9ceQ0uZYFfv0873PBtQJ9TXC09KVnBZogR3MFShnynpMS
lD3MCppCrxRy2crQhvbWwgKOFaK5Nk1VVp6gg7Qp0Wc5WYH075LfUskTJBvU
XO0ozQrDBNMrbtxP0FVXUaKRGSvk1ayKGdCXIlZs/gP5AStciegNz/5djHKy
nmfNPmSFD+8qFWTHipHEVpT7oyJWiHHcnv/2shhRqnl2BKtYwdKDrrbtWjFy
ljQ6wvmWFez3fC7X21eMKlirEg78YIW4f2RhCdYipPszQHdakQ2WZpY3BcwL
Ebccb8wBChtwZMh9H1csRIu+/70hq7GBUMRt2Tcchej2Oo7iq88G2gs7tL8/
F6Dxv8VHdhzYALfuqiXrXYB8D48ROeLZgJ3z+e1ryfkoUwLGDUbZoGkxkcbp
Vx7y8pzh9JlgA7sB68ibw3kIPUk4lTq9ix94Nmm4KQ99lR3uHv7JBiLyK9m9
t/LQkeO+zW772EG52GFZQyYPNWvlF4VJs0OcoTFlxy8XzTsf8KsOZYc1c5eu
18QctJit2dAYxQ795hQ64X8P0M/hMPp38eyg/3Fv6Vb/A/TLaCtrMpUd9tyf
zNSIfIA2VOf+Yyratd9G39ebykZ7SZ2sZ7vZocT7FtOP4vuI479b9TwCHKAw
tBVXY5eFOHfe7ZMQ5QA+5mCFUJUsxK1ywEiBzAEvD/cd8WfLQrwVYV/0jnHA
v3FxsR89mUj43sXDgbocICJwbmhOJxPJXjKz773IAa/NLr1iRneRljDb3tg3
HOB6h0rx1UtHs07aRaqtHPB7q3bgypF0lJAbYLj0jgOGNs7veURIR328Q5lW
AxxQ9T7B+8xoGnLkuHtU6jsHcJ79rO7knYaCmLhcexg5oYCDeP1i5h1Uusnb
xmXFCTcF9Z83MNxGRkpG3t12nDBg+Phw+XIq+nU5lBTtxAlimvQaDcOpSHnl
s+OiJyf4jIm9kylJRS0LOVtN1ziBNdgk7qxBKvo8JUh2y+cE5mwXRUJaCiK8
F02s+MkJNm8NosypyejfT9mCjlVOyC72mv0qmozmCKovv25xgq2Ee3gKLhm9
OW00x76PC84/4anS/JqE/L4GaIWzc8HkvoptmptJqP932z8TNS6Y1Qrovth6
C6VLel5YSeGCN21t+TZ6N1HUycsxjBlcwBaVxkMVvol8fELvi93ngpSP1vLG
/xKQTm3qO5tHXDANo9IHnyagTbWXYv+94ILNM0kXW3gTkLUV48Ttr1zQ22Pp
KLFzHXHHlRsrKnJDrovi0K/JOFRS9qR5S4UbvsbFBNY0x6HjA48VGxA3HPWY
GbpXEIfMBYu4NXW5odrAVWz4bBxKeJnz3cSWG17e4BelXY1Fv5eSw85HcMN2
kkT5OlMsGrG6VJHfxQ02PfufKNpHI48wXyGPPm6QWuRrxDSj0XqhTxp5iBv8
Z887uklGI8KqV0jVJDdE3D37jLgRhfQSXXWaVrmBM9UpaSo5CtW9sZwY5eQB
JU87Y9n3kSiDrIwjuvOA7fMduSSrCGSh/z7plScPNC2McT/ViEAEzzP4cz48
EMaVSlqSjkA3SuIJr4N4wOxfbNmzvRHomsQI6UICDzxMTZINfhKOXMSucLyr
5AENgb37qujDkZxQg2DkHx7IfcD5VO1eKFpUN3l4ZA8v6AiPT6X7h6ISp2mh
kf28cOfa81+cJqFIOI9RRI6ZFz69x38qpAtF7AL2Yp8FeMH+1iCh2+8a+se7
Q1bV5oVi7/xIFcurqINT7dhKMi/0ZBHWmFWuoG7ectF96byQOvLUfIL1ChoU
5GFnuccLGz6S0uMrwWhScmtbsZAXFqz77c6UBaNNlcqm4Hpe2J+o7xwqEoxE
bQQM9n7h3Z1natzfuYJQRNYeZ7wCHzB8Kt76IRaA4h5cMBdU5gPDVzlCOwwB
KPHhpxNHMT7Q01/YOj7vj+4+rhO30OEDi41PX/gq/VHFi4uLGbZ8QFK/fqKG
4o/GRyeD+KP5QLVgqbfP+jJS4X6TJDPIB+nl49jdSj80JSQ8PjvCB1ebrJiH
7vqheHIMOf8zH8j/24g5GuGHhlT0Wthn+eA7c/wkMvNDAVa9v/f84YPf0ddi
StZ9kbX+xaNzOH4gUEYkStR9UVpcePZLRX4ojcl4d2HRB51LkH/LocwPfBtr
abQjPghL+vLDX5Ufhscy9lW89UHT6SeU5YAfnpttGpne90EKjxj6C3T5wTN3
/kLdSR/U+zaZ4ZYtP3z/PsS97HoBMdHmXToTwQ9w2URskfs8ottqNFuO4gdv
AdnPE+te6N/iJ/nwWH5of21otr/HC/0c4VjOSeAHxpRMr6loL9RdlXx+Io0f
1OTwtjPLnijFKdzN4TE/qDaH7xvvPYdY3zietuvnB+d8maovtR6I6fk1pYVB
fvg9+1cuLc0D0ZXdY706zA+T9fZzvv4eaOPuUP+98V09Ys7iJYoeaOiiscnY
913+CxuTDHXuKFMA9Gz+8sPTxb/+Dm/dEG84H8VKVACybynf3N52QWV+BwQ/
iQvAc4ElA6YJF4S5LdOfIQtAPoH5ruZbF2Sn39znISsAnn89RNiTXNA9FnfP
QBUB6HcT0rAUc0EcJWWZ6YYCsHVUZvGArTMi9VG3Bvx319v8WBb5dAblvxX9
bBUkAIfFTocpt5xBR58zv/10RQDyiM5B58rPINP7k0nTYQKgdTaaJBxxBiW7
R4uvXRcAi97p4WXxM4jpT+cp0gMBeKBOd/vjFUfEIGJba9oqAMcEdtKKd++i
5ziQ3uN2Afj2SmAe07ZHHYyC47SdAvCePmx4R9AeJax/21/TLQAs7N6ltKN2
iKnNz4JtRAC8h/huMp602+33G6uj87vf35/u+3vcFnFX1su7EgSBVvSu39YR
axRScL+lgSQI+mKFJ3KZrdGnu2HWrGyCUPot7L73khXKjtCKaOUShIkacXJQ
lRXiN+/tkRARhD3StZM6x62QyMasz6KSILzT9Ykq1TuNjlA5ygPsBAFf89PN
Lt4SPRU6+3uvoyAYlLQw8XhZouMH67QTnQSB4yNX2V4jS6T+8fREvrsgmIg7
MyEWS2R5MQPfe1EQGrLU9gQ8tEChBWyXpGIEodUueayuxRx1M7IqT5YJQvTm
FlVXzAxZrLpGe1UKws7Fo3TnmczQyEhNz8ZTQeCbGyVUrpmir48szjHVCcKd
SgnTu/+Z7u7/d7JUmwVBy952ctrZFAn4k/7d+SgIh8uGavSLTJDvOKFZj0YI
JBlyPY5rG6O2FtuGkr1CEFeJBV87aox4ywufHdwvBIWEK35jfMaoI1SltINB
CFiZxUwbl42QoIDTHT2iEKgyh//ZOWWEepwr3fVEheDZ6dfWfNKGSHbW6LCe
gRAYaBCarDb1UUzPXboSQyGgt1Z+cmlQH43VfaE5aCIE2EG/J8+r9VHc9YC1
dgshSFgA/hcX9dEE+cG4roPQbv/aeOUv6KEk78UKXV8hIAuo6I7P66KfKwkW
uhlCENm6IFdEr4PGhnIt72cKwXyn7grXD23U0VB7avmeEPD3LWZXdmmj/NgJ
q7u5QsDJyUFST9NG1lwK9rMlQrv7TSjHiqg2eqs+6hbfsKsniE/bz1ALZSVL
BLZPCYFxwBrlS7UmivPHgnimhcD+Secz3XuayN/GLPjit12+TFJe7yM1kbHI
1RCOeSE4tfZunWymiejqusPOrgmByEJsj9qKBro4ERDPcEAYZKU88E+PayBt
mZZMXWlhUPwm6d36UQ2dptMx75YRBv+na8famtTQuU/tjKfkhSGM5UbuTLEa
SrzxPsxFSRiMrgW+uxKihga/9buFqgnD5JV2HVohNeSS80W+xkIYxk26gt0u
A4rA73nHf00YFBpwL+ntMHT7e0TUozBhCJW94zZ9DEOFjfuwI5HC4LRgFL7G
hKGO8wcqVeOE4feeatrS11SE72BOt0wRhh+UaAVPCSrKieB1TigUhlSeBZbf
eyjo1Yrq740uYbCoqn74bEAZ5XY+czLrEYY3mp2CBbXKKKrgaEdZnzAMFf2j
eZ6ujHRPke+6DgnD2CU+sZPWyqi/nlOpb1IYjh2hp8pOHkdz4Vu+Zau762kO
mT1dU0KsuGdzLpwiIBky2Bd9XBFtfZc3beIWgZ/Ww6ROHkU09rqsjotPBEhd
2cHytIoo168wrldIBA5y/OFw6DqGpD7eEQVpETC5Ohd41O0YUs++5MQFIuCq
Hdr/KEsBeUvJj/S4igBYNv1r4j6KLm9wbjt4iMBXGqa1QdqjKOQNLefiORGg
S0tyZfwhj26cHrA66CMC3KLEw6N18qgoKnBYPVgEfp8QG109LY+mxl4NPU0U
gQ/uGan/7skhy5v6H+88EwGder16C1VZZHdaYUOoXgTedilvSInKIhchHraq
lyJwmU+7nQ8vi/zqFi27XotAX6CcSnmXDEqaTh6k69y1o/OAXVIGdVCHBgIm
RODS4LBg/5w0oi669FsxiIK8KhHjSSEj1hfaeS8PiYJshrhLgg8ZLcZK+vAx
icKmdoK7sBEZZQssHZomiILi/iuo6zAZ/TO/ouHDLQrX/Tp7aK9LosYXyVUx
MqLgeOKNXOcNCaQW/yrpqYUodBW/od54LIY4LXPtWU+LQvjlQrb6RDH0SzBK
KshaFPapdNId9hVDeS912zAHUeCiUQ5mVxZDe5f6d9o9REFuxoP1Q5soarb8
4T1xRRTudMz3JC6KoBPC7CcZ80QBzMznkKkwql54K+CSLwpZXiKW/5SFkfAz
v/X6QlFQPz9fMywgjPbpfXjg8VgUfBp0WmeWhdCbCzG/mqtF4ShbmZ9lqhDC
XqymB7eKglFVxA3vUUGkaNoz9W1eFGZpPeOzQwVQIVfoM+ynKMTFhUe+OCeA
WKalEu4si0L9423PZQsBtBoQd0xjXRRen5VJfiQlgKruo7jsnd14rbCvKo/y
I5nZJ9IWBDGoGfje/onCj8TDrge+URKDgQ0NqZeCvOilasF+AxUxuI0dz6n7
zYOMNxpTBihiMBsRmzrbz4MCvddKv6uJgcw2YeVzLA9qs3WcZDIQg9p9BlF8
S9zIQ1lRz8ZRDPb/d923qp0LFf+a5FqNE4PhZ4+ZQx5wIKzsT9HVG2Lwfn/q
mvE1DtR7lk2RPnH3/1Tad8Z2HGh7wsCYM1UM5pUC3Lq5dofph2dRcF8Mrrfg
7Noz2dHc45sLCZViEC/vyeWXw4YkXZUbRUbEoBj9d0GlnQXdEjTcjhwTg1s/
hY9+K2NBq5+djk2Ni4FS1/jbp7dZ0CvrhMfZX8RAIbqz8bEjCzI1/pzOtiAG
TrcqxwjbJBSkGu3DQCMO/VXsDPflSagN3yOwICIO9a4zlfl1BCT9YdpWX1wc
zn0yPLnvIQGlJGynF0uKQ4jHLxSaQEC29MJMbjLikJIxX9jiQEA///hvjx8X
B+1wz+/p9ATE+p27r1tfHLYTf/KJ2+KR6yuPqOqL4mAZkewgyo5Di+fnAk5c
2vW/wW5OosWhQB4vz0F/ccjdP/FSdYwZXQ+5YLp5RRx4/BN16OKZUYWKPz8l
RhwcfmxxiEwzoT+1kS+bM8XhVOWMtcEjRpRSnr3a2ywOefDO/azJIcTtwP/d
uUUc9tuk1BVIH0IFTHmjq23isDX+8RPu4CH0/HzBG9YuceiW+FPk23wQfSKX
JlkPiYOjxEqR3fGDSLyoTmpqflePQq7+fUkG1JjT77LMIgErs0Xp8jL0aMJA
wMGfXQKG7h1LdcXTI5qt81a/OSVAbebP2KsVOqRuQm+4n18Cqpxi0748p0Mt
e1SUOCQlYDXE3XBJkw51Oj1gUMMkIL8zmnbBeT8aET5XluQmAV9vNbvJvaRF
v7tri1jOSoBvTJlTXx4t4r5K+zDTUwLebM5u3YmnRXYD99LzfSTAiHfKNOQU
LZqI/hD2PFgCModCRdtX96JvMwpmE4kSUDTR/god24tWi3Y2ZJ5JgHIVX2Ri
Jw2asdTKia+TAJATYjz7nAYN7bup8+WFBKwfVm+yyadBLxw576Y1SUB9PNOR
+BAaFMF+TOVvuwRkyHDv33OEBuHizoV0jEnAUYsTa+mSO5iU+wCN615JEMzL
Pyow+wfjZeEufrVPEl6vJNldbvmD4ZqdTNjpJSGn6DPXysM/2ArvUu67Q5Kg
+epc4jmHP1j94EENeRZJkDIumdYY+o3paEH0jpgkxN7uWLrcs405izxmyDwp
CVZuy623Jjax4Lf250SNJYG9oPLg8aZNLMmV8K7KVBLqP05bHczZxF4WBCW8
OyUJLNMnNKQcNzGSqA7z3zOSUMr/4LTD1AbWIjpNcvSXhD+JfWLmi+uYpDgf
v+gDSXhavvqHILSGQVtvWFWuJMRo/yZk0K9hlh4xk1i+JPwLwX+B+VUssmgh
71SxJPTxjW/8qVnFxsRfisQ/lYTZc4qLHPqrWKKEFXm+VRKctd/lNl5ZwZYl
UxWrlnbtFpvI62vL2FAnnCCuSIJ0oB614fMy1uS9aHZpTRImxp55H+xYxhKr
dC8qbkvCg9aKZyvZy5ikCk1pPS0Z8vTpPf7pLmNOuucFmlnJwG7C+3Mofwnr
d9c+3E8hg208WfHB8CL2gmGN8xgig6xJbQO5ehHLe5wnkaZGhp8yoi+nExcx
n59/tU5rkWFL9KjapOYixhhQHT5mRAauQwf9lqoWMK0YgY2vTmTAyD7RkD6P
Pc//PbkWRwbi3YUNSugcpqhxaUPvBhnOd58deOowh9VMzh/OuUkGPiMlVWOY
w6p4x5X0UshAf+fkwuaeOaw0o+lmdhYZipvKWPbHzmI5CdHK2mVkuL2ZfGkq
/TsWf4k5OaOPDM6eS89v9M1gB4hxhQsDZAhIK9p0fD6DxVTSvFQfIsPs5sOb
lvdnsKjF5Zn5MTJMCBXw5LnPYNc8+ilqM2Rgk7n1uPbvNOZre/f77CYZfoeb
NlXLTGPWmrtnRV4pSAvSfUdf8gX723+AqZlfCgqySwbzk75gOa6Lo3pCUvBp
QbnIKeALNhNTF2AtLgX2OSOr6MQXzLfdqDxIXgpO732fEzI1hV03DOF9riUF
xSqKp0cEp7D60wN/FC5IgaRSeQKhfgKzm63veHlRCirO73cMzp/AaIJzMjQv
SYHjRTXSv8QJTCvLU8E8SApStfJunXaZwHo/7fHyi5SCm9OPFixwE9ic05HR
ynQpmDnK5ftoZBzjOh9bd6RJCphkwGLi0hiWuON27MYbKShNqN9IMx3D9qZo
VX77TwquVgzM+suOYXO1+4tz2qUgkQ6/Xjk/itXTRGUQ+qRgov6+PrP7KGZ9
OyxgfVoK2m4fvk1xHsEyXgQde3VIGohsWRmcgUPYYUOrSk4maYBCPcEH1kNY
2MRx6QCcNJR318lpU4cwj/2bwrIs0jCh+FFxD+0QpmTkT8rjlQZeY73j7Ekf
scEp35VoOWlgZRoqf1IxiLEc9Ko8eUoarkozq9sdHMDyNa4GL1lJw5WI6BTC
Yj8mfzVRI9VWGuLaGhYWevoxw6WKgaEz0vC6inuTJbMfixlc23L2kgYOF7EB
Eal+bDMvVD04XBoEwz+YcJzqw0ZUU/sKH0uDSPTUiz2tPZjH5fx7umXSEHhF
w4CzvAdbL6txna/Yxb90cI9Zeg9GEBzakKuVhsQ+IbKwRw+mf4CHu6FJGoSc
swbgUA/2sr/QpW9AGtinP41jp7oxPabn0v5D0qD9UXPphFo3NqTdvs4+Kg29
t4VvniN3Y6v1P+LsJ6QhOCir4xBNNyadK/tkdk4aTtZqEMwtPmAvR9T8Exak
4cdtfjN58gdMj2SGZJakwaLsk4rung+YW+zlnktr0hDZXtLFV9aFrTbFZLJt
SoOAT+qX8aguLGI73bl+Wxq04g5fHLDpwnAKxVJ2f6VBLSpUivZoF5Z9vn5t
Z0caHAXq37kf7ML+B8z92vI=
       "]]},
     Annotation[#, "Charting`Private`Tag$7079970#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVV3c8lt8bVkIqvMvee7xkJML7Puc2srMpErKLJMpK2auQEEJWCMkKRYny
zWjIzkooQogQGvz8/nmez/15znNf13WPc58j6HjRzGUvDQ1Nye7j/+9f453/
idxMxa5z5zs1y0vI9+dwBKoP+SDDgCB6a4K0PLB+cOQYCkcv7Lez9+rJyfuZ
lH2kHUpGby8vjJkuHJXHL7Enb30sQAfv0G8EfNKU//zc6OLaxxq0JFCaEGbs
IK8tMv9p5eMr5HPvRHHvvzvyWx+V7yx/7EU3urJ+Uv/RKrRqPijsKfiCvtGm
6kSf/anA87lhxlF6EfnTDNHy4HuOkDztyxg0V1HuF0baOUqZYrK89jMjy03k
M3iQO9Yn7ehwhlzLCu4f8rwwl6Dp7Kt0szDkw17OPTAQfXSdrshRmT31S1zK
PVrIO86X6VVx4liMhR7W+4sOhmL2XhYcFVfxVcm37wzfD1cCD2TwnGRV1frx
O8jrywFwYhnPLtReVQ2jmJ7lOsYE7V9Ngnn736np2uX8VNZggulgXE3cbLca
c+j3CEtDJvjhact9faBPLbs1qjjJgQncaUkj6fqjak/1G7/TxzHB3ydLa0yD
c2rLp4T9VoeZwD7lz2K4OAPF7sr6jXdXmeEZNxT2ZGhQRNM1eOajmCHtQMbC
7e7jlIWntx4xJDHDhZw01ZE0PUrQX8lujUJmuHz/0LVfmaaUOxF2rA3vmOF0
jk9KYZkD5d3t9twiXhaoVG/zi/58jZLymCTfKs4Cb9aHCh2iwig2A2dfTciz
wFujNxoBCZGUWY6/X7m1WWCS7Jj8QieeQpsnJ5XsxQInTfKY615nUt68vPas
MoAFNG4+fHHHLZeS9OWN4ftwFrA4JORh7lFA4RN3ubg/nQXc2UV41E+VUqZ1
a2jE8llgy0WDONP4iFJ+fue25kMWEPap05y+WE1Rrbhbe72ZBU6ZiTbrbT+h
GNHs07HvZYGA7H9ryRItFCczr2E0zQL7glNDclpfU7yu3heqWmKBbtPDnFSN
TkpA4ZCHwCYLKNpOq4SZvKe8nIm26aDBQVD/85amvT0U7auCIaF0OPjQD+ab
TX2UtyzP7x87gAPbvLmhgLlBikmhVccyMw6oIY2W2ukjlMFjKwslRByIOCz0
Go6NU06/v4k/y4GDWIczMudnJykTZ8WUOHlxYJgfGRPV8ZXi+qvFpkcQBylJ
HPW9fLOU7zdOh8SJ4UCevVLYcPs7xZv/1311Mg5MchKlgrFlyvrjpI4tWRw0
532+c2TkJyVIl7xYrYgDX5x2geDkOoXm02v8eRUcnHA8efKa8xYl6pKDkhCG
g9s0t2zVA/5RDtD/sRnRwMHH34ffdXHuoSZl3glJ1sEBptof3TRES2WVlSvU
N8SBtkCXz439DNTM1jcde01xsKbNRW/57ACV/5TLYqMlDqx9mktE6VmohQs7
eF8bHFw4uFVSQ0OgSoVlKpHtcfDv5V/p2q8kaiXr0dNfnHDA9l3sbQzioCqW
fQjJcsfBKh9rmboID7URO19ofgEHQ6pqbBEWAlTUt6/zoA8Osj6kLbWuClH/
c8tdbPXDQRLHq85326JUvb8qhOCrOGhXPs6wEC1J7UrqV1IMxUHFDIercp4M
1UL04umFSBwoCn/l25GTpw43MIYWxuGAY9CO4cHqEaqdUWGhbSIO5g5/kGkT
V6Z+ncI6SSk4WP5hlpX6WZV6zn948V06Dk6zKlOV5RB16eBlQlQ2DowcxAk8
nBpU3zxmZWo+Dl4t32Bk3HOcuqlYenq9CAckGWHVcw661OudmqGPynDg0xxU
el7fkEprN17oUomDYydOTDw4b0KN/RnQyVuLg2eKfit+TOZU5hji0sBTHJhe
MZTO47GipnBXEBKbcHDl+E+3uFJrKkeVrrL2KxwMHMvMdeo4Q72n9eX0dtsu
H5z2FyPds1Sh4Wuh9W9xsPSek76O2ZlacoGjyKsbB0WISVNax40qs/dxp9jA
bv2wVZ+k2+dBrUk7sTQ+jIM3rMc/hdlcpB4jzxLSx3HQVJR4p1jeh9rUHK5s
/AUHhU00ppG8V6gaFry2DLM4YB2WQ/5hAdT22SehzQu7/eHy0K3dO5hqeM2s
yH8FB1urWtXzoaHUXvxip+wvHEzkX39vKB5BPVkcs/TtNw66Fy/RZKtGU8dU
hYh5OzgYu/zoqeW7OKrjh+fKp/bhYWTrplnbcgL1m9NJWxwjHnTlNjRf2N+m
em6uhHYw4WHpc0jtN8lUquolV7YZAh5WG84b8NSkU/fPjzyk5cCD9LSrc+1Q
FnXQ0VhdkBcPKZK1Fk9s86hFo62DmBAe/FJ9N3xU71MvWxzztBXHg56sZHJd
RjFV4335niBpPFQEdj3dm1hGxWkLpqfL4yGn9nvGB8VK6viLO9J1SnjYZi2b
47SqoZYrH3jVq4YHjQXlEtv4OmpQ1fWTy4AHAwZBrMSsgaorubrApI2Hjzo2
RcqvmqhsBW7hZAM8rCeU5p0Kfkn9yjXGrmeCh1bGlBi/+P+oNSkmj1wt8XAr
OKNtSbSDGnrotUakDR4MwftJt8M7qnGUylC+PR6ax2+aVJd3U/m2H11odsbD
kRjF0xcz+qgLfkK0n87h4a7XbLoEw0dq44+0jN9eeCg0ti3uYhmlxrofPMxx
GQ9V5vfpT73/TLWaDGk9GoiHEL5yycbKKaqIzdop8+u7fJo/01etT1N/9rov
eUfs4rG+e+nVNUdtMfgUkRiLBwk98Qfl5kvUxP9MOcsTdvUYlUd096xQbalt
FZ3JeNhprmL/trxGlapX1fqWjoc4nYtnN7I2qVuHK4f33cPDbVyfRfT3v9SO
B8IXhQrw0JBpq6SwTYOlCWTsgwd48JJ8IKS8SYs53z2UeaYcD3teVAQ+8WfA
FAhhsler8XA97AUNa+pBjObm+n8Z9Xj4Gqqxx0URh3XRnrepf4aHoP2s13AH
iVh28PiPvhY8vHW0Okp/lg3zWDeLWnmNh7b4+xrJhlyYqlc7F8tbPNANieXO
fuPD9n9Tq5LuxkMfJ4jNSwhhg/ZVx/UHdv0TV1I0TopihUMio24jePhVxjkD
JEnMx/Sud9RnPABz+NxkgAwGb5jo73/Fw6En7AHqpvIYs2Z4VsscHmQEUg71
WStin579khtfwoPT0z3XPOeVsXJFj7Y/q7v168k7NMlFwYIefT7NuYUHe3n/
0bsRgOmKWawobe/mM7tTUdRdE2PL7Yi2oCXAS+b2X+5d2thXdiqPz34CdDD+
OMr3Xh+rSaquvsVEgJHq0zub142xUEYxnUcEAuwps/R4FGaGGYdnjr1hJ0Bk
Nh0ludkS4/vD7DPLQ4ASbVXpwURrbME3goFeiADOqlOSy/vtsMaFjWxhcQJc
c6BGzxSdxWJdPBXUpQkg+PP3e4MmZ8xqfKLdTp4ATeL13ab27pjIScszwUoE
0Bp0I6gXemI/P3T+vKtGAP2L4RGm/d5Yiy4W+wR2/ckMudO0+2KJL2t4B44T
IOvHq/pJqj9mqyr++Kc+AQgPBRN4Ta5iUo+zdHEmBLhv4ah25VAotkXGjctY
EuBsue8DwbFw7Nc9rrAjNgRY1C18IMoZja2xiIqo2BOAmj5wPPxrHLYSJtuO
ORMgzmMousQqEVtaVTmvdY4AOofqv/K23ca+u2gx6XsRoFj+G59LXyo2+9Go
ytiXAPUvH0X2umZg03rW5pYBu3wFBFu90rOxqWdOv2yuEWC0JimEuyUP+yzj
ddchnACD14csXfLuY2O5ARTXGAJciT6Tzb1TjA3jIz57xBPgzeUF29WVMmww
IiH80m0CfA4ff3U6uRLrW08X9U8jgG5H0ToupAbrdivoCM4igLGo1HmO8jrs
/XC5R3geAWyPRfE3ODdgbwyeMMcW7fKXr2X93tKEtTe9rE4oI8B+k9AvZ71e
Yv/JvrNIqSTA40Gf0Due/2Ev8wc3MmoJwE13zOnkUjv2gjiZmdNAADEn73bq
gXfYs6jv1MIXBDhCVmi3v9CNPd1YnyhtJQCvQLvRRdSH1Z2jiazsIIC7j8cz
/4RBrGb0gHjdewKocatEv/QcwSpPsL5p7CVAxkSlFeXXOFbezH+h5SMBaCib
DbeEp7BSeSlc2xgBHAqaR3phGiu+r/j47SQBGtgr+tZmZrH7rMiqZ4YArT/2
V/vKLGJ5MXpbg98JcNuzLH+efQW7t2WePbZMgOYTfltkhjUs08MOTa3v6otZ
+ebgv4Glf3Kf+vabAI42gWGl1/9gqca+UYs7BEiU9HAP4KZBt19ek1jdRwTm
yz5Bep/3osQjsW83GYnwoK/lv1s89OhmUbLXNjMRbpGzkvhmGVEs+z38PhIR
1u5SKq1tmFFU3INaRk4isNHsjZttx6PwP9UnWfiIwLOX+dSffhIKufD8N0mY
COIVYze23DhQ8Oe2e1wSRBjZ19nflc6DAk17QECGCBLaabkPmgWQX+voF1EF
IlzKDOZazhFGvkdnosnKRIjs5Grn+yuGvB8sS8pTiHCzJSeickEKeXH+eaek
ToSN6xFpL+NkkcdNOm+KNhEMpdNtrQMUkPs/FqKGARGyx/uvzOUfRa4Xuep1
TIig8rfXNNNSBTlNilifsCSC0eWcgq4yKnIwl/1rZkOE+kWFG6526ujMa5Xc
U/ZEsFbVfVRpqYVslLU07JyJ8OH6feb/3uugk6VG007niPAitfyg5JgBsuC2
jj3nRYSLixP5S4YmyDTBiXzRlwgulvHSS3hzZLRzoetyABHsxHTHh05YIYNL
AZeCrhEhYJGkwkSyQbpfwkmh4UTAKdt5jgTZoeOWCU+iYohATqFj+vH+LNJo
T7e5GU+EGjfLLYU3zgipFPxLuk2Ex2FGP2Y13BHlYXleWhoRYob/fd7U90Sj
Ag9zj2cRYa/c6p8qE28UlFaas5ZLBMr7rE729z6I41DJvfuFRBC4X2WqVXQF
PQkrzjYr3dWjtrPc9DUAWW0UZu2pIEJFqrTHSnowWvO8n1lVQ4RfaS71jK6h
KGUq/679EyKsC7386d8ejhRO5WUwPyeCNtOxeRP/KNTzPie9qYUIoGp0Pz04
Fnlr3kvzfE2EbzrTtLTjNxFLQ9Yd7jdEMC/9mfgw/xaqOJyZ+qaLCI8Snvha
zNxGJwozUgL7duvpd2aNiXwqWuBMT5YYIsKcLLdWSU0akqRLTYqe3MVzdV4q
scxGHUHJt47O7OYz2T9DyScXuS4nJX6d39Wzin9tfCYfFY4mxGusEeGEmIC8
2HAh0jSNv7mySYTyh9z09Q+K0VTbjRt5/3b9mSkN2gSVIIGamNhtehJ0MZg/
PcxajprFo2MeHSQBt8Mm/9HeR8juXmS0LY4EPOr030OuVaK/hIiog6wkGEn6
O2gfV4WyYsMiGzlJIJppi9R0qpHqdkjEOT4SWOHMRuk2qtGQ7/VwDmESiPgP
3vuWXoP854LD2sVJQHNhz2F/yceIzf5qqJ80CaqObjZXPHyM6voDQ0TlSWDO
cBh94qtFFvoB1/uPkiBT+nDxnYhatNrsdy1ClQQnyjJ5c0ZqUfLRK8EKiARv
OfO4JkTqkPxD36uTmiRIXp02sHGqQ90CPkFJurt8JqtaSel1yCvNOxCdIMGl
6/tC2V/WIaZDFwOWTEngQnFQcZqqQ+VhF/zvWZGAQJWmLvypQ/obHn6Gp0mg
QUmjT2euR3Oe56/8sSeBDkFQU4m7HsVOuV8ucyaB9V391TiheiR+ys3X+hwJ
8hMm7JFoPWp77+Kz34sEWoHKD1aE65GLpvOlJz4k+Pshp0qKvx7ta3D0dvUn
AcPjf3bO7PXo/uGzF1mDSbAlOv6VkakeaRTae/0XuounhRMJpKlHE5x2F3yj
SODh58+472cdCrll6yl0gwT1u9FYmaxDfHSnPXoSSSB2J9ortLsOPQ+yPh+a
QgKBKiaj6aY69NvFyn08mwQZ4RkZX+/UobujFm4J+SQYTsk63hlah46ZmrtS
iknQEj1gzOVRh/woJs6ZlST4anzN3wmrQysEfQerVySYSgmzTZqsRUOeQt3n
23fjkx2CrbXXopa23yjk3W4+VNkdUUUtSgp6yF8ySAJvmM+uCKpFclOHPm/N
k8CtUy0nn1iLvKo/nLlHZIWpXN1DU7qP0byx5emvzqygweSj4tFRjXpLZd5u
nmMFBsLTtrPV1aiRll6N6SIr6PwmLl3JrEZxT+q5lAJZwX9eKeOXZzWS4OcY
iUlghY9fClYtidXIbWnkFLmeFX7+uOB90aUKfY13sPJhYAOaQAcLRUoF8pqX
FpI7xAZawi8U89kr0IbO1uIijg2iuDfNVFcfoQO0yVHnuNiAtH3Zd7nsEZIL
bK11kGGDYYLZVVeeR+iaixjR2JwNCurWxA0ZyhEbtvCBnMsGV8N7w3L+lKK8
rKdZc/fZ4MPbakW5sVIkuRXp9qCEDaIdfi98e16KKLW8O0I1bGDlTl/fcb0U
OUkZH+Z6zQZ2ez5X6u8rRVVsNfH7v7NB7DZZRJKtBOn98NebVmKH5ZmVTUGL
YsQjzxe9n8IOnBnys+NKxWjJ579XZHV2EA5PlXvFWYxSf+EoPgbsoLO4Q/vn
cxEa/1d6eMeeHXC/XLTlvIqQz6ExImccO3BwPU29frsQZUrCuOEoO7QsJdI4
/ixAnh4zXN4T7HBmwCYiYbgAoUfxJ1Omd/EDziUNtxSgr3LD3cM/2EFUYTWn
91YBOnzMp9V1HweolNqvaMoWoFbtwpJQGQ6INTKh7PjmowWn/b61IRywbuHc
9ZKYh5ZytJqaIzmg34JCL7Kdi34MhzK8jeMAg497y7f6c9FP462syRQO2HNv
MlMzIhdtqM3/x1yya7+Ouqc/lYP2kt6xnevmgDKvW8zfS+8hzv9uNfIKcoLi
0FZs3ZksxLXzdp+kGCfwswQphqhmIR7V/caKZE54fqjvsB97FuKrCv2if5QT
tsclxL/3ZCKR7EuHAvQ4QVTw/NC8biaSu2xu13uJE16aX37Bgu4ibRH2vTGv
OMHlDpXio5+O5hx1StTaOeHPVv3A1cPpKD7f32j5LScMbVzY84CQjvr4hjKt
Bzih5n2819nRNOTAefeI9CwncJ37rOHolYYCmbldepi4oIiTeONS5h1UvsnX
wW3NBQlCBk+bGFORsbKxV/cZLhgweniociUF/bwSQopy5AJxLQbNpuEUpLL6
2WHJgwu8x8TfypaloLbFvK2W61zAFmQae84wBX2eEiK7FnIBS46zEiEtGRHe
iyVW/eCC068NIy2ot9H2D7miN2tckFPqOfdV7DaaJ6g9/7rFBbaSbmHJuNvo
1SnjeY593HDhEW+N1tck5PvVXzuMgxsm91X9pklIQv1/OrZN1blhTtu/+1L7
LZQu5XFxNZkbXnV0FJ7WT0CRJ65EM2VwA3tkGi9VJAF5e4fcE7/HDckfbRRM
tuORbn3K29MPuGEaRmUOPI5Hm+rPxf97xg2bZ5MutfHFIxtrponUr9zQ22Pl
ILlzA/HEVpooKfFAvrPS0M/JWFRW8ah1S5UHvsZGB9S1xqJjAw+VmhAPHHGf
GcouikUWQiU8Wno8UGvoIj58LhbFP8+bNbXlgec3BcRo12LQn+XboRfCeeB3
kmTlL+YYNGJ9uaqwiwdO99A9UrKLQu6hPsLufTwgvcTfjGlFoV/F3mnkIR7w
m7vg4CoVhQhrnsE1kzwQfvfcE+JGJNJPdNFtWeMBrhTHpKnbkajhldXEKBcv
KHucMZF7H4EyyCo4ohsv2D7dkU+yDkeWBu+TXnjwQsviGM9jzXBE8DiLP+/N
C6HcKaRlmXB0syyO8DKQF8y3Yyqe7A1H1yVHSBfjeeF+SpJc0KMw5Cx+lfNt
NS9oCu7dV8MQhuSFm4Qi/vJCfi7XY/XsELSkYXr/8B4+0BUZn0r3C0FljtPC
I3R8cOf6059cpiFIpIBJVJ6FDz69x38qpg9BHIJ24p8F+cDu1iCh2/c62ubb
Iavp8EGpV2GEqtU19IZL/ejqbT7oySKss6heRd18lWL70vkgZeSxxQTbVTQo
xMvBms0HG95SMuOrQWhSauu3UjEfLNr0nzlbEYQ2Vatbghr5gC7RwClENAiJ
nRY03PuFb3eeqfPMcgei8Kw9TnhFfmD8VLr1XdwfxeZetBBS4QejF3nCO4z+
KPH+p+NHMH7QN1jcOrbgh+4+bJCw1OUHy41PX/ir/VDVs0tLGbb8QNK4cbyO
4ofGRycDBaL4Qa1oubfP5gpS5XmVJDvID+mV49jdal80JSwyPjfCD9darFmG
7vqiOHI0ufAzPyhsb0QfCfdFQ6r6bRxz/DDLEjeJzH2Rv3Xvnz1/+eFP1PXo
sl8+yMbg0pF5nAAQKCOSZRo+KC02LOe5kgCUR2e8vbjkjc7HK7zmVBEA/o31
NNoRb4QlffnupyYAw2MZ+6pee6Pp9OMq8iAAT803jc3ueSPFB4z9RXoC4JG/
cLHhhDfqfX2b8ZatAMzODvGsuFxEzLQFl8+GCwBcMRVf4rmA6LeazVciBcBL
UO7zxC9PtL30SSEsRgA6XxqZ0/V4oh8jnCt58QLAlJzpORXlibprbl+YSBMA
dXm87cyKB0p2DHO1fygAaq1h+8Z7zyO2Vw6nzvQLgFOhbM2XenfE/PS68uKg
APyZ+yefluaO6Cuy2a4NC8Bko928j5872rg71J89vqtH3EmiTMkdDV0yMR2b
3eW/uDHJ2OCGMgVB//Q/AXi89M/P/rUr4gvjp1iLCULOLZWE37+dUYXvfqFP
EoLwVHDZkHnCGWGuKwxnyYJQSGC5q/XaGZ0xaO1zlxMEj3/uohxJziib1c0j
QFUQ+l2FNa3EnRFnWUVmupEgbB2RXdpv64RIfdStAb/d9ae/r4h+OosKX4t9
tg4UhEPip0JV2s6iI09ZXn+6KggFRKfA85Vnkdm9yaTpUEHQPhdFEgk/i267
RUms3xAEy97p4RWJs4j577uTpFxByNWgT/141QExitrWm7ULwlHBnbTS3bvo
eU6k/7BTEL69EFzAdOzQGyahcdp3gvCeIXR4R8gOxf/6RlfXLQisHF7ltKNn
EHOHryX7iCB4DfEnMJ04s9vvN9dGF3a/vz/V9++YLeKpblRwIQgBrdhd363D
Nii46F5bE0kIDMSLj+ez2KBPd0Nt2NiFoPxb6D2vZWuUE64d3s4tBBN1EuTA
GmskYNHbIykqBHtk6id1j1kj0Y057yVlIXir5x1Zrn8KHaZyVvqfEQJ83Q/X
M3FW6LHwuT97HYTAsKyNmdfTCh070KCT6CgEnB+5K/YaWyGNj6cmCt2EwFTC
iRmxWiGrSxn43ktC0JSlvsf/viUKKWK/LB0tBO1nbo81tFmgbiY2lckKIYja
3KLqiZsjyzWXKM9qIdi5dIT+ArM5Ghmp69l4LAT886OE6nUz9PWB5XnmBiG4
Uy1pdvc/s939/06WWqsQaNvZTk47mSFBP9L2nY9CcKhiqM6gxBT5jBNa9WmE
QYox3/2YjgnqaLNtKtsrDLHVWND1IyaIr7L4yQE6YSgmXPUd4zdBb0JUy98w
CgMbi7hZ84oxEhJ0vKNPFAY1lrC/OyeNUY9TtZu+mDA8OfXShl/GCMnNGR/S
NxQGQ01Ci/WmAYruuUtfZiQMDDYqjy4PGqCxhi80B0yFATvg++hprQGKveG/
3mkpDPGLIPDskgGaIOeO69kL7/bvac/CRX2U5LVUpecjDGRBVb3xBT30YzXe
Ui9DGCLaF+VLGHTR2FC+1b1MYVh4p7fK/V0HvWmqP7mSLQwCfUs51V06qDBm
wvpuvjBwcXGSNNJ0kA23ot1cmfDufhPCuSqmg15rjLrGNe3qCeTX8TXSRlm3
JQM6p4TBxH+d8qVWC8X6YYG808Jg9+jdE71sLeR32jzo0rddvszSnu8jtJCJ
6LVgzgVhOLn+9hfZXAvRN3SHnlsXBtHFmB71VU10acI/jnG/CMhJu+MfH9NE
OrJtmXoyIqD0Tcqr/aM6OkWva9EtKwJ+j9ePdrSoo/OfOplOKohAKOvN/JlS
dZR4832os7IIGF8PeHs1WB0Nfut3DVEXgcmrnbq0wurIOe+LQp2lCIybdgW5
XgEUjt/zVuC6CCg24Z4znMFQ6mx45INQEQiRu+M6fRRDxc37sMMRIuC4aBy2
zoyhNxf2V6vFisCfPbW05S+pCP+GJd0qWQS+U6IUPSSpKC+czym+WARSeBdZ
/+yhoBeran82ukTAsqb2/pMBFZT/7omjeY8IvNJ6J1RUr4Iii468qegTgaGS
bZqn6SpI7yT5rsuQCIxd5hc/YaOC+hu5lPsmReDoYQaq3OQxNB+25VOxtrue
5qD543VlxIZ7Mu/MJQpSwYN9UceU0NasglkLjyj8sBkmveNVQmMvKxq4+UWB
1JUTpECrhPJ9i2N7hUXhAOdfTvuuo0j64x0xkBEF02vzAUdcjyKNnMuO3CAK
Ljoh/Q+yFJGXtMJIj4sogFXLdgvPEXRlg+u3vbsofKVhXh+kPYKCX9FyLZ0X
Bfq0JBem7wro5qkB6wPeosAjRjw02qCASiIDhjWCROHPcfHRtVMKaGrsxdDj
RFH44JaRsp0tj6wSDD7eeSIKuo36jZZqcujMKcUN4UZReN2lsiEtJoechXnZ
a56LwhV+nU5+vBzybViy6nopCn0B8qqVXbIoafr2IP27XTuqADikZNEb6tCA
/4QoXB4cFuqfl0HUJed+a0YxUFAjYrzJZMT2TKfg+UExkMuQcI73JqOlGClv
fmYx2NSJdxMxJqMcweWD0wQxUKK7iroOkdG2xVVNbx4xuOH7rof2hhRqfna7
JlpWDByOv5J/d1MSqce9SHpsKQZdpa+oNx+KIy6rfDu2U2IQdqWYvTFRHP0U
ipQOtBGDfarv6A/5iKOC53odmL0YcNOoBHGoiKO9y/07ne5iID/jzvahQwy1
Wn33mrgqBnfeLPQkLomi4yIcJ5gKxADMLeaRmQiqXXwt6FwoBlmeolbbKiJI
5Invr8ZiMdC4sFA3LCiC9ul/yHV/KAbeTbrtMyvC6NXF6J+ttWJwhL3C1ypF
GGHP1tKD2sXAuCb8pteoEFIy65n6tiAGc7QecTkhgqiYO+QJ9kMMYmPDIp6d
F0Ss09Lxd1bEoPHhb48VS0G05h97VPOXGLw8J3v7gbQgqrmHYnN2duO1yrGm
MiqAZOceyVgSxKFuYLbzE0UASYTeCHilLA4DG5rSz4X40HO1IjpDVXFIxY7l
NfzhRSYbzckDFHGYC49JmevnRQFe6+Wz6uIg+5uw+jmGF3XYOkwyG4pD/T7D
SP5lHuSuoqR/2kEc6P674VPTyY1Kf05yr8WKw/CThyzBuZwIq/hbcu2mOLyn
S1k3uc6Jes+xKzEk7v6fQvvW5Awn+j1haMKVIg4Lyv6u3dy7w/TDk0i4Jw43
2nBnOjM50PzDhMX4anGIU/Dg9s1jR1IuKs2iI+JQiv67qNrJim4JGf2OGBOH
Wz9EjnyrYEVrnx2PTo2Lg3LX+OvHqazohU38w5wv4qAY9a75oQMrMjP5nM6+
KA6Ot6rHCL9JKFAtypuRRgL6azgY7ymQUAe+R3BRVAIaXWaqCxsISObDtK2B
hASc/2R0Yt99AkqO/51eKiUBwe4/UUg8AdkyiDC7ykpAcsZCcZs9Af346/d7
/JgE6IR5zKYzEBDbLE9ft4EE/E78wS9hi0cuL9wjay9JgFX4bXsxDhxaujDv
f/zyrv8NDgsSLQ4F8Hp6DPpJQD7dxHO1MRZ0I/ii2eZVCeD1S9Slj2NBVap+
ApRoCbD/vsUpOs2M/tZHPG/NlICT1TM2hg+YUHJlzlpvqwQUwFu3c6YHEY+9
wKxTmwTQnU5uKJI5iIqYC0bXOiRga/zjJ9yBg+jphaJXbF0S0C35t8Sn9QD6
RC5PshmSAAfJ1ZIzxw4giZIG6amFXT2K+Qb3pBhRc16/8wqrJKzOlaQryDKg
CUNBez8OSRjKPprigmdANFsXrP9wSYL6zN+xF6v0SMOUwYhOQBJqHGPSvjyl
R217VJU5pSRhLdjNaFmLHr1zzGVUxySh8F0U7aITHRoROV+R5CoJX2+1uso/
p0V/uutLWM9Jgk90hWNfAS3iuUZ7P9NDEl5tzm3diaNFZway0wu9JcGYb8os
+CQtmoj6EPo0SBIyh0LEOtf2om8ziuYTiZJQMtH5Ah3di9ZKdjZkn0iCSg1/
ROI7GjRjpZ0X1yAJIC/MdO4pDRral6D75Zkk/Dqk0XK6kAY9c+C6m9YiCY1x
zIfjgmlQOMdR1X+dkpAhy0O35zANwsWeD34zJglHLI+vp0vtYNJuAzQue6VA
qKDwiODcX4yPlaf0xT4peLmadOZK218M1+poysEgBXkln7lX7//FVvmW898e
lAKtF+cTz9v/xRoHD2gqsEqBtEnZtObQH0xXG6J2xKUgJvXN8pWe35iT6EPG
zBNSYO260n5rYhMLem13XsxECjiKqg8ca9nEklwIb2vMpKDx47T1gbxN7HlR
YPzbk1LAOn1cU9phEyOJ6bL8OysF5QK5p+ynNrA2sWmSg58U/E3sE7dY+oVJ
SfALiOVKwePKtb8E4XUMOnpDa/KlIFrnDyGDYR2zco+exAqlYDsY/wUW1rCI
ksWCk6VS0Mc/vvG3bg0bk3guGvdYCubOKy1xGqxhiZLW5IV2KXDSeZvffHUV
W5FKUapZ3rXbTkfcWF/Bht7BceKqFMgE6FObPq9gLV5L5pfXpWBi7InXgTcr
WGKN3iWl31KQ2171ZDVnBZNSpSlvpCVDgQGD+7beCuaod0GwlY0MHKZ8P4YK
l7F+N51D/RQy2MaRlXKHl7BnjOtcRxEZ5Ezrm8i1S1jBwwLJNHUy/JAVez6d
uIR5//infUqbDFtiR9QntZYwJv/asDFjMnAfPOC7XLOIaUcLbnx1JANG9o6C
9AXsaeGfyfVYMhDvLm5QQuYxJc3LG/o3yXCh+9zAY/t5rG5y4VBeAhn4jZXV
TGAeq+EbV9ZPJgPDnROLm3vmsfKMloScLDKUtlSw0sXMYXnxUSo6FWRI3bx9
eSp9Fou7zHI7o48MTh7LT2/2zWD7ibHFiwNk8E8r2XR4OoNFV9M81xgiw9zm
/QSrezNY5NLKzMIYGSaEi3gL3Gaw6+79FPUZMrDL3npY/28a87G9Ozu3SYY/
YWYttbLTmI3W7lmRTxrSAvXeMpR9wf7172duFZCGopyywcKkL1iey9KovrA0
fFpUKXH0/4LNRDf420hIg13eyBo6/gXz6TSuDFSQhlN73+cFT01hN4yC+Z5q
S0OpqtKpEaEprPHUwF/Fi9IgpVwZT2icwM7MNb55fkkaqi7QOQQVTmA0QXkZ
WpelweGSOmk7cQLTzvJQtAiUhhTtglunnCew3k97PH0jpCFh+sGiJW4Cm3c8
PFqdLg0zR7h9HoyMY9wXYhoOt0gDsyxYTlwewxJ3XI/efCUN5fGNG2lmY9je
ZO3qb/9Jw7WqgTk/uTFsvp6uNK9TGhLp8b+qF0axRprIDEKfNEw03jNgcRvF
bFJD/X9NS0NH6qFUitMIlvEs8OiLgzJAZM/K4AoYwg4ZWVdzMcsAFOsL5doM
YaETx2T8cTJQ2d0gr0MdwtzpNkXkWGVgQumj0h7aIUzZ2I9UwCcDfCb6xziS
PmKDUz6rUfIywMY8VPmoahBjPeBZfeKkDFyTYdE4c2AAK9S8FrRsLQNXw6OS
CUv9mMK1RM0UWxmI7WhaXOzpx4yWqwaGzsrAyxqeTdbMfix6cH3LyVMGOJ3F
B0Sl+7HNghCNoDAZEAr7YMp5sg8bUUvpK34oA6JRU8/2tPdg7lcKs/UqZCDg
qqYhV2UP9quizmWhahf/8oE95uk9GEFoaEO+XgYS+4TJIu49mMF+Xp6mFhkQ
dsoagIM92PP+Yue+ARngmP40jp3sxvSZn8r4DcmAzket5ePq3diQTucvjlEZ
6E0VSThP7sbWGr/H2k3IQFBg1puDNN2YTL7co7l5GThRr0mwsPyAPR9R94tf
lIHvqQLmCuQPmD7JHMkuy4BlxSdVvT0fMNeYKz2X12UgorOsi7+iC1tric5k
35QBQe+UL+ORXVj473Snxt8yoB176NLA6S4Mp1gqfeafDKhHhkjTHunCci40
ru/syICDYONbtwNd2P8APXrVnA==
       "]]},
     Annotation[#, "Charting`Private`Tag$7079970#4"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.883723169543371*^9, 3.883723187493306*^9}, 
   3.883724249554368*^9, {3.8838106789301033`*^9, 3.88381068998208*^9}, 
   3.883815530570366*^9, {3.883817081645289*^9, 3.8838170890039873`*^9}, 
   3.884769587923189*^9, 3.88477106902424*^9, {3.884775721982883*^9, 
   3.884775744540283*^9}, 3.884775779742097*^9, {3.8847806894308357`*^9, 
   3.884780699233755*^9}},
 CellLabel->
  "Out[516]=",ExpressionUUID->"66f47fca-c196-4424-9e64-995d65ef34dc"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", 
    " ", "\:0438\:0437", " ", 
    "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:043d\:043e\:0439", " ", 
    "\:0412\:0424"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"PsiP8HeCut", "[", 
     RowBox[{"q_", ",", "cutVal_", ",", "disp_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["p", "q"], 
     RowBox[{"NIntegrate", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiR8HeCut1", "[", 
         RowBox[{"r", ",", "cutVal", ",", "disp"}], "]"}], 
        RowBox[{"Sin", "[", 
         FractionBox[
          RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", 
       RowBox[{"{", 
        RowBox[{"r", ",", "0", ",", "500"}], "}"}]}], "]"}]}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"PsiP8HeCut", "[", 
    RowBox[{"500", ",", "5", ",", "0.03"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.8837232791240273`*^9, 3.8837233426423063`*^9}, {
  3.883815540588266*^9, 3.883815556769533*^9}, {3.884775765382184*^9, 
  3.884775803884544*^9}, {3.8847812735539217`*^9, 3.884781282579073*^9}},
 CellLabel->
  "In[517]:=",ExpressionUUID->"12b6b67b-c03b-421d-97ea-f2051e4c3776"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"5.1204957357633205`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \\!\\(\\*RowBox[{\\\"0.03453515120386369`\
\\\"}]\\) and \\!\\(\\*RowBox[{\\\"7.751185290254582`*^-8\\\"}]\\) for the \
integral and error estimates.\"", 2, 518, 346, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.8847758042913113`*^9, 3.884781285143569*^9},
 CellLabel->
  "During evaluation of \
In[517]:=",ExpressionUUID->"9fc313f5-04b1-4dc2-a9b4-4f402cfe7d69"],

Cell[BoxData["0.01362943556320962`"], "Output",
 CellChangeTimes->{
  3.883723346036049*^9, 3.883724252996694*^9, 3.883810694126998*^9, 
   3.883815557634583*^9, 3.884769590420074*^9, 3.884771133868091*^9, {
   3.884775772036948*^9, 3.884775804301284*^9}, 3.884781285160314*^9},
 CellLabel->
  "Out[518]=",ExpressionUUID->"5b1685c6-3975-4c85-8822-f3f6f6933bc0"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"PsiP8HeCut", "[", 
    RowBox[{"q", ",", "7", ",", "0.03"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "1000"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8847758191611023`*^9, 3.884775850314929*^9}, {
  3.884775934702807*^9, 3.884775934774704*^9}, {3.884775968473261*^9, 
  3.884775968630706*^9}, {3.8847812915924463`*^9, 3.884781292532815*^9}},
 CellLabel->
  "In[519]:=",ExpressionUUID->"aa907d73-e27d-4992-8b65-eac5ef728757"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"7.243497567102194`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.000010367282964010612`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.1978699364575958`*^-8\\\"}]\\) for the integral and \
error estimates.\"", 2, 519, 347, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.8847758555043697`*^9, 3.8847759351644783`*^9, 
  3.884775969149082*^9, 3.884781295817816*^9},
 CellLabel->
  "During evaluation of \
In[519]:=",ExpressionUUID->"8ba4b00b-d0a9-4239-a887-42f4ffa1bb33"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwUV3c81e8Xt1KopCgJFSo7ISPxHHuT7dp7r8u11x1cI9m+JZKdihZZ4REN
qSiVUVJRKLNEKtXv/v76vN6v55z3Oed9znlen+egR6ilNwsTExPbJiam/3/n
vm2Y6PmsalTuznJ6W9mGwmtiFXQqXqDMYvGTNxg4hmvBZ2/FFMruM3gnzsDK
OkJNucQFdNa0wFC/og3Fd9UysVWsoPK7QhSu8jb0+rXGJZSxjmxJQdmRZW3o
xI9h03jiH/RQMDwhtbQNPc1QjnsjzQyDETn2aufb0J+zNNOf5axwsSVf/uzZ
NiRdO3hgDx877NvbIlhc2IacmvZ9V8zYAgY7q6U089pQVo/vQ8s/nFBYGxSV
c6YNdTxrPB9G3AaxWdm7UzLa0PzEv+DsT9zwFL4e2Z/ahrLXag4MS/PAJdZP
fW7kNtTF9m1lpXwX3B6+rzEa2YaGuc69ZXnDC4Qpa6ftYW1ocafGQx6+3eBu
03x+zr8NCR/MPH80gx9eV8QcKnVqQ0ricikavXvhh1j201CbNmR2dDjY9I8A
tG4dN50zbUOJ6iKagUQhYPqeVvdavQ0V6vRJxl0VBm+JmK9mx9tQvXEIb8an
/aB/9O5SoDQjnvTbiBfSB2FwlyRrxV5GPDUJ/a/lojCtpfXg71IruqKxcWdd
XQx+dtO/4I+tSElrUI7pjRhc2528IDXWiswMIwW4+Q7DcqX74Ka7rSjJ7u6C
dIY48K1Ha/RntSJOx0IPxcMS4LmTO2UuqRX95+I7otYrAZ8Hs9zbw1rRNe9t
d43+SELGV7UAD6tW9DaCUOhHlIHvOVYvpnlbkV+0NEfYdln4wfb+czJbK/oe
9y8x+qosuA4KvHm00oK2Umt86Z+OwuYjervDn7cg4b4YoSHpYzBlozV+IKMF
mQ3fW14qVwDrEwfCvb80o+R3zoTtawrw60XJ5fgXzejG7NpdaWNFkNX9Z63R
0Yx4fosX+K8qwjl5i9nHWc3o5f4zx6cMlWCP0YsrgpLNyMHfJm74mwoEXnOz
1rS9jXw3PrF26mjAYPRip19cIzq3KTnoTbEG1JdOfj3v0Ij6tvO/+rmoATaZ
nlmFJxqR5EGjWqViBJ1TBfc+/LyFfojYiY1GAYh7KSn+i7yF2vXvPLB4rAkC
nOY2B71vIsijcemSdEB+hhS/2+QaejixW4OllIHT+MZ3br6GzKSvhOFeHejF
Omc+3m1Azg+fvVLdpQsbahcrtys3oLg/QuWyt3ShKm9oqn5/PWryb1XkX9aD
LXsmz56eu4zEtRac5wINYdd+F1JabA26nkPOrSswhKMX12nB8jVI6e2uXu87
hrAOJdtc5qqRbswJ8fecRvAouWDZy7kaeVxL+/byshFcrO/WU9KqQqUCImld
M8YQ8e8Di86OCsSzYnsjz9MMbshI1u3IK0bCzget0zLNQOqw+lOm7cVI+uHc
j4SbZqB3W3nU9fQ5ZFBCRn7/zKAxkD+HlHYWJWlfGdAoMYeWlTuTJ1OL0Nqj
pLVI/1PQP35C06E4D3kKDPGKVljA/e4+PS2fFBRg3jJ9ockCrJtOil9KoaGw
lNJW/j4LmMzfNxxeTUVJiz5O25cs4KbKfZLJLBmd7/ld9fOkJXgt8D98yhKP
ngUcUng2agn6XOFTq0uBSONOjEXiDmugfLagvfP1xAeGPg+UHbIGwXjKfztd
fTDzZweT7hPWoPmfzbigmT++t1tdn9XbGh6HC14v2BWKjcKZ1TParEHXdc+h
fKFIbCuRKV7kYQMNIlnld2KTsQr8rmmOtoEe6cEfcgQy3msXJDqaZQPKlgcc
XFfIeDzFTHhfiw1kdeQPGh6kYo/3O3kruGyBh6vnk7pnCg49W/KvvskWeO+y
ogPJ6fjUta2JA49sAZooAsPr6Vj+fuKvpQlbEKlwu+4aloHXvrmuynPYwaLg
3kuL9pk4wUxsrtXZDgwcieOz3FnYxbvI73W4HRwXkc9Si8nCKIF9+neaHXzY
y8XnPZGFWa7Mvte4ZQdb05tTUPUZnL6pYfgeuz1ciPxkLbE7BwcICltP77MH
4UdqTw2Dc7CxQs7zzcfsQSWoL9agJwdvdyc+MXK0B2WB9Kvf5HPxcvSkYVCY
PXQ6zPJoO+Ti59lWD8+k2sNBXkPZVHIuLuw43vPsuj1knYeED49ycdSLWvTt
nj1UHV888Wc+F9t92dO567U92AjWPdrGnYcF+H+12LIRoDO24/6OU3m4PKKr
YdyeAN+sPr9vuZ+Hfy5aShYFEeCtusTzZxN52DJgptaUzLBfUS/d/CMPs7nv
KO+6RIBXHV/1h8TysfN4tWD0HQIs+pis+57Ix812qsVHBwlg9WdEZL95PvYz
88gvXyPAnyffulYj8/HdR2vbCZwOEG7hK7EnPR8L6J4+zSPsAH1Rd/45F+fj
J2pNKVRdB7jm48Xv1paPD7UYMKsRHOCmDGe8UF8+TpJ/m7gS5AAq87yZbMP5
WE6CPdqr0AG6D+wXsV7KxxnV51cE6xygUZXna9evfDy5/2jYqzsOoKUpt263
qQCrlfTOnxl0ANGjvd4HuAtw4W57f70pB1B4HB+0l78AL+TNf/q7xojf46ut
c6AA622jeLRwOgLx6odDlUcK8MV0vnehwo7waZVipShbgNdZrziKyzsCdYB7
x4ZCAbZI1hh9r+sIwkvEql8qBfjKryHrYoIjfHC7SDimXoBZo3yfWwQ7gvvR
XGoFFGCnr79NOSmO0LxNNtxEuwDfDsrt7yl0hOsLOmQF3QK8fVZMP77OERwy
I7bY6xVgH8+2XoUOR/j6aV/AHQbGE6YwP+gI+zustrgyML/DZEf1lCNwfn5p
qMPwD3sVper8wxGG7y+cC2LwPzrF1czH5QS88UTPMUZ8kScX5QeEnWDSsE4g
i5FfvL7idbq8E6g+QQp01QL8sqdPCuk5AZuM2qFHigVYRsO57gfBCbLtpwJt
jxZgettXsRvBTvD5UEvqUYkC/E6RXuFHcYLlWMfvNiIFWOWGgPDBIicw8Dp9
8rFAAc6Tun5+rM4J5JS3TOfuLMBfarX35Hc4Qfz5jPg6jgKsLTJaYPTMCYLO
N2TuYirApReCdrB+dAKOxtmqF6v52KywiIPE5QyN8Xo6hHf5+BK3JF16vzOc
y/328+CLfMx0uovlk7wziGTX7dZ7kI9vUWZ+2zg4w+auhL+1V/Ix15/4mO0h
zuBKsd86U5KPvWJ2rD6gOEOOVTF7RlY+3h2quqh82Rn+2qm7/gzMx6FfngYs
dzgDZ0X+zscO+bjP22Om7pkzMJ/gcdpkmI/jnE6/37vO8N8mHt4umo8nDN8O
/dZzgc3LZwi2Q3l456U/vxycXGC0Miv0Xnse1mMTFm0nusApVpaK3Mo83NDl
EhFT6gJ6W8/2mYbl4QSF97tWv7owlvn0sbNseXiv0JT1YqkrUMot/Nx25mKT
ONZE01uucDfp4J/UqRxMHhGtqX/oCjeGDwefqsjBs3leqwHfXOFBkmXyZoEc
7Mi60r8i6gaJ8h4xyUzZWDKGFBgW6wZX09rzy2tO43u1Kf/2p7jBtnSy0ZTt
aezyqrBgMNsNjp/x54rcfBrny9++I1vtBkZhT9nP+WTin/OrXAsDbrDjj7OA
k1AG7nOPrvcXc4cSjnqnkTA69jaOW/AYdAdDf9OmgQEyPqA5euH9mDsMFz84
ZUNi3NdKSmYuH91BqSbGq20vGVuKfLtG+OkOyz36vFZ9SRh++oedEvWAE+cH
U6SW47HgJcKKerQHbOJsNX+pEYVfsKj+5N/vCWeOdrZo8frg7PX/Lv8n4QmG
/0TjEm57YaPF7wReRU+IqYg9sGjnibvHbrRzG3pC6Hbbm5fL3fC1G+IJ7BGe
cLHRcOhCqi3OdOH/t/LAE8Sq8uXqYwSwZvsPtsEQLxgXuVx1NdsDqXjMKJ6L
8QLb6Lsjqxc8kRzniJc71QsOKR/5tOeqFxJ2aL63UuQFK23bbPq7fNCvn6QU
/k4vuFPKLqvxOAA1qX5j9eDyhqi2z1duqxLR1Q8fFKT4vOH1aFpcxzUiqsx4
7vld2BtWGh9L0kTCUe7YjV66vDcEDqvz67NHoODYUNpVgjeMGvJcDuoiocNt
8yyrl7xhoi97KGYpGgm5j8t33fSGpCd8VpnmMYiX44lH2h0Gn+/5DvVrMYiF
cLVn76A3dOoebUrxjUXv1v2pGmve4Gk3vDf0URwaLifc2szkA05qDd6BwvFo
wMBw8hmHD+w2a3v+jxiPOs6Ja3kK+UAju4H4Am8COqcyw5yu4wPCDy1z7hom
opz3w8cszHzAKIFZw6cgEdHTH7gL2PvAb8a+lr5JRJGjNXfrA31A6JCUU4dv
ErKM8aI8z/cBX2GtB+0hycjwgPXN86U+UNKuKvC+PhlBn/YHz1ofOG/owFr4
ORnJ8otqrrX5wFioT7zVUTLiav3AtO+DD9RrKG4qKSWj5VNn6S1zPvDmqLnW
1lYyevnZZKv1mg/ciSVqVw+R0YV9rXvOcPky+nVOynATBVGbgi9I7PaF7h8q
JFshCvIxFRV9cMAXbn7Y0D6tSEFHk7Nl/x33hYNu3P8FuVEQL79OUwn4QjrM
yoxEUND6jZ+qKsa+8NdlOqYyjYLuTnrpEt18odM50OJ2PQXVxgs83hboC3dl
fe7+6aSgTN5np65E+kLZi5aRsAEKstJTc5rK9IVLI0M7xuYpSOXd8ofkIkY+
0qpWg78oSDCm1lew3BdsHm2P/7aZiph4nBZar/gC+1SbpDYvFX26zBNhc5sR
7/VXrp79VNSv9XD9K/YF6c8Ng6GSVHTtTUJSdr8vNF06pWaqSEX5JHk2qVe+
kKkzs+KgTkXR22YzHr7zBX+z5ifFulTkVHuB2+uLL9z5zFrAaUpFgKyKmFZ9
YY3vj8A1KyoSG92y78I/X9gXX4tSCVTEQewqV+X0A4tH7ZO5LlS0yEE6PMzr
B2UNzfPPPahoqFKiPny/H+y6dsnE0IeKmtXeHeOW9IPPpeLrP/yoqORlYctV
RT/4UW48NxFAReRgI3UD5AfVkmni/wKpyIudqfejoR/8VHSsIwRRkcHF2wYU
az+w9DxwfolxLqMSOCDk6gd/r/1m6WH473x+wLrd3w/i3yn8fc7gX/MfHrMl
+QHrtl0NBxjxX7Nkua4k+cHpmSGl64z8cInmp5wMP1iaSu9LYuRfrfgjQLrQ
D9hO7SzKZdSX/rR+ua/MDzTMmF59YtQf5OMR5X3ZDzjbaQ+SGfpY/Nuzwdzk
B2ar9g2uelSkdO4ppazLD4LLG4foGlQkcIy2We2RH+xVl0xdO05FUx6LO0kT
fiD8V2W6SYSK+n5Xndvx2Q9U5RVN2PmpqL6QINyw4gfryrMNNVupKPLBPYnp
Lf6gc6SG8+UKBTm4xl2n7vKH63bLH72nKUhj/ejx/cL+ICFuHms8SkGbJUvA
XsEfxgZKeva0U9B8z6kH39X9Ybc5dwLzFQp65shukmfgD75l0es6xRRUfIZo
1+/sDyb3PSPeRVKQ1Ff9kJPp/rD5R+xc9hEKMjmZEyGW7w9fX8wuTOyioKC0
4Zitpf4gJOghdfkfGdULedPGr/vD8OXnT26+IiNpI+q5hBF/eHHhKqk9noxM
ih5d8PrgD8dK0thZvcgo6P2OKpM5f3ha85D5uTEZNURdbBD85w+CZmy/WATI
SLaqo6fjcAAcPnq1dtA9GZktsvZVywVAVKYyK4dUMgpRNX6adSIAxFWDW7xW
ktD1wbERJ7MAqP/Kp5hDSUJyG2vzG5EBMCZoULqpMBHJ2xzbo34/ABRu35CV
KoxHluUxgocGA4Dz1YcDv07Fo/A5fHDbWAD0XhHaENwWjxopZtJv5xn8xZmH
AmlxSPFaoGYibyCYLv6opvrFIqXNtYGdnoEwJ61LCt4TjU60CXSrswSBg+BV
iUfC4Sjh8fUPK1xBsD+KrL30lIi63uqwXuELgqibaGAogYg0WUL1dksEwdRg
t8LEWBgyMO59smgeBN6PRasaRUKR3dvAsYsXguDC63cpq8v+iMTc+Y1ZNRiu
lXiJOyy6oOZdlrytWsHwFrew6JQ7o/VDM8dDTILhhi+2yrN0QglGPLGvXYMh
fbdHF7mVgGgF3v9u0YNhZKxnaSTTGuUf2r7V62UwHAraatRUrYOuG7oeehAa
Aj6mnX/myrTwhEl7qXlcCNxu7BbZclQXbz/FxzuWEgL76aq3A+/o4yDbxyzz
xSFAFWtsud1ngsU9ld/z3AuBs9tsyGcIVrgygbvEmT8UXKSf3uZ744SfJwfs
nBEJhe0+t1Y6mVwwE+1+RphMKDxgF6n5KuqKXTLiY2haodD578RC0E03vO+/
GZvLQaFg7a8q+em9By68jnesdoeCQvmC6oO/Prj3lkB60uNQGDri3yyS4Iu/
3Y78t3k4FG4/ONvGse6LLTqkFgXmQmGM79hywJwfTvv42LucMwzOTBSZHOkO
wMI+sQc/cYfB2oT6jZRjgbh55vBbCb4wuFQUWG1TEYinv1CsG/eHAZOsP79B
QhDW+aqs/UAxDHaeSeWT3h+Cx8M//eU8EQbCAn+9J2khOOJ7frs5CoOkmROD
P6dDcOWPhWNjhmFwKFaQXacuFDP9rTow7xIGVkX8Nhmnw3An546/PBlhoKAt
Zys4RMTh3vTYjTNh4Pjis8Pl70Qs3r3xfTqfEb/UIjt6dzjOj/w8d6c0DOQM
Z3cP24Vjv/c9Y943wqD6SbBqwfNwLKymanPqdhhc+C7NfXAxHL8ouv7sRHsY
2DBbfVngiMAaxqUPue+FwZSpGb8OisC8zZG320bCoOTX1tx35RG4f8e8XPV4
GNQ8ryz3aInAyYEe9dkfwuD6U1FpsacR+MsB8yrPuTDYXfxgxmMtApfH3xc2
Ww6D3y+UNN9zkLDNsNp5ldUwCGg38isVJOHu0+J52/6Fgc8HnubniISjpsu2
rrMSwTeeqGx8ioSlNPnSJ7cQId2tU43NjYT/W2NObtlJBGNmmfvHE0nYxCLm
V8UeIkg11L66lknCzPWLkVmCRNh5+22S31kSDnJ/E+R+mAha4/e+lV0jYZEO
i1ljKSJsqZyPFmwj4ZHdfZ5KckSwuLjEOd5DwllEjXcHjhPB9cLuPROPSVjr
SZMD1wkiGFF7tom+JOH1w1LDqxpEUFDY5HP1DQk3UCos3msT4WXn2dLoSRL2
GN/ztN+ACP6uzxTSZ0mYXznb4LYpEa4HnGt8u0DCA3ls9y5aEiFhq8flmG8k
TJuPQ5l2RKhfEqojrJGwiv7XdpITEUTvyhlQfpLwYoWvkqs7ESYL/I4s/ybh
qo23Nw19iIAPfZut/UPC9nbWMoqBRCjYZHa89i8Jb7/VXyccRoRX53XbFxm4
d6umGEckEZS530tSGDjGt+XiSiwRxPbZIReGv2yPzL6JJCI8a+K6TWfwTwlW
/9dHI8LRqjiz3+skfC5aYGdjOhFCvsu96FglYbOh3DMXzjD0JnRzP/lKwqwy
mznS84kQ6tX4SoJRX2taYkr4WSJcu0H5PTxDwiGTK/+cSokgMEdzevmBhMXU
A+L1K4gwdm9mVISh39jZ92vHaonwrb/KpvcFCWd/sw0XvEqEG4cCO5oZ+uuY
Pl1gv0EEP1Tx+w+jP78uaft/bSICzcqU/Tyjf9dZ2j++aSOC+fS2l6evk7BA
a+2bG71EMJFfaiAVk7AeFxPLpkdEOKP7otYzi4TDXQjihAEieHmJknKSSLif
bWsk8xgRblcQVioZ87Vm511iM0GEmq2lvmcY8ydytevu5SkiaF99o9jOmM94
C+J2y0UiLJVsL3u/j4TrqvsVa1eIsD36icTbLST88oeo4691ItxV/r5wcDUC
S5cNX6pkDYfXq9UnMh9H4PEvapor/OEwMjvzgDksAm/RKPLVFw6HCEf554F2
EVgxb/FMiWg4MFE4BiU1InCWcsVrbdlwmPk07nqNsZ/qKeykQu1wIJMNFn+f
C8dlQs9rj4eEw6aOgtPoPBH3h0k+zYgIh9o7MnWPo4l4rZe28jYmHNTPXcl6
ZE3EZgFKQKeFg+Nhqo/INiL+11wyNnwuHHx6Xh9Ijg7Dbqd8tsb0hkN0y+9m
A/8QLEL7TWznj4D2sZYGuS4//K4tvnZVKAIeE8bjXF39cOny79dyohFQsaeF
aeOfL97tsqF9SSYCBkXMa7ORL+ZU/cNXqBUBel2i5860euOvi3/bgoMiwDgu
yuFMkQfudmBhOdgdAR1KlkqX5OxxYh5Vyel+BJjix0QnFzt8oo8l8Gx/BFSX
H7T+dtoWNx1nfbntVQTwFsvVv5u2xnU72Gp/fY6AssDqkNJSC5zzYJPRy10k
aC4RcbonqIdd5Dny03xJ8Hjk0TMRLkGkqmVJ9wsiAb6+lkoeFkW8liVxhkQS
FPeovJ+tkECPiDKeXPEkWGDfcqizQB4p3rRQzMkmAd0jsZ/6XR1xyZ0f/u82
CVRY+AxoW4zQNJrqj24nAZmCRgbcjVG3uTS2xyTYZLj8cE+bCYoK7bok8IgE
B09oPUxwN0eT1yZjysZJcOZLWreRiSVqlZHaV8saCVpGBwcVTOxQgTqJO21L
JHDMU+Map+1QiGknq9+2SGi75Fe0kGyPRIPN5yX2RMIhvT1jlGsElF0f0dkg
GQkatpbDPb8dkZdUh+tti0jg/S2g+ljCDSG1Tdb/2UbCaFCTxJYgNyRgbGYQ
7RgJX+8PbdAb3NBgwHs5Ve9IODWRGKoj645OXGFj6YyJhJNTAwfPHvZAPBKm
1fcuRsKuus13Yr56Io9jsdrcNZEgbEYMvS3lxXif1kwSrkSCzLmx3l9eXsjW
6M+BpSbGuc5BpfMvvVBpYMOFvf2RkNObOcNZ540WI8ZOeg1GAut/Qb8CXnsj
lLBp/NrLSCj/t3qmn8sHTWY5C+i8i4SDf1KDUgJ9kPi1bWdDvjP0Cebq7Rf2
RXHNqkptPyOhgPLWdLuhL3rc5f2K9V8kpBgOPjcK90Uhg527ijmiYEdNs279
XV/UPfL51tT2KBBr6uB+NuOLeN7zWcryRsG1vm/0L1v9UNNycG6vcBT4685V
MFv7IfafxUe3i0XBr6VG4p9IP2TH/GDAXoLhn3ZDb/E/P/SLR3jbokIUOGxW
72t45YdAYSCD3zAKmIS9Ry7o+aN8tV/inmZRYDF1XFnNzR9NaR/ua7CKglWl
nfJPYvwR3TqJXdslCv5pXmJ+VOuPRp2u1JzxjIKknrAVxQ5/JOE9rDPqFwV1
nsbthc/80ZNIWVpwRBRE6m0PllvzR8JJDiKtMVGAH0nfC9ocgELp9LssSVGg
aNH44MKeANSdfcvNlBYFecvWPb2HA9DOsxP/zqZHAd3Lavs7xQDkdZHz4uSZ
KBg8HsG1rBmAbl9S0pApiAJa7pLoD9MAxH7D4230uShQex78+Lt9ALJvzU7o
uRAFyzeIyZ89AtCV7vZ926qiYCre4v6rwAD0u2+63a4uCnqz98u0RwQgk+c7
HSobouDbk0vmZ+MCUNmYxs/5W1Ew3vt2IJgcgJY/BJxTbo2Co2kDNhqpAUjz
y3/K1M4oUNHPP8eREYDyv/UMP+mJgvxKdetnpwPQx1+LkXv6GPW+jDEvOBOA
lFj38Xk8jQK918fsrLIDUBqXflP9UBQ81uHU5WHg0V0RVj9GokBHsX/9aVYA
khS8+E3zbRTcinrlkJkZgOLFHudlTUaB1LCti35aAHoi/UNuZCYKns9PbWyi
BSDh46LPDi5EwYsNHdWHiQx91c1Dg75FgcKva8JZ0QFoQlhnwOlHFIQ+9soe
DQtAZkyqMqYbUVDs0PzXyD8AdX6QyVJnjoZkw1inj24BSLpXZE6GPRqqKprO
19gFoNLqPUbCXNFgxVZ4K4ehNxd96+XtO6JBtsmhqkorAH0xWPNZ2hsNz32H
JE0lAxBBcu7+O+FoMAvhmPgoGID6uN6LPRONBrZx/qor2wPQpYFHkzdkomH/
I/Pxe0v+aPeNLs0K+WiY/1tRsu8dY97yGsvzlKPh4hZ21pqn/sjL+oJLuGY0
WJ+PLrOu80cvj+d3euhFQ2JZoVFioT/S3pMmaGUcDdsC72e/TfZHIq/DXivY
RMOLg4e4jKz90TtXHdtVv2j4fUlTZn3FD5lpqt7+FBwNLnFaT1le+6EuEVne
4fBooPrxfTTHfqj0056h5oRoeMtno9uS5occAudMY3Kj4eNVk6yP3H7okcn7
er+iaDBgEo6SXvZFKrKvuAjno2HzdOVSz6Av2vO165FqdTSMoJLvH7J80cuo
fN3fLdHggYc/8/3zQeZUVfWkd9Ew+YLwe/CeN+rylC0N+RgNxR7Kf/vOeyNZ
XdHfLp+jwfnYlSWpMG+0dcu2NrQSDe9Nbq4p7fVG/WfeKzJvjoGepH+NRYz7
S6c4TTpFNgYq4+i3D0x6IMkIV6UJhRi4kLrjt9NVD7TDVBlUVGPg4F8hi20k
DzTONGM1rx0DlDdZfi9ZPRDJTy/emhAD0b/843SE3FG18qZ+sZQYWGyedp2P
cEFsw1Tf+2MxUPtiSuaSgy26tzOpkj01FrqeX+ddKVVEas8S2vUzY8Er6rzx
b7I8unUmfig9JxZ06vii5r3l0MUtsSxc52PhVbda/RVvcRT3N8KD+3osbNak
kIOHt6NjX/xF+MdiwX7gdcbxvRK47K5NpYRMHHSaxmbrv9PFfMnW7QHycWAq
OmIW8FQPZ520GrqqHAd7sxWF2dv1cWzLKRZZrTjIihk+djrbEFs3GHvI28XB
+BOngn+ippizWFNEjRIHDxIvJJz8Y4EptnAigR4HpfnGzCE+lnh9F7LsPB0H
ApIOLjUDlvhT9kkq+i8OXizaRO4ttcLdKcqT2lfjQKS3xeuepA2ODpOpNHkV
B8V8uoeaee3x1s2rsQqv46Brc/ybbb72uPxCh4XAuzjYfNQW+bTa4/5+Y+bZ
2ThQXtQr5LEnYMFDAW60jTgwyr4sfOC0A75555hKAHM8cEydrjd65YD1LH9y
W7DHQ6J/6idfYUccmpyOhXfEg17fPS5SgyPuGasVbheNB0/vxCOXu5ywbVjI
Wrl4PDRfCn6kweSM59iVBtJk4oHN0zLqDjhjXsX7iTbK8RBz2XrUq8sZ+2ZP
jS8bxUP7+f/kbOtd8IbY1aYR83iIdr5DYPnkgnPvhGd1WceDwPgpQpagK26f
ZT6Z5RIPImm1v46nu+Kt2gdKjoTHw75idbcpcTdcPjYTvj06HgqfXpaoBjd8
POy60Wp8PHh5bkl4ZueGXS5o/OpJjYfsr4d9A1Lc8IoC+9DlzHhgeTzqPlLs
htP7n17OzYmHF09cLl+75oZv/nAiuBTHA899Xf6SYTesly12TLcsHsYGovqu
f3bDr8Xmt0hXxYP7XsERmQ03zGYZ3/qzPh7cINvWe787tq0v3lPUHQ8vKWtv
Ol3c8ZyW+1L8fUb9UoWOe4PdMXlM/KFHfzzYLhJ03sa548vsrVFyL+PBg1pw
rKzQHWtcSDbbMxYPm83/HCspd8dDCvqH/76Nh7VGUgFTvTvecBt+9XgmHqTY
7WrY7rrj3B8XGm7Nx8NwkU90Vb87PpTtnVr8NR7Et3QuXHnhjtvFZJzJa/Ew
qDsktm/cHZvd+a7o+5uRT2S3+vcpdzxl0bHVjCkBNHqQi9KcO46ZpX1U3JQA
08yVNz58dcdbk4079nEmwGvVAc+1H+64gm9XIQt3AnCwnbxK+uOO66s7d1vx
JgBFjfUqZvHArQp+xVV7E0DpGoufw2YP3NuzU/C7cAJwrr8+rsvlgQcsOst0
xBKgaqdrCHm7B3793vdgkUQCsEdnEbfyeOBPoTurP8kmwNxWWs3nnR54+W/H
YSXFBLCcTYji5/XAG2d8L9NVEyDj1X3bYgbeLLRTekQjAeSbbnUFMfDO+o5r
R3QSoK3inHTBLg/G+933WIxhAiQFGBzaxuCT6Odp6jNLgFCbH8fecHtgRUKH
0l7rBIhY1Jn6s9UDw6xPmz8hAT4oSw1Gcnhg42iek+0uCSCUFJmnvckD27J3
dHF6JYCcX/NjXyYP7FHko+nonwBlb9QPTf1yx8FiPPeuhiTA/sbtxs3fGXo2
3tHbiEiAtMyI5Q8L7jhFy+eRSWwCxLwaeewz7Y5znu8wuZCUAJurVkt1J9zx
ebc7Awu0BODanX84+ZU7vpm042V2dgJ82aqRtanHHXdsu2P7roBh31PBYd3i
jvtKvceOFieAg/aJlP/Px0R7+8SzqgT4mNO2EFXgjr8YersfvMzol4fIZS26
O14d5f5IvJYAPYd+/AyNYfT3h9fnnW0JsC5yWmbFwR3z07mDPLsSgPlE5yZj
Y3csyte+2NjL0INyxGWLmjs+ocD93XogAXR9mG628Ltj39C2v/9NJcD98LVX
7E/dcPhfT8rMbAIospqm1LW64aQz29lUFhMgqOA4sbXKDRde9eQYW08AYlZG
55EYN9wzs4133/ZEmBx25fMRcMNPo1r/C9yVCKv3M86UMLvh0U2eezv4E8Hz
uKNO/jNXvCTaKuwsmggKIX87Rf1csaCbh8RFlURYLL0U8DfTBUePNmuIeibC
w7tLO9gqnXA5SFL2+iXCJpYbrvzeTri/7kIvd3Ai3CV68fgeccKCsSkGG1GJ
UOR0JL/zsiPu3mtp+SozEWQuJTUW1ThgTscF77RbiXDm0Ju04wn2uOyt6Jk5
5iQQmG8b5mi1wg91zw5+YE8ClogeL7qvFV5u4Nw5ypUEX5h2zhTstsLaSV//
u8eXBOcXZYyDIyzxrDDjipZIApKtQHSAuAU+5ubQZG6RBIIvVd7Is5nie5O5
bxrLk0BL68sHGo8WTpKVks6rSYLW10vVSZ6aWCXufkLIlSQ4tYnvkN1twPU8
v4QkmpLgnLuqZchNDVwInm5lD5NAMj2P+p+6KvYqO/4pfTEJ3C5o2X9qlMZs
Dq8XnU8mA760fHHeVBB11ZCQmmYy+Im8H2V7eADFfN2ey6+XDHNRiq+YvUXR
fLr2sRfmyZB2OK8p9rw4etlSH2HgmQz3nvBUVJOOoWq+5HX5zGRwOS6zxk5T
QzrPRVm2jCZDoEom634FfRTJV/HH7G0ySN+aMOIf0Ee1BOGfRZPJ4Kr65Ppz
XwO0eZJ/WXQhGUiKbkPEs4bI+yf70n5mMux7drL907QxEufcGFfbTYbMFxw8
bgdPIahvd3jHT4Z3EG7xzPMUsjeLHaXuI8MNF8G9STWnUEb+2otHB8jwe9uH
W5mHLdAXga/9dlJkiHKv4zm+3xI1SE23RgAZuK7uU7T8bIUePK1W2qPNOFer
Wn8kbI0mQj2b2nXJIPavYc7Lyhptb3p/ndmYDGSXm6t/26xR2Mk3tTk2ZIAn
txsvJtig9IliMQV7MtB3HHm09aoNKifbVw47MPhtK8QKRm3Q83uvLgi5kSHj
zH7PGTlbJG/6rPBqABn0Suzn84ZtkdFS9k7zYDI0cgZ8qP9jizzzTHO/hZKh
w+oBcUzUDhW+6j+tGkkGQtHQCa9gO1QfncHxNpoM9V/9Vrtz7dC9vQZp5Dgy
nP7Eby7daIdWne9THyaToU7WX1961Q5tZ0phCqSSQTHmzA3Ma48OV2olbU8l
Q+/lIVNXBXtkO41jbTLJ8M31vNDdYHvUGtIeNlVIhrKusjcsI/bINdF5gHCW
DPOlheCwYI/Ys5iknxWT4djoqbLXLARkc1lvpqOMDHe7XqfaSBHQRstnHYUK
Mly9k3fXXIOAqh9kVV6uIoPg7nFC+CkC+jY15PxfHRnOjrWYyYUTUPG3yDtb
r5Jh9VNcwWMKAQHz3r20BjIcdpDZlJNLQLPcHVE/r5NhJqenLq6MgHKEXV+G
3iLDp4SPGdlXCUhJhkV+uokMsV5L7f0tBDShVpPj1MKo127B+mgvAaUaGSwM
tZGBn5IX3fGUgKQJc0aGHWRw11MwDB8hoBe+2XW4i4GPPlo79Z6A4qKOsSvd
JUNy1VSj/SwBiaS+9KzvJYN3xKX2jCUCelQQfVfkARkuK/QZf1wloLBKgf3F
fWR470O95vebgPhvdiZwPyaDekyR3B4mB4Sx2+vUpwx7uvrhZVYH5DPAqrIx
SAZzZpkvK+wOaNvb2qLwITJc4KW/FeFwQE1zhiuzL8mg8/mFbyKnA3L6NX/K
dYQM6DbrD1YuB8TKkXvt1RgZtMqc/zUzzq/sUdhqMk6G+NDE3/8x/C0PD/v3
TDDm7aBxUPVmB/RTMfahygcysCutjL5jc0Dl2oKHrk+R4ceniQFDZgekb4mp
h6bJUCVW/2Fyg4AW3Tzel8wy5jvq0NWrPwjov9BNGjvnyCBSovq4+isBqSfV
laQvkOEM98rMwBcC+phl/PPvEkN/99AGySkCyipZtI38RoYPDsNPW18TkMKV
vKa572R4zGLBHPecgF63Ku70+EEGURITe+hDAqI8HAkd/UkG2unvF891EJD4
cNxTsw0yfA0UKf5xg4CiV7rT1Zgp8D4CFu3PEpAwi9f0TVYKfL6t/tspg4Ae
7NisI85OgbzpuEfFcQTEK2v6j5eLAr0OT43uOhDQnZPLTqe3UeD6euZ4gyEB
eRgXtDPvoMDiau/8sDIB3fQbi1zkpcCy3BHaJA8B2UcnvPDaQwGlEeB9+Mce
MdH3H3uzl2GvWaY6P2uPzKq85x8KUyDXwyB/o8Merd3cYqRxkAJDE16/P9fY
owvdVy81iVKA87Cpl2C2PZp/+9WjQpwC/Pxer62d7FEGf9JYnDwFpDb81o4v
26Ggqvyth49TgLshRfT3MztkJnsJPVemgHlTv9HyDTvEq/Os5og6BRL+EDWI
IXaoLFQk/KU+BcY2HT34950tIv9Sqkk2okDE+Um7iHbG/ZFqPCppSoFNCXtL
DhfaIvESkgbFkgLSr8fumenaolsPHnDKOlNAz+Sjw5syG1Ro8UZ9zJUCZr7n
yFERNih6fCksxYMCrkK1Wq76NujkN/6R174UWDnW8/jggjV6KBRYlRZOgVgX
DbcaOWs0TuI++SGNAnNhpA8ZxZao659oaFYmBU5mn8r762mJKjJVKpXPUKCY
LerhlIwl8il335KdT4E2Y/c9HN0W6OvjxpcnLlBA7K6OAfPEKcQuah9ceIsC
2TP2fPRNZkjueXmZ/lsK/Fm49mieWQ+9edpnP/2OAtSdUTqTSbqI3r+8M3WS
AsqjZX+dfuug8V5I65lh8Jk2rqx+00bpze9D1b8xzq0FifBWE70vOaCpsJkK
aix/OAV11VCuT/mU8DEqHE/U3sgwEkNqnn0XOhWo4P+rfEP/iAiadl22c1Ki
Qsq1jBs5bAfQSQI8KVajQvOc8fMd1D1o1vh9E68eFWTjzR7RhX5pwLEDdE5H
KnxwZRWr+SeAl39fFF9LocK/94umEsNKWNK7vsc3jQpX9vprTncoY6+BVqex
DCq8Pi13lFipgkfLn+d2ZFOh73y+8oj/Cdyty/qTeo4Khs8ImfKf1XFOjs8j
7noqhDTW1HtaauG+9XBPyjUqVBDqcjrbtRi/4Ml/vt2gQjQqZTcT0cZRiueO
Dd+mAjuvRuHmJW3sMvaouBRTQUF8YV9eki6WFZUJkHhBBW9uZv+WCAPsl6XK
VvKKCjI3cbn6gAGuXNUt2zpKhZ2uLSXPjxji3X0uQ0vjVMj30uvfO2qI/wbl
nmiepsLdYIfYBWljrDJc+vLIZ0b8jtS/VcnGOBxdDimeo8KssP4Wu+fGeJqn
pzJhmQrGPK9uXSGa4KfNK5zav6jwxvlY+VCNKWY/wFTTtEGFGf0CfeVlUwwZ
W9Hhfwx7ydbwDFUz3OR4KIKDjQbvtJuoS31muJTJ7s3gNhrIMZWNFb42x0FG
7VedDtKAba574dfUKfzhqMo+VjEaGK8sfz/HYoFt+ZozLx+mQb4smTn9gAXW
fH/Tf02KBqxMbQRbBwu8O+rykVwlGrTwKD2suG+BTzseOaukSoPgXSqnb09Y
YCbNGva3ajT4xqrlzvfDAs9xVXyS0KRBMrHHsOWQJe6uOFfVa0yDDTm2xug4
S3w8bfeuADMavCjOS3p3xhJfCSqk7rCggaookT+33BIXKee6O9vSYETjfFF/
ryXmFNr+nJVAgzWOn+tWLy0xmSULrjgy+E8/lzz00RIHPE3b/8ONBtYuYjpl
zFb43a1NORc8aTA1TP2gy22Frc/R/mr70MC1WLhNUdAK9ycyh3zxo0F0Yl1z
gLgVRp7Jb3MDaaD7N+nJjIIVbjL4Y6IcQgPB7VdXrmpYYUnZ+I63YTQ4eX1c
qsXACvP+jCqRjKJBzG/1pUoHK5wx8Z3zeQwNfKWXztM8rPDf3vC46HgarBeV
n7vqb4VJl5c/CyXR4HEOJ8e+MCv8OTuEcI9Mg8N2EbuGIq2wC2m+L4BGA2W+
K5+exVnhl4QAFR46Da7VMzftSbbChmj2Uks6DU6YG7fVUq1wl5jPHpfTNPB8
80wpKdUKK3B+pLNl04CJ1ZxUlmaF65bc167k0mDLiSW8OcMKC796521RQAP2
UM2QdgYuaHd+9aOIBk+yjr9uZuAt5W90ys7RQOoBr/efdCuclEpo0imhQfPV
uKhsBt9KwIjo3AUacG01SwhgxPM7ZVOQV04DrYttX/IY+bw9/oJFpYoGToli
Jzcx8rXcZxE+UUODTjfJr/cY9fQxDX5IqaPBtqaC3OeMetWnTSykrtLALdj0
khRDj1uP+7ufN9Ag6rZb3wuGXuI3DeRibtDgutOXrH6Gnhf+e3BRuJFhL7Sz
cIejFd6ZoMN9/zYNTOuZabWWVjjdvScpsJUGjWffsJ0xtMJ/9GCR5w4Ntq/e
7L+HrPAsz8mnLt00+NK1g01K0go7/2g7uamXBm1hvD8chK3w0Lhy/dX7jPwk
f0i/47HCnZcUTq/30+BGTc/FmTVL3POz6DXxKQ08ooIN/D9b4gfG6xJzgzQ4
6KAqYf/GEg8sdfS9fUmDnQ2jieROSzykuZ/fboQGaSGxxDsNlni4gOL7bIwG
y/33S30uWOIJZT323gkaXCgJeLgj3hJPZtTZnPxAg1sdYb48/pZ4+g1nze0p
Gux9EUROtbXES8mD2nWzNChiK8t8fNQSM/XZU858Y+zH3f2jM28sMJvAnWfs
qzQoVVz/XcrYzy1BQgfIP2hwqodp9Mk1C8yzY7IrfIMGzn5TF8uTLbCIfeCG
HXsKGO/SylLcZ4F1ZhOjRQRSIOngUZVfJ05hgxPvH5QIpgDBJ0F7RPAUNsnS
2s23PwVeSDgHkTfMsY3c5tubxVLg2P4+4chkc+wTk/ttXiYFUvIDn36KM8Np
W6qCWzRTQOputRqvkQnuF+/zNPFPAYPzR4hyTvr4v3n1E22BKbCvwWbyNIc+
9rzRuONwSApcyrnm7dCshzeUL3b+C08B23M5dxy36+Gj+lF7GhNSINXozBf1
Vh1c6C32eG9uChypWC/9taqJXSrJ8jPNKdDNKVCwx1EFf92nykxlSwW2Tede
Ft0a7Vp3PNAgujkVuCe33K2Zfq3BVLqZcJ8jFVLElCr9i1c0dggO39jCnQpv
/oRm3qlgR3KCEW45e1PhlsuYk9M2fhQm2IBLZVOhhVss6F+qOIpxKgzUOJYK
p8/4XRTjlkTk0vg97xVSoXKPp1vpf1IoV9AoVFQ1FXh83lual8uiG4Izwle0
U2GkplamwUweLQkeTGqxT4Xe1t+70vaqoDWnLZIEx1QoalkVanmqgv6WLr36
5ZwKPc9PhjWQVdF2oS4ZDc9U2Lnr+tqryRNIVsjx7b3gVIid/vs55qw6ChEq
OjlETQXv5y/+VbtooijnhNmI1FRYGd/KUtugiZIueBbypadC33GZkne/NVG2
kPy8/ZlUSD1qwrJSpIWuCQ2WvDubCrJFHhmEbm20IMTxe74+FbKDVrpV5nVR
Sv9Luvv1VBhqJms4SOghgejyncM3U2F/ZjzhhrceMnimLImbGfWLDfp+f6OH
qqk+hLzuVBjgZwlt7NJHakflP23qTQWngjo5i1V9NPTmT1jcfYa/9w59fikD
xHS8KN2zPxWcpWVshAoNkONMb8vxl6nQvFvp7ntHQ/StIEf7ynAqbHtjf7f2
tCFKB8dB4bFUkG9SLc5qN0TNxd+mN08w+l33ubSRzwjtNDm4+/VMKsQ1fJay
umuELq/PV5h9SQWNCdfF35+NENS0yvTOp8K9kcNTHTzGKOSvuW7911QIkZ4U
TnExRo9uJJGSfqeCWhxr1c4FY+TmbMS08icVYj4npvluN0FrHLuzfJnoEHKw
dnRA1gSJeTZUndpEhzPU7uChIBN0hzv26P3NdOD+j60kONMEWXbo3FHlpEPH
asnmvZdMEJlvfEiEmw4l9kP3yt6aoD09l1zO8tChnT1ULeaHCboWEvGFi5cO
vDIO6m47TNH4Q06WVX46WPygUR2QKYogDZ/x30eHbh9/8SAbU8R5sHLvhBAd
HnyaFT4dYIqU41SPPRShA8cro93LeaZo4PCmTrVDdNBWcW4+Xm2KvF48M7hx
hA7x2PtT2m1T9Du59KWYJB3Kf46mTt83RfnSfm7F0nTgv3qLYvHKFEmMKcxv
O0qHpn0R/X1Tpqg79V809RgdBKUECSZfTdHixH85gUp0mMyotojhMEOppz32
vVehQ5LMt6EDvGZIUEX2krUaHRKb/vS9EjJDjR9/yj9Sp8MePyHLs4fNkFHe
/S51oEPvv52F3rJm6IN6ntEtLTrUS27ugONmKOaL0/BhXTrUTKb8FVczQ9vP
inuU6NPBMI10VhjMUI329wVuI0Y+Pbv7D+ow7IOOmbeZ0MHT/daYvz6Dvyjk
hoc5oz+bBp8UGTLy6brKs9WSDkwKMrtrjczQ4vRs+G1rOtiW5cmXMHA39+GX
LnZ0QO/u1EUy7PNVPI9vcaCD7lMnDiUGn5d7+X83nehwlr51aVzbDCllvv3h
4MrI/wD8DUBmaEujAIHNgw6VbOjTe1Uz9PqNXXuDFx1erO5xQgpmqJ6taJ+d
Lx18HhSJpUmZoWSZoQSmADqQmxU420TMkKUt98TlIDqwUXkmX/GbIbFkE2QV
SgeTfTOZE9vM0NqljPINIh3O8a7Pv2A2Q33PHjDXkugg18r+q/m7KTr/k9XT
PJoOjs/0GtKnTVGQiOa99Vg6aOw/xWU0Yop4SHfoxsl0ODrTuaWc0f+Ppesz
3yl0uFn58J1SlSlqvn/csCyFDvKfHj67m2OKHPbc4PqawahnPudlq7cpkoaF
oPNZdIj6Oup7xNwU/fWTHNDOoYOE/2++HGVTVNVenftfIR2spdoPmW8yRfPO
xXwnL9LB7GbWjbZCE9RFH476VMGYr9a0WP4oE5R7fddodjWDf/MxtgRbE3Sc
Ofv8h8sM/aPHhux4TVBSNXV/WhMdCC6rJnkpxujUU0yWa6FD56Vd73UY+yqy
tvFhrI0ORsNZS5zKxuiBfnS1NKZDIS1+7dUnI8Q9Fygx9IgO0dRNoRdUjNDk
rsuZ8U8Y8T/KxgpwGaGmk9NzYoN0cHERuNQ2bojss92uRb+kw36pbY99Eg1R
+TEbBaF3dPi4JKPe2mSA5GM01P2+02HsaGu1zB89VLDNLenjGmP+k/WiWh/o
oe+VFOz2kw4pXvnBFTl6qPnpPU3CXzq0yQi+K9qvh9REjfWMtqTBwaP2sloq
ukhnwM5cWjAN6KfWDpDNtJGtGNF9WTsNbA+/PsV8UgPFP6tKjSlIA/7ilz2x
8kdQ9cio6WxRGswwJwh/ZT2MBia27bY/lwYhUtoOKq/EkMhCdK3yhTQocDyS
4Bgtgvo4TB6u1aaBorj1rsXIfYhX+/uWyPY0UFpJ4D0qzIzqb+tkET+kwc+W
KoJrkSAe7oi1/jCVBj7j0wX6b4Txv95rghbTaaD58uCfyzkHsOUQf4PcXBpY
yRZvevxMBK8vzj9d+p4G+xd6GqL0jmAd8SLukC3poPlXvNNq/Sh+e/5TfsDR
dBirpfDM7VfBWsJZctzy6UBivCaUalRwbYX8QKNiOlib3LniI6GKw+qSOf6o
psNFDXdxD9kTmK15LzlHJx0ONR+lWEuexFLPTYObCOkgbqVPbZpGONf6OyfB
KR1u/WxMPCYN+PvI+bo/Lukwu9b+zdELcNfEzJSeVzqkfCA1Vw0BtpynOIyF
pEMB99fEZ7WaOHZzs/5fWjr0ut/U0JXWxhOZTp8q6elwTuq4Uz5BG2ttZ6Xp
Z6RD2g3tmwJ0bbyV71RXbnY6HJWvZh0d18blIl8URYvTIXvh/t8psg7eVJs7
9LCEUZ+3BeHzJR0cIKEcFlSWDi3D6PaBAR2sKJdy9XZVOlRtqfc7yK+LH6oL
ixhcS4fS2AGlU5W6WPruPTx/Ix0+J2i+6+/Rxbk6gc55jekguBavHTapix2M
W8+9bk2HzEdS8ir79TAecFFKvpMOHkOzhoSTeljMctNL0a508JlkUam018OL
9pbcwb3pYPrLneNyth62Gl+v53mQDtEBFW3edXq41fWiUXNfOrCVK73Wv6uH
qT7zqf+epkMr9wmXuGU9zEeib+SNpsPUudqB0zr6eIsXTxzHm3RQnQ0VkLbV
xxtWpT/Ib9Phy93rEly++vijwq1voZPpUL/E1pRC18ejouphMx/T4Wza3wHh
In38ZFffgstMOjhrH19Yq9THTStvZ03n08Eiov+2W4c+rpvy87m/mA5zEmS5
bw/1cemLlamTX9NBRVTY/O6QPs7tTXJvWmH4H5rZMjCuj2mNHO+k1tJBnS7q
yD+tj6OqCp2q1tNh4ZWwYfmiPg4o2P9a4Hc6RDocGvde08cutCt2+X/SgduF
Iur/Rx9bRhx/xcGUAXzmMYpXWA2wnme3JYUlA0i39CUlOAzwCSvjZ+tsGUCe
PXh4epsBltUeNg3bnAHS9yTNP/AY4IMK7o9nODLg0mrEkACfAeYVnTdw3ZoB
R/V/TubvMcBbdkU/GN6eAWkNpW2Gew3wBguLjhlPBiRLiRQhAQO8/C3r7v1d
GRCUIdVOYuCPk3uQ+u4MuPNOIeIzw350qLKjiT8DuNcyd5TxG+AnPTInpPdl
gFnUqdn83Qa4+1ZrS5VQBvSvhNj27TLATZXax/cdyAC3h/91aOwwwHX5A7fy
RTLAqluFusZlgEupBDnOQxkwdJnMu8xugHPCPzZQjmRASK35tBSzAaZ6hEr9
lMiAHDelsCu/GHpa/qoLk86Amh2hckErDD21Ug/PymbAG8LIFeIcQ0/5HdWu
xxjxNj773Zlk6ClScnBEIQNuurT+NBzTx3o7D180U8qA+oWpr0KD+lj2m9p5
dbUMqExJpp9r1ccikw/23FbPgMK6e75Qr493D1kUSUMGdLxkOSF3UR9z9ozv
rNbKgF6T3neRyfr4z03f3H26GXCBe1fDahhjnogF9J9mDD12bTyZPqqPu92F
2YgWGbBr82T0lBBjviwuU2atMuDH9tNtslz6uOQYThixzwDfPzqhTVN6OODr
l/DbHhnQbjXZW5Slh10+RC5Le2fAOU6+Awci9fD/Gq7yeCqXMKxFl0qlJCQd
a7Zk3515z/mQQigh6SpxhZTsSdaSc75zvqMsoaJSWslOKSPZSYWLFmXnUqmQ
tHDPn89vZt555nmemd87u18JHLvhzQKnusOBAgcssXGhuE/yURbES0wta1C1
xMInmO4nQlmwyERrP6vKAhv20os2nWRBEb0uMSjbAh/ZYSLYfIoFc4fYxlej
LXC9rO49uVgWeF7rEmsws8Bx7YqzHSQLdtxd8AgpNMe/dYR5+tdY4DG9q/ZJ
GIHVrgoODOSwQGWz4CLKlsCuKxfr8XJZIJLRtq5SjsAVQz/fjN5jgfLhtDU6
LUwckvpRKaOMBWKaIu1tYkz8+fuLql8tLHBJOOh7hAN40+FW0dttLDByjvo+
4QLY5kWjp+Mrvr/BpW0TCoDv3nq6PK+Lz3+mN+9VKMLeLsVOf/ezgN4+Gq1c
Z4b7HqZ9rv7OgmTiqr6BgTFujzwgkyDLhrO7bkviJG3c7Or/Q1GBDeU6XpKd
67TxU8PT7XVKbCju+mQVnqaFC6YvJwiqs6HK/jorJlMTU0fffT6jz4Z/i3/9
I2e6FVu77cfx1mxIPjWTEK6hiGtN9h2MDWGDt5BN04mkJfixpI+xbDgbhoKm
XL0X5quKZ8PFnkawYcPsBWp13/eq68XpjQIxbED3TW6W5rypilHr0Yxhs+Hy
d/Y+6+w5uulG50XR2WxobcyU93USR6U/Ha9HNrHBTUexuilQFZla7HCbbGGD
rupf0m9t1VANz0zco40NExNpE3Vb1FGbghJ7ewcbRMYThFf3bEVju2ZPrO1l
w6i20WB/iiaSzslg3P7ChpXeBXmMeh10/RP3l9QUGzZd5iRsVdFFKoZxpdwZ
NiwotGxxJnWR/nNflaCfbAg75fnRxVYP2c+aiNKXkuB70Ua5tUEfnbF+39ex
gYRPovty9FOM0PK09kxLKRKq4EN9439G6HxfveNDaRLatGZvBdCNUVbIg8Ys
WRIOopD7P4aMUUV2TIGPGgnrEv+ru69kiujjwb7vtpLgEN5780GwKarT9VGw
0yTB6dc61fKnpqi9ySFdV48E0YzX21pdzNDHKbmYBTofv0yP7omgo0D6BuNA
BgnKiSvTmqvpaC5xxfQQQcLKmHK7IkGElslMezdbkdAhFP9yPwchmlWdXepu
EtL8jMKDLQHlXngoLLSXhEq/DSPqXoC29uY9i3AmYYqR9HhfPCDjwDSDg24k
jKkNPhOpArTnsvdmtX9IuDsdKNOqzkBih5/ntx8hwaw4W8NiBwN1qejQI/xI
aGlLf7vOi4Fcy+fdmgJI2L/tIe1BJgNJR3l+DAgiIfiYzZ6IEgZ6b958SiKU
BNUc0jn9OQN5tKdmep8iYcXUY/vmPwykkPFLZXUUCSemCtb1ijHRiPuhh2Ux
JHBPupqDGhP5fFLvEUwg4UWkRvvMXiYKEKpdfyOJhGPvxczX5DCR9guVm9bJ
JBRmxkyklzDRdCpPdyqVhLXVrwOO1TFRmPz+PcxLJGxfzG6aH2Iiw/Hqgf+u
kNC/0vmvh1NM9LNAKfD8VT7/hD+zVYsIFEX/ltR3kwSPgYpVeRsJBIIutMTb
JGwIu9iRsoVAi1ufPNh2jwTpbf2JDdoEqr0gj7rz+P472q2yMCNQwj5WW1QB
CWorZHeKbCeQFW3ygFIx37/7kio0ewItH3X89LyUBMmhqKzTLgRqzXsUGVJB
wtIM8RuKBwnEDaat3FRJQlKqgrGEN4F2mSRcqn1Cwsict/defwKtWfxR9Wg1
CSpBEka9gQRqb3R4tO4ZCUuMBmsehBEohVe+o7KOhM5XozLPT/H7W6dNrz0a
Sai/UuKvF00giU3xR5a3kBChTHSNxRLozeDYbOFzEgKY02dH4wl0+e6uc/te
kmDQTxZonSXQ3ydKxBd1kDDRoJ7UwMc0Q6nc2/+S0Ph9j9cdPh6Yj9az7+HX
H+wI7T5DoJy64drZN/zxiBeiu/n1PDnWjtm9JMyNlLAk+fsp7SkctOzj81Mw
NNSIItCY5IagzwMk+BywPZ0UQaC7fZGL04b5eqyQxxBKoKO3Bs6bjZHQMLrR
F50gkMYxK9nhcRJMchu/cPwI9EU3v4DziYRdwf0tKl4EKvy1DnS/kJBuhSLE
/yZQYM3JF2+/kWD1qzNmjxOBdFkf/o6fIeG1ym3fflsCVYjfO93+kwSmnp32
N2MCRfSuEYn4Q8Jm+x3moZoEMr0RellWgANX8ZNrtooEqtZiVgYIciDSsXrs
x0oCxf24tVNCiAMTvzr12haYyByLvMHLOWBZ654695WJGmxe/1i1hgNBuc8v
7O1kIokY+SOstRyIuF+ZnsHP55Fi/+4l6zmwqK5c26aMiZZLLS77IcmB/dGe
/QupTGQzqho0IM8BUQ13m9JdTHRFKmTATYkDa/fumY01YaLPttihW5kD135l
0p5tYSJeyR7N1q0c0M1J0cqdZ6D22MhPpQYc+HH+y9K/chlIvrTeTdOYA5qd
V8x4FAMFj61pvWvKga00j4ELoQy03u7m3WwGB3zzUzXXWDCQi3SbN8uaA1Nn
jab+vAX0vmzzgJs7Bz4fXbFu/TBC28Z9HLoPcWD9FEM7PhehmE0l1Q6eHPA6
dMFf2Bsh2TNW2ZY+HAhYXx7qPUxHng4n3DSDOGDxTW7oXrcZGp+o6VpyjgMy
xZRDRIoJ+k77p+VuPgcICUnqaKw+Wl3/7KlEIQfilRSjTqrrI2U/2YqEYg4c
LQhO/tGlh1xL393wqOCAQ3eFoYuqHsI79kRJ1XBgPP34kYlmHZQYCFrsfzkw
7Xsq9s2MJpKqlbro85sDspJGY0arlBDyfuGhvJMLeZM7ZRU0pqtSErM0Wmy4
wHIprutt/lk1dsf/p78dF+xS997eVCSAkz6uuFDsyIWIHsldvy3+wgMnrJ7S
3bmwUyo4aIfqWpwQ+XTz3mAuHBZcJir5Uwa/uZI0MRvKBed23iWeJQ1vw+7l
mSe5QM9LFtBfLYt7Fs3v6oviwl2uXtmrK3JY9ZxxlB+LC00vyA+sB4q47Xzx
u9gsLqivDl5jna2G5Yrjbitc4/MrT7KbdFbHYZ0OwQ05XBgqTv9it3orpm34
skLkDhfM/sp20ojQwIGX1U3Si7mwr5V07c3WxOK3bmbkN3JheumOlxymDvZt
5P+cWrggfLKx40iyDsb/EVrTz/n7b/zXOXRQBx9RH2g06uBCeElE/cZYXfyo
UOZHbS9/vtfEHusiPfz344tOb79xwdy2XFh73AAzd1ovdpjhgopNyPBFZUOs
2DOfVz/LheU15Raq/xjij1NegkW/ueC3UKvQ9t4Qn1TTLUlcRoFzlsbASJ0R
dns46j4vREGmPtI/+8cIw/ZLK4JXUFDG6RkndI3xssOLD7uvoSBsJuyTdLYx
Tsl8KaovRUHtjLaZhK8JDlc+8+SeNAUKhXrbUzJN8P4yAx/ZzRTQJs95KDWb
YLn2rOqVChR0uUvpJiqZ4gJh/+ODWym4oeFZJd9pilMu0jbu06TA6/npDK0/
pjhMsbO+TZuCtRHnpWwVzTCdYSLzyICCJ3eYfncCzXBLuPDzJAYFp0c5cR8W
0XH+sifhy8wpOPlOKpkpT8cXUgIUIi0pWPk1+vl9go5dCrpPeVtTYHyMJZ4S
S8emdHJLry0FTXuNhlZn0/HmVnrHbnv++fvf7kuqpOOR0Zuq9L0UxJzrFr3y
lY6bQ/Z1FTtTMFh4aLfyCoTzlojEqbhSoGdAGJTJIxy8Ofi1mDsFrU9CGD0O
CLvkbTnLPkTBz0rLG37eCJuYvNUU8KTgcclxJYFIhBc7MxMnjlDw9v2wq9p1
hEeGZnQO+VHQ47yS/bQY4abAOx+6/ClwX2va7lyL8H2BA6RNAAVD5+4Ifu5A
OIlaY1ATSIHi44D5+AGEg6RrBwxCKFj6LDlL8gvCTnfDqLwwCqKF5l7k/0bY
2FDNWD6CAo183RrZpfz+uP79cHokH/fVv/ETBizgeOH8qmgKPE+HFumtAjzU
b2F2JpaCKyHTttFrATccnxubi6dAsr231Eqc3z//uZ9yPIGvn/yj7+clAVPk
QRhOpEC/c462XxrwCUmxj64kBanO01Y3ZAA73mq4+JJLwSPGSII/DbCh3inC
MokCwmzye5ks4K5TTFXBZAqyvnWP8uQAh9QIi9amUnA9ZdeXJj4WE341G5fO
z8u9c1ZefFxkl/6ecYmCtrRCDQ/+evs09zqBLApSZidHqjcDnnyndB9fpWDT
sFNl7CY+P/nPF6JyKOCNDv+6IQVY3bf0pFkuBbOVcfOqGwA3F0Qe/H2bgqi+
KRmxdYB9Zontlff4eR5/U3WQr4cQfYVGRD4FUjn5FqJ8vXLPtIsZFVKwbKqE
prQEsHlLxq/ZYgq2y82dRXMID4oeGigro0BLIG/nn3GEadmTD3QfU/Bvkr3j
u2aEq4bL0qaqKDiw5WrpQgXCB9SjThc9pUBUq/zF15sIZz5caa3ZQMGEpeCg
JT8vhgKdWpNNFLScj9993wvhbstLEvmtfP8yDLyHbREW61QZUWunIE6NNtIt
hXCR1NfW8U4K+ugxMikLdOxwqKL4Tjf/vjfuSFcZpGPqs2Xsll4K2JdrPEZy
6VhY2FNafowC195oxU4aHd+2U1syME7BUbGOyYTfZtgy7dt/Vz9RMLLRVIvW
bYbPyMeWy0xR8IBUCBNhmeF5s6zdUvMUfLBKbhHqM8WXz3gZvRbggXlGyjOF
YlNs0qJOS1/CA5Xh5E/6Z01xuEvlp/XCPCgw/+JryX8PvgX2JIqK8cDe12W9
vZsJTnqYffylOA8+Lyh47d9igrcJeDvxJHkwvPHG3LGvxvgod0ZeZDMP3vcf
vlYRZ4xHbq3FQqo8YLmXpW7MNMJnPr++2aDOg+hSgfD8A0ZYXu8aJ2EbD9T7
JroO0IzwwZptrkv1ePDCZuCJdI4hnheahWcGPDgkF1akddgQX7Gr2hJnzIP+
rLO//eUMsWna2VUMMx4I33vo2dlngN+8s5lZQDzItxl55J1lgP8HV5rOnQ==

       "]]},
     Annotation[#, "Charting`Private`Tag$7080118#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.884775895569441*^9, 3.884775937683197*^9, 
  3.884775997518841*^9, 3.8847813225833*^9},
 CellLabel->
  "Out[519]=",ExpressionUUID->"513e3685-646c-4220-b262-73de37ab2a48"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"data8He800", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "8", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He840", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "8.4", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He880", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "8.8", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He920", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "9.2", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He960", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "9.6", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"data8He10", " ", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"q", ",", 
       RowBox[{"PsiP8HeCut", "[", 
        RowBox[{"q", ",", "10", ",", "0.03"}], "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.883723310084149*^9, 3.8837233122758293`*^9}, 
   3.883723350497587*^9, {3.883815582683811*^9, 3.883815584554695*^9}, {
   3.88381561947631*^9, 3.883815640181409*^9}, {3.884771080246582*^9, 
   3.884771125002054*^9}, {3.884775912540292*^9, 3.884775918988637*^9}, {
   3.88477602788308*^9, 3.884776049317663*^9}, {3.8847813495055037`*^9, 
   3.8847814242823467`*^9}},
 CellLabel->
  "In[520]:=",ExpressionUUID->"bb3960f3-8cb7-4917-b64f-e3364369e663"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0002052687903344129`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"1.5924085070800655`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 520, 348, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.88478143252708*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"1fd2488f-f65c-429a-b7bc-61b484458660"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00041009682438510053`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"3.182573267483986`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    520, 349, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814325506144`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"5145dedb-ca24-4c71-b681-a38d9da9ad27"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0006140443570438636`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.768253652238437`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 520, 350, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814325629587`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"3a69d778-f40b-433f-9474-6acfa535a109"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 520, 351, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781432575069*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"861a067e-d75c-4ba8-b45b-943da7e7dd75"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 520, 352, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781433936726*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"485b92c0-b0bf-48c2-9e32-13c4a1bf436d"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 520, 353, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781433983919*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"e5061ca5-4746-4742-b690-d521551b5365"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00014234951810352376`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"8.159253426697731`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    521, 354, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781453734552*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"45848a37-8bc9-4e11-a1a4-ab17a653801e"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00028436656315717804`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.6304211488862488`*^-6\\\"}]\\) for the integral and error estimates.\"", 
   2, 521, 355, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814537745256`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"26436802-1283-4259-b3c9-af9f0e109c0c"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"8.633546135846363`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00042571948675126806`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.4420598721186236`*^-6\\\"}]\\) for the integral and error estimates.\"", 
   2, 521, 356, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781453787075*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"f1bc0090-1caf-4ffb-b86d-9dc8dac76da1"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 521, 357, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814538015633`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"f07d3ffa-d82c-4174-b6f9-feffa7a81e4f"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 521, 358, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814551470947`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"dc673e01-48fe-4037-bb63-18d48d34f964"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00009860587426195115`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.1164080151628381`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 522, 359, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.88478147434132*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"aa0dca82-deed-4ee6-b74b-7a07cdea1db7"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.0001969620884814752`\\\"}]\\) and \
\\!\\(\\*RowBox[{\\\"4.228230548897922`*^-7\\\"}]\\) for the integral and \
error estimates.\"", 2, 522, 360, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.88478147438122*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"2e62e982-2993-4b27-8ac3-7ae02ce9aadc"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00029481965034056855`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"6.330892088471988`*^-7\\\"}]\\) for the integral and error estimates.\"", 2,
    522, 361, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781474394425*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"b3a0b4d4-b829-47aa-994c-3a0b8ff9e009"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 522, 362, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781474406155*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"c70840af-1b4a-4f8c-8a12-30ad7a708907"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 523, 363, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495191717*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"c44c3679-4d44-4ccc-8fa2-af9e1d48ce56"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00006817212277496464`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.1462883968332113`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 523, 364, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495205138*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"ba014c87-3df9-441e-9d43-28def78b1280"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 523, 365, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495216441*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"18d54c91-7a2f-4710-96dd-f4be9ad598c9"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00013615768970817868`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.2898648972202694`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 523, 366, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495227783*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"33c3dd28-8b74-4f85-aff4-d9163f004cda"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 523, 367, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814952411633`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"e0c7fa00-02d8-403d-8d76-3b4ea66fc594"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 523, 368, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495252788*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"cf0ae7ca-1208-469b-83ec-62e0fa84d256"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"9.341969592522943`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00020377068173051629`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"3.4280241170238136`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 523, 369, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781495264701*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"fac79be0-23ae-497d-adc3-4f1a65901ef8"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 523, 370, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847814952767344`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"4355f6f3-b2a8-413a-8aac-ef0b6cc53b03"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 524, 371, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815170679207`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"04c1d30a-5f0e-4916-b2c4-f278fcc2d058"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.05550291975663`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00004707037418994159`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"7.602941102272916`*^-8\\\"}]\\) for the integral and error estimates.\"", 2,
    524, 372, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781517079236*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"2cf77875-cc2b-40fc-83b9-2fdb8df619f8"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 524, 373, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781517089726*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"b565f722-3a28-4c41-ba02-25744b537605"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.05550291975663`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00009400192689243028`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"1.5192835988864338`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 524, 374, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815171000967`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"bc0f6361-2fce-47e6-8651-f81fcaee8957"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "slwcon", 
   "\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 524, 375, 
   26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815171108418`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"06b5ac9a-77eb-4ceb-af66-25be2a5608bf"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"slwcon\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 524, 376, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815171218443`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"95cbd156-9b6e-46ce-8b41-90d4fbc69970"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.05550291975663`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00014065626533252593`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.2756659421363317`*^-7\\\"}]\\) for the integral and error estimates.\"", 
   2, 524, 377, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781517133109*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"41a30751-34dc-4934-ba8d-4d0413602fc9"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 524, 378, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781517143711*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"5f50b422-2d86-4a1d-a691-e0ef74f1e18a"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.058349427430215`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00003244163117705136`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"2.1107264096092235`*^-9\\\"}]\\) for the integral and error estimates.\"", 
   2, 525, 379, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781538252322*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"b1f69ab4-fdd5-4b63-ba88-8b03ea57a90d"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.058349427430215`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00006478040864222055`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"4.215328477365909`*^-9\\\"}]\\) for the integral and error estimates.\"", 2,
    525, 380, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.884781538308813*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"d2c42262-1da8-4922-b6b4-81b52cb38e3f"],

Cell[BoxData[
 TemplateBox[{
  "NIntegrate", "ncvb", 
   "\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"r\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"r\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \\\"10.058349427430215`\\\", \
\\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.00009691381890169087`\\\"}]\\) and \\!\\(\\*RowBox[{\\\
\"6.307699538453014`*^-9\\\"}]\\) for the integral and error estimates.\"", 2,
    525, 381, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815383270407`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"b421f684-7f08-4537-bfbc-de2394499507"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NIntegrate\\\", \
\\\"::\\\", \\\"ncvb\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 525, 382, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.883810722292903*^9, 3.883815642588806*^9, 
  3.8847695952470903`*^9, 3.884771149801505*^9, 3.884776053817601*^9, 
  3.8847815383432198`*^9},
 CellLabel->
  "During evaluation of \
In[520]:=",ExpressionUUID->"44603d26-18cd-4971-a91c-293de32c98d9"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"PsiP8He", "[", "q_", "]"}], ":=", " ", 
  RowBox[{
   FractionBox["1", "q"], "myNorm1", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{
       RowBox[{
        FractionBox[
         SqrtBox[
          RowBox[{"2", " ", "mass1", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
        RowBox[{"Cos", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
          "range1"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{"q", " ", "range1"}], "]"}]}], "-", 
       RowBox[{"q", " ", 
        RowBox[{"Cos", "[", 
         RowBox[{"q", " ", "range1"}], "]"}], " ", 
        RowBox[{"Sin", "[", 
         RowBox[{
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", 
          "range1"}], "]"}]}]}], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", "q", ")"}], "2"], "-", 
       SuperscriptBox[
        RowBox[{"(", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ")"}], 
        "2"]}]], "+", 
     RowBox[{"myCoeff1", 
      FractionBox[
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         RowBox[{
          RowBox[{"-", 
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ", 
          "range1"}]], " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"q", " ", 
           RowBox[{"Cos", "[", 
            RowBox[{"q", " ", "range1"}], "]"}]}], "+", 
          RowBox[{
           FractionBox[
            SqrtBox[
             RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ", 
           RowBox[{"Sin", "[", 
            RowBox[{"q", " ", "range1"}], "]"}]}]}], ")"}]}], 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", "q", ")"}], "2"], "+", 
        SuperscriptBox[
         RowBox[{"(", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], 
         "2"]}]]}]}], ")"}]}]}]], "Input",
 CellChangeTimes->{3.8837229434769993`*^9},
 CellLabel->
  "In[526]:=",ExpressionUUID->"d559092d-edc7-4d06-a702-6eff5ba0a662"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListPlot", "[", 
  RowBox[{
   RowBox[{"{", "data8He880", "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.883723371354705*^9, 3.883723373426491*^9}, 
   3.884770051716117*^9, {3.884776222617082*^9, 3.8847762227081413`*^9}, 
   3.884781587092922*^9},
 CellLabel->
  "In[527]:=",ExpressionUUID->"6e0c70ae-f2e7-4846-95d3-a013dc639521"],

Cell[BoxData[
 GraphicsBox[{{}, 
   {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334], 
    AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJw1mnlczN/3x4fikyWFqCRGhSQae7L0SiKyVNqkmLRob9pH6zRNNTM1FaHI
MpZItvooWrTIFqLs2bMnS2PrE6Jf39+c+fzzeTxd13mfe859nXPvnXEbQ+y9
+zIYjDYlBuN//5f/JzP3+u9eSsnHHHP6Azjqbdk8/62CVWB/utA57rGC1ZEx
drk4slHBGvCaHDZ/aoWCtVAvOu50cr+CR6N0zvuYnhQFM5E7z7/H2EfBeqjt
c6PNcpGCDaA5bsYr+1EKngDP55lm/p+3EhuiyEnrdn6Ngo0w+pBs1G+xgo2R
MPDngD1rFDwVLSGvB+dpKZiFpZriv0qPthBPQ1s7b9SvXAVPB7QGybbZK3gG
gie5OsgGKHgmyibOdJhUk008C16n+o5fH6Lg2RBNdxxxUlfBczDiQ+3PsK1Z
xKb4xlJysXydSTwXPQn/lg2dpmAzbLLpMDHYLCGeB5cpAUH15zKI50PyPiJm
Vnc68QLEGcYeujJHwQvxZtcox4shYmJz3I+68TH6kIgYqF9pv8fkvlDOPODI
olbLuf2IGRbQ2rfQ8tW0NBq3wKpT99zj3FJpfBG2Hr6ZtSYlhcYXoVLb5f3Z
4wIat4S+q4Ff1+1kGrdE07HZDzy7+DS+GM1fh0utdYl5i5E3IKD4u0USjVtB
P8barsyHR+NW0Nh/a8BJzUQaX4I+btyG5Z7xNL4Efmtcf90rjqXxpbjexPV8
yYih8aXoa6nEYjhwadwaUQsWnzlXFEXj1gi/mWt2oF8kjS9Dt6WwbI53OI0v
A1dqvJtxLZTGl6OY87IobiaHxpfjfvsPr9XLg2jcBnsOvmr6aupP4zawWZEc
dG3WJhpfgc9OtyeXWnjR+AoM1/GsFbh70PhKWGQMLxmi4U7jK+E/PO3cryxn
Gl+Fk2lP3Oez7Gl8Fb77ZuSv+7iMxlfD58UIX7sMcxpfjaJbrQ0G1ybSuC28
gwX6oeLRtfJ0sMWEENVGDcFcOfNs8eqMxkDJLis519nCabSBw4dRq+TMsMPg
a202j5lraL4dJE8TS670d6b5dojQOPf6cI0rzbfD7nfxBT+Xrqf59qi9UNI0
+Rab5tvjwPmh7LM+G2m+PXhO9T+TXnvSfHtY6xqdi17uTfPXwPjggJfZeT40
fw3WCEfuuHlzE81fg9zL6T8tPvnS/DXw6XwX+PebH813wK0f0W0TXvnTfAeo
GXUx3lUG0HwHHN+Q/09EbCDNd8CskiXXB48PovmOOPPpjuPPs8RwxGGOpEA8
M5jmO+JdpabnqHziOkc4O/3NGfiRmOEEhnTU8ksTQ2i+Exb3HWx7bhUxzwlC
2c/bvh7EdU7YmtsywIZNzHDGx9N+j97bKOY7443zjLjbBor5zqjbd1g774PC
vjMOehWH3JEq7LtA49OnAD0rYrjAfFPt1YkPyR+eC74dCj0pdieuc8FC3fLF
nbdpPRhr8fbgKWdtM2KshfKO/Z8KchTrtxbjA2pe2rbS+tatRXBJP8EtJjHD
FYyIbKMXjhQPuGLcp9AHZjyKF88Vb409mndJKZ51rjir5r6g5izFm7EO62Ji
rmy8TPmAdchzGTR3yQ0vmr8OA1bbjJ1wQ5E/vX8/rDqo9jLlF8MNAUe89G9W
etB8N6zd8vfL4CLKR54bjq28edPPaAPNd8Pv9Vun//rpRvPdMWdw3OGZFym/
4Q7vMb8y48UuNN8d7MowwYxVTjTfHce7c2pPqjvQ/PXo9yg4HXfsaP561K4Y
Fes9dTXNXw/n0Rt8M6uW0/z1YHiVlwXbLqH5G+D/5aL/pg4Lmr8B1fNvX5LM
mkfzNyDv9vXfWUen0/wN6NugJlFJNaD5bCRqDH2S+Kyn5v+RyUbeiaHGelFa
cn0AGzfdxnO7RhrLmc3GzOUDP65vmEV6wkbFreMTqmwXyFnKht+oZwMKbRfJ
uY6NCT8yw1IfW8m5lY18B3G1cKlCnzxw6+tg3YtZK+TM9EBU6+xfp6tXk30P
VG/h2Z7baEf2PaB8eHRg412F3nmgzCwpL3umA9n3gOsqTnF+kiPZ94DG2cZR
kionsu+BPgPm1qi/VOjnRmgMEH5+9t2F7G/EFRsDh3Pf1pL9Xh6ee2PzM1ey
vxFW67J9v5euI/sbMdbuwSmNaDeyvxE52/V9mwxIr+s2oqdg4mGDGuLWjTgW
a9041nI92ffE2Dn5yx+cJmZ64qnJOrdA9Q1k3xMHF6mcH7iWmO0JY753aJuE
mOeJIaIttlaniKWe8DwQ9tC/mrjOE273ShqOlRO3ekJnC++C535ihheylnr/
7owmZnqhrMym6dZ8hX0v7Hk9wt9XRt/H9kLd6A/rZ+cQ87ywcRjfsmY8sdQL
axMPWosKFf57wWWq3q0JoxX+e2Gzcco/xkm0XgxvnPaThs1oofVkekMgdBY9
GUcMbyzvumR1fb1i/b1heLZ/+ZEsig/PG9sW3svTLaP4Sb1RYIwnj5sovnXe
qGcVLN7Wqoi/Nz4cMO789Y7yg+EDre8/B15+S/nD9EHu48WGJ56uIfs+OHBB
ouF3g/KN7YOJqWNWnz5D+cjzQaXyP0etdtmSfR/81kurPf1lFdn3Afd7WLj9
YcrvVh98POS7rGXNcrK/CcJK7ROnfy8l+5uwdqRF6+p9tF+wCV7/JFhpwJLs
b0JZiEex53OQ/U04mNsaOefPfLK/Ce2HSi0MF5qS/U0Y5WhuMV8wg+xvQuTJ
sHS1Q1PIvi9UHSr3jXUwIPu+WFjFeKE/byTZ7x3/PcTOZ5Jsody+L0QF+kXb
zg8iffFFalTz9ej4sXKW+iJ4x7P6WA9D0htfyCLvOCz0Z8m51RffCkUaL0Qz
SX/8MCT7c0iNxFTOTD+U9ei97hcxn/TMD91M7tpEXciZ7YeEfWtnCWSkdzw/
uB87dGrlv5Zk3w9vjjLEBhsV/YofdkxeabO+h/Sy1Q+SzmJvd5E12ffHz1uL
Hbf0LCP7/nCo9jsb5WFD9v2xp/Cpa+7JFWTfH/FqBdbityvJvj/cNV5d+qZC
ei31x7/X8nUuDLQl+/7IPH9kSk8Kcas/5j2TcjU6iRkB0P8WuLbDlfSfGYCS
yNQifqmiHgSguHtX1pW+9mQ/AJMj7sRWWxHzAnDH9Wq3XzyxNAA39uu0tRwl
rgvA4Ddf7upcJ24NQBPHYdHyF8SMQOg5KrkkfSRmBiIhbtLVVwpGIMTqHUd3
vlTYD8SwRd2Lm28o7Afi6ecPnytOKuwHotLkxgNJisJ+IJY73HmUZq+wH4jR
8x1WtI1Q2A9CuOOsy9+aFP4HwfLWu69feQr/gzD1jobz9EnE7CDMF40a1fcq
rR8vCDXGsTfK2MTSIMS9qvaxfkHxqAvC+NoclVVfqV9tDcKlFyt8Z/2g+DGC
wXFPDzrXTvFlBuNTYntawR1F/IPhPDd39tliqr/sYLjHbMuq4lO+8IKhH9R+
OXE55ZM0GP8l/y27o7KU7Aej08nOU1RD+dgaDNvJz8QRgYvJfghMGp0m+g+n
/GWGYKRqZLd5qaKeh8Cufade42pF/odgfvKLiVdvLCD7ISjTzo2q/m5G9kOw
ePQisWQE7ae6ELyMHW6lPGMW2Q/B9T9nH5uson6AwYFuWepit1tT5azOQWvo
nqUmKpPoezhorsqt+GOpL2cWB27LTD5Vq+nQ93FgXjbROGidmpxtOdAMVQ52
2PdF3k+wOYjgf6j3k/2S6weHA3+tcVPCyoeSfnFQfr/teWnaaDlnc6A3YKGh
9VZ90jMOVP9jnu+4aCjnYg5GW/XxdXpI+lXHAd+z+WeGzzQ5N3Pw7mJtW9dN
hd5xcHKBy5cHBrPlLOMg1KTzIHMT6SMjFBmG6zIfbDOTs3ooXEeezVY7QXrK
DMWOYTpG7ScXypkVijXcCc+uryD9RSiOS2JfTZ5tIWfbUJitGyWZP5z6H3Yo
WHrmjBOviDmhqDnaYzLzCOk5LxS7ZMXvs90Xk/+hqB6t/lTUn/RfGgqh6lzp
p/3ExaFgvo86tdVkCfkfil9vun2dTxE3h2JyYK6y3jiqJ62hmB+1Ka1VQCwL
xfL7VaeFj4gZYZh4WveHpp41+R+GqilHrHPWETPDkHf83Lh/0ohZYTh6ZZFN
2iFihMFlTuClqaXEtmHQTZ4vHXuGmB2GFs7T2/wiYk4Y9H3fqgm3EPPCIB19
Zod3AHF2GJSf9fRxMSWWhuHuq5PDD3TR9xaHYXrTooSM48R1YdgbePWYtwNx
cxguxOziJ8loPVrDYPfy18S5ScSyMMS436hr70/MCMfVQdGsn0m0vurh2Plg
zP3rXykezHAMfx9sfXMtMat3fH+PGucsxQ/hKG3IYRsMJrYNx4eilbc8XBTx
D4eLTFnjwG7KD07v+IvXxzweKup3OOJLYg6OVSPODkfDsjOCyjjKN2k4QqNU
U+Y1UT4Wh6NjmM+gxpHzyP9wbLAw3851mEv+h+PnftNLq0VzyP9wPBndeNPj
DPXrsnDYz//7svYJ7Q9GBNqVVu6N/UP7Rz0CbaX63MPaLPI/Ag8Os3wPeFH/
z4rAZdXAopFbaD+id3ze5ImXKql/sI3ARe1/jl58xST/I8B/XL99xehR5H8E
qi4detcWPYz8j0D209U+V871I/8jYH9XvEe4p12uF9IILNq42tB0i0yuJ8UR
OBT1Ojh/0D+kbxG4y66o17oxTM7NEXh2LMh7a6c26V0EVAdxZesSmXKWRWDG
cJ7y0C+kZ4xIDN5T735h1UTSv0hkFqbrPd1hRPoXCZHXG5eWK1NI/yKRGhRe
P5ZD/QwiMc7cbYxzxzTSv0gcPKX+sI09g/Q6Eho3KvNmXqR+hxOJBfovlx/U
mk36HYkpPI21R9znyDm7137IiJZzW0m/pZGwnpFR4neW7mOKI9H3iVHDguuk
93WRcPthM/LODTrvNUfimco/V27UUP/UGonff2qWPdlD9UIWiSZtFvus/0Ly
PwqFQ/tP1BtvTv5HYf2yftrtjcTMKNyL8k/9xqL6w4pCyLDqHX9CiRGFQanX
o0RHiW2jkGl7PmbrA0W9isICkWF/7W5iThT26HyL19NU9G9RYAzTNK0wJM6O
QtTPRt+PLGJpFJgcnmqzCXFxFB69T74XN564LgrHDu9UUR9G3ByFvVVeAcd+
kL3WKNx/e29cZDOxLAoJpYVZuQeIGdFIMes/xyKQWD0av7w8tx+aQsyMxqp3
G/903KD1YEVjxZWOT+0sYkT31t/nGmUCWk/baCRGBFs3X6X1ZkdjQEfElYsM
Yk40DnheecE0ovjwonFnsc9e7hKKX3Y0OlMKN3g7Kep5NLjZuSkpror4R0Nz
d/GQuDWK+h6NAmXMkVlQ/jRHY/KGdE3JBMqv1mjUjOlBn75U/2XRUM7Y5vr3
LuUng4tRJw6dM5VSP6DORVSM2+BNXpTPTC6WePV/YKFH+c7iojmswrV/Ge0H
cGH02SShUWcy+c9Fw9X7n1bGUP/P5mLoasupSrfHk/9clFprnPQyoP3H48LB
7mbf9jDan9m986ea2A5LoP5CysWbS+7JARojyX8u3tZ9rqs7pk7+946rnJ/8
QNKf/OeipcTb5uuB/+R60cpF5Lj43AWJ9XKWcbEqUtU37fZXub4wNmPdf67x
t58okf5txgCsU4qZMoT0bzMSchI2qE7WIP3bjOsluxc+NtQm/duMTby/dhWq
Y0j/NsMl9Wbu4YBxpH+bITZaNaXwPPUznM0wPuYobfhnAunfZnA36o74NZ/0
NHszcuPyhpixjUj/N2PykdctWzikv8WbwQou+jgyaCrp/2YszTlcEGlEet28
GVd2vn2/dzjpeetmcErGWRd8IZb1+jtQFj/l4nTS/xisCjzJfCWmeqAeA5Os
9+Vcq5nkfwwqrP57eOQbMSsGARWVs6Ztp3qCGIxt33r8ySTqr2xj4JoTsXZz
CTE7BvOSpu96OpnqEScG46x+Dn+XR8yLgdGIfqUxXcTZMbgcteu4YDn1Z9IY
1I5bEdyVSVwcg9U2u/Y0X1Kcb2NQjZ/Kah3EzTEIa1uVfG4g1cPWGKSyuzrb
tIhlMZgp9B9/TJuYEYsF15L2MVWJ1WOh3LXjQNA3+veYsfgVxuk810jMigVr
oWGD+U5i9I63MvlT1hLbxsLbwmD/hcHE7FgUX2tItSpV+B+LvvZmy7pXK/yP
xebZKbzZrbRe2bHompE81NqbWBoL3WXiTtFzWu/iWHS8+dvPdTVxXSyi3T+c
GVVG8WmORdji2lfThxK3xqKqv2u6qhfFVxaLilRBtvZJRfzj0Dz8b/TVDkX9
j8MDX4vxOZOImXGoL5uwo2Md5RcrDnYf1eaVDTEh/+Og02+UWYEL9eO2cei8
IIor3jGZ/I8Dt8nT6cnVSeR/HMaaPsmY9o3eH3hxqNk96nLVcNoP2XE43n2h
S2hM/YQ0DpdUtj0uXKhH/sdBpr3a0diG+ou6OLxcUvRo2WE6PzTHoWyYWYz1
Kbq/bI3DQ+fqS1Gnaf/K4vBhu8eH76Xq5H88VsyL+VQbMID8j8driye8/Zw+
5H88TkdXCwN+kl6w4nF1skZ3pMVVOSMeiw4NtT2j8V6uL7bxWNM5TGXeyG46
/8QjSzRwVVNFP9K/eIy/FKobvFKV9C8ePkP/7tb1oP4lOx4vHue+WjqQ9E4a
j92esrkhUupniuPRZ2NqxqNxuqR/8fig/WBLyBLSz+Z41KkWFcs6xpH+937f
qorKogzSW1k8irfGKLfqkB4zEsCx3xjyePcE0v8ETMhll8mGkH4zEzDrpOmp
uFA6D7IS4Pt61/Y3F6g/QgJUbNvn5/czJv1PwMvUfBvN2VQf2AmQ9Rkd8NSB
zpecBNxtnhke62FC/idg4NCOKxenUH3JTsBx5RqW435iaQKevalNtxpE9ag4
AZL2svrQAOK6BEw6pqtddZ64OQEfi7SmqQyhetaagDdvxKpWtsSyBISpRw71
FCrOv4nIl2R3u5xR1L9ExG+e+UbvETEzEYmhGSb134hZib3n88n8BUpUP5GI
rXOVyqUqxLaJuPTqblO3YpydiFTRqIebftB8TiKCw1OfdT8h5iViZfjYm48r
ibMTsWfkkA2TsoiliRBbGv8Y4kpcnIjGGf78Sh3FfX4iWktG+6y/q/A/EWEb
ly2fJiBuTcSZc/17giYTyxIxf1x/hzXXaH0ZPNxauEGm70GswsOYVX52K1op
Puo8HJq57cjSDoqfFg8uDjbz7nZQfJk8eJ0t+nfrS4q/IQ9Jz94emNRA/QCL
h+L6f0ys9lO+mPIwlpVxaEcw5RN4GN7feORdFuWbNQ/HgmTfz7ZRPtrysJP/
8Agjl/LVhYdLZsv0OPPp/YLNgzA1YPP1h3py9uXBpOoO91EI5T+Hh3EHhwTd
/Ev3k1wems6tWxk7jPYPj4cDD+etdxo9Ss5CHozUuiO7dTUpHjw0bPXYM0hb
Q855PDRyBaZ6akMpPjzsyGdtPKc0WM6FPETwtazK39B+L+Zhe/CxcY8y6X2l
nIdEl/jq4S7f5FzHg0OZ9bZ/y57IuYGH3MbBZ6KP3ZHrS3PvethGth5sp/vX
Fh4u2GTMv3e9W86tPLT2qchcuFhZrldtPHy0Wr10o+pA0jseAu5fOxpToybn
Lh5k9RkTNhTR+YuRBMu+Ed5VPiPkrJKE65ppjD7DST/Vk6BsanDw/Qk6v2kl
Ie/4E2uz2bqkj0mQ6K+7dqForJwNk1C1aVfJtH7U/7CS0MdhTl4fI9Jv0yRM
0qhfs9KS+iEkQTuzlZ9rS3pvnQQjrZeP/ezGUz1JwoXxfDdHK6oPLklYkJgf
+XUy1Q92EvScqqe/UKb+yTcJrPLt7lebiDlJ6Dd84h7XDKo/3CSoH6/LXmFG
/RUvCeYGpW/XPyQWJkF31cXgtX5Uv7J77TfaGA5uJ85LwsKxo1esXkf9mDQJ
T55r2itVExcmYel4yVd1NaqHxUnQGOys72dHXJ6Ee4Im9X4Cxf1VEo5n7R72
9jBxQxJ4aj67R1QSNydh39pko4Jq4pbe9dlaYnSyhLg1CZoNb1rtdhC3JSE/
b7V1RQCxrPd73x2QaUwn7krCni91D3a/p+9l8GFz8pF59lZiFT6W90zkz5pC
rM5H8DXbZw8ryH8tPrgJh5fcMiVm8hH4feWkqCJaP0M+Mj7GzJ6kRszio/jI
c327TbT+pnx8WRYR5HpacX/AR9e1yuFnFf2ANR+OCwqcnxkS2/IRY2AVsWKN
Iv58KAcGOPHDKT/YfLQ4edj3E1P++PKhE/jqwfpcRb/Nx5C+QoPRuyn/uHyU
iqq+38ij/OTxUWAUP0Mlk/oJIR/Tp6naX+iifj6bj85tGnbvGqi/yONjX6NP
zGkJ7QcpH6/zx5/YaE37pZAPVY9l76f/ov1UzMe3jzOOeB0aTvHnY7PTOBMz
a7r/rOudr7vzxacbqhT/3vU9OfdstRL1I818LC1khwTMpP3dwsf1YW6MXxf/
0v7nw/w9frUzf8i5jQ/JjUfWq5XeyVnWO39dkz+rvkbOXXyc3cOO/e7/TK43
jGQMjxhdpzeE7mtVkqE08OCbZX6/5KyejH4FtxLP3+lD+p+MervQ7aM20nmL
mYxHH0bO4DwdSPqfDG3zM4+zLOk+mJWMkx13m4yukl6aJsPgWUnm/VfDSf+T
kdCD+VdlI0j/kzE+MOjggA7SX9tk3H6YXnHkKfU/Lskw0zQfWF1F50N2MkYf
vaQbJCQ9903G23cpD98sIr3nJONgjssnk0jqj7jJOPsw0FvNnOoDLxlj3aY8
KP9LLEzGsQVmOx6epnqSnQwXl6Q2g/XUP+UlQ2PIY32HP8TSZKwbtKFhwhaq
R4XJmKPkl7tRm+pVcTL89JceubOduDwZSysk4Sv6U32rS8Y5M9X2An/iht71
2e0XUVtP3NxrP2fN34QhdD/V0rv+2j5dzSuJW5Mxdepx50IecVsy2hLvbvl7
mFiWjFb7UTvu1BF3JcNO+LF+yk1ihgAFq91btJuIVQSQbvF5V3RBcR8mwPWT
6gt/HSPWEmDmYbHtRCExU4AlUxfvc3YhNhRgVrHOrjOjiVkC3I04zYu8R/6Y
CmBxsC+u84khAOvHnJXfDYitBdBc2C9h+jlaL1sBbg4KfNZoraj/Auy7YCBQ
u66o/wL4Ha/cYGNJ7CtAoiN30P0Sig9HgKhy5A3QJOYKUOkQ5rI4nOLL6/1+
+6+FbZcV8RfgDTeh3G0YcbYA66K8Vw50ovzJ62Wd9OHVBor3TgEuHXntlpNF
+VcogNIsq4r4T5SfxQL0n6B+YpM59RflAjzTehNvkapF8e/9/vcWxT311O83
CMD/72Lyrk7qN5oF6ClxCFbVo/3SIsDU7NAdTktoP7UK8G1Ox86PDUMo/gK8
NJqk+vQX7UeZAGXPgosEBnRf2iWA/Y+YC+1LlSj+KZjrLsibcvMv7f8UuBqW
7h+jQvcn6ik4ePVMmWfyZzlrpWDnS+0lRb+f0u9FUjBEssv4s26mXF8MU8DO
5XaZn3pO56UUcG4MyWjR7JCzaQosz13+Ua71H52fUjBFRatPcCbpmXUK3qjU
hBV970v6n4J57Trz3mztT/qfAiWL1pVMJvU37BTk677sK91F+umbgqmPz4e7
8uh8x0lBZ/32xesNqd/hpqDKqFNny0XSY14KuvL4rSYOpNfCFLwICFdPvE/v
39kpGJlkOvL6ctL3vBQEB2fl+RbT/Y80BRtCOi6V9tch/U/BrsrJ+SNWUr0o
TkFWusn4X3zql8pT8Od2RfWjI1Rf6lKw17iP5dwq6p8aUtBcPqLAdj3Vo+YU
JMVbTrh7j7glBazpVe86Lal+taYgfHbSBUkhcVsKhk8SVIQpUb2TpaD1bcJv
gQNxVwr6rdHvLMwnZqTip4XEuaGFWCUV9yz+Drs9iOqneip8XV97VM4k1krF
hTkm9TFriJmp0JN0fRnqS2yYitNNKW3JYcSsVMwpK2p8qGDTVGyZur1tnJ+i
/0vFf/cH54c4ElunQjJw2pLHc4htUxGhWj+Pr07skoorD/oeSX1O38tORcmC
RRFqBcS+qdhjpTPb2oOYkwrD7HgVDw1F/U/Fi8qs0MwaRf1PxfRDCRjAJham
wt53pf+Qn7Te2anouVP5+pmIOC8V11/bJdYOI5am4mRsdOSXiRS/wlS8D7o7
/4QOxbc4FX0avLXt+ijin4pB094a8R9SvtSlIk71eOaHQ9RPNKSiyOZEzwIv
yq/mXn80TSJMtCj/WlKx5pRTRcx5ys/W3vi43Br8nE3525aKPP1rpWP/o/yW
pWLXGa8dSimU/12pGHHt+zWHQdR/MNIQWeLgWzeCzgcqaTgRdm9Mu8pgin8a
GJ91h179okLxT8O/4Yl5fW/Tew0zDTs+rJy58BjtV8M0lHhWuy37S/uZlQZp
sgGvZm8X7f80VE47yZkyj+5TkAbTkBUZ105Qv2KdhoMLurdeuHtPzrZpeMBN
SXS8d1yuNy5pWFxfmFP7hs5L7DRwJ/6suNvTLmffNIhlfzbIztD5ipOG7YbF
8V6Pf8qZm4acWr76nHY6j/F6/Vue83SGrC/pfxqWfzQITn5K57fstP/dp8bm
V6mQ/qdhv8RroKaIfv8iTcOFHa1p+YtJfwvTsIQ/qjwwiu6ni9MQ75QfsaSO
9Lo8DZOuTzQ276H7nro0WF1L456fTnrfkIaw4WZ7F7pSP9SchtE+To1TI6k+
tKQBh7a6DE2m/qg1DSNP2f0XmEz1pC0NHT8OdTRFUr8k641v02Sb5rVUf7rS
cPdjdZ/BJlSfGEKYRjYzJ/0gVhHiUFba53vH6PfA6kIcDfBVuWpP9U1LiKzR
B+LPvydmCvH89ZvXqZwxVP+FELRcDXr/lpglRLPS6U/nV1C9NBWiKmtJ25f9
xBBCN98zx/MtsbUQY146fFBWpXprK4T3ymX6nDHELkKsn5YjiZxIzBbiKnvy
Fh1DYl8h7Af1fxDIJOYIcXryr4VcdUX/J8Rtd4OC/TKyxxNi7t69ATrFxEIh
9rDuTt62gThbiMGD5hgv7yF/8oS4M6kzIjmLWCqEyPjvfok6caEQ38pdS6r5
tD7FQpjsGXkz5C2tZ7kQi5dXav4zn7hOCLXbIp9PybT+DULE9CsYnFND8WoW
or1qyrbgjxTPFiG0du+M6VZVvG8Ksemv4/safUX8hXhx+E3AgqmUHzIhlIz2
H1SeSvnTJURCo+XPAn3KL4YIV7eGrDirRvmnIkJYf4f9t79SfqqL4P/lYOP2
G5S/WiL4dvQfc0BK+c0U4d9Y32GmDyn/DUXwW3M139GL7kNYItwvyFkgezWA
4i/CrriwrA1rqR+BCAUV4Yf/XlKm+Iswwexe8lNj2o+2Iphe+qTxRJP2q4sI
S1Xq9Xc20n5mi6DRh6tzJuY77X8RHikj5dMy6lc4Isy4FX7MbPcr2v8ibPL+
mnTo1S3a/yKYnVI67fanSK43QhHaxpx7WZDaIudsESap3r5sfeGtnPNEMPJ0
ujtrO93HSEXodos+cb6Czl+FIpyfOu7GmUb6vUuxCKxvhauzr/fIubz3+8bt
8fqwlvSyToTj6geqss/T+a5BBEZrZGm6zj+k/yI0Kv9ZVe5D58EWEey0n0t+
7x9E+i9C8bl/f1s2Uv/T9r9/74iR+DXpuUwE582muW3fqR/qEkHtoJ4w55NC
/8UQcpz23n5M9UFFjC8DkyJNa6l+qIvxXDqr1j2X7s+1xFAp0OC88KR6wxRD
bYn4va8B1SNDMeJZw5nSFmKWGKWCruq5PE2q/2IsuRK5qGOU4vfFYpyPWKCb
VEhsLcbPC/aXzyje12zFYKhOu70+n9il93tM5vVdzaB6yRbjnEWInZczsa8Y
8065/eFLFb83EKO8zS19x2Nirhgjtqlf26JC9Zcnxu2x45uCJxILxQgM8f0y
1ZQ4W4zEmdNrH5kR54mR4Gj8JcmEWNr7vdkpa+eNVPR/YnSvym8y6CB7xWKY
2kzS8qwkLu9drwi1a+O4xHVisPrWmeQYKuq/GGk+fuNl1xX1X4yZ8758i95I
3CJG7fv7hpyPivcNMZ5OHhlg4E/cJkaf73or3z6m9ZaJsaBAe7TqIuIuMcZe
Nz/+YzfFh5GOeVVf9fp+Utz/pUNQplezczqxejoeTY3ZaRisiH86zv22Cx0r
pfxgpmOO8jbPbw2UP4bp+KV66qTue8ovVjoY3TXBOn2ITdPRsU91bdBQykek
o/TKuI9TZ9F7q3U6Ol00Sy3MqP+wTUfwic/lE2ZQv++SjmlW5bs7mdSPsNOx
anPChpvKdD7wTYdP5a6Gm8/pPZeTDhO72zd1TtN7DjcdothhPWd7qD/hpWP7
1dPXQjJpvwrT8dKl7sm/Gp20/9Nx4+PggvvbvtD+T8eggeI2Dz3F71PS4aRU
u22K1gva/+nQEezLDxzbTPu/9+/LfgwTrdhL97/psMgVRY68c4fuf9NxtmjD
1um3XtL9bzrym2PzHx/6IOfmdHBP6mYPYn2Vc0s6Fp7vbLRM7KT37d75122O
famm+5q2dLSd6LD+/Z7Oc7J0CCeOYB/l0f1NVzpGjlXJ+c1TnP8yMMJSXPcr
gvodlQyMWVX8uHQd6bN6BqITLCrNZ5J+a2Vg4G/l5Io/dL5kZsAiz15z2VnS
e8MM3Hh3JnoMm+oBKwOrZ8Xrh/9H90GmGbgWHDPXqobqBzIwz2B8p0s01Rfr
DNht2HRVOoHqj20GFh1ZonXzOrFLBhx7+t/I9aHzMDsDTrdHRFV2Evv22m//
4tEVS/WMk4GoK/3KtRXnaW7v+KyAzI9eVP94Gegqze5e3EAszMCg+kqjP2Op
XmZnYPINt/U/Aojzetdr5lIljeOK97ne71l4tMSqlbgwAyb/vmPFq1D9Lc5A
9qzl0acNiMszMNUq+fC7mcR1GfAfo9Vv7FzihgyIxae+e00jbs5ASh/bN9cU
7xEtGVBi5lr5/iV7rb1//92PENc7xG0ZiC3/u+3ibmJZBgzYdw40uSrqfwby
f9VPKlIlZkgQetFwobCM/FeRIGrpXueD9sTqEszYtm2K2RtaPy0JtCP9tmQH
ETMl8Dw7ZEnHB1p/QwneX3S9d5BNzJLg+6tRnoxGip+pBE2RjIR1U4khQXNa
8mc1oSL+EpzqvJcc95Dyw1aCFeZKz5X0iV0kmHf1NFfrGuUXW4LS8dyov+b0
nuorgVfBB+ucQurPORJcSwhZf0aZ8pUrgXX8MdEKR+rneb3/XvCdVPN8us8U
SnDE7UdC/APqR7Il8B63VdQ1kPZLngSPfeqND8+m/SSVYMQ6x/I/Z2i/FUog
9ej7+dd32o/FErzj3hIvmET3KeUSVAy50n7eUfH+I8GlzYL1g39Sv9IgQXB+
Yegw83e0/yWYFOSZNkHpOe1/CbJv5dweP6yJ9r8E08uOmo2870z7XwIn1yCT
jVtu0v2vBMeTLn8uzX5G978SfBzR6LPwCfUzjExIFhskzHT7LGeVTCiNmrBn
wUs6n6lnYq73vYJiIemhViZiTVeePjiW9JKZCcFvJ2W7gj90/5OJkXfjGv+m
M0j/M/HGxkX5jxn1O6aZOPurrfDWM9JnZOJe1Ivmkig6T1pnYujLG+KHfaj/
sc0ESyd0bkYi6b1LJppj+n7U6KB+iJ0J40v6/15eTf2Qbya61vh96JZS/eBk
ouyF7Vadl9QfcTPx634KP2sY9Ue8TNyCkfs7LapHwkws18yzOb6PODsTjPU7
+6/TpfqVl4mrobUfz20hlmbCbHu5s7SbuDATMWpLi1vcqR4WZ2L8gazEhWXE
5ZnI86+IP9WX6mddJvIPPtozZAlxQya2jzHRXJxI3JyJTyU7AhacJG7JxCCz
dQGfbhO3ZkJzivnsFZ+I2zIRMe7BXOc/ivN/JvopTZ8yVInqd1cmVqreG8D/
S+OMLNz7PrTv2Q5ilSxM+VMTUX9f0f9lIayv67Oq08RaWcipl16pTVXU/yxc
/Ha0pGM1sWEWjD6k94SqEbOycOny3qehl8h/0yxUzfGbMDaMGFkYM8Ha6uSI
Yeb/BxeCGVQ=
     "]]}, {{}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        Identity[
         Part[#, 1]], 
        Identity[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1000.}, {-0.003830628141996032, 0.019457601350488032`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837234819851418`*^9, {3.8837243863887672`*^9, 3.883724400306735*^9}, 
   3.88381087004075*^9, {3.884770045203422*^9, 3.884770053092277*^9}, 
   3.884771730532537*^9, 3.884776223195973*^9, 3.8847815879605*^9},
 CellLabel->
  "Out[527]=",ExpressionUUID->"cee7a66a-bdc3-4d20-9412-f1d1eb61afa8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{"Data", " ", "interpolation"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"factor8He800", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He800", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He840", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He840", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He880", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He880", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He920", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He920", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He960", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He960", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"factor8He10", "=", 
    RowBox[{"Interpolation", "[", 
     RowBox[{"data8He10", ",", 
      RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"factor8He920", "[", "q", "]"}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"q", ",", "1", ",", "500"}], "}"}], ",", 
     RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.883723386297536*^9, 3.883723396212397*^9}, {
  3.883724406369341*^9, 3.88372442875569*^9}, {3.883816192397832*^9, 
  3.883816239365567*^9}, {3.884771748738398*^9, 3.884771806320818*^9}, {
  3.884776232857641*^9, 3.8847762959635353`*^9}, {3.884781594633648*^9, 
  3.884781650080517*^9}},
 CellLabel->
  "In[528]:=",ExpressionUUID->"d9505bf0-29d1-406a-8f06-1985e55de13f"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{63.89078605501172, 0.0035404325301524463`}, {
                   67.58800283614919, 0.0009911208931219142}, {
                   77.5134873865481, -0.003115896332473642}}], 
                  
                  LineBox[{{127.29491914500203`, -0.003115896332473642}, {
                   136.62145931312745`, -0.0008138461375096054}, {
                   152.859730116188, 0.002465206870887024}, {
                   166.33567104263037`, 0.0035404325301524463`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAmwvLMIU1ZkDhScg90wBtP1sBubv9
XGdA8pWCn7CKaT+QgjPIqWBpQGr0JNJJHlQ/bWjTlyuQa0A48UVSp9hNv/JJ
9988mm1Ah/4OuRUuYb8fkEDrI9BvQDbs5y78ZWG/z8+h7tj9cEDoPg9QPJBS
v2NV5aPnAHJAJY/AM/fWHT9Ljbs64RlzQHPzB2hl6lI/B8PTjSIgdEDgAphC
BvVXPxerfsJOPHVAWBtM2Z4+UT/Qd4ZqTlN2QGiNEIsWhiw/XULQzpVXd0A6
ExV8fLxBvz6/rBTIcXhAmolL/AwXUL/yOcsWQnl5QPIzfs3ZyE2/UJlGjI97
ekDehtXS8B0/vwKrVOPHk3tAe/6BtIh5Ij+HuqT2R5l8QBKrQcfYJ0M/YHyH
67K0fUAW488L9dtHP+Mix1Pxyn5A9g5uiD25QD85x0h4d85/QJREP2dr6R0/
8Y4uP/RzgEBkV82m5Wo0vzC5WaBQ94BAN2bhnWRyQb/EVTO7FniBQGr+bHGZ
uUC/gkvWRtIDgkDb7Gjd+BcxvypAmrAxhoJAefdWvtPEDz/8jSeLhhODQLmc
LERjUzY/t9rVQ3+Xg0ARahySASo8P8eZMrbhGIRAI2plzwDZNT8BsliZOaWE
QAq9yEtuhRc/JcmfWjUohUBCbhvwGY4kv3M5sIwmtoVAjOoxzz4wNb8WHG94
gUGGQFQAHHAS+jS/ov1OQoDDhkDp5482AdQnv1g4+Hx0UIdARCd/44vdAj/4
ccKVDNSHQKAq6AWOTCs/7R07aA5ViEAOToJylU0yPwwjfasF4YhAle2OagZM
LT8VJ+DMoGOJQHte5u3UPxQ/SIQMXzHxiUBg1ohEUEgav89T56orfIpAh3ET
qloNLL9AIuPUyf2KQAhoa4rLNS2/20mob12Ki0D7VXMAwBghv2BwjuiUDYxA
bHKQ39+l2z4P8D3SwZuMQDXamIAFPyI/E+KbdVgnjUBs+4GGZ3kpPwHTGveS
qY1AjiVYlCT3JD8ZHWPpwjaOQF4fHr4Efws/G2bMuZa6jkCHlBks4gMRv+xl
H/f/P49AzAzhJ/BhI78rtXJU
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488342#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.003115896332473642, 
               0.0035404325301524463`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{63.89078605501172, 0.0035404325301524463`}, {
                   67.58800283614919, 0.0009911208931219142}, {
                   77.5134873865481, -0.003115896332473642}}], 
                  
                  LineBox[{{127.29491914500203`, -0.003115896332473642}, {
                   136.62145931312745`, -0.0008138461375096054}, {
                   152.859730116188, 0.002465206870887024}, {
                   166.33567104263037`, 0.0035404325301524463`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAmwvLMIU1ZkDhScg90wBtP1sBubv9
XGdA8pWCn7CKaT+QgjPIqWBpQGr0JNJJHlQ/bWjTlyuQa0A48UVSp9hNv/JJ
9988mm1Ah/4OuRUuYb8fkEDrI9BvQDbs5y78ZWG/z8+h7tj9cEDoPg9QPJBS
v2NV5aPnAHJAJY/AM/fWHT9Ljbs64RlzQHPzB2hl6lI/B8PTjSIgdEDgAphC
BvVXPxerfsJOPHVAWBtM2Z4+UT/Qd4ZqTlN2QGiNEIsWhiw/XULQzpVXd0A6
ExV8fLxBvz6/rBTIcXhAmolL/AwXUL/yOcsWQnl5QPIzfs3ZyE2/UJlGjI97
ekDehtXS8B0/vwKrVOPHk3tAe/6BtIh5Ij+HuqT2R5l8QBKrQcfYJ0M/YHyH
67K0fUAW488L9dtHP+Mix1Pxyn5A9g5uiD25QD85x0h4d85/QJREP2dr6R0/
8Y4uP/RzgEBkV82m5Wo0vzC5WaBQ94BAN2bhnWRyQb/EVTO7FniBQGr+bHGZ
uUC/gkvWRtIDgkDb7Gjd+BcxvypAmrAxhoJAefdWvtPEDz/8jSeLhhODQLmc
LERjUzY/t9rVQ3+Xg0ARahySASo8P8eZMrbhGIRAI2plzwDZNT8BsliZOaWE
QAq9yEtuhRc/JcmfWjUohUBCbhvwGY4kv3M5sIwmtoVAjOoxzz4wNb8WHG94
gUGGQFQAHHAS+jS/ov1OQoDDhkDp5482AdQnv1g4+Hx0UIdARCd/44vdAj/4
ccKVDNSHQKAq6AWOTCs/7R07aA5ViEAOToJylU0yPwwjfasF4YhAle2OagZM
LT8VJ+DMoGOJQHte5u3UPxQ/SIQMXzHxiUBg1ohEUEgav89T56orfIpAh3ET
qloNLL9AIuPUyf2KQAhoa4rLNS2/20mob12Ki0D7VXMAwBghv2BwjuiUDYxA
bHKQ39+l2z4P8D3SwZuMQDXamIAFPyI/E+KbdVgnjUBs+4GGZ3kpPwHTGveS
qY1AjiVYlCT3JD8ZHWPpwjaOQF4fHr4Efws/G2bMuZa6jkCHlBks4gMRv+xl
H/f/P49AzAzhJ/BhI78rtXJU
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488342#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.003115896332473642, 
               0.0035404325301524463`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwVV3c0F+4XFhUh2WTvPT/2+lx7Z69kV4RCKNlE4WtEoSKbNKSQiHIVJRJS
EkoyU0b2yPj5/fWee+4953nvee5zB6+Hv9XpfSQkJL/ISEgebbq+YXxZCo/j
nuS415VCEKP8+NijUiC52ruRX1gKTi/vJdy8VgrTQaPJn8JK4eTEurWjRylI
rdiHyuuXgkuN73dfoVKojmYtoyIrhTSnQjmebyXgarcuUFdVArNyGQY/4kqg
ayE7655VCTD1P5AU4CqBKhUOk1OTxfDbrFQj4mExJJXfd4s5VwyvFGnpr0oU
w77dnHslv4oAno97/y0qgle7y9HxDkXgUxcyd4m6CO4W3EmYelkIP9nKRn6f
LYTXnkL6+UcLYVDlsJtaYgEsjF3woRrIh8bLuTuTgvnwnMEz/JB/HnxjH5d9
/PQOpDyxNWFay4XX/VuVoYq5sNjXPMUWlAOhO1WHlB/dBr7r4TdpJ25Bm8BH
r3G2W1A3Pf7fktlNaOFflo6KzYb7nav/tVZnwbptdMPBsUygkOx/FE+fCc99
T1FFad0AxYFTLISA63CYjjL3R34GCFiTdrZ+SAcwXTxD3LwGRyQVlOwd08Bp
Uf+7yYsUSHOks73OkwymQ5Ep+QlJkJbroDa6kAC79LcaOl2vwty9o987PsbD
g5rRdn3DODiustxf3hILh3uafK10Y6Bv9EqFeVYk5LH0+lJXhgEls1J1+qcQ
cCV30Es+eAEs5FhGSgwC4bnO6Z0WKX+YFWTUF5j1hjUZyZK496egO92JSy7L
Fb46utDI9dvCh/a5xuGXhrCgLeEde14UHudSxyRPKGKdR2LnlQpTjKzpWj9U
bocCnzrYgh+44HGJUupK6ZN4YvGuhNuoJ5599e7rj7M+mHd8m/pD1zl8MsDO
NxMXgFXnJ6V/UgViJN2WjlR0EHb1fiJt/R6M2UN9lLnCF7GRMDtY4xSCq5ee
1TJHXsKcT19iPyWGos7+O+X7YsLQjxj3Bz3CsdtPQ19eNgIHCo82JP+JwJC+
f4KbGZHo9GCHqUEgCt/0DWdQl0ahBaXFtDJtNBrbnIhK8Y5GAd+pVMcn0Xim
PXn133g03u6Zipoii8H5zc2kvRTRn1fdpGvv/Xf9nuGz/TFIHaMczTodjXq+
ixTMz6PxqWZvy3BoNPZUX5+fF4/G7Zclch3dUdj7jcZp4XQUMqXQMc/MRaJc
Q2qFjm8k2mv5t8YNRaAvieBRVc0IvJphorJ6OxzvbtzVMZoOQ519iaVvpMKw
QuL5px2fUGz9j4YhKf8S2r+pltxoD0FxKhPl8dmLyJtBafWD8iL6xX/wjOa9
gD6uVosOhGA0KS5v3dUIwptbo20H9QLReFOhbdfgPA4ZBimFGwTgfjNJUtpE
P4w5+uqmZ8RZXH067/R7j5fQCF37TcczmJ1pmBpj4IkJSmkHo+VOoXXfW44t
bg+832CosXLYDaUI8U9atk7gSMyWqOe4PUbumjGWf7ZGyU8mv3LzzVFW8Kqp
SIUBvqzZLMp4APjYQa/CW1UGX/BvpeSM/G2SMOSJVrkvDmWOJZe/eqlDS/qy
PKe1HlyW4mcw0TMFGuvcHpJ4Szi8RBkZ0mkDR3VnB5c37WHZ71zzWZoTkBYW
2Tp7wAUsXf/EGQe4gdr2vyfvutxBUKapmo7rJKzq+1Z2OZ+CgvL2gqrU0/BN
zsTiwiNPMCuuMfr+wgvsBy+11TaegdNXW4s+3feGZloXJcYEH4iBUGtna1+A
tBTaPJqzIPaRv769/ixUn+ko+Gl5DmooRMn+DJyDSAwaWrLwg+FMvad0dX7Q
Vq6r4kHtD/Sx+1zILf1h8pxchNQVf5goZu6muO8P7Ec8J7pe7PkzDldisz88
k3Ej8tT6w2eX2my1HH8o9E097RHgDzwBzu2/lfzh3SgfncyCHzTuDIdfv+MH
LeRsaxdV/YDXOO2b/vtzQIxme+xvfg5Ittn6PdrOgnKboUuW3FnQ09J4GJ3p
CzZf69XzfvvAl/SOU2cVfeD65AqZ3yVvYJwN0hWsOgMmtBW2LD+9gF2TROQ9
hRfsryEXbRfxhLk3ViS5WqeBqeej6XvrUxBrJl4w5XoS5heXjUI8PUDyXV0c
xRl3QJEDIHzaDfpJT5s0vXABflKa+ov3nGCj3v6/lDRH6DGeyKAPcADJuxSK
R83s4MA5JvJKURtwseuwGiKzgpFHP0PMG81hhKL4gXiACSili8cYiBjAXbGQ
3KwJbTjVl5C9Za0BZMbHn7+ckwdBl1N9/ERRWFyPenikmA72vRGfN0s5jMq/
zgoY2Avjrad2P/Iuy2EGQ5nJCTk1zDGToPdz1sKv24cruKn0kG8xpNC9yBCD
BYqlxrhMUfsC79bJy+a4dt9SxvG0JX4hKf7s+M8Kf2S/Fn102QZzzda4P23a
4rWvBD/7k/Y48Uuw5EOjA9KdUyP0kjnikd6UCEq1E6g1Ntgn4O6EC4q3r3y9
4IxRNaGtE5dc8B+b9FMmH1d8HNMtnifghhHx9VosyW5YwHFw0ueXGwrcKVZO
U3dHkvmPxeEJ7niXxbRdtt0dMz2fR9Ts88CV40X3yGU9cEyqX1PF3gMPhAVK
2gd7oFeNu0JwogduM5VN3b3hgZigGXco2wNVUpa+P7/mgbpJb40GYjzwFVlk
aIq3BzI1/Dv5z8gD85lqhSz5PLCnR3iqcdEdawuTDrx/6447PNYB5onuaDJd
mBel7Y6bzR5hGStuaPpun2NLkRuO3qj7ZGnghlQt/cSNTldUfmQ1TrnrgmnH
gp66Crrgy+5Fhcuazkh5cYqWxNIJ224/fONtfwL5qTJPWtk44jmeLDA3PI4c
jisP1uQccIBS4sE4iz16LR2qeLJsi2qKRlprHTa4GVz02SbXGruMI056eloh
S9VppXYJS2R1vKupMGyOtEN1rvMnjuGNuNXfG5+M0YZxJiTFwBDvLKxc+1an
h6Q6ojKcQjposHvQNOqGJn7/YXPXgVQdZb8pBBeMKCJnYjf10VZZ/Ev14RK5
iyjaXI8dNE3jwkYzSd4o7gMoHFSjaeNHCuSFdWaEJg44IU0/f39HGEg17Kpl
GmUgmyupV81dAYoV61mK51WAlVo2ueAUEWbrexI0XbVgqHEoqDdSB96tdt3W
SNWD8GcFhJYUA7BZyu97FG4E606G9y2Pm0Bapes1asFjIKd/3FR/2AyYww7a
KmtbwNmFgY44KksIl825867DEpgERsi7o61gR3Iy7JSYNdwrkM850WENr/6Q
6aa42sChG44Zn6ZtwDR19jODty0kdnbclP9uC4f0v9zg07cDymd8Fd0ldvCO
UWaMsGoHxufZzA017CE/p5WKLtQe1h9Tit+4bw9+DodKBrrs4TNpguryL3uY
E0kNWluzhxw+zeCtf/YgUrh/jmfFHjQ8SckSxuxB1Y1RzLbNHu5kKNI9K7SH
2IHLUV/97WF6+IP0vLw9DH5ZqZf5awcHRVfc+ovsgFrr/TaPsR0sc5p1m03b
Ap3vmkNZtC2c4m5WPXvYFqo6OA/NXbeBlq/yApdobYBR0jrN8ao1hPz39tXU
shVI6PBdDXaygltPyN/Yv7QE+d/xLr9ZLKFFkHP76lkLuCHG8YkhxBxyljpe
FFGaQf3m0rMLmabQe+HpojmTCbSYJ4UuphrB/eoLn3l2DeB2Y3xNgbc+9Kt1
ZMl36QJXz4HAMkkdWJ2jdKtP1ALnOu6rns0AnLaHfj/zVoc/wYKTv2lUYMn9
HXNSlQLcPlbKymRNgK+8zp85f0vCw8W0wnFZYWjKrI84G8MDElbjFLJVDNBS
Oay2O71BjL8ReOH2xc2mMZnzx9ozGPCEQVi8gRQPFke9GneJEELNmpsL+U8k
UCz9+KT+KVkkCE0pjbrJo+FHy1drpkroQCPCcEZYFX+ELTpyzauj19PNl7Ql
gE3F6vY8vFo4cTQ57/tpbewTtq0wLdBBrVVWBpIPuljAGZiVPqeHny8TDPLI
DFAsKb7sPZUh7m4zPGo7aIShJ9VndZaNMDhc/db/9RQoHZB+r8wErwveCGTx
NsXSq0fyGLiO4d0yZ/nzrcewwD1MgMrJDNs0wrlbxs1Q3tDwdqyLOdaSXGlW
aDdHgOMNPvQW+O/I+zuVyhZ4OXGd4Yy9Bequdczm+lkgu/sFaasoC7TWWDqU
fdUC55ZMP1xIsEC3tAeDpLF7/iCNLMsgC1w8Q2kV6mKBuxF5+pnaFtjbXHUR
uS0wxK5SS2HGHLn9tG3Sk81xxaiXbpDTHPnYXJzdS8xwwMF4NJTDDP+THB0P
TzqGgnbOdK2/TXGqOtaoRtMUO/+sB1Qmm2Dm30Blrk5jpLGrnPIjNcag99FC
tNJGeJF6sTXYyhB/9t+8TH/OACUSRPvco/VRZiGh8nuSHuppE7XJUnXxmu+d
DsskHTxcF3fMOFob9Rd33Pz9tXDjIs7rOmrigo3Mv4IYIs7mcX2V0FXHrgiI
0iBRxc7KuNYftUr4mPPeEK+nAhqcXRmgo5fDfcBh+LJBBmud6lzcX0ugZK26
1Ry1CBarBo3I2fPj5bHx7mh9TlSUiXuqMMmAR6Yc7rHzH8C4u/EtU22fm4a1
zjfqZ+4SR122lI7t0oIUs47t+Z2jQPpAvcLLnxcqtMcPeXUJglEp4+0LbGKw
nyFVa9hSCgr1TM0iVGThivK7t4xEOTgZ9XR6QUEBrNVTjWx4lODviMts3JYy
iP3NSetpV4XAVd5PGQnq8H4zME5YgQi3ohZfbHwE+ObLlf6iUhNe172IvOar
BdbM1vWK3NoQSv77fUi7NvAOl3dx+OiAA3Hg3DKJLhTMzKx/TNUFlTEPn1Ra
PfCIeOxHlqQHJdaM3kxreiDvcP7ifUd9kD1O5/egRh8i+C+OkJMawDcGUcZn
egYw8SaLpDLKAHSOrejPVhjAPn5L0Ys9BtBQURZtPm0A/61LPIxfM4Bza4MJ
gv8MYFuCyUl/2QCy/Z+83R01gHdL8NCvzQDWLr3ieFpkAEy71for5/f6wla+
zQllAwjOkHBgWNEHpdpXkmb39EGq/42rppU+1AzeoOBb0oOdVrEaqWQ9SPtS
oVrGpgdGwi/vtRXpAhuhk36IRxf+UJ26KHxLBz4bXMlcI9cB3Q7BzlsB2uB0
YGzJsVcL5vU3COmSWlD9J2Mg5bImjHxeDjArAZi5WvHXT5EI7pONI1KoDjd4
wjZ0iWqQHaNz3+epClRbcTef4FOGJ6u07F8SFUFZUtn89i95eBs6buOpLQeh
4kjYzZaFW4UuVse6pOHTL/kX4CUBm4ZG9E6bItBgx68lkiQINmS9h0WZ+OCa
/MrEa+AEjcbh3RJbZmAqkvs18p0GugUCSJU598G1jUQ/rtAhYmwXgV322HLT
ra03yeb55JhWMvxGIZQeDVvoYuppjqKIiYohSSo3Fr9IMH62zoddeaoxzziE
sHvdl1tLVhQFsekqt4IELgRXJwsIS6N6HnswM5ksmpcUfrx2hoCRixyqIS1y
OKB0k9aEQQGV6Xp8r9kr4uKRWei6poQv6xyv3GxUxpLCQafYQRW04n0qIzKj
ih9Fd3ul/qqhrirpbeKkOsLdvCDyLg1Mzsb9muVEpI/7XlV2HrA8tf54FLMm
3ppppE08q4lmQ2E7Xxs08aIzMdd5nxa+Fhr+ekBTCw+o0PC/uaiFt3kVXK6X
aeESc9e4V6cWRnc6xun80dq7b6cDhUi10c5bzoqJThu3gk9wsrJqo6uFuYAq
izYGOfTtJtFoozmd6ZWjO1rIGcv/fHtCCy3tWJvN3mphlbVKt3CBFvLNIVt5
wB5O0JuWWVUtvBw23Mq9o4m2L+5+P7n3r4NDBpFj/ppI8udARQeXJg5/fz51
LQ2wKvZCOusnIpY7vR7IoiKiQPF6XaCyBsb0L9pxOapj2y3bMarzani09z+r
6khVpJD7TzQlRgWfLyRqs4QpY6bKw4zPPkq4MPjxl4G1Imbs5jesySng7vvO
b2cPy6PlzF8jwggBe4++G/1cIYvlZQLSY0EyyMiuqDHoK4W36Y9cJ58SR+tm
GpdAR1EkO75vBdqEcGa5LCpbSgBFf2ddupPBi7WMnef/jnKi3kfvsfx8Vpzn
rPJNdWDAvB/B/8iEqDFyP0tvROE+JLoMuP67MdPEaVXuoaM5SPzQn+4bqPuP
KKF5TUdnghxiXu1rDzpIBzekn++PpGQGJxqSjKotNohpIm+iHeIGgrvgUK8l
H3DKErh1HwhAyUmRurkVIWCumZadkROFvJDRi84nxWG45CCrb5wk2LRSFOrd
kIY5d4c5+nYZ6Nu6c/0uysLKrEUX6SMCuGtPK31MlwNtyvfkzT7y4DXHI3dZ
VQFe012J795VgP25l6pPNSju7X8lQWQ+SmDf35ceSKMM/Audy5HlymDo/vj5
qrwKUIobytc8UwEDgc2tNAlVKC4+t+qTrQoiYhuWksuqEEfTlvFKTw1qJxoS
WZPVwDWLzUGkVQ1WHu76zPxVg7c52f6n6dQhTJ9gdltQHRI01bhuSKpDXi/p
0ZOi6vB14PJ/XEfVYV2NsfnHlhoIJAutvPmsBmRS+4krhWrQx/M4INtdDXqP
jlH1M6sBIcWYY7pZFSYql7nJ3FSB3oz9l+uyCvh1GoQSo1TA2Xhq+ue2Mvy5
5AIZQcpAwldpdPPHXn4zzyO1tZWA6KDTNZ6rCBecH8Z9mlGAS5dS6b325kSD
pcHC5gV5UI2IOTtbKQfrjG/DCkYIIG9udi2YigC0cuu+vdKy4HHgziKPmQx0
z8f+ufFBCvhe3aYLXJaAnZwrBc/oxOFLtXEeUUgURi35z08ThKFn1jzylrIg
7NA9eimlzA9ixUqn0wm8wH7dck3XkgsaxMtWMxXZYHrq/fAQMzMYBmUKji/R
wUvT+qbZfCo4/m9st9aODPo7uC9aCa4Sb6ZOu+pUfyHK29kY9fhONH2g/fZD
7d9m0w2BWhOrtAO41GtP25h0GAfDBgQMn9HjUDbX887bzMjjtHGi/xwbRq7x
c3yX4cKP+x+aVv7lwcm7xqbzTXzoE/PYKPyyAKqSNxYWqQrhYc3raXWTwrjx
YCSA9aoospoIkwqx7umFguyG4R0J1GCy15ynk0LXk0ZC6ZekUcuSxPCzlwwe
cKG87kIli/rMvQcf3ZXFN0f2ZSSpENDCOnTf6xYCHl6p5RLRk8MRe5/qjJdy
qEHlnPVVQh5jl8KfD16XR3EpEULYvDx+Ga1XzdNWwJ5FeTWpFAVkUdR9z96p
gHLVx2scSBXRf4l1ZkhKETm8N3ILLRXR2lmc4a6PIlJ8ef1mPlQRFZ0lda9E
KyKDy7psYLgipgTMqb49p4ji168fzLJTxLZFErFVBUXkuanBeoBaET9WbdD+
/KqASyIDhx/dUcC7FtqV1+wVEPxf89YcUsA0UXo6vRp5FL745spFG3l0lq/p
CZ+VQ45/PP4pUXJYIdA8N0ouhzkJST0vkggYWH3Fx3E/AceHr73bCZFFDhG+
lPlxGbw6pvI+2EQGq5Lffquyl8Ybl9fYP1JL4UDmhbzxZxLo3sEbnmonjrfZ
Bm0DZkRRz3eBUiFUBNsu1Z65ui2EHbf5R+nCBJEmZFYrYZ4fBebnnG658GGC
m2LrehsP+kLsbIMDF2YmMghtsLIj52thOrZeFvyP99CNlCuMqEG5vI7ydBhD
P9Kg/5oK41/KsRuzHsBNruCmtm9bTSuiQzblnPNN1MhI0eHxuukPw5EmwY4J
ItM/W4o/u2tEJ+MYV+doUogs5wqhnaOA+7ZnDnkbHYG6W47Znm30EMJIPtP/
nQk4ZxIW302yQtVfwyv7frJD/8FBL8v3XDAR9dLZsJcH/MI1lXsU+GD5Q+3x
2mv8wK746sH5HwJAo+HDGi8gBF2JjS0BLsKQuf5X6lWKCIitCZzZ/1gUwrL8
ZLtbxcCT66TQiw/iwLp/fti3XQI0JMOPXKmTBO1hm7tPb0rBarn55CNvaXDa
MoUsZhnQZvhhvhIgA40RE1cHW2TAfav7pvgRWbgQ8ii110oWRu8vdr9IkwXt
ph7BodeyYG/NUc87Lwu9dG/pEhkIMJIyyXVIhgCcL13FSnQJEL7BPGhvSYD9
kx2iEnYEeHYi6ZTI3h1V+qOdw8GQAHFvZPk7FAggXkYekc5OAPpjTtbNG7Kg
NDI/f75HFpoNBkubC/ZwinZedXjJgmWLZVyVyB7+ma2dW6MyYLvjTn8vSwZU
45jMKLRlYCgo5dX7bmnI+uJE+oNGGkwucFZWaEnB1enYt7lnJOEU29AHlngJ
8MgfvpGeKQ6HOUZJwnLEoKa9+IdJtijcLKkqi00UgQ9n8lRzzgtDx/ullyxW
QrBdJmcaLSYIxww6Xjv844crOopxUm/4IMnaRyE1kRfimZKTyPR5wLJUhKTo
BCdgDffYi1dsIGDcOVLHvcdvW/G9hotMkD1sdHJ+j/91uVFCLCMtVG7SeSk1
UkKUW9b6Z8MDEEz7+7LHvV3izSvJHzRxmahwnN64q3aMyLLN4kKy70kThRYp
m0jOVFOov/dKQcJq06JDsEB+Fgl2KD0Pah44gC1a415UNFRImvMwRIqVFmne
bheaFdDjzy8yQ67sTEj//fo792QWPCwt6OU4dxQlQ7kC7XQ4cDiGo9k7iQt/
Si109bvyoMOz5utlgby4HT35riaCD0UVt/XvRPKjV/A9ze1gAXyp4uUb6iGI
Hq42PPV6QhiS2B5+mksYvScHwggzwsghnsvcVymCjEtyzhSeorj9pzwxhU4M
f2w4MghXiSFdll5Hse6efvP6vnW/F8fdbyG/4/Ql8Ih/2+GcpxL418h9YpFJ
EmnYTuQE+0jipXLnccpqSRxbPElVPiOJGoq8U8Amhc1/aL99VJXC50vyX1zM
pHBm4qrWnI0UyiTzkaTu2VSeMi7H1KTwBMctMgN2KZS+EDeWPSeJ+tGNoq61
knj82G/BNn9JnErqlP/HKYnUKy7lEs0SSHmX8V6GnQQaPuLnOv1THD8HrKZN
uoljVE/P9vE+Mczorm8nBzF0FqpJUs8XxfNNp6YMl0RwsEbsUixRBD/ua8wk
xggj+TU36W/1QpjcOnHv+S9BVLbVKlWhFUQzo6MDr6QFcAFlJhoM+JGU2MeR
7sCH5g/cHB978OKz0xOdiZ482OIon8LZzoV0ZkpHfBs4kMVRjnuyiA2PMh3u
iIxhxfDlF2/57ZmRPF6NulOIER9Ur3md/UuH7+bJRda9j+Dlg2Y5k78pcYlt
42PW6YNoxFT2dW1oHzZrNyZsFWw2aYuVtBESFpq++TN0fR8daZL7c9b48OMS
InwyqvXSGSPSrtZRRN5cJF4WpaJjDf9HPGVk+5+PACkkk+R+S4w6CN4uLyw4
O/bqt2jHz/PAEVj+p91ne5MOyifdKbiLGUBzkjxMvZgJZr5lGv7MZgE5o2p7
/eij0HigIO+BIzucI808Zy3CCTRiQpgyxQVu4XrPP5vwgLjjp3f7OHgh59yk
/s4YL5Qq0LyMKuGDje+yRWqO/ODsoO6/QC4A4osbzW4VAmAUzH3KzEAQkiuC
/OK+CsIoDZPFB1chkJztG9v+JgR+OQ8i/5gLQ06+4FpAvTD0re48P8csAmVy
pe/eeIvAUdaeVvdqETihILos9VcEnnVPaXPziwKNZLyuqIkonCD6EwzPiMLA
6a+/wsNEoWwq7ue7WFEguj6TUI7ai3NSPdPvLwoa1Fef1tuJwrUC8nuLBFHo
7ijQLNwvCvxpVp9G3otAMLPSZv9ef6HRfxLzSG0Pj339WOq4MPj1UZiVxwnD
j+PzDtJHhUF18zqrc5kQSFntzviKCIHMVY3unGJBOFjXQZBgFASeAw0TpyMF
gG8tfT59mB+2b836bSjxg/CRgxfnkvigq4Nu8tVnXnD8VWH0jpUX5kv0Kx3s
eCBY2WHjFjs3NHyNLdqJ4oS5z3OFef3sMMutsF9BiA2E89d0EnxZoS1Uav74
PWY4rBtrc+E7I/RqfxUrpWKAVm9jlRo5Onhiz779s4IGlrO5njhOU8KhhzWW
gVzkcPfFN5LOY2RQUzlwkGVxhxhv3i1yX2eNyCB7p1NEeJ4odSvqjn/mD+Jk
uEa+OaYSla8FiIvc+t602LIrfHN9tmkz9Psj9vjVprIThcnHN7ebZjuyM9ce
kWKmvZr+tNVB/LAjExP3+xA6VZwWMA/a298G3gXNXaDF/OEPCx6i9Fg1/Ife
7hMDtkwE3+EMYsI3/VS2jBQs+PbIH92cDFa0DH6yxHiEDeuf3SyZj2bH0IfU
/+WOcWDtl5gD6SpcSBYX0GMcy40fY16zijjzoFWoeybTIg+ynx7sVIzmxQ/J
WioO+/nwb+3qlFEsH2rSUF/7scKHler0uX/d+fF/aC+56g==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651288433*^9},
 CellLabel->
  "Out[528]=",ExpressionUUID->"69539866-c8d1-4b51-9a4d-5537c1055fd6"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{62.634407279174965`, 0.0018778350849548908`}, {
                   67.58800283614919, -0.0004789212115627338}, {
                   72.68959157101138, -0.001774868229928019}}], 
                  
                  LineBox[{{124.22190132886966`, -0.001774868229928019}, {
                   136.62145931312745`, 0.00044886026635712536`}, {
                   148.78793788927427`, 0.0018778350849548908`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAxyy9Tty5ZkBcCL0RNsReP1sBubv9
XGdAVMsnrJEvWT+QgjPIqWBpQDBUnq7ewde+bWjTlyuQa0B9pAPlVgJVv/JJ
9988mm1Adzmopl92Wr8fkEDrI9BvQLXNXCA3s1G/z8+h7tj9cEAoAFSp/VoY
v2NV5aPnAHJA1JI08KJBRz9Ljbs64RlzQOktgjd4T1E/B8PTjSIgdECr0t2/
a/pKPxerfsJOPHVADwCOm9HAKT/Qd4ZqTlN2QFCKSSVJgzu/XULQzpVXd0Ae
JcHyF3FHvz6/rBTIcXhAE5/MbgZ4RL/yOcsWQnl5QPFINq7ZlTC/UJlGjI97
ekCVSzyy1hQnPwKrVOPHk3tAnx42DTbQPz+HuqT2R5l8QDV9X+NQvUA/YHyH
67K0fUBLIAdtzycyP+Mix1Pxyn5ABxXu36UvEb85x0h4d85/QCBarV+89DS/
8Y4uP/RzgEDk0qvEOT06vzC5WaBQ94BADMpUJAY9Mr/EVTO7FniBQNJXXbmF
9Ai/gkvWRtIDgkDDGOAPpKQpPypAmrAxhoJAxxMnWtNLND/8jSeLhhODQD6X
PQU4RzE/t9rVQ3+Xg0AuetBcB+MZP8eZMrbhGIRAG1NoP9MjGL8BsliZOaWE
QKA3ME1aPy6/JcmfWjUohUCVyXHdII0vv3M5sIwmtoVA78P0ycTeIL8WHG94
gUGGQPh8SGdmngM/ov1OQoDDhkAQCOw1k14lP1g4+Hx0UIdAszKnf/7CKj/4
ccKVDNSHQOri1JaJtCI/7R07aA5ViEC3qnl4Cq74PgwjfasF4YhAh62dZv2I
G78VJ+DMoGOJQO9waYYN3iW/SIQMXzHxiUCAm4E7FI4iv89T56orfIpA6505
JsEkCL9AIuPUyf2KQFdxWJPktQ4/20mob12Ki0AAMS1F/WchP2BwjuiUDYxA
B558FMGqIT8P8D3SwZuMQMi6Ar6X3xE/E+KbdVgnjUCbO+gWJzP9vgHTGveS
qY1ASNUMxNX8Gb8ZHWPpwjaOQKPBCYhQgB+/G2bMuZa6jkDG/uhkdUgVv+xl
H/f/P49Ahg6fup3a2r4AGXa9
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488403#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.001774868229928019, 
               0.0018778350849548908`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{62.634407279174965`, 0.0018778350849548908`}, {
                   67.58800283614919, -0.0004789212115627338}, {
                   72.68959157101138, -0.001774868229928019}}], 
                  
                  LineBox[{{124.22190132886966`, -0.001774868229928019}, {
                   136.62145931312745`, 0.00044886026635712536`}, {
                   148.78793788927427`, 0.0018778350849548908`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAxyy9Tty5ZkBcCL0RNsReP1sBubv9
XGdAVMsnrJEvWT+QgjPIqWBpQDBUnq7ewde+bWjTlyuQa0B9pAPlVgJVv/JJ
9988mm1Adzmopl92Wr8fkEDrI9BvQLXNXCA3s1G/z8+h7tj9cEAoAFSp/VoY
v2NV5aPnAHJA1JI08KJBRz9Ljbs64RlzQOktgjd4T1E/B8PTjSIgdECr0t2/
a/pKPxerfsJOPHVADwCOm9HAKT/Qd4ZqTlN2QFCKSSVJgzu/XULQzpVXd0Ae
JcHyF3FHvz6/rBTIcXhAE5/MbgZ4RL/yOcsWQnl5QPFINq7ZlTC/UJlGjI97
ekCVSzyy1hQnPwKrVOPHk3tAnx42DTbQPz+HuqT2R5l8QDV9X+NQvUA/YHyH
67K0fUBLIAdtzycyP+Mix1Pxyn5ABxXu36UvEb85x0h4d85/QCBarV+89DS/
8Y4uP/RzgEDk0qvEOT06vzC5WaBQ94BADMpUJAY9Mr/EVTO7FniBQNJXXbmF
9Ai/gkvWRtIDgkDDGOAPpKQpPypAmrAxhoJAxxMnWtNLND/8jSeLhhODQD6X
PQU4RzE/t9rVQ3+Xg0AuetBcB+MZP8eZMrbhGIRAG1NoP9MjGL8BsliZOaWE
QKA3ME1aPy6/JcmfWjUohUCVyXHdII0vv3M5sIwmtoVA78P0ycTeIL8WHG94
gUGGQPh8SGdmngM/ov1OQoDDhkAQCOw1k14lP1g4+Hx0UIdAszKnf/7CKj/4
ccKVDNSHQOri1JaJtCI/7R07aA5ViEC3qnl4Cq74PgwjfasF4YhAh62dZv2I
G78VJ+DMoGOJQO9waYYN3iW/SIQMXzHxiUCAm4E7FI4iv89T56orfIpA6505
JsEkCL9AIuPUyf2KQFdxWJPktQ4/20mob12Ki0AAMS1F/WchP2BwjuiUDYxA
B558FMGqIT8P8D3SwZuMQMi6Ar6X3xE/E+KbdVgnjUCbO+gWJzP9vgHTGveS
qY1ASNUMxNX8Gb8ZHWPpwjaOQKPBCYhQgB+/G2bMuZa6jkDG/uhkdUgVv+xl
H/f/P49Ahg6fup3a2r4AGXa9
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488403#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.001774868229928019, 
               0.0018778350849548908`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNl3c4FmwUxq1IZGVmj9fee77HJmRkyygzK/NF+ipFQhnZszQopcyi0nsi
KiNCMhNCgxIhivr8df/xXM917us81/md+xH2DjvkR0lBQfGZmoKiVEvqZ+zz
Upg7W5s7+bgUFGfaTNKrS8FK1iw+tbAUYsta3oydLoWTNSeYLnqVgr7sxP5K
7VJoDAzd1GIpBRHVv21OUyVAd5FcxnS3BFiXHBtJ4SVQWkApe12xBKhPkHmq
F4rBJPd8zL1rxcCSc42t7VAxjGkQUuj+FYHhnTTZssoiYBROorx5oAgOf6Ct
IH4uhIlPRfqXzxVCoMJKbCt3IXyNnXdav1MA6o4dRBetApCX5x5kac+H/U6T
cxaW+dBVYumj3JcHI3Mceqs2eaBW4eFIfp0LP1n0AtE8Fx7Bnj/irTmw56CL
LkEjB1o7n//6eicbrJ7lx1fxZcO5fNvT2Zcugw6LANvI7yx4U3kwqTogC75U
FhYkVWZCU2Hox4KTGXCJn3P9l3U6eL9kqKAXvgRedWF+SitpcGjkkdBgWyrY
DVHvOZSTAjwBNNEsvhcgo+TNrTC1ZFh7HtPSR3ceyNXJYZnjiSD1rugvQ905
8Kj4Rnkt5SysPxQyv+2dAMGWZv4/T5+G/MhR2XfE/6CT+7ds+a54CCpJ3bc6
GAuWV+YfhN0hAafBqdG7qVGQvOb2VycyAj7sfuDq3nkcim7/vMTxPAiS/vY3
3B7wh2epz1aZNr3BKlo4MOi4J6i7bx45LuoMtzvc9zJS24LbsuX5+yKGQGK4
TGUzLQLyo0ObDBcU8aDE0JhPrzEy8iSVUkTZoo2yBYWksRMmrA6IPB09jD0J
Yv0xRUeQTSY0IFHCBwvCaPSb8v3wSuq08eB8AGZ9mlmq4ArCQnVvJQapEOS9
1GS7uP84nhDpfwHfwtBnOjGV5k043tSRM6kuikAJ/atZFfaRWObFw73rbyRe
XLpRNFcYheGax9oCxKKRcfshfX15NGp2j6T+2EvC/WLt7xxCSMiu+m6Ao4WE
ub59u8O3SWjZYe9/QzEGQwR8xNYdY7DndFBafWgMrray6krExaBZejzNLVIM
0hKdy1P8YzCLsJksbhmD0tGk+knRGOwUoQhgWyYh9d7STUIDCU/pQH5CEAlj
BdN2XeIi4VMFxcjGx9EYuqkgf8whGm0ObMRyzUXhf4UFoBoahaaebItK3yKx
0nFL6LxfJK6IhCfdeBeB2rwJ56kNIvC1hrYoX0U4Mp9xafSlDkez9hCvqubj
2EQyWXhxJBRrSBaqLBQhKB9ZfCSyIAgZvj3sficRiHfm1gRk6wMwSri81VnD
H59Qu30kNvviTNrZl8/VfHBrKji4o/YonhBoUBCUPoImr4/Q25l4oNPHONVA
dTf8RFVGEJNyxl1ygdtFBAdcEEroXBO0Qy/V8TI+AyucPpVP0WhnihxDgSOk
aH1cqchlABc1FK/5sK73TRRTE1cb6o//JIbfp2DmdJaEjFNFQddn1EGoYFtn
7q4++EcJ2gc9N4FdWhVv5h5YQPiHcdr4szbw+0OwpQrbIci+NeGaZO0Arn9i
7n6LdoJtQk/9kyQXIOTc/njglBs8KtBtovJ0B15NCZGj4p6gcjnl0tchL7ha
U7DC+/AIeGaaVMdGHwW+tJczMwRvuEp6YAVd3rBqmDlAOuoDUXOpMTELPhAv
EKelecwXNn5/3moe9oW0W/ne21p+cJnWoIol0w/OSLFcoBn2g7dRJZTLrP6w
2FZvtAr+UHiCLkL5qD+ktA3GDpH84Sf5yhTjaX84e0e3dG+8P9TrS79hDfKH
rBnvay7W/jAg2L9NkPCHNrcTvm2rflBudLo6vskPZicFuq+G+YFE/evCZH4/
CEpPyLvQ6gtKKi7Vfw/7QusUed3imw/QBfGd6SX5gK0hkfr7mjfM+Fx+yHLc
G3rzLWnKJ49CB/c1Ozrzo1AnKPqs4c4RyOT3+bGP7gik8C+mKjzxhOGFWcsj
Hh4wsrorrWztMLy/f7C9O8kNYsMiRN4wuIIM/S2KrIvO8NTV5fQPGicY7V5k
ehfnALpqg4xinw/BSOOqdYu9HaT3HD+7HWcDqUPBm5dNraAm8537D9YD8ObK
9gGcMIE8pX+M1bcNgYGs1FrznQgnVV8mN+Vqglfez4pMU2UIbktuTmOShIU5
jWXTAC5QEI0jNUf1kTXsbn33puBBzhufeLmtJVFDo6pUdFkJ6Rj3dI6VaKCU
c8LKCzE9LBwz5+sxNsDhp+Gce2eN8BV/sfb+MFM0Snh4f23WHK8yU1M2Glti
7JbWekj6QZR8TE1hT7ZBvj8Wc3YLtuh/R5fw7qsdygxtB/m+P4SjAQ4l9W32
KJ71xvV0sQNqOn2nT/d1xGutT3ruCjnh43vX4mt6nVDtYU9R9HFntHLdsv3w
zxnXZhecxs+5oDXJb/LwLxc0J3OcOezhivUxmrwTja4YY6beNr/tio2C1lkX
Nd1Q6qnvxWlfN+zi4DxFm+iGY4KELoGcHVUJMHPMc8M7P80Zx1PdkNaAwehT
uBtaeAyvP7Rww9Xuzg+XuNyQRMEuVzfsijT6jgcjLrqifrjlA0EVV/zbtXVz
X58LJl47uXDbywXxhF8VzDnvzDGRTfeIM6b5vpal7XfCxrdZ2fSaTvje85T8
gzxH9AauP/FfHdCch/VZn7oDHjqZ3id90h7rl64vPpg7hM9vJ1vW8B5C6T/t
SwyWdkj1IXzcItoWWYL0744o2KDK6kebjyEHkWOK+9Gjckv8xnpk80jPgZ3z
9auTP8wwdnVVU5PZFB9vEfsiJY3xM0aEZ+sZ4scBuoYiG30U0G09xYa6eI7r
QS15QhMDA1wn5H+rot6Uo4M9jxImBpLYpeOksXTBPLbqlQhy5p0svW3DiU/L
uhNUu7bIJKsy7xd//hKjHbNIK6c4IVa0dnX6rAj01ngY/7wpBRf2bH9IPKQI
hy0XHqWhCrQEzp/i4tYA1usNJm1u2rCr6ECkcrIeEDKlMjOt9OFc+sxziU4D
GHmg3XxQ0wgSnAcek4qM4VqNZg3fogkk+xQovlIwA5YDfTW0vuag/IMuPSzl
AKQFPpC9UWoBy694dluWW8Lt0QOPeHKsgDmITNUdfRDqYk8NiJpYwwGPz/or
1DZQtqx3cW+dDbRd/0EjI24LjnU6l8eCbCGMfqM4o9IW7CrNOoxHbUFMnY7n
H5UdqC+urz0XtQOD9N1UV3Ts4KT/FGephR2sJRXI9dvaga5Ar7mDtR18uM/v
oW9kB/yTvzUaFewgo4nLb2CfHfQZO7O1LtlCKIXvStVzW+ij+sP/ONMWFMX/
/hR2sIXVBq8NdlZbGFha9clJtwHD2gGmn1+toSLzo1qrtjUsq0tZnjx1EKwH
667faLACo3OdhNb3lrAguETjtWUB00aNxxhZLCBft1bYnecAOHTdc57lNod1
LR1NIrMZyNu039y1bQIj0h5TIzPGkE7np+fSagSshhLdhCJDWK4rp54LMoCe
/owT2hr6IGU1vrdgWw9OerFunEzSAZV956+E0WiBjlhIydPT6mAVVVlUu6oC
gYFKjy8HKIFou8yGTZ0csHwVsA7LloQzzA6R1CRRCGY29NzbxAdN7RwMQ1ls
0E4zFeW2QQEBIpfu7xYdIS9KdGwbd9OiiRopp1yKAyfGvliTOwXwbRzJ6p2Q
GGb08j8ueyGJbfEJA3IOcsjq3c7y6qMilmet7A1nVkHJypYvBFk1tBe/bLtH
SwNF+XunzdS0sP+/mhP7hHQw266SVL2hi/Vzu3+6k4kITnQ0epr62NCW/EeJ
zgDr7Tbknncb4AbDilT1eUOUdSmyua9qhFPEu5NZI0aocvYqpXCEMVZbfBlS
+muMsVmuEaVnTJAi4vYsrJlgiJisDqWXKV4x7ojtbjFFbR/6zEwmM2xmeOhp
7GCGjyNir8+nm6GWKPN83BMzpJX4HE393gxjfomb5a6YIdNL40XilhluRJhG
8f02Q7vAclvLRTNcezFqsDRghl2XKBWU7pvh1Sn6PXDaDO0H+astjcwwcpO2
LmPbFGXbm22N75miiyS3xr1Dpvi7gdON6bsJPmjW7K3d8fnq3pWiaToTjHO9
c3452RiLH7gsqW4b4ZORwHzqYCNMiQ0Pbn5jiP1vZtzr5A0xh85M1Oa8Afqz
5zGuvdVH58ufX+wW0Me3R7QcZ1uJmO0xSqeuq4dD3P7N7+/q4KHI5+cfsGrj
iaxi2eLjmkjY31UY9Fwdews+xtCxqqFC7+eOQy4q+MzkZKBCsRL+o/I6QVmj
gC8tAy0dRGSR/yOFI3+WJPbQeOwV/i22s0/Onhf2Fkbvm49VnuTwohVVg7WQ
Pzs+oRtmeXpqDzolfv50+PwGWeevcrL27Gti0u2gOI6n/4gyu3/zPmraC3bh
Z3hb6zig/cmrD5OhfED88zujOFkYUglPPgS/EAPjtgWDjVUJkCjuYp1ikYGk
6tb6Pm550BQoo392XhGELtfmjv9UAuYuV1UxJxXILeMq3FOtCk0s5wpp19Qg
88iQf4GiBmhwX2828tQE2F+wVHRKC6w93fUUM7ThKm3s85uZOhBhp1RTdlYX
VjvO2XX66EHw2LrypBoRPotni5b8IkInQ7Ppy9sAbAZpe4vE9MG8ywxdQ/RB
bkpyOG8nl0XxR1wzmNEHxlnVXEcWAzirl3OgV80AtGWZ46oPGUCxGsuXVX8D
oGrIDq2NNAAtDdb+BZIBfGGt62oKN4Daey2Lkj4G4Kkam+180ABuXXTs8VLY
ue9RZXGU3gBCYrpNz4zv1PEYDJqq0IcfSV+b7h/Th+O7LYK5dvww1c0+z6sF
0PF0Xd/YAyAr8PpnuzMRdBeXOoML9ODAma4e3y5dqOB0t5dd1oG+c6RII0Yd
aBJce6DApw0Mny+MxAtrQY4Ye3w9nyYIp628DWDSAPW3+yMVfqnBGFvgRPmw
Koj+E7J3qlUB+Zq3JxfPKoPtn8F9VAeV4E/3gWsabIqw2eJi7nlTDuRuWWRw
8crAorCs8MdUSegxeSSxZ4UA1h2bJu8cRMHc+Trl5QYhoEzKs6EV3Hn3JyeO
fR7khBYFINmnsAJ1zF/TklO7YSH8Pr37pz9Ebll9tWTyOFF+goXyePsC2S9b
vcHckBJ7Qjgrt2MYkHeolt2qg23nH3M10ayFC/l1Qje0rvChr+yQ06lGIXSY
eM+muVcUqy/MJpq7EPDCXP2J+lwJfL9sX3GuVQo/Oypt9r6XwaupQjRNn+Xw
018w851WQOINI6PzO/xKm/lFH92jhPcFMveI3lVGGY6Wo7pnVHDN4sBgmLkq
Pg8hzUbSqqGUxvGfFI/UUHh41nLcSx1j9zVrdv5Wx7ovdWyFqRr4p8LZipdR
E88P9cTLntNEjVddh+8uaCLj3ZqRU+ZaeDGrijarUAvddlOLvR3XwsMyhdmG
bNooZ/Bf36iONna4jwZccdHGpgT2heJj2niF1nDsQ7A2Rkr9yk301kaG+8lG
16208WVTE9lDWhuTZmhJ7/9oYcKTcwetW7XQt8oxZSZeC68YspT1S2rh5vJL
TpduTdxzQ+B4k7cm3v9jPq22pIEawVIWAhEaKM1YsIKf1VGM8rP/cSd1JOUM
m559rIZTC1PsDhxq+PG5BI1pgCqafdrd8ahWBem7Qmw5VpSx8d16XauMMuaG
yPZLeyqhe9d9LUxVROvHph0fPBQwS7rnq1epHIbSG0l86ZNBd41+rcBNKYSW
8U9veCRxpu9T8j5l8R0/hGRxIzHkKpv8RWG9k2dq1veX2Avh75vJneNVfOi0
t51zroIbBVrzhI3L2JGv5nrZl8ss+O81P2sKAz2Gbo+kn1qjQJnIBZZd3cvk
WZ6UvPMLT8ifmG3GvvsuEuNkCmsVKf8SdTLS8ngHaSFN+cUFjXQmsI8K2t3M
sQ/a177KyQ9xgna3lpRD4n54l7FCdVFAANYpXrVdHRAC/9ngyLU0ESj5JVOT
qiEGWVbugZXDBBDaHrxbGiQBMnoc0+1LktDql8F+xl8aOPonFFR6ZaDRY0vF
TlwO2iNtj9sdlwezAFJVY4UCpF2dk6XyV4Q593fegT8UgX3uRu77CCUIO0i3
oPhVCVzl34truypDQ35o9VuyMkTqnrg0tV8FzK4zXDQMVYHiFTax2QcqQHkI
0xt29v1caHXzDSlVyGEYPVjtoArTDhF3OkmqMFsYMbp1SRVuSEletCxWBeZv
ZXuelalCtMh3xcACVTjwLN/J7YIqcFV3G94NVYXhT8PccRaqEHm10GiaXxUW
ugW8GD6rQMinJCHBKhUYmqPVPXBUBS64Bx94zKICGmGvKyublEHlybCrqZMy
2HCdXXq7uMOJTHe3yyeV4EZ2Rt9TKiVge3zi+tVzilBoE0L8u64A84mvX1qP
y8NbCYrInno54BuU6uc6LQvi/PFS7/R2+tbhuL9uRQqifOnNncokoWtGjiaW
KAGRTl9WX74jwAM2jScUAWJQuXy0cHxpJ9cujrNxRAoDt6Gu2vCEIPDmxbkR
u/nguda9n9O1PBDuLLXHNJMTyjJvFS8F7INnDX6TProsMGCfJ23DtwfG3Eev
//eUGspnRVlvkX8TU/lnw8z3LRIXCcwN1AIPifebGwlpfvPkgE9pyqfv/yJ7
VK2Zdu6iwjf/VhIURXZjiJO+bJ0UE75v71jsYmRDd51ZzdJf7PjRdb6a8i0X
bi5omT4q349xlSGOae786HYyg0KUWgiTzDqmfayFMeW2xXJ8pgiWMvz9MdUh
is9mh2PZl8XQj52eUMwijiHe231bohJoOqTw4LW0JCbotF69KSaFCu/amIVY
pVG/StJjbkkaB/JchsufyaAs1cHpXYmy2BtutKdPXQ4vMy2LkMflUPC9pk1p
hDyydhxh196Qx66Ydp+wMAXsvk57nXdYAfc4HR3K5lJEPbOjn5/qKGKimNc3
ehdFvDfoeJoUoojegYPzVCcU0bKLyN98ShFlnaMfX4lXRHW2Z0vPwxRx4Iju
SU0PRWyDsmIWI0XsDQnf8hFWxFTvJq+SHwrIrvGCMJKpgEwyiadbhRTQ6cHT
hfIb8jvcmGB9wS2PCl+TU5MT5PBQ7ev7euOyyKH+K9RKShaVkyiYeIJlcE51
bYPpmjR26Wqdu9Ithb/zZu7oLkjivJ7BrDeFJP6+0fgmg0ECZbS+UxnuFcfL
Xq1PKGkJSAq/Vum0Lorav7/n9kyK4Kc6Nc0VFMb4yf/GXYqFcN/ZQg3J9wL4
0JBZPyqeD2muJZe37t2Pda8CeEwKudCQtemVEi8HpsvJFzwtYMNuXrcKQWYW
/CZDGSm4iwF7Lws5XZzfhXdHW6qX2ylQOKKX/7TJL/K3QLPQKPqv5PDJqseU
Pi/IiqyeObon3xPTJdKFROKWiZ/i9xetxf8hKril9Ryuo4IPjylqo/Po4NFh
9pqsAEbwdf1m/jybBZxu5L4pnWcDhTwB84PyHCC2EqLw9hgXNPG1Fmnm8YB4
e3N+aj0vbDpSFEwiP7RMZ/c4twjCtzpFo8xBIVCcufK8HoVBhmv1rup1EbBY
ZLZojhcFJv+DPPPmYnDRbe5jMCMBuqruTm+1EyB/jO+tXaQ46GzUC0qxS0D8
xIkZ0zsSsHh0go6kKgl6phWuifWSEDemkGEmJgWaCx32ZalScL9UytV/Rgpq
TCzt0+SlIbhcluJXqDRUrfwULy+XBl5OlbwzL6RhPj2AJ++DNBRxPo6fX5CG
m467jp/Z0YoU2ZSISWn4QuyRe9suDWqOtgntV6RhJeOkuV+INOjA8clJOWmw
zNRm9vooBQ2rHBQ86VLQEanJbCIjBUmaJ+uFyJIwJdRp/91EEi6diZZZa5MA
/sRk7rNqEvDAjD92pkwclP77vhq6RYBArV2+/9kRINF94GJQmRjUutzaKJwS
hel9jZ3BvKIwOF9+ysJaBAh+k0+vnhAG+e12ydEyISBM6Kn1xghCyOjxhbgK
fnitxT5Y+ooXTHPdIyWnecDptzIV0w8ueBR8Z8NwnQP2OF7IxtV98HpLwP30
IiswJ6RG/WphhtaJzQ9BBQxwC12dHYLogFf7H3u9BjX0so1k0FD/JT6+42Oa
lLNGfFjIPdlw4CtRdTpRYmxhgBijY144o/Sa/COUnNKy9oks0P5kjAdWyZvp
gQ7iYVvkFs6EWzeNqPCIy17NRQNaFLbUPFemuAel+Wy61vYyYezAk8MCiyxY
TXc0deYFG9ZKMD6LyWdH9hzPQhY3TrznnGK2yMKNa7vuLFs95kHD0tyN/xx5
8cSPl6a903zYNXk5v9hTAPVilB8YdQui0e21qaIcIWyXiGj8rimM/ZtTjJ5D
wpg/QMl/55gIKkkGVhWtiOCHJW3+jUhRHOQrK837IooS5h/ZzZzE8MCfUIv5
ZjEcS1Woec9EQFux6qxyZwL+1/HgGFU+AZ08+WV+dhLwmsQ4BvwkoBz9DKUb
mzjadN5+8kpcHEmXQ681KYrjioPWAYUd5aytEtIjiOP+vpQjP5nFsXFe5++x
HwS0R9aSRy8I6PP0ZMSuHAIqkHX1IxwJ6ExZrCK+U/edUkmP3VMx7IgNeEHw
EcPfpr2bw/9EMcaPAa7niOL2kXcH2wRE8eiR3pIT10SQ67O91l4+EZzvnanu
yBDGGfV/Pd83d/qw/Kpw2EMIPeKzBW6SBPHYOQEGfxEBfOZ+5NeNNj5USEyY
ZnXmRfXKxuBjUzy4a6AgwdeLG5lEN9ZevOXERkYzeQcDDnxQPto8WLEPXQvF
l5mp2fAcv2LZkCsLdm1lcH5y3IvDe+o9o7/TY5vnxJn107TI9kqyko2eGv9e
cvn2nu8fWSyhP8dHeINcUKjWSym6TG5bX6aitpglp1w6KqXj2EmOONY8G2za
S3xve/m8he8c8Vfa17uKGcvEw/eakrtcN4jMzv58o6z/iFmb3ztvjVIBy5Hr
lQX8tPDxV2WxsT09WN4buwAnGIF8WM5dJIMZcl6WOpmbs0Kuvr1EKbLBCEPa
8jFZdujXutPAksEBZr0Th/985AQBj3K6AjluWEAVfZcgHqh79lTlcdF+CNPk
XSA+4QVSN/G/sF4+UGZi1poY4IfMa3VjfK8EgCVFperNPUH46/rMps9ACM5b
93UU3xQCuoZMDvF/QnA9buaarZ0w/EkSn9guFgZyV60Vx4QwaHc6FJ1jF4G7
TVupasYiEHXJjkEkWASyl6IU9FNFAFleyV66IgK7VYfdaO+KAG+1hVzDfREQ
HqSRK6kSgbEgj6WuEhHYrrjAYH9eBCy/SDKZ+4tAuJhkcBtRBFiCyKGTTCKw
S2lAvOWdMJQH3XI9k7/DC5slfxtrYbCKM1J3/isExpe4BToqhSDXV62ry0wI
lKPjDLSfC8L3n7csP38WgNUfFC0clAJAkxjhSWTkB/7s/LMf9/CBZ4R+48Xt
/bDJPpTQNssDE9z14tyt3FCSXWcnnMMFuYfX+mIOc0KdOL/pg/0c8EKfcea/
/n2g5enLGJHABoIm49yakqzQvyGysJbNDDe+CzV0djJCe4/cnMk6PZygbRR7
xUMHXBEdD2vVaCBJ6PD4UUtK8Pzzxup08xbR8x9/vevgOjGJ7UyMwNcfxIEC
5xGJf3NEOf/+E39c3xIFjfVK1ruryJc4jiUq1I2RSfJubEKUX8g2t/T5T5uv
kIvqa3vDKTfI/dY6bT23t8lFKV7vKa5Q4prZ1KSJOw1Wp5zk/r2XDi/QK8d9
qaNHISTe/2TKiLc1/9S86WZC3SdyJe1XWXB0aK7kzBtWvO14RT7vFxtGELi0
ktnZsRTbP42Ic+Bus8wpbnlObFLpixyW4sIPx6Pb7/Jwo7Sk6ZbyNjd675MJ
ZHnLg+ZywZXfyvajacX7lng3XixdXdc/Ts+H9x5Vh56/w4f0fuK6SXr8+NVO
JU6tjR9JXgn9QZoCGFWX8mXrqgAOkome3RsC2OIR0t9iKIjsu7oWyacEseRX
r/eLKkE0LdBb7H0hiDSF4YbjbwUx1SiMc21QENvi39DItQvijTRScnGFIEq7
S0wejhPE0U/C1Pm6grihUpISvSKAjv85nJMqFsCRYBP/byoCuKckcuEv8qM6
mXL+OpEfh4SuConV8uG02gGVQXY+PMlf6EwbyouaHIXaPI/2I/9r656QTR68
lUuzN0CeBx/pB49EunDjUNrT+/9iuVDizMrJs+k7nLcT9ggv4kDuO8q+5qXs
mCu67Zqavw/dDy2cfpjChktKFhZOUawYddhLcsWJBUvKXh+XPcaET7cU6a5z
MmKXQnWS/2N6rMo24rnqQIcrM9tK0fM0WJf75AtLBBW6TfSsGy/8I5d4xQbU
fP1NFqOb73g2s0aWitxdNjr0g0xoVUtvvPSJHPhm2PDC2Bj5fz9zqZ4=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651319077*^9},
 CellLabel->
  "Out[529]=",ExpressionUUID->"32e96337-ce94-4efe-9a44-955d72d28d49"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{59.93320700486404, 0.0014173335929860385`}, {
                   67.58800283614919, -0.0010663242659287753`}, {
                   69.14942190990082, -0.001300312140451699}}], 
                  
                  LineBox[{{118.34085135971075`, -0.001300312140451699}, {
                   119.21320203105091`, -0.0011955048108536128`}, {
                   136.62145931312745`, 0.0009324651166675771}, {
                   144.81670302916345`, 0.0014173335929860385`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAApc7Wf6WiZUBwPntbujhXP1sBubv9
XGdAaNgGW6AYQT+QgjPIqWBpQHCam0MF+kG/bWjTlyuQa0BfWMFvQ5VSv/JJ
9988mm1Aj1cOil4FUL8fkEDrI9BvQOzfWStwvTO/z8+h7tj9cEDs5SlFD0s6
P2NV5aPnAHJAE5gK9rclSD9Ljbs64RlzQGepARtvlUQ/B8PTjSIgdEDB8k3s
YVwsPxerfsJOPHVAFrkLvh2YMb/Qd4ZqTlN2QAy2TdXl30C/XULQzpVXd0BX
Tlq/Mmw9vz6/rBTIcXhAgAkSbr3XIr/yOcsWQnl5QH/C9f4CUSc/UJlGjI97
ekA3qRByUd83PwKrVOPHk3tA739K155GNj+HuqT2R5l8QAIpCYu8DiM/YHyH
67K0fUC2A0gQUiUev+Mix1Pxyn5A3G38lQD3Mb85x0h4d85/QGWsqX8/jDG/
8Y4uP/RzgEAFwidzKo4evzC5WaBQ94BAk3RmSLZtEj/EVTO7FniBQGe52sEl
PCo/gkvWRtIDgkC+r1th5WMsPypAmrAxhoJA3fQJIWh1Hz/8jSeLhhODQFum
plsa2AO/t9rVQ3+Xg0Di/FE7qPMjv8eZMrbhGIRAChDxtHaDJ78BsliZOaWE
QPbBirbffxy/JcmfWjUohUDi4TCl0z3gPnM5sIwmtoVAVSoTMLRlHj8WHG94
gUGGQPNCm2adUCM/ov1OQoDDhkCCmRuz+xkaP1g4+Hx0UIdAEMWLWyAxtL74
ccKVDNSHQFrQdG95/xa/7R07aA5ViEChY64CHSUgvwwjfasF4YhAQLCJlvkE
GL8VJ+DMoGOJQP0eqbt1D/K+SIQMXzHxiUBKtHbUpRoRP89T56orfIpAhg8H
jmsaGz9AIuPUyf2KQJ21hh2yHhY/20mob12Ki0AJ8+KRk8D0PmBwjuiUDYxA
SUW6GP6mCL8P8D3SwZuMQMmYBgsVxha/E+KbdVgnjUBsCCXcYmwTvwHTGveS
qY1AdUh5ZmQ2+r4ZHWPpwjaOQGmUQ3qZngM/G2bMuZa6jkCnRjJUmRkTP+xl
H/f/P49AtGHrsK4VEj+vBHBj
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488464#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.001300312140451699, 
               0.0014173335929860385`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{59.93320700486404, 0.0014173335929860385`}, {
                   67.58800283614919, -0.0010663242659287753`}, {
                   69.14942190990082, -0.001300312140451699}}], 
                  
                  LineBox[{{118.34085135971075`, -0.001300312140451699}, {
                   119.21320203105091`, -0.0011955048108536128`}, {
                   136.62145931312745`, 0.0009324651166675771}, {
                   144.81670302916345`, 0.0014173335929860385`}}], 
                  LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAApc7Wf6WiZUBwPntbujhXP1sBubv9
XGdAaNgGW6AYQT+QgjPIqWBpQHCam0MF+kG/bWjTlyuQa0BfWMFvQ5VSv/JJ
9988mm1Aj1cOil4FUL8fkEDrI9BvQOzfWStwvTO/z8+h7tj9cEDs5SlFD0s6
P2NV5aPnAHJAE5gK9rclSD9Ljbs64RlzQGepARtvlUQ/B8PTjSIgdEDB8k3s
YVwsPxerfsJOPHVAFrkLvh2YMb/Qd4ZqTlN2QAy2TdXl30C/XULQzpVXd0BX
Tlq/Mmw9vz6/rBTIcXhAgAkSbr3XIr/yOcsWQnl5QH/C9f4CUSc/UJlGjI97
ekA3qRByUd83PwKrVOPHk3tA739K155GNj+HuqT2R5l8QAIpCYu8DiM/YHyH
67K0fUC2A0gQUiUev+Mix1Pxyn5A3G38lQD3Mb85x0h4d85/QGWsqX8/jDG/
8Y4uP/RzgEAFwidzKo4evzC5WaBQ94BAk3RmSLZtEj/EVTO7FniBQGe52sEl
PCo/gkvWRtIDgkC+r1th5WMsPypAmrAxhoJA3fQJIWh1Hz/8jSeLhhODQFum
plsa2AO/t9rVQ3+Xg0Di/FE7qPMjv8eZMrbhGIRAChDxtHaDJ78BsliZOaWE
QPbBirbffxy/JcmfWjUohUDi4TCl0z3gPnM5sIwmtoVAVSoTMLRlHj8WHG94
gUGGQPNCm2adUCM/ov1OQoDDhkCCmRuz+xkaP1g4+Hx0UIdAEMWLWyAxtL74
ccKVDNSHQFrQdG95/xa/7R07aA5ViEChY64CHSUgvwwjfasF4YhAQLCJlvkE
GL8VJ+DMoGOJQP0eqbt1D/K+SIQMXzHxiUBKtHbUpRoRP89T56orfIpAhg8H
jmsaGz9AIuPUyf2KQJ21hh2yHhY/20mob12Ki0AJ8+KRk8D0PmBwjuiUDYxA
SUW6GP6mCL8P8D3SwZuMQMmYBgsVxha/E+KbdVgnjUBsCCXcYmwTvwHTGveS
qY1AdUh5ZmQ2+r4ZHWPpwjaOQGmUQ3qZngM/G2bMuZa6jkCnRjJUmRkTP+xl
H/f/P49AtGHrsK4VEj+vBHBj
                   "]]}, 
                 Annotation[#, "Charting`Private`Tag$7488464#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.001300312140451699, 
               0.0014173335929860385`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNV2c0FgwYtZPNa29ee8/s9yEzIyMrszKyV0gKhYSyK0pKoUGJz17vU6Rs
IS0lKRkRpYTE16977jnPr3vOHY/YkXAHP0oKCoo5agoK39/jZ2sXC8BJPO+E
/pcCcKi763JqogAuiFhmxgwUgK98lL5SSwF0Ztx3rr5ZAPVa8/E7ZwugUC9o
R8G/AJBycM54bwHwiKl/cuAvAJ8P2bpB3/Kh0pl3tJicD4LlK/x/MvMhkWFj
d8mBfHgd/pmpiDcfzHkyt6nf5sHcwmn+zcI8MORlXLnokAdhsm6OK7vzoEFa
w1GWnAu+D6kkvcJzIUPNiataKBe4vuJGVH4OrKpQuxp/zoadxP8a2FWz4ajV
srLEiSxwVQwO7Wy/AFnz0fGaW+fhlMzJ8mda52HmKr/Tk/BMeBk7uHi8PAM6
bRxKlF+mw529U8Y6tOnAe4Nk/En1HOx/OO55yiMN8m8P5Rw4exZa+Vznm+6n
AtFNInB9NAWGq/a88llPhuc/CKUWQslQtDu45qfRGSDGW9g3+J8Gzpsju6t5
koDSI67H0icBAg+4bY7XnIT+4TifaYp4oDKmVqFwjINYA5PG9spYODZUqHuL
Nga2jNMbtPyOQVypwjWKvkioiZiuPKURAS8XfvnaWoZCSdmn4R/aQWBlnRLa
p3kUvjmPytcb+QJBwAdTPQ+D0QVCLQunJwQRzrVv5rhA9bl3nvoqDvAz4EKx
++I+8P/IFWB/AaByZKpHok8a/MJSiZGZgigVzjzAmaqDnxo5GbKumqKzoITj
V/79yNQ3ZzUhegCz3ifVPqNzwWjO9s+3yW54bTahYsPcC7Grdlh+5BDeesx+
qMn/CJ527tw489kHLYTk2o9b+qFC2e7p3CJ/PJDOfXlo6CgWPj2/YbQUgP5r
syHbq4E48uv4nNSnIGSVW6eYbQ3G+97Fu6JPhqBmrVk/k2QoNi6NOW00heLt
iKyKTI0wnG3l8eEvDkMX5+0ChsUwpCjlt+yWDkcTKia79v3hmL6yMRpwOBzz
C1/vtjoUjot1gW/nrcJxxkX91KhEOD66cZuv6GsYlvnWhI+VhiHn0lKwuGkY
wlHslX4TiqvlkdWZnqFIEmo2WRsNwS9lD134dEOQ5vLNpYqCYJQMJk/bTQVh
WC1t6ohoEFJE58p9dApEsaXIV7qnA/CLwuHnV0uPYhOrpwG5yR/d4+OfHXnq
h0WujDpmg76429ZKRGrQB92jOkLx6REMvuNLHGo9jAfztr8zVR7CKpuhoUA5
b/zjla+2ueGBWkynbms8cUM/4c3shExXPNQalaq+3xnvbxVgNZsj0r4NO284
Zo9ozX/ST8kWXQS9A7LbLJHCt7khzM4Mg74/CTq6bIQd+qPdWZp6WDTa/yfn
nhpS9bBm0adJYBIn+7ukyR1y0QN2BfFYXhjykIxb51YADUuGRa8eTWgZuS/V
ZmcAgfyTu+/a7QWpX9lRaROmUOyY2ZFuvg9GfjAJPcmxhtipPZt1HbbQkXfa
rv2IPdDcFgwZeOEADbpninI1HMFtf0RN8Rkn4Gwa4M9qcwbK3TpktmkX4Nyd
/m3ypys8s5JwbF89CM8IhYMnJt3A1D034Ge9O4jYv3rIedwDCi4RA4YlPGGn
Qvq2BNkTqk5aDIgYe4GIVrHlqzoveK/s7hHC5g1le+kfMxz0BoVkv8i5LG9g
ycizM33oDT63ot4EdXiDx3htT1WzNwjkne7yuekNOeZ+f9aOe0NDg9XwiL43
lHzmCgpY8YJHgl+99hR4wRGOZGOypBccTCqzyLjrCa5K4iNSgp5wQuHsLoUz
HlAXWBql/todUtNdMt6JuYPlerdpv5cbyDTRNd/JOQgXSeNFQg2uUKFg+G5i
2AU6VSpMLk45w9dbCmubs07A+3OD4ekXRyicMJF58P4A3OrK4gwcdADpNGHb
ukZ7aKXZdc/0qh38ET+Hdd/3Q9zPqGMOt61hsTxg3+sDlpDeyveg7o85HOQ2
mrK9YQq+uxJNOQ2NoSH8cI3PB0MoK5yK0fqrDwvl9UYyJG3gdwIj/VR1iKmO
Os9argjMjq03RBwlgNRG8ZGoxw3Mf1js/WVXSBkVxMqLjxkxLfZ5//EEEQy7
PNl58rAMrsSMOZKCVHD1bgbnxwwNZMn9Fk7O0saGHfHPtNH6uCUadzBJyBAT
bxzUTF0xQs+q8oc2/xnjzD2KTIkjpnhZ3sbKa8cMs9Zq/DwzLHBjxMQpb2cf
OnYENsUetsKSu+/dCqutMYG1wiLziw16cn7qXqW3xf/6igW6GOww+/EdxZ2z
dqg3WRrHuWaHxNWQg8tu9lgbk1aZXG+PNVtXc55ROaB89NjJDlMHHHPr3QpM
cMDBmwJzr+85INPM9xcC/Q44HOG41/KjA4o7UbueWXTAxFOyvZ/+YSbb8r0r
0w7IsXfL5PmgA77/9vVbS7UDtioPvso664CWjmNvzzk4oKC+o/UclwMec9J8
ujpsj8Yjsz9+nLZHpTFOFzVZe9TP4Oen6rVDssLJwYZDdnjqU4e/xUdblMQC
+v0/9mP3R+sAzV82GOF5PrR9wRqXkhbOVYxZoYtO4Z6mGkv0jL+Y05a8D4mh
C0+TLC3wd8p2wxi9Oa452/tkkE3RTn4yMzrEBJUHnKWDCMbIzRyzBfVGaL9w
RXzA1hD1Uz5K9w4aYANfYWzHT100EdybmcWljdMnCaY06prY/7dpQnm/Ggo1
pJl4jCjhVGSJuTK9LD5vK2z5a0xEj33KSx2sAvivgBVC3VmRJ5ImzPHGd3J0
8tfOwJVNUhCvmGJUMzs0v5z7UH9OEMR3k2Qs8onA/Fv08fITGRA0pQxwfqMI
yT7PNy74q8LsE5xbH1KHagPX768k9kCk8lqZ6FFtuCDjnv3qoi64cTflsj7Q
h8scAnIL1SQ4ECc12W9tCPezTn6S32MEuu78WfqEvaAiDhQPPu0F8r0dZY07
xnB1pWY+19MEOgTZ3mfQmUI6s07p0k1TEJ2PfZivbAabM1sBLg/NQD6kkEZc
zBz0Y4+em0o1B8uXbXXpb81Buk7oF4+4BbQp3rEocLeAovvtYrvOWcC9Z3ut
zpVbgKtWSLdSvQUIpeiXijRawOuI96PJlRZADPjCmp5nAaWCjZf9gi2AZnKH
0lXbAl58qibcWjcHteG9iRfum8P1kN4qP0dz6Iq/mnxmxQzspzeldc6YQbzn
4KMFOjPoZTyusnHGFK68En7Z/8MECPNhFkMHTeDKzR3WiCZjqO8pOCTBZAxf
K21GDrvuBdcVGs5b14zg68fPVYffGEJCbXyZCKsh9OxrTG09RYLIWOazesP6
sMzhzzjArQfeRnApzlEHNm5qd9tmaME7wYGhw42a4KC/PY3v1GGB2ub6yb+q
MFdPjLvNpwKvbqsE3PJVgKfMIZXceTLwSk9eurtVAp7w7br35JMoJE90XrIW
5Ie27vLZueMckPve1v9ZOy04vMgsSS9ZIO09YiujnbdCLo/9HFbMuAtfHGrp
5B3kwMmqUL/8NT5kZoxbcU8SRXXCaRr270RkKun07Novjdl3z4u/vyyHGb4z
rq+fKWJa6LFOkQgVFAMPYZdlVSx7yPZm7pA6cg62Fmk80UAD4rRlGe8eVDzN
efCOpxZmh3O9bs/XRgv1C7WBTTpI9U6ux6BfFz1+WXGPDerhJP2uZ4Nkffzz
l7zvXYkBDvOpHGoKIuFddjppcUlAr320fAsDgOOxQWmrKoYYztFx+W+kITKm
9cdm3DPEbLvH8fmvDNEgQ4aOb8sQSwRWE8R5jJCCg0e7RcYIYzcGAhZVjFA0
4jTzc2UjfDufMn5K0girbl+hZ+MwwuttvsFVvwzx5ZdxsZjn//Kx/m5O4S1D
PKtLp2UUYoibvj6XyhUNcf/skb/Lg4DWz5aXFlTgn38/cDakkjApOsziea8B
7l6OfvaEwgBv+Tz7KCqnj2Mm/tfjzPRw7exdbz9nXYzLLTx71k0Hea7VsJw6
oI0VNIZaK0ZaKO99nidLag+ShXcMKak0kebCRbftF+rI/6C8XbtUDWPjPZiO
+qqimS/dKyNxFXwe1eJG16CIct+UEwcE5LGn9+WSTbwMstsaK1GPSmK9BWe1
rwQRHe2HqBaiRLFHSdmOI1EAZ7o9U4I5ufHLo2+PHlWx4Qz9Y/lXWXT4utbP
6set3+QYsYRCg6RO8v4Y5oBzoz9I7r/dEkbfUcNuQ3fqeEUWSCxI9GaW54T+
2mukCRk+OHp6276FWRhc04YKbweLQabcfsW7j4mgUOVU2rNLCuKOCHFt6stA
4akiFt1DciB/5/PrvAgFUAmrXOQOVQLzgtsVMXIq8OzKl/nrBFWIqBWzqPiu
Cu4MKwmKT9Rgf0i16KdMdVDOmW+OM9WAFtPfb+6sakBwS6um6iVNEFnIv/9O
dg+4FUQfPFG7B/TOqF19L68FYqYbhNkiLZDjoq2PX9eCp7FX76daagOKWYet
Z2uDrdXVkufd2tBhuEHDuqwNUXP7U9oZdCDt0PraHK8OaKQHSVbx6YBB35kb
osw6QLN++VboqjZsRkWstQ9ogwpJpgeu/ONTosmKB7XBz0jiZheTNtT09aSZ
1msBlYPuvi1bLTix5+zpPVN7YF09hd3Cbw8I7ctcy/igCcsz27Rutppw3PNr
I3+DBkSZ4Cc1dg1oo3M7z+yrDi1pqbl81WrwnLB9vHdZFV4FGEkWyKpCZ4PU
5WV3FbBfZNVrYFEGAVp+3QpXRVjryjhVc1ke4oZ9nN/1yoKI9rsLqqvSQL7G
/7SNIAX3t7rW0xUkoJv+4sRdkjis8Nk6KViJwrRZ5dt9twWhgUM33uIhL7xx
6eiOreOEr5cOf/1ZzwbWevFLGLwbPhu9O30zghLqjnekB2/8IPXKc27FGPWS
9paz2zVyzpMPrHHQ63FvkXMyGPYPt9CiZHekUJgNM/qzb18TOsyBHycKP5kz
cOM1nxWd8FI+pDySduGtmBB+5XuVF24mio+YK2tWlsVw7/6W1soLRKzJj6eZ
EpDECIcj4RPXpFCq8FDDCosMalZrPzwVKYsBn69emumSQ3q7Bf1iWgWcTiu2
4tmjiCuUgsHvHZXwxXONYycPKyMD+/KzJ4oqeJ+GrOJ0UwUnZ/C8KaMqZi00
dEYGq6JslRBf22NVXKzkVaVnUcOZmUxmUzs1jGKLYfdJV8PirNwt10Y1TDih
MSP+Vg2TIi8od66q/etz+WQDanXM16FuLqVXx+5PL4a3/vG0DP43R3+pYdix
tMmtd2poc0xkaKJVDUu4Wbxlc9Qw01jhF4ubGg6oByW3CqjhVK2gv9cLVYw6
ss9SNVUVG9vpdkLlVVFfjM7xQJ8KjpC8V4iHVVB4f6C99ZQylmtcvGO+rISu
jlZ6L5YV0bep8r/8aQU8M/nllmyPPNZ07lI2vSmHIioXyi+HySKBToH7hYoM
VoWu/Gyak8IryW/uUBRKYrfuPvEIfQlMTws+0f9GHJXbxuLehouhWBlL6NC2
CA63u9uc5BDCW2/0vJwF+VGOdStmS4gHe/IPlzDyceJAXKq2OCs7Xi5WOdJO
zYTRybymzTO0eCmsSuxt9g45yTWhg+C6SnZssLj4X8M7cuEAU+PxqjFSlV3M
VNnCCqnL6oL+eP8WaYqyJZtkQgOLprbmR5gZIPhl3714MiusdF6Q8q7kAGOq
aL82fy7o5zlHQUngBRptibL5B/z/dsA7C909QpBFdO/rqhSBtqNXa1VpxYDS
UauIUk4cZDk7D9gYE4Eveyq50E4C5HinJwLtJaFLMtnDyVQKDJKKY37IS4O4
c4faRxoZUGm+5Nk7LAO0BOkStwuywHb/Ua61rhyARP0XrzdyILT/SdjBQHno
GrCSYVqQB5KIoLWtuwK8+8DjQN2hAOaSWT/YWBWBk8mFGGivCOOpw2y0qYpw
P+cax5fbinCa1f8aV6si3DiYIlfRoQhy+bVy1bWKwNMzM2V/WRGKi2wtWoIV
gTR7a4VTTRFKvj96dW1eAayq30JuvgJY7kgnayoqQFif3eSbln8+T7xtNqIt
DyE/bWRjK+XgwmL8HllWOai584Fof1QWvu+LDnWrk4H1vlZC078ccDKocJmU
kYZ4CdNo6wNSQBMS7Jx8TBJeOx92oM2UAIGQT6+8ConAQpUuIXhNHOoz2n4O
FolBhVyCOn22KKipMjt0rQvD2kVO+9keQbgx4B9fl8UPn4slHxyx4AXmw/vm
1Ta5YHVR/Y5vOQFOOIsp61qww2ehKx+XBpkhrlqnqYN6N5jfPRQerEED/Rwe
FJtPtkkwb7i5IPqLlDX41sKWepZk7j4cpNJJJjWVHDr5M2iSTIgWfCTO8p1M
zVA2sy9wk0xbMZL0eIwSO+0jL/EfocO3X7nVI94zIB80TuQYs2L18othuV52
lJiszX75iYCJO4b6vStcKBkSWrZ7mQdH35xvufOeD3V5gKGjTQAF73ULhaYL
4ZfZs29m9opgWYHrknKMKDa9CfFjBTEU8VB81bwthlUGupff1Imjq+uZOQkv
InKyTBAd/xLRndG7RypPArWoAwuP8EliINH8ztglSTRvyTpmTSeF7brMCxVB
UihxLTAaO6XQteDAdiKLNHby+a8/t5FGJaX7LndPS+Nc0ou87dvSOOXAf3ns
kTTapy92Kg5JY4Wt52u+YWkszfOfreySxv5qNtJmlTRq3M60k06XRjMlkxsu
rtKoWSNwtVFQGl9E152OGZdCozIqw/5kKVT5pWXzU0IKeUi0iWrtkjjEGDI5
YCGJN7okUln7JTDwfqu3lbEEJjnFMb6sJWJss2HRbh4itjpGuZocE0czhx93
556K4UxcYrMHhxi6x/rZMDiLorvAeUKHhAh23/nsUZAjhNSapi0JSwJIJ8X2
4Cjw4yTvTIJRGi8GzhvV7HRyY/LvJylX1zhxp9YxjFmcgEq5kZedzdhxVWv5
ymIPC07LyTK/32TAhsmwylSJXejwK75rwZwadTxTixSHtsluMvU3hel/k8t6
Gxt8Ur6Rr0zzmVX+eU9mybqq8E0om3SoMG4dHn4gRQyyXHjNs0wybn/6q5n3
N0mRnpcyLHubNENPjqr8SQV6CwJ6M/l0QG00ZSMqygDFQtNUpVeZQWni8TG3
02yw1nnJxEuGA9rk1gTynhBgvSh5StmRCz4GH2NLeskN3Ge0ufsteSEsLKco
oIYPvMOXu+vpBOBqq3wxl40g5JxXltxMFoK/oy0db+8Iw3UFSmOdNhF43sxV
YeclCmcSjKVejIuCilrb7JqxGBzbc6Yr664YEGRTW6KoxWHqS+KfVEdxoD1A
XLtbLA4bRlkuPa/FYdxom2OUkQgBbp8Pt2oQoUtLuTP+ABHEs9a/swcQoW74
7FxKFBG0GioH3vzDPKVLc2KBRPj9kqk43IkIWQyqZhNaRIhm7tRLZiPCs1dU
d9I+iEOtwd5o1gpxKDEV2GNxWBxkchPoD3OKw8fWnMhsshiolSca7j4kBg4B
NkEsG6KwM9b6eTJDFPo/2ychhyhUnzwe811aBOZDX+g/EBAGyh4/PntKIWBU
/SKX/EYATjHfz/5azg+VVg92DHz5oIRHOVqZlxcOPHRuiX/MDQGuI0wfDnFB
EbGvXuQ3Aa42+l6mPssBXH0/+xwZ2SGm1jHgERcrPIgaF16gZwKKb0Lsvd/p
4b9jSUVUo7Rw+auNBqmKCmp9Ojz2bW+TSlMkTpOvr5NaVasjFPV+kLTDrS/0
PZgllRls5Xe9GCe9ijub5DR+n2zSebcAZ96R46Q3Wl7sLJAzV/56rzSuki/J
1CT4TmyQCzCZTWthh0xhWfBefYUKLRclwlLe0+K/nXqyuI0eb2b5MvBkMGLX
5alzxSYsaJbM3xwSy4YJzsXRZo/YUbZfWgF2ONC071zcYzVOjCLoXie5caGg
v/OAUgw3Gpbnu7Kn8CD3Q/vfISm8uPyrfHk4hg9jhuWtnh/kxxeLHZRMygKo
HfNcVPaXAJbnnPs2XiWI94ID6HsdhDBH8FbC43kh/PB55nNahDCmvu4Nnf8i
jM+p65YeW4tgW47Z3PebIihU7FPg80UEhacdv9Iwi6KfzT5ihLAoeqkWZMVI
i2LvIfk8ARlRdGCkexUiKop18pukODZRHPWUqLi5IoI6168HC9SIYInKC/mL
3iLIxKilYLkjjGOya9EpOcKYobB9M4tNGFeb3Wo7koVQuYR7KPyLIJpYtvLs
0hdE1tEM/6UUAYynrWAqIPPjQpvixbBFPuS9diV+i5kPj247zZOJvPjx9kyw
gRIPUsvdLKNR4sbEAeONCiIX9uaHWzex/tOPzvHm6A8ODPpeNnBpkB0DlumE
b5Wy4X8nAzi037Bg4IHeYidfJnxZUWCw8mk3Xj0VleN9cBdWtBy7vd1Ng1K6
4ynvFahQu3uJ8x3PDtmcvpN4ZWCDzEkZJ9AY/5P8lsbw7NK+b2T1kWNVutc+
kY/6/ThT/mmErPuQus7jbyVpTrh9uiLtNUmWefSpRdcXkpyP8wvNSyukLY/j
Dx63/CI9VhIbbBzYJKms3rXN7d8hvRUr8f16kArus91qy31MAxRTMfXnBXbB
AM3f/c3+u8Ge70PWn5uMUNP+3x/jAeZ/d3fkMj+zgssJ7cK5n2zAWiaeXrDE
DukRztdHJzjgO8OZGG0kwIdSTfQs5AT6Cs6Ijz5cwGqWOR8gwQ0JKgTR0tfc
UJ+63qFzmgfMnsXsXebnhcfRBkJn7vLCRpfD08Z//xoFs+qoVzEffFDWo7Kl
4Id2o3B7Xxd+0Hvo8Te5lB+a5zzOX57gB66LbH159AIwKiI5HCYtACHhAd+V
tAUgSUMN3+oKQKKTwvczygKwkXv2oB63AGztLx6WWOYHbStZXp9WfmCNZu0T
i+MHFapHygUy/HDOP1BypZ8PNPS+rx4/wgc4/1ImYpEX3stzB0sE8QLlT3Gb
LxM8YFDBJ8i8lwdE+uH+r2vcoNf2Q5xqiQtSG8TJV9S44K1S/BWZME5o/2Mf
KVJKAC2aiz6rPRywyfywWmieHSi2yGEClOywfIP5YCg7G9Q/E1tU0mSBNVee
eiNdJgh78K1ZSp0BVE2br62J0sP+E4neQzR04N96tWfoAzUo248OCdRRQsZJ
jp2mnW3Spd66vvDsTdK066N3/3GukQYXmSpeXvxOYmTInDssvkBypsaLirwf
SQKpN4pDRJ6TGFd+cWRYXycbFWbEcI+NkZsqvfPVRqbJxc9PFk+UfyXHVQvl
Mqr8IJMerw0YJ62Rm/qtqr53bJLnHixb/JnfJqdLcx26d5oSuUXoC/6cpkYu
48xHm9G0//Z/zUS9+y48nmjUChq7keEPTUrLXwY0KnLg2dfEhIOzjceFD7Gg
rWYC8dhvVuwLi9cxJbOhnoTkmutxdrT3PtpbKsWBe++Y8Q71c6DTDt1goT8B
nUe5YlvXCDi48P3w+klOjH1G28z3r6cHNYOzF325cL0+d8ukhwsZO1vl/opw
o/ygh9evYG7k0jCn5rzPjU6ke7WmU9yo/N+sSgI9D+ZqWh6vk+BBJdOU27Ma
PBgkzEsrosODmZkPf/qq8uBZSruZvn9/BLVooWnANjdmzv4KdxvjxpPN2xef
XONGiUNjt4bduLF4s1O2kpkbI5/IkNIbuDDW/LpLmQMXql+8qKg7w4l8MYF5
uaGc6NPEYrb8lYDzT9zGyw4R8Ocnfh+KAQ4cjqFIdFfiwOfnUr6xprPjw7Xx
lFNv2NAaqD9QE//p0lsXx9vHgvWScbHbwIy+FV8tCu4yYl9iuFcjDQNaJFRl
WDvRo17YWBoU0+Edj1+JCa9o0E8sP2OdgRon/DsVbu+hRC53p+a/jdvk0sNU
3zZ/bpJn40YyDWR/k1tYni08dlold59I9WLa+EYOK74byQGzZNlQn3NS1B/I
uSMFo5Icw2S1hnu63C9dyM5uocpH8oZI9888/VafO0la5BrwJ737QsoykUjU
8PhGouaXKjGY/kHS8RuvqElfI53UtqkrE9kkpf5xprGv+EvifnFqYPs8BcxY
udL81aWCps25uyOT1DAe+/F5bSwtsE8PZr6h3AUqApE6F5Lo4Xk81SLn8m5Q
6Cb+99SWEdYPBH7dKmWCho92+QLTzLD58mxyDgcrjBjKec7ysoElT5HV/Rts
QOF1hc5diB16I3GxPY8ddC81u5RusUM8q3nNa08OkLyVk0Rq4ICioJaEh1QE
KC57W8JiRoBLwso8JkkEWKq9HGxQTQBGXffgpVEC8CjCHuslAkSLvdJx+UsA
Wmo1RXZqTrBhHt+dvE2A8Z/sVE3LBFD8S47ufEmAKCq3ybY6AhR0lj7DNAI8
Wb1Xu2xLALmv53ciWQnQ/fT6+8juf/tNK1BKJIoDhKUsTKu5OOB/5F+TMA==

    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651366251*^9},
 CellLabel->
  "Out[530]=",ExpressionUUID->"4590ae9a-3ba7-4134-b816-2f0e5f773cca"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{114.69600261464124`, -0.0007879778527365392}, {
                   119.21320203105091`, -0.0003620859791589664}, {
                   134.7435166049162, 0.0008473562034311354}}], 
                  
                  LineBox[{{169.5855230042872, 0.0008473562034311354}, {
                   170.46784494870712`, 0.0008205378622071705}, {
                   186.9059733022103, -0.000034238791055866766`}, {
                   203.020725346189, -0.000665414742231469}, {
                   219.82100484027262`, -0.0007879778527365392}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAEn6UyYuXa0Daw8GNCdJJv/JJ9988
mm1ADgdeJ2XPPL8fkEDrI9BvQOK0ND4gdCA/z8+h7tj9cEDULKTdrBxAP2NV
5aPnAHJAbHwyTrZuQD9Ljbs64RlzQFLSXD/S9ys/B8PTjSIgdEBxVFLm4mch
vxerfsJOPHVAsxHYQJuGN7/Qd4ZqTlN2QKy3dhoxSjW/XULQzpVXd0B7cxYi
gLkevz6/rBTIcXhA+l785YNdIj/yOcsWQnl5QI9oJ4DbojE/UJlGjI97ekAa
6tCyheYuPwKrVOPHk3tA/0lESjCdET+HuqT2R5l8QDkCAOGojRy/YHyH67K0
fUAFKfyY9SUrv+Mix1Pxyn5AXvhckKWyJb85x0h4d85/QItV9x9q3QS/8Y4u
P/RzgEDL+vbj6a8aPzC5WaBQ94BAG6EhA6JmJT/EVTO7FniBQBqtmOm4LSE/
gkvWRtIDgkBy6oCvoGP5PipAmrAxhoJA1HzG3nPkFL/8jSeLhhODQJssJJFp
OiG/t9rVQ3+Xg0BONB8QfnAav8eZMrbhGIRANEJFATXe9L4BsliZOaWEQGfR
0RU7RhI/JcmfWjUohUDks8qADS4cP3M5sIwmtoVA+Y/VA9LVFD8WHG94gUGG
QKl2+jHMnNg+ov1OQoDDhkCUUi+bGPEPv1g4+Hx0UIdAwx7DCneIF7/4ccKV
DNSHQAokhjYoxRC/7R07aA5ViECeK/hxhP3bvgwjfasF4YhAVM/I2xn1Cz8V
J+DMoGOJQK8tdkodwBM/SIQMXzHxiUBXduCEuKkLP89T56orfIpAYDw9I/tP
hj5AIuPUyf2KQDwalAfvEgi/20mob12Ki0CPMec+KtUQv2BwjuiUDYxALI30
glQbB78P8D3SwZuMQCK7RIIW18M+E+KbdVgnjUCcA3RvorAGPwHTGveSqY1A
aUUbYPHzDD8ZHWPpwjaOQA902nDl5wE/G2bMuZa6jkD+FcT2sT3QvuxlH/f/
P49Av557QbqwA7/wEmJP
                   "]], 
                  
                  LineBox[{{58.24828687916329, 0.0008473562034311354}, {
                   65.7368546221245, -0.0007879778527365392}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488525#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0007879778527365392, 
               0.0008473562034311354}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{114.69600261464124`, -0.0007879778527365392}, {
                   119.21320203105091`, -0.0003620859791589664}, {
                   134.7435166049162, 0.0008473562034311354}}], 
                  
                  LineBox[{{169.5855230042872, 0.0008473562034311354}, {
                   170.46784494870712`, 0.0008205378622071705}, {
                   186.9059733022103, -0.000034238791055866766`}, {
                   203.020725346189, -0.000665414742231469}, {
                   219.82100484027262`, -0.0007879778527365392}}], 
                  LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAEn6UyYuXa0Daw8GNCdJJv/JJ9988
mm1ADgdeJ2XPPL8fkEDrI9BvQOK0ND4gdCA/z8+h7tj9cEDULKTdrBxAP2NV
5aPnAHJAbHwyTrZuQD9Ljbs64RlzQFLSXD/S9ys/B8PTjSIgdEBxVFLm4mch
vxerfsJOPHVAsxHYQJuGN7/Qd4ZqTlN2QKy3dhoxSjW/XULQzpVXd0B7cxYi
gLkevz6/rBTIcXhA+l785YNdIj/yOcsWQnl5QI9oJ4DbojE/UJlGjI97ekAa
6tCyheYuPwKrVOPHk3tA/0lESjCdET+HuqT2R5l8QDkCAOGojRy/YHyH67K0
fUAFKfyY9SUrv+Mix1Pxyn5AXvhckKWyJb85x0h4d85/QItV9x9q3QS/8Y4u
P/RzgEDL+vbj6a8aPzC5WaBQ94BAG6EhA6JmJT/EVTO7FniBQBqtmOm4LSE/
gkvWRtIDgkBy6oCvoGP5PipAmrAxhoJA1HzG3nPkFL/8jSeLhhODQJssJJFp
OiG/t9rVQ3+Xg0BONB8QfnAav8eZMrbhGIRANEJFATXe9L4BsliZOaWEQGfR
0RU7RhI/JcmfWjUohUDks8qADS4cP3M5sIwmtoVA+Y/VA9LVFD8WHG94gUGG
QKl2+jHMnNg+ov1OQoDDhkCUUi+bGPEPv1g4+Hx0UIdAwx7DCneIF7/4ccKV
DNSHQAokhjYoxRC/7R07aA5ViECeK/hxhP3bvgwjfasF4YhAVM/I2xn1Cz8V
J+DMoGOJQK8tdkodwBM/SIQMXzHxiUBXduCEuKkLP89T56orfIpAYDw9I/tP
hj5AIuPUyf2KQDwalAfvEgi/20mob12Ki0CPMec+KtUQv2BwjuiUDYxALI30
glQbB78P8D3SwZuMQCK7RIIW18M+E+KbdVgnjUCcA3RvorAGPwHTGveSqY1A
aUUbYPHzDD8ZHWPpwjaOQA902nDl5wE/G2bMuZa6jkD+FcT2sT3QvuxlH/f/
P49Av557QbqwA7/wEmJP
                   "]], 
                  
                  LineBox[{{58.24828687916329, 0.0008473562034311354}, {
                   65.7368546221245, -0.0007879778527365392}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488525#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0007879778527365392, 
               0.0008473562034311354}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwVV3c41u8XRmbWy2uv7L238DlkZGaFZGVGyiapSBkZKbMkachIKCGV3pOo
jJJRFCWrL1lpyCr9/P4613mec53r/uO+7+e5xXzDHAOoqaioZrZRUb2rLe8Y
yMqEV043XZTOZEIcNblaKCoTAu8NjVZ6ZMIjg/WREcgEt3Wufc+EMiEtVPF1
yM8MEPm0Hj7blgHfLzfIO2VnwL1N67QnjhmQOGBwx4QjA0JkZixoutLhj0lG
Kt/JdAg5++53hXw65D81THrbfxbyQ6js2mPOgp7WSmMp+Sx8rdwlnnMnDaI+
j2y2G6XBnkKhkuDeVMhstRWsc0+F64St1cuJFIgdcs/9EpAC8yA1RHxJBhdp
Lncmn2RQfEN748SHM1BOH+zUt+cMmMUuCRq3noYbNzqy6dVOw/s/afSeV5Ng
IHMo5RRTEmy0LF6siTwFx9989dnVkAjifx8IqZ1KgP0XzivfsDwJJVfl4kkc
JyB9VaL592A8rDD9031TfAyGeLoryAfi4GB75WsDyaNwjM7I5dlMDNDm2BUI
1EbDCm2s7aPoKPBu2RvHZRgJNeoKpMsMEeDKz9EUVRUGpwS9w55aHoHSx+ff
Lywdgjqp+YXO0iBInpp6KuQaCB9vBYtV8vrD1FS+tcyED9xtvalREuoNzTNw
tFDFHRyZpCdSGF2h4fb+wop1R7COqm23Y9sDGUu+1WZe5mAo8T7xfI8hXAq6
2KNQowzNOxlUtJOXiR3lfy5zOsriC90rd9tk9ZDGM/H0i4Fd6CcafPFGrwWe
q+p4pZS+B2dFfHIjNh1wXLtwNKZgL9oVPVuwZHLFkjqR5xVubsi/z7fJLdUd
+c2ckwzOe+L54+QQiPbGes81/7uXD2Ct5lMzt2Af3FkjGKgg7YuhM+eljPp8
cfh4DOPDQ354I/NGGv7ww844t4/Jwf6our2qw/iNP7KeCvHQlgzAI0HkB1VB
ARhrE/vi65UA7D30gsa6NQAt7izIyA4GIM3AifnxkQCczPNtGu0PwLi3V20z
HgcgS530OefCANwUU+Zs8gvAxTCWWamtfXZaS4TEe38sJV/apnrKHwUumF7t
E/LHbk/evAu1fmjXSVZe1fLD4P0/FQvv+2IqNXXwuowvNtgoJjXl+eCwfEqy
58oBnLpvV3LG6QCqnms5dtzBG0/xUy7s+uaJymY559KSPPBakKhoDJM7RvTd
3NA864bBrVL63zZdsXYmubMz1AXf2Rm+nn6/FxeUDPiCCSdsy/9XHHzNAZW1
YYKKyh6l8uq4zrTYYHCx58WIOEs8QkpaH9EyR4kEFrP237twcj5+xTAesPLR
iRtl3HrInfKo7VCbOvaN3Zo1ZJND32+hMY8v8OPCZyue+GNDlOXSd4ftxHng
BINKUcwlaahJvF+rOqsKxvVUYZle2tDx7RG3T5U+WJW3HQv2M4LjYxrs9sO7
4PHtTIqrrhmkTAgzpJ/YDc945Geoyi3h8BEVke/3reHnS+29127ZwhzLoxiv
eDv4T7F6c/SSPXiJUR5eCHCAqcXnb3kktnh5tFTZos8RXi2INtOFO8Hs4rjj
zn9OsGrDVj2csBf2lYaxfFncC8vpI+o+ds7wME6b58A1Z+gbN5jfGHeGCO63
9K5cLqBUxz9zRccFSkYoItQ2LuDAoKWNDi7ArHLwsIClC3zLPu7vqe4CremD
gx9YXaBd8hIxM+IMau9eJ09fcYbE4twqAwdn0E5xDXFc2wtst7PnLxXsBb+C
H64p0nuBp+PmmZw7TsBZ4pynL+sEO9zaiuguO4JGzi29GBpHWHf1Nif7OkDi
6yL/kIf20N2yrZqZyR4e9Q+kMt7cA2yCD/h6pG1Bt0zgaPZVaxCIcqWJZLaC
23JF+26EWsB+U/frlp3mkPDuw0iOkBmYNXWrlgWbgH538+7Ke8bwl+OoUdoc
QFLFj1G1UAOoDNKgPb+gC67DVObvQrSgOYSHTX1ODQbNDFYvjChCY43urQNz
UrC/+23LAFkE7nA27HSIJcGHwuTSNpUZIjnuZURwCC1KrNgWR2vxYunOvGDJ
NTE02MFW3qIui1nZP+KtTZXxt51Enje3OkaopoUUftdE7Z7FkaBGHdQO3Kmd
4b0Tv3yi7WldNMAEBhnZBR9AL8I/6d+IEba6Xf/9b8UY2aPCNNJoTZDza2ed
CrUpdu+3n7i6YIoHJ0yOpnSa4fakcJPSfHNcCTloeH/PbqQyiAnPW9mNu5Zi
vgqdt8DtZ6pLdLgtMTCBYj2YbonfMzldf89bYnJgcUkpYYXznw9YTCVYYbqj
5NexGivc9y9v41G3FWrpk9JvvLdCmoNXKnvfWqH3Bd7UtKdW6GQhwst5xQpJ
gzyv2g5aocuTm4arElYolPtwkLPPEht/FBxPCLNEk52DSjX/LDCNc6GG97QF
ap3QFjDcwuWnPpt5w3s3OsYo1vc/NsdVu5MhnizmqLPnheeQgxlGupuf+5Bl
ihVixT+oKCbYi9KkxS+7sJedlGZKtwtv/hS4c1vIGDnMCoQ6FY1wJ6dsRf5h
Aq9PxCY2RBkgD2Phfevwncj1wzqu0U8XYUroqK2dNn6My6EJ09TEn34NttFc
6lhW7bInZFwFPZ8WhnMUKOA0MOckmstgl+N2ZsdVcUxQtDXW2S+MhxZsoKOH
C6u+knZfKWfEky6ns2QCvlH+ib/dPZD0nbC4lfDtqQgTrP/TV3kszA0O5ZpH
3m0KwdL8tlOwXxwOjnHq7BOWBomXa/wvXsiBBtOM1t29ShB+sJ/7tq8qHAww
jzzDrA6vVSaLBco0oPVYO9QraAHjE+XzRde1IaVRIl6RThc2tabHB5z1oPlH
dBtd3k5gsZh3M2vRh/r9G7oSfQbgpurqbdhnCHfOORpDCwHFsVXd4zkA4gW2
dcuyRpAt0zzGm2AE33x2M1h0GIE5t6jNSQZjGBiT82vUNwZr9Iv95W8Mdl0D
rGZnjCHMWeHXg0JjiFvT4/Mv3bo/Zx0SWGIMevuzW8YvGIMsz7WczWPG4OTs
82d2nzGo6KqGDisZgz7vnbN0a0bgOig5X/XICMjuH7ZtjzKC/zzleg+LG0Hl
NMVTPxfg5ckIk/c9BES4XZN23TCExR0yWoF8hvDXvf/YI2kD+CPt5sUuow+S
lk4K0gI7wfXdsdTnVHpQoHHqW/OIDlTtHdDvrdYGzoAsjs8RWnCna9KnRVkT
LieHTxpPqsNuhcQs6wtqQNPTxfpAWxX6sluLX9Qqgdr9xS7v/+SBbn5db41b
FgR4HYYcQAoqtqctSfuLA/8h6vBAlh0wfUn5qvsefvAdTbidm0MGBve8H931
zECl+CDX3JEK7rwzrLETnSJ8Qpw/NhbMUN6WesXSqFLjmU90GYUcLKjEGui3
w5eM4zIffUWu8+G907kNVG3COB1Y+znTVwzfXrc/f7BfAunueUwPqkijA53i
zepjsjjWaUG8qJXHANLFIzw9iri882R28aAyzg8up9T7qSLfRL5Hp50aHvwt
lyOvoo69nsTXWGoNtLJueOn6QgPfPQw3SzypiY6L/aaV0looxbKZWNiqhSqr
Gzk8e7TxdXLb+t9ubVTJVRZR0NfBz5HfDFOKdXAo5mLon3kdHFh7lpauoosd
H5PYlbf0Ux3LLfYrTRc3C3bYLZboYrD0gSSdW7q411ys58dWn5oXZWd9VhfL
/b1+Rfnr4tBRuT0V6roY5DbtJvNTB20Dgs0Ny3XwVNdLbT0bHSzwraKO/KKN
+07ELZhGaqPcXH0w988tfM+Sn9sEaSGb4OikW78mhkpoLdxV08RDIdL/ulI1
UINDeliqXx2NvkafM9nSb5X8ObHbtmr4Lnyn8WSCKoaLibet2Kvgy+vf+xgK
ldCDbfO2YI8Crs/vfu6xLocXGGs9VwVlsX69qlVEUxoH7LQv05hKosnlXTrv
bcSx+xDfx7d2osijJSXgcUUIm3awUtRy+TDwWHxO7hkunP1WuzARScIhpY/p
tM8Z8cpR1jt5VVTILbN0WUn1O+X7Kf/D1GX1FA52Uw/LkAVCLf9l4d3ATeLz
6ysgvkQPXrHnHTey2GDQ6eHDLzRkODj6tdGmmgd45U4GvzAUgInLS7+ONgvD
yvoT11dZonBmSj/hoYo4tPuvpau3S0BNMflzuKUUHGhuP9VMkYZ3Ry/57JOQ
hSfJ9Xdux8oBYwI7I3ezPLCcrHnDOK0Au9nPWW7bpgReNYn955iV4djLlm0E
lQq0nd/Z1zimAuJvA3odXFSh7tA2pfF7qqCwcurBPI0aPFlaDvWyVAOG/FcF
0ilqoNeZXq3fpAb32CT9Ln9Ug08NvwvMVtXgJYuPhjmTOgg/F1eqZlcHaaez
B9K3fExq6PiJjT9qkB9+YUpsSg1GQ3bkiLeqQS33hXnZfDW44zxVE+CpBlcj
b91lE1aD2FzbLq8BVUivsC4pOKUKt5KfBq9IqoLvRbnmoiQVKCki3X9eqQx7
4poLuJ4qwd1n0V0qHYogxbU68bJVAX7rzkjk18iDjNVTVscsOUixtJxs95IF
2YgfSo1SMuA962i0NC4FTb9FHuzOl4Q3bcOrFwwloFmqoKFsVAxaHH95e8WJ
gtpwS7AOrwg4B7F5xakLAo++K9nYlA8MK1KP793DDW/8RqljHTmhVr2au6+M
DaiTeReGSxnBcbrMJq2IBpJJlryX5deIa3Fez4L2zxK6165e2SXQQDy0k23s
E/9CefVaLdnH7Del/BC76+xXKqy94WW5s5gen71KpD+nwYI3j6p/+z5EQjWK
oUl1KhkvfQwwz5Dkwf5lU0+Nu3yoHteivk9WEF3c2l2bM4UxiYU8LPZhB0rY
1800M4ihbUFCRBePOD40fP/JhF8Cw6MeYDWbJJpFnuLN+S2JLMWVSZm9Uph+
Vc5b/4o0duc0rFq6yeCflitXghlkUXkx+oFzuSyeJHtO92vJIV0/1fa6Rjm0
f2hl1iolj5NF/dtnU+TxgDuJhzwoj+WJ3gEqPArYsWtCSd9cAZtWnbv0AxUw
+Pt8GcQq4LUnpkJeWzVUNdfvwda57ayIV/RuhS3f0Y59waeAddJlYdPD8viO
ekKLP1seQw3Eym+py6ORmJ3zaIccZhgbOwo5yKHnWfUp7N7KU+5PzFT1ZPHE
4VMeI0UyaLCn5IjWojQ27zF+06wtjTSGhy5+iZLCqmV+C+NySdx7VvGYS48E
Hq+lO9UwL47HOa25v1GLo9fZ8dUSNjEUm/LL9yCL4tu/+bp5YiKolLXszcou
hN4N89/Dlvhx7vKzXIaXvBixqRQtmc+NuU+ZcvjdyMiuR/tVn5cDt48dOtZW
yooLxaSCNkYmbFt5xi91mBb7HjVMSxX9o3wJXOAOdvtN4W9OkL9nMEuJDTNk
8gt+Q4kOaPn5auAtMVx8Y24sZZ54YjVyp0tnhZAbyDlvw0AFTHHsLeY+tFAm
pSd3vIIRVt+P9F0bYoF65aR2PEqC+vfJWXGxnMD7llD4HsgFNhEiZHkLHojM
19JX5ueD4saxfPIHfuhNC47fSBWEUI9oHrK4MBQ3sLTnVYnA9tn8+z5somBq
3+4V/0QUJqxGB9p8xECOVaXx17oYyKZfi+o6Kw41GQ4HmZgloOma+NSJJAlI
59WyWpmTgP3p+zkdrSQh+3XM4JErkqBh2eusPiEJzcNBMdmCUuDWaWIQZyEF
0bufd88HSUG+lvjepRNSUPbfL9rsZCkYukO3PpQoBXW/9klOh0rBaEmhyoiD
FEhLjfkNy0rBuX+KyRy/JGGPhXnV/fuSoJN3gn/9oCR42mkKS3JIQuf9wN7Y
OgloL9P+bmAiAQf8H1W/eCUOfKpCfsE24nBRWisu8ZkYFP98wRqkIgYCvce6
UvNE4Xl9hlra6A4Qtxjq5EoVge5wz/oCEWHIudOvulS5pffloEWStADQG6cd
nC3kg3JzU7foPzzQu7SqWO36f/0b+Z6vIoPXo8crkj85oPX+t/5ILRKsT0ra
0U6ywB8d4sljeyZwPcm0IdFEBxbGGYIu3DQgXOLJPTj2h6isSXn6K3eZOBjT
PeifMU/YFTKuv1wcIRKYXdy7PXIozcMZypSZT5T+nI/8DIYLlJshjc8Ta5cp
p+WVGXaX/6G8GvXRYmylxscVNhVcO+iwzpT7+vEQRvT/wfT9RBkzkieZHQI7
2HBSVVSsa5aEpU5nwvQCOPGx7UEH7CejR/zDvBvq3Pi49/OcejIP3tkItu58
wYsdAczKHWt8uEZpGS8WEsCxmf86HikL4kvKicJbKkJY1Dh/ZlpEGD+8HzzF
80cY1UyOegy8EMGfz5tnOhN24KHTUZnvOUSRJepv6q39osg8BSX1RaI4/ohJ
cb5HFOtUTHaarouic6ZjbL2gGK5S3NU0NcTQvNXX9ZWRGFJb7Pc/YyqGmbzy
LgcJMeSnPCzOVBbDKhE2aiZuMbzenH7p73dRdOPwuZ71XBQteVxCRs+Lol5t
j46ogyh+ovPgS2YSRa+h3IKkyB1oml4gJdEqgjLFL8UP/xNGy0VTzSklYbzq
dZ5F0FYIj7xZZq70FMQyHuvPcgcEsGpYVtDcmR8LNzYGKg35MP00vwatAC/e
shNiIs1x4733rzzT73Hhhu67v2qhZNS5mUzfK8aJvLNfwpRekzCwYlheZYIN
k7Jojz8RYsHrIk5G1dZMW/8k+eHr4fR4Xf3xDdtz25DJ1WXd4yYVSoUYlW8G
bVDiW4OOdyQvU/bZTn/8uvMbJVi/6cvjw5OUgY/7+p8W9lCKTGFb/J6nROKx
eGG7iM/Ef7/ffV7ZNUeMr68/EHD5SbjHdrhxrKwSZ8PmftknbRKNdWvci6vU
EDj7Yf/UDVoY920JFzVkAPWWutRdL5jAaZQl7bcBCzzWa2z7VcoG334p2lJv
+cmbCOLsWi4HpGpE3He6yQndzLz9aRVkkNTTzuQu5YKzXhUByencMHQm8p9f
IA+cbnYystHihTPomPZpmRdWt3sMPK3gAyGZV/9VWPHD5qXxANtRfpAXZlmK
9hUASQ6y5tygAMw9Yf+Xoi8IT3n0zSUvCEKjZ45C7VtBqFi3/8vFJAR6JR6q
TkpCwJaV6XzYWAiW25aZjpgJAUXbZuKQnhC8FrV3SBYWgiN0ielj3wUh3Zd5
f12TIPhUGDDIHRaEB+5OItmcgmBTTzKTuS0Ay5s0dGYaAhBb+ygXavmhKYg1
J1aQHwKpz/faH+eDj43BzAY9vFC5/rTkDtdWfdm9U9iOB7I+vb3KlsANIT/s
CYYbXFDJZPAj9zEZaqKWru/q5oT7rNWz1X0cYL73e3vQGxIonBS2V85ghwxp
dL0XyAr3eIwcy7SYIUZ18a7LKiMkMH8dE7pLD40T0Sl2XrRw+gjXPStaGujv
va8/bP6PCEJKl3L8OiH8pDrC5dYykf9JU4O7e4mw6Nyw8vg4TczdLSlNM/tI
0FwdmAx63Ersm9ns65hupwSFV+47XfaJMqE5b9G2d4ayP6g5RmR0ieKlHpza
nrRMWWTm/veac53y/HsKc1v2JiUygD+/5Bg1qrHcUv92dRtmXHaz02iiQyFT
zb32FAbs1LN6oN3EhLSyEcnjV5jx/j5izCWCFY3lhJMr1dmRY+ga/3oYCW86
iHKpG3DgBM+5Jxf/cqB0Qzu8vs+JnZcfnDvuRcbrLUUZjn/J+Fh3U5HpAhcm
7u0t8eThxs/7RJy4L3BjtUWN9N8/3Pj81Z6grx48qMOxPNdYx4P09afJ5ss8
aK7p+jZZiRefTV1u9t/Hi902dh8/x/CiXYvCfyspvCjbYPen8SwvUhkMNcgn
8KK0nzdNaODWvGemUKkxL7p0XvGfYufFtUca5iF9PLhuYMsVlMqD5e8uTXCr
8ODeS+De1M2NWlx6OTke3OinbfNmeZwLT06O+Ol4cOHpymvBd7vJuHkw8txT
VTJ2uZn3vcrkRGpSmg184sAn0QtfU6U40OgLjQRvAAmDds1FvtFlx8dpAx9n
LrLiOk6GHZthxkO7m76mKmzHJO2fhsK+jEifbLJqe44eb4uuF6vU0iKj+hvq
T89pkFZ+e0P0Oyrcde9brmrLX8pUGjlxqHWN4ia4WiFHWaZYTD5pib7/nRJD
dbqCzWKOkmHdRXhLTlIiMo3zZqgGKdwrOXsZGB5QXJ41VhoNtRMM6ZX7iYRh
woy5/mGR9hdC2bJW+xPvArFkEVBsE/aD2MYRPWVh8pvoNcv61Eu3Trgc/RI4
2vCXCHfJijGooAJ71Xsa7kE0cNldW2tUiBb2eV5IHmujg7N9SVMpHgxw/c07
2PjCCNk8YeSj3tvhSFRcv14HM3zzTjXN3sEKsQdPfur0Z4MdOVzsthfZoSpo
utPYnQR2MrfcfoyRQJtjCo95cIBjXnBq6WsOoFeIs1PT5ITSIolZmgucwOAi
4Lc4xgntRz9zvJUmg5xj5I3LPmTgcHrsxXSIDJoVbZL1F8hQKWhgKHeHDC83
8fCRFjKYbyw8OdNKhuzm/NijW3r10Yhh2n+bDNd4KmhNsslQrlDzx+4gGZQf
W0aXaZHBNEKyNXiNEy7QOi/01HNCfcJ0AaMvJxy4GP7CnoEThPi6+v67wQEf
75Fk2bU44A/nphyZQgI+38drRgQJImnzcgdD2IEjQt+234oNdg9IZioIsMJu
n6Lz14aZYY4zgm4lazuEep5I21BjAhvNSqmkLgYILJOYPuBKD7vqei2PfaCF
I4rWWOOwDbZH9sn895Qayh3crdlkqYBRw+2GPOkv8SrJ5/Bw2xqxzX8kmevI
b2It9cFGO+tPgq6kLa/B7hvx6cz96LPxM8SZF28qvpSOE8wT0iTntHeErm/P
oyxbJG7GUQmmODygdFhkhHkHDVAkcz8cSA8fowTlRuWkCU5TvhzwO3r63gKl
vk5wZwTvDwrrUQs6DotlijDjmc/TQasUPtqu5d1xG5S0/1x3nY/epGgVPtPg
qqVCeV6r1uc8NLj45G98adQ2dPf1555vo8XST56Sm/T0SPvPK1LVgAHpQu85
/rfF/6HB84uZ8UwY+Gotq/D0diwZFX6XHM+Mvef1mT/7sOCd7RO7dXRZ8VlD
VJXcX1b8wDic6HGXDW2j90WecmDHIrPwUvsxdozOCnC3VCZhrFluKrPf1vtb
xevskU1Coes7K5XvknDvqcsY30HCn31iOsRWnvLt/kt94iMJeSk3fA3eb+Wr
Y18+Z3WRcF5MQ+fU/a09F39YK+eRMGJdkKshmISUUK7TGjokNDR+PFS+wo4j
G06fE8LYMXP6TbXdIBuev1E3flqRDc8cPv0zI5IV1d1bhiYqWXDumPQj1l5m
1LzOX1U4sx25lpoI0k8m3PfK0ZxriRF5lCy9TMYYcKYuqtC0nR4f5R1nfn6F
DtVUTBKPHqLFyJ6bi2TlbWjKR5F0naHGg/JCNjSXqTCG1L3RkLZJqU7ovmr/
eoNCOrenJZR+jSKm2dlYrfmbkjAuIVPp9pMirpq8xnB0iZK/p2x2QmiO8kfg
TwWfyRfKuWIli20do5Q5zGMYoRugVJe9+GfJ/4RiUZAczf30HqHi4GRYydNL
ZIifoRavGCGU4szE089NEno8KV95tb8SHSUyTNJdi8SrcMkCZ4kfRNl+5Reu
b38Rk9c3X5XHrhDbBGaaPzCuE3Fr+9Vy0/8QDwxA6eTKJqHeV9RXVUkF8o0K
RQtd1HC8u8zn5zgNaGSnXlBY2AYKom3trPO0MKd9S4B/lA6MIo1C3j6jh5sL
1mk9RQzwMMP6yFVfRiiR/xY/KcQE9q9zisw6mEDT83lAjP92MH027KD4fTts
3NnXphjKDPVHXBR2jTDDKuN9fmNdFjAvlbBmSGGBQSHe+uOtLCDHEB6fvcAC
NoJ8jHpMrMC3K3rpJBcrDGs8WwxiZ4WRryEDbOssYPHIO/TcWxbQrUmIZi5l
AXsjrQPNbixQ5u9s+4qWBbSYrXvTrjFDD/PLDg0lZjC4uKkiVr0dappKJyoF
tsP0pZJAhRNbePPX7pB6GeHru7o3L3kY4WHtUveWsUC8fZ9uRgI9vMm5tp5/
jQ4q/7D+DHtAC2c3HGur2rZB5+HzrIPPaSBNP2vxHIUarg/x9oXWUoEFtd8v
TcV/hF9tpPyR+T+EDFNz+fur68Q90iRnr+kqwdTEVnTv8zJxS7FEYCz8J/HS
c0/As7Ulgsecvid5ZZ7INTFqvbQ0TZhb0qtdGZ8gsix/a7y/PELUZPOVdB3p
IyZ2aCzzMDwhQtiJUR2hCorgqcwvc6udFOLv6+Oh24YoUR+KlqOOjVF+6/2z
afL9QrkwZRvas3OW8miFa5nv3yLl+uB9xVOD3yl7w6Zl/4n+ojR03ijo8fxN
MRUwz2zJXKVU7+FsvFa1TsmVlp33aPpDya3VffXp7iYlsPj1NVYbKvSLNDqb
pUWN31mSbkdx0WzxfvKkwwwNiv5N5n98dxv+D8Zhj1o=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651387597*^9},
 CellLabel->
  "Out[531]=",ExpressionUUID->"59e9240f-b1ee-4692-a8a0-f13992d25b1f"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{110.75593396567092`, -0.0005304252618438338}, {
                   119.21320203105091`, 0.000060157535366395496`}, {
                   131.41387536698454`, 0.0006194631595017461}}], 
                  
                  LineBox[{{161.13377442683574`, 0.0006194631595017461}, {
                   170.46784494870712`, 0.0003255593687528906}, {
                   186.9059733022103, -0.00027242391651389716`}, {
                   200.96702306864594`, -0.0005304252618438338}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAVwid3nISakBNHoiTh2FBv21o05cr
kGtAsIxqcaV1Pb/ySfffPJptQGV7+w15sha/H5BA6yPQb0BySa+g7xYyP8/P
oe7Y/XBAVIqaq6LUOD9jVeWj5wByQI6oUt15Vi4/S427OuEZc0AI6RRUfnMH
vwfD040iIHRA2Dnzf2mvLr8Xq37CTjx1QE85Kf1HVDC/0HeGak5TdkB40gAE
g1QZv11C0M6VV3dAG9rwnLbxFT8+v6wUyHF4QDc2VbgcSSk/8jnLFkJ5eUAJ
pa3Q/2UlP1CZRoyPe3pAxYFMh1slBz8Cq1Tjx5N7QNnrObf+bxi/h7qk9keZ
fEC5ZBIzoqkjv2B8h+uytH1Anl4sQdO8G7/jIsdT8cp+QLwR4d5e57w+OcdI
eHfOf0CZJWSrf7EXP/GOLj/0c4BAJrpLuKlnHj8wuVmgUPeAQFT+HGSghRE/
xFUzuxZ4gUB4OApF3XPuvoJL1kbSA4JAxcPNMw2mFb8qQJqwMYaCQH3OHiaq
whe//I0ni4YTg0BB6KIWogIFv7fa1UN/l4NA3o7gSS7+/D7HmTK24RiEQCZF
WVtZ3hI/AbJYmTmlhEAGwuX2vA4SPyXJn1o1KIVAkOLk3POc+T5zObCMJraF
QIk+2bl98QG/FhxveIFBhkDq96xAd8UQv6L9TkKAw4ZApm7hGCHuCr9YOPh8
dFCHQFKWjy4YEdq++HHClQzUh0B3hQSkqUUDP+0dO2gOVYhAxrIpi2iUDD8M
I32rBeGIQMoxa2ZalQM/FSfgzKBjiUAAofEGswtMvkiEDF8x8YlAGRkxqtAy
A7/PU+eqK3yKQBHM9AJm7ge/QCLj1Mn9ikC7NtfTn5T7vttJqG9diotA1JL3
XwD54z5gcI7olA2MQGYRkG5AcAI/D/A90sGbjEAah830xKEDPxPim3VYJ41A
uExuWmaX7j4B0xr3kqmNQGZRat3pGu6+GR1j6cI2jkCGvz2DE64BvxtmzLmW
uo5AME11Ox5//77sZR/3/z+PQIh53VaLuuG+1Cdt3w==
                   "]], 
                  
                  LineBox[{{55.74245244568077, 0.0006194631595017461}, {
                   63.6708387168983, -0.0005304252618438338}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488586#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0005304252618438338, 
               0.0006194631595017461}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{110.75593396567092`, -0.0005304252618438338}, {
                   119.21320203105091`, 0.000060157535366395496`}, {
                   131.41387536698454`, 0.0006194631595017461}}], 
                  
                  LineBox[{{161.13377442683574`, 0.0006194631595017461}, {
                   170.46784494870712`, 0.0003255593687528906}, {
                   186.9059733022103, -0.00027242391651389716`}, {
                   200.96702306864594`, -0.0005304252618438338}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAVwid3nISakBNHoiTh2FBv21o05cr
kGtAsIxqcaV1Pb/ySfffPJptQGV7+w15sha/H5BA6yPQb0BySa+g7xYyP8/P
oe7Y/XBAVIqaq6LUOD9jVeWj5wByQI6oUt15Vi4/S427OuEZc0AI6RRUfnMH
vwfD040iIHRA2Dnzf2mvLr8Xq37CTjx1QE85Kf1HVDC/0HeGak5TdkB40gAE
g1QZv11C0M6VV3dAG9rwnLbxFT8+v6wUyHF4QDc2VbgcSSk/8jnLFkJ5eUAJ
pa3Q/2UlP1CZRoyPe3pAxYFMh1slBz8Cq1Tjx5N7QNnrObf+bxi/h7qk9keZ
fEC5ZBIzoqkjv2B8h+uytH1Anl4sQdO8G7/jIsdT8cp+QLwR4d5e57w+OcdI
eHfOf0CZJWSrf7EXP/GOLj/0c4BAJrpLuKlnHj8wuVmgUPeAQFT+HGSghRE/
xFUzuxZ4gUB4OApF3XPuvoJL1kbSA4JAxcPNMw2mFb8qQJqwMYaCQH3OHiaq
whe//I0ni4YTg0BB6KIWogIFv7fa1UN/l4NA3o7gSS7+/D7HmTK24RiEQCZF
WVtZ3hI/AbJYmTmlhEAGwuX2vA4SPyXJn1o1KIVAkOLk3POc+T5zObCMJraF
QIk+2bl98QG/FhxveIFBhkDq96xAd8UQv6L9TkKAw4ZApm7hGCHuCr9YOPh8
dFCHQFKWjy4YEdq++HHClQzUh0B3hQSkqUUDP+0dO2gOVYhAxrIpi2iUDD8M
I32rBeGIQMoxa2ZalQM/FSfgzKBjiUAAofEGswtMvkiEDF8x8YlAGRkxqtAy
A7/PU+eqK3yKQBHM9AJm7ge/QCLj1Mn9ikC7NtfTn5T7vttJqG9diotA1JL3
XwD54z5gcI7olA2MQGYRkG5AcAI/D/A90sGbjEAah830xKEDPxPim3VYJ41A
uExuWmaX7j4B0xr3kqmNQGZRat3pGu6+GR1j6cI2jkCGvz2DE64BvxtmzLmW
uo5AME11Ox5//77sZR/3/z+PQIh53VaLuuG+1Cdt3w==
                   "]], 
                  
                  LineBox[{{55.74245244568077, 0.0006194631595017461}, {
                   63.6708387168983, -0.0005304252618438338}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488586#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0005304252618438338, 
               0.0006194631595017461}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNlnc80G8Qx+2999577xDfs4tsZa8UqSQNVCg7NPiFjCZFklXZ5XvKKC0r
ioQUJVllZv366153z3Ov13PP6+4+b8mAo86BlBQUFD+oKSje5D7OqqdNAPed
hSZpm/HQ1smvcPV3POixsyx9+RIPHwN5ssPfxMNpiUIlr0fxQD/4k+NWZjwM
y5zrdAiLh8SWLK6zO+OBt5CpwEgkHhrvqTrdnoqDv65W61gbBwGsK2HVMXFQ
khi1P9ckDpACA1K2YiHDPbKpsDEWXjWpnqE/Hgt8H1zho2wsDLVTxIWVnYN9
IVYuuXTn4FmPA/dJz7MgYeN5yrkkBm4WGhclzkXDwhevVR/taDCNPz6qfSwK
ajlCC3xKz0B56l4VnZHTcNCw5Tsnx2nYYc4Z42x8CpKZKIqcD0SCDuueP0cv
R8BEdEYhw+NwqKFI8YvqOwlA8vDKL50A8YSlukO8J0AkgZW7SPs4iBQyZ+k4
HYOqB00CkaFhkOYjcCaT/yh8+1LkwulyBIaUPDtEMw6DpEOxaUjnQbgVZi9V
zhkMju48kZfcgiA9UOFabcF+uOx5ZfztXAAwMj5zP2m5F17GDJZeNPEDKZU/
BbXU3qA5MyV2oc8dkg73PZeu2wO8hwReX77vDOEDvQY3vBygPJn60aNUaxDv
TJrVGDGHzda/dQVPjKDFpf/gXjYt0J4Sbrk2IQZfZzrbVjco0TYhYj68Vh4z
KFIdj/Lp4piT9h/9WWN88dv/8BMtc7wmNC/x1mAHVl5a0U1n2YV7+VuDah7Y
owifCwMVsxOGyO47drHIGSv7M03cZHcjlT7dGbu0PUgtmbpw6L0r3rLffbWG
2h2tL3FWmQt4YKlNxQl9Lk+8NkHv2jrviUV8Hc0ydV6odJAk7wR4I+ON+ts5
C954YeX39YAjPnin9F7w8bc+qCdm/gZ4fbE+5pKWvaUvZt6X1lb29UXydr5A
qL8vBvfcD6iz9cWnFI0WVdK+OLZzmyTThA+up9FSnc3ywZiuCLY36j4YcFR6
q7HeGxmSqTP4NbzRj1lx/vFVL+xiOa13YNoTN98/a2fR9cT4m2mvEkI9sENi
Jb8i3x33PBXXPN7ohrt2SV6teeeKQSU+u/d+3IPZn0R/+n7cje9S141zO11Q
6aU/7zLpjHJvXS/tv+eEBqocV1+mOuL55rtjXO/skT9SLZgv1hYXGiDHV9kG
vY6FspR078BwladQctISg++oFrPwmaODPf3Q6ToT/PtKqIq3xggd/zNyvE2p
j1LN06E33bSxxPhuFN1JVTyszL3h5CaDOf8FaUITH77S53z44vQCKcijddd8
BwMsfUhTdNgSAWXXwemqGjlwvEjXkFGpBjnvq6iydbTBWJRP23FWD7b/3Dyn
kmwIOP+kOmbZGBx2pIo9KDABazuP3AgtM8jZR9r4VZiD6pjrdA+PJRhaW1s7
BlrBOseQxoFbO0CpaySk/vlOyPWRvb34zhr+qyAkv7TYgDrXu1d2Bbsgjabs
udgBW3BV09DfwWsHN/VnBF89sAP2X4YtDUr2MJLbXbDtij2E0C32nhizB0+J
Q1gm7ABJO8oL1AgHUMlsE3SxcYCAI8JlsSYOkP66wURJ0gG6uwKuv/tlD6nT
X94v37GHz5fpnhnusIdi+cf79T7YQXZXiEfmbjt48/ODNnWzLUSKXJ4AIVsI
KWmQYt6/Cx5d+FKretMGnJcdf0V0WEN0acLXJxM7wSVwa7Z/aQcckqNcKP5r
BakK+56y/bGEkbtiPgujFsBm8OqySZs52EefYB2+bQY1r9VX60+aQlVxkz5p
agIKRkJNNZwEZFXSSi5nb4fT7BfH+bkMgG/+jfKv83oQVb+z23xVGxr0TLwm
D2jCZfdVabMHqqBX+qnRPkUBuPcOaO49JA3Zjkk2t++LwFvVhqaGbC44L5aq
9JqghH72oAl77V6yke9lpFk9LVZlP/O8vYcHlSSeFivni+J87LPy7c7S2HZP
8lRjnTzK39IsUFpTxu6Np3ekWDWwnO325eOMWigchHkJ89rY7qccZ9Gmi2z5
4wrb47ZhXaLmpW3yBnj43JJlQY0hUiYb0HUrG+GnbiYWrVRjXBQpUDd7SyCr
Y9bEf8uAC/nVomMJJhjL2Ov9YtME36243vMOMcUrXL3s6W9MUSTGrXS3uBmG
Dg2HlO03w7WEGqab182w9DHda4MXZkg12eSZ+80M+d1+5Q0umCFfzLf9iitm
qHAFPGpmzNCBnyqn9qMZ6jrznQ2pNUP3Z7uDRVPM8Aa6+PPZm+HCRf2+UoZ/
+a9bd+nUm+IN9SEWLh9TzGwgu0uWTdBLXCc0IMUEPx8aP1XOboKc5ebfVoUB
Z3/m9KTTE9jP6G7G9dUIi6ZfBMVUbse5ovig3iOG+OKP421hcQP0NimZ3du6
DR+yWM3X+OohrnnsVJrVwaunK771RmgjlR9DaMeSJoZ1ftyQDNPAsvfnk3++
UEWNovi46mIl1D9sbfr2rDzeNBUR83GWwUzOV1eSpSXRPf4b3ZsfwqgTVRgp
cZkXxwOEpywi2FAhv1G87DslPku4YWz9ZZxMKf36Mtxkiqiipvim8pMKWoTL
026+YwPb64IN+tt5YWJPqc/xaSEw9mNq8jWWgN5dmfZbs1IwfTswVfySLOzy
zBVz41aAIPXiYKc4JZht1Fl726cCr0IJmQJ2daB13PtgOV8DLvNfojC5pgnH
HI3Gqy5qwe1fgVKjodrgZFX1KNRUBxxHS/oZaHRB/2GNZFCtLvRG9ZyzdtcD
ijYNnbhJPfg4+b5r4uA26HpgL+83sA3ajCu1Brfpg83Rsb/OSfrgRZ11rPOZ
PtxJe7vTf1ofOCC6RYLBAPS8OWP1/s3HhuVx425mA2g/E5avtKgP9l3UXUnv
9GGxKyFIPVcfxvTFJ6Kd9aEhoyf+zcY2OP1YojUxfxsUVnYr8ChuA/yx0T53
Xw9C75b9yBHVgzlL+6JLibogF+h1yntEBzZKAvqy1HTg0mBnw5vj2vCBts7o
VpkWpFTMiJQNaYKqbKtdDrUmnPySFc8gpQESE2on9hxTg/1GRhfdMlQgSsyg
JrJQCWwTj8sK3VeArZj9a0VFckDjV+ecmCcDqVxrXuLJUiAIJRFfQiSgMO7D
teCbIuBjHTW/5S0AEm7x23cL8MDExo0ju4vZoaNQqTdagh5GqDNE2aw3CNHA
t1T0Iz+I5IAcw9803WRMrvECJS6QWfzaw9PnqJA3LuolWwwTKtiVbRdU5MTo
PwHnD2zwYPgeI0OzBgF0Do6wTPcUwe86ekW7RsRx7vBb1fZCSVR9vlmGltK4
zEujUvtBBoe0Vd4Musnhfj59u5A2eTSeGvWuE1fErrMfh/iClNDxiZ74Qo4y
9nbaCr6oVsGUw0MX+Z6qYrJZnfypcjU0a+vKy0hRx+gXP7pS5TSwqEOCISBG
A0uePBxteKmBMvvn2uMYNLFoXjfvoZEmGlaZ5OwM1MSm3u12dvGaGEyRcuZt
piaKnfFf+JyniQ3MUYn5WZpo+eJ5i2yiJtbXOcyXBGvi4ilsczHTRLpQHnNv
Tk00+mMWt9mngaHh2ZHRGRrY1crZImqqgZDN9963Sx1/Losa0rOo47P58p9j
umpIEzW59769Kt61bBkQclNBM1vbxi0HZQzgukKnYKiEcpVH2w/xKaLbqZoj
RePy6HiT2fRJiRzy2CzUZ/nLIm2v01cxNhncc6CvxeaRFGpzNz5msZdE21bf
+LpWcbzx9YFowKgIdvr7HmCbF8Qwt+Ztj1f40CR/V9+OVW6cNKl48nyBA438
Td9qDDLjeli02cmXtJhmq33IJWyLpFMM3QLPP6T/t+sDbe6fSXvOxgudTj2E
1ibtt1DfOUJ33a+0iGKdmOi48JqnkRpG/xRminowguBoUY/cIBsYc+wqoxLl
gjq/jAN9jTzw6JTKfW5Lfghk2HV6T6Mg6DftSzcXFIGw/Y5rOf5iEGJJszd9
hwQYM4/pfXKShMPm93aW2EuB5j418dPG0nB8xG/boKgMOPAoawTMyoCL3Pv5
hw9lwcM1493J/XJw3i30uj+9PASaXXypmy8PNc9u70MRBaBk/CLfe1kBChmc
TjnNKUCVdLqHrKkiyB7W2G8RpwhT9O1VFVWK0M5S0hTaqQj7/Yvs8z4rQmv7
Eyu7T4rg6bQZ9filIvDn9iZtFikCr0h90qETiqDHUf3TSFMROs/UqreOKICG
PlO22zkFCOgV7nPlUIDhsI73ipnyMPDuy6YpgzzIee0z5A6Tg/HVl8mir2XB
YMcozYSgLPBWz+iteMvAzVCva+NZ0sDuX2xh+VwKtL7Ohz4el4TLhYHc3VsS
4Pbg4WlzTgkYOfg7/YCuGCR1DkjdMBABNaaGF8kaQlD7H/v9FGEBoDX9JcC8
zguSI/r3T/dyw29xdQuzO5xQxUh3oWSADYiiPEXYxwR5yeEJ8hO0MJMqYUkE
UoLBzw99de2rxLr4YZ7i9jnihY8GVziMELs4RXfOxz0kb9+Ysn7+4SvZRs78
4S7+TdIoHAw7a7pGPmRn0UkYosTBYqtHA9R0mNOSU+vOw4Te6db995nZ8PGv
paa2Pxwowd3AOtnDheLcFA90CnlQKDI9udSfD/c42Gh5sApgbo+1h/c9Qfyy
fVzts6owAhH9nuu2CAr6fqox2xDFk4n8Q80W4ljBEyC8YiiBTFh7RPKlBPbS
3xG9YS2JeVVn72mjJErF+njXKEjhQJt46N8kKYw7n7c01i+FeYv9q67C0vj6
zvl9Vi7SSPPx+lbJWWnkZ1IKPXtDGpWD8rjeVUrjudc7N4trpPGVa3G/+D//
KuNEret1acy5GMJ6LEYaK/exhl/7xy+sCsZpjCLSOJPs+XRxQAqdu7SECy5K
odL7HxIuOlKocC/olEe3JDoVJjbT75dEyQxO27pfEjgZPTncflgCIyizunRa
xJEPFMJ1b4ih+pZH3KEgUZw+6RdQJy6CT39YnaN/JYSuNr05dkGCmGqnJZGw
yI+u+kt5907x4UE78ifO8eC4xWpVny83Vsap5iy1cKLXY61ibUkOjK3KUDWd
ZcGfgj8sizMY8ShKV7Yq0KFd/dab1w1UOKOp/b3vwib5cspM8vbNZXJMzbHK
tmqONOEy/eCS9pVUq7bVGmJ+QUpUrj2H6k7CcMzS90TMOKGY9uAdzYl5Qibe
YzGYfYVIs/lwej19k/ivL8cp8hQVPM/Mm7DIoYUeT5qn+YUMkOf6U+JpLjPs
Far/th7JBhV99mJ7b3EAsFu/e7bICZRVLc8CCW4g5PVEr5/igTGqHjPyDi8o
0DrJaPz7nWGqR5f8X/HDn6C24I5WAYh8Hbo6Wy4IxZVJXIFJQpAwa27eZiMM
DYTuRv2GMDgl3nq0cEMEtl/6p+LKouAibObrXCQK34c7vgmyiMGzgPT0k35i
YO4nl+1ySwzoLaosq1+LwS9WlcVb38SA9+GtYeWfYrASbkhxekgMGosz5x4/
EYObr1TKeVLE4GVoQMCwqRgYiPxV8ZsUhd955/pmz4rCtrnipD9UomD1cSry
Q7gIbOwqLeD6KAwcHTNuskrCcCcbZnNDhKDwQ6Hr1i1BcHosX/H7Xz0JbwwH
eIb4ISmNg5V9gg8ydh7z+u8rL9gb6ho69/FAtwHSsz3lho6f7ReTc7nArrgl
Kv4wJ0Sespl5o8sBipr7nx2cYwUi8La74AFmkNLYQenSzQD632Lq2jToQP3j
ZRqZ89SwPlQ9I9VPAa5jj3vmiXViR8XAxYaOJWK6etiZ0XGeCI048Sez9DtR
iJq7o04MEO6mJiPhFuVE0sP+4d2b3eQ5+63tTI1fyZ96a97je2bIOv3sEe2g
BXJhfr698sIqec3R0s8/d5M8JFAqXtr6jw/nqyQ+qtLg59tMl9yT6XCidCu0
/w0DhhdEGTJRMGN0pWVMoxgrdskeSnoqz46tS81n/17kwI9NlqByhhNbP5xn
XvLkwo6/97+OqXGjL4Pm6eRFbhxMGNwbU8GDK3NVFkc8eFGQxY6SdokXWY/q
da8n8OGPfo99fNT8mDh6eV7kBD9GVSk5jvfyo0r27WU7WQG8aa7LAAcE0Gfw
zY7SPAGM2j0ieOHpPz45X3hsolMAhxWiyVe9AshX0d3j8FIAP7M5tF0tF0C1
e81vOhIEUDf2Fp/ILgEMsT6e20EtgLQKCkN8FfxoaZv9wtGGHxUmtvu9+ciH
j/IvJ0548GEyy1Al9TteTHPiLU7X5cULnneUNjJ4UM8zrrxtlBtP8L9fDJbl
xlsft3WE+HHhjCpFhnc6J4Y7FC+9rOHA3bI7BdOL2ZGOWHz2rYsVh6lsDDqn
mHFK9ajelRVGfDT2ifrUCj1efdhT2vWLFjkHWkXm+6mRUl7SS6ueEqnG5I2+
SG+RSa1nFnle/yUdMtq4moOXSN0jxgJ3t+bJ2HIbTxrZKVK58siQ1s4x0jPM
iCN7qIeMjHxXPHs1kyz3E5BztO8idj06xUv/cZQYLautLgubJNr9eh6vLc4R
LY5WS0elFomJbchPbF8lAuWFWCmJDWLs69oVrSwKCA5cKOeJpoIhWU6bjD00
4FKTfDBPnA4qz5/XUB+gBzOf5aPecYxQ0iynoM/PDJcP7qaeyGOBoPq6F1cZ
2CBqeag5JYAdArs5OBJdOOCWM1dp3U8O+MYf/yAzghOq7e6u9i5xwuLrqq3t
h7mAJ6DrxdVeLhhxcWKvU+cG3eNsrpHnuMFDjn6y4Tk3JFcq/ghe5YbKGpcd
EdI8MKOe8eqTCQ8sH7u+ke/EA3JrzXJNe3iA2p9V18WOB4JdGUvD9Xkg8+Ls
WQt+HrBKSKX9PskNB6XaWy9UccMeeXmn4MPcQD0uLdkgxA3hLIU+z0guGPW6
V/HKjQv65Q7SyE5wwplro95yhzjhcBpLstI3DvDTY/58ZTcHVBSH8VyMZAfh
3tWTfjpskHyYoix2lAX2fukNHohmBlnxzhteTEwQSdiPUqQxgNyVpdaOdTqg
r274h1C0EFe80f8dqUFceY+xFxcVDJjr+Kh6U0Bgr1DurNEG0ZKfIlNRvUq8
5Gz/3Su5RDRPrz8uSP5NuNz9UPz41TRBLfVd7mzsBFFdKvrINmiYqIDciAfX
O4nuscQBD4ks4phA2KPMw69Iqnvh590zPpHDs71X4se+kSs7BFTvj0+R57aP
TTUGzZOUzRn5P18tkJ6PaNKDRFdIoUn7k+C9RrqrRbzNStokiWNcVK9fU2Cc
CHut6U4q1PCLvOFWR41bI/cNQIAWT1TOfNE5RIciz5RVzpXR42+jF/ZHhxnw
bGJy1N4tRgyzMNZuYmPGh0kyVxaZWVDSvTYrdYkF3x2c3U3zjhXVbw3Bxn9s
KHDBz1zAjB2jTgku0A6zo1drfd8zLQ5su/XhnWoIB+r2cJ/UusaBuYv4+hly
4FoZncv7AQ6UPqy+GjzJgVZXKfiTZv7FP1sH6Pzz0wfufE75dx5gdLI1/9/9
Xr6dJ1L+5VfV59hGHOFAmj7G/Mu6HBjOfu091Q92/Paf9QcGZ3a8dCA8ueg+
G5rdbHvuMcuKLiebi6qkWfF2RKkY7GDBbyf/pt7xZEYrs/vmSb5M+OtHsU6W
CyO+P/vMK8WQASmlbJ0leehRpbb/jewXWhza2Cmwr5AGLRxrMsvcqfHyU335
TzRUqF4H9W/uUeAoFfu2F4mb5Pe2Q0wsD9bIxPHGGcPWFfKHbbGvSs8iKSlv
JNPU/5vcOFqzN//eLGmrnTEZfXWSXFPfG/o95iu5/H7hqXHLILkpkb+cxfuW
HCmK5ozoLCRnG2J39qW3EPRJq9sO9fYRujQ2nCWjo4S2cCMYtU0Qco/etc9m
/iJMiziO35eZJ9SdZldo5v8Q7SWKDw6ULxFbUg0PDd1XiQ+n73ItzK4R2cEa
6fwnNonhGKunwmEU4DNq2fQ3nxKejq+UxzVQwa2yrQHO19TwejHIhreTBloi
+Xi3WmlB1sC1eFcZHShHWtHEJdLDWqQii7odA6hdDrg/S8sIzkmcdAcqGKGu
TLfG3IoJntXt6CfeMkHRY2MtEXNmOOIz51R6jxmylD9fev6XGdaCLfitjVgg
tan4r0oIC/DE3hcOTmOBv0JHlLausoBf9f4rlFdYYFjqeUBqFAvwrl7UeOLC
Am9Uzv1uE2KB0lNt/WNdzHBYoo1rTwQz9KuxlB9kZobXeVmmkRlMcGQ6qfkz
LRP8MbwrTxfCCFabN/QCWhig//wRsRAWBiiUpVUp3kEPcYPnQvPD6SBokMtj
8Cot0Jts+m8+oAHFi005RTXU0BHaaBpeTQUSQu0HBe5Tgtz6zWPwb6967ckC
mN4kZhm5XMcL1glhj4Pnf+34SwjczdT7MLpMmMiMvlcNXSTW4b+pmPnfxHDN
bWmPkDnix77k3JLmKaLp3vlnLDcniO0fK+oe9HwhzvLof9ltP0DMpp+Zfzz5
lljppqmfiX5EtK2fbpyuqiUlq1QXbrzrJG3URiPeMw+Sj1Xbz3xiHCOPTHTu
iVmfIJkNbLePDk6RfetWzlxOc2TkdV5/8t5v0oBikp5/boH03aYS3aGwTFJ9
zJS87LhKRt7j3akYtEY2ezz9dDh4g8xrXmLRcd0i6x5Sr+jlUGBKwS1GplOU
KGoxSCtgR4VvN3mjp3mp8SCsrov1UCPHn2on6zga3NvOWMEpTYuZiQtDsnW0
GGA+fcDImA7TDpbU89TQoTC1rW6kGD1OmbC76Z6mR5EQ4yeKbfRITZmnpk/F
gMfYxR/baTAg/161WH8HBiR2CG4c9WPAU5YqtYn+DFgjtM22ypkBPX+V+LLq
MeBIgksYMjHgYPWv9t9d9HiMI9hyKIUekcbKtEGLHp+HrTh3vqPDQ0nnJEN8
6LAldr/i+DAtlhwzPJfjQouO1Z2Xvj+hQWdD4y4TARp8sEaVwnuQGjv59h0d
rqDCCQX1YKGflNjvYixvL0yJv2WeDlGbU6BUqNHj7JZNcupJ5f7QuXXSlGMP
+Zx1jczzC69+LbJKXk/1juwQWyZZqmRKqHgXyQNy6WktFH/I63BYx+frHHlW
XiDCOnqanB27QX6TmSTfjAYfM235RvbSizTze46SnYfoDpp9/EA+OyMp6j33
lvRcfdSeEFhPuslmKk4vFhE9BcqvC3hfELGagWWplu+JA4Uq5fcnh4i712qs
qBvGCJURllPtvyaIsjM9dQWsU4TBJafncoKzRFrBRHZU8jzx1Y99JODEH2Kq
WXpc2XmRSFG6odciuUwcfHLlq/iXFYL2xU4ui/S/xEtjj4vGyuvEaScFC7nq
DaL/oU+PjOIW0T2dHl5r8a/vxQ+Ni/+kgLvafHYRiZTQ87N4fzA3FehO/NEo
u0oFZTQMClus1PD10pij3GlqED0S4zvzgRqYi1nblZVooE4koqvxKA1ENX4v
PldCA9YTZZ5B72lAVk/yR8AfGvggP6BzjJYWZjMoGLOZaOGayyr1IBUtxDZY
XXSZoYHd+e8bRd7SwLx2man7LRp4balsrxFIA2E33wf1i9FA+GCvRcIbaii8
4Hg/IpQasg5Vqi3TUENG3Bivc8Y/Djo7xf6JgwoaYmuofyVTwvyjI13fflPA
TtZEFuU9/+ydzXgX7y3irUOhdeH6BvEq5+E1lYvrRElqSs848xoRvk71viN6
lXB98PXo0MgyMVsh36Cgt0Skt1V6NccuEAZXS2cam38TXvkqFrrLc8SaxouQ
ApsZopjm/vj+3J9Ed7pcCu3gBBGv3VH9kfMrMTc1YR+aOEws1g2wLg/2E2s+
Sb3U7u8I7rorqyzzTUTHCZW0slcHyNhJnt3ndiGp/4hVcKP7HZnx3XDZf7qf
5K/h3J/sNUyyxNc7xX4YI1lqrjo9OTZBKi4Ex7j8nSQ5nH21dY9OkzSTChdV
D8yR13YzFHxn+k1ePxej3F/wh4yIU3NiV14kP/Ycv/yoaIk04979T3ZXyJAR
ttGJw6ukx/Weqcmav6TbyYSP22fWSAFTqypNng1SvKZwr4r8Jqn+ioU7T26L
vFm4p26FgQLpN4X++JykwOSmwGXLPgoccXISilOmxKoFk30TEZQ4cCT8uksd
JVKOR/iX/6LENHUH6RE+KrTIytz2SZcKTVOhM9+aCotO7l8RdaZCpZXq7MMO
VDj/csH5P1Mq3Jninn1HgQpzw78eaPqnv1Oavfso+imRX1QlO+s6JR7ijfIq
cadE39yvVmFMlKgdmDkv9+jfO/pq+1gcKfAqwWfS9XKLTFDz2mQY2SS3zfw3
Evh1g6S6nsyc2b9OCjNKBVo1rJEqHUWccPEvySzx9q/Fv32ZESxjq0C3QnoI
TU01VyyRXjP9s9M2i+TuJg627E9/yOjbbUyFe3+T5RklUnTDc6SFe+J46J0Z
Uk/u0xP/qCmyK7t19LPlD3LsoVvCD5px0qB2tPR84xfyf4DO0uk=
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651411283*^9},
 CellLabel->
  "Out[532]=",ExpressionUUID->"3ad7b5ef-6822-4454-9e12-5bba94de1463"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   TagBox["InterpolatingFunction",
    "SummaryHead"], "[", 
   DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, 
    TemplateBox[{
      PaneSelectorBox[{False -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], 
              ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{106.88800372702369`, -0.0003683728478476899}, {
                   119.21320203105091`, 0.00023761995354556543`}, {
                   126.00688174139604`, 0.00040176876494644754`}}], 
                  
                  LineBox[{{157.1069866948938, 0.00040176876494644754`}, {
                   170.46784494870712`, 0.000044920259187940746`}, {
                   186.9059733022103, -0.0003211168940377665}, {
                   196.79708520207254`, -0.0003683728478476899}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAkTlFhhawaUA8xJBVRSQ4v21o05cr
kGtAos2acN+5KL/ySfffPJptQGWOEJSvGBg/H5BA6yPQb0Bw53QnzUgxP8/P
oe7Y/XBA2BFBz++2Kz9jVeWj5wByQDbq1am+KgI/S427OuEZc0C1g9kXirwi
vwfD040iIHRAlzKY34W1KL8Xq37CTjx1QG4hfW3PZBm/0HeGak5TdkB5uVDf
pesIP11C0M6VV3dAWphy61ZmIT8+v6wUyHF4QJM5A4sj8B4/8jnLFkJ5eUC+
FHurGnL9PlCZRoyPe3pA/usL6EpEEb8Cq1Tjx5N7QO/9Rn3yHBy/h7qk9keZ
fEDU8lJlbbwSv2B8h+uytH1AcFvXA2t55z7jIsdT8cp+QF+GwyNOeRM/OcdI
eHfOf0CNYWrxOcQUP/GOLj/0c4BACdYlsLDq/j4wuVmgUPeAQGFthi5HnwC/
xFUzuxZ4gUCMU8mSn0YRv4JL1kbSA4JAVuIq4qIcDL8qQJqwMYaCQC2OCieU
oOG+/I0ni4YTg0AUeLQAeCkFP7fa1UN/l4NAziowSufuDD/HmTK24RiEQNtk
hWa61QE/AbJYmTmlhEBqoJdnHwfkviXJn1o1KIVAEe6CQZZbBb9zObCMJraF
QCvfqq03Iwa/FhxveIFBhkDUJ6D+3ybsvqL9TkKAw4ZAIvalkxgn9T5YOPh8
dFCHQOdyxmA9UwQ/+HHClQzUh0Au7HAWbK7+Pu0dO2gOVYhA2xQel2v2xD4M
I32rBeGIQDCHnQFshfq+FSfgzKBjiUC5QAkU7mwBv0iEDF8x8YlAhuaVWpW1
8r7PU+eqK3yKQB17b7XsfeI+QCLj1Mn9ikBGBp/Ey8z7PttJqG9diotAJyCD
y17d+j5gcI7olA2MQOlTyMVypOA+D/A90sGbjECzb76rloHvvhPim3VYJ41A
DhwDHWNq+r4B0xr3kqmNQNjTJeiFoPK+GR1j6cI2jkALNFhyiyTAPhtmzLmW
uo5AIlctgrfx8j7sZR/3/z+PQHI7XstKj/Y+lO1xNA==
                   "]], 
                  
                  LineBox[{{53.66062560418622, 0.00040176876494644754`}, {
                   61.77751290255801, -0.0003683728478476899}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488647#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0003683728478476899, 
               0.00040176876494644754`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}], True -> GridBox[{{
            PaneBox[
             ButtonBox[
              DynamicBox[
               FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], 
              ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, 
              BaseStyle -> {}, Evaluator -> Automatic, Method -> 
              "Preemptive"], Alignment -> {Center, Center}, ImageSize -> 
             Dynamic[{
               Automatic, 
                3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                 Magnification])}]], 
            GraphicsBox[{{{{}, {}, 
                TagBox[{
                  Directive[
                   Opacity[1.], 
                   RGBColor[0.368417, 0.506779, 0.709798], 
                   AbsoluteThickness[1]], 
                  
                  LineBox[{{106.88800372702369`, -0.0003683728478476899}, {
                   119.21320203105091`, 0.00023761995354556543`}, {
                   126.00688174139604`, 0.00040176876494644754`}}], 
                  
                  LineBox[{{157.1069866948938, 0.00040176876494644754`}, {
                   170.46784494870712`, 0.000044920259187940746`}, {
                   186.9059733022103, -0.0003211168940377665}, {
                   196.79708520207254`, -0.0003683728478476899}}], 
                  LineBox[CompressedData["
1:eJwBEQPu/CFib1JlAgAAADAAAAACAAAAkTlFhhawaUA8xJBVRSQ4v21o05cr
kGtAos2acN+5KL/ySfffPJptQGWOEJSvGBg/H5BA6yPQb0Bw53QnzUgxP8/P
oe7Y/XBA2BFBz++2Kz9jVeWj5wByQDbq1am+KgI/S427OuEZc0C1g9kXirwi
vwfD040iIHRAlzKY34W1KL8Xq37CTjx1QG4hfW3PZBm/0HeGak5TdkB5uVDf
pesIP11C0M6VV3dAWphy61ZmIT8+v6wUyHF4QJM5A4sj8B4/8jnLFkJ5eUC+
FHurGnL9PlCZRoyPe3pA/usL6EpEEb8Cq1Tjx5N7QO/9Rn3yHBy/h7qk9keZ
fEDU8lJlbbwSv2B8h+uytH1AcFvXA2t55z7jIsdT8cp+QF+GwyNOeRM/OcdI
eHfOf0CNYWrxOcQUP/GOLj/0c4BACdYlsLDq/j4wuVmgUPeAQGFthi5HnwC/
xFUzuxZ4gUCMU8mSn0YRv4JL1kbSA4JAVuIq4qIcDL8qQJqwMYaCQC2OCieU
oOG+/I0ni4YTg0AUeLQAeCkFP7fa1UN/l4NAziowSufuDD/HmTK24RiEQNtk
hWa61QE/AbJYmTmlhEBqoJdnHwfkviXJn1o1KIVAEe6CQZZbBb9zObCMJraF
QCvfqq03Iwa/FhxveIFBhkDUJ6D+3ybsvqL9TkKAw4ZAIvalkxgn9T5YOPh8
dFCHQOdyxmA9UwQ/+HHClQzUh0Au7HAWbK7+Pu0dO2gOVYhA2xQel2v2xD4M
I32rBeGIQDCHnQFshfq+FSfgzKBjiUC5QAkU7mwBv0iEDF8x8YlAhuaVWpW1
8r7PU+eqK3yKQB17b7XsfeI+QCLj1Mn9ikBGBp/Ey8z7PttJqG9diotAJyCD
y17d+j5gcI7olA2MQOlTyMVypOA+D/A90sGbjECzb76rloHvvhPim3VYJ41A
DhwDHWNq+r4B0xr3kqmNQNjTJeiFoPK+GR1j6cI2jkALNFhyiyTAPhtmzLmW
uo5AIlctgrfx8j7sZR/3/z+PQHI7XstKj/Y+lO1xNA==
                   "]], 
                  
                  LineBox[{{53.66062560418622, 0.00040176876494644754`}, {
                   61.77751290255801, -0.0003683728478476899}}]}, 
                 Annotation[#, "Charting`Private`Tag$7488647#1"]& ]}}, {}}, {
             DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
              AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, 
              GridLines -> {None, None}, DisplayFunction -> Identity, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> 
              All, DisplayFunction -> Identity, AspectRatio -> 1, 
              Axes -> {False, False}, AxesLabel -> {None, None}, 
              AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
              Frame -> {{True, True}, {True, True}}, 
              FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> 
              Directive[
                Opacity[0.5], 
                Thickness[Tiny], 
                RGBColor[0.368417, 0.506779, 0.709798]], 
              FrameTicks -> {{None, None}, {None, None}}, 
              GridLines -> {None, None}, GridLinesStyle -> Directive[
                GrayLevel[0.5, 0.4]], ImageSize -> 
              Dynamic[{
                Automatic, 
                 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
                  Magnification])}], 
              Method -> {
               "DefaultBoundaryStyle" -> Automatic, 
                "DefaultGraphicsInteraction" -> {
                 "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
                  "Effects" -> {
                   "Highlight" -> {"ratio" -> 2}, 
                    "HighlightPoint" -> {"ratio" -> 2}, 
                    "Droplines" -> {
                    "freeformCursorMode" -> True, 
                    "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
                "DefaultMeshStyle" -> AbsolutePointSize[6], 
                "ScalingFunctions" -> None, 
                "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& ), "CopiedValueFunction" -> ({
                    (Identity[#]& )[
                    Part[#, 1]], 
                    (Identity[#]& )[
                    Part[#, 2]]}& )}}, 
              PlotRange -> {{1., 1000.}, {-0.0003683728478476899, 
               0.00040176876494644754`}}, PlotRangeClipping -> True, 
              PlotRangePadding -> {{
                 Scaled[0.1], 
                 Scaled[0.1]}, {
                 Scaled[0.1], 
                 Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], 
            GridBox[{{
               RowBox[{
                 TagBox["\"Domain: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox[
                  RowBox[{"{", 
                    RowBox[{"{", 
                    RowBox[{"1.`", ",", "1000.`"}], "}"}], "}"}], 
                  "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Output: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"scalar\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Order: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["2", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Method: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["\"Hermite\"", "SummaryItem"]}]}, {
               RowBox[{
                 TagBox["\"Periodic: \"", "SummaryItemAnnotation"], 
                 "\[InvisibleSpace]", 
                 TagBox["False", "SummaryItem"]}]}}, 
             GridBoxAlignment -> {
              "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> 
             False, GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
              BaseStyle -> {
              ShowStringCharacters -> False, NumberMarks -> False, 
               PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, 
          GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
          AutoDelete -> False, 
          GridBoxItemSize -> {
           "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
          BaselinePosition -> {1, 1}]}, 
       Dynamic[Typeset`open$$], ImageSize -> Automatic]},
     "SummaryPanel"],
    DynamicModuleValues:>{}], "]"}],
  InterpolatingFunction[{{1., 1000.}}, {
   5, 7, 0, {1000}, {3}, 0, 0, 0, 0, Automatic, {}, {}, 
    False}, CompressedData["
1:eJwt1zfsw1odBeALLBkzMGRgMAihCCFkeqjv0kM3jxb65cGDUJ/poV966B4z
eszoMeMdM3r8jx4zeswIIp8l6/PRT0dn9sufe+HZ518cQnjR/97bS4JnfsZH
fLDgki/lii9jxVfwlXwV13w1X8PXsubr+Hq+gW/km/hmvoUbvpVv49v5Dr6T
7+IzjA8zw7tlhvfIDO+VGd4nM7xfZviAzPBBmWErM3xIZviwzPARmeGjMsPH
ZIaPywyfkBmah5GZheGT7swsDM+6M7MwfMqdmYXh0+7MLAyfcWdmYfisOzML
w+fcmVkYdu7MLAyfd2dmYfiCOzMLwxfdmVkYvuTOzMLwZXdmFoavuDOzMHzV
nZmFIT2sGJmY2bNwYviaPiMTM3sWTgzP6TMyMbNn4cTwdX1GJmb2LJwYvqHP
yMTMnoUTw/P6jEzM7Fk4MXxTn5GJmT0LJ4Zv6TMyMbNn4cSw12dkYmbPwonh
2/qMTMzsWTgxfEefkYmZPQsnhu/qMzIxs2fhxPA9fUYmZvYsnBi+r8/IxMye
hRPDD/QZmZjZs3BieEGfkYmZPQsnhvbhkhVrRjZMbJnZsefAwpETZ4Yf2mfF
mpENE1tmduw5sHDkxJnhR/ZZsWZkw8SWmR17DiwcOXFm+LF9VqwZ2TCxZWbH
ngMLR06cGX5inxVrRjZMbJnZsefAwpETZ4af2mfFmpENE1tmduw5sHDkxJnh
Z/ZZsWZkw8SWmR17DiwcOXFm+Ll9VqwZ2TCxZWbHngMLR06cGQ72WbFmZMPE
lpkdew4sHDlxZviFfVasGdkwsWVmx54DC0dOnBl+aZ8Va0Y2TGyZ2bHnwMKR
E2eGX9lnxZqRDRNbZnbsObBw5MSZ4df2WbFmZMPElpkdew4sHDlxZviNfVas
GdkwsWVmx54DC0dOnBl+a58Va0Y2TGyZ2bHnwMKRE2eG39lnxZqRDRNbZnbs
ObBw5MSZ//vx/T8LLrlixTVrbhi5ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3
zrwz/P7hgkuuWHHNmhtGbtlwx8Q9Wx6YeWTHE3ueOfDCwitHPnHijTPvDH94
uOCSK1Zcs+aGkVs23DFxz5YHZh7Z8cSeZw68sPDKkU+ceOPMO8MfHy645IoV
16y5YeSWDXdM3LPlgZlHdjyx55kDLyy8cuQTJ944887wp4cLLrlixTVrbhi5
ZcMdE/dseWDmkR1P7HnmwAsLrxz5xIk3zrwz/PnhgkuuWHHNmhtGbtlwx8Q9
Wx6YeWTHE3ueOfDCwitHPnHijTPvDH95uOCSK1Zcs+aGkVs23DFxz5YHZh7Z
8cSeZw68sPDKkU+ceOPMO8NfHy645IoV16y5YeSWDXdM3LPlgZlHdjyx55kD
Lyy8cuQTJ944885wfLjgkitWXLPmhpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFP
nHjjzDvD3x4uuOSKFdesuWHklg13TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO
8PeHCy65YsU1a24YuWXDHRP3bHlg5pEdT+x55sALC68c+cSJN868M/zj4YJL
rlhxzZobRm7ZcMfEPVsemHlkxxN7njnwwsIrRz5x4o0z7wz/fLjgkitWXLPm
hpFbNtwxcc+WB2Ye2fHEnmcOvLDwypFPnHjjzDvDvx4uuOSKFdesuWHklg13
TNyz5YGZR3Y8seeZAy8svHLkEyfeOPPO8O+HCy65YsU1a24YuWXDHRP3bHlg
5pEdT+x55sALC68c+cSJN868M/zn4YJLrlhxzZobxv/E/wKWU4iq
   "], {Developer`PackedArrayForm, CompressedData["
1:eJwd1oOyIAYSBdCxbdu2bdu2bdu2bdu2bdtmMkgye9521anq+wGNxE06VukQ
OFCgQK+DBvp/BfRBCIjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jE
IS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQh
L/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu
9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/9
6M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOY
zwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jP
AQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8D
HvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M5f/M0PfvKL3/zDv/zH
HwKGPzBBCEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOA
hCQiMUlISjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CC
FKIwRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0
ojFNaEozmtOClrSiNW1oSzvaE7DAO9KJznShK93oTg960ove9KEv/ejPAAYy
iMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKI
xSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojD
HOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc8
4SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOX/zND37yi9/8w7/8xx8CDn9g
ghCUYAQnBCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKS
kJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQ
lGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCU
ZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRh
DGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUs
ZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxzn
BCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcF
L3nFa97wlne85wMf+cRnvvCVb3znL/7mBz/5xW/+4V/+4w8BT39gghCUYAQn
BCEJRWjCEJZwhCcCEYlEZKIQlWhEJwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcF
KUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7ykJd85KcABSlEYYpQlGIUpwQl
KUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQl3rUpwENaURjmtCUZjSnBS1p
RWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCXfvRnAAMZxGCGMJRhDGcEIxnF
aMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHOcRhjnCUYxznBCc5xWnO
cJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9znAQ95xGOe8JRnPOcFL3nF/wAX
oPB+
    "], CompressedData["
1:eJwNV3c4F24QtzfZO/G1Z6Ss9L5myEzkF0lm9kpoKKmQlIxCShRFImVmvK9V
hMyyEkJW9vjyNX/+uufuubvnxnOfuxNx8rN0JScjI5uiJCNzinpDl6h2DSay
NpLm5a/BpODWUTXBa9BC2rnuKuU1CH+rSqGxq5DfZk6Ou/oqHIzruPQk7io8
t2w5aml3FQoLWdF7CF+F4+Dk87WhUOiRof6MLzkUipb8liMZhkINg6j4ytUQ
2L1nQvbgWQik+2kSn6QRAoX1FITpfgbD3+FEeV7PYKixqldLIl2BJREH9Mfv
XoEXBddd2RivwChms/mq2CAo5TaTIcYQBB2Sh9mj71yGYTzH70qRAmFu6EiZ
oVcglBzJbJYbCIAfVD/R858MgKDhUdPZD/4wg+6migy3P/Qn3rlUvuYL7bVU
TT0rfaAd142MrTBvKKfzQnf3hBe0vSssSrXtAQ9K5o+kl7tD/L7qpkPQJXhD
zYy557Ab/A1/2MT/c4FLHxKShHKc4SflV1z0bk7wRGbLVr+4I9SL7+853OEA
T4zKRj20tYdr9/g/tP2zhZsOX63n7/4HGfRvXxyROAv5Pslwx3edgZ8Kk3LG
o09DJfms9ZNPzGDRqePF8Uqn4OBdzSDFKX3Y3NsT6lihDXUl09JczxyHTSuW
94m+yjBi9AbFcqIkPLjh0cSRxgb5DwiZttdTYwmL8MT7oqK4dcoq5JSoIp5b
oft+yUsFc/HVMuS4a2Jm1xj7MSZtzJuRdeIH0sV8nd+eFhudxIpGHzck8g0x
X+rD2b9Tp/C0lSt//bYJPnr44sabKTN8LD090PCsBd5ouC1uLHYai9yzMw4Y
Oo1ZbRTtft21xM2yY+bFPGeweXG+q1LyGZykQOyMp7TCE1SNV4TsrfCo4+EH
0llWuN+/x5Sl3wo72TC/VNy2wsa0BdnbzNZYpp/bc4LFGrP6Jvl67Fnhklex
enQjVviaOxIy+WiFZw/9u9hwed8+GcjTSFlhO76Whby2Mxgt+k5ZuZ/BHHmh
RVlrljih5UKnToglNjtLpzAwdxpHBlG85bU9jQttzicWVFlgWGR4yozbAvdm
+5y1aTfDMY6HTNedTLEXv0r85JQxJrTluwc6ncLZu1LsJzsN8T2Dh29yVQzw
E/eA+yJJ+liDSjDk54wubm9n3dPV1MFxhY+PN93XwkvcSVf9ck/gzHc0yfWa
GvhGgbrbwQ4VjMUjJXZdlTGx1/ByD5kiTgnoPcBwUhrzMinI5L0gYCXEnb7L
x4u1aKxo5R1pcAD5O4UDD3rBhVvK0dTFjNDr1Md27lk++JY7yCqnmwDHxT3V
vkRIwfcMqqGSZAowX+bZvF+WEpwxrrXglz8K1Y5XUnWmqMCmKxbFPhNq8FuI
0dcJzuOwj9u+z1D0BHR5+i2xgRXCkLSFGgtfLVjPojggrKsNLYzNtxNodKC+
abVWULkOvKsV4v3yP11YLPg3fntCFypnJP8Kd9aDTEIu5gptetDVWzqGQ1If
GrTGBhn76sPfE2RL26/1Yeim1x3bJn34jfbLcuYvfagEKP4KDOlDM6aSKwId
+vAj76fGnY/6UHpHLEH6rj7cmfPPZTHQh003te6Kb+nBnFDJ6vkMPRiupBG/
rKYHm5h27WrqdeGXOm62eW1dOIY4inmKdWCbTU3bEL8OFOv/b2I6WBsmmFAv
jjVpQcF8UsN1Ni044qQs3/gKwNOmpC8Z7CegbI/Nj+XLx6Hu1pTh4SZ1+D5R
N6iZVQ02ohmSurkKpDtxrnHl7lH4U/rLAZ+iI9Ao+4gp36AiNHvR8qhrv84P
tq/rJOnKwGLyrX7DOxIQu63GldYR4O1DHzfk6YVg+pJYn0wyN4wQeSh1zIMF
Xulj7tV7tgeuDnLeeQW/ApXNbpJzPAlZDafIlH9gwMt9S9pCYpy4ry3febCB
H5vz7KbTpAnjj64DurOfRXHOpFapabUElvO8wXrltTT+0C2U3eQph2O67jxv
YTuMIYEMxLUoYmUNlxa8rYS9flkW/xVQxjcpTvvclDqKi18e5eEhHMMD3ckc
xnQqmFY5TP3rgArOiySz0U1VxZ++VFyP1VXDPgON16/1q+G8fw9PEW3VcWuX
ezSxUR1X/VlpDhfWwNEZ1zdzXDRw0yMl2n3AxgEOB5+6F2rg9ZcSb7zLNfDI
hSfyk+81cHOlV6HCIw1sbLXTnn1eA9scl/tRwauB25+UKEzWqeNNjs2NAjt1
7GBe6J0xpoZDkhZtztip4YQuhofu9ar48OkUs/uCqrjQ8Xi52yUVrB1/S+xz
1jHsOWzyGP7cz+fYxW1EUsYxrRrfyTmUcelpknSvyBFsdD/Cll1SCZfVXheP
2cc7u5zh84qKCliDQzJXkVEOu+sIi3f0S2ORiiDc8kISu/YoS/z5Txxzh+jF
f2cSxYVla/EmlcLYT/xbh3yrIL5n2oLqDvLi/nQVhzJfDuzZ7pxbfZcZm9tu
WpKrUWFTqth++a01RPfmUUB41XfU0tbspPViFvT82dJupCaDl84r4+7PdDD6
v+YlYjorFItItnP4ygmZtGl2Ejt4YYrLQQ/RSkFYkzAa/1tbGJb10DpzchLg
k4P6d+W7RSFlbNY5pZvi8D+/z5/VOSWh9TircWCSFLQd0v7BuysNqz+n3gyz
kIUBB7wZKR/IwccN7NtC+fLwysm/7ralCjC23u2Q+ZvDcCB9j/IsUISjy/Pc
qc8V4VGOJHvJKUUYUmhdVCirBFsMZevknZRg1acXQVkPlKBwRW+2aI4SFPg5
t15XpgTZDnVlvapQgt2ckqf+FSrBxwoShd+fKcGimc4HEaFK8IhEvuapU0qQ
v1I50ptVCVYbW+qrtShC4ogggfK6IvzzmBpICytCkZi8ar7gw/BZu528XIoC
PHY7o8vlrTycOkr6nZMlB88M6c9MPJaFp2IvaXD7yMC/fu9WjmlIw2L1KGsT
kiRUzzFacM2TgGeTpH8knRaH8K9T28KsKCRP7o2Pv0mA5D5f5pNpRWARowLD
SfZD0Cg9bymHThD+yLll8WKVF/6Rpmy61McFg/+KWBmXssONmgePDogcgN/A
t2eFXXRwh198fuweBWwdGD1Gf3MDXHtMEe5HPwV0Q2/crl98gk5zEWdshKZR
SXbB8rXUDdQa607jr0qBe7qtN8Yo6XBw+Ly0fwEzZkpLpW1MZcOR88I9cwac
WM2vupRlhBsHmFIvvrzIh68UMGXLNQngveadx9ZcQnhiZbXPXVQYq/wyDiiT
F8ENdXFK9NIEvFbJmzPIKYqHhoPvVi2KYintzFpYJYYPmF9qpA8Rxz9I0nea
hSVwXcxkCPgsgTvevvuioCWJ6dwDpQJKJLFcTsH8JK8Ujt7yn7ztKYWfp4QY
aryTwi63NGN5+6Twf82qhoqrUjj+VfRWxq4Uts/W7HmyLoWZPwZc1R+WwgLk
CYVLJVLYEM6LTl6XwiUl21RhSlJYRTC6mLNXEn95JODM5yOJiRzbeXsrEjiq
hEJW31sChz18z+zfI45djMpfsiiLY9rod92lEWI4mTepkfqrKH58N/jkyx0C
HgvIOikvQ8BDpjdcHUxEcIn14MUZF2HsPnfh4IFpIex96m/21Log9nATkx5b
58cPC7edImd4sQFv3viFTm7sxUK9vZ3PiW94Wqet3GbHiqbxOr1mrDjG+MjP
q3JMWMDaZyKgiBZfeEovXXWMEj8g5p5e8t5BKWtHKMMDVtGkzefQe7sT6L/g
Dyp0ow3oYvYAuvi1D4Rl5yesNs2BOSr2h+XB64CLrzCtZXQPlI0wOr5jo4Le
+Z8TH/PRwdg3RZ5PaZhgqp1jq2XPAXjV2sT3eD0b/MOXnXkphgPqzn4seAW5
YOlUvuziH254LeAyr7M/L9w1LLUSmuGDltq+DNZmAlDOzITJ+LkgJG0JSFl3
H4SDEVve/ctCcLH3vKv55iFIcciVkBEkDNkCyu++HhaG8pTIkA6IwEcx0l35
cSKw2mYm5MYPEegi33fDlYkAhefvUDirEuAZPT1iiDUBJs6mbnxwI8DRTwzw
kBcBnr71xH/UiQATtsZvCJkR4Ak3D18yeQJM47ynWr0nAp9Mkq7FfxWBrWlN
5rW3RSDz2RKyFCURyC/ytvFSjzDsPM5/776/MBTmGb58nkwYjgXWf3rAdAiC
dh9XR2ohGDluV80/KwgXP5jFvKoVgPoSY+uzkfwwqnawi6jJB4WUo5obxnng
dnZpgdMtbmg/OP9ulJkLSmyq3zofzwH9N1TLZhnY4fW4heGi66wwv77zat43
ZqiRfWRz8REDvKjUqB5lRAtfhw521mxRwueeMZHzb8ngx5qLmTUZm0DDav/C
nl8Bw0WuGbs3ZsDWi/eidacHwM+HXzwChl3Rq5ykNyveA4jOPXnOVHEGGQrF
EoPCVtDwTkQDbSMJNbHO3Btc3EMat57FRG1R4Bn2L9LzM9TYI/3S4a4GOlxi
8MA6OIoRiz+X3FNUYsHiR0wSVS6y4g//Cab/3J978QN2mzUN7Hj9sv0d8xEO
zPK69d/YP078RsaGcW6CCyt4vxSd6ODGqqxmgja5PPhD6bHSH3682IHtegmZ
GB9Wf1xBEfOFD89UydTLWfHjvJM1lz6182OJJxeKllQFcGOoeHlbrAAuVF1u
0WgTwMu1h4OObgtgQwMeo0ZuQUz2KaqDUUgQxxa9tJBkF8TUTMbPjFcE8ETM
RktprQDO/PeJqShMAJ+R/AWfSgpgdp7Gj7WYHx+0eFCdeZIfB2xqeOdX8WHC
7j9mNwIfTjDsbD0byovLmWs0ODEPPvgjpP/4OjduxrTpl0W4cSMp388DcOFK
lcevusw48ZxOga/XGQ58hT/AmWjCjoUDNPqOa7Jh6TfnbOkJrDhkNlnJaZcZ
k6Wef86ey4ilmx9Z9urTY5dlEQ+PHhocP2dyLfI8Fe5+shu40E+OQ4Xda9sy
dtH5seVwlzskFIBLXko6rKLgBPEIdb95NEf2vTpSeBy94LUnM/vUjeq0EyJ1
KaLBqwBy8ft0PwEa0+8YjR0H11iunre7PA8+cPfxZfOugsrbd3vVRzaA2yyL
rMvDHWBCmCM8YyGHNit1VJ4nKWHKsWXbBm9qGPQqV8s2nBaGbhsxz96ih1jo
Pf0pT0YYnO7IZw2YoVdNqs3eJgt8n11w5o05Kzxm7ZsmzcUGIz2bN198Z4MX
dWNvZoayw0+aMsRfXBxQCiTz72VxwFSNowVfxTmhDx58spHMCe8Apn8uW5zQ
X1+IdsKcC+qfKYy6+IQLIh9Fk/oWLlhBfOtNu8IFQ+N6pBUZuaEoS0nPKU5u
uJp7o9KXhRtq3rNcriJxwc6syhMXe7ignRx5f2wWFxw7X6gT7sIFt6xdyW9z
c8G4dXbnoQpOyBGyo7J4mhOeNMyI4B7cj2egQunzOQ6o7VhXa9DCDnlcSFNq
SuzwsIK/OkMsG5y2Ua6Bg6zwc8ZChjOBFXoL55xnRCwwupO0e0WcGaZnu1Ef
v8EI+7JeCCTX00NJfub+tm1ayGBOMSAvTQNrD/79SX2KCrYXKBTlX6SAo9sV
qeG+ZPDxYWm6iultUCRRlGEwswEIuh9e+f7Z78/Wes1q5yLg8mxqOBE2Da7F
SaZesPoDit4Mm8fZdwFO4w6DCKFMcD5q/XfESgvaMqo+8WjxN9qtfcHK/WsC
Nd+czDySMY+8HjqmmIusoETpfICHiGiuk9KKMXITvb+jTD/DuYu2233pEhvI
8ElNvQ1zfwocqOGe8ZaJCstvUMxnplDjO38Mw85w0GKfBl2hoet0WJBzzjyg
kx5Xu9p+PMXBiL8rNbiXajFhPeKx8APnmDHnbLVqjR0LPl5KMtExPIC9Ti+n
HTjAik1zPBRCfVkx61hj6uE6Vuwn1PSRnYEN19Fke9KcZMN6WVaD61fY8G3D
C1qD+ziS/cd6pvAjG37nwnj8ejUb3rALf2S4T/2Xy8UU9uW+9Lepjfb1vOm1
h6v37WLEyf+U7/vJrKiK82Fiw+Dk/hfSyIr/Sh96uhbMintoP09YCrLinL2l
hk3f/bh+7uolxbPg6Q6lUKlMZnzR5OVKaDoTJth7ESxjGPFi5Ym8GFcGHHuJ
uoNCiR6Xu95qej1Hi5lziTwOz2nwOd+SIXlAjS3cXkmy/qDEsVn3jjA5UGC9
t4GV8iNkOC8p7xbDx13Uam54xyxhC7nfs2W3cdtAFKUCrf8dXkNBDJHDDxaW
EO2wH5+15RyKOSdsPlw1gc7REdVkREeQMk/yHyOObjT+I8ekLLsMGYhPXuap
qAKD53f3lmR/gMmP79pk74wAIyOHgoKBCfBuXfCSJ+8coDeVGTv8fAmYr+8x
W6etglBnss6aqHWwsCs7ke6wCa4oetXIiuwAMY6bz0qa94DzG+UqM3lyCH47
ML+/RAHTfUsCyhIp4ZejydY1hVRQnfG3rgiihgODv7S0KmngpK/uwbi3tJBC
JrfmQQQddP3x3KvGmB5mkKSX6ikYYHFkwaT6WwZYu7Ha0aXGCE1MI9VNyhih
dJV8uz+BCTYyFPjyXmOCiuwFUlKICVbVT55ImGeCGpnv2M8yMkN++Sa+cE5m
+N6SpkyagRnuiarzXZ1lguv3ZZgyK5mgxevrdSMhTPBcVGHyHREmqL+U1jxS
zggZKFwV7QAjnK1yHbm4v+t55cX7PbkYoJV6cfr2JXp4lr686/U7Olj60P/r
+m9a+E6amTaVghZuFWWNK/LRQPo9qVV/AjVk7iiMZT9EBZvfXdHqOUAJvVn+
nr6zRg7ZqiTEJzvIYHYG8Xyu/h4YGvxQadC3DYLajFid7DZBtQPTi/KOdeCm
K0PHrrEGesomxDRSl4H4yrVg8pEFcGa1/IV/+Azo0L/R6sHzF6jwfj0le3oY
rDP6Tx3z+wHGKWf5AoTrgXJ4RqGZURK6If1HnI+1CcXFPGI6VNSDTidp0Xm/
HEH/RDt8lbr+ItKg/cmo+Rnkkb5DkF5aQLvcZ6yDvJYR6On7atO2ih5/O15a
c2gdyWjtO79AQr1hHvH+0Vvo0oT5AuWLHfTXlP9U2bM9ZE2VTi9fQ4YPEoNq
3N6QY//HZikRtyjwwvcTQ5TGlDhS4H1mCB0VpmuKWAoqo8JLhIvsL2yosdMp
nJ82RY0zAnZJEp40+IbS0V97v2hwss637aUTtDi7tWOsO44W62kLbUZ20uLN
UMGEdQo6LB3pOyYoRoelzl0iIx2lw+zLHg0px+hwi5NhJYcEHba9UEUeS0OH
m915Dyn00mIKcus+xRRaLKqTuf3DiBZz33gl6zpLg6FkwpNj4TSYaOlT8pqa
Bi/qe1Nzh1Fj78vb+VsTVJhd7trhVl0qvHZnhoY2iRIHdGyYKvdRYM2fYWeH
WSnw3vF+7QxAjqn13JPYnMjwb4/vMbnru8iBnj1ZhG8HleZomY5Jb6HymqPf
zWVJSOCe48UOoXXUN6R66yf1GvI0A90//yyjaftIFdPiRVRP+Z9TyM4s+qbJ
88/w3hRSDCgt46McR/xqxiFzK0OIinDcZKD/J2K/UBgscuMbWg5w39k7mo+e
X+Vo70gtAVFdjup+X1tBi6GDzjejXhA0KZV+mGEEaAhLHMm+MA6aYfnGjZdT
oMiPN2zv2ywILKsk1vssgmtWrcN17suA988gAVutAuWbHnxRikSwHZcVuba5
Dv4dSTNY/kQC1g8RKdBmCxhqBiZfn9wG5yUNGA457QJB0/hPt77uAREd2uXJ
+2TQdDhfNleMHBox7BnIF5HDCEu3NIljFLBOxPCoxTsKeH/BdtuHnRIqGW53
m/hQQiZC6Nu6CkpYS37iZsHmvtx3686GHBU8p1LEmHCaCgbtFsdecaeC0dde
pb4JoILlqdc7lXyoIGtFc7OcHRX8VkVNKjlOBbPCT8SuslDBz0Nqxrw/KWH7
VwH3c48ooUsYMt/QoIRcBoOXT/yigHrruqxX/Sig0LjqP4oNcricK8+mcYUc
fpwTjr07SQYdFgq4zc3J4Hl3t6d8tnsguhGm+1DsgvpjL9aSU7ZB4hjrdsbB
LZD2iJEyLYEEohgtHmRurIMvAk5hfRZEoBN6zd7r+SoYV4q9Hju4DC6cmz4U
xL4EnEvkPPHNeaDF9XlI5NsMCNSx/ZtKMwlobVrnS9XHwGeSbAVP8xDo4aZO
seXuBR/EeL1wRRs4ImOCleMRSMy+kngizBy12ygPlk0gxJR7kmolpw1Vupae
lvnVg7aEP1n8NhxCMtkXlJxbR5HP9LFyPucJFJ1J+GAwMY0uHHcJ/nRmDk3N
TzukWC2i6LJXy9bLS6iR2zeFNWIFffp98kEnxRr6mcJ0OP8yEW2GO6bXd6+j
00Tew9oEEipOn5m7cGETrdiJsTlHbaHeeAGnzOfbSCtZ7MX1fTxIeP+70fH+
LnrmlxnW5bCHLpbupMizkuFnPOFHTVzJsML18mX+D2R4gdrULWSODJvjxeGT
wuSY5EseHGxAju+/26HZciLHSZqPY2ruk2MbkcFXn+LIcev7e/fW9nnK3/+a
0kLJ8XaBRwq2I8eMHe6pEcrkmFcjr4WZjBxfej/hEl9Lhjv+tL/VCyXDQZql
pa5iZJir7E19YOweyvOeHuWq2kXexeZ9Nn07KPaj1KfJP9vIyMdx51b/FuIv
o9ScwJuoglneeuYJCZW5j++6nt9AuRrqBE3OdURzjE/jP7SGNs1M8/PtVpGZ
OJuY6twyKj5Y0b92eQmxBrX8/PNnAT32tdD2aJ5FQUNega9fT6N/rDT2n/0m
kIBTHrFfcQxddRYKC+gaRpZR36N5VfqRm53MBb74LqTKcJv1W3sj8o8Tj3q5
VYzWuKwV9W2eAqbyL88yyGuA/c3Lsh8Ofgetz0K7dBl/ApXbYtHDAb9APV+I
q97wCKj5yriYShwDDB61E8TtCfD8y7Sn3+I0KI9t8ZNonwXb4TujZskLQKDT
w+Wp6BI4I8on8cB3GZCzJlysyFsB7760tjoNrAKuqpHs76Q1QMtXyWlOvw62
vUSSTtJtAMqQJpNDxA0goGriYdFFAg/GfjnaP98EQhaBsOfMFuBvDe2x2dgC
bpfKNx7c3wZ15+6kS9PugBcEGto1/x3gNVDSjr/uAC3GXgoPul0woC108Pex
XWBgH8DAbb4L2D16+ASsdkFg9KspMv1dwCNIrj8tsgu0fi/SUv7bAVmCAxP3
M3bAvdwJza86O6DtkFErU9c2mL70JgSZbQMJ8f4Vg89bgCXGOFCEfQv8yZDS
azu3CVyuvgsefEwCzQNt7uNlG8BCsMY2un0dvL+pu365jwiiN2732nWvgby8
O+Q7NasgzOKzo+CrFRBXtgQjQ5ZBOL1gIbPOEmBrVN97QLEIgkVa1GsuzwEf
qjzKwc4ZMDQZIakpMgUS7OVZPjv/BXlCjWFKaaMgWDo1nz1xGCw9zU23+NMP
bgdG2C6J/QBmVBNkKfWt4HqFeICfai0oEHZ0MCp+A3gOKBFvmb9FuZOGWr26
teihURuDTVorkr+gMhg23Y1C++ITcUA/EpbVLxwaHUI5n8uMCgRHkQtNH+9U
+ThabmsWDNKbRGOl24ml1dOIWepWlojoLNo6pWmpcnkeBQ+KleicXUTWC65K
fW5LSJs/kKfEcxn9cOem1HRcQfHWbw70G60igv1zBQqxNVRY4xCiurCGvs5Q
+FPmEZFGWZfZ1tl1lIISj+LldeSDzR02wzZQpMYza+eNDXTFQ42hypGEHL4e
3Oj8TEKLV4pUbpJtIv8t18jsY5vIr+Sqtdq5TdSRL1t9xGsTwTPSIc/36XiW
b0u07SaqMnoZzK22ibwHV6L9qDbR4vX+E98wCcVYubU6e5LQIcdmxRgqEjrK
OTUf/2gDyQ3rtQ3QbaDSintxbZfX0Wjbh7SRdiJiPuqR//AgEXH7Xw2ys19D
u+2tyn1xq4jIpm37rGQF1U3c5dZqX0ZnGs5O+P5eQgyHA0W6RxbRZZ1NMli8
gF4uJ2jxJc2hoLZwyo9O/9BN5ZfMsSLTKILXuV+ta2K/nr1RpsHjSGq5stXt
wCiaDaD+YAqGkVtAw2V3swFEKxmaGmD5E1n/IkjVmnYgTknqB05RXxFWtSf6
DZUj9q+OA4+/JyB6+hI3QnMBEKxu2RsqqAXdmUxJ35JawG4xpc2/gi5g+8bi
TO/tXnA0OmGVUWsQvK5jqASXR4Dj2sodvs+jIOpIkY3Y4jhofUcTu8E9CcxT
ynKPy00Df7J03QyFf8D7sXTDhOAcMPy7rDi0Ng+eti4EHDm/CGhdSp4XKy2B
7pyffGubS+BWyCDdjbJlsPss1mfAbQUcXgj0e0e3Cvh3jiTG7e+xX7K+cyqE
NfB2TcbcJnUNvJrL9vpITgTxbdfWD9gRQZ4Kb61B9j6vcKVOdYQIxmio5L4x
roPCxFH3Bcl10K1sIphzdB2Y3jzLu6W0Dpy/UZttHloHagdaSmt3iaBmJVw1
pI0IOvrIw07FEcH/LzAy3g==
    "]}, {Automatic}],
  Editable->False,
  SelectWithContents->True,
  Selectable->False]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.884781651436164*^9},
 CellLabel->
  "Out[533]=",ExpressionUUID->"924545b1-618a-4def-9b37-8ed0ae6f7c94"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVV3c81e8XF5KErKyUmb1ly3NsbvYu+xpxzYuLi0vKyCiSVDQkKX2lkoyG
h0IqlDKjREKFiKKI3/39dV/v1z3P+7zPeZ9nfMSJkY6BjAwMDD+ZGBj+/0uo
v3mbjWEBdX471PYuLxexaSTMTEX/RDuLqXvacnPRyzsWks++LCPhxd7Nkzm5
KEdRwPuK+wr6tkYMVcvORQerps4nvfqDUuoVfWuychG7dP07N8N1NCCm8pE5
Mxd1lWdw7r+3gZb0SF/2p+ciaVse47hXW+CfK2VR7GguymRP9JlkZoItV9Y8
P9By0dTL8WRHQ2Z4eskyOSYpF1Va3GtQvscCSVhrQDEuF7GwCPVf/LYNYiYG
uexjclFQ29GfbFLboXxYIMA6is5vZK80XbwDrq9Tn7wNofNvNhBc3rDDjf0M
vZ5BdP4nosHPtnMCgxp+10LMRU6X4nvtDLngsPsPK36PXHQ8WeETywgXDD54
HrjNLRfd9xibfxLPDfZkjidvHXMRr7AFu+I9HtBmHN+zapWLTP78Ff5swwvX
ByNkHM1yUcxQjVzJN17g2kEKy4Rc9K6Y34JVaheUpvXyJWvlojO8U2mTxQLw
htijUSmWi9p+Xigo1RCEt9cLOt8K56LlXpsrjm8EYfr53OFhvlzkXPDgcct2
YQjinMyPZ81FfBwZKxeTRYDq0yGyMpeDTGd1WJyF9sAy+vjhz1QOin01y7ej
fg+0WjwQHxrLQX3ZzurUH3vBprtMTaY3BxGYCuvl74lBpIl5J3ttDpr4+f1A
5qYYfJQfd/telYMSJ8zax23EoaEzauX61Rx0q/XPu/PfxOGmTETQnYIcxHbU
b5FFShI+8ra93hmeg16uqyp+Lt4HOlZzOUqiOWi0WIhh4Ps+MJMNeLnEm4Pm
VBn7OkEaQlfPFOez5iCuwHdJNd+kgaf7/UHbxWzk2k15RTWUBeXNwfjvLdlo
/NJDEteUPDzq2vO1wT0b/dS+ZsikrwCMQf7LjAezEfPbXJ7f+Qow/TOATfZA
NpJm8Xo4oqsIL4IYwjfEslFYxOb2GyeVoCWgSGxq6gRKFi3vuyysChF6qrYv
Q0+gjLBiQ0EzVXgnYy/4zOMEOtWUc/N0pCoE29oYXTh4Al1xiklOb1MFcYux
Ox/kT6CnWaZSpAg1UOgcyGudzkKsC1Mxmk/VIUc6+9V+jyxU1KLA2xWiCWkv
Szg05DPR4TruudjTmkBCCzFUgUwkdnOlY0+TJlR80wy7wZyJqvOfJUayasHS
5JBe08cM1ObtMcFzQwsGC7q1605noOX1nHuHJrXBQiRzzG4pHTnrfrOb9taD
U98JI6TK44i39mYeozMCHuc+qvrQUSRgmh6pnWkK+fd3l0cPUxCxxnq3bakp
kEbX4rOuU1C14K7nAXdNQbgjTO06mYKM567vLXxvCj9GGOzWtlNQWPHz7lll
M9jOfXWEWT8WtcywKZYPmoHf84znYleiUcjJ0zPschbAo6Om/fpLBHo0cNlv
4pUVrDWJ6O95TkQBfL7tBWNWYHrh8XBUFBFxOorLoSUrsN3DuMosTES+3dcW
SoUJ0OitQP4U7oeY226muoQQgLJ9JuuRoC+yvVd7qZPlIDDqC/x36fdhNJ7b
MVxjZA3hNbJWigv2KOdF1gEvF2twvB57hcXFHu3fZnV1R4g1LHC8yuWk2KHM
Y6+CgwusQSbWVnKY0wbJU9+siI/R/1cNpSg6WqLYoPe7zibbAMO9bcCrYYi2
Gc07JDXYwjHDn0ofLHmwrdy7E6+7bEH3taTfa4vduJi7EUtO2EKT944WZREJ
LD2RptTFbgfNtsqGgivy2PT4ru17iHbAKGZXb6+ghVuIe319WOzh8vXRhPhI
Ezw5UJC0ndselPWDdI5Gm2LWg0zn7u+2B/P1017XYsywncZM9zY1e1hmeDOk
E2WBPzLV6t/1sAcnQ58vdx0P4vUKM4Et9+yhiblNj9PbAYsJNar/98gefDJi
z9q/ccCmJ+VtXTrsIeiShv0VI0ecS9mZUTViD+lPFyecxZ2wsPnwTwcWB7gU
XXh1e78z1pkO6yn3cABZt+pbsRzu2NNj7Kt1kAOQFZM7eKLc8dHXDltXohyg
8Oay4/1ed/y8QcvgYKYDmBJWbP6dPoRdTzDcWrrrAN41u7bdZvHAFLmiDFMW
R+AbEHvp0OKFU46ODTzmcoTCaHOHXG5vnDkoL6u52xFuZBUyvfbzxsUZrS/3
qTpC1e7LX2M3vXHj+PzObYcdISx/yvKigC9u0dHzSw1whIyvuM7PwBe/yM+o
XYlwhOg7xTHVvr74/QERl5njjkAy3xXee8MXr12wKnlx2xHMuZY2Dqv6YebF
ou9GjY5wcAfL4EEHP8xu+cng4VNH6FoO/9lK9sMiv+PGbg06wtArkpDhPT9s
6FghlbfFCUazDmUelyfiNLbNGlsXJ+CoO06xZPHHOX4Ehuc+TtDSUKxULuqP
CxvPOiCSE8S37/FK1/HH5UGKyyqpTrC6kSUxEeyP254e0uWucgImQ5HL/575
4y6h6znZ950gzDb148Vhf9wftTCypdkJHrienW6f98dTe7NSfr51Ap6wFyF3
BALwtqS6Z+/W6fhPgiFrQADmervJZ73NGfxOaVFXKAFYUO5gUBu3M9TJP+OI
zgrAsoPjrA+knWFlw9yUsyoAqyorHVZSc4YpLcMplaYArJuR8N91fWfwtanJ
+9gZgAkaO22L7Z0hzoeVd3QqADvmHL7C6eEMZZ/V51R+BWCP8esLmYHOkD+0
9z4PUyAOyzc4E5/oDE18+owZewLxye8hQ+4VznBo5+s9vDaB2LT63tY9Nc6w
Q2X3hJxbIF4P+6M+3uAMDw7v5v3kS18/f+JkyCtn0KxgyZWKCcRSd948VOp3
BoIpaehBUiAeiRScWfzoDEERnDkzxwMxYfGGceJPen2+gsLqZwIxY+2PSMN1
Z5iWTVm1LAnED6O1LzGyuMDp/Gnvf2WBOFoj9WXHThfQiR+KdbwRiOWWO1Zy
hFzg/Y35HQdvB+JPdZz77CRdIEFcXmq6NhCfp7g68iq5AM9kzhPpxkDMuvKl
uhRcIPyW3mZ+ayBuaVB670NwgSJu6c377YE4IYGyTcrZBQJVW1poLwKxqu6T
/TNeLvCJZbvpXFcgnv7DTKw+4gJMZxmyGd8E4ssPrfOjyC7Q+74y/8nbQOya
VPR4f5ILWA6tue3tD8ScBqNfV9PpmKlbS3wwEHesSwo8OeUCn+0ChDuHAnHK
k1DTtPMu8KFSQELgfSDWTLlPNit3AU3WaRvOkUA8a7h2eXu1C8zGvL10m44r
No27uh+4wJZvw9y/6NizJefPaewCFNK/qkk65kt7K+36gt6PrwZ3KHTcZSTs
LPzOBVbNhv7dpfMfZySmfRx1AQc+vqXi4UCs96yqpnzKBSacF07J0PX8PL44
ErTgAtXbwnuJA4H4lqnudoW/LnBHMeehZV8gJm5N0/rB5ApiH/pYB3oDsXBH
p/99DleYLUCMO14H4t5MrtPxAq5QXsppMvcqEJ+wcG/WF3cF+Gf0KrkzEANr
2fdNeVfofDBc0tQWiFc7pwXb9ruCTnv/vWstgfhutor5CUNXKFTQ4tJ/HIhF
d+AyLkdXMBfRbAqk+znwiqWnz8MVPPy/+TPS/T6VZ7t2PtAVog2kee3o87DB
8dFFnOoKNyvUUlfp81Pfs+/4l2OuoPbr53nHokAckR9+tyrPFb5nj9m4nwzE
H7j+samXuUJRHbd1ckogLuo11fld5QrHCW5nS+ICsXVhXuDD+3Sc+/BhaEQg
fswr0mL83BWO7CgxEvMKxLF9/nMsva5wK06Lkdk5ECuc/U/41XtXOP9rR/4l
QiAu4denOM27AkmZyPFTKxBThQ7LB+xyg5RtYTI87IH46B0NozVRN0irMba6
uRmAM8043Avl3UAmf9fDbz8DcBG5JaMFuYHzvzsnYocC8N0X0uMiJDfwCTMd
zLsSgBt8GFbvx7qBqGJka05BAG7+Ncx5MNUNvOorr+qkBeAu8ZMG1CI3eBl+
jHTWLwBPU5fO9Te7AXEye7hpbwCe39ldE/bCDcjxTRR9jgC8fL2ynanPDcLZ
LxNi1vwx49tDS2pf3YDfPDVl+6A/3ivfYnuK1x1sDg8wt+b4Y5f3eVstgt3h
+Nx43b9JIvaMChL5GO0OW42F6gVeEzGRBTQoNHdICs1kX2wk4ij1Jd9rhe7A
M1By720uEeflHHq8+dgd2DQorxuUifiZnnRMI/chCD+gUKgY4ofVSvEnuUeH
QHPXZaPHoT54puTsO/b2QxAnsEN4SdMHXy4J7fjRcwgkuQppg/T7ha1EoPrB
xCF4eK/Po7vQG0+cj4w3YjsMVldDPA898MJFxaKchw4dhmdxPbw1cx545XSq
/omVw+D25/s3Tw13/OQEKp7S8ISyC0fF+2ztsXvofPO5A55wuZ/39t2d9vin
zaVpSwtP2GOZVvijzA7L8q7p/HfYE/S/b52avWaLiy7Vj0SmecKDkQXvpipr
TKpVEv/T4wmv/X4xfaqzxPyju6t3kLzgZdwWu4xBwPeaX/Y9jvECF3OBkebD
gK2vUv+F07yg6kMMl8VjhNOCBm3fFHhB25VXhLSXB/DsQuFiUYMXLE2rvxj9
roufbmXT3rvVG2aWq470GavjSJXVVtUybxDfsxzU9YwNu0/r9NXd8gZTVhbm
HaOM2PgKdUrngTdw+c98tP/9q5l/5xqb0UtvsCcM+aX0TBg2z/9zclj2BpZJ
7DrwgRtx1jBNkS19oFOUqvdAUBbVKO5ku7/gA1vKdZtKQvTQuUk7Ee01H9j2
/tjcTTN9BLaW5z4w+kJwpMhCkZgBkmfJrvLj8IW9vvYx+O0BtEFh6wmR8IWz
F9rHRs4AqnThEEi09oWKMIfh2y9M0G8+3qqSMl+4WcPdp3bXCj29rlZ27Lov
8OzXHC1iJKB8LftzpFu+wNU4OGbjTECy7icz9Op8IfPRheHWXwTkUbqN+P65
L5h5tk+2qlqjFvF1YeEfvtDOz9BwNNMW5dUK8zAu+0KSe6CbdI8tOmSiu/3b
qi+QiXcMdu+yQz8D4laaGP1gQXB2dbXMDu27ufDuEL8fGHDvmd3vTn+PKn/J
u3DAD5aFAxmeuDogV8yUnmbsB1mGN3t/xTogSXuJpBALPwi5fYCtr9ABPSb7
hOg6+MFVhS8NSd0O6EfdsNlwgB+EMpgyJxo6osdmqwatIX4Q/Jqx5d0hR3Ri
gH9/VYQfpHXeSX0T64gkVp0kqAl+IKXbx3a/yhE56/dsCOb5gc2TT6/27nRC
4l2zvxhO+8FJ79KuAhknNO+5Y27mLF2/rIrjdeSEslIsRxqv+IGQ7sT3BxFO
6GHr0wb3+35QgXbVxXU6IVHLhqjz7/1gwiLoUgDJGRU9uzz6dcwPzqlLt2Sl
OCNWlGmp/8UPJj+/lDUodEYLmi5iH3/4QWTnGQaPRmfUIrn0WnIrEYJp7Q8j
N53R/ivv9SlsRLiiHHRcnMsF3RR+eqNjJxG0HJefB4q5oNPcp1NDhImQsTDU
dh25IOKmssodFSIcK/CxYKC6oIFE/lIGTSJosvAZmWe6IMLvfyyOekTIOscS
JXrGBWnMdX1cNiUC7eRF5ez/6PzBdQRzAhGGN+pThBtckMhkaf05OyLcy2r4
jZ66IOYR0im9w0QYHSN5Wwy6oARXx7+5PkRQubPHVm7cBc326gZ9CCDCb83O
cxe/uaD+TlbDo5FEyK2/d8l4nZ7fdKGqN5YIYh7zVRRmV9SMB3dJJhKhwPgu
tyG7K6qsr5xrTydCGVGvJlfYFQmrnzokkEOExmijD9zirujUbUp7cD4RHu9y
7VOWcUWMcl5qD4uIUH0w4cyEoiuKrzC9tKOECNl8N4WV1F3RrKjidq8rRHCM
+hLCqe2KfEt5KTUVRFhntXpxTN8V9fGvfdqsIoIks9DaKeSKLAsnrB3uECFO
YvWChokreszxsrG8jgjL/lPXo8xdkWr2PanlJiJc7Py819zKFVUwXygww0SI
sl9grjvoioSOHl0vbiNC0utSrXobut61I8EzL4iwczJ8xsGOrjferk/3NRH8
nz6eyLJ3RXE/tSC3jwgJpBP73B1c0bfwvdWjw0SwGX1z9ykde3/dKqg8RoTP
AsXpz+n4bcDc8dRJIjw7UreXSMfmn/p+vPlKhLvbf+86T+d75PHYQ+IHvd8c
YYEkej7VwWvPY5aJ4BzDzzFM11PhmKvR/ocIHPq/2CfpegV7oq/wbxLhQQBr
YC69njyrwzuCmf3Br9tc/yW9XoZ2o/im7f4wUbedWknvRyzIfWbb6Q9H/nbZ
i4MrmnnEZefJ5w8/LhU81TNwRZ7aqw9vC/lD4hXnnp/0fr+pHZPe3OsPrJuC
sVYarshU+XmhvZQ/7B2qydFVdkVK+4pJS8r+MDmluvFHwhXx8ZAWFfb7A3eD
VOFXEVf0d+NAQoCuP5TXny6n8buizqEvGf0m/iB/85b2KVZXVNPexM5p5Q/9
Ct17dmxxRWdrT54xt/WH21ult6n8oe+HPM2rDe7+MPco8XPojAuypG6XXfDy
B6fzcQPpYy5IJehDjay/P3RvRtjCgAtaRxmPL4T7w8qSZ+ht+rwXL/UNJh3z
BzOeCIOEcy4o+dNN77osf7gfR9bqyXVB/t3JX2bz/IFdwPLRm1QXpHpDasnr
nD/k7ogMHAlyQS8Px3JCtT907glb/6Pqgu5aWJ5NuOcPPWctKu9LuKBz+0VE
7tX7g8kv7kERPhcUwNkmJ9FK1yfN2b32yxlttPKaMQ/4A+dFo8S5B85osmb6
lcGIP0Qnfj4me90ZvSp95Ej55A/7EuqcdxU5o/MUf9+pb/5g/ly6Zy3KGanL
3U/q3PSHJzVVoXYyziiowLE2Ty4ALg2clBTJdELWNGndduUAUA6iRdVHOSEN
0l/8TyMAbv4cjebwcEIMpuXdEYYBcIRx9tyishMqWVmcsXcKAIak8qBj7xzR
a+/TortoAXBZSs2wgssRnTrqX7SUFgBWhx9vfF11QNblmtvfZgZAsce9tpVP
Dqjzy/DPUwUB8HyOon30rgNqCZPoYK0IAC/Os5MGNg6oNvF+2PrLAOCU9v2v
mmaPzhb3N30WDIR9umHYOdkGefQIOdfWBcKlpKkDDXVmqGt69GE1yxGYWREY
4dHdjdjk4gpLdhyBMIk3EbV7hZAFaSfpBNcR6A1udgrYKoCezhoJBQgfgTyL
A9yb/TyocbEyfrfyEVj7sWvFnGUrurYWtT/H5QhYWVIZWq6tNCfu3FpzpOII
JG1/y/R5QAI32l/OcKk6AoVdJ7bs6ZHEv05re5nUHIFMoW29/m1SOIqPxC7a
eAReOxz+IlAjjYOEXpMGXh2BVZEPFEqcPHaQvCBjtnQEtu242nXvuyqW1Va6
KmEcDMdUZG4++6yNOfzz56gWwfCrXXWHqpsO/nlqUbfXOhi2BkDq6Asd/Hjq
wdtUt2D4W08u+VWti+2LDZk/hAUDx6pJ1kGSPk74ZXfk3LlgmJYSm1zEhthL
vPb+/MVgOCcuP8Ulg7CxDR+DeXkwcMbU5gafRJj9+tD55epguHcozGpQAXCZ
s99Lh6fB8H6LcrHwIuAX96OV2OeCIZa7puLIEWNcM9ZH9f8ZDGW79exRkTEu
2qHd8XAlGDTvj3VfbzHG3v5r3iGMIdDSw3BEQtAE/+RJL+gQCAGJXS/KulpN
sHD02aWjxiGQkHo1I2LTFG9eWkFDFiFwvErOZtc+Mzz54lCeik0I5KkYmpkS
zHCN+N59H91CoNCO/bneGTNs3Fvpqh9Ox8GdawWi5pik2tj061wIvLtl+KhA
3AK3drOI778UAk6vXATFkAUWDHU5EV0eAmhHdZSepwV+fv2n64/qEGiuKPrE
ftYCS+1WWp5pDYH7V+3FRbZY4uTGJA+Z5yHQRrTTXBG2xO9cXj4N7AoBZVGO
mMP7LfGxgiOnJwZCQCqnPbQp0BKPbS1XHv0eAhTnHx/eP7XEWtcWzgovhkDJ
iPnhlSFLfArQP/ffIZB6zfB66bwlNkgafdXPQIKl/afuJAla4ZIF/pDXu0iw
3t5SfiHICi+eDHzDsZsEV7P045cTrLClQp22tRgJjPWFNwdyrPBKoAPLC3kS
ZEXcT1W/bYWdR3KvPUUksKn6Pm45a4WrE96zbTEjQU5KrfT4XyvMxC8XjQgk
ILZkvNiynYBr7TvgsTMJopoWvUYlCXj7PN/Nv4dIUBGVY1esSsC+uf47dX1I
sGL78O6QAQHv7GD4+CCEBCkvZh8vORFwkL+d2XIECXjOpH/u8SbgZobL1eqx
JDi1X9BQI4SAw/T1k+6kkEB7Uz3/XDIBtw1lT8wdJwHvrcWjZzMIeHfckJVi
Ngny78uMiJwi4Jd3KYJVZ0igw5mt+vISAYvbtqVOnyeBv0+dwkIFASd855ne
d5kEsZ2ZnmX/EfCbE362AddI8KL0cPLQPQKWkb77oPwmvZ9tF6+VNBBwyrMN
kfHbJOgmPyHMPCbgAV+bdNH7JHArf0xubSVgpY3S716NJChwLRGU7iDg9NJv
jhefkIB6yhXxvyTgUR3dh++fkkDUz6gov5uANQayxIU6SSDku/fGmTcEnBMz
cMKtmwTWHjZPpd4R8ATXvoWzb0nQ6NjzxbifgHVrYtz6BkngbX6Ve36AgAsO
Pm3m+UACA60OM+khAp6Z4ZJ2mCABx5C31Vc6Rpk+J/On6f1zvNajPUzAEe7V
EzGzJAhPOb5lNx1flP+j7b5Ir+/4xXul9PhX62YnDX6TQMx//mPTIAH/7Smc
EFsjwc/d1GwKPZ/c1THtrQyh4Mou/l9PHwG7xyie/MocCr89IuJb3hJwlhl1
ont7KGTNkNIc6PXUC3Ro13KGAlst/4s0er1fvvKcLOYNhdRGsq0DvR98j30m
EgVD4ctaEncLvV8mp6q1ffaEwoFkTZ6epwQc7fsnz0QiFP4boRUmNBPwVXXz
CRmZUFA9lXyqpYnuF/MZbXbFUKCIez6qqiNg5SrFiT7NUDD59uSGTxUBeyVR
tZv0QqFLFI4oXiPgPJuOvEsoFHZpXXMruUjA3xZ9tIOsQmHNspdgT58Xobbq
PIJtKHjwha1fySRgy+I/48pO9PUtU4xnUgi4Uu9M3opnKHx+nMTpH07A/eyf
xkf8QoG5i+BxIICAmccUtVuCQkGBzVam8TABE493jJ+ICoU9Bk71l80JeG/X
Hy3h9FBYOinfICdMwDaXzfM2ToTCPi8jMxlOAk6OOjM+cTIUxqOP/+3aQsDv
+ZTy/jtH10fOfs81Y4WLvXzHDf4LhfDj52PC71rhdpXbWuJ3Q4GaKrB666oV
Xt7yN3frg1BYPv/O5kyhFXasPKPV0xwK+lJM4QExVpjzR0euz9tQYIrY3/BH
1QofaOUdNxkMBdPMgycLRK1w2BlfLdnRUFh/yr6tn8MKv9T++2nhSyi42562
8vpqiTOPKmkd+xMKp5SCt1VctMT/uIs+VYiFQdWjtFe2yxa4r6fq1s99YSAv
Ptq6NmKBb+XiWFAIg5u5r0cdn1lg963fWUc1wyAjMu3oZoEFrl01UuM9GAYG
kvHaxrIWOGjsR1oaJQw6mzm6RS3M8evqg5LeL8NA6pkt5xDBFFeG+M399zoM
/Be2vL8va4qTpeMb/vSFQceqf4stiymWLys/eHYsDD6W7P/Q2mKC08/8iela
DgPr2bGmHHUTrJN4o01PNBzOcTbubmczxlctmIIEYsNBOsWxMWIfwva6Ant3
UMMhaenTrWdDhnhDXmFggxYOorYRLa9zDfFhTifzqaxw2CgYUphbOIB5+sul
H5SGw58tddvZGg1wOtF42vEZfb3m2wYFPT0cTEsLPsUTARN7GIrJAppY5f4m
aeu9CJh5+9H045oUtudnMPz0IAJSYmqZ6pzp9zuVgfvRwwi4IuGpX3pbEtei
LQ1RbRHwj3fVJ95HAu/vYmQaHYwAzjpJlqgToljny9bS2o0IeE86F5MiswuD
APsrH+tIGPqTm3kvpKPZN5H9sp5DJCyk78H3ZloN0z6wk3e5RoKv86hROM8H
w6fXOARe+URCe7zOabuDi4amqjv9tWIi4cmjTwt5NEZkacWzxl4SCcHEdb4r
Z3iRQ5KgwsPpSOAvxs1yZpJI+MV49MZsJBz/PqIVOimJJvj/e2j8MxK0vDfu
/j0mhaJrDxBerUdCV6nLf0zN+9CL2Hv751mjIM336/ZVBVn09b8Bp809UdBH
HdgMmlRE8sLiheKWUWB0cGiP5Qd1xNm6tf4ZIQosNinPzMU00M8j34YDbaLg
7QGe7NdEDfTwwX3xW45R8Cc3ryl3SgMRHMzvqXtFQfrkQH7gzH4UeiL0jUl0
FDiacJjt6tdC1b8fcAZdjALqQ50xLxs9tN5wQW7kchS8rjs6sIWmh6ypNFP7
q1EgyHAiV61aD82umSbqVUaBNTfLAdnt+khhS98XzrtRcMmyp8P+iT66tePn
44ZnUSBSG9eUyXkA/e3qH1TsiAK3IYGGRK0DiHCq6efVzigo1Qq2/+F1AH3j
SpPN644Cg1J+18P/HUBy/FxFvoNREBFEOAZgiG6KKYdu/x4FFQMZB2cdEFod
585MmYui3/cRfcNkhCyv/Spb+hEFv8Ne/zA9jdDMvicDH5bpesV/557vQUhG
wdq4diMKsp61iOaKA4qbVfGS2UIGc6l2pngVQB23eRMuMpHhtFh0svgBQEGq
I7czWcmwzLpd/K4boEpNkpAHDxkWevXa67IB/f5ts/8NHxm2ttd9KzgLyLxR
zc5MgAxf57Va5a8CmtL7k64iQgbRaae0cw2ApOHEApM0GeKt5wpdxun5t4Tt
oMqS4bjfnKnod3r+p3bS8/JkqJXlL6lcpuc3E/AcUiFDcve40jyLEbpOqHxe
rUuG372rSb6yRsgybf6iqwEZRkniX5tUjdBsg1Y0AyLDkvvb1HYdI7R/33MR
Z1My7JjsEP1pYYSGPHb+/GdOBqXdUYu8dkYoqdDt+Q0rMiifc9WecTFCTzen
yWu2dD6vEdGbRCMUpKVqcd2BDItK0uuFwUaILTxBxM6ZDJEqvuqqEUao5lrL
4qorGbpcfzkdjTFCDu9Zn5cfIgNLxRff4wlGaJnL4aK1J71+AbVDujQjdN7i
Avm3NxkE7w4alKcZoU91ciKEAHq+Sr3MnGwjlP6dvLgURAa7/sqSHSeNkKzE
w45LIWSYNxE5AAVGqMud8aJFGBke/iwJlz1jhCLzCeTFCHq/xiUU284aIZ6O
QvNSMhlWnvDI85w3QvXr73ebxZKhuiw5hbfECB3WkFycjyPDkzSk/KLUCG2E
hHacp5JBwc9DV+OSESovu19qnEz32/DNFYfLRshscC1qNoWud/dlP6krRmiG
w9S8OI0MHm1VC1V0nGeatxvSybBez134mY5Vk/oWvmaS4V9QS8ZbOu67J9Jx
JpsM3n0PXsXRccJMQOmBPDLs3Vz0f0Pn3y16O2r6FBkMp2Ntx+j5m11+mZ0+
TYbmyM8tVy8a0b+fD+zWLyLDF50oOSG6XpZnGQuTxWQwvtHAZHHBCN36091+
6gIZ+h422SmcM0K2qvylOhfJcCkmjqOjyAgtBnlHTVwmw8XeOQOBQiNUdKnS
LO8q3R/2N+9F8o2QTt+8sFYFGRK8Y6lDuUZolE17YaySDJV65W8OnjBCR41S
27OryFBQduhTXLoRkkp4XqJRTQatgpKbh44aoec1O6M+1JDhwvZAueUkI0T6
4maWdY8MjSY9cqbxRohTpExYrY4MhMFIj4PRRsg1W7U9vYkMPfF8KhlHjNBf
nFCi/JgMrekCvQ1+Rujy75bIoWZ6PQEF5695GKEv/g7Cim1kIJNOSly1NUIn
Si786O8gw6362fF6+jwr9o63pb4gg35UsnsWGKFYw+jIdz1kCFNQCnVXM0KC
lIemtF4y3BkODHeVM0KP/mMUlukjQ05IVQSnuBFiFDrTljhMBp9nB+rv7zRC
p5fuC0lMkkHldst611dA88ToZDxFhkGrNLn3Y4AIb1XHPL+SwUzj/N8b/YCY
792uODdPBs/ZzuyMFkAJETdUOP6QISabdA2dAdT/IbDw1hoZfH9133TKAqRu
I/XLYoMMuTf/aMsnAfqucPXhMaZoSHwakipIBOT9tcRslSMaDj+vuS+hBOiR
+6GbZ7mi4a+Qkr6dKCDBToEdGrzRwJml1GLADehtZdGbcMFoOMviUzY4g5BZ
wCmPzxLRoKlc2CQThZDiWBq5RzsaRBjPJxeFGKJsW+gL1YsGaZQxPWBuiKae
bGhtPxANllGOz+9IGqKyi0nrJsbRIFP8YVJo9ADiPUzJarKOhnmOkTEOS/r5
3Rd8qcIvGqIkdXN3cRig5y/tXiTm0vn/gl6Mgy4qcOaQ/H4yGk6VjZzZLq2L
3D++TPYoiAZT+Kfv/lcHfVs0UzU4S+c/wK+5q1wHsQsZnPt3ORrk/mkynZjX
Ro5HZAOP1kZDpDQjs2uSFhpl2rIlczga1msmdrqS6PebQa3OaZkYCMLn+iML
5RAXs7rRwBs6rte6Nv50Cz6/x8na9l0M5GTqHg6KYcJi2rFuHf0x0Jlmxdkt
sRWrkerD69/HAPwtCIcUVuz4Rq+keDIGDKvZg11kd+KzF02WXFdjgPFCmuwz
cX4srOlyfVA0FlqqBU/Ye4rjctu4u3YSsVCX9Gmp+4k4lg8+9+i5VCyEdi9f
H90rgfVLh3sb5GLhZHu3ZNWYBPbc4r1xToMer5Q1JOgphS93B7m5W8RC2uBH
r0NIBksGJWwfjoiFLaHN9k03FHFA485yU3IsfF2oM9BcVcSVbDf07sbEQn3r
UKiKpRKWvdMfmpUQC7/dexqOTSlh5VX1Hs1jsRA1XO5dK6KC9XLmCgvPxkLn
2J37Xg2qOHk0XWHjXCwwOD6u0B1RxU+URdpCSmKhMT5L4tWGKoZ3hF9wJRbG
Phxq4zRTw+YiN91+3IyF5cNXvKV61LBDDVHE+nEsbPX50fivVx0XMvyta2iO
BScbu2LhRXXc53jaRrI1FtyIv0K+79TAris45W97LJTFBl8tt9bAnrBn/Obr
WIh+1eRq/VQDB78dvL71cyxYEY7UZ1/ej29JRRqSv8SC+asO2fLG/fh7HMvg
6HQsuL8PgSNv9+OI3ZqsdbOxMF6e6LPCrIljAwpJxN+x4J3jlKkZpIlTf1ur
4O0UuBWXpv5NUAvzNVse82GnwBnP2NZ0FS18K8O0f5OTAhdvll17aKaF+/gM
koCPAnxLfFVrUVpYVkPheeteCmw8urb6+KkWfvJXWpgoTgHFN0pOqgNa2PGp
RDijFAX0S6/FG37VwjQHYV4TOQooFb1ilOXUxm8jt/u0aVDg7+uRAjUnbXxE
e2ttgBYFCjQuxsb6a+P1DYatW3Up8IjR9j/7GG0sc2r1lpkhBd59zuDuP62N
H7ss//sCFOi1LSHTyrSx454F+0wTCvgNj/viGm2cXD39u8OSAuaNchWcL7Ux
d+xnqyMHKVDGLr+6e1AbV+qPXdxmS4Gvtk/Cn37Wxr0vB4wtnShAiXh96f2a
Npb+2n7qhRcF2C4zDOvI6OBHd1vHQ3wpEFsfoblTTQfbJzzZz+ZPgXO9TDop
ejo4aduD94RgClxayCuUtdbBXK/vKn0nUYC2fPSbv7MOriyuPpobToFlM1Sn
46mD3+yrkO6KpoD8d1Hz2yQdHDh3hRpGoYB4bOYNG7IO/ltX2sWeQAHOg71/
s+J1cEHyOdHbiRRYimQAT5oO3md6JtqGRoGuCd74l8d08MMd+e1zqRQovbaj
7G0WXd+7HMFTxyigldA+G52ng7+UZIYqZ1Cgx/10/+0CHZxIPNbck0UBK72+
kONFOninfAp3ZA4Fboicqlo6p4MrFqkBO09SYHqzuWijRAfrNVEa7uRT6O+h
IIWKSzr49VEym30hBVj81Y0nrujgAMtwr4UiCqwZPLj46Cpd/86QuwXnKOAf
fLdI9ZoOzh8MYFIroYDhF0l5owodLHXF17X3IgXy7u/0mqPjpiDPKvIVCti8
i1HSvK6DbZXd17nL6Xqs3inx0/HkLye72goKfNpdqHyGHk99YlfueIMCcTo8
v6vp/JwZB3/9rKJA8BWndP9yun5rC8sz1RSot3cdri/Twbp8JqUadyhAtBb+
VXlZB/eMGM6/u0eBMK5vJmoX6fU80dWxqKPA/ohO07wLdH+u7D/2sJ4C0QQd
gcJiHdybptKl1EQByeu6j4zP6OC3/vL8Vx9RgJDSpXo5Xwe/M9vny9dMgS/9
C/EVuTq4T0bsVlYLvb8Pz5Q50/0Y+L7LMKKdAn+Wf1y/R/dvsJvrxPhzCnB5
R0cTE3Tw0J0db51fUuDmH8UoHK2D38dsCdJ/TQHXTsImLUgHj7is36nppc+T
7Rxl1EcHj2qv/BHvo4C9hsiWaXcdPLY2e5J1mAKz00/tthJ08KcP04NJIxRo
aNDjFTLWwRN4QvzHBwpIK4gVvdel9/P40IP+CQpwc59N8JOlz0fgu03LLxTw
vKEbKSeqg6cseqweT1NAJvv++7JdOnhmR9uH8ln6flaR4bq8RQd/nWuW4f9B
gfQlsfeSK9r42+smcvYiBXymLC+7zGrj2TN3tkb9pkARZ5JjZ782XthdqnSA
IQ6eHDIU/VehjRf/nY2/yxgHN18U+jOc18Y/xwpaJbfGwbZqwraGHG28fC3T
hY0tDsQ7J8MMI7XxqkI0bZA3DhKveynf3q+N/3CEPyfwx8HuixGvLfdp478/
jnA3C8bB8fG5zQu76OfHfa/rFXvioMpde6fXLy28xcCqmywTB726XicO3dPC
jHtNBb7IxUFkP4dl+RUtzMyA/NwV4wBq98+Wn9TCLG37fxmqxUHZoVWhzmAt
zGYttoddPw7eoXGje7u1MI/nSlilbRy8ePTodlSsJj5y35Vs6xAHQaoXEcVT
Ez9mq6f8dqLnf8s5J2uqiYOaYlPMD8VBflxw7m0eTdzE/zN/yj8OrNHn/8Sq
92Pf3tlaaWocnOevvCPZq4FrzCdWK6/FQaZyaEXltBpmumz0z7YyDmY+B578
0aGG3X+VbVm5GQeM/74/3biuhhkrfNgsauLA53AJb5S/GnbZ8mH3dGMcuD22
mcqj31/rjwYNZXriILBlmaJ8XAVbqXWn31iNA2ZjZu/wt/KY7ZrCUYm1OCAI
6Wk2Zsvjl3w5SZf+xdHf84J5rSCPrVfNo88wxsMXviiFtdty2Ba3+KSyx0Pl
oCTb0QxZ7GxTp+cmFg8kU9GxMjlp7BNSusBiGQ81Z5ZVOG3FMeVqiGfQuXjY
4BkK7ZTgwPMHDb/0XYiHR/Yqx09P7cDBv3kiTC7Gg/vIhW2Jt9iw58HHqWJX
40HZ0DX+mDorNv3Fee39rXh4eOxT1qYJE+axqvtq2xwPxLoijnOffzbfXdiI
0/4SD4wPfw5ShpcM5UvfbV6fjgedLSHSbw1+G1aY3TzB9y0enHMbo6Yurxqe
L3EoWZyPB6Pgz6taPv8MU00rnvy3Ss93K+NsazATsj1vxSzGngD9xqMOdo3s
6DsqOs2qkQD4Qdra0cMCqNGnu+8/zQS4daPsgOxPAZSZyiJop5MA1T77WeWz
BZEETrh89kACEMQfah14IITcDb3+k7BMgLNfZNhGtoqgDgPpdgOvBLi7Jla4
y0QMlek2rkZlJUCS6EyKVpIUiji0qM+XkwD7WIp3GT+SQvpU+dSGvAQ4bGVY
8vGvFBpovLh143QCZOQz8fUl7EMcOmk8uRcTQP+OqF5ypDRK1CIoXr+XAHbL
jyZ2WsgiZ41Rn+GRBEgmiO01KVFAp8L5Suw+JkDuObHxn88V0PMb1n3tnxLg
v12svuq/FJCeyBPL2i8J4I+EXnvZKiKxrZfVcn8kwGf+9p0qa4podsCH6QAT
FVZPybc8MFRG0tznD9zfSgUFk+6zOwKVkc/BN/FyrFT4NpA4NpWjjN5imN3F
QQWrS797lPqVUeNN8f55fipoHDaS3Baggo4nfq4sk6eCQdR3dkNNVfS4bvc4
vxIVrj7Wzcg1VUW/5512n1Shwh/WL/MXnFRRsH9bPnU/FeakUyPXo1SRrfX1
BEdDKpyCg9ntN1XRicwPtZ1AhaaCpS1C9aqotWXXnKEJFTI/5KcpPVNF+zUz
/RQsqXDnYM3Ts6OqSHjvEQKzIxU+O1LkA9jVkLP7lfREZyr9+6OyskFADZ0s
HGxecKWC6We+9JcSaohhm6XGBw8qOF29TlTWUUNTP2RF6gOpEFTwvP2HjxoS
k/dzVQymwqfcCwGGIWroUMCFgnISFbYVcCtYR6uhrqHtW/MjqUCqXVK+flwN
1bZ+mztCpUKh28cEm2tqCJGzJniSqXBacdJA+T96vJjU4JMUKhx3EXv2tFYN
Tad6tfCmU0Fcdv0NS6sailX5W9ecSYUrL5Vy6p+rIcax4qqQbCoY14wKCfeo
IRHDN4X4FBWmdGofrw+roaq5sCzSaSrMPiqKSRpTQ1qXtifvKqKCJhvfp9uT
aqjNujKqpZgKAWI3iUVf1ZDDunFg6AUqUDbs15Tn1dDH/8YO8V+k66/gvEX7
qYbCPJJtWy/T+8MzHnH0txr6wyZkEnaVCnwLr2q0/qqhzIcPtAUqqCAi3dxT
9k8N8ZIcFZ9W0vuRIh6JGdRRmdAPsfAqKgys/MovZFJHyi9ydwlWU+HEGX01
YRZ19ChBlu1ZDRX2Ovx0dGVVR5ay7Rvh96hw9/TL3eZs6mhg0G9JsI4KF7i+
C3/boY78szamn9VTYUfImrIJhzpa0CodjWiiwtbSNTcHTnVEm9LuFXpM56/8
fpZvpzpiK+5rb2umwpncVzN5dHzejPwwspUKj3jTdJvoeN8vjjvCbVS4uPnH
qISOaytuXWvvoMJ384N71OgYnC3OR72gws2vsa9odP5upsm83V1U6J+Osz5K
z3/4/tG0jh4qkI0cynTY1dE0cU8cuZcKJehV9HW6/liehySRPvo8P2Grek6v
j/Gpq8/zASpM9lSeL6PXn09ecooepsLR6CtGqszqSES8wHLPKBVabi5fi9ui
jm69UTzQ+ZEKFeRKHLOhhrSPvlCLGafCWoUis/Qa3U+VIOm9k1QQKNI+dmqF
7ucY4+4XU3Q+ntHnNUt0P09d2Rn7le6/mHB/5g+6f3NDqy/mqZDxlWjuPUX3
7xJlLnaRCmL5WR89xtUQnw3PhOgyFdxOdtdwjaoh5eqDryh/qCCqImF2/Y0a
euQxg8XWqVDzVnVHxks1ZLkjo+7VBhUO3x7s3tOmhvxJzZfEmRPh+ELJZUq9
GloQ8ijsYkmEn22XOHTuqKGUFyuZ8dsT4cH5+Xd1N9TQeVm1qG7ORDA2TAz6
cE4NSQ91ByRwJwJ/VMRSZr4aup9FOiTJlwgL+8IVv2WqoZ6pa8ZUoUSoLDOR
mIxVQ0zX+Xftk0qE8KKh+DIbNUQ4KXfumXQiUCvN011N1FABxUCIKJcIJ8RU
yV30/SxiTtxzRZm+3poyu0Lf71rTt/cJ6SaC0r33JWbLqij5dcuNBv1EWImK
MVifVkXPGt7JuRomQg4Dd0zsiCqyP/FH6YxJIuhqn7p/rVUVkeTMtDhsE2HE
YMxGMlcV3eV2b/zPPhGe9X80+5asilb+kPQITonQyzFbTo5QRekvCwyz3BOh
6ptj1Bt7VXQpdNR8i38i9DguJnbyqKI3t2PcfsXT+b89bX8koIL4izOHzyQm
ArnlQwbrsjLySrngoU5LBPPSkuiZ18romy32iTyWCN0hK59dM5UR0wJb8Ne8
RIiXvxKnNK+EtNTLEz5cTYS/y32LtrcU0aX6NxfaX9H1RU9ZLQ/LIfumCR7t
nkRwLVgrVb8thxgfL+fefJMI96r7iiWPyqGgVsGU3P5EiJStO7V3nxxS7vIl
OowlwsEtBzZGQmVRy/iC/IefiWCYNyKaNCuNJtm5Hy8LJUFOQ+GLf1gSKfo7
fJQMToKL7aO0Vvp9WRPw49Fd7mTIrT0YteXoSrPYSsCUHF8yMPx4eoN68E9z
YfZ7rmv8yaBY6dz5Zddac1xNe+DZ3clQmf687cKNjeYDq6U7E/clw5eqxvWC
MUbclWvpb6KbDL2DvacmRrbjb7VX2QZ8k6FVzWFV9BYv9jQT0LTzTwYLLumb
DTx8uGcwz6czMBmaP8wsjiXy4dr1+LqHpGQ4ZqbjNGG1C1PNbb2vxCaDp2dj
xZsJfsz6/u+94BPJEDRyi3XrphDet8X50Noder51p4/UIVFs34W4g2uTwUlj
2G1OQAwnn1N40VdHjzfibHM1EcNvlZh0a5qSYVZlgeR8QQynHK4V9HuWDH52
BXirsTgeuM811DGQDPoQfH00QwJvSV3P1xhOhvv9HomstyWwImHGomwkGXTz
ShOn30ngY59wA/VTMngwb7/cIiaJlTkizyl+S4avgTp7x+slcWZQt2vhv2Rg
ve0caNonhe+pNXFubiaDSxV18PhvKTy6XtERykiDZs2KknjBfVj9TLKW2TYa
CHyYFPD32Ic/YgX+VS4a4F+77aw/7MNaQjn9XlI0eO77mcuuVxr7TVJOvpSm
ASneUdlmXhrn3fEz05ajgUSy2dElNhk8Yab7gEuZBq/tGlp1TGTwqeiZomfa
NMh+b3uw5o4Mnnpl7ix3kB7PFKA8HS+LA9nPdby0oUH+rY4sx9OyeNJ6WifM
ngbrb0obnW7J4vHurD13XGjgXrztqNCILB593Tm135cGVcqNpDPactiDS+jQ
AJEGH/ckyVTayOH39iGv4gNp4HF4peygvxwe6t1+9yGJBqqPdr+0PSmH370j
0C87GhCfNkTqjsphR77S7+PxNHjVoJU9MS+H3zh/9zqeSIPMLo6MPVvkcU9/
rnFHKg34nNskraTo7+fBrh3WOTRozJPKpQbKYyvBPSlzeTT4N9T5+W6sPO50
D184lU+DMy3/pVOPy+P2YY7+3iIaJP0p+YevyOOWEdvLbldoMMjYkiD4Th4j
kStcf67SQNOoRHT4ozxu9vxxrKSCrr9f5478N3n86EP+kQ9V9H4JRBKObspj
vb2fhlOq6X60sbimb1fAjd6q1mJ3aFC476KmEK8Crh97o+pfR4Nd991nlqUU
sKaY+DXmBhpYF+VKGigp4Dpf8q7KJhrY7n3pxqepgDWutmZZPKaBkANfBs1A
AdeOc/+daabBHUXSf/EmClhNghiW00oDHn19eUaCAr5LrP2o0EaD3HfnU/fY
K+Dbnx2fRbyg+8X2CFg9FLCi1DVNri4a/K5KrR70UcC3ApZu3OuhgfBBbopO
gAKWu24i7NRLA1Pmgw1ywQr45pczecvvaMCqsfjjv1AFLCM9uXF2gAY05r0y
LREKuDJoP1l7mAZlCb2eQWQFvO9G+uehERrE5O84fTlGAVdM97kkfqTns+x6
FkxRwJKy+zp3j9Pgrojt92dxCrg8mKL35DMNdCzaje/GK2CxqvZq7ykaHG46
H6+SoICvfN0lyvCVBvwxndlGdLxXPuj01e80CI11pk7R4y+S6plM5ul+PDEw
30vHu/9jiZtcoEGX2djoND1fyXfXmYwlGpzmSPxlHKuA080rHf7+ooHNVes2
92gFHHn118OIVRpUO5w9xhWlgA+vm0p9/kuDmr3OqqRwBWzqVnTS7R8NXFiz
uwNJClil9vPvV5s0uMy5/zDTEQUszKHhC4wpMKuYOYz8FTBz8LEXdcwpQDa7
JyZK7++Pp73qcttS4CR1V9rVwwr4/R7xi5e2p4Dxi9q/HS4KuC0haisPewoU
7s8+mU/3q0R559BfrhQw6uhyYTWj6832NorkTYHqIzMb9YZ0vZO3b33elQJJ
vPZ72HTo+kqsaV3CKeCQw/TwkpwCVv5VOgV7UsDdxU7no7gCFrL/bvdANAWe
yU8rPBNSwPNbcyQuS6WAmWJJTQyrAh72Hc7lkUmBPzz+103p89v2SPZXplwK
rD+sufzolzy+QH7+PFI5BX7Y9pwvHZfH6V38apOqKWDFaXSTcVAeR8gElbhr
0Ou31U3j6JLHph+Yw4106PXPLpKFH8jjeUtjHl7jFMh3E69jp++3oWunk7JM
U0B0JWjPLYo8frbxaXLNPAVyRUbUFo/I4/N1qQ2TB1OA84+tZ/JBeWwi9sSz
3iUFFtTOpCRzymPlJPYOeXd6vOOxQ0EbclhwwEPlyuEUIO02WV2bk8PzuX+3
nPBJgXfXddPku+Tw+RXtG4dCUsBkuX9ndrocPu6YxdUTmgLni1NJ78hyOOL2
ANU4IgWaZkS7X3nLYRN/irVCTAo8iU+Kb6afX/M9tYvrySnw326G8dEvstik
UsmgrCAForZujqloyGJWXZ5HXmdSQGqP0/u7grK469Vv3d3FKXCfYHqo/58M
dl7E2sWlKYCm/02yPpfBAQaOGnmVKRAtw0na4SKD09/GySc8ToHvJks0FV9p
3LGBBe1nUqBnXDLYSlsK55yuOMfxPQWOK7GwSfBIYVupbP5Xcynw+YtN471Z
STxg5chnvpQC2aN9+7+VSeLposmdBhsp0FuoU8jOIolZFbZvk+VLBRrNj0Z7
Jo67nsxlfOFPhdkH76O2lYjjAvu3zNeEUuGx8aFOlyhxLBhXyrhXNBWSDgVd
oz92sVyr0gavfCrs1vmUrUkWw/NOPLRexVSwaBWgzpiJ4dqp32unVFIhzZ0p
NkBYDOuxt/zZrpkK9Y8k9a0zRPHG5YqE59qp0PWH+feyoih+qpa9kq6XCund
ySa6fXtxZlt4nPGBVPiklSsplLQXE9wcf22iVPigqVpcJL4X/w+IB18/
       "]]},
     Annotation[#, "Charting`Private`Tag$7488708#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{749.3181818181827, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.8837234962591963`*^9, {3.883724390909018*^9, 3.8837244220350122`*^9}, 
   3.883810880164082*^9, 3.883812928206394*^9, 3.883816240328163*^9, 
   3.88477005606642*^9, 3.8847718077663813`*^9, {3.884776288180044*^9, 
   3.884776296428225*^9}, 3.8847816514845963`*^9},
 CellLabel->
  "Out[534]=",ExpressionUUID->"deda2472-c2d7-4911-b1ca-7e6a3fb2e825"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"NIntegrate", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"q", " ", 
      RowBox[{"PsiP8He", "[", "q", "]"}]}], ")"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.881205288234173*^9, 3.8812053028843*^9}, 
   3.8812058315934973`*^9, {3.88242123801644*^9, 3.882421243014648*^9}, {
   3.882421297853364*^9, 3.882421331195804*^9}, {3.88242334248276*^9, 
   3.882423344359261*^9}, {3.883473266407168*^9, 3.883473268464554*^9}, {
   3.883479582290578*^9, 3.883479582437002*^9}, {3.883553687495833*^9, 
   3.8835536878555193`*^9}},
 CellLabel->
  "In[535]:=",ExpressionUUID->"73fcd4a8-f07c-4668-a074-8d6edd4e9c5c"],

Cell[BoxData["1.5707961288234409`"], "Output",
 CellChangeTimes->{
  3.881205304037475*^9, {3.881205833323921*^9, 3.881205837282301*^9}, {
   3.881205872114337*^9, 3.881205882012789*^9}, 3.881297116188105*^9, 
   3.882090935330817*^9, 3.882329838140649*^9, 3.8824210281342487`*^9, {
   3.8824212406547403`*^9, 3.882421244266634*^9}, 3.8824212755250263`*^9, {
   3.882421307427759*^9, 3.882421342072089*^9}, {3.8824229850364428`*^9, 
   3.882423043883869*^9}, 3.88242307529848*^9, {3.8824231463273973`*^9, 
   3.882423160190447*^9}, 3.882423346652607*^9, 3.882867355595727*^9, 
   3.88310583295991*^9, 3.8834687277985477`*^9, 3.883472941558489*^9, 
   3.883473278878297*^9, 3.883479294805578*^9, {3.883479582838084*^9, 
   3.8834795862419024`*^9}, {3.883553688800343*^9, 3.883553728335539*^9}, 
   3.883554093692698*^9, 3.883555173707074*^9, 3.883641249162043*^9, 
   3.883644205011154*^9, 3.8837084754117804`*^9, 3.883721115116543*^9, {
   3.883722039492464*^9, 3.883722043643057*^9}, 3.883810884806055*^9, 
   3.884770059187111*^9, 3.884771812950027*^9, 3.884776300339046*^9, 
   3.8847816551406918`*^9},
 CellLabel->
  "Out[535]=",ExpressionUUID->"7064fc70-a5ad-4c7a-9a5d-93a2ff93f3b9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"\[IndentingNewLine]", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{"PsiP8He", "[", "q", "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"q", ",", "0", ",", "5"}], "}"}], ",", 
    RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.881038555156019*^9, 3.881038640793738*^9}, {
   3.88120183848323*^9, 3.881201839189108*^9}, {3.881201927015479*^9, 
   3.8812019395020847`*^9}, {3.881205040564049*^9, 3.8812050519065933`*^9}, {
   3.8812052078525248`*^9, 3.8812052105209427`*^9}, {3.8824213624532003`*^9, 
   3.882421379359367*^9}, {3.882423060474876*^9, 3.88242306952956*^9}, 
   3.8834732814449577`*^9, {3.883553735126048*^9, 3.883553735494109*^9}, {
   3.8835540985421658`*^9, 3.883554102218004*^9}},
 CellLabel->
  "In[536]:=",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnc81d8fx3Evca+43DQoK1GRIhLR+5hFKskmSfa8aCgjSbhGIZsyomTc
UvgiHLJCKaNSaZIV2Xv97u+vz+P5+Jz3fp0hZutpaM/GwsKyh8DC8v/v/UBb
Djk7v6PC+snbtqYLoIYuUX1TUXP4YHRyCx+T15tqbomKOkOn3BxlJU0A8cSV
PSP1eEOvRx3HZybfr40WYRe9BicfrCw8ZrLMuN2ddccbkGa6aciJyd94Hqyt
fAqG64rx3UJMlnjEdWhp+TYc6ZLEtakCyE3tsvu8CB3qWhLyTJn8ovtnzoxm
FHwraIn9mSKAllz1eycd7wIvW6ufJZMzWXvp89qx0Khd7fg6WQBpvY3dNfcp
Dla/DplIMXko+VjdjHM8+PAW6/kmCaAou1Wr6eUE2EpK0XqZKIC6lp3iJ0RS
wEnW88yWBAF0pVn4wHhxKlg2rToeiBdAgve628Y00+H45GjkkXsCyHYvIvx1
zICymRvE3bECiG35+rsZ/0ywH6s4xxUjgLp/Gu+Y0c6CQzlBb3vvCCDfQnLF
1KdscP51YNk8SgDpxQ1wTGU+BPpATg0hUgBt960zmnTOgcfRlQ8z6AKoVvPq
xPhyLsRP7PtRFCqANnz9LTUm8gQq3MN9JYIEUE9t9eXRoSdgshaWez5QAOU/
Sq7/W5wPYu3rvNH+AuiU96nzI5qFwH8qoKjGVwAlclUmDjo+hXcr8sEBNAFU
clXP22frMzDe/4jvhIcASh9R2jbt/wxym7+xkt0EkMd7fscp7WJweemx1dZR
APGnv2ab/PQc+KrUn7qfE0DLPGVPaKovIGdG4UO7hQDqv/nQYCLzBRz9djtU
3EwAlTkGPhh3LoFkUUZ2lqEAsjiooPJvuRSWyFqu6zoCKKs1w+uvSAV8DXMd
ObpPAM0kl+79EVUB340o34L2CCAdx7a+zsUK0C4Z8n+xSwCNEuaNK7sqIZr9
98jIDgF0WO2UCj2sCngfPkl8uFEAvX+6wiY1joHFWNRMe2QT4gcu642ytXBX
7eZE4p9N6IhkvEqYXS2QH/T//PxzE7oz82T6ekctmDzbunjw0yakEPvB3rag
DjovSFuo1G9CN1pl9OTO1wPjWd6P1ORNKK/4P8mChHpIQk2vN9zbhDqTNQi7
3tTDu9C/HxyiNyEJR7OqrcoNQK68dm/55ibUSgiRZaE2wrvJnRI3XTahzWpf
+d81NcFw1LoKl/ImxHhK/+om2wr0tmf3rr6hohH+kSi9C61QYugvVttIRVJX
9I7ujm+FuaZj2ms1VJSpSs7qW2yF7tya25bFVBTXEuVg0dgGyxrR7mkJVHSl
7+7kMau3MCYlJ65mRUUZ5LZbfNrvQWV170b33/zIETpSRr27IPDm07zmD3yI
JXuu8mtkF1geulEp8JYPJRO397bmdMG1qnW7cw186HWLg/CTj12g3RSPPz/n
Q7uNVrLtVbph6+Av6fC7fGjISarwO+sHOJ3FOfL6GB9yiQuoeR/zEYQkYg5q
lFCQx589fSWMzyBG/iGdzsKLSGIhUj8O/4QPAc8FtkZzoTuUtr1ZNn0g9NIn
MT+MiGy/GmHCmwEY3WGTXcC1DqS0X+5enwegbev7S239a/DcwmP7j4EBeMTb
doeldg0IX8KuVbIOwjUfm4H8K2uQ01N50EtpEK78mjjA9mcVBj6I5n3PHgR5
vgetrY0r4PJ+NKbi2hC4PAugKiQvgVdjiK2n1AicZB1Slbw1B8L9OhxzB0eg
+XHtqojDHLSxceX7oxHIoV35Ias7B7tQ9CTdfARavulvjuKdg8+VCUE5kSOw
Z0cM1ro/C+rPHj34PD4CJ0iflourZoAv7fUXzfK/8NaMbS6KPA01FRGBrQ1/
4Z6vhPOBySlw7dEXP9PxF45oxWoMf5yCRoEOZ+uRv/C5P3p3WvYUXIv5vOC7
fRSAw6ZqXWUKft0e2cwIGgV29VcBbZ6TUEzjPrtVdwx+y38daeochzep1GtF
JmNwIXloyj5jHAYaBDM07MZgaG1D9yG3cRDctuev240xSEixXnfnGIeQOu1b
daVjkOtNXj2g9g9M+G+8cBH/Bwey73ezlIzC0otJavXyPyhc2336ctMwbPq+
oGzIxYzz+sFxlZRhkOVksRncPA5yj0/F73cbhotWPIV88uOwLFjyO59/GN4Q
pbUcnMaBQvkd9/vCEDwwtrvE+2EcjkCK+TGuQcjycx05YDoBZxQKau39+uFA
LddC2LkJSDIMFmeY9EMtMY/9x8UJuL77ZIqwfD/8jO4XjaZNgOJ17qCrw30g
nHnOdJg+AT0jh7Q2WPRBasPphqyqCShNCfh+R+M3xG1UeMAvPgllqP9n5YGf
IG7YWeC8exIyJZQO/Kb8hOJEWkWt7CRodnS5Wf/+Ae9Firo9jkzCr7+3pS/Z
/QAeeUlym9EkuD1IqRVz+w4RJlt9b4VNwvl9ke9s6L0QnLFyZmZ0Epwf/snW
XOoBgwPlXtLTk+Byq9CttqEHhOt8Ym0XJ2EuOis66G4PVP4eef+efQp+aonL
tO7qgaldn08XCU+B580BpUDjT2BbWHrSwWAK6tdapLTqPoB6hYduz4spONur
77K1pRN49PY681ZOgWHCWFNhWif0fvkTrlM7BUkL4Tw3PDrBd8XqdcmbKRhw
3l7Uu6kTnsGJY7F/piDXbJ/eVbsOEG2S0tbbMg1H52xm2XjfA0vXT1R1fRq+
HNn3zEe0DUKGa7Ku35yGjVGchxbetgIXy3025fBp6LKv1mT1bwX+feYNpQnT
kPNyVSrjcwvsCus49vTZNPANBLmupr4GvSOvTmUPTEPJy+N3vys2wb2HD63C
DWdgsuH8LGdLHWytvFmtYz4DMnsUVI6G1kH6+/PC7DYzcDuOL25Ysw4erQr9
vOk+A8F3rBiZtbVQbhp/0S98Bh75lHBx3sDQS77t4lEzA1Q315uXc1+C5CUH
X6O9s1C1mYf/XlIJ7FP5cTbjwCx8BLHxboUSUGAx2z9yaBauyf33pK3zBWhE
6Q7c0JwFcaf4792UF2CdI2NUYDULXGab7DQSiiGxe2o/291ZoBAu/PwYUAT3
U13JJxNmYdf8hL5+eyHk2PQPJKXNwpHnQt82iRbC89EP9/flzYKiWGJHSnM+
tBMryOZ1s1D48TaHvmQesCveGHw6PQvmS1U8QmIPgXt5/tXS4iwY51/j2h6a
Dfx1tAfaLHMA/wmzW4xmgehJW+Ov3HOg9VwiPKwqE1Tttes5JOeAq0RIgf1T
OlxKIGecM5uDP2o5avfY46F/NsmEXD0HJzQxmnGmQbb6QZ9v9XMQZvd+Mvaj
E5yPbr/7tHUOpPbJnTo/ZgNfJNhbzvbMQefWd2+aPHdBx1nvI+nTc/BD+Ify
gyE3XFOsL7pv7zxEhflMXfe+jf1XB1XXD8xDb7x67WmJMKyse8u8Q2keel6G
n77VEY5LflbEXdaeB4HuXFFR4SiczyvFXmMzD//t4/5OQ7E4yZ115FTSPAh1
LvxgUU7CRhXpHGIP5oG2h7XL4l8S5mc/vHM6Zx7YlGMlErOS8Z10D6uk5/Mw
udlNuJo1FYe0fW3/8XYeyvp808SepGPanrIXNOICqL8wa/Npy8Syl8+81yAv
gEfhn+2/BLLw39rR0U38C7BP94SI6fks7GC2U7JCZAF6282oF8ez8LmwmGTW
IwuQZRwXtpP4EOv9cQmI81qAuIYTDDprLtYJ2Fmo5bsAN1kU7wiq5mINgd4v
c4ELYPfxycGuy7lYRfvkYcuoBbih1SBUN5CL9+bun975eAGe3dRUL6l5hCXV
hsQ+Fi1AY/2MQt7UIyz+IdMgvGQB0sfvurfveowF2fkZo3ULcMHY8EsZ/TEm
2884lfYuwOFD1Q+FjudhztXCJMe+BQA91+bGy3mYmGDftG1kAardMjwLs/Pw
SsPHnYHzC5B30txCYSkPj0pUfNfhX4SIbUMVZzKf4Df9AUY9xxZhh/hj056W
fPza/9CtiFOLICV4UPrn33zcsGm8WNV4EQJUuNUPbyzAVVo2vFm2i/AlN2H9
28kCXJij0eocsAgsv0LExZoLcJ7q8oJQyCJ0TW91edNXgHO6X0i1RyyCo7eZ
V8d6AU4n7rotn7wIZ1IkXMYUC3G03Qa0/HwRkmvw9ejUQhyxgj2KKhbBO/Kh
qtTzQhwa73v/fO0i+OfLL+1sKcSBDcNL9W8XwXni15TebCG+bpW950r3Iuw3
qKRdJRXhKzMWZru/LsJNW4YnWaQIe0i8KY0aWgR59s2uHjpF2KUqpP/o+CL4
HaJkg3kRdjBSo07OLoKyycF3/q5F2DqEQTMmLMG5yarLcKcIn+qPkRYWXoIA
95UHxLdF+I10f7eVxBIMPDtYfuFLET7hoxSYtncJ3ARpCdqDRfg42/f3W5WW
AKLlN+euF+EmXbnrpmpLIL9n4JI4mYG1Y0N2JmouQdnOpY17NzOwhqj0FarB
Ehj9Ezz3dS8D1zoGihiaLMHQLYnXoQoMDE87XsdYLYHVjvBPWI2BVY/6CvE4
L4Fz7get76cYuPJ2W4O+5xL8OBB9ptGEgQ+/FfaIvLwEo4IqNmrWDKxo1VjL
GbwEk/UxPX2uDFzycKvLsfAlyOP8OkL1ZmD5v67U0DtL4PjD0qDnKgM/k8dV
DfFLoMd75atcAAPLXud3IKQx6xdrPicWzMCFdfa8GllLUHpVKu9xKANLc1WU
Bz1egvWL+RGNEQycb8Bti4uW4CN60O13h4F3J58nr71YgqCIKKO2WAZ+9ON5
iWrlEtxfUO4piWfgXVIc1n61zH6lPJJRTmLgHA/zDZVNS/D370Zh8xQGFi8r
fLbwZgm01wauCqQxcObqurlS1xI0hfcTPdMZWET7LOHK5yW4wT17x+E+Az+I
elRY8mMJKic1fqwweXv3ovH0nyVQfKxQI/+AgVOFTq7LjS4B2yu3aU4mb7uY
mUebYvZTuFU7iLk+OX/6zNOFJTBhdfJLYfrfPKWzPLa2BDEqD8yNmfHjlVNz
ZNiXIfcYa24JMz/qzbGTruRliLpqK1bOzD/uNZp/wrcMYrzvY20SGJhCic8c
2rIMZI+EckYcA98xHdSVEl6G/xSOmD68y8AbM1Sm7SWY7BImC1EMHDUQnZ6z
dxmWcgPWgsMZmCT7S7vvwDI0yp8P9Qxh4PDLCuNiSsvArVoQwh7EwBzVYck2
asuwPiP8n7YfAxP0Zf9+012GGYcnBc00Bg6+dzN+u8EyeEt7/yEx58/ytVvN
0mQZCjc2ayzbMfCKs19Mjy1z/TPp0wOmDHy9uF15i/MyrIX0e/42YODFBbE+
Y89lgEW/pDu6DDwX9lqxy28ZhJTOflxUZuBL74R+8AUvQ/7vw+aVcgw8vdkz
3CB8GTrP6lbu28PAE7kCX9/GL4PPyMKf/VsYeKTeNuh10TJkbRO/WDpehEVi
e1zulCxDzNag70r9RdjI+pSx0ctluJjZdNChpwjXLCjv/fl6GbDx7d8tuAjH
7ePrnu9bhrSiF0aNEUW4eSm0pnpkGeo4fPJr/IvwSvNK3q3JZTCP9C508WDu
b9uhAN71ZbDtXid9NyjCR5KwlJTgCgil7TfU5S/CNDtF/jHRFdiWOnpgnLUI
P5IrWHkutQKHdiqePDVZiClvEjuOKq7Av/IBnyPvCnE/i4eficEKTMeJlA+G
FeIol+3vboeuQN2d/teHxgpwnVJcxYnoFUgPWX3R3lOA54icOXzxKyDfQgaZ
hgJskzHtez9rBSpWKNJHUguwQnereGnVClA19L9XaRbgb2rXrvRPrYBJguGD
iah8LMv3cYfm+VWYlZII+beShweiB4IT7FfhaP73BvP+PHyfND846LoKvz8K
yeS25WFu4tbnUb6roLV/2ed7Sh4emTPX+Ri7Cju2mP0dUsjDub3fPJwbVkHu
W45mm/1jvD3vD767Zw0urbVupZTlYhLMXuidXoNDVwPVandn42NjFvPixizo
lqFgRGdjPH6w6VbXDTMWNFtZqKEaGY9njhQ87bVkQbEemimNBvE4M2LZMdGW
BVXaXWRX7r2Hl6TSe7hoLEjspMynpzNxuND2W8VEBAuypd03VZeJxZSe8/41
tSxofumhYoFXJHZYDzMTamBBEQEFHTwckbhK8pmCbzMLenZ6v29bagR2vswy
JtfOgoS3i4YZNtLxK/6sc7lfWRArd0vuE+FwfOnk76NRcyxoF9pYS+wLwT2v
7FgtZFiRjHfNozi3ADyh/kUwYD8rSqV0OGVW+uMNdacVMuVZUbOWyrwDlz8+
hFUcBw6zImGuMVGxJ9dx/EvKW29tVhR45Wi25eRVfLqkKjnSmhWxsD7cRcv1
xk25mw5Ux7Ci6/4uAsFwAX+XiND9eY8V6V883LpCtsGzD9dtCUmsaL7aFPOX
nMMS2SMJuvdZ0eZi9lels2Y4+EHt8ocnrMiq/25og9ppfDTJrfnfK1ZkniiY
bFG8E0rDG6xFZ1nRsUaXjz+FbCFPr21r2AIratPX0S6Ruwip3J2dY8usiGD9
kiNT2w6CYn7ovGRjQ8WPv//Ejg6gn7wka0JhQ4cpPK92JLjA78cH1iOl2ZBa
XpD8Lj0v+OCsVDEly4YaHLuevW30gtfSR33M5dlQ+QbvU8HIG4qenhiUVGZD
5lm5QDnoA77/Obyr02FDbTLZo3Xcl4GnOT1j/gIbelZVNZkW5wus9Ifm1vZs
KD54tEpg3Rdm9PKpjU5siMXzvPADl2vwuf2/sDhPNvTyxNO4r0evQ87HTs99
AWyI+8UpDUqvH6gMcKKLyWxoMLfjXcZwIDiwX/7Z3s6Gjnl15X/bEwyCIi2f
ljvY0GcHIt9/p4Kh/fCOd7s/sKE9IUn7ZHyC4ZBbY3XwVzbkIXvLYKQyGDi6
BNIODTHrqch491L7FuRmlhk/YCWg3+V2p38fDwGzStLJNiIBvZOLYNx1DAHu
bmuthQ0EtN/4omTv7RC4tGHDQUMeAsp9Tzt5ti4EtDxMKRxCBLQ017Sp7uBt
6D+y0OquQEDOypl7OzhCIdlY/1WqEgFF3CxljRYJBX3PzIpmFQJK4bnd/1cp
FEqyj+eJqRNQ1raPX+85hkIIV8rtDycJ6M8lA774V6FweOeYP9sZArpr9/2V
Z08ojKqqX9pvRECNK2eeTIyFghFt2JZuQUAD5iLyfVvCQOKTMlJzJKCWHxu3
3nMMg56JaCUXFwJiO3vBMPN6GESRfssmuRNQ545dG4yjw2BGLWLHpA8BkdJy
SWXFYdCQ82UpJ4iAyuI1Kq3nwsC3Rnaq4xYBqedPsz/jCAeZnuDhtVACGloP
lS7YHA7xZOkes2gCevNV6UimYjhc9PYr5U4loJuNRNY7nuFwSP576Z77BLSj
y6tjyj8cSFOoTCeTgDbwnJHfEBEOz7w4/gt6REBjn593w8NwWKHFls88J6BH
N+vnFzrC4d2BmXK+MgJSVjPN/d0bDtkTJhWyFQTUkR2nGzgYDrq07ZVOmIDI
+64w3iyHQ6Ln45e9bQTEfPmGtIvSwXk/qWqxnYDOPV8MNNhDB9Vxt6rNnQT0
kEVvKFSODn0e8tUGPQQ0YZGsw69OhzLZhGr3rwTUy/DrdTxOh4h/89UR3wmo
ejFY3Oc0HQ54VNc09BMQ9+mThEIrOhBkRfGvQQL6st6IvtjS4eNYMF4bIaCg
DW98sBMd/N2P1x6eJKD+Izpsz3zocHpfQa3xDAGVPhBjq/Klg/jYxjrveQKy
/GGCggLo0OLWVVe4SkD/XNpfyYfSIV3m0KsWFiISlCIXiUXQgTaa/GqAQERv
G+PFWqPpoFm4/IqwgYjcN/zwkYmlw2Y363pREhHJu0bOH4+nw7B0Xb3aRiL6
qunEIppEh6q/OxssKES0/a3n7+IUOtwtCG24SiWiHRrNk2tpdLB1HW6I30xE
1TPVwRse0EFRWr+xeBsRcTq8GW7LoAPnX0Zj+3YiSj1/z08/iw69+XxNf0WI
qHzj1yh6Nh2eulxq4txJRFgwzvvWQzoE7/3UtEuSiETb3txUyaGDyYhys8Ye
IsoQbOB9yuQ9+enN52WIKPxLt9cvJq84rzf77yeil+8DVzuY/G6P7esUeSKy
+HSR8yaTs4cbXpcpEpHPms7QP6b/K0+kWroOE5FNEXlaiMm6zhEtE0eI6Fdj
SSAnM5/te8ZaNgIR9Tdf/FWSSYeJodOtezWI6NWcqZcYs576vOetx7SJyDFw
LOTUfTokOgm02R0novjUdG9VZj+cd/u23TxBRHY1CzF/k5n6GfrS9uAUEb2v
enrIKpEOvHlqb16eIaKyqfDKO/fo8Nsx802PERGxetn53IqhQ6kU4e2sKRGF
7lYpV2HOK3zQ/i2/JRGd37ztZwmdDvsdpdv1LxBRW0+64vRNOnx3FvEssiOi
XdyXncyZeohyo1J4nIio21zV8BpTL8Ney2feeRDRmroT15A7HZIvjU/t9yai
m4LeZUpMvelc7bsXc5mIVCVefNZg6vGhf9uHM/5EVDS3VTPamA6GN/CV5zeY
+e+/4/z2FB1Ygl9sod4iokvin5taj9HhXFiaeTediDYtGAyuHabDljjXbyZJ
RHT26z1u8610aIo/H/hfKhFtucd+6C4vHS4lnRXZ+oCIRpJtBUM56NCRfuTC
5xxm/9nyPv43HQ6Rj8l/LJ8T0UA9xVupLRxU8tdvV5USkVeaQfON2nAYKpyW
3FFBRCVHr5+LKg0H7edfnb5jIuJ1zeKdeRAO61UFozZviahz056fXMzzhIEz
ouveE9GF8KzYINtwsHp1T1a8m4jI69Vc2DgcKpr9aH1fiChJV4mScCQcfDpP
zNgPEZHcycX6YmI4DA7+XXYhsKPRx0fZKczzL3HkR3obBzuCavlWpYAw0Brr
UpMhsaMtespmsu5hkDX18sYYhR0dOnUmmq4fBparkQSaMDvyyU8PJXKFwTt+
GfJlZXZ0Sp6l0P1aKBx1dx9OU2VHefdzveaZ5zmjmdH8CthR6EU5CyuTULjj
LxdC0WFHf3eUz5fLM++DgUOrBYbsqNJmdkvz8G1orVAf/+3KjkzZLwqHnLkN
jTamXQYP2NFdpUKfPq4QeMkITpMhcCBV8xe+NQduAoe+sWASBwcivb774dnm
m3BmWCqFlcSB3IRU78WsBMHgzreJHykciLte+eW210FATdkSFyTMgTYP7fA5
Zx0ErrcKw7uVOdCoG+eBNd4bIGT28bI/jQOdnV0f8cvxAz/WvQZvvnEg1w8J
l0ULLwGp9/pxj5IN6ENVmYPMwjnmu/DJxrv/bUDVzWJBbOgcXODv6XxauQFZ
t2A2o3ArKD+ueG6ydgPyYVn94y5oCQ6l416X3m5Am4ww730tM+Y72S7t+sAG
dO+z2/WfxYbgq37qX+hWTsTr9OHgv16AnF7/F4+FONExm/uOGhpq8O5qge9r
YU70veWVH0e+CkgyOAmkXZwovfHVltEgRegSrN8SLceJPM8dLN2SIgmyM0rq
9/Q4Ub3MnQcCWmL4zyOx+Ax/TjRzZZ/dZ3QMj4b8WiQEcSJV1f1cFf7H8ZRt
1nmnW5zIrKZ+ZKpMF7OIiEnLRXAirY4dvp6S+lgwSfTVqyRO1GRZ3l7sa4AN
wkQm/jznRHuiDZzYhYxxleMOfZlhTrSW3nqRUnEO12t/K44Z5UTykcK73I9Y
49ad97fMjnOinemM+f4qa/zpx/a+6jlOxAifPiVRfR5PmW6/fprIhZ6lD4y4
frbBu48L5XmLcKGNHIO99hW2OH73NmKFMRfSd1f0zBBzwFbWko/7zLiQkU/o
7E8DBywRf1CPx4oLPbiiVPbyhgMuWT8Zc9GWC51r/9Ch2uuAuz8Gb+fx5EKq
kV1U9xhHTL09qnAxnAvlXy3vuv3HCX+pXPwUHcmF+kwXLlnwOOPsCQ6/8jtc
SJCyy/H1IWcsbyVWtzGBC139qHCRFuqMDQ+anCzP4kKHk4zGJkVdcNwvbL/x
JReyF9hW3Kzhii22vOU8XMOF/tlT/JXsXbH4yS8FtnVcaJt36h31MFf8vHxm
8r9mLnRXf/cfiVZX3Hl3T6BtNxcqn77KIn3CDfMdvZf43xgXUo70bNVXccc9
PpnKvye40MnqSWN3E3ec+aSol3uGC+UduTK+x9sdHxB4LW67xIXSbkz2XM1z
xwajKwzuDSTEJz5x24XigWNSHZoviJLQxnKn/LdvPfDVK8E+/jtJKOLqfsOz
fR7Y2vCBSJIkCRVwSJv7LXhgGdLHq29kSAh7/XfwhZgnbrmmvVtJmYRiHOM4
mj098TPjC91nVEnokxbbXbtgT5wsFxDkBiQkeyumPzfeEzsMl/RkaZPQdLlv
xaZyT8xmLkHnNmTa1wf65y154mEFpChlTEIZWV/GFNhp+D3F6pe6GQl5feQ+
NcRNwxmv7ylftSahwLLCiGYhGlY9TBj55UJCQ8UvxlyUaHjnJpHEFXcSUt/1
e2u/Gg2TJlQ0tngx7Rsa3h/QouGex96p+ldJqNau11zbgIYvb/mt998tEir9
EcFh7UDDVtOrcx2hJEQ/z2i94krDWu+2PRylk5CfZyWnHY2G+cPOLIvFkJCU
BJtH1TUaXrR1f6x6j4TuTid1SQXS8M+j9LOmiSQknt+y3ymYhhlztQVR6Uz7
BYcTThE0nNDZa/o4g4TSBkRO7L5Dw/6MBcKrbBLa78LzqjqWhk84HLCazyOh
6J5Xyc7JNCyvoc/JX0hCIjYVKkFpNCwo7FQi85SErpRr97g9oOGhDxnctqUk
VK68Ifr1Qxp+V/yy3L+chM7ZoyGlRzRcFv3JLuklCeU4b24OyKPh+87TlOc1
JMR+YZt+aj4Nh2jzVr+pI6GfZnyp0YU07Com7TzYQEJFnatdpgwaNlzVEWB7
TUJ3tAV2LD6lYZXPtnXb20job0ZDslcxDYuVBrortZPQj9cMl7rnNMwZm7rN
sIOEtMULy4Ze0PCEW1mjWzcJSZBaMwdLaPjT8U6vsE9Mf1Z6J2tKabhG4t+O
7C8k9G82+6dbGQ3nspBaq74x/SsE3JhmclTvriuffpKQpH/pKcP/aNinXF18
qo+EFEotfOhMtog/1849SEKHOov4U5i8/QVJyHWEhLbdu+YfwOQfHf85toyR
EHWyr+Igk7Mn7EqkJknI/KHu8kumfzteftbQGaY+R3S9NjNZUhaf7J9nzr+z
UV+Tmd+wvluqxjIJ3bj+o0aDmX+h67bBzDUSmjRaXNjErM8joungOisZ6XqU
ylQy+3HgiU/QOXYy2ls8Eyn/jIanm0XfvuQko5W9H48HMvtZNvB2myA3GWmc
KUu4z+y3L7ufgy8vGXXoyObGMOehIrH7xUd+MjITo+abMue1qvFhXWEzGXHv
v/xpKpeGg4P2p0xuJ6OjvQLXHmUy9ZnR++e0KBk55Sca4fs0vKGGLs/YyeTE
LVJFqcz+Lfe1uewlo90tHMGc8TR8SjB2a8s+MqJwXfK5EkPDfMpH7aXkyMho
6Nu+yigaTrySvNanREYD9v866kNo2CxB+4TGETLqr1aWjAiiYaGSqaTMo2Sk
V9myVcqfhjMn9eXOaZORceDeZ3+8afiJG6vdR0Mycg8uSPSzpmG3SMYzBRMy
Omh9pXXFjIZl8y1X48zJyC1B3cDkLA0/HyxNPG1DRqaBQvvvHaPhKluXltfu
ZLRRkmSgIkvDgTe3bJbyIiPhlNbdIVI0rJ7ZYHv7EhntrzzLnydKw03fhFfU
/chICYSXAvmZ54VZl+zLcDLKsknJ/z7kieOuBvltiyKjpdbxTyKfPbFx4r7X
V++SUYXYf/9tbfHEX7rCLigkklHT0l6rg3meuP+UanzRQ6b9SPSfrRc98YJW
7mJGDRlZqbTuJL/xwP4vM2411JGR0G2/v6YVHphFPnXjcAMZqR5P2+b2yANv
ELkrJt9GRiyOZOnRGx5486KvbsMnMlpWZ/3P+IAHPliknzI0QUYk3j1Xdoa5
Yw+BmcNyO7lRf21tuAmvG56K/PfKWJIbnRvlWtWfc8WX2Yb1r+/hRhzqlZu2
fHPF/uPfbOr3cyPdFw0VUvmuOLKlOdxYlRsVyKUXaDPvl7yAtJ5rxtxI6J5n
VauLC+77o+H7KowbqdmzGhRlOGGNjPbsvZHc6N8JEQWjG04408zibdwdbnSe
IyXwg7UTtm7zEr+YwI24ntCVnXcw779nmW8ID7mRlKbbn9/JjrjTb01Uu4Yb
XT4omhZJd8Cv+Cpbmme40eP+NgaPsR3OVpMTenthI7rBE7p1j/V5XHT7Mp/j
Ph70SnLvdThyAo+qngu+fYAHHRYPYjN9oYdlZrSmHx7kQVefVO/IktbD+bab
PvxU5kFGXvqSHdt1cR68SLbQ4UG3nA4OVrEewzmLEyKnzvOg8DckQvZHDZzq
7iarGMuDuugm6TkOiviLhFHG2Xge9E7gmeRRRwW8rfcIxTuJB+nMKGheczqI
k/XIU4z7PKg2O4Tjq5scTpDKL92dz4Pu8MXWzy/txTG/BlW31/Ogomr/8si1
zTjM+OIJwiwPevyMTBe1FIfs071W9gs8iJJL5U80lIAqXWOP5mUeZH3ygJ/Q
cUmYUjsWG8nGi6IfXDp4fN9esJKU/kSl8KIvlfyX/4wfAPn5KVsJaV7k9cmq
6pTXYfieHHxd+wIvGnDZbZpsqAmLccuRj+14EZ9tkK8X1oRN0ZfucznxIhGl
mqUyaS3QvelQ+9aDF204WlEWwqYNJc56HCb+vCi4T/qu4BMdiFDhj3NI4kWp
JqMezz/rgmJv1pOwt7zo1KimJl/jaaDIOi08fc+L7srkdQC3AYzekD3W08WL
PuhcmnmqaAA5O1/27/7Ci/4JpARUhhnAJtdukdYBpj/OvtJLu8/Akj/hBAcL
BXk5+fbZWBnCUK6DdyorBR22ZjdOumkIH9tbUmQJFMTnz/ky5JEhPBeNGTLh
oKAwP7m1W+OG4NKwPfQxNwXdMj9ZzRd4Fj6TD9Ud30ZB5SsmRqbRRtCkkDLU
K0hB16yPRUwVGUHJuRVer+0UtD+ly12z3Qhinr6yThGhIOpMCJGDxxiOnz29
MryLgrZfPcyxMcIYylOdlCLlKehkhOexbZdM4FF9m7WIAgWNL8Rzk2JMIH5U
NvSFIgV9eek+/LTABGhHZ7u/HqYgRrZqr+BvE9j9+6a3DFBQwjI4u58wheQ9
aUVvT1BQZ0u8JTvFDGamdXJvnaSgvM4HfIf2mMHpmql05dMUVBHWM8ijYQYc
Z/Wicg0pKIN1cUuFtxlc9l90CTCnoOuDw4UT78zgvU6u7UFLpv2occjFATOQ
4TtjMWzFtHeg9QSumEF/bp6usQ0FiQdxKj6VMgfDd6a79zlSUMvQu+yFa+bA
SCGI9jlR0JOxTtXiaHPgsnu6JcWFgi7X1/7hzzKH2gWODeweFCQUxl3d0WQO
+8XL/vReoiC/DBBCPBYQMXrhW9wVCvolgms1RSxgoGzjh+O+FGT8wvTI5H4L
eHDCvqHEj4Istk6I6RlYAPflTQ+jgimIS354bS7KApygNlUjhIKIgV9j9dMs
oJ7LLW7hNgXZlu2e0n9iAdcf1N+0o1NQ8YJj7qkGCxhu9rZRjaGgQ4cPt5rP
WYBWnLDZVCwFvVK8XMbFZgmZVq2n8+5REMj6JNtvtASzSTHYlERB3WV1P8R2
WkKTYMeO0fsUlB/AwV+sZwnif/wFsjOY/VNOUGs8awkBT3dvNMuioBU9Wmmo
lSUoaAWt1OdQkPl0nAa/uyXE8MjMXHtEQY2Pukp7L1nC355Pf/fnUVBkp4Gc
sb8lZLvv/5pWQEHad2yIZyIsYU3pa+eZIgo6snwSd8dYgjlbWOuGpxR0L0Ba
d0OSJZS8kX9V/YyCJLP0PwylWwIl6XuFz3MKWvxVkHQt2xLcLkQU7ymhIJG0
4YaKx5bwWvrQkx+lFHRhVi/uSaEl3KiNTj5RQUEX22r+JJdawsi32vjFSgra
4qU9EFphCSbL0zGPqyhI50Iu2l1tCXVbpaKNayiolx/tDai1BJlDFnRCLQVZ
SZA+3663hKSz0beL6ygo8FzELY0mS2Dzqr15vp6CpF/02Lx4bQnud6YDNjZS
UOGx+3k9rZbQUyB5/WUTBcm48957/sYSNFvMrzi/pqDjj2bM1NstgTEQ5b2l
lYL2Pso4ePudJQgSaz0a2yjotcG4VeB7S7gtNu3i85Y538qTvPs6LGHiqKSj
2DsKCpB6ejuWyVZW5hffvWfG54pdLmBy87Wo8wGdFPRmdaHQn8nySdhSupuC
fN/6fCQw+X7JlOnnDxQk7LSpVJ3pn7Nzl1HYJ+Z+/+0deogZ/9K4mYHiZwqS
8yoI//3WEn5wR+n3faGgQadzS9rM/PX24uOxvRTUpZgveIFZX9mxKS34TkHp
Fgp7FJj1i9nvUh/7QUH/OQs74EZLiAo2U0v7RUG7WEn8BGb/5jMilXX7KMis
cbPHOrYE2+oaxfl+pl4sfr0sqbKE9i+TcrkDFORjE6y2kzkf5QUJ2bNDzHk7
RyueYM4vR8BsL+sIBR1Y4B2UKWbq4WCk5NO/TP16xyS8Zs57wH1SmDzOjCe5
vCj70BLOREoIVUww9UXTVl66bwlVeaZbHKcoSP/lifCgZEu411fNWz/LXL+q
746jmHpkmSR7zVPQKo9OjG+oJbgIS3CKLFJQu85s79gNS0DmESx+KxR047I2
P4+3JRRcqV7ZvUZBPTcvRFa4WMLm+ImFj+sUpPFW6rT4RUsYazeZlCfwIf4P
p3plmPsnVWvn7xEuPvRay1Ra9oAlsNuafE8m86HH6sICbyQtgXaD/kVnIx8q
OGaVsWeHJRyrHO/MpvCh6Bf5zRJcljCzv6reYgsfKhVo+7bzuwWcFDLObZXg
Q/Ym99gj/C0guV+21lKSD9l23LgjQ7OA/iLOr6NSfChkteFc2kUL8EdVFF5p
PhQsf/TLd10LKLTf6X9Wjg+d5YvIIW6yANKzScNeNT7kfkaee0OGOZhca3N3
Bz7Uf1GtKvquOWRr5IavIT7knZq+0H/DHJQ/mNWIavEhkQva+zlszMFpCe+x
1+NDDOGYk0LC5tCsdYflnwkfMkphe9Eeawb8PE5CN8z4UJnQ+ys3bpiB9Sf1
QxQLPrQk3wrs7mYw5zzrKn+OD31RPMsee8wMJO9afbpykQ+ZVrtcLF4yhZDP
exnrnnzomCknh4m5Kah7NFvy0fmQVr+UsMqSMSz1DOs0RPChRGHbOclfxlCi
yS1/NYoP9YZ4nB5tNgbJbWc4v93lQ8Qvv7nYEoyBu+FLSV4iH2K5uOuU3T5j
6Nn2byPK4UMj76tqzE2NgNa4qdYDM/u54RdHeZwhZGy3lXgzy4eaWqsDg66d
BIn6x4mnLPkR+ZJrXKy2KrTLLOT0WvGjltAeuzdvjoBv4vEXLtb8SMJuqVLQ
6Ai0OQ+/C73Aj9Q5877P2qqAN0WaCzvyIyX7dN26m4cBn2P47b/Ej7p4Pq7c
alAAi4USG0o0PxrNSNse1roXYva92ttZw/R3/dyTQvvBmrzDllzBtfzog1fj
/hv80zVYc2ZQ7hU/UrzCx/HIbanmn7lkbmwjP5qYvs6xLZyIT4RGiJx5w4+i
dynPPwnhwxw/DDe9/8yPuEm1fKI1Itgvpm/17Qw/kj18pkQwYB+OS/PvDZjj
R9JNQUfyTsvi/EcCL/ct8KNh0iEOA7H9uKfqmG/0Mj/SKt+gO2NzAB8aLpjS
Z6MinS3N5aQVOTyhfmmwjZeKxCInzscLKWKHaWJHy14qMtDO5bu/rIKt87Xa
rWSoqElIWUnr9BFsciGkbXwfFdFbkr9fzj6Cdd4RmgTkmP83NBCuHlPFkgVs
Ly8oUdHskJXUn0g1/MeWJXdRk4q8vqlt3LYGuHcbyo7SpqL+vffUtu9CuPv9
jQyRY1RkZOwg/k8P4Yaj6ynaelS0us+/+VMCwjmCa3diDajI84jiz+rd6tiu
c9l3zzkqerey0+O5hga2oh+5UmVNRQJ3Pf912GlgI+Tnc9qGivTnHWSLQzWw
FmPJ/fJFKpLmOejEaNHAEhGLtnXOVFRO/ayRqa+J+9Tn9c2vUFFhCuejYzpa
2LZ4SpR+l4oui8/UzW3QwW7BZ1f0Ypn/DZZYeyR08OWzJZ+471HRdHhfoL26
Dg6fvXwnJpGKxp9vHQi5poMZyovLSfepSLRy7n7XHx28WLf+8VEBsz56vn0u
4xhmu2fz3KmIWV/yVLtm0zHMbVcXvfcpFYl3BldFfzuGhTluaTGeUxHrxUeb
JcjHsZYex/PSCipKODCZbGF7HMd0ckc3NFORYpqD2QSLLk596O4U2kJFF34/
1DpG1cUPL7VrHm+jIpvdA390d+niss0xS23tVDREu+NteFwX91pQnbo+UNGj
EXN+7whdPCB9STPhExXVdd5dk0rVxeMr3cKmn6mImmbAHfFEF7NlJH740ktF
+yL/dBo262Kpvm2av/uoyONRwO7FNV18oOS6cM4fKmpOVFHi59bDKre/LtoP
Mv9ni5J6tuphfan7z4ZHqKjrvds5Fzk9bLKwGlkwSkVK/OcpSmp6+HyLtaP7
PyrqnYsZfXZcD3u7igpPTlLRJKn4TqG1HvZXvbn4fJqK/nFlRMs66+HbG393
X5qlogORrVLWPno4+enDyIUFKuq7nJzXFKqHs4OIjpVLVBRpHte+flcPF5yx
1/BfoSLuoSs8g8l6uES8acfRNSoqFRyg+2fp4ZppycX1dSq6b6NzsfaJHv4f
I6HSdA==
       "]]},
     Annotation[#, "Charting`Private`Tag$7488829#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.881038575677834*^9, 3.881038641420527*^9}, 
   3.881197788955649*^9, 3.881201519419276*^9, 3.8812015971994333`*^9, 
   3.881201840735798*^9, {3.881201924988084*^9, 3.881201940399811*^9}, 
   3.881202351635956*^9, {3.881205038351377*^9, 3.881205052665579*^9}, {
   3.881205205639812*^9, 3.881205211270877*^9}, 3.881205254962636*^9, 
   3.881205886979726*^9, 3.881297133253644*^9, 3.882090937645055*^9, 
   3.8823298400211067`*^9, 3.882421029586155*^9, {3.882421344299646*^9, 
   3.882421379707559*^9}, {3.882423063202887*^9, 3.8824230769352703`*^9}, 
   3.8824231622095547`*^9, 3.8824233533152122`*^9, {3.882423484631295*^9, 
   3.88242349610753*^9}, 3.882867357254532*^9, 3.883105836205462*^9, 
   3.8834687295907087`*^9, 3.883472943923246*^9, 3.8834732821119223`*^9, 
   3.883479296594655*^9, 3.883479589542738*^9, 3.883553736185631*^9, {
   3.883554095989285*^9, 3.883554102616744*^9}, 3.883555175933848*^9, 
   3.8836412513085413`*^9, 3.883644207560411*^9, 3.8837084772159433`*^9, 
   3.883721117066905*^9, 3.883722045873139*^9, 3.883810886735237*^9, 
   3.884770060803801*^9, 3.8847718146294327`*^9, 3.884776302533823*^9, 
   3.884781656799004*^9},
 CellLabel->
  "Out[536]=",ExpressionUUID->"031b0b1c-41c3-42ed-9f19-5c3598d9db1e"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"mom8He", " ", "=", " ", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "mass1", " ", 
    RowBox[{"(", 
     RowBox[{"-", "Esep1"}], ")"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.883473213366879*^9, 3.883473219522561*^9}},
 CellLabel->
  "In[537]:=",ExpressionUUID->"cee43495-67e9-47c2-94dc-2d657d1fab18"],

Cell[BoxData[
 RowBox[{"0.`", "\[VeryThinSpace]", "+", 
  RowBox[{"201.85418856194192`", " ", "\[ImaginaryI]"}]}]], "Output",
 CellChangeTimes->{3.8834732210776253`*^9, 3.883479298313076*^9, 
  3.883479593673148*^9, 3.883553741398889*^9, 3.883555177567884*^9, 
  3.883641253471229*^9, 3.883644214269588*^9, 3.883708479707552*^9, 
  3.883722048284419*^9, 3.8838108885473213`*^9, 3.883816248316956*^9, 
  3.884770062909734*^9, 3.884771817447282*^9, 3.884776304639183*^9, 
  3.884781658579685*^9},
 CellLabel->
  "Out[537]=",ExpressionUUID->"53ca6d9d-1f32-4d17-a142-6d2901ba5316"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"TMatrix8He", "[", "k_", "]"}], ":=", 
  RowBox[{
   RowBox[{"-", 
    FractionBox[
     RowBox[{"p", " ", "myNorm1", " ", "myU1"}], 
     RowBox[{"k", " ", 
      RowBox[{"Abs", "[", "mom8He", "]"}]}]]}], " ", 
   RowBox[{"(", 
    RowBox[{
     FractionBox[
      RowBox[{"Sin", "[", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          FractionBox["k", "p"], "-", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
         " ", "range1"}], "]"}], 
      RowBox[{"2", " ", 
       RowBox[{"(", 
        RowBox[{
         FractionBox["k", "p"], "-", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], 
        ")"}]}]], "-", 
     FractionBox[
      RowBox[{"Sin", "[", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          FractionBox["k", "p"], "+", 
          FractionBox[
           SqrtBox[
            RowBox[{"2", " ", "mass1", " ", 
             RowBox[{"(", 
              RowBox[{
               RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
         " ", "range1"}], "]"}], 
      RowBox[{"2", " ", 
       RowBox[{"(", 
        RowBox[{
         FractionBox["k", "p"], "+", 
         FractionBox[
          SqrtBox[
           RowBox[{"2", " ", "mass1", " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], 
        ")"}]}]]}], ")"}], " "}]}]], "Input",
 CellChangeTimes->{{3.883473173562552*^9, 3.8834731982303343`*^9}},
 CellLabel->
  "In[538]:=",ExpressionUUID->"f7780dc9-ccdb-4a12-879b-505da55785a3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"TMatrix8He", "[", "k", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8834732425665007`*^9, 3.883473244893527*^9}},
 CellLabel->
  "In[539]:=",ExpressionUUID->"8bb8b6c3-f74e-4505-9b6f-d5978af920f2"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Xk01dsXAPDLMyUyRNHzzCmeZ44SzjZ/UzRpwEsSuTJkaEDmZMjYVVEh
elGhFHlePE6GkvRKEqGi7vfW7adykbHwO/ePs876rL3WXnudtfc+at5HdvgK
MhiMQnL4t3r2/F9Fynet3u23X3MWOLhOTFsliJmN8kViNfhujrh9bS3zClp1
RFaJ71xT+k/JrOtoftc9Kb4fGYT6iTCr0OrPBxdyiKPlF/9ZLK5BDeJqXL4v
sOytfmbWoYHnI0/5rpLKaJ2JakDC2m2VfD/O6KYm/TDSUC9P4ZuXJPEporwZ
OdQU7uM7prVKe7q4FdV9KNLjW1xwZ+CxvIcoouLWXDY/P0zdnshsR1+XP2nm
WyPu4lhoUge6Ivf9FN93Gi1MeFGdKP7e79Z8d5ifuv/F7zkKeNhamUVcYbE8
dl1VF+o10/Tge2zQ58rR8hcom2IJ8R27SuzDePFL5AJ5VCZx2323X4wKepCz
lh47g1+PW4VmaN4rdKqyO4LvvDwXv9HMPlSTbXc+nfidaXGqXtprlPRVRolv
zd6xm0FJ/ejMyJfCM/z65M5/GYkaRDMtnaw04idnB0O5fkNIekTXOoU4Nf9C
R67hMBKx9ytOJtZlInfjqmGkYF01d5o4TPTsybDy98hfiVmcRLxgb9LEK2aj
ycCYOwnEJfJvXXKUaRTxWpMbT2zHOT2kX0CjF9z+VXynJ/UxjuRx0MmpwNBY
YoXWKNuvmZ/Qfz2m7CjiBpZGT8ZSLroUuHkiktjT+6mPbhoX8SqDFiKIrwko
JwckfUbaWoPCJ4gNofnx56gRlC3h3h9G7NQo6vLRbxSpaHNZ/vz4ovfkCt4o
CjBvX88kzlDd/0zDgoeCFl+9PkR81Lv+mGsbDzncTBT14df7MaSttmcMqZ5T
UPEk/vD17YGIyQkUfdHMbDtxb1Z6bc6G70jMQzZ+K//99DcsuRnzHcUNKbU6
E1eHnrvTLzyJeGbNZk7ECZNOi+YrptAZO8dBG2LV+bqCedMZdLR/01JjYrki
X578yRnUtl9t2oBYDC2308MzaGXj2rd6xKPxwSOejrPIUaA9T4e4SWi1+YM9
c2i4z7pdjXifBKsvMeInSpgzlJIi/k/SdInQPgbk/Ctiy0Ec3L1ZNv9ZNAPE
Y0qufSB+nfZN62IBAxrGdQSGiWnh63Z6bxjgLyReMUD8c35l/F4PAWB8nml+
TqzzbXaq0k0QFCUu//yHOPVZI71rtxBs5P24lkKcJXEpXPW4EJT6hPgkEZ9z
Oi44cl4IVFteKicQX3mkpxr/SghKwC8pivjvpise5a7C0BDTLBtEzLmd0L2w
QwQyLtlZbCe2ybZ/cH2rGFwVzW2RJ453unezO1gMQvGJCRniJmGN3PlMMShh
xKosIzaPZhza+VQMFNeMMkWIjf0bli5SS8DLyqd5yor0v63hnt024iB1+HJq
L7HItNI3oXUSYP9mSwiL2K46vU/fVQIKhw4JZxEnBs09cA+XgJ3VV8+nES+w
+3Lv3JWAl8/irscTT3exNvypJwlSa7pygom55WKna9Ysg19COiM3Efvqz0ka
SkqDT6dl6Q9LDt4ymFKqoCwNWvFbDaeITVLkLRn60hCuf72ORyw0ZBD4fJs0
VKevreEQX83yexJ0ThrGLoX7Pice+tqTXP6rDMho6NWVELtVVi1q6MjC5WUu
UjbEztq+Yysc5WCifFluqAUHz6Ufa3i7Ww46b53WCiC+8e306WuH5ECsjFHr
Qyx0r0zRKFkOVJIEW/cQ11txrZ0fyoG8u+lflsRargGsU7bysO3MgaNixIy4
UGMeWgHHTwy5XdpI+rsn5ljHegVIt3IxqjLn4I2yOlVCcUqgWA/qQes52O8H
q7B0ryootGwtG1jHwUcefTKuclaH6OP3bDWMOfiMu8jq+UBN2CVe+PS1Pgcf
bD95yJCpBTeiinzCdcn+F1XcHuC2Fmb7vE6+WEvmVyb+wuejOhCWZv8gTZOD
vSYsdV0CdSHCFy0xVyX7puih0nSmHjgPiP++7lcOrskyH+zeYQAWySjsmzyZ
73rLbYVbDEF7ZtWaGmkOxk9Kx9M8jGBsfi+3SpyD/R03NPrvNYbHZjtlWoQ4
uOCGYW3AYROYXX7/9/l5Gp+daEwIObEOXOQCXi5M0fhj+bHjzDBTmJh4tVub
R+M2B1Z+YqIZ5CfKuh/m0lhg68CH7Pj10F+/aeO7YRozrP8WKI7cAMxB9i3d
fhqnrpx27k4xh6KQCm5cF41D3A+2TJ/aCAWTVK/CYxq/TzDxQectQDDzwrIb
TTSWy704kFZiCZuSDm+TrKVxmbROZPtlK9jplh7SWUHj5jAV+zUVCBrshx2C
S2hcpFqsZOkK0PqpfTA8j8aN0XMMZhcAY0+J+cFMGqttFv2psccavEu1YrQS
aXzvuXZ6f4814K0eY54naJzxaMFAdZ8NiBt8StkXQOPc8M+Hvd7YwP3pQbXB
/TT5b5Wl1N1sQSOWqbbZlcY3tYWfHB22hc7KyLkQRxqLfBdQbPa0A1OvLYpr
N9L4usHd2KJPdrBL4HZzyh801vYud5kPsgfvM85GvSo0Htx0v3rXiD2Ef+w5
8FiWxt1/Rf2Bwh2g1iV49U4hGs/UbLdQH3cAsPMwSp9i48V/wmqTgx0hpaNW
6SGXjTcbONhHTzpChjYrNLWfjdv36fsHhFMw+oxVId7JxrIHmQ2Fxyj4n9ZS
z44nbOzJLJHsOkHBu1mnpanEU2HLq02iKXBvVNstTKyZOj03n0RBWbjBrcXH
bBxfjTNyLlDgFDrjNfGIjc1Ft92pvU/B+bkDw70tbJwskSbIbaCgJvO3L+eI
X8i0uK5qokBWtGx8BzFTyWQ2toWCN+7KvGfNbJxnqGBDdVJgtPlu5aMHbPzd
Y/jlwBsK4mKTdWub2BgOKGpJDpH8XE1OGHH6oR0R6D0FkROsfANi9dA2pWsc
CrouvRutaGTj7ck3fIO+UTA2u97r6r9sXJD+vu4Kj4IOE7fR/cTcnFXi3eMU
jAc7Rf5GHH8547bpNAX1OcUx+Q1s/LT4IcN/lgKVLuGZXcQryxZ2XP5BgW+T
RdByYu8Ks9L/5imISLF/21XPxrfvhEwvLlLgsEeVyiL+P0QLABs=
       "]]},
     Annotation[#, "Charting`Private`Tag$7488890#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, -0.6138779905034146},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.883473246442443*^9, 3.883479301851737*^9, 
  3.883479597643404*^9, 3.883553745331745*^9, 3.883641257948784*^9, 
  3.88364421837684*^9, 3.883708483353463*^9, 3.883722052005005*^9, 
  3.883810892094482*^9, 3.88477006605026*^9, 3.8847718205626993`*^9, 
  3.884776308899364*^9, 3.8847816620129642`*^9},
 CellLabel->
  "Out[539]=",ExpressionUUID->"dc4afca3-fa87-4026-a97a-190e7bf07aa4"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
  "\:041c\:043e\:044f", " ", "\:0422", " ", 
   "\:043c\:0430\:0442\:0440\:0438\:0446\:0430"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8810386865704927`*^9, 
  3.881038721338756*^9}},ExpressionUUID->"c6deb938-a60b-48ff-8b90-\
a74d7ae9e157"],

Cell[BoxData[
 RowBox[{
  RowBox[{"TMat0", "[", 
   RowBox[{"k_", ",", "q_"}], "]"}], ":=", " ", 
  RowBox[{
   RowBox[{"TMatrix3He", "[", "k", "]"}], 
   RowBox[{"PsiP8He", "[", 
    FractionBox["q", "p"], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.881038727412426*^9, 3.8810387512058897`*^9}, {
  3.8810410179467983`*^9, 3.881041059567087*^9}, {3.88120104363904*^9, 
  3.881201051536171*^9}, {3.882421387600008*^9, 3.8824213884247637`*^9}, {
  3.882421456413988*^9, 3.882421457276701*^9}, {3.882423190224491*^9, 
  3.882423191797936*^9}, {3.883473289379211*^9, 3.88347330948389*^9}, {
  3.883553762170773*^9, 3.883553762669324*^9}, {3.8835541121535673`*^9, 
  3.883554125291065*^9}, {3.883721220339574*^9, 3.8837212470604467`*^9}},
 CellLabel->
  "In[540]:=",ExpressionUUID->"6753751b-a669-450c-821a-0e2864446c1a"],

Cell[BoxData[
 RowBox[{"(*", " ", 
  RowBox[{
   RowBox[{
   "\:0421\:0442\:0440\:043e\:0438\:043c", " ", "\:0447\:0442\:043e"}], "-", 
   "\:0442\:043e"}], " ", "*)"}]], "Input",
 CellChangeTimes->{{3.8810387103434973`*^9, 
  3.881038713560375*^9}},ExpressionUUID->"dc4db538-b681-426a-acc4-\
ce255c7c1d15"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"Abs", "[", 
     RowBox[{"TMat0", "[", 
      RowBox[{"k", ",", "q"}], "]"}], "]"}], "2"], ",", 
   RowBox[{"{", 
    RowBox[{"k", ",", "0", ",", "400"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"q", ",", "0", ",", "200"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8812016720029497`*^9, 3.881201672308652*^9}, {
   3.881201811237808*^9, 3.8812018153670683`*^9}, {3.881205098173345*^9, 
   3.8812051287474194`*^9}, {3.8812052216359177`*^9, 
   3.8812052240790653`*^9}, {3.881205266459221*^9, 3.881205267755148*^9}, {
   3.882090663733816*^9, 3.882090668092326*^9}, {3.882421465308873*^9, 
   3.882421481513883*^9}, {3.88242342662884*^9, 3.882423441925301*^9}, 
   3.882423472576187*^9, {3.882870627902317*^9, 3.882870630365535*^9}, {
   3.8828707355146313`*^9, 3.882870743018765*^9}, 3.883473318302663*^9, {
   3.8834796111372643`*^9, 3.883479616436489*^9}, {3.883553912912874*^9, 
   3.883553930271344*^9}},
 CellLabel->
  "In[362]:=",ExpressionUUID->"c96e0fd9-189c-4e48-b6f8-cbbdb9d07d41"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJyUfXdYVccTKHaN2LBFxYICsdwooFiv3EVA2kUBAanSe+8ajV1jL9hbYjdq
7N3EEmONGk3sYhdbxBijP2yo79xzzsyeWZL3vucf3m/YPbs7s7vTdnbWKibT
P76ymZnZdAszM9OvjWdRoz0zjAbp19qz6ExfrxyzfmOL9AzgvRGeO+KLjAjb
OJ9qeyw9EOGMC89SBxeFI3zDYfL1vOJohM1GtPh0ID0eYdtjm9rVMEtG2Ksu
8/AtSuP9dUrebbTI4uW+2z2yi7N5+3nvr89bncv7X+Savj89H+HrUvmV7oW8
f/nfMBUGPAE/Hfwd4Ru704t3I35QHo7wHlMx4gf14xGuJPeXjLCt/JtG20P8
oL1shOUfxE/HiuX28xGWqyN+Okbxg/HqhV8jwhQ/vYCfXsBPL+CnF/DTC/jp
Bfz0An56AT+9gJ9ewE8v4KcXxuWG+AEM+NHycIQBP1o/HmHAD2DAj7Qn4Ufb
y0YY8AMY8AMY8AMY8KPjFefNKOAZKPw9HGE6f0Zh/ozC/BmF+TMK82cU5s8o
zJ9RmD+jMH9GYf6MwrrwE/rxQ/xoeTjCgB+tH48w4Acw4Efak/Cj7WUjDPgB
DPgBDPgBDPjR8Yr7zCisy0ChPFzAO1qoF48wXZ+BwvoMFNZnoLA+A4X1GSis
z0BhfQYK65PzDWUcIcK6ChHGGYL4AQz40frxCAN+AAN+pD0JP9peNsKAH8CA
H8CAH8CAHx0v8LVwYZ+EC3QPR/xsyTqNFurHIwz42ZLv0mh7En60vWyEAT+A
AT+AAT+AAT86XuDTUcK+jxLWURTiBzDhL1g/HmHCXySY8BdoD/gLtpeNMOEv
Ekz4iwQT/iLBhL/w8RpM/ydo5JjIF8V9RsvDBT4TLdSPF9ZxsjDvaQKdsoR2
shGm/CZa4DfRAr+JFvgNjtcg/Wc9dXWsIGdjEV+AKR+IRXwBpuOKRXwBBnwB
BnxJexK+tL1shAFfgAFfgAFfgAFfYbwG02dbNHpJsSDnAKZ8Lh7xLRbmkdaP
RxjwBRjwJe1J+NL2shEGfItJu/kIA74AA77CeA0e0s/F7omCnpSI+AJM+Xgi
4gswXVeJiC/AgC/AgC9pT8KXtpeNMOALMOALMOALMOBLx7vUYGp3+qckQQ/k
egvAVE4lI74A032TjPgCDPgCDPiS9iR8aXvZCAO+AAO+AAO+AAO+dLygt1sK
eqCloFdYqt+FIEz5niXzIvvEkmUQulqyuSZGcSoF4b2m9sMyaP2yLNrf4RyE
Tf9bT85D2AR6+hcgLA+/xVA6PrSTHAW7x1mwYzwFO8kXYQWvQQgreA1GWMEr
FGEFryG0/cMxCCt4xCGs4JGAsIJHEstYkhH5I86PZP9q5acGPxzXaeuUCzh/
UN+I9and4cjM3nT/OBznV7JviZ7F5x/qe04Jc6+L8w/th9P5Qr3Kkcn2Na6P
M32p3ODrB+pnDP4jbRGuHxhPPNaH9QX1i5bHzb6H6+tMX2pf8PUH9fc+KdvV
Cdffmb7U/uDrE+rL/gRcnyq+Fpr1eXD6p1tlWQJ+2VhedO/y7Cq4fs/0JfqF
af3WaGPdHtfzmb5E3zCtZ5M/Atf3mb5E/6iw3o0G2N//vj6434Hu84p+CLrv
K/olqL6qE/Q7Hc4rbY/7LUR5Ku4PUf6I+0WQLwZx/wj82AD7CeglwpQ/u/0n
HcwEvEU8Kf/TCfxPJ/A/7j+B8dB5Mxf4lrmwj20EPmYu8DFzgY+ZC3zMXOBj
5gpfQj5mLvAxtX5ZFO0P582czSHzpPaP86K2h3iq4ylJRvimCa9NqQjL64xl
0vrjs+h4k7MpvXxyEJbXhUMuHX+TPIRlMr7Po/jcyUfYpPcUHS2g/a0vRFhe
p9OHVpgfZV7sBb7YS+B7TOBrLgLfcqdy75SXIDcHCHLTl/Z32B9hZV4CaP/+
QbS9FsF0PCVczivzEoZwpqm/ggiElXmKpN+Pj6LjT+Z8X5mnGISVeRL0hiZx
CCvzFEfxu8PlgjJPCbS/9VzvUOYpiZndKX7zHPcTyC9dhfmjf7fk7TbaM8MS
9xfIJzf8fo7l6FnLcX+BPPDD8uLNq6854P4C/3AIlsvyrCyKjs+C7zdZfuH+
OtOX8htzRV7h/jrTl/Ifc1bZ5A/H/XWmL+VH5kz2j+N+O9OX6mfmirxKzqbt
l/H9KMsrh1yK32G+Hz1M/vT3XN4pfJ3vP5P/fN5RLu8Uvs73H91vRgOVf+L8
cT2J8tH/0nOdhe+53kT5akW9mPJZSybqUZTvWgry01Lgw5aCPLUU9MuKejfl
05ZM1LM8yToJN4j7j/JxywryV9yPRYTPW1aQx+L+tCZyAOjJ5bO4X0EeFq3e
mx83G+ZD1H+l9djLzMoP503Ud6X9IO233jgvon4rrRfnU23PIt1FfdacZV54
lhqJdBX1V2W/vTkUI7Qfj+Wm8ydnxFvUT5X9NrWEn0dRfRTkN99fpvOpGeP/
S9+U5KO0v3b4/Je+KY3XdD7V5L/0TUk+LnJNL7/Nz7OovinKP1HfNKfzmUz9
Q5y/q/oY8nPFv8D5d7gB+DXsd4BRLxf0n3/Xh0T7zwb3McCwb0VY3LdQDvtU
hMm+kPYplMO+FGGy78ui6PikfSjCVI7H0fFK60uEqVxPwnLQt0SYyvlUgV7D
mDgfVF92FOitF+bJUdCHdAiLfFXkk0BPkV4iPUR8RXxEOUD1MR3CIO/QXiTy
T4f6KJn/siysT+WhDvVTOp85dBwoH7ldRtexXljnKr0l/RHtbJluLsK5nid+
T9e9I+qXaEfLdPYSzhl98Xu6TxxR/1T2da6wfzg9gF4w3/Q8yBHpA+XiOSSh
A+LrVoFOFB9+LgvlMN4iVd9Af4bKHwEGfGA8UB/mB+wHKKf2Cbej6b7Q4/hg
HmC9KXKxQNgnfjhu0A8pHaIQBv2P0iERYdDvKB0yaP2yLNqftB4BhvEBTM8d
PXF8ZL3huYgnjg9gGB/AMD6AYXykflkWwjAfAMP4/nV9S/YQPXf1xfGS9Y3n
Qr7Ufpdgoj9LMNGXJZjwBwkm6wX3ixvyNRgPwDAewvek8QAM/QMM/ZPvpfkC
GPoX2ydySmofYMAXYOgPYMCPlEvzATD0T+WiG+qrgC/AMB6AAR+AoT+xPpGb
0vgBhvEDDOMHGNonctgnB/kV3We9cN4ov4rG+nS/Wwr+B0tsX9Q/gH8BTO19
nWDv6wR7XyfY+zpq72v81NRfayPoZeUG+vdyA+qF8t8bUzpI5VRu8/pKvQ7Y
vlLPSsCz3EDxLDdQvMoNFO9yA8VTLUe/RrmB+jE4TMaPfg91vOjnUPFBP4dK
D/RrlBvkH/R7qP2jn6PcQP0c5YKeq+KLfo9ywc5Sx4N6MC+H8e8lenG5YHeV
C3aV2h/qzWp705MqwNC+TC+0s8oNsr2Rk4yw7NcJSkHYFKNn1iaNzk+fVNp/
1XSE5f32JJ22vz2TjudsBm3PO4uWH+CwzN9XZlP87bJp/41yKL0mclhGOzWX
ztfbHNrfzVzavm8ewrJd0i2fjudIHu1vbT5tv1kBwtdN7X8ooOOZWkDXA9p5
driflH3TFWFl3/RGWNk3PXCfi+XKPnKi9csYwsq+cUVY2Tf9KL/w70/3dwsP
hJV9442wsm88aX8FPggr+2YgxSfZj+I73pe27+NPx+MwiOL3PoD21ySA4nMn
kLZ/NIi2Pz2Y0mM994Mr+4L75ZR9wf3iyr4Ip+PpE0b7qxqBsLIvImj72yPp
eM4Ooe15Rwl6pLBeKvgtRf8/8N9BCCvrJBRhak8BP+X8htpT5QZqTwE/zKTt
J/P9Ke8XB76/ZHTeC/vr6H/sB43/TlzfVC6ZC3o/7Ccm0If7hajcMad6Iu6f
AUL7gZTOh/n6pP482D98vVF/nrngX4fxcj8v9a+bV/Cni/T6d/+HWm7xX/JT
PP8B+TsEYSq/xPMekK//JX/E8x2QjwK/9xH4dxO+PpR9nF8BX6qnmAv6lLmg
P5lTfQn5XwCd7xacH9DzDnM834B2QP+BdQD6D9CL6ENof/dC/ZDYuz4V7X+K
n17A30jph+sSysMRpv5KqM/1B+qPVOV1UZqwfrKE9vj+ln9W8/1dLLcvyEv0
34vnpXpqX0kw9bfo0b4AmLbH41xF+5Tyg3Asp/Fz3H6G+jR+zlmIB+Dx1qL9
DOUwPtEPQflyOMJg30A9Gi/kKcQHeQr04vHSUE7pZxTigTwFf4YQ3432aiDC
NI6Q28ti/DOU03hLX8H/4If9i/HKVE4ZBb9roFAejjDQR7SXaZxhbgV7me6b
cGrPYhwwjxem9m28YE9nVbCXxfhgymf1wnmOEWEYF8BAT9FeFuN/gW+T9aSJ
l6V+6HiEgX4iDPIE5DPAol+L2sfgdwH/Ty+hPUf0zxJ+iPuKxxkRu+4s+GMb
M9DvASZyT9JPqX/Xk9rxWG6D+ibxn5aEUHh8FOVbFfQT8RwR+KMfwnR/Az/9
L/uQ+7dh3PR8F+zlRPq9JG9B3gB94Xt6vgvyndtfII8pXbKE8WRRfA5zeU35
icjvRf2Ox0Uo8rk30pfCFeNe/v/iXHQV5LsYvyfqX2IcjBjPR9cDj4sB+05c
j2CfUHtXiA9Be8pSsH8s6fdSe9T+sESY2pdcL/13f4h4ntVYuL/hKPiH7YXz
EBvER6F/B9RfYD9TOeWOfwd8qdzk5wsAE3pJ9jD11znifoP2qf2iE85/dBh3
QsY7PQlhGB+sPzJ+GM90fp4kr28HHr8nf/c2R6A3h6GcrOvpSZSeeP7SG/GH
/Qz0Usq9BH+lJ+q9ZD1Jdg/AVB7aoP/n3/mF1X+e24G/gZ7b9cJ6VF/WIUz2
Q58wim9ydIV5IudkdtE4XpgvgAm/ktYz0AHsV4DBXgVY6SebwtI+B/oCPQAG
+xZguVvJfgUY1h+sF+gPYGgP+BGsH4Chf7A/oD+AoT2gJ9Qn9kgT4BPVEFbm
qYECV8/EcsKnDqjnHQFJKj3aod9JnpaSXgz8efB3ys94XCmsN+qnV+1vsA/h
/A7sHSjHcxaVX0j2JcBgPxJ4fBatL9mHhB+gHjYA+weY6EkSX4T2AQb7k/BN
GL9kz5PxSzA5RykJwfbAfifl46ME+vHzAaCf4s+MofN5PAlhufqNnH+fz019
KDzdA2G53W6BCMv+q1mhFfxm1B7V4/oW9bd/5cdlvpRvAD4BKv+0aIN8HdaX
DDvAOVUzQd+zQXxhPRM7T9M+5Zf22L6oB1I7i8NUXoUgXlRfMwr83QZ/qf7u
KJx/2aO8Bj5Hx8thmH+gF+BP9SArnD9YRwDD+AjfnpiD+xdg4KfEXy7NCz1n
9kU+SfQTad8CDPQl+j/uwx7COaML7j/gn0TP05y70fZ7IUz1a263wv4GeQAw
zCd8R88t/ZGfAkz4hkQPUS4BvWAe6HkD3898/LePj5oFeh/GpxmoP6axWl4q
/L0am1NiNt4Vz+sg3gv9SuAPEtoBu6OZYJc0YDfme148/qkntgfzBO0VVbWZ
2g33BcSf2mE5PZcoxf5hPRG74FRHwW75gtodkrwxxdPq0E8L8aZO2B89tyg1
mPJB5KOfD+JL+2F9s7/Ty2ug30+Nf8NzCb3hxtriKwfR76vih+ccegPVy0sN
tqb4QvQDq/TCcw29gZ5rSPQwxROW8XhDqtdL9JsS5t4E7RK1PeS/Uv/xFrte
HPLHcnoOos43noOUGuT4RvQzq/TAcw91vvDco9RgypcRiX5ONf4Wzz30BlP8
8veox6nrDc81JPq+6f5xXAm//yPrM3hOos4X2ikqPdCPrdIDz0X0ij8az0Wk
+TXhb4ik+OO5iNT+4D/SWqLeqOJrh/dsDXI85XgePw3nKDj/st4Txft7UrZr
i08MHR/wX8BnYgzWl+M5HWIp/d7y+nOXx81OeM/js2X76kgcn4+6zONikziK
381YTl/TP984Pr+m+NLbPH+Jct6I907V88YErC/jfzSB4j81AevL+E5PovgG
JFH6rk+k9M1K5PQ1/d5LxP5M8eTOOTx+VZZ7vZJ5f6b+NyZjfRn/oBSKf8sU
rH/LhG9rno8ly4Tvw1RK3z6plL6VebmMT14q9pcRuSRjEZ5Pq/Q4jflClPXQ
Nx3hLBP+T3h9Wa5u5eUyvtszKb7DMil9z2ZQ+s7N4PRV9XGcrxptrFO8s+j8
dsb8JQp/Scri9DPF9x7g9eX9s4LXN903c1vJ4/NNze2ekM37N8X3duHl8v5u
yMsVdp6N/cnxxo14PLG8Ht7w+nL/9jlYX44vnsjry78pqE8aTPcHUlL5/QBZ
LA3AfCwG0326Nm+F+OUb/HsZn8a5lB43eXvyfviZtyf/vuP1ZfwH5lH8u+Zh
fdP9hRndePzzJ9O/pvmUvkeE+Ok1/HsZn1t5lB5reXsyv5zC25P7/yUf68v4
Nyug+Jfz+qb7Ezs+8PLZpgbvFlD6ThXuC2bwchmfdQXYH5HPZSDnjYKch3PD
bggrctcB68t0R/8dxNX0QVj+KRHiilr0RFiRowZsj8p9OFfm55qKXGVYn8Yz
qH7O9xxW5CyHFTnqQts72h/bo3oA+Fk96HjWu2N9Gg+h0qeNkeLbx5uOJ8iL
0veJD7ZH9QqIoxlIx3N2AKV/Mvc7y+tspeCHtvOj3x/wpeOZ6I/tKfQZROmZ
KsQRvOX1aTyGSs9ugXT8RwLoeHwDaHvNgrA9qreo4/0QRMczNYjSf3owxed4
MB1PQDAdzz3h3HsjnsMZqL9VjYOaFUrH0xLPbww0HkSNgwrhsCLHwuh48sJo
e30jsD0aL6KOt+0QOp6tvD6NJ1HxeRpJxzMsktKnOocVOSPEgayIou2FdRb8
BeWCPCun/KSgr/p3cybyA0VPdaP0qOpD4Ub+tJ+1QjyPZn0pekcIHe/pcPp9
5yg6ngO+gj1nT+1vXEegH5UKMD9/F/2JNB4hvIK/EGC5+EaOQD9zRvmN7t/j
j2aFor0OdgY9X+uglK8Ce78Z+kvAHqN8u1TIT1cq8LVSIf6gVNj3pUI8QqnK
B8OF7zms8KlohGm8QqnKR+KF9jlM4xdK1X2XhjCNZ1DH+zSTjscii87vwWxh
PNkUn0lcn5B/VnNYpqcfl+eyfpCeX4E+4Deh59buwvkMxIHwvFCwvpRxM0bo
CX4ZTR4eEs+F9yfiEabng3p6X0Yqp+f5TMhP4kn93dL46f0h8Atm0fFDfBic
UxRn/wc+vtQ/Dvc3NOfmSr0oob8oHA89v4f7IYGCv4jnKQJ6QTk9Lx+A4wN/
kVzcYij6seTuMH+ZI56fEz+W1B89t4hF/xQ93+Lx9DBu0Y9Fv+N5s8j5JebF
CsH5gHKAaX6zKPyl9yGi8DwA/E30fFD1M8+F88Fm1I9bwu/dwfoBPgX8jvpv
PYXzJrhfYof14Xvi/0Q/FPAbnQDDOXwbge9aCnGxsF/dEKZxRvbIf0ncgMT3
wa+mrHc/4Xs/2j7qLaVCvECpINdLhfgBlZ+lxiJM17Pa/gfuH6DxA6WqXpOC
MOUHav9tM2h/YRl0PNcF/lmWRfFdlUPxO8xhhZ1we0mm12QOy/zTkdsrsrzw
r2i/yL/+3QW57Ehhn34Ii3GScrs5PG6WrDfQJ7x96XrRxFUqfhyuH4txt3Jz
WVzfFOMuFT8G1wdp/IHa3twhdDwYz+P47/SoECdRKoyrVIgHLhXigUuFeOBS
IR64VIgHLhXigUuFeOBSIR64VIgHLhXiRTg+/3oPRXPPhPJ7K0F/shTgivdM
gJ/T9RRE6a+5F0Ljc8V7H5YVxk/ilHDdlQrrqFRYF6VCPG6pkCenVIi/Vee3
JJnC4/l+pOd7pUK8bakQb8vHD/KLru//x72e/8u9HRpvC3HlfP3D+TasJ+if
3g/k59PAb8n9E0lO0Pt5dsJ5Dc/7BeOncsmT6hHoD9Cjvg3rVbwvCvMM+h+J
2wD6SusXYKAnzC+JMwZ+Ka0TuXvMT+mL59WwngGG76FfQn/pO4BhfcF80HjY
QBwP7AfCDyQY1hd8D/KSxj864/k40BVgkIdU//Cl5+mgJ5Xwe4CwPmB8JB5C
km9Ev8E8gqpeKe0X2L/AzwCG8VP+ys+Bqb0l3HMdz+Ni4Xt6/1S4Zzo+iuI3
PkqIb7TBdULP6YC/64X7fKXCPhX5p5Vgl5YK+7ZU2Lelwr4tFe7PgX0YhjC9
H1cq3I8rFe6/8XLQH2k8aWO0xxW8miEM55n0vlypcB+uFOMjiT6Tk4zt0/jU
xhhvAe3T+3Clwn24UuG+W6lw361UuM9WKtxnKxXuq5UK99VKhftopcJ9tFLh
vplaP6sQ1wnYI0TPaY75zRGG82YqX+0QFu+bwTktXX9wz6ED+nuIPNb4f+g5
L8jffrR/PJcF/7EnHU+B4C8aL+hjPoL/qIngf7zD/Uf0/hfcixT8SX0E/13V
CNrfWUE/8+b+Jrk/u2iKX4W4Yj1tTxNXrPwK/uRiwZ+ruQdC7yPBvY5wYX6j
BH0E8jww6hcCOaWJ16b8KBz1UBqH3ovGg2nyPtP24qkeK/FnwsdQv+H3RaCc
2sPu6B+gci9OuB8STeWxJD9E+Qt4UnudxxOK90NI/8nZFeS96M8h8rqMyxFq
fxkxngz4NIlXw7ibeISBXoSvI/2MSD8oB/pROeX77/fLNfdBoBzoCzDoH+L9
DpAjME4qV4xCOc/jDvIRykE/FmHqN4un8d4S/qQ/zJcTiPSg4wlHfQbmh+ir
Flzfgfkm8ZuSPAH9A+YL9FuAYT/CfFP9N1y4bxaFMNAfYKA/wESPkPYnxMsC
DP4ZjAdS+TfYRyTOczq/L6HgyfMKEP0U+P0BHs9N7SU91ZcOxwj+k2iqP4O+
oIm/gnEReXKA520C/w/IY+BfAJP7EBIM46b2RAekj/J9R4SJvzwZ8i8D/+Gw
op/kYP8AE38Q7DuIX5Tah/MV4BNQDu3C9wCLf1fkI78vCP3DL5TD/qPxcZ50
32OcrS/lG2W+lA+N90V9SWmHny/Q+EjHCvHEJE4S58dKuH9ghfQh8cklyTif
NP+9PY3Xl9aP3E2LociPQR8CmPgbQM4dzkG60Pn1xPmn9w+yBD7JYRLPDfmS
wH8llRfvVuxDgGXwPbfnYH+QcwKQF4f9Bf8+z0cD9cFfDzDIL/ge8AV+LY/P
IRfLgR8BPwP5Sva3BfcnA75QDvSh4+fvgwA9wZ4k7Y/n/mfCTzHvfzjiD/Yb
8BfQrxQ9MAb3N6wHKJf7W19I+dz6QlxPNM8MP98T49VhXxB5Ic0fjI/SU49y
i+o9QUJcdSDeH4H9QOfLCuUZvaeRKPBXe9TXqR+N358F/EEOUntxEMJiHlnQ
q2H/w36B9oD/ETnhw2F6z4nHs4O/FeaPthdD+UEjft8a+qfnuTy+mfi/wB+E
/moj+jNgPsl+hfhvSZ+Dcsqv/AR9cLBwf5i/h0P0FWk8QFdY3+R9GGl9gX4B
/RG/jQST914gnhHk53qeL1xuL6sQ6UzsEFx/6vnMnUCBj6vvzmzPxO9pPrzG
eN8E9Asqj8C/1gvPd6g886T8B/5+mN8vA3tZ1G/IumnB892APIL1CfsJ6CH/
3ODn4yAHYHzU/vHEeaV/DxHkRwzC9PyMCXmq3NEeEu+3EPksrTcCw3rQnF+K
55MivyJ6hSRPRH5F7Usj4gl40/URiOVUzw7C9un5YpQgD6KovwzOhyzaUFiT
rxHmA/RAeZ3k8PyGhK8h3btSfRbvxwRiu5S/2eM+JvxDc29UjHMq0uqrkG98
ZTTyM4CpX4Hnf4V4Wdgv1J+k5g1pm4Ht0fM4Mb+Sei/1Kb/vReMdxPxI5khv
qE/pr+BXJYv7i+RqgzhM6CLJF+DrNP7HEssJn9DEB4n1Yb6hPp1v8wowPZ+D
/OCBtD9N/BCFLYX7ieq92MphdB4qhwn7qrdwP7M36lewv4D/A0z1IH6fherX
oRXsYYChfYCB/4L9CPwdxg38G/xZRI6i/121p1oKeWu9o2h99G+resCKKGG9
6nB9Knh0FPws/ggTeYn2gA1+D/Kd+Nvhniuet7vh38FfSM+/1PHAftPYA0Qu
gXyU+Aa1J5xpe2K8DN5fzKL14bwN/PZlHAZ5RuI6fHKQ/5t+TPl1gR4wXiKX
pe/p/bJsqp/D/daSEHofdjw/f4D1CPweYPil+88G9wX19/I8gMA/QE5DfYCh
PuwTqu/Z4LqC/UjWJegpknyA+SbyXZP3B+I3oH3AB+pTvHkeM6gP+5DwDU3e
IIW+fpRf4rlXY4RJ+9ODKb6bwig9NXmGZHK1Ccf64Neh+lYk5UvbI7G+/HeH
WEo3h1jKJ1NjsT6cnxD96T1/vwPi76A+nK8Q+h9NoPh+SMD6cH4C9el5CsQx
pmB9OF+B+vS8RZWXIWmUngeyKD3xvEW9d3c9C+sr8jgb6wNM5MLBbKwv/6Tm
Yn2AyXxNyqXjwXM7O1zPxP7AuKnOWJ/60y0RJvPo313gA/2wPsCEDj796Hjw
PMUSYbJP77jR8eD5iiXCZN6r+tD6TSrahWQ8GB9jKcijxozG71oK8kfdh525
P4Dg5RCL/ALsPaL/NeLxveAPAf2VxK9o7B8xnkSRE+7KernH7SeQHyI/Aj4B
8gf4JM3n1AH9Z+BfpPk5VTrdg/OOZogvfA/2AMD0fMJeyGel6rNV0+n61Ly7
Au3R+63c3gb7EmCQb/TeP4dBPwH/DMhToBP153H5ScrHV8xPTd5v9cmh9gXm
a45C/wiNz+HnXCCfqH7qiDDIS6Ue95uK8lGUW8SewfjMxrguQN+H8ZJ98iGB
ljfJE/ZZHp0v3zzKn97z+gBDfTg/pvs+n/IVjP9R85s0E/PbQN568GfpECb6
go8/pSfKRR3CxO+0Xs0v3SSO7ufVsYI+IOZJt0e6wjzR8bghTPQHH3/8XvSH
UP2lA/VnYBx1Y1xPVL/oLcyvu0A/N4RBXyHxDBh3DO0b6feSvgL1PdV1T8cb
QutL+gcZD8a5QPvh9Ps24Vgf9g3VwzgM+gddr1yfoPy6MeofUF9Zb/ECfeLp
993iKX36pGI59a81Rn2CjL9qOh1vURr9PiSNjseO6wfUX90Y9QnSfiOe74f6
PxujPkHO225yfUIezupcSv9JubQ+xkt3QBjWKT034foE8XtozmGo35jrEwqe
DGFqp0FeS65PUD0b2nfD+qI+QfVsG1zXZJ9L+gTZjz7+tL7DIAG/QXR8qF/o
Uf4A3jReUyfEezkKerVOOH/l72GDPILvQb7DOGh8kQ36d0C+F8t/5/wW+DGh
G547+VH+oeFXRL/FvB2cPxF9H/3+nB+R7yU9UOQ/1C/jU4HfUD9MSAX+QuyH
qhEV+An120RV4B/EnrhZkV9QP05F/kD9NqkV+AHp/3TF/U/8Yw2zK+x3ov+/
qbi/ib34cy6dH8zDxs+z6f1aS9yPRP9MFt41chhE93/qIMF/YYXrD/Q16btG
e2ZAPNEIJ6VdnodLkRc8f5rcTHfu76Px2TrhfUSevxX4gdJ+NsI0Ptwo6Cdw
zszjKKk+6ye0H0jfP9bkcyH6Idx3kvR76F/MzwnlMA7QJ6EfgKF9KgfjkR8A
/Sm/MQpyNFCA44V40l7oZybxCej3z8D31wC2VvVcgOVmWyTh+RisG7AviHzo
C/KxGto3Sn24/zgUYXm+AzhM+MDKaLrvG8XQfTqRw7tVPYDsk7cxFfY92We+
nC94qHoB6f9IHO1vbTxtvxn3Uyh5ExPoeKYm0P6yEmn79xJp+8eT6HgCkoT3
Cfm9IkX+9cH6cE4CsKeqJxH8NXm3i7XrGPrX8EllnybS8Wv4pJm6Lgk9YB2I
86TBS6lXWGG+Kd8wF97vNBfe6zQX3uc0x/fEQI4r42uG65H0B/fQJXtKWec8
XgPkM8g12H/KPvVCexRgkN8gZ+l56gCUz1BfoWPF/Mk0TxSPxyD+hTKe/xjK
Yf+L+QDF82Cop3yXU+E8gPrvo9GeAj4B/g0SDwL8K5nnI4bxkvMDaF/iR/Q+
5BDUP4A/Ab+C+8nEf4F6iarfdQvE82Gyzs9mVJCPih8P4gm5HwnkN/AvZZ5U
f/J0yHfZg8IThfyhPvz8mNxnksYL58VKux0RJuOazs+TYX4AlqvdyKHjhfwv
0volfgYYH+jdEH8n4Qf1AIZ6RG/T5P+Syn32zBDvf5UL948aC/qjXrjf00HQ
H/XC+zx64d6UXrg3pRfuTemF93T0wns6euHelF7Ih6wX3r/RC+/fqPln1gv5
iXKE/EN9UjXtT/90APnLCCeqDyr9z0NYJ7xXoxfeq9EL79Hohfdo9MJ7M3rh
vRm98J6MXnhPRi+8H6MX3o/h8wf7AWDYF0SOa/KpiPlSIN6QrBdNPhMxH4nC
R3j8OeHTEP8u5gMR83lo8nX8a74NMZ+GmA9je6Tgz+TxFfS8K4rqVxDvrYkv
o/qYm3De6Sf6D+HcW6ZD3Gx8j0X9O9wb/p+y/qeB/CzF95KAfoSfQb5DzXk7
lMO+VfbpMEpnvN8G4wsXxh+NMI1XikYY9A+AQd8AGPQLGi+bjO0A/5DX88po
5J9gP4C9C+sZ6gMMckLRWwX9Cc5NUH/SVYDpeqv4Ln2RKseIvuIv6H8tkoS4
dzuU2zBeWA+EX4I91y0Q64t+C6intMvbB7se/AP0vFGH64TIo5JkGi9Wwt8/
oPnIbQR/lw2uNxg/XV9WOC7gH5T/WArzqZ6fNS+k9jO0C/lm+4L8ssP1AfiC
P5bGU/bD8xbgUwBL7Q3+Iw38liOcTPP+5Rxx/0E+zGq4j0zwZdyncA+/kmnc
ee+vW2F7pnH8yPN4yvvra+5vE/JdNsP2TVB9zb1fBZ+mpP+1in/DuBLP+ZT+
LuD9bZ383X3Mzyn3V6U+niMq8mos3hvSyfLDj7+ra+IX7UNQDij1p2jKYfyw
nrRySqfJk6DI7Q4EvzeYv9OI+Tu1fGoxvwdmUPqV/RLzuuE9L2W+4vGekyJf
e/N3ESX8u988iHJKoc9gTbmZ2ejM+4f6YblpXCPw/pJOllPj+buKEh6r9+bj
vbERTqafungfXifj2YS/syjRx2KuDs9JRziZfo/hPSyFfmf5O43SOgqz9UO5
OcLJtK6eaMplfPAcVcUH4+x0styL5O86SuOX8DMMxPomfEZoyr2KSszGY1y+
Mr++/N0Dme4XOf+Q+i+wOYvnskr/i3g8m7zeWmI8r2k+vpzzPd6bG+Fkmp88
vMejzNcbzE9qWn/+N3ojfxvhZFpWNfi5kDRfh/e8uB1I5usg3lPTyeuqH+qL
Kn6oJ6j4acqLrGt5NcF7eor/6h7el1fkcQI/Z5L0pSUZkXhvb4STiS104u86
yPt7C89br+CD9/5UfPAenbLfppaEUPqi3qLSV1Mu44P3BFV88B6eOl/cL63g
9ySC4qcpl+cH7xmq84P369T5wfypJvreKX7TJZrQ/zZ/L0GmvxX3/0n0+LEo
Ae8tKvvVaBFF6DWDv4si9eezZ8uBKDKeeZpyL1NCYfQvKPhnF0cT/Hegvm+i
53zPixNjCD33a8qLrDtktHwbQ+hT5XAMmX839EPoJD0xx6wf+oVGOJnkYXvU
A3SyHpnyPo7ig34nFZ/VsYS+V5rEUfoOjKP01ZTL+KAfSsUH/TjK/iu/HU/x
Qz+Vit+deDo/UxPo/KAeo87P0QRKf7RfVfrz9zEU+nN/r4JPZiLFB/1K6npZ
n0jpey+R0ldTPteED+aDHeFk0uOroB9KJ+v1bjnJFL+NyRQ/Tbk8P5gvVp2f
kmQ6PxhfpDNkmeiP+WNHOJny8O3HfCU6OS9fOeabVfGpnErxOZWiKZfWS59U
St+8VEpfTbmMD+abVfEpSqPzpbE3K5vov4XbpyY7yIrHVyr0xHyzKj35++MK
Pbdn0vFh/ll1fPw9e2X++XsOynqtztuX1yspX1t8BfPTyuXPvDB/mizPnqV6
c7iSKSF3Iq9fySTANeVzrHuZWa3g5ZK+ZzF3vLbc02LXAQ4X747w3IH5bEc4
mawRW8wvYypPD3NfyeE96aetUxry+pJ87n6zLEtTXtz9YxdeXz4eMfL60s+p
Sna83MyEz2tebmbCpzhbg6/Z6Flo/6v4YX5cFT9NuY2kzbml8HIbk8Lioy0v
Wn2N5ysxmLTIK5gvd4RTuon+mE/HVC7RPzWX4nMjh+JzOEdTbn2q7dscSt/G
uZS+mvIiEz4/8/IiEz6rc+l83cyl+L3LpfhpyuX5wfy76vxgfIs6PwM5/OnT
8/RyzMc7wunTp0+jMt9ryz+NmoX5EVR81uRRfCbnacql9XIkj9L3Vh6lr6bc
pH27TeH9W5vwSc+n87U2n+L3Sz7FT1OuHMfl0/m5k0/nB/M76AyzTfTHfL8j
nGab6H9UWy7R/0MBxSejgOLjry2X1svUAkrfdQWUvppy5Rfy8/J3AUxwpMav
qOjtPJ8wPd9U/Hbfa/JWKX4+Xm76qavJL0ztfcWe6q3JUynbc314uen/5Xgf
1ijkG1byLr/4ROEnaJcZhXzEiv3TT+MXVfRyJ6xv+p+fzyr9J2jyPCl+QmdC
n0Wa/MWK/8IVy2W9VJN3Tsmf60rav4f5jCFfrwuWm+pPXc1h0/BqYLwo5Nfl
7x7IeqjGz6vo3f0p/TF/lkL/N5/4OwmKn5yXy3q2Jj+yjD/mQ1bpqckjKs//
Q2/Sfh7mSzYK+ZIV+rU8ReFFaOcZhXzKelkuJmj81jL9Cni+ZZpfWSl30+Tl
UvLnDiTjP6jJv2wq5vmWFXqnaPL8yf60CX6k/SqYj9ko5GNW8L9SRuF5/D62
kK9Zwb/8EIX3ox1nFPI3K+trhiYPnNzegEFk/O01+Z3Bn6NdHzs0eV7l/fJ5
IGnfiPmejUK+Z4V+VpMpfLsJry/vp2ZBdD78KVwF87cYhfzQKv00edTk9XA3
iIw/W5M/Wjn3DKb0/MTzHMm/G4LpfGA+aaOQT1rZfyktggncHu1Wo5BvWp2P
Egobc3g+app/Wi/DVpq8fXJ7uaFk/Ps1+alpPmplP7hp8vB6y38OJ+3fxnzV
RiFftTr/myic3SeMzkffCDofBRSeV1XIX912CKWfJu+dfD5ZbQgZfxVN/mvl
nluktv0wd02eTPl84bdIOh+YD9so5MNW599A4f1odxuFfNl6Re8bT+FM+u5I
mO0Kes7VW/OujuIH4u/eKH4RgT9r3p1R7GZh/98OpPObI6wvzbsrip5uundq
ehCI24cynhp70DStT0/2xnLT/5Z4n8dkbz3zWoznRLJ+Veyg8aftNflf3nP/
k2kcnTT+Jtk/1Docy2W+Svwxkj22kvsvZL6UrPUfmB4s4va1vA419rxsL4Vw
+0teN2209pdknz3NJOMzauwn2d45yPV9WX9aKdgD33D9VtaXNPq3rC/7cf1O
1tc0+qkJ3emf2hP8/67gb9arfl5TnNipSjXx3E62J4qWa/ydsv8Iz+VU/5HG
Hyj7j/DcTfUfafxltib/F+abVezfGjwuUqFXaiyll4PWPyLZ5x8SSPvzNP4I
2b6dye13mc8Eae1rab7bZpD+22vsX9meuM7tRRuT/n1Aa89J+vYqbu/I+vZE
rb0j6dtpXL/3NOnbvlp7QLIXHLn+K9sLzUT9V6/6gfm7WYpflL9DZZqvqZp3
pxS/mSDfmwjycL0gP/oI/PbsECF+UcdkewTzuY1wameix4eK+rqif/J7yMqf
o8n44vl7jor+jvq1qu+gPqrqh0VGAmfzfE8Kv0yn/KiKmSDfisK19Z95Sfwa
zqvgHJfkG4f4fcDfYRDbbZrvQRx/06nLTYxX1Cl6VzTANzB/LTnv7QvxFp3x
PgY5H0Z6W2J9OP8BmMR/9uXxpfIoNOcdKr6a/WKyY4zifGn2m8kOCCT1d4v+
c40/WfnlsGkdpmj8rTTuTPX/aPyRJF4S/JOfuDyg+fZVf1OR1n+mzJemPUkO
Z9HxaWDTvKcWZwvj0/JXSa6u1vozrDX59mX5ZLErPZ/Od3q+0J56bm6nnFPX
15yfwT4S97dyzgbneXDer8RPfq85D4J4Ac14JLvPT+hfOD/5FEzmz0xzvmD6
303jb1foJfjfNf5oiF/Qtn9F468l96Fk/mvSG1PI/FlrYIiHhvWt6GEZtFwD
m/jvtbIs2p/oXzuUQ/EV/U8af4zpf2vRP6PxV5iKPUVY4n/ieazp9xh/p17I
B67alzzvoZAPXLWXzTj/Vtqn/Nxo4Uv687QQ7LXV3J6C83lte7e7c34P8Xha
/t/+FNfnaT5wld/yvIpCnmg1nqehEvexWHO+TOnA17ty7i3GlSlxqi/QztcJ
dNCpfgZ+nkjxVM8XNedtRQQPdb1qzqMg/lvbn5XmvIbmI1f98ZrzDBLPB/xN
4++n+cpV/mbg+h6NT1fXp8a/LI9f9Ddr/K/yehT9sRr/pEx+0V+p8d8J8fU4
P8o5N/eviXF8yjkwo/OngU3/39P4d8S4PuUckftHxDg/0/9VNHF+II/JftDY
5/KvP7XH52nsW4hHBVjWAwuIfULiBJVzgSj6vSq/L8+2FOglwgq+FzTxCdp7
T5Ga+AHKB1T5qjlfp/tcPb/VnD/TfaxT/U78fJbuU3X9HYoh/ZmJ55ma8z2F
rsJ5n+b8C+KBNOtZskuzaLl4vqI5b4D4WMLfNf54ev9U5e+38+n4Nf5r4M/A
T4D+pp+6aEcCf+WwEqfgQudbAyvn+Nz/p/AVL9LebY3/jMZVqfxV43+iec1U
/qrx39D7q3qDco7I9XOav1PVdxn3H5D7ZQ7w7ks7jFcn8eDNeXwVydcn0Ye+
v9ML9VMF/940XliyT+B72M9Uvx5A6xf4IAzxnkJ8rHhPVsg/zvcbjQfrRdcf
xifR/cnfB9ZjvnIat6oT1oFOmHedEMeqE+JWdcI60AnzrhPiWHVC3KpOyH+u
E/Kf64T3b3XC+7Y6IT86yJNo2t4BQR5OjBHGx/U9mq9DJ7wfqxPehwV8Emh/
Gn8Pfd9VJ7zfqjPQ/B06IR+6Tnh/VSfkR9cJ+ap0wvtxOuG9U6AHh+X9sVJ7
Xmutea9UJ7xHCvTjsLxcNf4Z2V5onEvp+y5XoCfndzT/uk5471MnvOcJ9Nee
r2nf36T+BO0724occEBY/imh/FH7bjfJV4DyUYjjb+IqtM/9FYpc4f5Gedzr
uX6gnK95C+PxpO1r/JNK3LxwT8DOTxgf1Ze171zL/b/lMH0/EvCh/hPtu9cy
PaZSfz9//1Ev5HvXC/ne9cL7jnrh/Ua4V0D9M9p3ren7jHrh/UWgj6C/a/zF
9P1FmN/OAr37Cvi7CeOh/mL+niLcM6D+GZ5/RS+8n6jH9xPp/TDgv70RpvcG
gD9p/b1mmrh+nfD+n054708nvOenE97v0wnv9emE9/l0wnt8YL90QJjuvzbC
+1/An6n9zu8t6PAeAhlfKrXH+T1DnfDelk54X0snvKelE97P0gnvZemE97EE
fPA9LNhf1D+pyZ8ovG8F91Sovcrfr9IL71Xp8X0qa5O+qPG/Kb/lgv9RL/hd
ANbT/jX+RuWX+xupX0Uv+MX0wvsHeuH9Az36VcCfQfLTQL4I5EdqfhM7fs8B
7Gt4H5zcX8e8flZ4X4DmUfBH/U+eB38ery//TOX3Iej7QlZ4nxDwA/0O7CmS
77mE51OC8ZNxNVTvf7SDfJH/w7h5hQ598V6w3M4U9d3E+0lYn8T5S7CyH6MR
lvutmoWwTGenDNrftpwK/cv7rpcn9q/wH1+EZbwfhKI+Cvgo+JrT+WmThnjT
fEhWeP8f9r+yzguxXP7pzmF5vsCegfpgB+N9Rz+EgX/Q/ByQj4a/M0Hv0Xji
/Vpy3wTzMvnRez2rB2F9M3VdQH2Aob7Cr0OxPqwf8C/BOhTXh0LXUvQLUXzU
+Sn4ksF+F2FYT/A9yCvy/Vo3+j3CkEfCB+sr88bfQxFhWK/wPcg3sr4tQ+j4
LHleC5B3pH6bKFq/TRTuB6APlYf8HXSyvjGOSXxfl78bTvZPGx4nQ+MwxPd1
1Xt5IeH4PcBQH/YnbS8ev5fln188fg8w1KfyWH23LT8N6wNMxlf1v97XVcd7
NpuO9+x/vbervl80PxfrA0zWpwW/5wcw3S+xWA6weI+NjO9URzo+vDfD9wPw
A7I+w1rR9SnB//VOPbRP48BKBf2Dv+tO8F/pR9fTv7yDTvjzcR7X8l/vhpPx
POXveVH9Rr0XOikW6wNMxoP6j7ovmydifYChPtWPypW4lB9SsD7AUB/kCZkP
1J/UffqYyx+Ayfi25fz7fGJ+JDWv6R3+niiFIV9DP8ovGvWj49DAIN/IPHX2
pe3dHITtyevmZ36/VoRBHnbMnFHutKoqa3u/+th91fk7aor6xGGqD6jnllbR
eP4J+wNgcm4Icq4hzxsDMOg/IEdg/YK+A/oN7DOARf0Hxgn6D8CzTe3dhe+b
0fuPkr4D+hHA8B3Qkfqv4N57M7o+MG9WNcwzQOg+uRvdT5g3q5rgr4J70s5Y
H/xTUP9f713juzv/Q/8V1BfvYUPcIhlPUCgdj+ZetYzurFCsD/4pss7Ee9Zt
h2B98E8Reh6Iovv7ehQdz8QYOh70Z6nnVKtisL48Pt84rA8w2UdpcVhfpm8z
nm8WYEJPxwSsD/4swqfRv6Xys5PJdD3kpdL1gP4t9V767FSsr+wznj8WYLLP
Q7Mp/e1zKP3Rf6XyYwPXj02fm/xVUB9gMr/WXD7Kf3/H6wNM6Fkzj84v8Af0
P5kjTObdB+DGwvtD5ghDfVlO5fC80NQ/ZY4wmRdvnmdRntf1PG8ZwGSdZLnT
+ug/MkeYzMsNf6xP/UvmCBN81wj5bNE/ZI4wmcdK3D6h/hxzhMm+KIrC/FcK
34jG/CsAw/kmwAre/H0PublB/2Gf4Hs4/oz6k4yCvaDaXfjuCn8HFuwNKFe+
D8dyRT8KFcotKd0wDwnP9wLyAMrhPICOX5XLDoJcXJ9I5+1eIpaDPIFy8L+S
/aB59530j/5SyN/kTceP/lBLIS84yFc/+r2PP13/jfzp+pdg6l9W161fPo4X
YMI/QW/Fd4OjhPmLx3JYT1Cu8Nc8um/T8ug+QX9TueDPVvM4OXJ6AkzkAeYd
G0zpg/4kcwG2RH0CzmNhvSvlesHe7YX6DJ1vS5xvKudthHc6bLA9qh+Y0/UO
6wXzRDdGmNQ/GoT1IV8M1Kf5Y8wZnHcQPnmE5/MFGOrL5LjF5wfyxZB1u5av
HziPoPqPjaBHWDKqZ6j79OwA2q5Gr6PnYpYC3iqeU3k+bWqXWCJM9kMAzwdM
879YIgz1wR8P9Wl+GEuEoT7446E+tXsshTz6al7YYZEU36oRFN+qERTf0+EU
X/TvWyJM8J07hK5LK+6fU9hyNH4PMNSX14VTtJBfLIbmF8d3o5Lofpf4LLRH
/JIafkjkKr7rVUnwazag+xXzi/YQ1psjwqA/Q3uEHpJ9oIyb21Gw/wn/S3bG
7xU9w1MYryftX9KnoT6cOxF8LTgM+jTUB3lD8MXzYXV/4bsx1aj8g/HMCqX4
4jqohnGupP+2Q7A+8DWy38ui6PivR2F9Rc+Jof0fjqH0XBWD9RU9J06YHw6D
vg31lX2dQPv3T6D0dkyg9Mb3IKuhfAZ60vNm0KNSaP8lXF8H/RzaV/gA18/B
nwkw6OdQX5ZPE7KF9ZRN6RuaTec/JYfi55ND58+Qg/XlnwFc35b3qUMunQ/r
XLqfugr8vEkexb9mHtYH+xfKQb4BPen5Mrz/A/ybvz8B8WPE/tfo83Bfkshr
fO+0QQV9Hu5LErlowbC+qM8r+0h4x+VofzpefH9BjSPR6PdwHxD4kahvAUzq
T/Sn+OB7RA0q2AOKXsT1ffouYoMK9gDc5yL4lPC8yKI9APeHSP3xQh7koiik
I+UD/B0e8ZfEzWA8jSXCRB5I64f6V6rR8eA7OzYIk/Y1+jHA8L3CB73we4CJ
/NDozwAT+VwUjvVF+UrzUVqhPKXrAfxVbSrIS+IPBv7iw9+9IPorvuNQSXin
pRzPWQm/1rxjr7Tbr4K8Iv7cHE8sp3ER5XguS/iF5h16+fvKYRXkC7Hv51aU
J8R+QD2byw8oV/ZFRXlB8FtTUT4Qf0dGAh1fS+7fVfZFCpYDPyf+p18r8m8o
l5dDYUV+Tfwh4RX5M5TL659V5MfE3rHJo+3D+VAZz7uuyBGelx34J+EX03ti
OfBLIge3G7Ac+CH5/kN/2v9Ezr8Uuc7tSeBfUK7Ice7fAH4F5YpcDaHjS4qi
4yvg77+Bvkb1R+EdLwcXob7APzT8G/gD2HdUb3HE/Qkw9UdnseubfoxruVU9
jyvORljpNxdhOZ9dej7CafJ+LkRYkXPDEC66/0v6qurZ6m8061izjtnJczkI
79cFFZUuzEPY2+876wYxBWy2Cl/Pf7zbsdNQLD/i2Wf78T87sF3jEpLrVYtm
h1p77/voks7aXGi+YHv36mxZ2fBumxals+d/vhvi87I6+97+4al7Urnf2r9f
DA9pwO4uyV40enE6S2yw5YV7hAu7p8KbVl3ofX2MF7ujwh+alzt3v+CL5R6b
2kw9+Xowwill27c0mBLGPhrrzdh5tBp7uJVtbyHhmzitY3m/pekKv5TmIYHA
RoQh/qClR/tlO6TxwfmxrfqdU0rwwCsSvnNsz3Vcb9uTua1vnmEltR8ypVW9
Agm/eU1nvn11wVZtV8fuVP5yqan/pSr+ZWPaO834wp75nzBLXCnBbi2rLJ2c
4MB2tx0S5yvBUe7NW446143d8lkz1co1ndUMv3V4Q4iBvXmddm7XpCDWofae
rab2gvsvqrxdGp/T9aLUxIZ9DGMvnxqRLuGf1Gx+Df8vexhch5bYfiO11zvi
zaA5J+8bAB+wI8JjfNcmSeVB198uzk9uzl69du7rLOF/42lxWs9mvXA8wbY/
L/qrdne247M2cn+A17ny1qXTpPJaaQNefn3+S9aj3rv0tqMYa3pQofc3tw4x
73Av1mKGfps83tOzzN1PDsDxzxoz/ske/wAst1b35+s+8U1M9AV6x7voZPq9
nxMd97PUX35gM5eUf/og/Ev08uip/p1YwydBbj0k+MtvohuEhLXG9WAdNyNh
VHwAu9JwvYNXYRj2B/MNcQew/ooMbhdDLSOxHOR1/QsP+/7lE43fA1+A+b24
OXDY6tetWX91PThaDovpcScO6wP9IY4+aXB6YPf38UgP6E9p102A1feJpXUK
9Lip/p3C8QgD/g2bemdPjoxB/Nb1mVtlc/s4hLtH3Zz3x4t4rH9qvG371/sl
u6V5t6d7pfGueRy2ufHMqux/Nsu/etdPWk8f/LoEmLsiPGpmwdCHdt4Id2n3
z/oBA4MF+joj/rDfYL2dLkwf/fuAAazTjD6Dd0nlzfdd6dn6gy9+D3YsfA/7
s0z9PnDBsy9db4Uwnfr9+Lkz1r7bEYbfw/6ton4H9JmU8sLcXtpfo9vb52ze
1Y0d3F59Ualpv9e9klTo3RfLp9n2HZs8yhn58211vl9emyPvhw2Dw8MeLxjm
BP3B/nKaMvtzj00RrL06vwoeUdi/W91iu2dJMVgO5/VQPvzim96dpf4n9XJZ
MfXxKeUcVFoXUL5XXbcAA/1rX4+cUO1AAOIPfj7Ab4j+V5u2m/wQv0Npd528
Gac3rM99sh6agfIC9gHtPxphiD/asWt/u+vVufyK8p74nXNNno93nu/10w4t
QC/LxnKQZwCDPAMY5BnAlN7JOP+61XndLn1ng/gaD9ZcWtq6E/sz3jDfW8I3
eUWtpf1/bM2s1fX9w4pGHjWK7ZhudrX1Q98+M4SvWzbACvmR0RCfkyDzI1h/
oJ83HLY9t43UXlhM1Xf7cyJx/Q5qe7vbT/v8kb7bMy51nlUwiC2sfWP239OT
2IgJmUdM9Pr7i+mOV6T6OxddXdp5Lr+fC/Qs7b34SD3p+4Xra+YmTPkc6288
dmnsc6MFq7l/Tt6jhV2Z7q/jv52Xxne++bETsX3/Z6hpaW1XX5K/QI+1BeN0
9SR+fkClx75xPneaX+uD4+vhtsH1kE13rB+/fVGbh9J+BPrd2Liz/52/jFjf
0ntioxknB+L+K7wzyn96VgTOB9AH6AXr5pDansV3pe77avmzddk5VTc1bM8u
tfqh/euq0cw/YdFTZ4l/X+m7zGN5i4Y4nuU7q4wcIO3vEtvmEwv/bMPWFoaP
3myqv23po9gzbdk1FR7l+rd+1cCmWA77BdfX6KmT+3/tzX7zzJgfX53Hn0F5
uv+f0x3vB2B5ZZVfQPm+krpXTtQIx3LYz3T9xiIM8wlweP2QlTmT7NgFFd8z
U8wfjdrcgLmo8sK85Ldzz3TNUH6M/rFZ/S/nR2N/q6r+0K2gfTw7p8LHfJxC
Du1PQnj7Dvd+E/v1YF+q62Fgg4wq1V8wNvOTAoN9mJz6lSJfz/z0aW8PF5TX
9Xql/bJzlTvyo5Se/xzNOOyL8uuPzdc3pJX5Y/m2X5vUrfRgMJY3d/708mPz
UCx/F95n8JxakVi+48nsb09+F4XybvnrLuctmsYyS7X8qoP1Lw0c4rD8ODvy
Kmx9ApaPXvhX+sCjiexh+eJ0E31cVr10qPRTBls788CMNyb9K4kdWzk7hTX9
aDmprQT7fO3wTfPiLIRvrxjezLA6B+G840c3xqbnIVztaR2nSd0LEJ5fb/D5
Hz4VIgzrGfRzgD3VeQf4uiqHAU5X14HjrO1LwvWSvEhre8c/MYp912/1gRkL
Jf2407y12SNiEd4x8FbP+W7xCLvmfXF6f91EhC8vzIq4fSWJ3Q4c8q7fcml/
t6yr354cxc7ddjp/UNo/zRcX37rrGMMi71qkHZDkeaUGzybN/BjLhqjwPMfu
LXaeiEfYOnTUpquzEpnH+v8Z0qX9Hd/h5bQT02IQfuOjb10aGIfw5JwJ2+q3
TkC4xYLfXBwfJ7KwrsZ37fpL9KnnE/znZ9Es6Pavsj5qrdqbjRptGL1J78fq
VRsz/88a0Sx67W+nDNHBCEeo47npdLlt1xgDc5274W6TyvaoX7v6rvkjrtUX
rMG7Han2Etzl2oUrJn7xi13VTbdqXDSAPp3re7V5SV5PFqrq4+Fb69drvaMX
c+jmeylRav/iL3Fd/U7Y4/hAroM+MutNpasdX1sys1EWLS6a9PPFs7JeBFqz
dT1fWvwxIRLHi/RLTeueNNOfjXhQu7NDYCyrr5ZDfzXf3agZ/6I2865qbl/r
x3bMXcXHWvUPgf5I6aXD77/7LOze83k2bHnnb/2HP0rA/sGeA/4C46n0k/eN
n6u5IvzjtpnXN17qz3YbO+i7S+vx4krrhe0nuGO5786PodusgrD8mu7Uvsxh
QeyVqt/YqvO3Sy2/8+vuVm5BLqg/Vvu1xog5IQzbcx2QZRPQ0Rvhyq472zm9
88H6i/7yrbt35QAsn1U5c3Q1YzB7peovf9yoE7RtawiWZ36YNerdjhDUb/zT
xv+24G4Yg/F0uNC9/6yJYdj+Pv/beT1qhrLh1+wuBV3rhetnbkadr16bxr96
bK2bYxxwf8L8Q/mBkgdnR8czYb87s7bu5tOO7nTA9sbVmCvTp/q1o31ccj45
/TH5cNxZCV449ea5tebvDbDuYX5HLayZtU8q/8PzZvPPajE+/ojixCtfeaH+
PTBcd8xmpDtbteKHwvZu6ezdobePLEMvG4AeGftuhP20LwDn6y6z+PAhOgDt
46zD+zutue+P9PPI8uqR+4Ufu63akx+TTg6c18FPwM8P8V9Xp84iw1lfbL/q
lNVW7q+4fb2wlo/vX/lBEj9W8LHIzF71/KQ982rUpWju+hT0B/S/sD694aMs
9BdMeOM3c9iGDPaw0ufJP0rr98rrfz712Mr9DWmW+qLwYdzf8JFNsB7TrwDh
WfG/7V5Tm/sb6P5tjPZySLt3TydU+YIZnOOe35DG1/HzIb+WtLbG+hDnd1D1
T5SN1D14V8+efVb/jFze98i02mXReU6L9yr145bWzb0xp7Eh789d6/RH3Qz7
pzsq8/mqqdURiT8MTvvUYFNmJNLL+tCzypW/jUB6Hj+7/uKSJ/5Ib9DHwZ6G
8YB+d9L51vkf2nbG9XLQpXeO8w1LZrM4q8ZBCQ58d+XU05HN8HvA/w/PpsMv
muzLeQlLhuSa47oGfwWsR7CvgV767v0nPfq1F473zMngTbNCeuJ6me+/95+3
//PBct9aXaLWbB6A+IB9Rv0Delx/Rf3brXbpH4H0GWh5KuXa55G4npTfCKy/
27vSmgG3wnC/K78ROJ6snL9a9p/O361wsPZMPC7h4//W49F1ST6ur5zayTK5
Ps7nbtXPB/wM/H4wnvf5Ybf21g5Ffx31PxiRv77q2dvj3Yj+LOTBzuVjqkWj
/Q3lRzY7p9eL9cdy0HuhvLZzwu4V34RgOfgPoD+YR4DjG3ivXc8sMN4VzrXi
VHuku8eT+ad7dWFbVX8byA34HvwpwH9Ab4HxbEw+9qlZUJSATzyWn90+2Dr2
cSwLVcsrq3YWlL98/8Tjh68S8XuQZ9D/8W4rMnKHuGK5r3HvgWEHeqO9AnwV
1udjt7Spnyc6Yfng+P8t3vk4hZ17b56zqjrvH+zRnyf0Ll8ZkMoudDzY03Jb
FJv4c7Pfzz7OYJO2LYjqJJV3XL7yxAJ9NtvS5HTD1lL5waNPQ36qlsu2qrDv
k26ld37LQ/h+nZEjqy0sQDjf4UT9jtFDEd6rjhfss+TCymm1f/VCe878N5tP
CyYHINyh6d52d1sEI2xxOtF62BoX1qxsrgzfHT/n+oDXvlge8cubbSfS+7IO
kSHfmmDvKC+PjpvDsNxr2B6PIcnRbLgKZx3xTF/3Pg7LKz0q+nT6aALCzhPd
Umua+WB7aYEnRs5fHYiwzcTmm2wnxyM889uQVbe7hyBcuP5GWi6LxPbSPjeU
7f0yCsvvLDMrHusQi+Vzon9vXvlwLJa/f9mmbUGxG8Ju5o6hPhb+CC8Y0DW9
rl0GGzvT4v0yib7bHz090f5UOJZ/1E+adLMsGuE9G2IN3v6JCH++JPvWxr4p
OD/b5N8s9VfSF/s0WuvyVQ6WX42M6JnkkofrIXH82l+nmfP5fvP98/BtlwoR
pv7SZORHY7Mmf9PsXH9WpsLb5gy3T2oVJOgTbgIciPUtw+9FH+8ag/CO0Z1e
/Vkei7DrmryJ9Y7Hs9cqfOXUgc+7zUxkU3Yv5vxVk09szU2LLps2c3/fs8c7
ZxS0iUV9aEydj22WPInD8roO7jsObU9A+LugWW4lw5MYa9uofeZi3n6ty/fH
Nt7I7R2w7z1UewfgYpVvAJym2juAz71VLb/tZeT45Z5MsBvSOB7pWeXZliNj
byVg+fwGbwPWrUtiNQ5UCY6V8P3so9NF16GSvfX75u5RY3hc/q7pYxwcXvH3
WiFec6+l05Ggx5i/mPW979Tu4PH+LOCFvopnCX+fddn3Sys5NcpHOLp7vaG7
23O/wNqazUe1bZmGsKfqnxqd86bbWD84T5f2z/D7m/73NpD9eMD/1+QDFd9f
3TVkVHh8WSCugzs17/vbDAthv17v5J5SJRz9CBDftDkjpuuHDeFYv3dIlU4R
UVHs2ahVHzqOClB/XZmb+6XY5sOyWdOWgTOTS1zYEIvadZuWhqm/3izE3H7H
V7ZJ7FL0qylOt71Yn9Kp8wMrZbHhl4aWfjXAyE7ds2jy3jGf3XpjWy90hzd7
Evv1d2mrotVfP7bCympcn8g05tA/pXHU937MfHnMg5l2fdi+n7/ZMco5kHkn
m5vVLvRiD52M/o8eBrCyg62HTmiTxH7Pnz5IPyOADfdaf+vP92Hsh9G1b57f
GczuOHZ0zCzPZAtWVSu9cSWYPT/rMmfOV+EseIPT4TDzKLZ1zr2rxa2jmcve
TqlmyZEsdH61nmE/5bDoRm42W1tash5/fzP+2x9z2IB+c+cMbdWSLe/V2H3s
lg6s/hBf63WrPJg+6da+vJtdWKsRQdMXz/dgg1/f2Gh7yo712dBkoPWwUHZ/
4XPDvSWJrObPU4qWXOvKfpz/43cRx3NY8B6bF5uGhTg5Zdeo1fEzHm8M66rO
pLw1t4ID2azLv9Tp6on3pXFdfGkzccGABx3YDO/d37f5LIDt+OvyjAX5DaTv
XKf+vqAZi08v3Vrjti9L7bZ85slf+PvK0E/vBK/a2Ts9EJ7Sp3mvgshAVnXO
h5G3F/D3tUBvXBZttXnMpBas4eovpveuksHcZ33b7U/zbuhftcpuc33vsc5s
5vaaZlWW4f1q1qtOWl1HC0/UC9c1P3K38tBgVn9Qs0spsf3YJ9tDrXX+Bazt
gxmr3l53Zt5XTw7/TIJb2lcKTbrhzIbtWFDnxoQh7Pdb0/rs/laa98cOu2+V
JbM1ky6454W5s2zj8NZvT2WxOkcbnCgwerCV04/GLK7fjbnvXnGrx2lfVj3y
/YOBVXqwZNt4Y/ujvmx1SWLbXaF+rEetbTuvrRrI3roe3nLiJ39W60eDb0+X
gezrhzf/euuawS6O67Bvw+uB7M1XF108xuexf/73/Tezavqy+/0f2JQn57Fx
VUM/LPL1ZUlbf7jl+TyYjfzzq549lkr69eiFdfq0CWF/+wUfyZs7iH17rGfZ
54NSWEDXRpsmdh7EloZXt7kq2euH1yz0tHocxFyvBpzMTItjefMm/vUhI4h1
0H/TYdzkLPauWZOyqQ2CWYv+zbyajnFhsTVfbSr3CWVVs7bc6H3SnXnufjN7
nEMoO7Fi6Ngb7XzZkoNN34Q9C2Fzfm2V9Pq0xA/HTHPZ3CuUdXs+MMKnSyw7
W3/ryu3nhzCvaj5uBycnsLkLsmf4bo5gD2ePePRDljPrYr3CzjCvJ5tYo9aO
Y8MGspf3DrVZYWfPqv7PfVzDa1xvhHl919522ZeXJf17Z/a3Vzfw99m+rny9
Tq5HAAs327Ps0tnHhp2VE0tWucawX1L+7tmk1hvDwk3pocNcYlj9xXPj1lt9
MlR33XjqjHUM61Ey9/Xg8qZs0atrbxztYtjWIvvt389ryBw7jZ6SsymJ3XD4
X2TEqleGaSnN136xMYnNWXz7Ud/XldjF4wNnbFmUxOJ2z6jV78smbObm6Vf3
LE1iG/tk1Fr3dSO249NgT4crGaxfQ7MN6V3fGZJu3Tqe0qCQPV/iUmJ/6K7B
7Lf4r3bXL2Q3nw3wNa9Vhb20GTPt+i/V2PHuvw6v3b0PK4wbdK/2qAZsZprX
iLtd+rCgV3+5m3e2ZS9yk5/1etubDTvtPWPqJGuW+t3s+MzKfdiIuL6V3s+u
xCp3cV17Y2wo+3bb2qcxOxqyqyfGRH05lt9vuOg8PqN1dCCz7eq8/Yc2AcL+
NGdl50fVXXwH8wewt829F14Y3ovNC53qOCghAf8O/MBxe9tdPRa7sR0pm+JX
fopDPXfKZ8udGljHon4A/uKOj/5I2j/NlRkWNnsX1yIN64O/1rLjB99dhW7s
5afX+iY/ZWO5d9evasa8z8f2zFS5k1StNNPtSx+UJ1NzL/gt9vVkHVrt3Vqv
YzKeT20xhAxp3ioR5R/4qw3r97Z0TzXie8HW1WbVOt/Ai7FJlQOvzubvBcN3
M36eubioky9rfm78sSEJA9AeBLkWvCZhU+NA/j5wWqH9sClNA3B8X1xv53qh
ZgCbsrZg1w/L+Ht/XWbbJlf/JgG/g/Ftbdhk5PgGgYhv6+h9279pxO+BD/zl
cuzpYYPZ8U1nRuZOqfhecOSifOPMuzyfwKWwJktt/wxl1WNsznU6m4bnhUD/
pndsLj+7zN8P7jVlrn9EL25PFYy4+s1X3SJZfpMWWx2W8feEr/YN7PfiVAab
b/vQM8K+MfLdlXa2Yy8UerBHmYOnL/m6K3PJ+Er3dpwHM+7fGblX0j8M/9z/
621DezZ388MX4yW7yW//4hMNmzgwfc2ZdlMlPW3XmweR9b2s2KEJxvDzDxLZ
xbPfGd9UtWcf6xbm7D3G44NcLnZN7DnUnl0dnP/n5AW92ekhxa1+cf4S82nh
+n8S/qDOfg8258LpoXPNC9lTH/tvUjybsgUfXxxpWreQ6Q+V/LkouiH7u+Xd
ce9/z8DvAqqvfhFxsy0bWjCo/M6oUDZxpPO5l48GoR17rlbHp9XtMtBurfpZ
aofCpRnIn+zmmJu17pfDIlvWKj4Y3otZdNwx/5V7DtuxqNP1Z7/3ZN+Mr5z6
T31Ptr1lz1UBBndm+/6rq+1e9mJjdO9+6B7swZ6aZzLfsz3Y1xsOrW2W5MGO
/ZI77+kcxv75O/zBu9W+rMHOk1sXJQnvI0v75K9rOo9f17ljvKDthk8rdzl+
ycbMM968M60H8898bjavXm/W9NGOHx5Orfg+cpfPY969P9FCjePJYX6WRXu9
I5qwqU9OVZt+mL+PfMJ2zTGLqCTEF8axMW69xwOX3sxxQL3Ujdsz2NftH3e1
qGLFyuxm2PRZn8EeL70S7/2pLWu9/NPcH790YStenQyvfEeSMzm3zi7wd2V7
vh75KuWoO+vyz6EjRysx5rDo6KMt7TzYL5Nyzk1sxdjE6d7Tpll5sKOnOof6
B8WxjTeeX33m5MJ+2PL7XLuiVPZ4XOmPE9Jd2OdXJn/bojiFXfIrPXLS040t
+bX5poLF2az9u5s3PW/3YyNy2ixsuj6Rfdbi0Lnzm7zZyfBO117WSmLjHN9m
frs4gH0xpIO59ZMctnBAYfT1skGs0eC/a9Uamar+hjHn+r0/jvZJY8MiVuwt
rRPG+t3/vHm/ngFsZS+fxsbBVVjYhsftnnUJYJvXTHH642N1tuHnhLiISgGs
uE94pSHfWLDqLnUubricwTYPyje6n/toyNr/8YjjHxls2+Vsh7TK5uzqKn3d
KMsGLM9wZbazxJ9DHt6b90tOEjv/wv5+jR1t2dgR3+rDk5LYZyUvS+72s2Zf
LfcOWBfjwOxrz/7lmwm92S8XfbI/TenGJnTtdfPk4N7s69vf3XnQIoOtXnuq
3vRrDuzliSk5XdMzBPtCzxpsCs871c+DXVtSeUsVhwg2/a+cXgd/78tO/bSx
282P8exa1JTJ9y47sXO3x8ZsqZ3D7l47OyaokRPLiHMqrb16ABt91MWwsKA/
axTkXOPQAj826rcaU+O3ubHLi1c470uPYS0avPvbp6g/O2K/bkLA+XyWv3LQ
+C/f9Gd3tl6YlLE9n5U2TfKyeubOpuw/+/HtlSB20fiP+7RyH7aosq7DxJrB
bHr/hPdHJvuwSyOGFOyyTWBNL+WG9q86gH2fUqPHBtchbOjHxuzbnf7sU97t
tV1nD2Hh5R9qtFzjz3p4HhxpcziXFRXXbTtXstOd9u7dHXE2Xv0NZGOrt6s5
ziyHZT8u//runkA2Mj6j9FiPIOY/ePSkGvEhLMLj0oa008HsQti8DZ7NQ9j2
kV5pGQ2S2ZUTN2btWSXZ9Uc/r/n5iCA2zPxA5t3AKOZ08kLvSS7BrMngm40T
naOYj27F2NcHMiro3zGl4T9OX+bBRkcv9V+nj2E/LEv8LDjrM7bt0qqInyU7
cVrGbzff+NZi51Kinj2X9OsB8wrP+MyvzZovGbR3lsQPW12OHLAm9JPhsW/k
BOP+ZmzxuC621tZ92M59myq1e9+U1drz+7Lpuz3YwSuBQ388ZMF+6/bd7Pl7
JX28y8t6j35vzswPnvx1h6SP9z03P9j6SD12dPWyjNdRgez9y9tZfzg0Zc0y
AtpdGROK77n/mtzcb1hEPdb1/LRm/Vrh+9hslf58U7MRUcgH4L5DYf7CzWey
Hdj1zR2ahKYnVuBX1sdGbW0wwpdNjvjuxFSJH/neKox+t9OS1Tn72Yq4JYOY
ofXR+8Uelqz5kT4eiyX855wb27V4aB22slWR03yJH22416HW89DGqDfUrWrh
tO2DO4sf19WyfSrDe9rOeQuXdx+aJNyDsWffW4x8EjKrN7vm/cJSsvrYrH1n
Lhxp0Q3l/+Q0l2UWXl3Z6J7zUu2WD8Dvqn1wc/zOz5O+fyvJz/Kyl4HOFv1Q
P5hdfdHyIbs82fy3pbU6b8mpwC+n/TJr0MPcUPZu9Zg/faV9Gbyy08UFBaFs
9cbh9ZZL+rD72szlnpE2KI/H1Dh6rFUXG5bxPGTiu3f8HlDnHXcslteOYTOW
PyzJmNeaHY07u/9EtRgWsMt7wbJJbdhfz09HrLrfhtnUzAwdNzoU12GDph8u
GqT5rb7leLu9X+Wwml1WvS106creXx31c6ecHPZwzY0N9by6sSpmAw92WZnD
jJ5ja7nt6shappov7/FDDqtfbd11/QZb9tHK+M2YuVJ5h/Nb7Ly6sIc9QqLf
zMxhT3RrfrYLs2MnO75emDLahXUs7eK4dLovG9rBoZ7bYRfW5M26dyOn+rKI
Nk+WBN9zYt+YnRl57Qdf1MOe3j4Q4ljoyC7W3Fvn2ZL+6m93Nne4sfM/pR7M
o4/VpqOjHdlIQ0fncfeCWEjZAsvevi7sUbNii8kDh7Cfz3v8ZTjghfT+IuvZ
1z1O+rLRtjEHqvzUmS262eGo4aIvG3M3e+veTb3ZV785RHru90V9d9aQul9d
GDOQHRm3b/4t2wBmF5lVdf/NATjfByvbPNm7aBCLnmhvdW9NGHtsl3diiGR/
FW342K3Rthz2MTK407uR1izaITK+v08A6zXgV/+vjzoa3NYeWNHFPYbtnTLh
je/FLgbHe9c379mcxM7opl79ekKWU2bt94e+v5rBzHQHE779EOj0c1bourkS
fPFU7rUFPx4z1O6+ZYXJvl88bPo+l0J7w45Xd29fk/hB3q4ld47vLTOkbFod
PEuyP1weJ7W1vZXr1OFk9G+nmrww3Bl6/OrqHz3Ymhn7vnR5XoXpenuefyTp
R+Ms9rbYvvyBIbzdkh973/VlJ7es9nxQtwarZeN966wkf2okxOQvb3vVsL5a
16lrJHsiIHapg29OLeZ2e83r7hJcffOa7//+rMxw2rbmwBeS/bHgZXt/q378
HfkabeNXf7icgTDoWdNuTnq/pmsfNm7wafeMCTm4vzD/Y5OglAtr7dnU852r
tXfl8e0eI9tOTtpsssdir18OvmPQdYn4NPWHJCwHvbrH8vJjZ+u5sqZtQ0NO
uwRhPLNrWObBx21D2PuTXvlBHyFvcDgb87Jrx4lLvVm/529dQ3oO4fchjrR0
yjdGsfSXTboG52EebeayafmYz0Zwe+uwrtBt8dhQ5EdbvymZPXCJL1vs/vn7
KJckPNfJaL+i6hH/JDZ12hLPkPZfsLubTsSO80tiuz8uW+g/8At2P9hi62/v
/VjNlasvNp3hxjbPGrzRZ4C/YF8NYm8ve3+94Y4rS2lcWqNt3zD2oZfj4v4T
GVt18IsHyy6G4T2Uvc+cHui7xrPM4q9/HZbgjP69qZ5VLvW/LvFJF6vfSg7F
Y33/0zvuLfNMY/VyWnVt6uXM498cPpuYH8jY8B5Os/3WpmH9i2H/nC04ncLC
bQ77h+W4sYWZMxwDz6bgeGsPmPjR/Xg2q/F84qXLE53Rf7j+w+I9wScZe/XZ
BKtWf2dje08eXfOxyAxhde3TcsIq+bBWhgCnlwX4LhLe14ttHR/+eaaRjTS+
trsTG81mHOjxqqS+B/LLleWF5n4p7syu3YHQwZ+ikV/D+njvvyYqoHAAG/rG
5/Sew4GYX7fscdpH2ybx7OuytjNz8gcivead+bPSYLOB7PvJDVzsH8VjfVg/
XwyPu7K+6iDW0avlwEHV1Xuih/2Zfd17G1PPFyAf6j7oRqemewtYWo2Djb9Y
KtkDO642+nlLAatRNmTl5LW90H52GjvgU9JCX6RjgxXBLzZaBCJ/upEX9u73
0QEob6wP53xs1zyYQT7/J+Yrg5dnDsbyWjujk/7YFont96z72nn81iHsouMt
tvpUBur3tTp+376bBDcaf7zGvV2N2ZtGXhPHH8pgDzsG/9FuSwuUYxuehi5v
tNGDva3VtX50n/ZsWWDiPq+1HriPb3uO2rJgmgfrdtqjbmV7OxY1uLhx/DyJ
b4+N/+v+7S+YbfBDp49fhzK332YEHbWT5ErDBftfjuD7x+vv6aPnZPRk9+8Z
7d7u6McuTpkxMe+LnqzaYv97nZu4sg73S6oP/b4HexbZ3LmvxA9PrAvcfi7w
IeYvHOLy/EOexO8+bZ5q+9tPbdiOzYVnp2yT9IF/Tuzef78tS3dPHX54M8/j
Eth9jEtrif/9tWlPm7Jj6ez3nlNbttrRXZKLLhMO98pgr3O++ntvgD37tajz
iFDfDDzfBnkVXCfyZ39nd/aybrS+qMSDvRo0cWCRqzsL8YheXb99f6Zbbedf
cy7mZ2Xr/N2s1uz0ZVeenu5q87iAsRXLoy8ftGN7Dky8tPhWAXM4Vdps+0YH
luh07XJb/wKky9I911s5NC5g+7JmHg0d5spGnDhX7f34GPZPw0eJd+z9mH/e
w4uXLsSwwwOX9dv2mR871853RMnoPPRfbP2uytXZ1nnsZaxvPw8LPxbWY8nN
dAcn1niR0XV7r0A288E/ltbtXNnk/1PWlcdDuX5xErIrqci+r2XLMpY5MbaQ
sQ0jy5CyD8ZWiRZGkiyFm2RJKBUKIbmoCCVZs1V0qdxSIffa8xv3No/P/fz+
ej9n3nmXeeYs3/M8z/meTa8Ut+12gJZN2ErRWGsIS3iidea+PaixEMoIFngQ
ZFJ0vFNkD3Y7eoXP3XAFvyx3Jo9IJzDU3g9Lj91g1TZ5ufKgE9K3uhfqfgxt
BNi+wniqNd0LisUstk65EiA+gCnsQ2ww7JXI4twu6IT0PSk31TDH2Bnqjbl7
To9hgbEo65qruzPsHLsvlbFsDnh2m0uRks7IHjYNv+4YfEWEU+3fzVX+tobo
5pk2hWkiGGmpZGvi7KGzUUSsKZ0IXNqvgmW07UDpw6KLSxkRnjpxRPHWuoAB
89zBgS0kAOvE4nBvd2gJHphneuYOmHz/xSdUT9BdPzK7o/ma75fVlzyCXMHh
a/H1ibdHAKtVMI394greg7+51vf7QFPw0rOkeheYmvB9Ld3jDYW2xhcvK7vC
PN7MVHzWHHyvcVFeF5DQ++eZnJXEnSZB46G2gG2d1iAkcA/nmUKC8qQTe68z
2MN9vpSU5EAScAf8lfKYZAeP2gYFc0NJUM3lF71sYQ8K/J/8hi8PYx1Pf5tq
VvTcyNfzs961inpCxye8I7FSAHruiuyhantCaGJoZ4w2DyQ3SbcqlW3w4W3h
F98hk+2Drnc7HtkkWugDlKznLUfceWBfdilGe2skshsuozXiOt6oWXLlzd2n
jcWYaMnp8EaCRcie2QczrMhfvDpPNRNaxUAM60Bh2nElWJnToti+wgBHP8ui
qKAo8FQPBIgK6qL7uvBtqjxPwxfYuTzP3wj6cLGfRVTWUwdaTU/MlAj9qq+k
85TT4sbTRmIuL5MO0h8TWUaNQQkt8O1mwUnrG6M6QOaOGFGjn25wtd6k+7Yx
Bv6IH882fY94f9E8V5dIHltbti7ynwxTgmllmVrQdv1ry4tL7uj5xP7QF7E1
R6FHJT77czoG1Vfrmx1KfM2kv7H/OaY4rYlXC2a8yyXL5o6i63UfO6e3OhGR
fdPjW7fglSWpEUD13W3wLji53xCcShQ8In0Pw+LEcY4z87hfccYTilWXA7l4
TUAt0yH4iIQXwjv0+mqNI6n2RUJGID7/Nd+N1e+/+ctYOPT/fmzfVS8T+C5T
xLflDgn5NXo+93HUsa8xzwyEtJRWFrf7gibZaeGHvDmqx+zT0Di2/YwpiBKa
yTJK3pBgUCozetISjQf5OzW08akVyHBp3NrzkfZ53QmqoSwe+SV7+empnB/W
KH63dIgx9JyzgZTjxnuSlw6Dn0olm7EPHnaH6Ccm94ciu6HXX8t3Bnzep4H4
ZYE9E1cXbuAAoe85U4r5TUFzivqtjgn1n4SELoZY4R57qMV8su8zsoPnxxSu
tDjZQ1e4/tfs/bRjhV5THsYexF0+LJyXJsBXr7GBKJodXjNp9XWrckI4jD4P
u/S6tDJuxA522l6uLls+ClTlA1KJag7o93v0GI6KnHdAeCE77ZbhjTwnsOSf
avV+RILMm7xbl0Yd4fRabetsmAcUmQ+5EHLo8TsYJuRuMm165ASe+tTUybPB
QO9vsETB75lnCYF49s/ftjk6Ah/fg7lySz8o0voZ38fvAoLpbgRvTV+0b4f+
f8nXTwoH41zgyfjB6qeC/vDffggu8PGhtzA7BwkaFCNrRypIcL8c+2At1h0e
DGQdxdzzADov/p27sf3j44dBIAFj1HjVDRSCGrlLrUkwfVAizuSwJuz+yDdC
OuQNye/fp3as7YNxrdigyF51iOB6nbZ6xgz5h/uH/S5wjNDywRqhNN9cBbA9
eyosZwAPJYV9WgL6spAWMG36YWhjvWLh+BpOz9sZunZiS75xbewj8hYI+4PF
wQO+a598Xhi7F3asnBwWqxSFASrrvb63eDBbzFs1aJSEjLWh7z9GNvhRMDeE
tvyMcYYxXPmPS/FkhNff87cRAihkGGNVlrYfVgR4VfjmRwwZgNNij6qQAvR1
/aVqdYkM9a+gqkJKFvhi69k00sgg5TDv89JGFnyllMakTCjI3qdJS71vFSjw
JGt+8nSULjTlOGbU+JLBtz1015XNyuh7et97Kvg/6sDF9Dzh2WpNqNunMhMv
hQGd6DgRRhNd+OsDC5MUDS/uuBme6XUSAxd6MRZqDTrIbs1GK/ZMEPCwI+iL
kvIbE9Coman9GIgH9YvkkIEHpjBUpGnW64UHVZs7Vu3bLUGC1VKwRBUPjd1q
6TcmzSFjNZeNYolHfBAsS2lDklMyQO8PoO/xfl+01j6wFs76+3MZGc1HNLzK
CU2+QYY/o79dCxWSguvBtzNixXwgkMS+e6FOCXw26WYVnI8AE77B9u1WBrBZ
k43rp1QIaIrXOO2XMYGMFN+MnfJBMJpU9v6a8kEo8tKImhwNgzBzbJvTVyvo
6iWPnPQhgedCTeB1VVu4pjoYdTfBC/kRur/klOOXZKDJzvViNp9d/SGauTJc
PdgWxib3zU4RQuEY1jTblM0OVix3sxHEabih+OLmO7xEwNreUp1Z32810XEi
9iIRit54dg1QQ8DyYUt++QUCvBPwH/aLI0IOj/LIYXUSTIStqdlhjkCTYiA3
u5wbwvkVx3C3/rJygPOPtvUbV1PQ+BT223Qf7vZG+vrEuOVrjbIdOt/UQ0qJ
HrCDC3XWXFuZd8Kj2MU5zjkPGBTuuOmdLwH6zLufZ/kEg9u0RKYh8QDoFbwL
XKSGQ1zpU3N2D3OoZ2b99ncEBeyfRNUUjtjDs3slqc2cnhAtQjVV83HcmIdS
LC7+3cUBTIZjOmu7yeBTXR1/bhsX0r/287sKdN1pODZEWvyuJwXyUxTZPPg1
YdfIJFE8yQf+TMJxzhwTAvttxTGxTRQgMarck4nZ4JE4XjWKD5cwg1vDcpvU
aiigu8t36OJBcRhsnzPlqKfPHwohHqclKkNzjcoe8Krj/ykngfjqoZ57F8Oj
KxHI7rUmzZMLIQTF+X+vD4Evhq53Jm1wQO8HdUx5PO3hktW/+ySXw8AkM49y
Qt0KxbO9kocZbWZtUHwk81XsXqPp0yN3seby8FCUv+ErM1IphUS0/4Uen/1c
spL13jgBR7lIsU/pL/2zJaDn8+0OLRa0I8J0cfWscnEIOk+PP4SttxcfcDuj
+5W1ZH5ZliChfPPGhxfVEvxuaL/mLsIC+52rJKBqVdxuj9GEVhnqmXQLB+gp
Iu+4smODt+1fXjJPiGj7a9FYXBiSesfn5Qq9Yc/BlNEbqeroewJk4deRorqg
nyHwkEeXfj0nrOk6jrIW+yD5sWwex59P7H7phQCM7Jl7IJFsB/le/A0txsKw
rSZaztPBDgYYQKM0Vwzxo4sXlIwkDO0HBSbOiBeREUgv6PlpTvjnoedYU7A2
0/tIWghGeCQAp32oS83nv/XltPgnw4U7fX3ZAp7PcLp8sQlG55uPfkreWxKM
/B69X1LneKDcwSfmaH2UMhYdffa5NWwuD+w+uS0I5e+fZKOYLzmEo/v9czwf
Bicv+BoL0fDIWE9Bac7LsP/rx1MZY2DLFm0DwpILKjMKgTAa95CIXcGj9dXL
DfdPfBiyhY94QzHLr35In85X5nP6coci/PDPeKmFQq3PZ4kMgh2kciZk+stS
0DwFnb9mPHq3YIQMndePAv4G7VWGpvYQolkWo5lHQXwndDx4Ykuh7WkJR+jM
klm8QyCDgnimqN8ELR+6+jidLBiCcAvdfqZSuvE1tQTkP12ZPxp7ebpB6R3H
3iPflaGKdIb3g6MD4Pi6bOKiNMB3EyYx2NoBFGszzxJv6kBYBVvuM39n+Jnv
7xRnrA3W3iV/KJCdgW8yNeKmlwh8ePx2UtLdAeIFfE+c8ZIC1kBXqqTrr9/3
kgxLQ0kFd2Eb/G7JIaTTSY8nG3xVlovs3NR3eHgCaalv3+hCV/lIdpuZGZxj
7bBkadCEPxjVL58JMkPjxc45Zxenrw0nXsYnszlREP4XySlU0VrxRvl7R+4t
RQ5pHzjbJBfjaqwEh3IYk0sxPiAQrfrw56I8UKim+tvTfZD+S2XvlQtvoCD5
tWN2Y/kjMsTq1L6vqxCG7596+F2E9cEvQzFUzcAMZg/kaChOBwAB3+DVzWYA
dz4P/rjZEACanOycO0Ox0GdSOsqSFwBncW1Xm2nwgprKmbc+P/zL32HZf9t5
Y33+d5eyD4t4awvWM/mdcyrKv/TQfMfmP7UE7mtv5E8Jpq7D02edUb3gaOeq
1WQZCYTcfM0TDtgg/hrp2x26XSMBEKg3E+cJNjBx70ZL2L0NXm0xy2ua1tc8
IFwvS8IhSwE0vOJbrl32AH7LW4nnDBRBtadJs4ohEsUVVz7B8cmlCFBrazkh
1isHipXjWBmaPI/Jr2XTkQche++dF1giITdr/7w8LR68q/Ln3M8cCatWj57x
2ksAK1P5s4EiJWC368Js6UR9SuBlBulgIU3Oq3i8+1IZHji/WzMGMu2Fhi+6
yqmOtjBX9r0K3GSBnVdwmoF9Yx893e6q8yssYkelEE5oTpr9A1OgAntDDl9x
9MIjfShrOH2q9bQtyNT7vb3iJ4N49D6pX1hJ/agMRnkyOabJNuDI0/j7PVdF
EAt6Y1tp4Au+jIzXjMftEL7+FNq7EhVh92/d3GoEtN3eVDopJ4ueoyw1rWB7
HwOLWkXtvDyRYG+mQ/QM4wVdgeYvd60V4W3v2M6LRAdg+iK1zH5OBq4aUbLE
afH6FSWS+m5gvV7/4lGVRGmA11VGCvUecAD34ugEsxzK+zKXd6Y/6zMF3N7Y
GRlJQ5hJOieQNm8KlZfCmX+W4qDg0KhF2iNT0Nc8c2h9fcLmKKuG25dAAyUd
nN26PLnaVphvsBsr7VV/Y10f8Q7Mz7IFDhjUZnL8s35hNZ3ivtVGHmvl8rx+
fb3Cv+G9xHNBWazO3YX89fWJm0O5SRyaMqifsQnPMNkdowtBk2SDmCNT2MTm
ALc6mjzPz/bbi8YpbNylraU1NHlTp8pP1Rcm2Li9/PenHplBVveK0bm7RtiM
9FMlFu/xcEmLZ3L0wH5ssLWeUKkHyuewCzjmaq5YZ+DO0KkdYh7GHpWfm2eg
yQvwW/n6+orsveuhIL0Le8qclbBuP0puRvurKFuxSn9Ly4+zRwKje2Jg45Qg
RP2dXF3Bs9H/LiHV/elNVjsYLCc2cy5JQFpzyOq4nA/yt/dfmHW4cG30f0ts
JHa66wbCILdm+9EqXdSfJDt4TcbcTx/4max+Xx+vX3qNPa88+8/6D13GLq0F
cFfawlBeYMq0jjQoskRLfmbe6GehE3RO5QAb7X0d2lsrN4vAXTt9vyviNiCi
cHeHvr4ywjPqP0mpGl6H0Htlz+Qw1o/S8Lzrs9CAiY36MJUgIzxObKNfXKfe
8sDn4gDIfRyO0x11hq1927JfKJGR3fQVV02HjJpC0CoXR+EtEtRx7Zto1sBD
kBGXjupFEmz5MMQroHkAil9LdHEUkGCkSaZD0QAPo6fvrPyZRALTd5kduDZL
CKuVil3JIkHIT1nh2X5jqHTFHv9SSoIDIy93JqzXm9Uxu3mdc4bnVPWU9fof
wi0ekfiPeOiuP4i7nhUI8UJzWsQAbTh+ZLZjvX7ninOfbIuvLqQGdZlvyQ4E
thnGkh1ZeNhFvdeiTpPvNjJEzds7Q5r38JeQSRx89fe6ub7f/n+/x2N2
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnt0V9WVx2/IkPxSk3vz+1XSClQQRaCotFOJwcG2SyuDFmeUAFpbWwJF
p63ykIfKS1FCAhiE8H4kPKQKKArSykMC+IhgZXzgi46dttMZETt2bGWWzPwx
s+b7yf5mjWuxOfue37n7nLPfe99cMG7SyIldkiT5ZnGS6F/y00z/CZZr+IXG
FsEJ4Xs0/kuaJC8Kv0ovjNU4UVBTkSRXCBrLk+QejTMEB4RPSmJNnaBac4MF
CzQ/2XPjBE2CuYL7BbtF/3ei/3Ph3bX2PMGNWv+M5n+v+V9ofqnGPwtWJXGW
n2dxno3CHxPekASNR7Og8wfhj3v++7kkOV/0NJV8oP92aH665n4rfEsWNP9V
+DbhUzX/b8K3C5+WC9rQgg5n2ZrFeXrqjD0EtaJ7oeYvEjyi+cu6Jsmlgq8K
31Ckuwr+LLxFtB4QHNZzlWjs1vr7ND9eMEowWvAd0XtLcI1gudZ8qDXdypJk
hfAlwquEN3Mn4ecI3ym8WfiXhW8qjjP0Ev3egjrBJ6LZLvil4NkknvtoTavG
KyuTZK/O07MQ73AHfofvfXwXxguNn68zfUUwpjz4vicJPhwRvCF4XTDFsuVO
D4r2at9/pc75iOh8Sec8pfEJPc/Q79XnaG/Re+8LWpdPkv8S34YUQlbvfCHk
9bBgjnWFdScFh0TzA40fCnqWJslpjX8UvFwasj7l+UJZrOkhfEMu3s1KkuQF
0XrGd4DOKe81x3o9yXo52XfijJyVd9HBX1pnPknDTrCRUaXx7mzB6TRkg1zm
ml4HLfF8j+Q0S3c8rPWHBG+L5h+0/992CX3YrN9Lzwl5wgN4AV+4xwe+y0ei
/5Ton1cW8ulj2fXS8/Vav100T2putdYs0Pw0yW2qYK9+q9LYrSLWcadh5XGv
qzVXI/wKwSnjW3SG/eWx5lrBr0VzjWg2JnFezo1d/JPm12p+YRL3GoD8RPM3
ml+v+cVJ7PtdzZ9bFHr9ZBa6/b7wdcIXac2t+v0S7/vPmt+Qhfzh929t+8iw
l898r2gOLA+etWk8WB7P/5GGz0JPH9Y4U88HJP+Jwr8mWGk9x89sTOJcVebJ
yZLgD+es9ZqlyLc8bJ45bABb2IwPlN72EC/+JLqt2mdkFnxZ4DXNSdDobjrM
ne95aOFDNiUxQn+Z8B+Ixt40ZHC78MfT0ImfCW8XXtC6ecJfF/56cdhcrf3I
13Xu/oJXkjhnD9OsQWaCYYLleu8ben+N8JvK42zwo7pL0MFH79Ka2iz0E181
Ogv9fE1wCDkL3hW8LDiKbXo8JrhY+98h+FR4Q3mcl5iyUPgXha8Q/o+CNtPa
I/o3ZyH7TZLTw4IX9H6rxvmCI8Jv05pRWehVo6ChJO40SvMTstBR5FZl2d1c
HnyGB9D+Whr0r/e690oibg322dCl6ypC9/AVc3LhZ6D94yz0v4/0dbbm6zX/
HLpcEbq0TLS/rjWrhV+v8Vnb1o+En0mD/4uF/4PwKXp/kfA7hE8WPlewSvTG
Cu7UfEkW/GnkrlpzVPbUILwOHpWGruMb8NkLNP9DHJfmv239Q/fWmh4+YZLm
j6ZxVu7OvfEP2PiHFWHvS7TmQXRM93tE+FvCc8KXCp8vvKwsYvtHgumCJs2/
qfkSzd9dEbTg21TTvNvrTleEzZ72u/Cqxv6Ffe8SnZfT0InpWcR41g9MQ0fR
zydLg9+nhP9Qaw5gY3q3QT70KuFD5VPrNX8rsVz3Gip7vEx6fFZzy/S8tCR0
+gE912rNm/Kltwn/NA17vFf4e2n4tHHCDwm/RfT/Ogu5ItOxwg9iA5qvE/6/
adjvJRpX4PuSiGl3phHXyC9+lkaOQR7x0zRyCfKLn6SRYwyC33regA1mod/o
9qUaV+ITySXgBz5U+CxsoagjPUv+lEZuRPz9OI38iZxnsePPHNvwZMeecY5j
PA8qjhzuriRytEmOeVMkg33288QT/AF5Aj5uN/5A8KhjJrFzh+CAYL8gkx6s
1/k+6xq+jLVPC3aWhvzQOWR4g+U4x3F9seN6k59nJREHFvoei/08yet47xVy
BN1hWJfgSZvptuAP9NtMrRldGvF4ln0Mvua4YF4ubIPcaKPP+JRgaxK85G7r
fLftScj+ccFjSeg/Os3atf59WxI6us3rJvqMs+33iAHoyTXS1d7i0Xc01pD3
Ca7uErkz+TJ83WK+wuse9lvwcrDz6y3eE37v85nI6cjtznNc2uiz8Pten2mv
17X6rjuT0KcnfM/mkrATbKY+Fznr+KKIU5x/s3Vggc9AztJWGvaCPt1v2eCP
B2oc4jORd77kvV/280L7buJlC75VcJFghGy4r/zlxELEFXJJ4gw+DN+Ir3u/
MvKhuwpxp6Omu8x5Nbkm8iPmd+Z3jM8nEQ8HFEWMesXPxKlNjlPEK2LneNvK
br93xLrMyLne17oXiyLGPu054tcAyXaxzrClKHh/zOersZ7Woye5WLPZNAY4
Th/yXdHR4RVx3x8JRorHVcjBcjtkXd7p8SD8FL2N5iP1A7GdGI/PA+dO2Aq5
GnngRc7n4ecKvfuQYH1R8K7OdcNftK5PUewzzr/1No+I568KbrfceB5WiLzz
ao3VpZE/PaffluQiVuKz1lmnoNusufsFa4QvdZxd5RqJfdDTJvMS2ey3zI75
bjXWMfLNi9PwFeS5M5zrkp/2tT8nJ9jvXJFcckAafoactH8a/oW48YZjB7H0
hOMpOWm/NPwPcXi8YzEx5DXHEWLy247L5APY8orP2R62eMB29sTn5PeUbXSb
bXqq9pqSRd2333O8Q00NXeLmNP3+Shr14TGNd5OTVESNe4/r3E5/hH+aZn9O
nCWeP+SY3ma/CN9aS8Jv4oumO1YTR7gza/BjV+md+88JmY4pDd+Kn/2j6D2t
fbvr938Xvkt4j7Kw42bBUOHH8uFfKgtxlv2OL8Q/fOtj5tNqn5s1ezvllQsc
W+C9fZ5HphOcj5GDzHMeQh5LzKJW7al9r9QZ/z4f+rzT9kKeP8I1SHs+/NFf
FcK2kMnTtvvd9h/k18OcY/OM/3vUv2/2M/5hk595f6Of0c37XBOR11M/LPPv
tfbtzIF31hejvQbbHW375V4jvWaLaL6bRr1L72Wh9a3WfqvO9zxuO+3bJewF
ev2KI78fm0RPhvjUmZM3GscmZrlew1Zmu/7ino2OU1/V/JwsYjY8a/WdGG90
DEKPb7IsOnooScQEYuxW69h9hZDFtYWIEZ26cNh87PS7u8xvcvc213cDXetR
E3Em7A662P29rk+x3ZmuK8k5b3Vduccy3Go5jXGMu9l1Hfzv7vPDc2qImx3H
V+kuDYJW+6tW6xa/3+I12DnxdYNteJ2fm9Lo6VDzbreN8hu1xb409PnZNGq/
GucOxH54T3wjzrUk0VdZ5niHH8WfEiezQsTwz/T+Lt1zdy5k3r8s4kTfovDH
1DDdiiLW9yuLeA+di4VfUBT1SLP98zzPkzNRhy0XPJlE3CB+dPR2qGcEz/ls
KxxT8N/EO2LFGq8B3+z5fj4PcYL8bYHpEyuICcSGJUnkeEscR+Z6nnhB7KZO
JEbM9L3IMb/rGo+Y9GXx5Bn99qVC5OL4KvSQXIzfewq/Ih89u3PtM/AlDyXR
p9mfi5oXHabXgo7eIJ+xLxd59GT3c1rzcSfyAO5FDYAvJP/pa1+Iz2HEn+JL
HzL/LyTGuublTqOcK5IzIjfkR4xvMI4c6S+SF5BvjSkEzRsqI25yBng/VPML
pE9NhYjJQ73v8eLgSf/iqLHZ91dJvNdkuUzU+Frx/+fZjMTWM/mIGa/ngw/w
gDpiZD5ynbMaR5cETs7zk1zsN8g5yOXFwc/P8hFv38xHLcJZ8Ev0B4m98zVM
4FzFocOHsnj+JB8+rHdx+Lz+zunIDX7s/AJ/v8vvjbUPTIvDD37seERcej6L
8/1nPuIovVfq6iH5WN+vMvS1xbkOfYkm69sp9+LoMaKrxCriFL9vcu+iuBB5
7sdZ2Fqr+xgPew10OvI3wfPCG42Ty1UVwn67FWJ+pe0LHcAHcdfjuscTubgf
etHgXJCcl37km0nYL33nw7YRarSDRVGngY8oin4a56fXgY2ucY66yPu22DZX
2e89YJp1tuM1tmvutdq6NN/3JecjR6dP9A6+tBC285VCyJl+Aza33vZwofPS
B+1b1to34d82eA3zrbYHbKHTNuAJ/mOBfdQq48wfsf9ifo1p4us4Y73Pic+b
670Od94TG9N4SS7qynad+aXP1ZaM5Eh9HA+IBZ2yRF7waZ55hR+d531Xmz7z
y3xf9lpl34cukWON9j74iXrzZ6nPiW+cbx/azfn2LPtSfBU5Fv4Kn4f/wu+d
WxZr6CEg/5nWAXwV/hF/1bMs/NdbSfjUmaZP7kvvCrteZ37CN+px/AU+gj41
/fezXeMc1C/U+4usU/DkkO/I+c/ab5xwLnZbLr6b1Fn29K/qZYft+J/K8O+z
fce9Wfjv6nzYI/umlhF8wy8xjjFOz6tW+LaSkCd1LDLF/7zkNfStD7snz++H
vabzuTGJXgY9De7FM/k0OR400ZU210A73feAF/gJbG6U9Yc+QYv1BHvnOwU9
FNaQo+MH8YHUFfTe/qZrQM7zyJZvC6stR97FroldVY5fnd8/oMnv4Hw7QP7o
AX0T/M1Cn4FztX+Ob+3Wc/RwoPWf/tRg86TFOLUDesFZ0Q3uTh04wvIfaV7B
d3DiFt9q0Ce+1wzpGjJiH36v9XrODR1iFr2F4aUR74h94OgJvYTrSuP3O5xz
dNSkXYJ2veXD+bGjzj71u44X6xwzWHvU65HtTp+ffa7zXsj/EssXPXzSa077
uxPxkb4v/WhqFHwzeot/Jv4dd9+N7znoaue3LsYvVkaN9d9d475d0HnhN+bD
l+PT6WsQD79ZEvFvUNfIWzgbPIR/dyZhQ4M83y0feJXGHSWxvqd9Mf0YfDM1
Fv6f2up/ZFNtWjNM62vzYdujNL6dhG/gHeIZcY3vHuSa5Jz0XPk+hY6hd8/6
m1G173TW96q2HcA3eMBafhtVEvdFt+E5MkbWxN0Jjun4cuSF3Nbk464nyO/z
wZOFzuO4J+8TH18VXJuETnX0vK235DC8Tw7IfE/r5w7jG70P+96Sj1r/e/mI
WVf6nO22yfmOEfAfHYPGNp+BGPy85Qdfh1hGY6z32Nq5lcGj8fmwIWiih8TG
EsdH+mHURUeS8Ac5+wRynF+5rvu7fNj9xnzYdaPzCnrJg7OoNeglV2dRj9BT
oddAf4Jvcd9ybYJOUI919tgY6VX8II1vQvhCbIw681XnXvtM67jn6XN85P5/
R19BtLemYffUajPcR6WOu9ffDuijX55FXUTdU+3vMtj07bZreiH3uGfKtxre
5XsItNiHupI+wTR/62Sfe/zd4SP/fQL4DMc6YhzfLKb5ewT5H3kgdSvfQ+mJ
d/Qr/E2DuLwtjW886DZ7TfG7d2juhTTq0umOt+xBL4T8nPx7kfMp7oONoRNr
83HWqaZPXV7t3ut13hf+3O3vU6zhjNf4nOx/tc9A/kAPkf4edX2Ne8d8k5nq
NTzTd6YGht5w02Suxt/mDngN+HDvC5+3W7exEeIMOTw6t9S2Rp9hpnNMcgZs
+zPbPnra27pK/G5zfGhyvkzdQV+V3ih5/Z5c5PH9/d5l/jb5G685iR3l4+8g
ripEjkR+SJ44zznvBc6xsQNyRfzASOcA5GPkgWudN863fzmvEHt3L4T83rae
EB/x38Tueufy5GPjnZuS/41N4n51SXyjJrfmbxYmOE/Fn8AnYgK8os7o4R4N
tdEe10f8fcAe15fDzXtk+lYW/H4xizy4t/f9VmX40M35yMNec721vDJ6V80a
5+YjHpFPDXTvBLrMpY5T9IexAfTqQ3/XQ+8u1Ts7yK8Kwfv3zX9w5EEve6V9
Dvrd7hgD75DfLtdir2bhj5/zt96B7sngx/GLR7LIhakHWhzrkRU5w6eOBwet
Y8TgEY7f480HYvVw5wP4R2pRfGmvQuBb8uEf4SG8JH8hHnTkgZUhg/X54N+N
JfHckg98Qz58NnXvXY5H1CHUFPj+FscUcsZ3TBNZn3EMAj9u2cPL455f5jXY
EP4X/0peudN5JHfE7t5z/OLb9Uk/41PA6S3wtzyt7uWiU+RG6BUAP4Z4r2bv
e1M+8qTiyrjv5dYZcplh/l4AP6FDLnHctogNDPYd2Yt6qZdz9d4e6Yttcj+F
Xiy0oN1gGf7FcYI6hnqMWiBzforvOONvUpyT/Rf6DPgA5vEDZ+xzOr/vMtIv
PeGa4tuVEXuJwW8Yjjge/x9z2wsx
          "]], PolygonBox[CompressedData["
1:eJwtlmls1VUQxS8U2z5p/7fvAWUX/GDQyKYiskOQkhhBaSmLRlQgstOyiRQX
xAIKspZ9FRGi0URQjOwIYkWQXRAF/OIWRNFEjOAHjb/j8cPknTMzd+7cufc/
824dVl5SVjOEsAmphbyUCeF4EkIJMigdwgCkGHwMmYntBnwEeEYMoRJ+id+6
NULokxdCBbwoY/wgMi3jNVq7BL854ElIVe0QbkP6FIRQSrwjN4XQmySKwf2Q
anhpdgjdsa9n7VtIe/zP30xexHkN/jK5fgsfB/4ZaZwKYWpuCGexz8LWiRgb
ibUa2Qceh24VuD3SBNwa3X3gWeRTGX1mnf31tPdWDMVaA+8L74h/Y/BY/K4g
jdjvafZ7OO29KvF/CDyeGOfI6wa6YfCuSPOsELoRYx64ToFt15Gh8DHE+glp
SLwpxOvPnlvhd1C/s6wZAO8RfdYK9tiPbSi8CjwYn33wYdF4ELIDPhz+KLhD
nmMVw89lO2YV/G74StY3YM8m5LuDfXtS/xrkVo19DPal2DP5IRTovljbGnsE
t8U+Cvs+YrVEPoaPgOdwP3vhb8IfgG/Msm4C+MPEufTM99qR0b6KsRvbEPhi
9iuB74U/AV8CHwDfA38yGpciu+CPR/sWI7XIaS75NSa/LOG0a32U/edznrXw
duB+6NaDhyN/UfsZ5FaOfy+kecpvYgdxe8KbpawrBSfI29SnCPvn2C+zfkiu
96wGf4KuLNdvuH/a34S+DX0z+nYORb+NTfj/CS8np23ks501DfFdAj+R5RiK
9Rs+T4FboDsO/gMZDW8DPwVulPHa2+EX0z6jzqo1+6O/WX27c8GzdXfYT2Kf
gL0a3UL4sSzHPBj9VrYnvku9mT3RZ9Wd/0KsA9Hfzgb4tbRzUm7vsb6Q+J2J
twu8Hd1EcGvkHfgx/C/g2wXelfj1iTMD/w1p++pOumLrhuzOdY5LC/wG9RYr
WDMf/03qQcTqTH2bgpui25nrb1LfpmqgWryPrgG2dWnftWqq2qoGqoV6lnpX
vYxz1x3oLtST/utN2LtkXGPVWnvcAq+fcWzVTLVTDVXL0+QzGN+VrPsxce9p
wpvZhv2HxL1BPUnfwmfwonx/E0dlQ7eCml5G9wz4K3RzgntaN/AUdF9g64U8
D/5GtcC2AHkOfgn+arCuAv41/BXwXORZ+EX4vGCf6fALiW3SHQSXq2cTew/3
fQQ+GX5/vvcsy7g3q6ert6vmqr16ck3Ofxj/MvTLg2OoJ6o3qsf+jX5S9BmU
u868M3EP0LdfxH6fwsfBl7G+DrrTaX8begN6C19iX4H9Cv3uMjITvgxeSC2z
keE6O3wi/odz6NnwBdG2HKS3zv7/HelNjdKs0HeR4zWLVGt4gNfHv6/eZ8oz
SbNpIfbZ0Tlpz0r48mjfXGSzah29t3IcCX8x+j1oz7PwxfBUynuegFfBa6fs
c175IvVSvrNZ4EXRsbXmlO46uh7KYbrmbvRZpDsDXxh9Vp1BPUy9TGcYCH4k
7X2030Dw9ejerRmkWXQX/E5irAqeAf+AP1KN8jxT2ka/Ub1N3XE7eCv4GvBq
5FrimaNZox79e+Ierd6sHn4P/i0T+2qPidE9W71abyw7+g3q7ekNTAMXRs82
9ZGt4O8Tz0LN2NHKJfGsmowuYD+g95znGfUu/LvENs3Qqbq7xG9H31R7eBv4
OvBa5F7VIzHWmU6m3ds0AzvxFrpjfyzx7NUdtUCXULtq5IW0e5p6m2ZCK2xZ
Bf7v0gF7CbYeBcbqWc24j7pp/9dog9QDzylwLPVI9cpS9uuQuOdpRus/gf4b
aEbVxV6Y9lrNHM2eLZoR+J8h90PBdzc2elbrDlWb8dHflmq0GfxrYt8PkDfg
VxPjLZpL8F8SY/Uk/WfTfzfNwN7gq9GzVTXoyP7/AtVjVrA=
          "]], 
         PolygonBox[{{4735, 3863, 3704, 2233, 4155}, {4669, 2315, 3719, 3971, 
          4740}}]}]}, 
      {RGBColor[
       0.47681049834781497`, 0.47127525501041423`, 0.538775937073489], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNm3mUVdWVxl+9V6+oeq+q3r0XVIQ2vVBbhkRbRhcyOKEmDkxO7YpKMxiV
QYxo1FaJTAJSBc7gEBE1a8W1VBAK7TbdERUHQGZUwP7DAJoYR5BC4wD9/dgf
bf6465x37jnnnrPPHr6993mdRk0cfm0+l8strM7lCirThlyuuZjLbaaxlMut
LudyM/XufJWr9Hxbl8u16v0avRut8na1rdNTKUXbetXvVf/v6qL/dNWTUvS5
R/XnVH9L9TtUv7Uc8x9Q3yVqf1v1u9ReVn2t6nNVPzLRvCr7ZbnckHK0l/R+
Fd9TfRbrdv0rrafG8+xV/T9U/0T19eqzsl5z6DsjtMmOat+g9gVqX1WTy+3R
c7q2O9f1Zj1naP9T1XaDnusac7nf6Bmn+rZUa9b7Oq3nOtFqop7n1fe4WrXr
m3eozzqVU1RO0vPTNrlcNz3Pqk9b0wf6DSvHGjqo7ULN1UdrO11lp7qo9yvE
OMaPVf3XxagzzwXq11t9eok2t2v8p5qnrDWdrPf99FxRlcs90SZ+U1+md3/V
06R5Fqj/d+r/F+19jtqGqc9dKoe2iXpvrXm++nyrPh9VBx05m0aV1frmLNXf
U/tDGvOwnt5az6l6HlH9Ro2tr4nxjN2pcoF+D8n9+I0+qi8rxvhhqvcpxtir
VG8RDR+tifmYmz7D1X5LFmf3vxWdkebcrbU16t101T9XfYu+tV6/e2n+y3PB
YzU673rNPd/tvTTnuELQ5CeiyR3q81k51gvN+ptWn6rPDyp361mp8b31e5DG
FtW3jeZcrHGFcsz/bCno8UU5aDJH9S9Vb6gJmtEfus1TfY/at6vPLPHRokqs
82TxTl89d2n+DvmgT2/TZL/m+I3qPTRHdz0fqn5WQ/ym3l/9j9farlD9dypP
1HO96j9Po/60yoHq070QfHhuGvVWlbVqL+vpqPbNbaLeQfV9el9S/Uvtvd59
6Eu9zn121ES9i+rDVW8pBI1oK7nPr8WXPdXWT+Xv9L0h6vdIGmOYr6vKcTrr
terTQ88p+SiRtfPUd2kh9naRxqwVLaZlcQZ8Bx57X2ueVhV0QE77FEJWr1B5
dz7enanypELQ8DDRu7/ofoLXyhjmOVzn8pXW8YDOpVXvT2sMHpml792gepbF
HtjLb1W/XGWTxk4xf8An7HeZZYvfeX3r3xuDn3rWx3mhc8boOw/WxHkh8+ig
B/Xd5Zr/c71/IQnZ7+n+H1tmd6r/kzXBD1erfpLocaAmeAQd2E79R6q+Dj5X
fax5hnnQIdvaBP8c0Lpf8XpoX1sb32B+vkO9We2dyjHnW5q7t8o+9bF/Sn6j
Ayl7uf6G20/Lh/4/rD7swlvW0ejnr7xW1rk2Ddn+QuWHaXz/XdFss94fpbGT
1OfPqndRvb36bVCfRSr3qtyk9n+qD134geqdVT9C7wapXK7n+mKsn2+nVaEr
u2r/v1T9GGyN2ttWhfwttAxC1wOmbVfr6vvUZ2EhflNfbduGXWMe9kjbCI07
pxA6Hx2DrmFOdBN6Fh27Tk9e5/qM1rJPexgvur9WCbmhDu++Vgx5QAberQ49
u4TzUr8R2CXxRg99t2c59nhMFjwD70AP3kET1nJQt2nMNdIVV+u5X7/f0rsJ
mv8mtXdWeVRV6Ip3zf/3Vwc/7q0NnhytcaP03Kt+vTR3bz03FEPfFrS2TdVh
W9nX2urQjehFDTlIv662U90t25NM5yet0x4x/yKD6FL0qLZxsER3gw32FKOO
Dt9XF5iBNvBJ0hC6dHN1rGexvrFStLpZc9wjmmxQv4m1YYObtJY5es6uChml
nqj+eiV0xr3qP7869o7uwJZsysecrdaZv1DZpDWPqA39/Lc06h+r/KueavU5
XOUzKkeqvb3KT9Oo/7ES+gU6z8sHFtpDXW13V0e9We09tY57OEed7WZ96wW1
90VHZ67rfb986BF0yMAkeGdjGrYIOkKrk5PQc+vV/s8a+0f1P1Vtf6qELW1K
Qr9eXRv90K8l0XCNysFqG6LnRdFnmMa/qbYLVc7OxzvaL9bv9Wq/VOVzDUFf
aIsdhG/f0Z5Sz5OYp7Hn6HZ+M8/P1X+K1rFC72o0z249v1L7l2nYf+rggbfT
wA/ttI+v0ljzikrYa+w4urqb2rrWBt+vEB0uqw1dhw3E/sHn6Eb04mV6fgYG
UPs1qg/NBdYDh4D7Vhn7UZ9rTLjQOpu+yPNYfWOpxm9ENxn/HJ+P/vQBU8Er
8Al4ao7r8P5T5n/ahxp3vV0MPYLMNpUC32zTd84wZhqk8ph8zEMb2LzZfZ62
rT9a9JldCvyxFV5W25Xq/1kh1v+497DIdXQK5ULXn7Js3uR2+oEvOut8X60P
e7rJfdCTv/de6D/MNGLvO1Xuqgn8cCHYVN9v0RrHaY7x1ufQaZ5p+2SboOdG
fasBzFYOHUJfxhyi9zj3QW88aqyIPvu919DcJvhwZj6wxuCasEfoJHAYPgX2
YZBtB/K1yXvhDDeaDtjBZbaJ72i+LW2CV8GEtGPf3yjGN6+xHbzUtg9Msl3P
OVVBJ+anDz7PzrxlHPymZ04+5mvxty5Q2/CGwBXLa2N9rI05qPc1/tph2sKn
+CDwxd/1/W/qw0fDP2CP+As79cwrhE1/uk3gY2wTJfKALGDDqWPHwSZrfY6r
LQucUa+6GEN/eH2D5YWz5bwLhZCZVeZPfrPOLuYrzggsttDyMsIYcqf3cpX2
u6YQclk21gRTXSoMNbsx1tUkmm+0XoZn4AXs2uPmU3gbnYY+Q0d2TKP94TTs
bB9jvh2i8U7btXEN8Rtb+EQx5OaTfNi9He7zYiX0yaAszhK9gR7Zpfcf6nlA
fa5tiN+fw7een7mvdDt9WlRu0/NKPs60r/UP+z7O+uicNGxlTnJzVUPs9TJs
Ob6k1vayfl+o9hUqf1EVvhHnwVmg4wbazi5Rn8V69tbH71Ose3lONe7F98Hv
gaboUWiJ/hyUxtq+077Ptv+wvxL0XmKag/deN/7bq/FbC8Fv4MwD9im6eL/n
VgX9ni3Gu5Fp2MC2ScjE3HzIC74PfAPPoB8HeZ03Gt+z9l4N4Uvt1++BDYEx
wfuXqH5xQ8hXo20rdrW1Enr5jizWgy7Dvj+scfdZJo805sH+1+FXYourg87I
JFi/xefGuvnWTq95onmA8x+j52/5wJmbVN+op6JnbEPw1OVq7yte7lQJ3NKg
Ndyp8od86C5KbGulGGvfb11B+V9VgS0P+rfoDbUv1fO16D9Zc/6kErgPOznf
fR7SPLM1zw7VF6m+oTrWh3xDk6G2I9gQ4jwvV0IO94BhVC4vBoa5SPMfWQn7
dG0SvNpH5QR9f30+ZISYRqtpCvYCgz2aBs4Cb4ENiFEQn2AdYN1DPt/EJHj4
MJ3Rm/ru14XQCWBvbNdnubBl1MHhLdbPn9pPxV/FD1uYBB92UFlfCFwBTz2k
31ugjcqfZGHX8CdWJDHu40rgIXDRbLXfn4ZMNifB01v93W/SwJMzNMeIJHyn
7lnYImzSqfZf1xrrbNXe32sTcnp3Eu3zVK6rDb2MTm4txN6Yn3gRPA4ePUk0
b2oMPQbuR18ekQVuJ8aEniHOhGyDb7dVgk67k4gDfO5YAPGu1/RMKAQuICaB
jitorqc0T3UW9N5nmmMroNWsfPi6+Hz9NecRhcC1x6r9vjR4oHcS+nqNdVdW
G5iPMz/J8RLk+EPrQGRkajFwMLKEbuhiuQIT4POgY/Dl8JfgLWRituXilMbg
dfh8fCGwOXp1iuacUx06sUlrbi9aVCURD/zKMnDAvjP+BnbwD23C5p3lWNvN
WcQaltp2rK1EvOp/KnGOyF9WFX362dY8adsODnhU6xpYiRjPVp8rZ7pctNqu
+iLjXOroOLAJGAI7Uta4KxsD0+83RuB7l9qn7mk7/pVtObTGDjOWOEaL7Rr7
n2O7UNZ8JT3PN0TMo20l7CK88ZhlChtHHdvHw7vr7f8ie+ixbhp3l8YndfH9
LV5Dk/n3bNu1Gwuh58F5YIILkrA/2CFsVmt91LFH+HF7bM92GQMwhpjtXp/l
D/bT8NEuzmL+iVmsd6HX/7n3Q/2A1vjLxtBt6ITdjsmMKoYuJ2ZDnI0SfDWm
GPoe2zGgIUrwbX0WuhG7cXZDxNrAvsSE9jku1E17nKax25PA12cWQzdN1Zg1
jYHlp2bhf07PQk9zDmDIkjEcstZsWkLD0zR2kcbuEg2mV0Lnom9PV71zJXQ6
uLTZtAfn4neBdTs2hq1BhyOj7S2n+BDEINDv2HNkFX6t2DYR51yMf12MWFz/
LHzAO1UenkV8hjjNBvsIYAz49LhK8Cr+9ybbuE/SwPNvpjH3Jq/npFyspY+x
JTYH2Vll3HrQv9GYF7SGASo/t6+HzwdWSI0l6vXNUY0ht8y/wetHhy0phu/9
un1wfHF4D/pA27rG+A0fwn+L3V7rubt6jdANPwufrIPX3D4Lv+D9NM4NXMq4
FZZj+iGP6ENksjoN23NcEu/AMsxDHJ414zOeWxP4HmwPtu1SCdoQ2+50KDeh
9g6NMQa/Z6z9IHTiM7a54MNfNYQenGm/Gx36mWUE/bPTOBYs+pQxODr5qDTq
T6jcnIQtbUlCJmsbg1bgFuJHYD7a6tx+n2MOxB6mORZEDIbcSLtK+BHE79DR
5ETAPs8b/4BnnzOmhS/ZI3zCPqlDH8qObm8pRp6Ac5lnvxH5bLafAU/2a4iY
IrLN2bLO58zjHU1DcBIxB2wJPI6MEuuYjl/rHAG8Mc+2jzlqPc/f1f+L2pD5
/ap/WRu4rZIFTkqy0D1dK6F/kHV0L/F8SnQxGIyYHTksMEU353MOnlFN+ELw
E/4m+mlXLrDqcusf9N8E61j2stT6hLmpMz92Ef0Ehgc7nFAJW4XcHF8J2QEL
LDcm72u9xDrJYXFe2FNifJwnv7HPLxg3Y69bPJb1UAcPL3cf2j8yj3LG+KD4
ovja4M5njY2JZyATnCn0hc7oMfZRts06wjoM/YH9LpmGYGziksjALY49ghUY
u8x0wA9e5jMnBjPHumZ1JXzZlyphh2+3DJNT5Fx2JKFv0CHoBPAauSiwHDFp
YqDwdXXZcbZc2I6Bth/4Mf0bwi/A/yDGh9/fqjXurQvZIkZHPJMYJ7EC+mN3
8GOYZ679mgENP843wH3AhuuM+Yi9bXB+kZwr3yKWyPv1bocOxAWgCbYXG4z8
4nf8UBc8jE3sZ7t4u/O3LxnPp451wzNnmw/JW7Z1O7aRdvQVZ8j+OEfyveR9
yREzL/YXH6q+FL4Zvs2/pYFzib+SizjL8/BN5sePeNXt5HfakVPQM7UqfLfM
fcCTtIMpyePQjzg282TeCxicuAq4qJZ8XCnWBJ2gF+sY5hws8+Mr3VYKPwUf
qMX6B/uw3PXhacTTC+KZC9Lwd4g944+jr/AlGPeC68s8z3DzPb/RX9/XxVnA
S301z/NgiUro1SmliLHD48TZyV/Dm0tsr4nLvuU4FG2L3c44xiPDU7KI7ZJD
Q09P85wt1vmvJPF+jXkG2Z/qsbS97Vz2JPsb4EPaV7v/ao+lD77RWreTe19i
PDfFcXx4gxzFcsffWA+5BGLtxPWRiz3GI+gHbGe9bWxv6wHwPPqKPP8q43vu
AnBXgPsA3A3AH5hrfwAsCSbGBoJ3wblgSOroImIGl1hmF6SRd3woDf/+EscT
sLHYWmwWsQ/yKehYYs7UsWvEEI5wLm+ifR3asRnYDmzKRY5R8C349HDzLf4R
Yx5wPOE617GZEz0PcYgLzcP4BsyFP0Ks8SLPiYzRD/sxQOc6THt5LA3dO8Y6
c4t46wJiu94jMoSewX72sy3ILPu8Y0/tnS9D744x3fDniG3hh0Ij9sW6Rlk/
06dLbfSBbnybdnDLYtP0AeOBq4xhrjSeoT/fhaaHcjJHmrbg9vZu310d9IW2
0Hi669xRIV7Gb+6VcH+FuyX4kug8MEBebVWl4Cnk73vrQ2iHrsD+YnN4D02K
4KtS8BPxobnWacSr663TyPPD84sdf0L3Qxt8urtd5/4Luho9i75Fl9FvgDHw
15XIu8Lb5C/BGjO95k+MycBj5JEOt67jNzgN3qQca57BDhOjwRbDq9f6vK42
rqMPd2+IE/ENzmucZWRXGnGWLWnkOcl7kuuENheYD4lzTvCZImvwZ5Nt/3if
I/hzvPuMNw6lnW/mTf/T04jlP+BcE34x+hQsBiYDq3OW2C/Od7/Pa4bb9rod
XTDS+oH87yj/5hllfIgd3mdbDM+A7aaqfmw5+Ar+OrocdoIxx6Xh3/2LysFp
3AUZonJbEryHL3heGvGs89OY72vPyfzYQdZOG+8Yc77vT03WvoaWg7fQWcPL
tnHk4MqBG+DjBbZzxEn43er1rxR/vtYY/hf8yBycA7lp9gGm2FcfY7D7+FPE
YME4fP87rxN/4aAPK5qPk72YpDWMzUK3EM9Fz0C3Vq8Z3HVTKXK+6G3oSa6W
/DC2AxvS6u+jW8ifbHa+9ZI0cAv+MXdliLnD15PF90PtO8/j/lcp3tXZ38IW
YP8WGUs2l8NG8xu/aaVjXOCR13x3gtjJG45Rv+46OZqT0qBDnzTiMK+7fUw5
cmrERLFJ5BvQT6PU/ttS/Gbf7B/MCR2xt/iQxBCJObya/Pi9sc77IOPo2snl
0K38BpchA2Az4l03e058hBtKgUdvK4eMPGRacqbgTPKbr/j+xnLvF6wETrjF
58JdjxW+79HD/bs7L7rCYxm30rQCX77qO0UT/A48j+7lTgA8uM84lrNe7vsG
rPcBy+9G0WCy6v+q/XROAuPgn4Fz8LNm1Af2xIdrdiwAPLnGsWNihtgm4obI
GfeKiG89nkY7tuth53SOyuIOzLnOkU13vGWAyvlptD9ILiWJeYemYQ+HOCc4
2HX0TB/HtIlrgutn2B/EL2Td2A3OHh4gVzK5FLkT6j9UYj3kmvJJ+NT41uiw
N43N4AN+E3u5tRRxcLAlPMI6eH+gEnkW8i3Y3VbLDngQeuIHzfB6WBt26GCs
LB+xBnDS+OTHdc90/AIsxVjyC9O8F9Yy2HsnXoXsIXfEYO8sRQwB35zYEf44
d9k2O3bMnbsFjiuVs8gRcheSOzjwMLyMD0iJ/cH3usu++vY0/LoTkljXYq+t
q9eJjJMfABviK3LPBVm43n2fd398MHQM/mkv30mhbZDv/uBXs1bawFDfVyL+
RV6L2DfvaOduEftl3xNsp7Bd7ZLwa8lTzShFbAWacGasj7URa6Gdew7rnVcB
4yx0fBX8g/86yPEf8pXEgKAndhh7jP0d53w4cW/uIc53To65Z3h++Iw21obO
RF8uMYa60jiKu5+bnF8BGxP7nmUfHjzJfsE76JP/rApbg8+Dv4P9wQ7dURX4
eagxNHZqsLEUJb/R/xs8Fp3wpuN+DVnYruGek/cH6/YVyFngO2BPTqwNm4I9
Gew5rzZNwNVdnePAp1jl72JD3/VY9C1ld88D/h/ie8L4erTTl/ut3CEjboYP
3d8+9QdpxJ1/lgUvwNuTLDfNvj9ADJJ7q8Rdu9VHnXzAK9ar6NJ3fWcSrIhe
R7+/ZEyOb48uHeq1QVtyd08778BDPIZYGXdsuceG3ND2tO+vEuNlPS+aJt2c
9znOd12o3+z8xZlZ2NnE92qGOBfD2JHlsGHoMObMnKNJfTcHu/yG7zbVaJ7R
ZdvCYtxXHe07q/ASfiFYHbsIX8KTzJP5W1Ptt9IP2o933BJbjk1H/rgnxh0P
8pyHzpuz/v81EbtPQ7+fkQbfFowV4fcu3jtl53+gSWfzGGUX32/DhoJx4Xnu
CI/0PWHiucR1O2i/f0giv/J0Emd4u89xnevYcO5RdvJ9bNomG7sz923G0Kv9
LbA0cnabvwttmnyO3KM4eGc771yu68gS+I7c9CHfFSw9xHelOCdyIonzGuA6
sC9yge91kf0veP9E8z848FhjQTA8v8ERxSziYV+SG3duD92cs78Brk6z4Hfy
YLVZxM2InzEf8+APnuCxdyaBl8HN3Ldsm8WevlX/85LAE9dnceZF3+3BX8eP
aqoOWSTvS06EeyLcVcOOHplFXpj88JpK5DYa1fbTLGJ33C3C52JO7gTgx1U7
LtdsP63JPt+Xjv2C8Y/1+kelcfdxQhZ2n7HgE+7AkqMl1/KdY7/gZHyKo+1X
4KPxe6T9hU7eO/oA2qOj0EXU0Q+cy3vG0pRbXece0FbniPGt3nN/6AXdzk9C
9+yyLjrZdgRfj3uC8M9ltpvof2wn57/NayBv8KTtDuOe9Fhi4k/4rvv7lfBP
RmehI9/3/SX0yTteD/y13Wtmj5vdDl9uMbb/UxK55JeT+E0fePUx5+mQx3GW
X3zAIUnkvv87ifhxF8eQ+a9GUznsKnfq55bD7qFzt1mvbvM9K+q8x2dAx0x0
rnB0Gt/f4nUyHz4D/gJx73d8p2uk9SI6AXlALkpZ2HPsPbaenOduxxaIHdY5
frhU2OniStgH+I+7KeAxbGfRsQLaerqdmBg5Tu6h0cY7YgPECoiLEr/t4f7I
MvGGGs8Db8Lf8Cf2hFgXNqXO8UzkiD31dfxnmG3vAsdPKNEtvD/Zff4iun+s
9o+S8Cvmuw/zIc+p11D0t7D7+ALESYnRMxc0RG8Rx5pn+TrC8RnwQDvHuND1
DY6TsPay11y0HYB+xGjQQeifovNo5NPQqbxDlx6Wht/VLo2cPjYC/I98M3am
YwL7HOtGd5IHYJ3kBL5xPJx+1NEJfJs1cBYH7x6W4vcd9p/RsXyHuwP4OeiV
Oq+/0fGfedY37Av9TRvzoOv2en/wAHeZmIccHLIC/bl7UW/cjD0FW2MzkdmH
7CuyXmzpn41XiX/sd8wKv2Sy/RHosN+xEfRKD/MSe/3a+wW7vue4Eefd2fkF
8rncqybvBu6eZD+UdfdwzIfc3DavDcz6rucZbbyw3fgUOw/mRK7xUfkGsV38
E/AVPIO88318bu68Mi+6tdbyhb9TsE4mn5x4bXcaG/NtMMVs44oP/sH/YC3s
hfXMtW5gz+CIKmPjfpYF4kXIWbVls8l6Av2DT00JtsefWec6/0Ei7nBtFnHs
LcZFxCRutX93s+MkjIGO3JPDN5luPxhf7J1K3P3kPxD/B8D1NvI=
          "]], PolygonBox[CompressedData["
1:eJwtlndsllUUxi/92s8C5XsHBQERg0RQGUqAlqYFpIwgw0IhaCNaBBRNZcUY
NUYjoqioqYMwFC0YTTBxkoKJyCwKEctUIugfBogGBbRM48Lfk4c/TvKcde95
zz3j7T5jXvXcvBBCA5QPXciFUAuVXxFCXSaE7XEILa2Qg5vAlWkIJa1D6A6N
Bp+MQvikIIR3C0PIwGeTELZiWwQVgC+gX4/+A/QR+hFQecZnTAG/zJm74Wej
34LtdPg94BPZEI4mJuFmZLXo9sL3w/5++LPgTcjOw38PNYBvRdYfPJSPusR5
D8aOZRDfthP+KHQW/hi0Ft0I7EuJbzb6SvBf6AfiO4j4JhPfRfgN6BuhCvR9
4eeTnzrs15KjBmTVxLcD/W369sixreP8A+Du0Crs69uEcIQErwYPR3Yc/hjU
nhjque8sPmXc9wX8uYy/Sd/WgG1R5Lvu4s4ziXPVB/0ocBPnPYA+bkd+of6p
c3UM2++QT+CMOdg+DE1F1w9ZW2gWNuX6TvQ9M36DpZyXQbcj57Pu5t23oT+Z
cQ1sBc+HhuNXUxTC45z3Iz4H+f71nDcY3RboIvY74WvAq9A/SixV2LwFXsPZ
ldyxPOscjEpdS+XQY+CpkXOk3NzIHSORTSt0zah2SjjjwwLLPsO2K/xI4pnM
eavB1yO7hH8z/DLoNWJ4mvtL8H8dfACb95DPwf8ieBk0Lusa6AI+hf+n4I+h
wYnfUG85HpsV8MVQkucYSsH5qWs/H5svE7+J3qYMm3/wzXDnLmx3QpPQxal7
oRM2u+CHwsd8exUxJuD3Y9emekC9MD3nN9FbVFADe/BZRSyN6Etj92peZJ16
dgOy0/if4rzDyA9CjRnXqGp1TeJclSIbhm1n9MM4Yyx8LfJqYhhIPK+2DWEA
+hdU38E9sATcClknfB7Bpyu29fDN+NYRz3bkVYl7QW+it3kWm3no9iG7HX5K
4lyoJiYn9pFvE7Lx8O8oh/huRHYNvis4/9uMe1a9OyT1WXuhqfoe9EcynjkL
wU+h74t/CfG9CO6JT03OtTDrck2qNo/D/4R/FpuXwD3wKQB/jn0lsdUj+w19
e/jSnHtFc6cX/jdlXSNl+j740mDZk/C9sH8+515Vjd8QORbFpJqckPhbh8GP
BS/mzjbkuxnZQvAZ9T9zYjfUGdwl9myTTLolnNU7cr2obq5TvvC9l7M/ArfE
fnvJeia2XZdzL8mnWDnNesa1B/+OzRtZv/FmbA9Fnh2N6k90NYlzrR66Azw3
da9qpoznrjcT9/YkaAh8u9S50/cWpZ6Zmp3aAdoFTZrJha5J1aZ6UL2oHqkG
/xd5dt+Mfgz8/sS9K58LiWekZuUh5sMM+CPcuYjctEBjwMXaN3xvSZFn9DnV
CPHUgreh6wadz3m3qebVQ+ol1fAr4IGxZ796QL2gmabZphmxXLsIqi10zXwF
npi4l1Szedguhq7MuCZUGzn1e8ayvvD7uH9a8MydK9vUse3nvE6qhdS1+DV8
29Q7S7tLd/6q3sXniYxrfj18l9S+g/DpDO6TurZl0zv1jNasHgC/QL2U+G01
0w/CV8TW3ck9z2E7WjsOvoLz/r2cS+lko5zOTLxLtLOK8e2YePZpJnZIVJSu
be3gcYlrUrWpnVaFbkHq2aIcKBeasZq1+ofQv8RM7dzWftPD2N8SexZoZmt2
z0n99kvR/xD7zfX2mhErwUdj985D2NRh+3bi2tTO0u7SrizLeRdrZ/6M7ES+
d9Zm8LWpa08ztEfqfx79+8jmF/BEfJ+JPCu/Iea/I8/6DcR4FfZlsbF2onaj
Zrxm/T3IToI3Rsaqid3gq1PnWjXaDfwHNvcVesZr1u+P/G8iWQv8ysS7SG+k
t1qUenZoxv4J3yF1LainO4I3XZ4V6vnT6Funri3NuELw/1MkUmA=
          "]], 
         PolygonBox[{{4749, 3970, 1484, 2314, 4668}, {4636, 3703, 3861, 814, 
          4154}, {4626, 3700, 3882, 2320, 4670}}]}]}, 
      {RGBColor[0.7179833325324133, 0.5560324810816788, 0.39700021346337366`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQVeWZhk9v997ue2/fc66CoLKYCEZxjCwWEmsCRCWKgNFURVC2iKKI
gIgaJSCCW4SJMe5J1WS0MoFmETWJmZoMOwiYRFzjDCoIjaggNDRMVVRU5nt4
X8up6lPn7+/+67e83/KfU66edvnU2iRJXq5LkvhLhsfTKwgj4j02lyQXB/Ga
aB+I9/V1+v87WZIMC9r98d5cSJJp0e9ufismyduNSTKzJkm+W02S5fFbNd5f
xv/74+kZYzbVJ8lTDUmyJ9a4M95/j/5TgvZJjG+J/9uDPj/GLGlOkhnxXhtr
3BXzz472gph/apPGr4n2WzH2xhj7fiVJHoz5/zWNeYK+PfrsCvrheGZ431fG
MyqeUo3OAO3kaA+L/rtjnjkx56BykkwK+i+D3iPm+ifWjfUb4/1azDkt+nwY
9E+jz3reMfa9oO+OddbkdAb2Py/eK+IpR7uFdzydo/1mo84Lfw7E0xZPayL6
W+YDvPptrLM33s/Efg6VkmRnjH0yaIejPbteD/R7a7XGrJh/X41oh92/S+xt
Q+ytzBlDDu1BH1Kjcx6M9sx6PQeifU+txrZ7zqHRvy3aF9bod/qvqlW7zf0X
hHzODL5njTov+zhaozVfjOeWmLu2TmdB7jfFe329+Avt331G3r9ze2JO/zNu
e/B9e/x/Wsj9e9H+z6CfH+8L41kR7UPx7hZn3BhrVWLs2fH/zBh3WcjlQIP2
MCbek2OO1jrxiLl/6/k755OkUzz3oevxXBRPs2WCbDrHnpOYf1ucrzHGDCzp
fST6TY+5b4rnpThPr6ps4Mx4d2oWbQlyCdmV4lka7bYYV4hnTq30fnP0WQzP
U/1+YrznxPxHm7RGz0y62x70GoyzVvZTE3u5Nfr8pV72SB/0+Eex7qfN4l9n
z8nc10Xfa+NZF/2ujvc18aytlywmNkkez8S44SHHX8VZJ5ZkOx1ingXRpzn2
/7foc1WdZD479nB6tJ+Pp7/PSJ9Xo/1g0C6IZ06NxpR99lfKatPnljrx5Moa
6Tt8Qecvir2Ojt/ejnd7pvlfq0gW2Cw2Qv83be8z4nkixu6IOWfGvg81fm0f
vNH/24Pe2qh+Jc/TCUwL+oQ44/ygDy3KHu/0WTkz+0TfsRN0fkO9+m6J9oCS
+q6s1XxXem/358Uj+DO+KP1grl/5XJxvXFE0eAOv/lEvfk2uSqatqeR7W5P6
YEtgwV7LHRr8XED/kNld8b60rD1wvudDZs/Fsy+Rbo+2LMbGmndYhmtCT/8j
3ucHfUlZ9swZW0rCC/piO9jNvKAvKonG2I9jDy8WhRmXFNXeG7SD8WwsCpOw
ufVF2f6yaG+I9m3R3tUoOnMvjnUbYv8tZeHS8HheqBHuDHP7JzGmvll76xJj
To7nlFqNgX53tDvEnr4R735x3nJBY8G3Dxq17kH0Idqbot3eIN3fHe1C8GhH
0NcVpUc3Bv3DovxSOZ5SvfBgaqzzVOhg35j/jqLOeCDGbYvx78YzLPosi/3k
o9/SeG9q0lp3eu8N3j+/5ZqFM7zpj37Oqdf/tJsKwlzwthjvSwqi3WMsRq+Y
/7iQx7gG4R5tsK8l+oyPNR6KPg+FDp2BbaaSZ7UkPP5Z6MPwWs3fIdod4/lD
jeSCTG6tl56j44tqhVP0Q096x+//nFNccGU856L7ifzhSSX5ROTOWujNuLL2
M6pGeniidRHcnFurdcFdfkM/4SU0dHioz8552wIHJkR7ZUVzdDZW07+D94/9
dPI88OVE9znBZ+Qc4O4JbkOjfcRyYSw6g/6MMP5j6xOMkyPgW17+q1Ot2ujb
4Djr+Aada0BeuAamrYs9P0y8FPzvHvz/pFH9FjXIR+Kfugb9o0bZFXrJvtkz
skTG6M/9jq/+FmdfXJK8mYe50Tt8PWPpz/h/S7WHlfF+OMZeEDx6KNPezs0r
BhoZePFO0LcF/cZ4d2uQTwG77svL3olzkCe+6eyi/MQ0P7Qn2c+zPlja5riO
NnjY5vbR2Pea6H9xrNW7KF/D+M8r8t34cPxam/0sunnAsRC2g/1j44PLWpt1
f2y9Qt/X5yUbYqolMXd9SXJ+FWwzj64P+gdF6TU4MbYg2THuUo9dGn3HB71j
vFfH2VflFAewl+HWh48z9flzRTYJnX0ur5N+dnPsxZroMP4NWYDV58W+vpVX
LAqu7y0Kxx9vUuxI3Hh99LmupPZjTYpf6d+9Qfvs5lgZmRyzqWbFGS/HOpOj
fwL+Rv+x8f+YsuwXO14Yz8jof3P02RNzNiHbaH9UlJyHxrnWxtzDM8UJRwuK
B1hvhHUeX7GtXv4OXUQnV8S7R9Cfjadv0PtE31PrhAn4iP0xz+3E+HntkVjo
c2LUemH8lrLo2Av6/KrlBR622xbA5p8Yn4mV2C/nB7/hERgO/qH/2M1LddoT
OQt2y++cn7OCU4zfH3vb16h9nFkrudEf37jfWItf2Bft6fWSHXHQX2slo47R
fjnaPaN9Q5P+755p/4+G3fUI+mjHTv8V5+hVJ7zEJ7BPzvZEJvq5qbB3Z6N8
JXkS+tS1TjEncSCihVevOHYixmlvFJ/QgS2mfxHrfR5PvwbtnTPAt5qYpzae
YtDfjt+35qQP98QeNsU6D6TiAzwYFE+XOtHJ/ZDn5nj6mE8vmVcLUtHnx/uH
VdE/q8ge1xkrwcbFxscung/fQTwDdoAP/xv7/06z4nB8KzHbbPtDznef9aWt
IJ0hpkZ/0aWjsXZTjDs11XrgMrr6dF46Rx9iEsb+NMbtDNqOvGwH2mzr4dCc
4kziWXza6dbhFc4V2OuWTP70YLzfaxRvpzu2fcXxPXEwfSYmiouIG4mRtkff
d92f3GGO8wdktN30PzdIV9ATZD7HOAZG8ttViXDgrJzwinjwqDGWuchNbq4X
Bn9pelPIY2izYqZvx7n75hQ7oR/Y+7WJ8iriGLDybK/FHojzsAds4aOK/Fbv
TNjZybEWPhO/i988qar9H6kIq0YYrzg3e0OHR8Rvy2M/vy7KzmZ6/lcrwpDp
MUfXTHvplin+er1BOIzNHtPhRHnbl64h4EePOjbmfP18xm0x50lBu6Iq/7PK
5/2f0JWbYt5zg35y9Jkd+3mjoBgWzCKOZZ4+OdkCPhJf2SP6L4ozLYxnY/zf
FPPdVZJvgpfrPD/4Cqajo328LjWTfzimhF83FLQn+l+SaWySKhb4sFF8vyjo
qzlnRXOs9jyfBv33Mfcb8Z4bY05D31PtCT+KD70h/l9EPhHveZl4cka0N1VU
g7gx2sMy6em6oD1R1HkHx/8LCzo/Z5+SU3xAznlmjDk+xt6dSc/QXWI4/AI+
gfiQuBh7IzamzrGhTnpyJOboG/u/ItFZ+vjsxFZXO77akaluNCoVj2mzLvKd
ZxmPKSomw49PdD6LnyK+Jpcgxk4zYU0l3tVM+PV6qvVZ90eJYgjG4R8Zt8Rj
p+dk86xHDYSaS7sxflKTfCu+cYPHYqeLjc/4A34nJplfVF1qk+NozrfQ+HxO
0EcmyheIO7Ed2qxF/M96y0wnP1hmOjqG3SKzc9yGn+Rt7J9azLM5xehgLHZ8
tnGDvVArw39OKqlOhc+a0qQ4ADr56HTXMYgjyIXYPzkU+RNx2EmpfODOVDnX
Uudd+NhdPiP8uc51hqmp7Br7BrdaXPvam6mNPpYKynPuzauOcrP3MK8kv4XP
Yn3sDVtD5tdZ7uABuECf3j7vMOMSvMV3TLbsXrTsiAWR36xMNoKt8Ptkyxe+
3OA2NrzbNZyuDepPDgh/JntO2pssd2Lzxc7L4PcU8xb+POY65P5Y99H4/6VM
udYB59fUMIlfqYNs9LzMSU0E2hzHsZwB3iKPg+YJORk6j9wXlpSrg9/k2eRj
rAGtxTn8jY4VX3QsSk2BOhLx/0KPrXcNCh9EDk0Oz3rkEP3zqjVh158Z5/Cr
7+VVRyVew0f+MdpzS5IlMlpvGSxyvA9eHatlFdUHGeNHtzgmnJ8XxhIzNlgf
6EPfuaWvMXiu+7T47GMcc+HL8WXkvy2mcwbOwthTGuRTwdClTaLf5ni7m+lz
vffPXX9AD9CB1ky1m/GpMADZUY96IK/aBHLBDzIXOk/d8WHnB9gquEMOzrvF
beS8xDxPMsU2xDjwiP3g7053vW2U4wQcIv4fW6ixf+ScyBG9ysLGzmtWXoMf
pgPDBmXCj59nqo8hsz9aFvCCeYgbuvi81L9p41vPyus3/MV3M2Hqgkz28rhr
4NTGpjhfaHZth9x6jrEEvKVOgH5SlyAPx6/gU7Y5XuJ/+AufF6eqZRBfEYux
X+p5M+yLZnjsG/aPp1RVy3+/Uet9n3wuJzx8NFP7HOPTxTnlL+O8FrIlVsXf
DTKP4NUrFekhegKPqEMTOyITdKyr62ZV19CQAzTa1N7vcN3oTzXKP9qcg5BT
THJe8buC/Cb+k5oBtQNq2q3OEY7VZ+qEv/hW/DH77IXPLwiT+e008ra8MJna
KOPQhwOu0xEPc+7v++wLLMctFfld/D5690LQp0b7h6l0EDp28XzQb6DO6BrC
FNPx29McM0xxzEDs0JDJ3nKZYlF0iJgDTG0yrhJj4oPnOS/Cht/NdKaO9jWs
M9Vr3RIyfp1cvqo1p3hdYgj2sTqVrXwvJ3v5BbFltB90XQQ6vphceXRZdz1g
OTk22Is/GWKdGWJe0YZfQ1wHIz8lFwDvnitoXubsm1e7d6389fmmT0iFA9SH
iEGJRaup4g74Sb5BHNjVOnNrqhjrtlRybylIvtgYtQJ8E1i9xLFIsao+TVXV
s9/0XRI5Ef2JU3hf7zaxw2LHD+RzzxSU61H75w5gl/Pfic6B0cFd1kPiiEmu
V2Bn2Nss1135/zbXh/eaTsxPjE3cv8ex7u0e+4HtFBrnL7te/VHj13n5HvfH
H33g+cGT3R5LXkIeCU5Sn7/KNfo25/s/9fx7PCd3lPS5yTgFn/Cz7Pdjr0We
2Oax3E1x/0iuwV0XuXpX8wyfDt/wWfgKatfcYXI/yD0geTm6SPz2mXP0a527
gXPgH2thm+Sl+Bywgbk6uk5JnfOvoTePxfi/ZPL7j9n3c75jsVCisfuNLdRK
BroGiw6io+gh2PVVvnuc64rELci0p7HoOft28o5Hcjoj8RXn5H98KzbyiOnU
zdqdg5DHH3KNglrFIePeu657DEhVD6EuT51zc4zd5PGHXd+Azj0s++ccYGE3
4yH62cM6yT0fecIs8qBM2Lkn3usz+d3LU9lVq/3vswXVK6hn7EhVq5mE3aSq
H7dWhAdbfYfCWTgHcTg8eMSy5p4FXwNuEstsNP7gl7APcHef69nk4/+SKQ/p
lEmmHVyL5tyMhW/U0am3UuscZV7DZ+SA3qAz/N7bNVlyypq8cmX2wp7Ie9/P
RH+rovrEFtcoqA1ucT0QGRNrvmwfcVlZPvQHZbUvqJEfIeZ/0PXwtc5pwBPG
cdcwwpg43HlubV77Il/mbAdrld8scz6FbVJLvMn5MPV28h1kftg6Qy4DxqJf
xJXoInpILYDaLPVY9si+2Sf8ec6yQGcG+/7+OfMEOv6GOhc+HbvcbH3r4fol
57grYqVTK/I17ZYNcqGO8s2K4h5om30u1hlk/STP2mz/Qa1poH0KdrHGa1FX
O961MOrY9B3le+ZVXov3are3ev/oIToxuPy1TQ/y/HxrwPzwZo3H0l5uHefM
g1PVVaiv/L0iOfWuygeCS2AC9yHUp8Ca11L5rk8qksOz9nfYX3ffQYB9yz0/
9aqBrlkN9x0c8R61JWpM1Ae4n7zUeoX80QNwd1bw9sJm+XL8JnVk9sV+GU9N
+Jux15Xx+zeqwkHmwa5OdW1ylDHqbNevTq1KZ/kehPW572QP+K9W5ybUKcuO
o7pXZTfUjfAJ+AZ8R8+q9gH/qMGMtR5eXpXe9Av68kz3Kj0yxQhDHFORf+1y
XRdMaLXfZA7Owrcn/RzDnFPVugPsj7grwO9ie1/ZJOcmTyc/pt4LD35gfpL/
Puvzoz/oEzaCn8H34Hd4f+E4pL990kjXE76wT+pnnLnCfuqI29RHz3DuAYYd
sW+YYZxjj43Bu2uaVSNEZ7cai3i/7Tay5N4O2XFHf8jfsYCF71pPiDXOc+wB
bZvp5NaDnV9f4ntS7mHwueRd5Fys847XoqaAzsGfE12P5p4Onl1qfnK/f8Df
wBAvMx5sJJ8dZ785yfHSbuMV2AZmsWaloDtV6v7U//tUdbczzvc72EKz77KR
G/c1yI53Z7e5A+F/YjlwurPvdKh3jXXNq3MmOQ2O9xup8P7NaG+t6PuPP/m7
gvH+tqDNdW9igL6pdBWdpZ4KXoAPhapyhsaq4r+hvvsY7hr+sfv0OrXJYfHh
fGOBH4eX8BRZUKfK+e4bfB/mWv3WVDnMhKru38b4Do751nvOEW6zJvZxu/PQ
6TFfpaKYjlzvdud7nexDB2bCwJ2u51PD7GosAvPxGWAmctzpNvd1Tb5bp05B
H2z5Pd8L0Ie+YCpt5L/DNQ30ulCRbv93qm/bro5zPVnU2uTCyLliWRetm62m
g4XYY5eYo7minAcfgh/Cj1A7vcPfTvCe6buQmabDc3Su7G8b0Llmz4meF70W
97cl19PAl2N7T/R7yffp6/3d2rpUtYG0ovzqhEw4cl6mmmq9v81oqCovzVWV
+za49gLmnetaEHUD6OTFYDcYDiYfw+e8fAnvvm5zLzrA99H9fTdNzQefTX0I
GUAbYPr17sd5jvqel3znKdej6FOxrcEb7od/bPulvk7NndiJ2GWs70aJXZAx
c07z3SD++8RMcfHjmb4FKvvbJ/K5vvZNYxxLjTS+jXabejpY+4tUa4yxj95j
f09eOdr3s/TnN/5H38ATsOwF32V82zkyvuA05/LUlhe4vgzuznP8w3cr8/3t
CjWwha537fE9LPnOmlS2vzZVXesuy3G77zrJQ/DhxAH48cvsX8D2Xo6biJFO
T3VPkK/KfxPDgs9gJxiK34X/4/wtCva7zjVBvqP5jb+l2WU/x7k437cca/b0
eZlnof+HV/jktUXZ3rEcwXE5OdK9zrlWV5Sj/zxVjQEeUrO62XcyYDA85bfB
rnGd5T7zfad5XCb/UrS9UIva7noU9oVtwfP+vmfkjC+7ZkCbu6RL/t/3UcN8
Fwi/59tPkYM/7TtKsP4p6/A79pWcHdrTnh95Up9F3uS7zElODf782tgHb+AR
8QO28IB1CdzAX4D5fDtHrfmrWiNt6palkOVicCremb/X5bvdoZ6T71ThG1gH
xkIb6hgJjGAtcJWaw1D3H2Y+zDI+P+l9rvQ3KitSfWv4pPHzuKpys+Ormu9n
nvMa3/OTexCPgh+/xB82K14nVqfew70RWLoq1fsDcM79iWcvTYU3xGu/z/Q9
6B8y3X8Tl2fclTXL9+B3psX75mbtDb7fZ7mzziKv1d/yOdl5I/njk6l8zTGM
rhHuMhZdIjeqcX5EHrHI94k8zJt4nfvd/ze+c+HuhVgG3QPn/w/Xodyw
          "]], PolygonBox[CompressedData["
1:eJwllmtslUUQhrc9PYfTIufb/QCVS6GFtkTqrRSIYlRQDBQLGDBgIkECBpNW
WrHWH6ZVUH9o0IIICiZiTMQWkRYQMGqhFI3Q4rWosRAJEhTBKEUlghr1eTM/
Juedb2ZnZ3ffmTmFi2vn1GQ75zYgOciF4FxV2rkDSefuBG9BFqac60CfDs6L
nWvB/lHCub7IuUbvXDt4OT57sD+D3Awuw/8K8Kf4tGJvZU1gbeDbQfR8xIOb
kNvxn4D/EHAWksx17gj+E/FvJ/4j+NYhs8EvYC8j4amsWQv+nPjzybuc9c+h
D0QO4VuExOAVxKjPgPG7gAxA30Lsy7EfxD4IvQ19JPon6G/jOwu/V/pzJ8ge
9jyHrQLZDT6FfMdFvYteD36ANYPJZUGecyfQG9GvQS8kx3PE6fGWi3K+hL6E
/S5yvijLuWPoKfTN7D8An49Zewf7j4rsDnr43oh9BfE2c77rsC9GP4qtk9zq
wVVIN/nUs381eCL7VeDfRrwa8GfEmsf97OTbJd018h6xbiCfoeB27JXY12H/
Bb0bfStrm9k7TbxqYjSjj2BNAvtp7GezLKdO9H74vInvZGJ0YTsT7CwtyFnw
Jr7lIcNZX47Pb9oTfC+4I7I70l2NJ96T2E56O0sWZ7yJ2M97852OfR329ciM
lJ3htmCcE/ea0X8i1jT0feD9yH/oU9HfT9qe/6CXEW9b2jiyyttdD4+Mb7rz
H/nWp7fCfhrcynvMxj4iYZz4ErwjYTkolwnecpuGvIgeoz+UYxwRVwpju/th
3FkB+GHibUM2EmsK59rFmmXYa5G78X8dGcP3GvTdwb7Jdoj8Slk/k2+dnGUp
PpXgrmBvpzPpbGPRFyWNY73oubG95WBy7sU211ts7am9PeeZIM5lW01MAs9D
lmLPRm/Dp4HfKvQdwe5iFfaQa3ey2lsuY8FrwHXs9xb2u/B7HPwOa6pTFkOx
xGFx+SI+z2KvzBjWtzeQvmCxdMfnwS8F42op+svgimBvqx6lXjUlWO9QD5is
3hCMC4/hf30wDolLW4kxhPyct96mO5yBfSVSnjIOX4Xt38h6nTgkLonz4n4+
kg2+NVivUU3dAh5F/L1p65HqlRnW12SM63nkMJ6Yxfx2IXPxvTq2t3wK/QT+
f0VmUw8aiC3Ft8KkcWCltx4obiqWw7YmWO/bzrdx2HchPfhfBt+OgF9FmuDa
Yc67CVzG+j+xNbH+PvRZyH7WHifGcfV3b7YnWNMCLkUGJaxHPx2splXb+rYM
243e3uID9hxG7JHqKehfIAXgIvxzkYVp45RyVK7q8aux/x3ZWtWkanODt70X
sH4j+HtvuaunqreKs+KuZk5/9jvgrTZbWH9G3I2tT6p2NTvmYD+ZMM7tDFaT
qk31RPXG+bHV4jH0e8Ad3t5CNb8PvDy23qk3K0f/hj2y+vH2yA/E2qsenraZ
ptlWHFss3XkROAefgqS9YVJc9tbbxDFxbVxsd7UWWYItTYzx8OXKbLszzRjN
GnFqNL4l6NemLKZiD/XGZc3E18CdyMWEcUBcUI7KVW/+NbG3B6tdzWjNas08
1fki4v+s3hgZVs9X77+UsZpULaoH1KnWI1ujudngrbY0AzQLvgrGPd3RKdVb
sNmvmTIpWM2odjQTizULvXFZM6UB23n033NsxvYSr1s9PmX/IfRfojjY7JdP
CfhBb7NFd6K7edTbLBanxe2Zkc1wzW712EZwfmR7qo40MzU71aO/9fYfRv9l
NIOTsXFK3NKd7vf2n0D/DfTmv4Lv9/Z24tiH6BH+f2SsV+oNj3rjsnqwevGY
2GpNNVICHo1/bcZ6v2ZiFOy/kM58GPw/N703pw==
          "]], 
         PolygonBox[{{4626, 2222, 2321, 3884, 4744}, {4734, 3920, 3708, 2258, 
          4724}, {4085, 3858, 3699, 2217, 4620}}]}]}, 
      {RGBColor[0.9094498668877016, 0.6436246672192539, 0.3192945873518749], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmguQltV5x99vv93vst/y7ft+qES0w8UlEZOFBceIF65JWdBEMw73VQLG
KjZFZ2ywIhdBUTFxqi1pOiajZrjppBEFLdqKXFSQW7zEtoIBFUtkccE0lTTQ
ANPnx/+/Y2f2zHv2vM97znOe81z+z3O+fjfeft1tdUmSLMsnSfwlTzUmydPR
bqxPkv4NSXJBtOEx3lZQ/8IgnhiEP4pWyCXJwDrRQZPPkqQS499PRcf41TFe
7JEkpWi7Y2x1PFdFG5PTfC3+tjHGKtE669QvR1sZ/UXFJFke/bujX85EX4rn
t2K8d/R7xfhDDZp/Q/B8KtYuBQ8n4zm1OUmmRGttSpKLq0kyLfpHG/XdudEG
xLovVEUHTVeT+IO3ufH9ozHPzHju6KE9wP95Dfp+gPdViLYCnnOasyURH0WP
TyiJZlK8/zjGh0R/eYznq1prQ/QPx7or2Xs823qIZkednm2mPxJzF6LNi34p
5vlzziP4GxTvO6JNjPl/meps7orn8NjTldF+XU6SUTG2L9rIaAtjjVMhg2LM
tTHkOD/m2RTPNSHP/fF+dLSxnof5Tgbt5pijIegXNOm7/w0eTsf422X9n4u9
rAgePozxJxt0jpvqtR/GR+f0XGka+ss9fl9R+sC+dvfQ2aMDVzZpzRPWmacs
qzvy0o3JOa3RaD050iQaznBtUWd3ebRiveR1VZzLD9Cf2O+ceN4S716u1xkd
jH0uimctnvtjX2cVdFb/FPv6VsjwJ5Uk6Rn0v4jWN+hmp+rviHfDg8crOZfg
57wYeyYvmyjEuTdEuyd4eS/GDtaLz3L0V0cbEvxMyWtdvi14Tc768fjm5rz2
+C/1esf4zODtYPBSjP+vDpqritI39O5q9ycFzYGKvkFPsZPu9/Sxl7sy8XBr
7GNLUe8YR67IFz5viHlOB/8bY/3nQ6bros1ukC6j08htWtB8XJG+T4/+f1Z0
Jptj/uPx/EPM/zmyjTmnxPOzVLa+PeQ2I+i/i24F3Y6y9Pt70X8g5ngi+i9G
f2K8n9AoGSC/jZbh0or0jLXgcZPHpwTt5Ead6xvB52Db3VlVzYEMT5XEL/x3
VOQ7+P+DougfzunZ5v62HrIx7Gt67KsraKuxj8mxp/kxx9wYnx2y+VOj9PXd
GD9SL739s6A7FM8P43kizuO/YnxE7P+cqva9qk7zb43W2kO0rPXzeJ4sSQb0
aa3m55pY59vR1tfLR6w3Ta+q5t0ZdF8LPsr18r08i+5jF89FW4puxfyTorVG
GxRyeMHniz3ttv/d5T72eFG8+0PsYWA8nyhqHfjnu+f97eJMdnJRqjHe3dag
eXbaZrvnpb8S/xBtatAcjtbZoJiSxjxfjX4Wz+8H70ejvzDWWm56ZJ8V9c1z
Qb83p2/xJwsKGmeeL1W0BvPXMsmlZzyfCZpazNGnTu+Yl/iCbb3dKPtaXNQ4
a3FWjLFfbOvHjbIv1vnUPKyzHPAr5wXNquh3xLvLg+6yaOMTrXdJ9Ecm0oUh
5mNeQXTQbMsr1hI/hxQ1/pXoPxx8j4r+W2E7L8a8I6PfD/+RaZ574tk/L5rB
Qf8S8iho7O8zxYu/y+S/4AH/w/Pr5meY+2f8W4P2w36fLKrPvoir59TpW84B
2U5rkA/ZbH80qkl7v75B813iOYeGnv0wrz3iO4d5vKVJOo3PXRL8XRrPr4b+
tNVJbvht5rnUfBbj3YR491TQzsgk/yzGXqkIt+BH5tSS5DfhU26MZxbzvxbj
r0Y7HDzcGnJfUCec8lq0oTHn3THPq9FfkiqmvRVtVr32u8l7/utM/UVBsyfe
vxft9qCZ49hBDFkQrSt04bmg3RLt5aA/1Cw/Dy10Py3JR6Az92bi4XdB89/R
vkwMjDlWhR2Pjf+PBM+v239+bkxVdCw71iy9eCtVPJ7lfSXx7MrLz/4s5rki
6EYGr0tT6daD9kVrCqLrndc4c48J+suDfnWD9PJV28hM5myQjXwa/HdajnNC
5j+J8e9Gf2us8XpZtNvj+UZZ/ryuqifxPanqPfPkm3Re4M1KpvUa43kgE7a8
IdV3R4x5NsZab8acv4q2IfpbGsVTj0x7eDvoN1V01viL9ugviOfN9bLhv6iX
v94V3+8s63/w4OqqMOETqeL046nwzqZo0/Gb8f7SZsX4l5k/xl+N9s0YWxHv
DjcqZr7nuJmm8kFtoXtpk/jcHO2nQXtZfHNZfHuoJL7ghzjBOnPj+UlJsqSP
j/ljRZhgaqPiFnHt7KriGfHtXvxUtAMh2rdK+p9+e9jh/dE/JxHmW1IQPmXs
AY8vKUpv1uWE4dAf/r8/5h7QrPMdU9Sc82wDubwwxh2Z+n3AxiXNOQl7ivH7
on9TKh7GFrU2c9znedAXdAAcCH7FztFnbAJZYBcdjrnEw67Y+/iQYzmnNdgD
ewJLrjBm5v0406A7yB//z1i7x4nN0x2XD+U0/r6f0F0a53K8oNhAjB5d1P7h
eX08X4w2N6/YSQxFhuDCH1c0vieVz8H38P5Z04An8XH4t8+aZZ+7UmEefBb6
vc06jT4z3z9UlF+gw+g9Oo/u00dvsBu+JUeD9memv8p+GJ/Gc4txHfbfM9pL
YJyS+AMbt+W0N3TjJe+xV6LnevfREzA6Nsh3a/3tvzXqG2jwpZu9Frh7rTEG
c7AGNGMtkz054c0tjhfzm7QG84MtkD8+Byy9xmdxluMKfpRcbLvzLnAWeQJn
2l6V7qK3+4qKjV3x7bpMZ3hdKtrZzitGBM3waLMKGuMd2G59Jh+OL2dPFccI
6G8t6B3xbZTjO3H8hH0pvB93TOe8uzEa+zrmvbCnE+4zBqa6yPs95j5Ycrb5
aXMuCPYDq4JjyUNvyYSHDwSf98S++zTLL2+JNiXmuT0v3o57rfYYHxutviR9
x2bwRV+vKafNxXyvRLs76DdkwqTXR7/Djf4E4wHwH9iAXGpyQfkl/EHXO6e1
4YG8hpySOYn9YHawFHgSDMMZDXbet8uY85OiMAvjXdaBM/lUg3QFPQEXHzIu
rjhnJAdIMu2FPdW5FkFNoo/zLnDLauMY+nMzjfcPGf4yE8a/sCbs1N++6bhx
O2e6xPqKn/yhcRt4ZmJJOdEF0Z7OJKvVmc5usPN34gA2PsNxk1hCHEE+5N7E
+LQoXIsPJAak7hN7akXJE5zLOFgXP0pMxZcucP5EjkwevNq5MDqK/YCfwavM
3+mxnh4H8/Y2hq95nLWYO+f5d1jenDOYpaftAn/cbj//rH0+fo+zHVnUORKf
24rCK9jQCNsdMkmNz/l+rP0F/g18wJlDN9p++JTHwQyd+ISi6hXEF3w1sRA5
Mj4uUXyA/+WuN7AfsAd5AesSl8H4YH3GiXFX2X8iP2o01CaIF/cWFUfI66lJ
kffxXOw+8y/yuZCPkPd/lHyBgTgX3t9jGnAKeOUv4/27ZfXBLX/jnJHckfrP
x/Yh3wn6DyvSfeZgDeZBZu2W+adNqiWBIZg/8/mTj9AHA3O2nD2+FD9zMt49
1qh42+rcE37z5hnfz96piSEL3mGD1zYqR8XHnWhWnvnrVLIfafmD3zl34jt5
DPkMY/3ju/1F+YoL3MdX419+63HGPnAff37Qc/KEBqxM3F1WUfzCr5D/4luw
Ob4l94efTvPE+16mwd/0cr5MPDnbmIo4QFzB9/7W68IDPg/f90hO3/A/OeyA
kvqPOAd80r6RdddYPw+ZB/rgR2yfM6LG87j3zpzwx7fM97jnp3azzPF9rOMn
NrLM2INxfBV+E1/EWp/Y7tjzIffJ15bb1rCJxHYBfsKf4G848zrr/Jay8CiY
iZgD5iTuUAOcb9ssl6QfYEjOeYhtnLElHifGYu9d1p/7rEvkGMM9vjRT3NuZ
6QxYC5+J/yJmgZMZO9s8EHvR4Q7HkH3WjYtL2i9yRn/2Wba7jbnB/HOJfyXl
StjTA7apd8rKD2e5BvWg61B7Y7yrpPyN+tZS17h4PuQ6FLp9hfN0dGqXaybr
qA0WFNufzeT7ns+kU+gvPINFNjvXwC9j12DXFsdVcDb2VyrJ/4wvqY9sjzap
7gkmbMsk0yGZzo785YZ61Wnxm+VEsR95In9kSh/ftcc+C381riLceVdO79tN
A5bD3rC1TSXlPLfl5QPwTcjwgUxyaAs/0LsiPosl1auudc1qk/eEr/2Vc3ly
enzCQZ/ZsLLwJbjxmyHPb1SdS+eE2T/q9i110nkwJ/VqcOl4n2/RuomOIj90
eYtlQu6+1/n7Gp8PGOOhiP3fjrUGZzpzaG4Dr2eqfzVnitfE/tHGEOyDeFHy
HQG1RGJs6jj7g5rw+cKa/CsY6WHnHeQc79ue93hf+K399l2dtt+R9nnICr1B
NoeNv6nvEz+ok53REesG+TO50Grqro3Kcbv1fpxpurxvagXExHMrquc0p8rH
/jGeA1PFemp7/5EqVvxVTTLlPNCllpL8ID4QXTvt+wXyHPKd36XySdSAOK+h
IePfV4U9wMnXWDemOc/913rFK+IWNk4OiD5xpudXNF7J6cypYXbX+alhUOfk
PXTUoKjRU28q1pQnzHWOyXeT/e0g91vdeHemDtkkueAz0XN0+J/rVQNCj0+n
kuV4y7PkPnxi09ydRFdx1vVh4i3/E18Y+5NpyAOOub6KLFjv54779FmX/P+U
a+953+Pgh69JhbnvTHX/cL7PFd7BOKWcakzgtgWZ6lzUdpoy1XPwe7fUSzfR
MeIddf0O1/apMeHbPo85hqSaf0emOs84+wp8xjjXXDbah+CXiAltjvvgG3AJ
Z8rZ7LENnpvJlv82051Ju/OUyaEjo6rCgCfi3R0x9maz+LretXvuMMD08zLV
rq6tyg+S53KuYFJqeqftA7EtfA1+hjrQbteC2p1nsxdiBeM31csedpmGO7S7
SqpDYLfYLz4KXX/bNcNxzqt4d9Br9TbtMNPvdg2K+XkyP2dEjRksDg4nP0Pv
Lyt/kf/f5LsgakPgQuyv3v68wTLDhxxOpV/cV6Bfj1nH2uw/4QFeD9sfgEsL
vqvqGzLsEW15SfKd6PsXMAk2Di4h32mxvfM/feIsMjrkeE0NFZkg8xbnRtC8
6VjMXjpcP2qtif+CYw18NHgv7b5HYxydLbsmyd0x98vYPD4Tn4qcueOivgBu
4qxZF19KfCUGYP/tqc7w30M+02JsZ0n1CmqWO1y3xN8gf2IutRbGqbewr3d8
1vhd/C8Ynm+3W392uP4J/anQxylV5SYnfTfdL1Xdmlowvgib2e51yQPe9Zx7
XWcmBm3Ax5aFGQfXxPOgmu5uBld0zwItNoVvpHa433ryvVT1waE1zTGirNhN
zoVONBpPIrPu+N5aVoz/ke0du+cubpL1gXyRtdHVYaEvj1Wl372jPy/6r8cc
vYzrwHfTHY+o7870Hctm47HPHJvYI/sb4zrhVteT0Rf0Bn9Cfk6efiDWOZnJ
Ht9vVo2Uuz9iB7o79//FOmIfPvkd1/bxdeTi1N3Ix8n5iOPUNqlhb/O6xFfq
ZtTDptQkt8k12c07ngd6+FybEx37BifNcX7P+DbXxmdYB8kBwP9gtC3GftC+
ZnyCvUy0zax2PeGZTGd7vmMfOT7YjxyN+gD30NR+j/h3DNgg8jrS9AXWYxxf
wdhRf0udZrjvrxfnlT+DS9HJo8aW/DaCugDrgD8Wm4Y7OnAR9zI8B7pPfjPH
OQ74eIbvecF9o1xDnmabI2/tG3sbEXR9fG/8qOusxAZwGPcmzzg2jnCsZD10
i/tf7p7B5NtS8XZJpj2NsEz4nvjIHj/I1CdmTvI9HvrMXfRM88n5EhepJTI/
d+GvRH9U5nu1TLk0sQw7Je8A24BxyCV3+LciRfepVa5xvQL59rOO4w+/XFPN
7is11YKfdkwHU3I/BsZs9R0x8Zk8fZtz9ZuNwckT0ZGtvqfeahr6yAx/OdJ3
Adg38gfjgJ/AOeQxnBFn1dmsnIw6KHJEnm+mqitQX6AWRN65zHVv7AOdR/cv
SOWfqauR94BFwNYDUtXiqMnxm4SvFVQrPmbszZnOzzTekgrXLHSO2dEo+VPr
POX7ImIKeehC/x6F5wLT/8b5Gj6T/Iv50ZNHMt03DE3lE8Gd1FX4/cs81yfn
ex7qe+An/B54EmxCjg12pZZ1oe8suIMd4/PkNybMzzj3rqN89wp272d7IV4N
NEYll91uPQEf9fa31NOW+I4DH4l/XeWcF8w0xb7xU9d5nvcdO/ez4KsO35UT
E/g9BO/QkTusJ/gP/Ahz3Wk7xUfh798z3Qv27XyLvY60zXbaLvB7Z/KbJtWg
Vhong5VWGbczP7XhfbZ57jam+g6RPAPMA/0K3yFzR0d+PMv3ROwNnSNec9dz
2Lq31nk0+TRjnaah5vOGa62vuXaBLy24vgMGgC/stuK60wRjg5aaYt6Amu6r
+9ju4BFewWa3Oq4QU8jdwF5gA+p/i1w/nGC/DS7aaN/BneAf46zHVZWjdf8m
DBrOjP/P5E0l5T/gbfQKrItuEdOm+jct2EGHfRFY75BzRnDuYOcy4F3+J5/k
vmawMTD5favzmkHOc6DZbrkhB36vg//9n1S5DBiIPZJDUKudYcyDnrGXvjXF
7H412Q8+kLyYHJTvyRGn+3dE8Jxzff6Smu4MiQH4f/zEjSXZ29FM/Q3Nmu9i
z4lNIvt1rrm1GIsSQ8m1Sq59XWw/jL7B81Tfr3X53vGjVGfD/Qln+yWfL/f0
1Bjmp9LZSdZ76qXEPmyqO1dH5tf6dzjkZeTHfV0HWJWqRrA1VU45yOeCnqDj
4FhqBWBrbJ88BozN/5dn8llXZJLP/b5XpbZNDRwMSX0RvUFnxlelW5zF7HgO
qQr3YNN3+m7+Qd/7VzPZM3rE99gceB2eiPPEe/BAT9eGiZXkc+DSBcZid9pX
DDB+JP58EPNfF/zPqsm34gMfJZ5n/p1Kpu/4/gw/FdF3/8aLJ/Vu9HGv6yD8
BgKc8ftm8TzF+o9PARPAH/Yy1XiPO6AzsatOfpF18BX8fqLL2G+M+SXm/h/c
8lUp
          "]], PolygonBox[CompressedData["
1:eJwtlmdsllUYhk/70fYr0Pd7z8sPFIyAbUGBQsHBspQhw+CIRKQR40ATRQQS
lmwZiggONC4gYqJQJ4mCiSQgqCARHChoMCooCQmUIqISIwridef2x5M8+5zz
zNNp/JTRk4tDCC8DLYAnYwi1MCpzITwFfhCYDD6wPISGDJ1CCGOTEO4rDaGu
LIQS6HPQi6AHQ29Hfx74cmy2gPdE3g7YmQ+hDT4+B9+A7Gp0HkVeg8/dyG6B
NyINYSvy8XnrSHcJOleh2xfojvwgvGr8bEWnI7bV0B2BV6An8ID56O/AthVQ
jX4HoAh8OzANWQN3PQscDr7z2Mxvk0/5bo3Ox+hm8gE+FN2/gXvR3QJvA7zb
wMcUhfA2eCf85+E3ArOgy4DKEmKIzqXIPsVnHWdVwStH1hVem5zvuFhnAYvR
3cv970Z2B3QTuvPhpdC9M8t032eh++DvPe5T05oYoleNfHveOVKujgK3Qi/F
fif4Jmyac07uSWxfgN4PvRqd88i7YP8R+BR4h6API9+G7hGgPfgmeBPwNRf5
xuhYDAEaSxyTudFvLwcq0f+NMzpTPzcDX0DvRn5Rzjn9Bfzf1LlQzM6BvwQc
AK8h/kew/Rq6jLPLgTPQ/YAXOa8P8n7A0/gYxrl55H8hewJ6MPRm7jNI9Yb9
3FLX4Dbom1LfU/ethf41dSyUk5Pg78BrLvIb3wXvxVkj8XuyZQizufMN0NdA
N0F/A6xKzBPel/sMRzYMaIY+AbyKbCj05jLbNEKPgC7T+6EPF1w74yq4I7Hf
yplzOPsgMVjPfUaiX4fOPnxP5J6Pwavnrn3QeTi6B9QLb6I/CbwWGADdH3gE
+R/Ydik2b2l0j6nXNvL+/tE9qd7UmR+AX6CYoT8I+nHwldG9rxg/A/4G9xmF
z+daUX9At9R3UU+qN/cWbKscKBcrgHrw9zlvYPQb9dajnPEgtuvgjUVeBUwH
fy26VtRTr4NHdI6XuAfUC6oJ1YZqvApfn6SO1UJgJ/ge9RT2XdH/DHwdvB9z
PkNn/ZT67LXIe0DPiD5bM2EqeD66N9Wz6t02ijH4KGK+HNsEehe67YAK8A7A
QOR1wMXRPaneFK9jdO1cnjjXqqEIr1uJc6hcDojOhe7cFnxAwTNSs7Ee6Anv
euz/Aebz3sHYNJS6RztDV0F3h26Hj/Pg9wNti82bp16I7gXN8AvBH1JNIztF
LZ1Ct1d0L6jmj/3fW30LrmX1WH107lQTqo2W0bNQPhZGzzTNNsVkmfod+2sT
1+qCYsdMsVPPrwAvROdGMUg1f1PnbhGwC/xLzp6ad82odvYDQ3LmnQFvj/wt
/D9P7c3OeXaPSjz7FPfxxOQH7j2Z8w/IX2rfmkG/Y9sD+Z68Z6Jm47TMtaya
Xg5+hXYIftbAmw5+XcE1r1rXmerlNYlzo55+AJ1V5PUsspngDciLgKzMM7k2
8+xewR1u5y7fI5uVd02qNlUzqh3lVLmdmHpXKYfK5bfRu1A2Z8FPw1uW8xt6
Zp7Zmt3qkTu1fzLvQsVMsbsx8Y7WblaeZ6ae7QvxPwP8ktSzWjtuDvpfpa5t
zYzTqgP8Necd0+9SzxTNFs1UzVbNXM1ezWjN6iy1b9nIdoL6vaV3yM+pa1S1
2h4I+PpTPlr4TXpbBf4mJZ612uF3wVuZs86H0bHtnbi2FOMrM/tSzpS7fal3
hXo2i5616xPPYs1c7UDtQv0xxqE7CxiT8xmz9T9Af0Tiv8MxdEan3nVLsNmB
7YLMtaGaUe1o1q9OvIs081UDqoVm7JuwnZf6n6Cdo90zKPEfSX8j/Zk0gzSL
RmN7CPk9qc/SH0B/AfWoelU7W7v7OHCihXd2Qbsx8+zXH+Ky1Dtau1o7dK3m
Veq7yEa2jalrUW8errcl7in1kv5k/wEh90Th
          "]], PolygonBox[{{4733, 3835, 3652, 955, 4545}}]}]}, 
      {RGBColor[0.9479758787382764, 0.7399396968456909, 0.4387252240886568], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnuQVdWVxk/3fXX3vZc+tyMqVTHSIEQF0arMXzMqSDdIBseZ2CJ0q5OQ
wKQyWhEQaRHjTGWilTI1f0nk3Yg8FGmRpnk0DZKJQU2peWh81Yh082gwOAWY
yaA8hPl+rM/Sqj519t1nP9bee61vfWvtbvz+fbf9uDpJkp9mkkR/SXNNkgyU
kmRsVZLk9eHBfJKcVvnaNEmGqMGjlSTZXYkydXyf7zapfrerz3f1/cqc+meT
5HqN+Yy+r9Nzkcqd+jZD5ef1rtb3QXqOqv57bjOGeTXOZI3T2pAkOzTPI6p/
T/V9ZcmlcW/Tt/+qRP10te0pJsmv6pLksL61arwjes9Tm9Nq/w/6PUvlqdn4
/oDKW9V+ndoP6PdZtflHfZuj+rLGmq33nRq7pzZJttfGeC/QV/XL2Q99+6bm
bUyjH2PQ95jKI1VfkLzbNP5G9X2+NvaJPfo7rfEitbtS5etU/qXq56h8Uut6
VmPerfIzej+n8WapXK/vG/T7+yo3a64P9PsHKt+g9/R81LOf1E13PQ/7mNWY
73o/+c0eM/6kTNRPd9/PNe6lmu+c3ms1V5vqm1RuVHmc6q/Re6jq7tBzo/q2
aq+m6flPjb+8kCTL9HRoTU256DtRbdaoT0Hf12icK/VUVFdQ3UN6rlabYaob
pfdVegarb0+93up/Jo29ucr7w/tql4/l49swledJJ5bq7O7Vu7oU57hWz7Pa
62dq40w+1P4/obqs+gxXm3Eqf03lImenuUp6d2XjO/KXra+D9N6rvr9X+4y+
bcrGe4XazCjFGK+q3K02qzXX03rqJPd9qvtI7wHZzm7V3aV+PXpyar9K3/rV
/g918XuH1vtn7UmX2l+lNbysPneo/Fp1yHI7tqb6k+r/V9U/pra71eZa1e/P
R/tPq8KGXlJ5tr7/OY09YW/u1Tq61Xem6g/o++RsyDda5zaqHDo8Xmu5Qmf3
I7W9Sf1Oq91GtdtRjHGwn7lfnKPev9ZYIzTf19X3frX5pb5PUfvPkFfvuXpv
0rpfqI3fh2riO/UHVb5N5ftVPlcOO8QG60ths7s5P/VbUxu2ukHv5/R8R+Um
zbUgF/23qm5LbfRvycR3xtyuNt2q3+z+/bmw92GcPY90pr0StjlP7/v0XK7y
j/VuzLud2mzNx+/BKu/ORBsAEVtqdJstmuvFupjj/kqMf7n2/pJcYAL6PFtt
FuZi3weVov0uPTurA0vApa2FwMS3NPYs29jsSujj/mzowXDbyQLVf2R9Qpdm
asy91udRmut6lf81F7g9gXOsCqxCd9Fb9KrLY04sBq49rPZ/r37frgtdaSqF
3qAz6Og9uZgLPWHsGarfpPLVxfh9Vr87sVnNtVPj9eq5MxvYtT4XmAa2bXAZ
P0I9GEjdc65vK0QZrMPO0EdkvqYY8iFTTybWjzzoKViMDo/WvvxCYxyUPd2e
ifkfVP3N6jexLtbMeljfStU/Kd1r13w3qM8Ovefp2ZdE3YN6HlB9UhO/KS8v
RT269BO9Hy6ET8TmkAm7e6sQ39pVP7wQ+4RMe3R2Z1R+We/l5WhD3wE981XO
6P1QIco3Uqe5FhTCj5zR+Fssc3MxcA0baFX557n4dqgUdb1qc1lt6BJ4fpI9
13Otyms13kE9a/S8WxXy9yWBTZw/+ogMzIvOZGriN+Ul5SgjG5h2l/d2QjH6
8rtZe9xUF3qGD8zYDx5NQ8cHpeGnx6v+FOuVzNlcYEa2ED4Df7FA9afq4tvp
usARyqmeip4xkvmy6vhN+esuwyuwu4tzYZuf5sMHs/YTmvsbavdv0pEOjX+R
5L4jF2fyf2pzWu/VmcBY8PV9MBmfnAZHmGqesEp9L1bfafr9VCne6NrkNM76
wzSwYIoxB3kbLOeKUswJVl1SDDuh/+BiYBzfTqXR/rM08JX+rA/MYV34u7nF
wD4wF91fkQv7PlKKug9VbiuG3n+hH7yxe2wDfVym8X9WjL6M8Wgxzo/f+0uB
V3vV/luVsM+/qYSf22hbw3+OrYvfe8oxP3Y6pxjYTf+P7AeLPnd4GnvKOY93
Ga5xic9r6CCtrxDteMa5zfF8tAFLP1F5ZC7O8uM09vUVram3GH72xdr4PiIX
PAHfPtJl7IB69OGlfGABvGWqxnlFOn21fOWd9q97KsEht3Eu2eA1jWqzVO/q
mrAN7AL/w1m8YDu+8K0qzmGrfROcEYydp/rvadx9kv283jvMJ6epzb5y+GP2
kTG3ue9xPeslT5oJjoDfBRvBydZCYOhEydynunV657LBL8FVsL/acj6nb4fg
j2nsEXvVprbjtOZvqHxTQ3AyuFlNJfgXPg/uurIcMo+rCjzBpqjHBmmP3Z3I
h4zsLZjwotfLPrAOdHJoTezh41Wx7h3m0nCMHd6HV82pafMXfLqeY9XhT7CX
nOp3ad079fwmHxxhnf18i9qdrYrYAf1b6/rz3vNFafhr2t+SDdvbaT8Fpu3y
nrSYl+Ff+8sRY1xeE89Qy48eUB5SFe/LXcZ+Njk2ABd7vEawE51BR8ZUYuw+
ydOhsVeUI776oX7/UW2+pbP4Z5XfUPm6hlj7LssJ/wOjTqaxDrDmwhoL4avw
U23lsHV4Y5c5WEs2eNpm6yo8ilhkblVgA77xNXMz4hT4FeVOlf8pGzx6vbk0
/Ta6Hr413vOeK0QZH1FVE/wDHwcv2eizJZb6oDp8bqd5HeNUm6vQD47YbL2F
N8Ll4I7I3u21IM+zln+9ef6t2bCbLbZZxu40b8Q3Pmv5wdkNrn8yDXnO6Uya
amIfWQvraPK6Gn3unDl+6Hbz3IztizMljoMbgs/4T74jP++5Lg94j9gfuMb5
r/ANzm6e8aPKGPKu95E9pO05tyeWJqauSPYJX4lLWPth29ti6cAidNc+dtNX
eHiX95CYd733jb1iT6o9F2tnPnSHvgXbFLqGX6C+y2PuMt/DdogBX7X97k2D
i/6wIeRgn/EHcETs9G81ZsG/KW93jE+sv0h7+U5V8JN3vBd9zgmQD8AfLlGb
xXoOVwW3gdfAn0fZXh/3PEM8PngBL2IO4jTitW9nQw/QdXR5nH3PL7z3zJvx
gxzEAnCtg6WwEWR52/VHKuE7xjSEr0ZG/NqBQpw97cAzbOBP5pzITRn9Y3/u
rkSMhmzEC0MdZ6Nbb1uOwcb2ZusKtoj82NEW2zFcEWwEA5+33iED+vO2dZGx
ulW/mW/4Ve3biHLwusl1wTvhyufLEafBW/EF8ET43BH1eb0m9h8dAEPBKLC2
3f6CdbAe9vljtX9T5YVay81pxLDXNARekUdAZtqu8rlMb4jyO2nEUE97Ldgy
dgzXhXciDzIv0xhL9RzQ2WzLR/xGjEwsM6IQMcw6x5Xg/3JzNrjbw84TMdb7
5dgLyuANNoO9tDUEtx6r97+kka+5s+FL/4EMu70P2AL8cGUpuOPn5cgrLTHW
Nxvn4MBwfbjyLd7zzfgdyd6XD56Mfsw2ZpKHolxKA1OJf/CXXZYTezxTjjwX
8U2ndQMdx88jP3EBNnHqKzZIPEa+Dp52yjYDX2CNnBfY12Kfgg0xDnbEXo+3
7Yx33uD57JdYM9fcPlMIzgcHJo6a4pwE613pWBAZiAGfyEQZ2drTiK0ebgib
Rj5kG++cH/yQ/BOy4fex9xa3YYyCx4HfF7xGYrh2x3Hk4WgHX/q5c1PkqLod
LxA3vKbnvOr/J42czw9KEZPDRU+YUx41H4KPPuIYkHhhkjkmsk1y/umLOJR1
822NYw8wb3gl+PEVleC95LnAErANuwVv4IMVz5fNRnxwvXMU4AS+CJl4w3s/
rg/5WUeXZB9djDj6cCliBrgZMQ35F3IvrI01dlg/F9iHYPvv2y6IWYih8Bfk
bOqt5+Q24Fi3+GzBkc0uo9/g00iPAz6QtxjuPBox3wLbwip9f8p4BJ4w9zzb
5kr3xd74Tqx9OB/tqb/XuQz0izV22OYY+yGPj+zkYnbZf5Lf+5HlH2T9HGEZ
wEbWPNLYyHqJDeAY8Fb4K/kxcgyTnGcgDp7gWBh+dbPrsQ/shJhrsvMt7M98
4zPcoNrxL3ISY93kOAtu2ewx+X667kvfTrlg7t1r/g12kQuDO4FL1IOX5POQ
Gb69vxwcF58Jf2BdcAj4L/lJMBPeuN3cEV9DLvs29yVmaTGf3GZOSf4VbnGr
Y0XGxhevMq5yRpzJYeveX6SfGbX9fRr2hF1he8RrJ50/J+YgnsfOiOc+sd1R
f9L5DdbROCj4OjE2mAR/w+ccMo4RY9KmxRgCLoF34C3lib7PIIa6znHVQCa4
xnL7QewajveQ8zPEkuR+yEcRO/eXwneTOwCf3nM+Ct1BV4mTTniNxOCPOg5n
/qxlAAOyxkx07Ij90wjrY7t574B94V0NsUbiPNbPOuEx5x1fsM83OHcJR6Wu
w/X4CnwGvI54DUxAZ/alEacQr0yxLYHnVdnAWXgbfA+sgPN9py5ipx77vlXO
j8BHz3muRZ4L30SsP9RnUe8cEbmixDwcPrza9xxPp2Erk23XcKIPfL+xNg1c
31UJHOg2n+nMh86gG9w9kLv+7/rgLH3mjZwr90ncJWFDp2xH2Cl2hy/DjrkD
ACfIdexznM79AxjLfoJt+4qBb2AA9w1gPdyjy7nU0e7LeuECcAI4DDEo+SBi
W3Sz320oD7U+M9YTxmb8IHX4P2x6gu16osvE3WA8897juIe8IbHSUs8LD8Fe
m2zL5HU3Obc7ypjAPLz3Wx5w64NiYBf9mp2Lb/Y4jM/5c7cBfqCXZ71G/Msl
zpvB9eB8cIl659OmOl8IF8KmwONLS4HJYPVg5+vggd3mgsjyM8vT6DsuuDEx
ymnrM3Ne7L0Fz4Z4T+DIbeaccEJ8FrE0dov9EqdwxqN9PwKnmGaZsTvwDdvD
f1OPf3/SvGuW27a6PVjBuj4zL2/1fdl8+6PP7FtW2d/trMT96a8qYafnzb3/
vRLYV1eJHCC4TCy/3eUpjvHn+j4GfTlZDJ3B1tBdcnT4PPwcPpoc1VyPg27u
8VkP890HNnPK92nYBW/w/VbneNfZT5HnmGjdO2eZsXf8+jj7r6e8RvD/Ut8d
cL7o7ETnkeEf+Fd8K7Lvtc732zfjlzlP2nGm+CraT7WesDY4ScX5YrjREHMe
zv1dx3HEPlf5DpG8InlLdIv4gnww9xlwxt5C5J/g4KNtC9gHsm+yfhK3Ed/C
z9GdPusP8fRgc6RBzjkj/03OnYItzDnH90PsZbX5SafzaZc5zgLXiKm4o8NW
iVuw7ybr8wb7SfCImG+O17LEcQc2dcrjc4bIPt7yExsxzoW7Ee8DdjA/DWx8
MA0sZg9YIzH3GvNVuC6+DX9ETq7XMXivc3TsHblT/MTjzqUscxm/sdz3xR1u
h71wR3HA8XyvY2TG5L7iTd9Z9KaRH9yZRh70DT3TjPtv+v5ljceBN99oXwFW
w7MOOJdC7EIMA+9CVuJz1kl8T5wPdh3wvQntGfstj/8Tl5Fruu/VmeN1y0Oe
9q5KjHm6EnEHvAROApYRk7U4h0EMjj/iXp6YATyhrtv1cyphkw9U4g5/SyFi
gc8d8yLnG84J1zteIm7aXx8xAnuDLdB2mduzV5u9n2u9139yLmWH10usx90k
c9LvoPeEs1rq8wIbKRNzbfG5IRsx1pPGw4M+R8bkvnKGYyjabvH58t7q8jzL
gDwXcpGl4HO/9v6yRv4HAQ7A2e7JR16YHM+xNPLmx9PwT4ecqyFvutq+nn1q
8ziLHH+RK+Dusc159TU+G9q/aEwGm/c4z0O+ByxZ5L6rbRfvufyY68GKUb4n
XWwuSRvw6TLHbuQJHnHMiF49Yh2Dcw2Yd3FW9O9zzpA9wh7Rl9mOM8HLmd7b
Ps+F/gyY5/CbvZ/pmKvHOTdyb4u9F4x/2P9nwv+boDuvW3+4c2zzvSNncsDn
kvgcsK9h/l8R/mck65gVvww/ajVHAht2GR84s50+9xnm0pOc/7vWfRf6Xgpc
2mqdQSf5/4d+/58J2Esb/D65E/IIxP5/rY//O/pjGrE+9eQZyJH2u/1C5zq+
yD8sdBk9QFfID8BdyPWAd2crkWN6pxI5IPrOTIPD9ztvM8K4DCbj+8BwbA6/
gn+BPx/Nx1zMyX0xfnqFbfl1Y9orabSfpvex+ogbyE+QGzhu/9WWxv363Q2B
M+RYwBb8DeVZ5t7YIzpzIRdiGdhvYhj0hzaLzZ3Y+63+/wfiLnwS+vq7NP5P
65P6GHuF5yKGIzZgzJfzgc+cL7EC9WDamUrU9/o+HBng7vigl/y/MdgZeRli
MPw6toFdME+H71DZJ/aLPO1Y/75wz+644kJMWhP4Tu7zCrdnb/8jDRz5qd61
lcin/LY+/Odu+1B873r7X/anx/HdW/ZBYP6njjHYG/zoFR6/w3vC3p9xHp79
bPV5okvoxon8l3eRrH+mdYBx8O/MAV8h/09Mdthx2T322cgDp+jwXPCORT5f
dIc1YrONzoUWHHt2el541CrnbZY6JsAPkm9Ct7Bl7qPI235qn7jM+VVi3yXm
FeSW2IMxxjFiP2yEObd5XvLA3eYV4Ntyx9FXOseFDq9yX+Th/9247wSf37Rf
B5eYe6nl7LPtIxv3t/uNA0edO6Uev/Ab5/xPuQ+YAPbwDf3sN47QHkzh/+HI
kfL9ZbeZ7np8PHgMLx/rOOsa59Oe8Vzg2Apz9rHmOTMcI4MBF/hclX27y9xv
H3euD3/NPS56Am7xGx+BDVXbjtCjrNuAYdgs58//4GRsg6z1qHHwsUqM+b/1
cZ5HvV5y8NucJ+e+8Yh5ZrtlHWeM+tg4hV9a6fP9f6tVsgM=
          "]], PolygonBox[CompressedData["
1:eJwllUls1VUUxm/f63ulBfru/QcCLJhaZAYJQ9iQCA6ocYUJiJUSiiBolCIi
bSEBAgRNXKuJulECDsBCFqQNWtHQxoRBXCBEBMOgWKolFgFtq/L78i2+vPOd
c/73numeN35149MbciGEzaAcfBf5RSiCv0oh/AxvRf4NjEauBycHhXCjGMKV
FMIh+C95/MBi5GezEJ7iwNGVIdQhn0QXsY1B18N5R+A34f+DbvhgeCO2i+Ad
5F3ga2xdoA17C3dM4a5poBbbOfhR5HZieBz+EbiI7zJ0+7Ddg6dCCA/AxyH/
yRk5Yi8Dp+AHomNVDsplPJiE7wi+GUC+K+B7viyEO8hbOHMi9h50f0SfqbMV
427kavkQ+w2+X4nvWHgt9hqwCb5TPFj3GvwVEPh2LLwReUOy3I5uB759oCLv
O5uwXQAniq5pK7bD8DXwJ/A5gPwxqIdXE18F9t+jazuTa7qR/wZZwTVRbZaC
jfh/Bp/Ntx3wfvz7yHc/8qNgNfYG+WDfllz74dz/IrbHwPNF13wf8lHqOyz4
m1/xnQAe4ewudBew3cLnVrlnQLPQD4YXnKNyXcWMPIn9Q+alAbkebOKst7G/
gH09fEmVZ/BydI7KVT09Hd0T9UYzpdmaxv0vcf4CvvkpemY1u63Ym5B/JKaK
Ms/QAL634YVyz7xmfzkYwPcO/HZ0zspdM9KcXHPVXjX/BLkG+9SiZ1SzOiPz
bO7F5zlsM9AtJJ63uHM6chu6jqJ7qt6ei879Kt/M59tqdJMVP/V7A9sQ+CT4
LPge+H9gZMEzpdm6BNbknbNyP19y7XVnDXye3mjBOXVGn6GzFPNW9QpeV3TP
auFfgRb4KPzbkd/FfjnnGS9FvxG9FcXwr94aaMrZZxX+n0e/Xc2YZq0P3RJ4
L+hPnjnN3kEwJ/lN6m3mQS+xH4v2VY1Uq1nRsahHe/F/P7qWyvkD5EHoEvKn
oBL5ZWr4Hr1fjv8P0TVULeXzZvRMa7Y1w5rlM9F3q0aq1RD4qznHvAI+NzlW
zWRd9BvXW9cdXfBF3Dem0m9Ab+Eguut8+z39XI98NnqXqqdD+bZK+6Tgng5O
3qHapafwX6ndJB28E/5M9Bk6qxvdNb315F2pGIdim8P9Z7HfoybbFTv2cUXv
GO2aL5Lftnr6JfLrybtJb2Bz8oxr1rUDTiDPzDy72oEPZt6B2oXb+eY4/g/D
F+c9M/uTd652r+7ciNxZ8u7RzvkH3x3Ju18570RuRteW93+G/jsaos+WrgX5
Sslv9Rtympw5Z+WuHNdh/7bkXmun9Gg+MtdOMxij35Dekv5TquBro3eJerIC
29TMtVUOykV36C7t1EPJNVQtO9BNwbYsWlZP1JuHMv+3qecLM+9s7W7ttFZi
uw/UPP04
          "]]}]}, 
      {RGBColor[0.9865018905888512, 0.8362547264721281, 0.5581558608254387], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnmQ1OWZx7t7eqa7p7tnfr9hs6ARkJCtBASTlSjKPYjrsSIwrDGmTCnu
YkgMN0jMVulGBDWJ3AzDkYig68Fhkj8S8EiiVijUaJatFZBjUElSW0arssgw
HAL7fOb7ndKq/tX7/p7fez7vc3yf5+1+d85smZHLZDJ7ajKZ+GXaSpnMmniu
yWcyJ+ozmY54aoN+Y1Mmc2nQF0R5PGgfxxNNur7TjkaT4tsl2UymvTGT2RIf
TxUzmfUx+Nfi+8moPxm0Turx5KL9+bLGORv0jSXR62KoZSWNybyj6jXOs0xW
0Xzno/4fJa0DMmNQPxcvm6N8Ip5xnmuzxzxSK3o2yvuj7w/juSLaTI81PBD1
Z2Ld2Yr6dLdhDsa/PfZ1b9T/J8lk+kc5LJ47glkzC5nMjHimxR5vbhL9hmjz
TFntvxqdvxn0MVG/tUn76/R6xsT7QzHG6CifjTHWxDMpxhke30fWi3/wCL7c
YF5Chw+PR7kpnmF58eNx8+pwrejw51CiMS5JM5kraRvPM/H+WEljsgbGG+4x
GR9eb436ohjnKre/PMqh8TydF8/gy+VRnxC8uimegfF+Ltp/McqeWZX9Xb+k
JJl5I+rHgycHYpz26Dsx9tkRtF7xHGmUzCA7n8Q4E+LbxKzkjL7F2Mf4qN8Q
9Nqo76jT+PD/z9H3fc4tvpcLmo+5bmhS/Z+j7Ih5D8a87+Yl12st2+csQ8hA
W/RdG8/D0Xd4Xnz8Tsy3NfrujL6H4EdeJWe9rSw+02578OC5eKZF/b143ucg
Ypw/ub416rfFGRyNeiXW/+Wy2n+7VjzNxn7W5tT2qPvujzZv1usbsrQx6gfj
29roty6eiTUaY7vHuTrGaY/yezm9b6tozPkF9aH9mijb4mmJ75M9Fu0541zM
sy6nfoz5rzXiETozPeitBX2D/vNYzwv1mq9a0J5HxJp/UZZ+0edPWdHZyztB
X1HvOWKM9fH8S3xrKqvOWnbUi89XxpxJWe+fZMRv6JOifL5e847Nqy/v56PN
6eDp38X3M4n4Bd/gwb7g+UsIecjAbfGMjbOeGm3KeekjutdcEr029nhNQe/U
ry6p/mC0aS9K7i83j1kDa14StO2xjlFBXxptzgdtcey3b0FyjAw/jvGINbTm
tNd13u/b0W95vb71KUr+kL21RckNMsN4Zz1mm+1DS9T7RNnbc/Ad3UPXpqau
J2pz1nRswfyK5Bm+r491Xxu0KU2yBXdEeSLad8YzO6t6RzyHYnmzozwdz6x4
Rhb1jTanTH82K/tH3+kF0U8yd/SdUZZtxa5+ErQz8RwO+uii2tH3v7JqPzyr
OU657xb3HWr7zFgrYu2LSqoz5rsxzvJ4Hx1t/jMv/9KWkx/Cf4zhXEqqI4rU
l5s+t6A1sZ6vYpOj76agz4yxZ8WzslYl71tirs15tVkT4z9nenPQVpfUjjbI
PHtEF5qLGn9u1G+J798oy6ZODvqF8TwS9MUl2RdknD1usR9C3qGjC9gYbA12
fnRZ8vZotHmkJDr2Z2FJfeHVypLW1+y9UF9Rkv3AjuCP7qjI1qHvY0NW2kPG
B4YMNMf3X8bz02h/pCj5RrYPVcP2xHNRUWd8wrKxN9rejM7ntafPe1/Qvh7P
g7XiwVnz4UBZvMC/HM1KxoZFubqgvqsKGueCeP43xj8Xz6D43iPKM/EU4/vF
Uf4hK3osuctX0B5dm9c9F3srSc6xD/CLvYwwT+AH59UUundZvWSHs0UO2MvA
KAfVS3eHRPmP9cItg6P8Sr1kgZL3Te77Fdex0RuNZ9j/JR4H24jfAZPgJy71
OBtKWus/Rf0t7wve7olycFbyiQ1nb9hqzuZnbv9eUfXr8jo7vs3Jir7BbRh7
g/UdeUFukKUNsYYr7NPZ3xDzIQ2efDHqP7M+gduecn2I+XBXMP4foj41yv71
qtP+3hjz4ZL8J/M85LkesrxCb41yVUk2fLRleVZWtNU+F2TvJz6vH5VUH2k7
utz4Af2kPX6Pvq2uc7YrbRPwU62eC1sBHb1Ya3w7znigzXzDNix1325bg89H
Tx8sSR/xYSuMJdjXw14/PvXHXifr/dFn1g8dX8YYi4wzqS/2+GDXx4xj8TXo
M7r8g1qtDT+MXVhoH0RbZAxdxk4s9trmFGTnT+RU3uP6AtfxA7Nty9E7MB04
A58JNsRPs79Hq2pHG2z8bNtqdBRdRcfBb+gregpmxTeB5ZCXfWXJDHgB3AAO
+V1VfSdZ31s9DnjzgG1CfSKcOzTk6nOJZGpY1N/Myu6gFzPsZ66yn724IP/4
UlXv2IELYw+Do34BvrVB860yRp/hvpQz7cvQ+722Y53G89CxAfjpLv9dUXvG
OGpfddb+cc5nfNlc+xT4Dx2fyxr7xfNKTtihagyAHEMHGxyLZ1DUr88J29AG
fANtsOnsh/dcTj6iUhEuejno+4P2bzlhJ+g7HJ8RXz3mGI7YqTtuyFgewEcv
1glD4xPwDb/POQaqKHY6a/sz1zZ2vuvgx/m2S/Nsd/Hjy6p6p/6ExyGe+muc
6Ucx54dR5sFY0eZYVhgL7AWtn8+01XhsnOkfZ9V+UEblONexB8QV8PL52McL
3suysurEAuDBnsbJ4NWGgvAV+KiPcdR7/gadmGZ8PPUFPaWC/A/xR73r2PdK
QTwHizEOWIu2xCH4pp5VxSC8c0a074j2v65TH9ozN3X8GOtqBEtFfXnwpFBQ
jNMj2nxYJ99H7AN9RI1imi9U5Mf4/lE8PczDYRXJW22NvkFfWdUewSdF74t1
gp27+tZqftYB5j9nn0ubrL9Bv72i8eE5e2FNrGeC93Y8xv9+fB9V+bQfdfZV
MS/g286Qg/+Lfi8kkl/oT2fVZmRFvJpXUf2szxdZPR3r2Vmnd+rQkOOpOWGD
naa/4Trrf8Ht3zDP+9pu9KrqnDhvbNafc8KQ7Im9cEbIY1/LJO2RD+JVYtAd
bgNtgunEwzd9Rn4Yu+QzgXf4WPAUNgk7uhisiQ7UCB+2GAMRK99uPqObbcZs
+IZ3iPPiuStRrPKtJvklYl18U69E8cNdqeIObArYf51jL+LBaqJY41vRJi3L
T+HHvpzK3nwpVbyITYG+P2LtccT5QV8d6z8c33Zit1LtYXAqLDvJMfIax5oT
atS23e3xa9TBLdsdNxNXwoOaqmKcfFV1ckf4hrzrlLXx7I76b6PMxrMrJxuJ
3Wfd4K5cVfacOZibBBd+DhuAP6Jfzn3bHQ9jx4ipic9ZU4+yMCT8qrH9zVkv
eke9H3qRVR2MOiX63ml9RDepcxZ3JtLnf4/ym4ns3deCVy9Xdabs95Gg3YO/
inFujjb3xfsvEukNukQeCBu+wHYb2z7PeoF+UCefgZ+nDQEPNvz71sFXq+Id
fGuO91vrJG/YDzAwa4Z/F3gNm1PtbVOidV1oOnvt473PchvaXhzt6mK8zkQy
s8a+aYr5gU8ZZtl/xX6qzW36VYQ5U/tZ+k5wbq3V9btjjovi+/dSnSvnt8bn
mHEd//vHrPzyvui3N57v5oQfsAvYBOQO+UMOx5aFr3gfUxaWA8MS8+xz3xUx
9oGoH4j6qNDJdyrya8Q3YHtkDUxJm7tzKg+6/dKqxtlh+jtuM6KotYGv9lc0
J23wafg88g/Ej2OKiiexx1XbXrAP+wHDbLR/RwYGlBVTILf4YXjBOrvWUtEa
8e1T7N/nGNeBT66JM2sJHj+bKsZnfcRm77oPNoc4g9jwOuN81g2f0CF4sMt2
CdyMbQKfH/S8yAtyg6w05OQ/+9q3oEv4tS/Z5uQT7ftQRX5qR6Nk7f6gfyGV
7O5rlG5NsX6Rt4aOPOPH8Gf4O+wosgEm5Bz2+yzIH4DDWSt26yHb34VlxUQb
HPsTX7CPIan08bJUtoc4Hj3CrhyybUGfFnsNYNvVxr1N2CbvlxwAOVX6g2HA
NMd8RsxzwPuHD99J5Y9YCz4JHEUMSczSHSeDvcGTxDnEOAPCB7wU898XY/wg
EXbYFmVrjeiNMc4p/E5V8g9P4e2MmGtj1H8Vbd5tVCxAHPCM40FwODpL//uj
zUn7RGj4UPwu/vtp506PV8XnufbrF0V5U1Vygdwy/2qvAR5Sh48HohxY1X6X
RNlRVSyyPJ7OqnAltoQ4FRkmLjpZ/dSn8E79uPuyhhPuC29fLWqPrJex+IbN
PxXrezLouxoVQ55we7AT9CZjJ+ZCB1c4F9wt5/ShPW3r3B7M94ZzFEfi+9s1
4he5R/KOxPe/TCSnHyWSCfi925jnY99lLEglz+Q4tyfSnw8ahWv+4PHJOWAD
wFTgjKIxaq5JuGdvKjsGH7FBv07lb24jl57KN+GjjqQ636/b/+CnwN7ox177
Z/QVnIjObimIhv8C/zEmPoIz4wywLfidV+zLwa3MRVtsBnmRXfbjv7EdP5pK
Xqcl4tGiGuVBwD+cOTlSzuGUz32V65wP/CKXD25EB8EUxJgL6uTDWB84jlgR
LEceAJ0iX838L9lW4GfO1Sgm+1Xw+taQm+Ym2WEwLDECcRjfwQOsD/uJfQPD
dlgXsKfQxyXyva+aD9he4nJiRvw0+cgT9mW/NR/SBq0J/vzGdOr4gZWWw1Xe
N3YSHr9s7IQeEW93x9rUsUU9GtQOGcuY5+y3xmfU4jwz42DzX/GaaY9+rvJc
5AuvtR3on6p+deyxb4Nyhcw7oKo6OUPKw6bPTOUPpqfChuRLun09JXE3fcDH
YGPWfsA2YYPvS6gPNJ0xud/inuuw10DMT398ITk25GCg18C6wFLkGThL4lH0
Fl1HnrmHw4Z/3nlabG2nsc3JRPh3j/fPuOAOZIw4GEw913HlJ87bv+ZYDb0g
DmMedAcbwZj4BvL/vYvKoQzyncDjtnFtlnn8Z5fuZaQf2GJwArELMQlxx7G8
+LDecpnk5HcO265Ocn7xLedUyb914533HQMj2+Qe8CvkH6Zalk97nEPm4Y1V
4RDo3efBWjscl9Cne5+sgW/0Yy/ksMnHPuqc36rSp3aXEpvMPSl3lJzVKONf
zmuZc3ToDLltcnrk/NAfaOArcn3Nrtfab5ErYF3jq1obvGnw2sg3wgPw3gdR
/neN5sJn3m9eI5sj3ebHzu+NdD6z3T6ANdxtvX7Pd2AjnCsiZwTeu882lXP/
o3NG5IvwJfhI1kguF392nf0bfg19P2lcB74lx8v3rrimInyw2Xdv4H3ag9fA
bT91Lnyd88BDfa+ILp31OpAHYs0DxuFHLSfk3Gb6PqTZudDuu1D8z5tuQ56Q
u5tZ1oNrvbajifzSnERyTSyL7d1szAn25Jy5h0InBxvDw5NxxsKcHecGf8AP
yN5418G2K+zXwFI5nyk5CPAVGAksA07swrF5+WN8Mf8X4P4Xv4E+k8fEpoEt
DzomIh4i9uvju3ViL/wa8eYg5xgv9V0AtobYqyvXVive3Oh14g+Huy/3iuD8
B21D6IcducdxG3IERlhknEAOqad1/BbfIxETD3JcA//JN2AHxjt3RXswCDK4
x/wc6RgRHeWuf6ttBXxij/Cv0TwYZP5f7fwb/8VA91gfMSWxJTqJjBy1TCYN
slucL3ciT3hf2MDdBZ3JR8Y896Q67w9sh1lDh8+rl+uDfL9z3HQwyDGvebnx
Bra1w2dN+xrbPvbCnDUeG9x9pf/PkPd3dJASeaFea+zWZbca1BaZucx3QODO
v9WIp9xr3+w7LvZJLDjQdz1nzHd43mHd54yILS73ncuLzkeRq8R+QsNHEwf3
933KA2X5vKfsC5gfO8pdzFOuP20Zww4TN7c6piZngQ6ii8jVfOcNONte5tUA
+2dsMnEc+IO98B+EBUXtER8xxn6i1jkE5Ob1gvJj8P9MqvanU9n20b4TB/Ny
L44fJCbBng4JHPWXVJgKbIWcU0fWx7gv9ynE4mNcx441O/bEBhKHE9uSpxng
XA007pWxvcT0xPbc6dBvrO3pWI8zxzinj30u95kjHfMS+1IHh+CT+5g/2P0R
pqNfZedPu/tg27nrbHbMfoHzeOArdKDFd6NgRrAl/gcZ+Zt1HN0B8+0y7gKr
gcNeS9R+dyLZStyGvCl9OSPkFHndbbyEPHXFng0aBzpj8Y4872yUvD+QCAMy
L9gXvDPZuUfemQtdxjeRz8OOdcXWtYobn3M8QlyCzCF707zXyd7vIssNMgPm
bPEd+s5UuPz5VPMnXgN3jMg3sk6+iFx2u/OE25zDJ+6/w7H/QOMRdIG8AfwH
g83wO3V88ijLBmeKzPcyzuzt80X+WhxrTDdGnZ3K9ux2rD7LGBF8iF/FB3PH
+hf/B+mp4MMtiTADsRSxNPHmvET5aeLPqcYgNxqHHDNOw2bho8k5nrcdY178
DuVrrjM3GBVfhf69bru6xtgVDA8mIScALuE/aNz7EyPyXyruRYhLX/eYx41R
XzdOxfcONh5gvC0ec4dz9ftT2aWFtk3c9T3g+z7s2U7n2MmBk/vmzoSc22Hn
eyvOJyMv1zc5V94kWuo8M3YL3nKG0PjG/SlYD2zH/ey3ndcgXmS9Wa8ZDIId
wE5Mc5stiXQSeQCP9XSOF1mCb70tD+BHxkdelvg/ENzhgvOoYwPwueBw4m7m
GeW50Ano6AX4kf/xbLVvOeMc11v2k6yTXNQ+59DIzfdwfh5smXq/xLLcB4MJ
ufulzv0vbZssJ1Xn9slfo+tNthvcoeJf30703wT8MTiDe3hwDFikZGwGRnvY
9/XDndcA36HLCx37kN/lznCT/2u4yHfiV3mN5P5YJ3iK/weydv6Twrq5u57u
/+8MtQxwf8kdJVjkCvcll7nRd+HfTZVznpZK5pA97ouwTWAC8AC2B/mCv73t
j/jG/wWR9QlN8nfoCue7x3csvIMZJnocckVLnC/CJkx0+077BnKulzkHSG6e
WABZwBdssB241nl47q7IxfzE8oPskOsdYfl50fdU+OvllmfkbqJ1AZ3AZyP7
2K6bjHXhzw8tA/ALu0JujbE6nG8h70JO44hzYcTBxMPEfcTDvBPP8h9K+Pbz
RLh5lGWe/Az3WeQNO50fW+aYr69janwOOSx8FnEZd3vEG6ecHyMfQc6hj+fl
7rjrf1AF3T1xZzzZ940f+s6RmKOf7wawne3OLaxLhCH+PsoNifDf+kT5Cmwx
OLDTeS3yb+SzH3XeaanPFN6D7ff43Om3133ZO33BEtucL70+EW2Z6dRXeHzs
exdea1TOknwIeRH+QwueJvZuTaT/5US4ljp24MlU++L/VsQe7Atc9NdG4WFy
gax3qeWQccfYBnKXznqIi9kP7cAb91qPab/E5w8du7LUe/9/iyT5QQ==
          "]], PolygonBox[CompressedData["
1:eJwllElIllEUhq/+/pJDeb+vkRDBNEitCGxlizIFUytFaHBqwqEJtQElg4Im
aVUtChqoKNrkotrkhKugaVeUCpWCloQWlKtKtJ63s3jhPffce+Zz0/c1VzTF
Oud2gjgwkeLcPA48eOGd+xM41zbHubGoczXw9aFzHRHnNiQ4VwXPBf3I10Aj
9zu98SjvH8J79T7euYucdcFbwXx0C7DXBu8E59FV4mMc3o69smTnsrFfDt8E
MuGz3K9H34J8Ocm51Zxthvfiw8VYjNPoS5GnSGQAm7fgs5xdR/dWMSJvB6cj
FnMW7/ND8/0/J/hr9NGIxThJLXZxtgZ7J/C3Gz7tLfZ03HajL+UsB10OMYwg
bw0t9hLeb4Gn47+S/PN5swxeBT7A69AnYOskuIK/PaAdvhb9OfgpkAt/5823
3ujtE2+6Vfjvwd9x5KfIz8ihHB6Dz1Fi6cNnLPwqZ2/QF/J+iPt5nN0mn+WJ
zjXAF6F/j36Esy/wPvAzYjVVbZO81W4C/Vf4TW+17cDeGPYKkSsi1kP1Uj1X
7zcScw32B1Msd8WgWD5pRuKsR+qVYlbs/cQ7GNjMafZmuf8KXuNtdlSjbvSL
vc3CjGqIXIBchG4YPED+hvw9znqoXmYGlrvuZMCTvc3yKKhG/oUcr7fgt7ec
lNsFsBL9frCU2FpBGvos5CniKwYr4AcC47pzEN4U2GykITfDs0OLTTO3w1uN
VWv1YCG8gTt/8XWJGszAUzkbirWe3oXXh9arDFAHHwist9oB7UIt8ueozbhm
/aW32qVy51BgNmVbPb6hXoMSfN+hP3t5fziwu8pJuTVyti7RevRR/r31Mh9U
a1dC2/0k9PHoykLbRe1ACbwIZCTYzmp372kmY2xG7nuroWqpP6EHf4+97Yr+
nEfa5dBmQTM8Ti+ep1hv1NNJ9MXediUP+9tC66F6qRrMlS1vOsWgWLqQf0Rs
prvhR73tnmp8zFsOykV3dPeMt93STJz1NmOaNfVoibcaqBYFoAH5SGC9Vo4t
8NrQdNrhKm87o91RzRNlO7DZ0p+gv2E4xf4O/Xn6+/4B0im58w==
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmmuUlVUZx8+ZOeM577nAmZMCFndJhTRNUC5mn1TuiCJpwAADzMAwiAIC
hhhYmooXwMsHHTTMypa1Vpl5iVr1IRMw0ZIBBPPCWnlD7hcrEOv5nf9/Fq11
3rWfd5+9n/3sZz/3/faZceM182tSqdTLtalU/FIt2VTqaHT8LJ1KrQ74xVIq
tTbeX4r2d/G8HPCD0b8h4IcD7hftffGcFc+9hoekT70vCaT3RLsqnh0x/vcl
zb0qxpQ6CS84TxSF/3i07UWN3xrtLbXCA07GQs+4tMa9ZPhISWuAf30mleoU
eP9Zo3WAoXNbwN0DbgzaZ2QFD4q5h0uaz9zvRrsnnuu9X+h70bgZc3c8p2c0
pj3GFDtpDPQvi75PS8LBHP6Db49mBDMGWjqbth7Rbi+JBtodhi+IfV0Yz7dj
zNsxd0pReHbmU6mpRfX9qahxjHk15nw94M2eC/x2nOO+Gr0DL4x2UTyfx9z/
xDM/4Enx/2uBs0vATXWpVENR+MunpVLTsxpzpEZ9DV53TVb0/LZGbYNh9gI/
4fHt8CaebdH/pZz6NgZtJ4s6e869r/fbxw/7Z2xfz4UPjP1DSbxqKaRST8Uz
IxH/fu/+tUH3tsB7ftD2RVHjWWd8TvIxzniYs8Fn+6nP7oKMzp5zbws8/43x
P8oIB7jAT/tfw8/H0zv++060t0W7PJ5eJc1h3EPR/+carc8ekWVkmnO/x7Iz
OPrXZdT/oPGf9NwfBA2fF/X/MsvRRWnRu8w0H4j2B/Ar4B9Ge1c8LwTcFOfy
/YCnBfy3ov67JOZuLGoueA6V1P+Cde1z0/b3ovAwb07guTPg6dG/pai1Lk5r
3p3GSd/33f96jLmjdGrsHaYNHsGb1rR41ds0TMlqX+jXwZJogp79Je2NufCJ
c5lZI5wHvN45Gc1hPLQcNJ1fzWg+c1dEuy+e73mvh0w38/ebP3s95rkajeMd
XTgzI5j+Q3npywmf1XGfV2tW9EHbDsst8vt82KjR6L3t4WjbK/g/qnRKdkaZ
D9i1eywP2Mt+Ht9cI7t5Y1r4+1oXOvDyP3pF/5QazcU2nuV3aJmblg7d7rlX
hlytKornDVnBo4Pe+6N9IJ4xAc/M6h14RJ3gBvSLfTM++ubFmIfQqRjzx6Js
EPbnF9H+Mp7mGLO3Rv/Rv9r4wce8hz337ILGY3OwVX+07coXNIfxzAMeGfCo
eNYUdXZDcpJT5BBewl/4iQzT3xhjBmT0Drwm5r4R8FkZrfkLr3uB6Wd9cLPP
sUFbsaD9sua90d4Xz/CAr/IeOPfmrOYw/kHPZTw6xLrI5zNea0at1uMdHzTa
Z8153hL938gIXlon+Wbu6oB7Z3TOd1jf0S/2gqwj59hnbPNPYu+5oPnZkNcj
YeeXxJhKRvK2yn4LWdsa/Qei7138ZvzfN6P5d1lP4N3UeL8kJ5yP2JZhxw5k
xXd4zv+DPYbzfARbW6eWd/jUqaD3Ks+y2jt8QFd62Edg6/CL2B/sJL4WHbvV
to5zbbf8w4cH6uR3sYGPlW1n68XvN81zeAjM+bN3Yghs+xPBm58GTWfj98J/
/KygMZcWBN8Qfc3x/CTgtwLH83nB/WJMS6K5O6P/smifiee2RDzPFcX3RfH+
dEE+6Ll4TyzDfQN+syB7/mLABfPke4nwDIr+ntH/94CP12nMzwP+ekZ2Z0FR
9u2maG8sym8Tm9FPfIZ9Wlg8NXah+6E/b5k8kNd85hI/9LZ/by2I5oWJcDMG
uViSiIZdPkdofiEvPUAfsCVnx/vWgvwe+sJav42+3+TFE8ZwjpuKOi/azYbr
M3q/LuC/RvtqPJN9vozh/0E59Q+0vCH7+BrmbfRc/A56vd068rphzoBznxHw
sJxkHxtL31b3zzc/kf/uGdEBDdiI160H/WMv7bG3E9gedKug+Ad+ngy4LS8f
8UXAj+clY8AnjGOL8azzePiPzNxn/iyO57Wi1l9l3mKTV5ZEDz4ImrdZhul7
zf1jKortbqqonznwa5P1Bx5xFo/Hel8K/FfFmT4RcNeAB0e7Pp5vR9/oRGO2
BS1NyGk8l0ffymhvLygmuslrba/X2bIH6Of8V1oGbok53wp4fvD5ikR4OMcJ
0V5bkK5fl2hd9ntNwD8KeHud+APcLfpnRzunIPv3ZEHvvaJ/bkHx30/Tktt5
BcV9tFU5jv7OBcnrf8IGjkKfiRfToqXJ9KCLE6yPze5nzOJEuMBDH/8hj08b
PzLVlIiOKg0BlwL+LKXYGX+GjR8a7bCCbPA3C7Iv89KyMZfa5nAOQ30W8GOw
eUI7pCC5uDoRPCctG3Is5PixjGzGZbYbC9DbeL6WUUx/U8DnZdQHTB43xPjB
8y3P5YygBfqwl+yj6L3gfwsF+Vx0mv5RtgPwFztPH3OIB7AN/IdNQy6Sgnwl
9g9c2MA5idaCD9cmGoOfghZowgfemgg/ZwcvzykolnjK545e0sJ/fCA4csbT
Ya+h87B1kr2jpwfzsmnoJf3oJrrIf+gj/wOT+6Lf2Ed0fJdtMfuanmgcY7CD
9Fftc51ypybzh/+gHzsIPf1sG3mHtzvq5BvgCfqGfqJHHbYD3wSNj5t+/M0T
pvlZ21Z0+bOc7C9616E/7OWcvGzWetuoNtO8Lyt/vTerPsaja+j2uR5/3DaO
vc8KfX8cea9I7pA/9AWfgG9g7+hzj7z89zs5+TNkkvF98pJVzq83dJDLJDpj
+NM9L5/HXPwocy/KSLYYM9CyfNh8uMz+FrmFP/R/7nWXey74l3suvIFH7AFa
epke/l/m8dNib0sDnhrtzYn0H91HFrFlxGTYF/rJERmzxDD4+nhf9N1snuBH
F1kfwX2Laf5HTv3YkFb726fdv8Dj0dkF1l/yo+XOEdpjTAndyGg9+EsOsiPa
cdF/BjIQ8IiAywFfH+2keHpmpMNjA+4S8JhE44HHJ7Iv2ATw4BuwRdg77CYx
Fva3IVEMin/ATyB74BjjdUfafzCe+Ig4CRleap0nlp2dCEb359LG0z/6384J
PpeYJODJiew8uo2dJcad5ZgM+MpEe6w4ZrvBOGnnGw9rtXhd2tmmh3Xmegw2
q9U00AeMbk5LpOfoC3sa6f3ip+AX+rLCOSUxCb52heGZiewUNoqccoXzR+pL
5F8NzklXun9aVngmuV50q/P6qYHnxwXZiV6uLUzOKme8rXSq7zbLBjx70v5x
QiLbij2cmOj9yxn5+OsMIxfIR4+A38qpH7/T4W/O9FlM8hh4gDzgH/HP15gP
gx07ID/w5hrPJab8jmUPHwA9XzFtEw2z7kTT05iI732Q+UT7R96w15wF+ck3
0IlEueSI0NXGMAjDK5L5TtHfXif+78oJDzxhD9CPvFxpvUBnqAfdFTR3jfbq
eLrEszvwXRBjltYqlyCnaK7Xf4yndjTe45lLbnsR+6lRnHSFdXOb6WGtDvkm
90Q2gZE9bAA6j75j87Bf2KKBtmXk9UfivC8N+HBWtoDxxKvX2w60O0673OfC
ukX3L6uItnc7i3fwhPgT/g1MRDvxMPip63bEx8CsB0ycDL3QPcA44C+yTUwz
3DrIetgm4nBa+EB8Nb6sWu3NZdXpZvp8yaXQ5X7G2eh++ma5H1lo9LnThx0g
1sLvzzB8vfcbYPXMnsopNqUPXtAPnxjHufS0TFMXORh7HJpTLtvoOsINabVD
DbOPds/FLmIfsXUdskuOULHNZe/YU8ZQ6+L86UcGaiqiLV2RnjEXmYdm6KUe
OzXoeCctG8L5XOQzIlcmZ6ZWQJ16Szw7Y/wZOdXiqe1Mdj+1td3Oz8nN50b7
Rlb4qc+DB7n9JJ61AX+UUg2U/8jru+UEMwZ8rxvnrKz4tSuleegMc7tab4Dh
BXlaS1rtxYaZd8Bz92TV/0lWtLOHB7KKRcjryOn4j/nw4f208I/zvcMa7xf9
62odhF7o7qCrm/tPzwk/46lLM3et7TD7gpcTnIsQz1CzRj6QjUcdA1XH18rX
YjPWO87jLPC969x/Rln12g/KioO650/V+GnB09uxR5tjNuI15sCTT3ym73j/
7J264t+yOkNkg7jtaEr+Yr/7uEfhfKkN7jMfGUN8xzs1mTeMp2PMfvcjM3u8
LjxcaxngfOhvcW320+ypsZ+6H/tEfIeNokZ/uvnMWR/KSndeCru5OHzAlODJ
omhvjufjtGpOvFN3os6HjFPre6xW/Yxpjbn/Dro2xdy5AX8l+lui7VZWHWpW
vXJx4u0TvqfA33CG1LUYzzrIDPKF/Ewzz+AtPJhmPqAvswP+V0o8n2deUdPl
HRtInY9+an2vWq/QqRfrta8N9aq3UIuhPnM0q7o5tpT6Cn4Q+qg7z7Fu0rZ4
DPBs9zeZh+gcuBebJ8jGVJ8v/Ibvx1LyEUf/D89R42Lfp3sM9STieWSamhv1
NuYz7oj3js076LOj77D7X7U/gA/4iiNei/us1eYtesp6rDUm1qgLOI6qKj8N
lhlq/LxX7y+ygun/Xb3OqmdZdQ/GU5feYrlDPpd7Lu/vpYUf+WEOc+dY1laY
V2ODhtOyp2g5zePJJ4j58bHUnQdahi9z3olMV3PQRO9nOqciNiPuJefa5lye
OHapa5D0QfO9rg1Tt6EGTHxJTRh6oAWZhhbeoWdAWv3wihya+JM5xFfkZdtd
9yUGJG4kHiRn5J16DPlam+tkxOvEjdRXsEHYtaJ9X7v3xp6oLRMTk08iq/hi
8tO3XEumpa7+luvswOQ55MDIP7E9eSjztxs3vo+7I9as3gW7VsBeHnDNnnsE
cnrOgNzuYdeJOYddrqeDnzvDHr6H/aVrKeSOr6Rl3/AR/eO8x1HvifZXwbyP
A8evo03KytUmRf+5HsPY9zor7hldkb1osg2nHg9ubDw1Bmw07/B3hHm+2rWL
ka4zEMdyxuAe6zP9MPA/GbxIVVRvRi6oP1NvIZYmpqYORLxE3ERNhVwMnI+4
ZjLe9T/Gkhd0dYxF3Z76E7E3Z9zL+Rg1cGpj5GW8cz/GOcFD6kLElOTJ8OMf
GZ37fa7XQT+24G37JmIwYjriQ+o8yAN1Cuqhfd3f5NgMGfnCMkBtosU1mOr8
omom2LoP7BO7lFVLPuDaC7q11HQhv+e45kDtEFnGL1LHPuS8nloL8f9xyyz1
D+SWe3PmcY7oCTUP9HS68wjoXhZrb4izvbWsWjj4qIff6No2+yNXIy4lpoSn
6BvnPtt1R/hNjYEaBPPRZ2J6YsZW55L9bQOutB2gNkJdCLmmXkvtgJot9Sr4
2HEHRUuNmnogMTb5K3fL8IH7ZWqQ1BzWWta22m7gz1vtpy513Y74nPokeQU1
Be42OSv0FxmZ4nyK+LeX45w5zouxB6xD7QIZanU99Xzzi9yD/AAeUJs4zznN
APOBuh/7peZFjnK+xx/0HS3nRY477f9im7n2Kfi6Jvsd9KFan6iVv8U2sEd0
o8Nmc9fGGTB+uHPAUWXZmv4+H3I44m3i60Vl3cUuLOuuDZh71fXxvjPg7mXF
SMRS+PT3a4WTGJl7VPKXJX6WegzfDGD3Oeuhru92dexPS/yPflMb6dhPF/eD
b7fxravVeqyF3SE2xBbhx5BbfFlTvegh3+VOFlzE5MTyjCXWPWl/QT2P/e30
Hjd4DfBs9n0AeRkx3iDH4cgCco889HKNAfzECMTIfKfB3SZ8R5bWOHbHboxw
jkMOREy9xXH1R7XybUF69ZyJIThrZJ67EGwFesF9BrLCXfUSn/WTzsPhEzFh
W63yi3WG2ct7jhfpJ2YERi9u990g+ovfud/3bsQ2Q5zrtZknnzivwa/gU/r6
3h4+tDh+Q27hN+cGT652/Ye4YJTrQsgBvn6N79e457nEuXajaxHVu1V/w3C3
v1/Y728Qljv3R76Ja4lvu5Z1J3yW7/ehlX7ic75b6eRvVxY7RsFfYN8W+O7v
kL+FIN6c55oDuoFdwWZiW/imhe9gTto+offYKO7Qe/v7BM6amJrYHpve03nS
AtcusAP48Yd8j7nS9S7qYfgcZBG/w13yENdAuHMb5joGcRK59GT7YnJdfHNz
RTnSsIp8O/KELCHPH/r88hn9Rz+yxhh8Me1Jw8Nd80E+J1akayPL8uETXIPi
+44z7Tu4fyE/p56V850ZtfaNZeHc01m1HtZmXWoD6BPxD998Ff1tGPkIOSf+
lTvs8a7T9vHdDXqOLznP9pWYF14QD+OboYv3511fAD/nRD0Kn9rk+yjW7uRa
B3EYd1vULKgHXe2aFfnzdOc77PEM52vE6/2dPyETR50LkBNQe9vh2BP6OCti
/uq3XzXKm/Y7JyUnoUa6zbFwN+fm5JPUczriyp7OPx61jYMf2K6qTa+R7lM/
32VZxMe9YT9BHrTIOR3fwfGtBnWTia6lwC98+nzfayN/g1yfofZL3IAfGuca
DraYb6iw49/1/Si8hs/YRHKtna4dtZu3xParfFd7nmsz1CH3+Xsh/BvzXvZc
cqfNtoH4t2b7uFdsd6iHYJ+w6dgrbEGT41tqFDNth7GrMwxj34CJjYmTZ9je
NjlfZC48mO6zxnY3Oofi/Kc75z1smwyN5KbUgdHtwb5vpA5MLsdeyE34LoZc
nW9j0LVN3hfv4MEn7nY/+yK3ZO0OHBvNk794/4zh3Lpb98H5F/fvtU0mzz3q
OWXjecf9vV3/xi5vtm6iozPNK/j5inEedQ672fsdG3bgwtjvuIp8KLWPh12D
QLfZF/4EH4NPIa/hey9qPR/aX69zfNLqmsCOevkr6p2bnNexF3SM3Jgcudnn
hA8l/93jfBY9r8pp2t9Q2t4SB/ItIPEwuoQPwP5TX99uu48MTjTtDc6piUnI
KaEBG7jRMnnMvBxgfhInYY9vcF4/zHVm9J+zpBYx3jXkZY6zHrEvgn/YQNZu
sy/FFw9ynoE+1zlXZ61NrrPA//dcLzjmXLjOeTp26n3jed8+HviA6YGfbY4J
iAF2Ox4jbiDfI59oN/9Zh3McVdGdwVUV5VZ/9fcVk3wvgMwTr6H7yBK5G98P
Ede+bNmBfmLUg9axPq6dcEbU2fD1e73XYx7/PyzN+aU=
          "]], PolygonBox[CompressedData["
1:eJwlkssrhGEUxs9cTDNS835vuRQbK5Qyw0b+gxmMS42VkqmZ3KJcIhb+CNko
RRZWLhthtjasiZRckiElO9kov9NZPPU857znec/zfl9zYW54NiwibSAKWgKR
/iqRHGiFVzmRahqpBHUvcoNOo5fRY+g4egSDVA01dBFs0/+Ji5Tgn0mRv4jI
Ozjk7CO6k9kuMOStpr0PcAQPUdtjtoP+G2cz6HzYZga9zehsO3iif8uOX2Gb
CdOrw2MDfQG24MfOvDWDZrkEv2I7XcF7vXmlQRZexm8xJvLN/Dk8w5lnzlbA
AXzA21nNrNl7vGXVO2vRM4G9nd4xDX+l9hC1N0vAc97eUjNptlJgu26CBvpC
bRe/Fe67012c8e4QeyTtjfWtNXMfvIn+Pf0TsACfZKaR/a/ZIYqeCCyL1qbg
o9SWYpbxFJ1Fj0csY95bRs1aBqvOvoF+ixf0vjNP9dZ/RP+VAno9Zp5nge2o
u+pOO/TqnWXTO4r0553tqm+ib6Oe6q2ZK8yuObtbPdX7H6RXWb0=
          "]]}]}}, {{}, {}, 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz81KAmEUgOFjFNiqH7BahNAqu4VuoDQrE9xEFIhJaVhkENiduGrXqnJX
dgPVPnKXQtSiewh8ZvHwzvnmzDCzUj0vt1IRUeZwPuKIj9mI/bmIaf3mkjbL
3DKaibjSEgN74ZlfZ3fmH02ZJ/h070KLXJN2f1cLbDG0u6df2tESeXbYZsp+
j0ce+LP3qu+80fT+M9bIscqk81NtcELW3NcXnjgwP2tVb+hwT55K8m26oZsc
21s013RJ6/pP1/VC8q9kWLdbT/apMQZwkiuj
          "]]},
        "6"],
       Annotation[#, 6, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzzsvg1EcwOFjMbjE5RMoFrdFJUb3ySZBlCZIKIOWhY2Ez8DCRCztxECx
G+yiAzE0EQlmtIl4zvDkd/7nvD1938RybipbE0JYZ7E1hCUem0MY1Dp9p54j
/lpCSNNoPa8NuqAVqtya77ihZC7qNbXMuS/FEMOMcNUUwpvnCox7Jq8TesZp
rHmTLTbIkWXPWdFvq1phx942X9aXfDh70M+45t78qz9808YB+/FdnV3oNP3u
SDJAypz2jqvxW3UlfqvmtcAaZc9lNGl/V7t0Rl/tz2q3eVTPzWPaoZ2U/Oeh
+UnbzQn66KVs79jZCZO80GP/WTPu+wc8RT8d
          "]]},
        "5"],
       Annotation[#, 5, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0LkuRFEcwOGjGusMepGh0TAar0Cvkoi1IhES+5ZQ2N7AC4yhoFJaiyES
a0OhIFMJhZ1qLN8tvvzO+Z9z585MsneodbAghDDOTXkIA5XWPFp3VoQQ1ycS
rPJn1k2FdZeWa6P7nZqz79AMzWwyyRQ9HDr/0m8+SXmugQfzLO1m9fYtem2f
5zYRQto+bT3KGMNUm43ovP7yQ55k9E7zfp3R2uj9WqPTuqClWkJx9DxzvJpv
8+x9p/oSrTmxL3JeSIw6sxWWiduXcRX9Hvcu9UOXzBqtFzWl+3rADnvssmZ+
RDZ6hjaOaXJ2oe8+50zf9FxjrDvbIMMWm9H38X/l3JnVCXequKfB2Z32mf8D
rDRJog==
          "]]},
        "4"],
       Annotation[#, 4, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{4311, 4706, 4725, 4312, 4664, 4114, 4324, 4213, 4214, 4174, 
          4574, 4647, 4646, 4161, 4382, 4383, 4384, 4244, 4658, 4195, 4546, 
          4196, 4547, 4178, 4530, 4531, 4527, 4529, 4528, 4221, 4534, 4072, 
          4401, 4400, 4177, 4220, 4071, 4545, 4733, 4399, 4745}], 
         LineBox[CompressedData["
1:eJwVzzsvQ3EYwOG3Ohh7MSAWTdrBZalgIFH9Cl2wdpESDIxIXBK0tNj1k/gC
LiGYm5BYxaqTPh2e/N7znvM/JydX3alsJyJijVo24jMdsZ6J+NIx2tzxnYrI
u1+g4/6qrvRn+3HN8WHf5cWuoUuUGOGSV/srXabMKE1azPjGtd5yw59n3+y6
+q5ZuyHq5gZFHlz/cO+ZZ87MCywyzDmPPJEiTYYLZ091Sk90Wrf67/OOQf8x
YT6yn9Rj/bU/0ILrAU2yad5g35zXf8I873xC53SWPQ7ZpU4PTUovhw==
          "]]},
        "3"],
       Annotation[#, 3, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{4059, 4707, 4313, 4394, 4314, 4168, 4249, 4248, 4066, 4264, 
          4265, 4192, 4578, 4191, 4657, 4053, 4581, 4054, 4580, 4564, 4307, 
          4276, 4289, 4288, 4073, 4290, 4291, 4327, 4326, 4286, 4287, 4185, 
          4576, 4652, 4651, 4180, 4532, 4179, 4533, 4257, 4225, 4358, 4357, 
          4356, 4134, 4204, 4039, 4586, 4585, 4550, 4614, 4613, 4080, 4618, 
          4619, 4569, 4617, 4616, 4042, 4026, 4587, 4551, 4621, 4620, 4085, 
          4736, 4747}], LineBox[CompressedData["
1:eJwVzb9KQmEYwOG3K0itRZtU6gbMMoIGK0ozBLsDxwTDu2iJgv6Nzi5tNSVB
c4WNgVMXICW0ZFSPw8PvO+/7nXOyzaNGeyYi6hymIlq8JyLWNa1jMnTpc0+d
m2TEIkt8en6bjbjTW/LezdGz2+XXbkf/tKJf7BHuVnWfGo/2p2ZnrPJi9jH9
Pq92l1pmkwxXXFNyd6hruuC/E3e3PP/oto55cD6xv3Au6rmuaJuBXcd7BeeG
LuuBfpvP6TxP7o/omz2TNNsgxTH/z/wubg==
          "]]},
        "2"],
       Annotation[#, 2, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzj0vg2EYhuG7qbmtj1L1kZhMjGjDQnViEZEY1axvYmKxkZDGrP6IQSIM
EkkjxKh+gKFiIDo1cXQ4c9739V7P87wztWSrnoqIXbRzEQdDEbXBiBIP2/fM
I7zPiWwHm/ZD3uA6f2QjjnkdR6hiFdtYQwU3OgvuWOzfhzxG8YlHDOik0dFb
sn9xiWe9ccKnfIZ5vNvnOKPf0rtFR/aEnCyLP9myvcsrfIFzNJy7k32bn/v/
oJtHIh/nItryAo/hUv6g/yt7xbRsCtfmCfR8q3ITV3iz3+PH/IKy85P6KW7w
P9GcLxw=
          "]], 
         LineBox[{4743, 4156, 4735, 4155, 4209, 4731, 4208, 4510, 4157, 4507, 
          4509, 4508, 4241, 4036, 4435, 4436, 4433, 4099, 4434, 4599, 4562, 
          4160, 4639, 4514, 4381, 4098, 4432, 4159, 4513, 4052, 4512, 4380, 
          4431, 4430, 4511, 4051, 4035, 4598, 4561, 4158, 4243, 4242, 4037, 
          4440, 4441, 4438, 4669, 4740, 4738, 4439, 4741, 4600, 4739, 4437, 
          4737, 4742, 4668, 4749}]},
        "1"],
       Annotation[#, 1, "Tooltip"]& ], {}, {}}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{{0, 400}, {0, 200}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8812016741687727`*^9, 3.881201681426653*^9}, {
   3.88120179576785*^9, 3.8812018165476017`*^9}, 3.8812019447978497`*^9, 
   3.881202355582611*^9, 3.881205077570566*^9, 3.8812051323915243`*^9, {
   3.8812052173330383`*^9, 3.8812052281200438`*^9}, {3.88120526043569*^9, 
   3.881205278430188*^9}, 3.881205894002941*^9, 3.881297138875347*^9, 
   3.882090943711823*^9, 3.882329885496758*^9, 3.882421034632209*^9, 
   3.882421401528021*^9, {3.882421461734281*^9, 3.88242148255756*^9}, 
   3.88242320022744*^9, {3.882423423470827*^9, 3.8824235021245623`*^9}, 
   3.882867362506558*^9, 3.882870635149312*^9, {3.8828707388345947`*^9, 
   3.882870746086486*^9}, 3.883105841551421*^9, 3.883468736591202*^9, 
   3.8834729545325327`*^9, 3.883473321237029*^9, 3.883479308265284*^9, {
   3.883479602697464*^9, 3.883479618083232*^9}, {3.883553754291521*^9, 
   3.883553769974609*^9}, {3.883553917370013*^9, 3.883553934357111*^9}, 
   3.883554131017263*^9, 3.883555193506072*^9, 3.883641264814374*^9, 
   3.883644226842902*^9, 3.8837084914788513`*^9, 3.883810900507043*^9, 
   3.8847700744883957`*^9, 3.8847718280876913`*^9, 3.8847763167833633`*^9},
 CellLabel->"Out[362]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztvQecldW1939gGiCWqCDYQLAiKl16n8L0YQpteqF3ZugdZpihiQoWimLD
rth7icaoiYlGo8aYZnq7qTfvvcm9733++7uevffZ58xh5DmYz9+bl/l8GJ1T
nue31l59rb2fnKr62XULqurn1FT1TF9atXj2nJplPdMWLVUvJbQLhdqfof51
6BlKVP/vhUKxf50ZCh3fC73ld9Klp59++uu5ubn/WVNT893i4uKJ5513XmiB
vJewceDAgS9mZWX5f/mfX9O/f//flpeX/7GysvLg6NGjOyQkJLT5XpX/7ZHd
unXzZs6cyb9QovxOye/Zsydvdk5KSrp7/Pjxf6uurv5FaWnp4quuuspcMya+
Gnkv+bIzzjjj2czMzL9UVVX9dPr06c1DhgzpmJiY2L6Nr+rLZl944YXfnzJl
yv9Rt4TEi0499dTQTB/qv6vX5LP8tG+DNP1eTPj+e6Fe8jslsX379t8rKSm5
R32sz1e+8pWV/fr1+6tCfWHnzp1D82Nw2/96ctkll1zyJ3XLnB49egzu0qUL
ZNwwfPjwz3lb8zxJ3fUzxZev5uTkhBIzLrjggtAZXTt27Mibh8aMGfN+UVHR
wLPPPpt1gIeFF110Ee+1hda/9DmnKDb/RF36iPoIfB537rnnws/DY8eO/bxL
iPSddtpprEvDNddcw/v3T5w48TsKTjverJN7dIpYB/XzOcw4FkXt3JVIgAss
orOACS9lZ2dvGjRokPw175ir0emt/Px8CDGARimZ/g9FRCfFDP427+vLRryt
l2SCoucftbW186688spQov/aacnJyX9Xrw3t2rWrWfh1AwYMkGVTPy7kWIgr
w7f7lRI/uZ2+DF/9H6VrpyoRbX2ZJPcyKA/KZJjCZWAhK2tucbpC2u+ss87i
X6i9/E5Gg2ZdccUVZmUjmZDsMsElVN5uB5ntoDNykcAUxXx57TnwhRcpJWKR
IEhJ3X+pG2BsDAuQxP+uq6sbds4557jv68u6b4eq/dem9u7dm48hnNpgJMAG
sLdv166dUXxeg3xes5ATYsD1BToJurF8FyhWRX0+yf08DFmrOGOuxd+rjNxV
+K8h4VH2NBHla01iBAdcMvwl4JV2UNFOSDNLgJHDqLlLMKdPnz5oWFtLcP4p
p5wCmouVghvaflNWVjZZaWKM9xLMe/KX5n+uUnCMA0bX3LtUKf/PZ8yY4eBJ
ukLZf653ZkpKisWbEAOr7y9S0IKeytDDzzfy8vJ4Mep7Se73fjB16tTayy+/
3FwTI4XBcdfhrA4dOqB1IxyRcw2XS7N/mURDsiFJXm4HMe34ZDvIseuAAcWy
uetQfdlll/1QYWtrHS5RRtnImqENH4kRjfFegnnP4VdylnKSyNKMiy++mBfq
FC+4r75cL0WSuYyFmRADomY/vpHPP6/E/AxlCngx6ntJ7vf4vEDS17xz3Lhx
lhWV8rtTca9evT5WfiYFc65+XNa7ZGrWGyojKGkHIT7rhSOG9QeOoQIfqfu1
xfrzjqECJQprjPcSzHvyV63/ea75exVvQBfsF9HX1zJijys/EEPsLT7Ndwz+
dHUNVEoso/o5EEPszfc+jSH2N40cOVL+8v1Yx4dTU1O3aM/h8jwGfYmGPkNH
tLz7IYlm+mZ10ZeVW3KZHsHgOf5FX1U6DDHmPf1R+IXIju7evXu0B+Dj7vtR
HkBY44tVAqYQc4nDM5dBLcFL6DFeGU3cON/VxmistqwJ6quWiIQYBDi3gAcO
oUlH09LSWBn+iLpGknuN11RUu95xEK8ah+GsULdOnTr9WnH+6jPPPNNdoc/j
UCvS2kFZO0hrl+B6iExlHQgQOobjjQQAbh08eLC7UogJoveBsqq872Pu9I2C
ggKLWf1wbz5GNM3f5n195Yi3NQsJGv6toqKiCOXRpGCPWaUBKgrEyPwj0hdy
xa8p7vGHS0As/PouPZRN4IqYE3MXxP+WUaNGxb5MknuZ7ddee62sW1Rc5SQy
iRWXXnop9P5Nr1P7z2dRK9ra8cl20BYRS6WwZmj2HSo4QN4IJLgPZJlgl6jU
ZEJappKxGISLkDdEBS4fqmh7n7IC7dt+23fhXfcoN4kdGaOkjLs+lp6eTrye
pIVqv5LydwsLC/urZSrQwXqxtoFtIdaXJ1J6QYHlbb72dyPQn/N13if14G/S
tCt16oHHRyF965vw9KRJk1hyWaPPIVi/fSyC9GLobJt7E3TDbDCmnX/++Sbb
Rgiis+1lV1999S+VGyR1wvVJbN/Wez5/kpHF3cOGDcPckjI9mZGRQYqr5ZO3
b1fs4S2CFy5lLhsToi+nSVjqh5ToQ9yPpk2bVqkgt/k9/R7/D794D5uGw9VB
cQIu1+pDW6S1hV1n23GUQeJ4Qcyoh3z8TfyX82ooQSJx85MS47Uu/yKvnf0l
wnIir8katTu5kF8KLCcX8gRe+39+IRuO87X64/zclxfIV+R37Cp2UowLiPv6
c/RV/Nwjpc1abGLQq9k6ov6JqCMGvVrCV93Mpn34NVsOSwh6RVvUca4YUdiR
KybzRR2hXKZ+zVX/TuEvHZ6RopWb++nvIR3kPOfw11D/tfP1d+W1Uf5rHfXn
ruCvfP+1cvu2+rnMIoiEbgsiDvSIokgsZnTgV6Xn/fUV9cY3Xr3ZWz8v3fvr
t1tCWd5/f7RbvXZ0X43XPHeM95eXFoeGy+8E7/27q7z6yZd77904KdTH+/Xd
BXLlU/g/9e7bu9O8GekDvLs3zgiN8p7ZXadee2RbpTdq5ESvpmpRKN9bvbJF
vXb21dneuSOrvUuKtod68bvTMdbk02Osia06fC5hrz9/gxD2j+/usoQ9fGOV
t2P+2AjC3ruzUgh7f18swt7c5RN2ZFOYsIebKoSw2urFwQmzibpDWESy/rmE
vfjELm/zokwhyRB2/54Kb/ei8RGEfetwhRD23ZsyYxD2xs5UIezezaWWsIca
NWE1SxzCso6LsBSb1eqfiKw2lpZHEPX4A41eS0NOBFF3bS/1blg6MYKotw6W
CVHfuyUrBlGvtUwUou7fUmaJemBruRBVV7s0TNRVmd55I2s+n6i2MsPPJ+qe
Q2u9WzaVRBB1qHGad2BVRgRRr908XYj60aHcGES91DReiFJiZ4lSqyZEzaqr
DxPVd5J33ui6NojSPiJm7hXLR0QQc8Payd5911VEELNz4Til8tkRxLxwwxQh
5ud35Mcg5rktY4WYx7ZXW2KU0RBi5sxebok568p07/wxs9ogJpbnFcAVGvD/
/fNL3sYFGd6Lt88NZWvAW2aO8h5pzo8A/MTOQm950RUCsDXgJzeMEcBP7ay1
gO9YN00Az5uzMgy4T6p3/tjZJwL4Nz96VCzW+48vtxz+rw93eavKh3rPXFcc
GqEBP9SU562f1vcYgB9dM8oryxgoUA3gQ6unCOCF89eE8jTgVSuavTMBPW5u
qHd8gN9944AA/t1bjRbwH77RJIC/dusMC/iuDdlec+U1xwB87/LhXk3OtRGA
968oFsBLFm2wgFc0NAngC8bPjxfwY/f7VkZx1QL+4YvrBPCHR6ot4FtWpHk3
zB54DMC3LxnqzS4YFgF437LJArh+6RYLuGHZFgF84cRF8QLe0zK/ldJ965Fl
Avjnj8+xgJsqrvEOLbr2GIBvnjfYW1QyKgLwdYvyBPDK5U0W8NLFGwVwj7Sl
QQGXa8C//+wxEYl3Hl5mle65Q7O9tVXDvT+/uNgCXlXSx7tvxYhjAN5V299b
PmNcBOCWudne6FGpCmqzBbxo4TofcHpDvIC//tJeAazk1gK+Z2eZd93iSG/6
u2cXiFl7etPY0JWtAM/KH+atr06LALxlZoY3flymQDWAF8xbLYB7TloVL+AD
e+u9Wzf7TsUAJqaJtsM/fHimAP7a9okO4E4a8K/uKhAr0TwnKzRaA15Xleql
peZFAJ4za7kAvihrbVDAZRrwH372uHD4a0cWWsD/5zs7vFUVQ73nry+xIvHO
7eUC+IN9mTEA//i2XLHD1y/Ot4ARkaxJRRGAlZsXwL1zN8UL+JWnr/M2zM/w
/vTONgv4Ry/5VkKFwRawAi+Af3ZHXgzAKuwSwPtXFlvAkzIme/l50yMAV1cu
FMAXFzQGBVyqAf/3n17ydmyd7R3ZVR7K0YBfv2ehAP7N0/Mt4Hs353gbZ1wl
AFsD/rqOCInhDeCJE7K94qLKCMBlpXME8CWFzfEC/s6bh0Qkvv/cGgtYgZd4
AqgG8I3LJnp75ww6BuBnN+tYoqXKKt3Tu+qUlVAx+/RZ1jVPm1rrnaWCI1xz
QMAzBHCi9z9/edm76brF3r4NRTiPbMc7b5450rt/a67FrKyct7rkStxaqG8r
zPevHOFVZQ2OMBSPNleJKVaSYDEXF1Z4Xa7JiR9zgvfJu3cJk9872mCZ/Kuv
bRapePNgqQX8s8fmiBi/sHVcDMD7Fwzx5heNjACskiEBPHtmgwWMWHcdUBgP
4OkOk2/es8S7fs1ksjaD+Y17FwnmXz05r5WtIBttjXl+0Qj1jQkRmA+uKhHM
ixastZizMou8boOnxo85LMnEbLka8B0tM7xdUZL85C4/yPzFnfkO4I6ONS6f
NCjCGitDJ4CX1zdawF365Xvdh5XHA3iaZvI//vCCt3vbXHEhSnxzHIOMj358
R2FopMZ8cHWGt7Omv2BsjfmT/dmiffvqJ1vMjbMzvbFjMgRtRFoyqu7zMMvA
UkoYqcp7ntwtrP3slQ2Wtd99cqXIwsf31UYo3Lqpfb176oeFrmoF01i1exyr
trpigpeRXhBh1VYu3+ZHl+PmhS4GZopF9XmsnerEPpvWVHmP7K1Wl/UBq/+X
pMONfT47OluE9+Wm8TEAP75+tFeaPtB7YkeNBbyweJSXlzstArAJ1i5MXeID
Pn5ZmKJlgQzp4L4Gr7k+x/vLt5sNk//+wU5vU51v1YwsqHBeMH9ya3YMzAdV
6DmnYHiEwmGJx42d5E2dUmNlYf7cVTr8WRkf5nBZ5/0nVlgmf/iULxUf3FNt
AR9Rvm7D9L6oVgzA21S8HG0hjBmuqlhgAc/U0USv3I1BAZdowD//5EGRigev
r1SX9QET0jfOHuX96cVFEWK8bc5owvjQ1RZwBw1YxRgSr+2Yl22lwqShc2ev
sIAryuf50cTkbUEBF2up+I/fPedd1zzPu251gfe397YbJv/7u9vFQjzaXGCZ
/NOjvut4sXF8DMzv3pAhqqeyT4v5xqUFOk/abDErCbH+OSDmIkeS7zqw2tu0
cJL3s69uNHx+64HFIhgqFraYv3rTNMH8/f3ZMTCr8F4wH22uClu1WZO0VWu2
mCfnl3pd+ufHj1mlRUd3iCS/+2i9FQwCCmKMvfWpSi59wLetmSTyCsDWgMn6
TDJq4+LScV5mRmGEGRZfN2RaPIALNeBvvb5fAD97cHaoQAP+8cvrhcOv3zrd
cvjfnlvorSzuQ6wTuqYVYMCurUyNADxxQo5XOLksAjDRz7kjKuMBPFlLxaff
uVtUj0KiCigM5gf2VErUpnBazO/qKvA7e9IdzCka8w8P5rRKPh7fXi2SXF46
x2KmpnJWnzTv/DGzQ5cEw1ygMf/kw/u8retrxD8rp2ww/9vbTd7qymEUq6xg
PNCY562ZcqX3y7vyY2D+avMEW7k2mO9aP92vtM0KV9qWLdmkqxSLg2LO15g/
++h+r3FDrXfjukL8yGSN+clb68RiELgZPiuLJ/7w9iVDQ/1aYVYuXKLjp3fV
toqDqKwYzMri6ax0TVDMeQ6fDeY/f8tiVvCluK54a/ms3IrIxhs7U2NgprC1
smx8hDxvqEnzJozPjpBn5VZsnhcQc67G/MMPjohs7F1fBOZCp76CbChr3Eo2
iDfDmJOj5Pm6RXmhMRrzguKRNsawlrmkWmrl6GBAzDka80fvHPY2r63ybtpY
TI/JYFbwvS2LM3HTFjOygV4iG/1bYX5lm5HnUsvnJ3fWSLZXqrK9Ao05N2eq
d86g4ngwZwnmJElE3nhxr7dxdaXU65XrU1bbB/7U/pnemihmf/sOv9Py1q60
GMAPLxnq1eZcS0DUShHJoApcgze8Ih7gmRr4f/3xRe/Re7d4G1ZVEG94//nB
TgscC0I5/KGmPAXDB37H+iwJkrAgYeBJTlZCuWBdVaqVElM2bFi21UrJyuVN
uvw9N3RpMOCTNPA///IpKWzhXl69a74UaIudEHpdtW9GDMd/8/R8SaceUC5m
QCvgH+zzSy83NxRa4GsqJ3qpE3MjxFvlgrZ8GBB4hhbv7793l9e8eabXuCTL
+/iZVSUa8y91no25Nsx+6Ua/MfLxLVkxMB9dO0rCfgKPMY5bnFxQGoG5rmaJ
jUgDYk7TzP77v73gPfnQNpGSm5Va/vbNrSEfeKIEIAcbp4qN/u0z80c5wSkp
7XV1A0IDW2GnXLtkyugIE2iapETTRsJnTJ/lnXVlmlSOAmJP1diJpm/YsUDq
cy/ePpdcRaUGPtO/+dBSYfrXD5Rapn94xLfdyno4wBM18B9oO7h7Ya5l+s0N
RX6hYOE6C1yivX5+tBcQ+AQNnBrdy0/tlniEyPonL69XiaPP9D9+c5sIEH1B
xWmD/c4NWdLnwYa3xm46aQ82llvsm+syJOciUjXYSXS7XTs9HuzjNfaffny/
t2/3YhGYx26qJS5RWXq4bLe+ZjhVJMv0Xz4x12sovMJ7aPXI0KBWwGmsmIqS
AT538ohWzkeCqSvTvfNGzwxdFgz4WA38b795VjrLAN+zpkDqjdM18A+eXCHS
8vLeqaExGvjjOwoFOLlBGHiCU4ImB9uucjAD3Aw5qLzLctzNzNsAHq54jBa4
yeJ33nntVjEomOqXDs/FhE/XYqLcp3SvqIoqX2m4/fvnFki6TuI4uBXo57eM
s33+sIgXthJx5Ylsof+yYPWPUZrbv/z0IW//jcuE27dvm+79+o0toVLN7Uf3
1YjbJBMz3H5RG0QK/q2BXz9zoBTyXDGhxTJhXFaEfJfrcjQZb0AxGaH5jpg8
9VCz+PvtDbnedx5rwBAa7J8+v1Yk5andRRb7H19YJNn6vjmDQkMs9vYa+6cH
csSY71yQY7FTD6FNpAy6SlB87EVOlTcg9mEa+7//5hmplBHL4j2fOTCLrL1M
ywxZ+47leVJZ/8PzC8dElXO+eV16DPhP6J73Q40VFr4Zo6BIPdk1LTqnDAj/
Wg3/T7940nvmkRYJazGNTOgouSl33BGzLYjO9x+o8+EnCve3zxvr7a4dQJQS
psA3MhK5NFf285ZNGzNW49+j0wiV7ljRoaMs6drY2aHLg+EfrPH/7idHvaP3
bZUQd8u6au/xm2u937/dWKlF5xsP+i5J+f7Q2KgCxNu700LXRiP/zt5JflV1
2WSDnC5XeppvFQuiE6DMVUGRDxDkKWJsfvTdIzKkgsYSjSM8yhmFqjT7lZMS
Q0QJQjmmMU6CT/nqxtkDQ0OjKbhb5XAVmYPJj43sPLGjxhszOo1GjJUdEwtc
rGKBgBT00xT85VdPeV974UY/HlAUIOev3b1AwvVqTcGf3tnmy/+CccQzZg2e
3VNs+wcOBQnezw7nSfdmY016yCzAgZUldtzDwM/JKrFZRkD4V+lyCpX4D96+
jQVQmqdsj3oNs4n1Iayp0SRQjj2wdYpKKkd4P35k1lgnBN5YO8I7sGCIMgYO
CS9sHWf7eGMdw0kvWvlUK0OrVmzT/rUudEUwEvoICR0k3/jet+/0Hrp7kxgg
VoHgBseltGCm1gKUAi145/by0DgN/7Htk8XVEg1HwKfjQL3btftP76r1qrOH
0BWzK2Bb6RnLg8K/TOB3lBUA/iNHNnvbNtUJfBzsE7fUieiThcyK0uSnlRMw
NPxCxTkUOO5aNiw0HBr0PB+kCMvpjZglMNXaWTPrLQ34rrOkJtAUlIbeQkMn
UWMaD8xxHrltrRhSQwdznD94YS21rzlamPiT2Pm2taLR45xqOSU7FRD7lMhq
jNfQt86kAJousyIGOtFa1wGTRQECQu+pcyds/3tfPyj2c1fT3PbgVi8TqGGI
aLkr5PM08l+8vkmCZMYcf/fsAoP8e/fXKk2+wntYxZojLPJxjtOdmTfUK8if
YZFLXElTamSNEuRAyM/TkQ6CQ9EL63P/HRtAHzLwdzbOkQrjOw8vI+deqOEr
dZDYomXeGOLjcdqTUfO4fskEb3PpVdT4W1NgxGZm3TJLwcL5a/ScTn1QCroI
BadJwRyxQfxfe+5678G7Nnp7dy2SEAjx4b9M/OGP335gCT4ZdVjsmFUUnTTx
s6Ozx+vFeFW7tjd2pIZGtiKF7IQ6uitG5WVztQY0BiXlVK3FZFaI0s++94BU
m958eZ+EFGgDJCm3rBcn2SdLuQsaMNQZPnluDe6i3omwKa5halW4Ycj61ZPz
5KWb5g5Swa4ha6xjnKjvFBaUhQpd7ehfINoRkCxF18ffukPygLeVTkMNYvbq
M3u8Fx7fKXEq9grqDt20XChs2TJLCSUUpkjuwMwpIkiC/N7RBu/nr23y/uP9
HaGVmkwVH8pnqKp8dG/NBCffxAjQ42tN5u1rp9qSlatK9HfPHVkdujIgmf4k
E7IGcH+BTpU4ChJoUd+4c6G0JynfP3RDlff0/pmyaAzAqUxOZFKRElqvyaKH
TbmOYPH9u6smRFXnntwwxidLfVT5/bND4R9DI3Vb8mflGi2NtkiUtiwwjUkS
f1NT5r9qCWQafbvGy9+3NU2T2u23DldM0CaBSTNSix3V/SnMiR6pKxHTbq/u
xzaBduYuY5w6KLjxj0YETSewd/7WoLh3OwAPN08XgN+4rXyiZujD2/LFdatY
VTPUttn78vX2LjQzyUnwZKAxK2KaZwGh7XLyGupUDJG9fajMQPuuLtXTejJr
DeMIKuYUyLlAEehWlI6XKhsJZYRQX5XpnTuiKtQ3GLqdjnmkjUdwoIKeiXpl
VQAqK0s3Txl7wztlLSVgu6m+0J/+H+0UFxh5ZJipsJXtXxYU3Q6N7rdvbvV2
r8qX6PHDI9UGHTU+TAB11ff3TXLZp+TOmzN5OKYuAuCuBblqcVOpeFiAZTNm
25gmIECjGJ+9ssHbtixbcowfPDQzVS/uG/tnWEUerdGZif9blheBSdC5EwhM
JeRkl4SKNLrsrGLvnIFFInptoAvXZlo0JiZPaAyRSPz06JxUzTQ64LgGlQrB
qVFaWZXeykwudS5gCCAX22FtTetqlljOrWho1N3DWSpJCFSC2SYokyRfZl6K
SsBNDaky/ZfqJM2UjpiVUXHe6Kg64m1rpigrHM1DhiSouGARDU4zFEH37apg
K9ykcZLTEJ2Ck+nwPzy/MJSml/nR5gLbbjMgf3q7P/JeP32s+suAHOnUmkVP
ps20C100uVz2rlxS1BIUZKMGid3Gn+iwX2Z4DEgzgIahGaNBqhBUqj50XFuD
bJ6bJbpCAaIw2tQMrwxdHQzkVi2XdBpQZny5MoTpjlyi31RIfnFnvuEjBW9c
/PqqVPUhA3GEhvjUTj+SUfbZ8tGM7PRIrw8KcYuG+O6j9aI6Tcr0ffJAnYFI
3ZJgnnX9/v5sw0UGGpiFY7tLa4jKRtqZFwNR5kdUIksFMCDETXqp/9ORx/0r
00Vv0h27SLqEXfzW9ekGp/pf0RsmcpIsTn8GKlGUHuVn4lc5F7Pg6n9lprb7
0NLQNcGgbtRQGeEkRsXzPaWkkhmiDGcrixnlHKMtJKaopaqfzF2oOCEaKvMl
U6wpKopKrvEyAXGud0wRmQMjORhy5ZpDk5xdXGjVkYbhKvby+fmMnrw5uKpE
BerRIJXiC+MoYBiQMter1z0gyHUaJI6a8JJ1Z41//dQ8DTJRMkscOKZdqZBZ
9x8dypXO+vLScSrcNjiH2dHYUtsPKHIWPXVijtft2hmhfsFwrtU4aVbgEem0
vH7rdDFFBidVCBjcWH6195Pbcg0/2aVCt+KBreUxcFKdIBdTPsfiXDh/re5b
LA2Kc7XGSWZBvxZ+7qtPlS55phPXou8w7+NbsgzOb17n61HL3OxQB4tzaEQI
lCZThMUa5/SpdXrdm4LiXKVxsuln18p8iWypBaJEmY6fvHVFuui7AjdW6xET
eLCYVpXSo9ZQt83JFC9EMOQufVpqLg24UP9gUFc4LGWSBpZSxVd5aSjLqR4Q
sqHzrzZPGOcMmcPSO9ZNU/mxwXmtxvlYS5UUaJWHtCwNL/2SoDgbBGey6DuW
nsITtuloSwGF4izHit6/NdfsoTFQv319hpRvNtdlhDq1gmpYumTxBgs1bO2b
gkKt1ywlH6aiCktvXp5GjBnKdnACHZxH140eZ1b/cJ63texqiSef2FEThjrE
EdSKzEGSghU77p3gqfuwstCAYFCXaq4Sg9ByBSpK/ubBUiDmaLQ4AJA+oFZc
hZ+Gq8xREYnctX566JRWUNmYhE4RiRioZp9Pz4wVQaEu1lBVauu9ef9iKdKR
gj+2YzI6n6uhsi8Um09/wIFqdo6rpQ51tlAHO5EdnYMpJdWhEtOMLyj1I7vC
lqBQF2kBoKPH4JeY/TWTKGGF8jRO2jPgvG3xtWGcKie5PdfbNOMqceoqTmoN
ldrBmNHpMqdW7Eb0lNhH1YYGBoO6QEOlbnjv7nJf/VXu8d6djBH7UPEEQD24
cAhufnyU5WdS6lSLc5DG+WBjuegUzRjD0pqqRX5En702KM55jqBSoKG4TOBJ
c1dZ0miot8wbjDM1UF/f7qdvNEpPawVVRalSd2bYyEBVyZyurLUEhTpHQ8Wi
vnzHPG/r4iyB+2BjHo6/QEN9VQvArfMdqIlUxcR1LZ4ymjw4jHagRnv/ljJh
7HSVhRi0DFeepTfZDgqGdpaDlqpX09Jsmy4peZ2s0T53fYmgPbBgiIv253fk
SwGJrslDTRWnt0LLCC4lo+X1Yd6adkTvvM1B0dZptFRQ4a1Bi3f60cOzfLRJ
1rqC+M6lw2TwbIKWhbuW+UaLcfEzLN4BGq/ZJM6oX4njXemMnjN4ilLD40jm
azRKNinTYqDnCUrm4H748MxCjRK3yl45x7JalGY3PuHKVyzK/k7YzyQUw58r
GppKot3rxMU+0OPP7Ks0ZPI8IivasfzDl/7k0dlFWgxUAi0BLJCf2DBmohYD
NiGS7xE+K6GNBhweBeEsiynO1KfxsG2wNRZav2+fIsEAJdo7t88QBhO3su6/
fGKuMo7hahgxIu7/xcbxBjKpPnEWbZujzVVnWsj9NI/pJtepN/2dn82Gx0wh
ItDdh5UrTxdwW6KPmgIyfT7jGqjV4bYUUiVzPmpmm4hiVxT1oXA30amSoYLY
XeV1z4pCncDQkDBaZVaW0dbsZq0JCnm6hkw2SHSILQMy52UQIyjTq27jQ1bh
jeTea5X1Ullrqpbkpzb6Ux57FueHzrZ4r3E8L/FM4eQyixd9I6HtOrBQhWgB
t+/4eCn8vP/4cql7g5e6wH1bciWqnabxMouPwGxR8daHN2WmahYTKlJ2XlMx
ET1rDZn9y3hg4popUeULAtuAkIs1ZNoMjFgT2BovzCwnUjHNsWsS4KjA97q6
AXKSh8FNzYUaBwXUx7dXd7G4r44aBsa0TdW4C/JnSGWI8YiAuP1R9g4SObAL
mEI0uHF1GDpO8lF4p2voDHOwdxyTTO2FcztSnaiX2i8z+cq9dbXQr7L2rlYG
x6mhKwWcEuH20mR0b2jQ+fzwORJUMm/dXBJqD36KPw2p4p2pzpRq+GS/NFCx
IswtYatTndLHTXMHiVIeXjv1nCj4Cd4NS/LtMSqG89Mkv0jzeudvCYrdbAum
qkAkrHIMi53KK1Kj8Cor6Qs6w6lbZ40SxXxrV1qaY0uIknVPoJuF3VdznZ1q
OHZG3ZVOTrHRZtgCDgs6hx0ey6doo9TTIoe7yDbnTVQ48v7y3qmSP9PN4Die
9KjpMcYku0dh9+MOInpSOsPySt2q6pW9LijwNA0cJUXYDzWGgXOEA8k9RYgq
R9qJoEzIpCRcA/d7CYgRYacyMGHsV2rsZg9xedlci91k+OcMKgkNDzpeG26z
fe/Z1bK14LrVBQb+XuUbga+8vApcfPgqlJI5bFfa0x37iFdaNm0MGcq5Fn4f
LTaPba8Wx8nWMJWaTo1K/ajwBqRgtFDQSdz9T1/d6H317gVi2QlQjHW/fV2m
jBuqCLvWkR4SAmrWbDBQTimUoalQkiQdinmFIwB8XhQVfp5F9srw6jRnz4fM
UaqUMCAJw51y5W++vkWkn+mAbcuytSAligYwGsxGIBVozdRkUNAylhMz8+Pb
ci0ZzAoTxVBOf6ix4nxLxhVRVVeMviFj0YJ1dg/yiGBkDNFkIEsMzjAHxzEm
zfU5lgxGTwgb3z5Uhgmdo8mgzskwJb7VyFSG4wDonRIJqAj8AkvG5Vqm2AVH
pEYYvmrFtmnR7mvytqCU9HfqSSwIAwxoBgMLSq4MMWgBxCBaSsHnOaH7M9cV
i2GiXvPujRnKuIUreDfMGijuQCUZF0YRk8DQn2RwnBFgKFm8cL3e3DInNDIY
JX01JTQXKDkxtwAl9JRUvOZTkiT1EuqNHBHAYXTEFQs1OWwVx3OYfAlzNclJ
8ahNQ87+lcU9LDmXRYkY7ePpmpzCgjKZ2CC2D0jOpToeQsQYxiKMY9CP6gRH
Nqj4QotasoSjeGt6eV8/UMrcIlq/2DEA1FkwAIRGzAtlOmShTaSCtywv6mnJ
ujRK5Jg+dkROORR/ocbMCo2KSZk85cg/IpNzuXkGDccM8oCJNh8Cdcyj0S7U
kRaiSuL7s69uZF+6OCKKdpjCnSvyEoQpKWIVEVtyYmSUA/ro01HMr9ec4W9O
nzK1EgJJwxmV3strcEbFBRdFcSZSfs2Cc3rLWX0zZMAqNlv8UZXTOR6fpwCs
7t+/P8fe1Vx++eWwqEA/kivwmaBy3bOFRacIi0ivfvdWo+wZpp3O7mxGlEhr
GTNBiJTHUJT6/GJul/Isas5ZO/BLOUMp1q8UfiWLvhOIIEmEUaTnyoBlOhEg
J5jokepelmWXRLl0V0fql26WCJCq3eg2WJbAOY6v60cHmMPIdwwdOpQHHvFH
mw9QOibLQl1kQoOEHzVDqBiIgGtMbzKyxoEHqB8WhUATv/vC7XMkE2RSCsuP
lSH0Z+hw08JJSrbgakfxyYzuwVkiIcq06CJZF+EFu6LXO+EGYYgph/3wYE4o
y2Et5z7A2huWFvS2rL1Y6ykVcaJU8nQVbkyPEV/H5u6pPic5Xp8j3fmjzecf
HfPETPUa26ilAKFo7yS/T5OOJMkcg6Z4FRq+6CR1QIzwK/umSocSdw8HKFQo
Hd2qmUKphbo7NW6MlwobVeQfDt0pv+q8+mLLlN5OwkSARpy+dPFGw5Tl9Vul
0nnuiMrQmLZEjkcZdO/UqZMrco2DBw/+WD+ppc0HFB2bUacyByiTcogBXogs
kWmqj+6roWkvx4nhjZiFJPBBCa/XHOFzZMWIyR1Lh9KFjODIYc2R3QtzL4ni
SLgwMrN2aWiGuzlAb3Jsix2deIAMTzPjUSg8hWVB3759sd38lw+Y83E15a2P
xpUzdcXAH9TEqDjVu2eTH9WR2nAiQI5jgQ9pmd+5IOdSS0wvZ0gS86ysriWG
JoCflpWFxkJMkr1xJDFYYF69TSHkyYKsJc8yMON+5kxcZ2k//zjc/dpQ0tXE
UFKbJ0s4um405OQ4sRFeV+8Kv8xSdpGjzQSzeF2V6duVmjbTT91yNvjEHUtw
sX2sFKeoGo8a/1m4t2iqCCRwC0b6IOGTW7NzNVVKEKUcQ4ikzP/llqqejjpS
G0X3lizaMMN6gC3yEpn0uDZiiQQeeGifVeZb9DgPwr1Zi9+nD9bZAICxDXYJ
5TmVJLY1MR5zYGXJFVHkhHWJUY5STUtJcZVUcynqt0kLjzi5ddSoUf4jTuR3
R5w+b8Z3Du4+vUrUTKmnUx1juzk7VJT7yHNSPmp9VJnuWDetjyWrhzMsh1aV
KK0yZKnV8ktMo+pUIt0GWbuUQ+ZVgddefnewD/RRP7FOwz1mxHejpogyAiNh
hB3U1xn9UrF5vqbo/X2TxDWgMEc2lV5pKbrQ1aZcq02lTtrE1gSCtdhEHTM6
v97RCAYlKfiaNuanB3IKNDJlzWR/E9NADzaW97XILtDImAFbqhwUhVSV+xhk
poNBGjQhGLI9WrLxKJRkQLVn5gDZezVZw2IEFqtEd1Xx5qooWAneptp0uw2i
zMn6aQSTZAbEtFtzC89FngIm0kVKQMpjFTgz18wlUW6BKZxafLXFdn5UFZEY
0mAzG/QumLAgNDHomC7YUmQlP4jC92LjeOmZTdYAcUjkhbR9qIs/ubPGL4cL
wPP0muKVMIGI1+qVzf6aJkrpilpQl2ty2ZIfEGbLMWCiySg4u9YLNUxmplhy
PS8nR2H0szDP1TDZYkrASIthRUOTYaU50ZNTaVODYdzmYET8YmEs0iLIoRHs
wmE0RqXTAyy87k75jBo+Ex3Llmwq01xkGx0HS/iboVoCImx0EOLI6N9EIyzW
CL+2faKcm8suYmVVBlqE3Rxv1jBjnNRXF8xbXR61E4DZjrSgI5w+PKIHKi0M
IAGP2WZkMQzPVxaiCmRxydQxVKn9Tr6D0d9LZs6YL3fcLRFStyHTQulBBzh9
gOyGpBXOjAwAKVqhzChLiQZIjEP0BkCqiBzpPdgCPEcDNCc5Mx9RYaomk8t8
H5q7KSjADRogiasc3F0zXPwgiTwjpFTbpmiA+HeA4+s4aAU1GWIBdtWrfFhr
M3uMVF5lmDhvzkrfQo+ZHcoIOmUYFkLifw5+hIl4NxoR7NGcpoWQcT1cG876
0OopQy28LhoeE5CV6k1cmwp9yx014aUu/XJpagVEuNpZZnoRlDJByETOY0rm
yDimObP3HIKO0eYAAR4GMMzCPFvD5FkHeGAGM5X8mZVmP5rRlUlBB/bA2EG4
SE2ViAcOgpMzL1BfhW26hskZTLyMNFK44bzH4RbmWU6rh5kzNu8uWbzBwKTB
JgHq0LJQZtB5PZ+VJHIM6ezSKs1sC3NjH96UqYIsf7G/oRcbm3hzQ+FIC+9M
pxbHZl1GSVWIUOls8CGOIccPCG+p5iIW55u3l8t4FsVcIHIkBFZHKXKps9iP
RC32KAvzKxom+6MI8+kbKM9sYJrOB/X2rKCTZOHF/r5Kj9kTxdlVwMSLgEkl
IuXuYs+KXOzRFuYZjv3mbFK2Cah0uNJRHVpMMvZU2BwQ6QKN1Kw3wwugxBCR
mKPQyghV6CV/a1eaXfKb6gvHWpCnOyMu7OSUw30qF1RFHcPB0Z7ZwRDOdXa0
0xbavzJdBeoKo3qNqEGW/HBeqFIzkwoxI64wk4CRNR8XhTOcC9FgqXJqxDhH
1CbneAaGZmnmUfGgjn1IWcY1WhopDmBnVPpSrZERQ5CggWyL4hHh2HiL7DTN
wT3KtBMJkZmpGKzSCcfYnkTfpHf+1pxgc0K1GilMJP5Hb5heN5HjQypD+e5N
mTWO3mA4GXKmmH77mqkqTjVITzVIF+cLUkYulasxbKysmG8jstxga+33YTvS
TJZyBKmuUW9gMm7FGRi4xVqN9aObs+SIKbjK3DpReKrF2jkKK0GuxZqolzxd
H4HUEhBumTMTTreeLqBSIF86E2XCjoO7GLNSiOucSIjpGjIaUkC2NKRbwKe0
DVjEINOKQV7QuaAwf3msDN1X9qfBX7OZgYyGE45ma7jk3+gZ/MX8cARZhoXb
ScO9PhJudVRwyU6R/GBYzUgVG4EIO3gwiwowDXOJMY80DJetpcriz3GYyymt
pN1kCzc3FCkfY9B2jIl2W7VTNfANQGmoIOhYDWg7SceBgijRJtJrzAFcJqhj
P90n+7Pna7iIBpuwYC6b6VR2q3yNgdtBwyWFbAU3UQbIKZ+ffVUWshAQsT95
fYoI78f31UoPBQNGCRDEhKGEm5gG6gIE8wsEdrLEyugiTWFEmFPRlOXPtshT
DPKlBS7ymqg4iiMKJgc9zNCHjSWjEk1JHkabWArYDCUdWT5c5oeJ/RZrbiMr
uF/CAUoGmIpcizk5puZZzIsXrfeFY1h5qDDo8XTh9jMVPBoqnKmxc8E47cqS
RFCQBNgKzs9uz1XRjo9bqaP0qYxLu3vDdKVNBneSxs1221a4fSkhZ0ZKLi5o
DAh9rFMgBjoemESFvo9iuUHP8+CYM8euMWnCmFi9FhaqEDgTVJK4YffCXGKZ
AkuA7IZUFyF24Ix4iODsK3Zz1ZpdPbqSzGGMRUHP8fJJQGKo6OBYGCpkbkNx
3ZCA3BOEsQAE43SzVuoFINLF4JhCCrsPCy3+9hZ/rWSOkh9OqZFt4wY/FR8C
N44VKQ56mFQYP14Gw40xpDGlEtoEwZ8sue2+OYNEXxF8TuBX1nC1I0OsECRQ
p8ClF1sSfOGXSBgzBAU8yENRUKvFiMcVUdugkKEytIA0XK3TCpplBMQMmTC9
hBYwwbCpbmTIEMJpdZTlmfjGlMP8H9+Wu16LExPA0Ij7ZPBk54IccvWSMC1+
4kFED8erKxfWOc6TvJhkvVfOhpJgNFyinSdBPWsBHRRlaAhyXhHTk8hUmJYO
Yo3IRnlMCd6Kh5JAD7m8WpxNmibiLY7ik03MyjghRcoVTA3T5I/GkaHQCZvp
RZ4azDOkpgSj5lyhprNQg4tltIC8lC4ftRwcGFIGVRTGmAFSIUKiJkx2D6tc
AZ/GI7pYKB4aSDSmFL5JE4Y75uVtWnlYlCObSqe7hJGtUp6AJLNSzNVgbLtd
O4O4LCBtiULbOUIbhoueLDE6q0aiwzNNmDnBoNHBpPjHSjIajW2mhoBfIW2j
2Ue0DA8gWEalq4Yr2mBER0nrSJIJnUiYqPWzlNhwAn7s+C7NjXdvzLChFBNs
jBcoozfDcmOWJp/HTVAO4bmRymZPDXiwSKKgxaNI8Fwx9HQBe5pkddgJCnXm
6TnMOaJqD64aKeabk5TZdgV4ElMlm3s1fja5GBvCqODeZZMxeqXaAd22Zsop
ofDPLHfDgM79pgWk5Cwpc5Iuk0sRTFNDZA6NJ+8RqsJrUsBXmyeI2YPvJK3w
mugKM0ijj1LfYU0HBWe0kfSGYhQmROXcZU7FvjR9YCYApO84M6oiwODy9GCU
PKZvDUd5shnOkOiJ3XYqoi5zXeCsScaPJ1kIRjFQFoqhXQcWku0HRPGowwCD
AiZQdHiosaJco2APhXEDbKPGkYl81lr5bNIxRSZVzxnBUDzsoCBTN7zQKCpM
Da6pQqIdZpaUEW/PvQVFjWPOOcjhLL8iVxoMxYMaBbOYyD61c1BgexWKSo2C
E7Z4/iBMV048IQpF+AldnG9dFgzC/Q4EXJqBwIjxg43lVRoCpxpQ0mWKUiWs
iRaCSQTYj49r0FlsGyjCtYt79b3xRCyCuTfbJO7fUlblxDTss0Ug6ajxvKEk
C6DKBgdbZf99l355nOxSHqw4cY+GgrpiQpFI/pHNP7C1vFpDUWoi/QugTCmu
kvAw2UKpdMLd3Owp2sevrwi2IncKlBTxWyQ9TAxg7bAShKYEfjV6WVQULsUR
/FRt9eIOUVDCMSs75iuD4TiscRA7Y5BJxIzV3aXiZxXgaBy+zcBkISK0mpjv
62jBmJowJ/iizxzGVRUMzG0aDJtcMb0MZfupyAjOMJROSa1jOhBfFok6L/LS
yYIx5X5yKYrCckZmYXNAPAc1no9vyZI0D9EFD8LBVCuNkTqNh/2sGBEiQR3R
quTR4Clz5BfW0S/unb+lOhieWzUeojgyhxt13Z4IFWty3+Yy5Qx9ocHl0xwZ
PzYTc3KqhVLqmFaSeqYyL8peWxMMys0aCl6PSIR5CqDQ0Cc/pHgzy1Ftjp1h
qTInFcrGqNMsnhmOkZXBA9/I1gbD40cOHUSO8c4EHAS4WBo8DI+eVcs1W0Ni
Wxmd9LCKbwudHgXJP+HB754vDNUFw3OD5g9FLRI9P+C+XJqmRAHUX+bqpbp1
RZGUkBDU2polX7E4zFgeG/RQKXK6mcFwXKf5QiGFyMXwBbNHkU1lZ/BlruYL
+QzWEL7wqB4OkTjT4pmml4ogWtwAhy4XtgSEtFNDwvTRemRwgFkQV3weba6a
ryFh/XgZ71w6Y7ZY47MspKlOfVXClf4FDJXPCnrilw+JuJP4jxIwcFAggoU7
10+HS/Mdgd4xP8caQjZTdrGQpmhIyiKJJxVdz9s0O+jMgA+JkJLQk6aT2B4l
0BzFzEljKoteGEOgaRNzoEpXC6nEaeHgXPFZF2WtmRP0rKewLPFYH1Iy5MiY
aPyFkuvFWqw5cg+xZlnqapZ0s2iKHQ9KSV/X8OcGbblrNIfzpMXOELDsMdZa
1qS86L2bS5doBnHcyDrtL6hrY4S6W0hFjhFiVF0/4Hle0DOHgNRR4k3SCZw6
ttk4VPpVhHn4jaUaF1yisolzx28g3udG4fKnlf3Yb3ZofjBQazQoLDVply9I
V9j6DEEXOgaoZRoUc2FYB2MGlBsNnW9BFWpm0WsTszQKY90SENcKZzKXgAy9
217drz3A1Od5UDQ6RletQWAlSwBCHOAby3RpAKkVu8Aim6yRESpLDCLPsWlZ
EPR8Fp9jyPmbu9Ikg/Orub76MThN80zlDYoKn2P08ak5SPiqokIMZw+Lq0Dj
mlm3TAIEqTYUtiwMhmuJWUllpajvIF5G4jGg+DnGRvC9Kx2WEbNRD8W/4EoU
y3paaPmOTUcGzxk8hbLboqDd3fD8Lq1bcr5tFdf4i5ko1gF9RPhVELfaiZmW
aaNFuQyd7GWR5WlknHwKdCkITm5aHPS0DZB1EjGjo8dzLZl3MHpJTMfxmzBJ
LehazTcKlLRumXHFgKm4G771tuhyjeNZtEHKlUyv9c7fuiToeRWgO0XQMa1J
dYsdDuwhkTKWUlQGG1BSBm6IgNdr7hHh4RjF5BeUyYkvl1h8OY5j5BgIqvK9
cjcuPZ6UrcqZVCI5oRRCxXfNlCtDZkk5f4rWBn5ICdxGZ0lhJ6AoLHHe6mUW
VLYTlk8YnyWusVfOhmXB0rgyzTRcIzU/sko6GsYXoaMwjZIHsRUTYJv1upI2
8Ah3s67s+VUm93ILMcspDLKuVMYU3+qDretUp0tIpZLCEbUvpROag0l+NqFM
BmLGaCTDGFsdteW8fxyZdCkml1MY72NhZkbBZNtp79xNDcFgFjlzIVg66l4s
9Fq70EkS2WNZ6Kb4fqJWBSf+ajMquVxnypRp5s9dFeprMU6KjXF50PZhuLuD
n3i5abysOMmPiqp9mMmy6PgM5h3oEmKQFRdbNEOZmqTeRcjGulPQVut+lQWb
0UqfBeyKYGAznLSep6/AVDJZxp9pFioRDRnEmG4QE2DSCsQ4KhnYaUWgVowS
NSG9lwMRuMYiTo/WcF9SVwbd/R1GTNyCvuNcGLijhBzW+RSxRoTGKDgWCd3n
uCFEYo8WCRItbIOp47A/ur/FnKYx82wi6jhiAHI3rgraaAtnEJS0KMGS3CC+
cJopDYU7QTNaclOlaMx84h85w0cxeq9GrIJEW+4hXueplAMt4lRXLowdzdmw
OhjiQRoxmTuBGHVvuIwgY+/ZYqFceEIUo3mCKlLL42oRDx4xf4uWD0byNioD
jGwwlldVKRI9yCKfqJFzVDMfEF5nr18TDHkfx0NRl8GaUfaG34STUADP8akC
WUm4T0YHmeVD6jEfFLUQZ+ommA3lyQ46vpakjxiFtJJKsEqehlhKJmhK6G0S
9zG8qXRzbTBKegglnYUSXAepOc8GZuifDIsAFKlnPXAnzD6rKCFJiOkoxEh3
SUkSiQRehIIpx6ZQMSR+vsPRXSSNqp3plCuRH2opGq8pYqgcknlkvYoe1gWj
yH/QfFehCPNIxxIdRsJYJyIKKCQioyjCrlSkjhiIog39NOqgdGZYP+aIoNqP
Pq7wKT/FL1YrHRIDphSFUlPznCwxWqQvZMf4fRzYfQ4H4A5Do5JFTCrCOwy3
HBgXEaqn+nHn5Kb1gTtQZKHM3270/7XHKaiXoYGgmDhPEXCq0HK6/Mm5DpAJ
PawmmQ5GmAiV2gyzJJg2aiOMET+qV/eo0JYizhkXQ/YkNa2MQunYUPIbYQkc
G5UlEfOrwHpDQAITJK0mc+Rsyvb4t9CZEtpgGIDMUrCbAeg4aZYFg8GZWiwP
cSKxI2YPa02pAHeoluglhyLCDeJ048up40LRKEvRaKEoSZJkNtxBVXcyrMKW
0MZgZL3v3BiPQbhm7C9JEjceY288yrkx527qWpgcvrcp2I2/o+WTgIsT0rgp
Q63E98p6jrP3HKnvScmE6Eu34+Sem4Pd89sOsZg/U6fhtCLyMVL+CfbGI5zy
EacM6u1OW4Pd8x17z1qRVUrT3JM5c99TbPNdm9xzuOOWWQLqQz3SljYGu+c3
9D2JsRFCE7wiTTwvFDrT7T2H6XtyNJZxTxdlrWkKds+39D2xwFhkSgNS4skq
tjo5yd5zqGN2SXapFvbO27Qt2D2/rmUIm4diMhyCF8bKK2ebbW83xJFbYwbE
zhU0hZqD3fNr+p54G+wV92OelOK1WrVce8/BVm79SpZfBqmUh522BLvnV6Nk
iGAV3hI/szXaPnxXbjxI35jjn0jm9SYQUZjtwW78ir4xVgrrZ9wooom/sE/u
kRsP1IvKeQmknGzHvDB1yc7jyXSNAWQpsamEICZynTPbF58ie6cBTq1EcsO+
k2hV7AqWvj7vmAOCOqIjlpOUtLiwQiLmKfae/RwZIlmlDI7Ysid9dzC2Puuw
lX09JkxH+/z13OKX+PVxdv6N6RNRURZrP7RMtjleF+zGT8mNOwjFeCImjKDW
KKpvHLbNsPe+Wt+bIQSsx1n+7giRpT3B7v2EJpqSJh7SVEzoi+FLVHLqdwv1
iWzhFRajdFUm4yQ3BLvnUT3fwSZWPLDKl5TnVmusXqM4iPlZuXyb37/VR3vF
XmV2et0Y7OaPaIJx9YQHFJeN5S9Vq0yRrcbeuI9d5W0ifO4q7w065+CvMj0k
BnZMZY+UmycXE70r+ursva9wVpkYSg83yCrvC3bv+/S9SSX2ryyW2UnMsrEa
FWVzMVez7b0v1ws9q65e7BkL3SO94eZgt71HbttRLCTRIq0zekbclvoWE0mk
X5iRufbelzo85xPiFgYW4YlUdhdwjMAAqON5HxITsp3MmGk8AHzH9S6wAC7R
AKgcoF5+bFMnPuLWoPMDPuOZoUG9mDbj5qg3/nDWzHpUe7G998XGBSudp6pL
Pq1s6IFgtz2kb0toTlZpQirsKM/EJKxSAdQye9tejjUr0W4RV8zWsIPB7r1f
3xszSpJH7QAZN6EOM+dKpJfbe1+k703V03dQ2jOquPlQ0LZ7mN3sLSB9MfdG
zlFwtaqr7L17OIYFphD1UCjqOWlV6PZg977R2R5GykcFSCUM7bm5epnb0zDn
9Dh1tzUWwoUaArMPiIQkQ0OmyRPBDgfdw++LO8tOdokjMREfEofbpilE92WD
BXCBBoAioJVEtxeMXyB25o6gvWsAdLI8YKyBsAi580P6bNE5zIoKhDZbDOc5
Oj9NpzA0NDiw5K6gO959DMgfaSrFCMMEZIGkARmk7KoWotFiONfI4cKwHNK7
43DXu2Ni0JOzie3by4kVQ7t27WqOKLv09NNP59ApzuL6bnFxsRzUod8LdnxZ
o+Wpb8MoBaHPRq6JtHBNmqctlp5urtNUqx6W7ZWhI8dNj3/gy+m89r2SkpJ7
xo8fz7liK/v16/fXqqqqCzt37swH4jt3bJPQdorQRtWL0gK+qUY7ZeSGkRjC
L+ModloCz7Gas0VE23fOpXIux70BCUzIuOCCC/5YWVnZISEhwRzZ9FJ2dvam
QYMG8Ud8p4Stc2bDIBDHj0DW5Q0NGcvAiAQLWKtMvjICeyx9XTV9rCzxGKNI
F05cJIp5X1D6oMOed6Pp47XnoCkU79ldqxz6iKhkASsnRtBHekKEjH1Vhn+v
pe9sTR+ZibF8XZWjJ3Z/ICh9B0ePHn23Ek6Xvjl9+vTh/Bv++Pwjt8KHTDVo
qghQKQuRrSOWKnTQVCVJvEjhA6qoCyCaN1vSZChIpiJ9v0Kw4dvV+fi1B71Y
B0y1QR1qZ4/E0tRxIuIPFVX8YU7QMtdofYRW7I55eKKTMhguC9OiQkNHOn06
qQCp1TtoSfyKE54a7es2ZKqcYPRw0NU7cIzV+0gfmPZpjNX7/FO15kdJJ9pH
dVZldnYd8YvMcFBVR9FoEx+2RJ7urCOptYRkKq3VavhITDpDyfxa2Ldv3yZl
NE5NSkoy5GpqNyu94xAjl1rORjP6aU/c0pQd32lbs53VpI5G0ZMOiXJ+llr9
3DhxgFSWSLPuttSeFnNJp8mSHm2D1KvPPPPMD5SevVdYWBhFaqbydZjJjspc
GlIh05ztZI/hijKrbR/DVe30gelkUpylT7yybDxlNZ/aZHEfeHK2cCO/Wk/v
swR3jlLT8PIyRtHyWEyafaSJIH0iIyMjkuDTOfoPqb1j7NixV5xxxhnYUM7k
6uE4yuBndJVpgrFIBAEE1hRk0FaVURmCiQkgGIUlT/aXuOlhS/ApJrVZtEEC
IVdpn2hLaVm/T1TM4sY4kIKLJI6BZM7oMu/FOq/r2DHOVGf8gBIesTuKyqH1
iiZDHmEc6QuFCdaT0ReVPT1uyeuo15MiGwpN74jUVavrk0H3EvulAjJ2mM6w
BDNXhNUUh6hYGGhklagMs+ZU6LWoPWOhpTiiRnJHs5TGzrkjqwlYng66+zZc
MqJ0Q6EM60azA/9L0K24lajVnqoOHpanvlL2xci9ZKEla6FYtHCd1Jsk+RtU
Ige9PxsM1wSLq1aSMMpZNFuotFDIo85ekTk4QXB1EOMLJymITlGpPjJLY4UQ
XJmm1yzExFYLmyoV8QtTmShqeS5og9zPkxA3/ALdDjQKE0KNgtIM1XkleiED
ldInqgUbQYA3oAyGrVRr+raFmmCiNpXa08KQRR5RJVXtF4LhHOCUL8jpiEUQ
QlIAhovoNsI+ZQFC/lJ3FBMAdvSEzbukvOgKpoATnIhT3rNg/bUXaWUNTNp1
Udaal4JB9Y+TPV2goi9YZeDiiOi0MRBIA4KGAAJKZk5XC6ioNbpkSECXcMkM
v8JqpIKn2bK9BnZTrflemIQkmVZB1TnMRkdYoZeD4fcPd+kigotY4EQRYMQD
3SebpYRFmERWibLRTSTDxRCz1wIBp9rBs6dYFuhAhJKFrs6yNLxGGxE9Q5TI
hqGR2VZECu3EOCvp/yxMon9uFFJEVeDVwD1SbCkmQf3zZ0dVPoltBQltWtrQ
rARTuOReFOl026azgD9D/gQ8H+WrDAlj8Chd4l/peLJQyBpEkK4hVmiskrnf
hSvHHUPhn9cDkwKziGB4+m17freHj2rlAEKagdBTwgIU5UO+ADiG4+kycRQG
nAYoUjV7VoNwF+miOEPVD0WhBfh3LzyipfVjVEhHAAGhe1zqbG3GuD4YxYwp
/6SENuFEruunGylSPoFG4hj/bOw67A5X9B1zPBc/Q4OmZUaQRBHHT7VnUIBP
4JJxX/w01y2q1aDZbPzPRZmrk07o4qfqi1PZovRozFvPDObWWpJP6OKn6IsT
hJhgmcmbHmnMa7Z0OKGLm0AGDWJ4FSdCKVjqcoXNnU7o4iYUoW6ChvimM4Mz
+Zkx6Xw8Fw/3COWSSfqSmGccOb1XhJvoRpms0yIvefzNQLl4gsMMCiXgpZgl
9jBv0xknxIx27sW1SuqHQVL9PjPei/+PwxFf1dOc6249O97r/rfLaWXi7HVH
1nDdrvFe9x/6upg/8MJgruuv4JZu8V73P7RpQsGJQbDdSLNz7dC58V78b/ri
TKEQVNMmQw8JDc8fO1sqgefHe/G/6oszaUK+bOwejUcSCurCF8Z78T/riyN2
6CBze5KMDZ5qzFOoZ7wX/6NeS44DxiUi08gJ+z165azvHe91f++wG/fJ1Jqw
W8VdDP8QnFwS78V/qy+OVSJopa5t2H3BhIXScr0s3ov/Wl8cB0+AgHSbnSY9
J60Sdl8R78V/YdnSLFE/oTfICUdF3XM3hfrGe/Gf6YtzPj2hC/U442qIdXlE
zNXxXvwzfXHiG4yJkUJafz3SG4Qt/eK9+I9cttTV23oDvgHTrSTRfzZsPBf/
gb44sTLRnZ9Oa7aMmyfZ1uB4L/6JXLyDtOTILWhBcHH0iL39mjXXxnv9j/T1
CdcoFmAT0U+/AF4oXl6ZruHxXv8DfX04T+yD06QCLQy6Jkd0tVfuxlHxXl/y
Rym2NEv4Q8fOLADhLKt7UaavVWPivcm3NRHEyphfGqi++MjBcP4iFDaPDxat
fNOyvkniTSI3ltXEnFT+lEqlxhuwvOUsLZUMjI3RKvZA0dhWMUtGvFx5Q7Me
/CgVwSHRvs/6LM361cL6zHhv8pq9yTa5CamVIYIOIn5brKbKs3Pivckr+iY4
E3IwHJWlRN/EUJIf701etDdprQlhdvmSWhjvTZ7TN+HxMGSUhJHmJvyX+cKe
k1YKu0rivclTcpNOVudoifp2yRdexrG6Dys3ajEt3vs8ru8Dx0iLCU78MpZv
/1ASppB6ZTON31Ia730e1UzDxqKICLJhmn9m8gyp7mHIK+O9yYOaGAQZYhjA
8BPBVBsnsjowTYVzNfHe5165zymyOIyx4KixLLg6Y7PwqXimXtnrRdxmxnuz
u3VRgsoK4QaFDrVC7bmTepl4iaiDKFLFTHPjvc1hy7smUR28LEUf46jkYTlD
y2SRVOC3MN77HHR4RwWa+gURlLkP/+V8ErLTi7LWiBYtifdmt2qiRFWV58Ue
GM+FUOB98Y6oq2JeQ7z32auLwBg3KmHMX2Dg0lLzQmahaOmjsb6UN66K9157
nDY6NFHwonyqhE7fK0k0mMUiYjRMXBvvDXc4wzpUzZB2apkqQbI3RIUxFczN
9Uivl9RgU7w3bHKKRCRM2AvsEvZPiYe5J6cewVCyBTFPisjGeO+52RkuwZEj
/gynKrF3iMwQtUY0e2Ysl3Rze7w3XKdvSKCPrSLm8bmao2+Y7O+FGlgkvpFI
RYXQULk73nuutJWgraLjzIFiiJWYog5hxub7jFVxqS89zf7YbTz3XOq0cpAe
arEsJsxVOV+CvidTMSKxymQSa5Dn3BIs1pvvlB4QG4wlVWC46tcZUy1nsWbI
KwHBBRMWSFCgXM+heOPAmU6qTHaFYlLjpzNLlUKJjr53ip1m7j6sTFwrotQ7
b7N4iTvjZXOFkwNAPOP6WCGqc7gm+GuXOEWMH6kl7X68B0YJHaLIcV+8GKY6
wTBukTCPfIr+LTkPIb0S6QSNgRCGQV82TVG9oZKKtwTDI/FiyHcwUNtCzBE5
9BmLjEtTHiBRY8BusdtQ1kKp9YWpS5XIrxXxk/ax9LBfC4Yh3YmpsNKIPQJB
v4TcCYHEYuuesM+PjhI1IKfUhJBLZAOeoILK1Ih8SH9Wb0cJhGmUdrtgwsbh
epERKvwIKnIiuCYVSeVLCWkoUQPD7rF2CIsAGxcGpgy9AHvFwgnYrvJ3kXQW
m4TmYAthFtuy0F5sBZ1Bygk0ZJEaxTQfWycRZF7iLYtPCRMVO0KiXjkbWMw3
ASUDGa/EAy9B1suPGiZqRe7s31t5dXiDMSFNxVTL/ZVTIsxEmES5C1ve5c7y
4Lbjb1b682rJvdSvK9S/HupfF/WP79I98nj3seO5kHzyz/9vflJX/xXPu1sx
eD5o78B8W77z4v8/35ZWasBO/Rf1bfkzYJf9i/q2+OE2FNftTrX+TpD2k/m2
zLkFtGRfjm+LwwroHL6ob8s8W0Bn+a/w7fi6kSe/ffLbUd9uY4cJu0jeLSws
5OnvjEczDh7fDpO4keiR13/OM+lPENU/6bHvcaNK8RGc+OPST5QvJ/5s8vBG
iVhYAmxrOPEHg/8TGPTPecD3cYH63I0DX+zjuQNgijXhr6/7xT1c+7jwHGP6
XoP54p+OHUSaYgzJf7EPtv7S+6uT3z757ZPf/tJ/O1Z+HN945v8Gak9+++S3
T3775Lf/1b590oqf/PbJb5/89slv/2/+9kkrfvLbJ7998tsnv/2/+dsnrfjJ
b5/89slvfwm+HUqgncoLcgExO6GUzklJ0lb64g6mPE4wtA7/b11d3R56yIkc
sxg6gx70iZwoeWLdOv/rWwYNGkQnfkjXrl319f45Z0AeHyZhM3/cPHLkSC46
unv37qaJ+M85vDFIa5OOLs1TIfULO3IxblQ+s5NB9We1YJcooeYFc0yiludg
JyTKzIIMkf7G/hl5O/6i3f5oWloaL5hTCxPCtMd9YGHs6dVQwmnJyckjunXr
5jK5uFevXmaIxJ4lqEGc0DmCxwIx8Oyzz2bu4MyUlBQNIrlEgfhDRUUFf7in
/H0Rh/wdA8c52A1GEB5PT0+nhT9KMQZO79Oc/cIP3zsGEInnuOhRJQlYDKQL
0e7kHHP4hRyPlxLjtYbjfK3+OD+XEk1fLP/zpQbS5V/ktbO/RFhO5LWTC/kl
wnJyIU/gtX/thfR44W+uZ2v3/wHWHzSO\
\>", "ImageResolution" -> \
96.],ExpressionUUID->"70f966a0-386d-479b-99b9-954975d6e879"]
}, Open  ]],

Cell[BoxData[{
 RowBox[{
  RowBox[{"Ms", " ", "=", " ", "6567.18"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mb", " ", "=", " ", "7482.538"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mp", " ", "=", " ", "938.272"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mt", " ", "=", " ", "1875.612"}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mtp", " ", "=", " ", 
   FractionBox[
    RowBox[{"Mt", " ", "Mp"}], 
    RowBox[{"Mt", " ", "+", " ", "Mp"}]]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Mbt", " ", "=", " ", 
   FractionBox[
    RowBox[{"Mb", " ", "Mt"}], 
    RowBox[{"Mb", "+", "Mt"}]]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Mstp", " ", "=", " ", 
    FractionBox[
     RowBox[{"Ms", "*", 
      RowBox[{"(", 
       RowBox[{"Mt", "+", "Mp"}], ")"}]}], 
     RowBox[{"Ms", "+", "Mt", "+", "Mp"}]]}], ";"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"K", " ", "=", " ", "357.789"}], ";"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"Kin", " ", "=", " ", "1785.15"}], ";"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{"8", "He", " ", "lab", " ", "momentum"}], " ", 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"K", " ", "=", " ", 
    RowBox[{
     FractionBox["Mt", 
      RowBox[{"Mt", "+", "Mb"}]], "Kin"}]}], ";"}], " ", 
  RowBox[{"(*", " ", 
   RowBox[{"8", "He", " ", "CM", " ", "momentum"}], " ", "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"Q", " ", "=", " ", 
     RowBox[{"-", "19.320"}]}], ";"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"(*", 
   RowBox[{
    RowBox[{"Ek", " ", "=", " ", "42.682"}], ";"}], 
   "*)"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Ek", " ", "=", " ", 
   RowBox[{
    FractionBox[
     SuperscriptBox["K", "2"], 
     RowBox[{"2", " "}]], "*", 
    FractionBox[
     RowBox[{"(", 
      RowBox[{"Mb", "+", "Mt"}], ")"}], 
     RowBox[{"Mb", " ", "*", " ", "Mt"}]]}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"K1", "[", "Et_", "]"}], ":=", 
  RowBox[{"Sqrt", "[", 
   RowBox[{"2", " ", "Mstp", "*", 
    RowBox[{"(", 
     RowBox[{"Ek", "+", "Q", "-", "Et"}], ")"}]}], 
   "]"}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"q1", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", 
   RowBox[{"Sqrt", "[", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{"K1", "[", "Et", "]"}], " ", 
        RowBox[{"Sin", "[", "thetaCM", "]"}]}], ")"}], "2"], "+", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         RowBox[{"K1", "[", "Et", "]"}], 
         RowBox[{"Cos", "[", "thetaCM", "]"}]}], "-", 
        RowBox[{
         FractionBox["Ms", "Mb"], "K"}]}], ")"}], "2"]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{
   RowBox[{"q2", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", 
   RowBox[{"Sqrt", "[", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        FractionBox["Mt", 
         RowBox[{"Mt", "+", "Mp"}]], 
        RowBox[{"K1", "[", "Et", "]"}], 
        RowBox[{"Sin", "[", "thetaCM", "]"}]}], ")"}], "2"], "+", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         FractionBox["Mt", 
          RowBox[{"Mt", "+", "Mp"}]], 
         RowBox[{"K1", "[", "Et", "]"}], 
         RowBox[{"Cos", "[", "thetaCM", "]"}]}], "-", "K"}], ")"}], "2"]}], 
    "]"}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"Q", " ", "=", " ", 
   RowBox[{
   "Mt", "+", "Mb", " ", "-", " ", "Ms", " ", "-", " ", "2808.391"}]}], 
  ";"}]}], "Input",
 CellChangeTimes->{{3.882091312621718*^9, 3.882091348288534*^9}, {
   3.88232991081483*^9, 3.882329919604697*^9}, {3.8823319216797667`*^9, 
   3.88233201456453*^9}, {3.8823484912461452`*^9, 3.88234854305412*^9}, {
   3.88234898266772*^9, 3.8823489898957872`*^9}, {3.882349772876965*^9, 
   3.8823498106492987`*^9}, {3.882349913536356*^9, 3.882349979845536*^9}, {
   3.882352244776806*^9, 3.8823524071554003`*^9}, {3.882352594851074*^9, 
   3.882352731832546*^9}, {3.8828688105676928`*^9, 3.882868840593659*^9}, {
   3.882868887770948*^9, 3.882868888029558*^9}, 3.882871253722013*^9, 
   3.8828713085253267`*^9, {3.882871565786625*^9, 3.882871576449739*^9}, {
   3.882871918409689*^9, 3.8828719208484297`*^9}, {3.882871973713027*^9, 
   3.882872001651335*^9}, {3.8828720383238163`*^9, 3.8828720426995068`*^9}, {
   3.882872105260539*^9, 3.8828721107614803`*^9}, {3.882872153212983*^9, 
   3.88287215561561*^9}, {3.8828723524483433`*^9, 3.882872353733099*^9}, {
   3.882872433267592*^9, 3.8828724360180187`*^9}, {3.88287250645798*^9, 
   3.882872525155952*^9}, 3.882873101207119*^9, {3.882873447844775*^9, 
   3.882873449878912*^9}, {3.8828735880216618`*^9, 3.882873685105521*^9}, {
   3.882873806379032*^9, 3.882873813764441*^9}, {3.882873908395335*^9, 
   3.88287400978014*^9}, 3.8828740620249243`*^9, {3.882874508786339*^9, 
   3.882874547407318*^9}, {3.882874595693122*^9, 3.88287465716861*^9}, {
   3.8828760380462523`*^9, 3.882876043224813*^9}, {3.883108967760708*^9, 
   3.883109039464776*^9}, {3.883109804553647*^9, 3.8831098760612164`*^9}, {
   3.883109930009103*^9, 3.88310993701444*^9}, {3.883110127559908*^9, 
   3.883110192018957*^9}, {3.883110418738605*^9, 3.883110433183064*^9}, {
   3.88311050393731*^9, 3.883110560164444*^9}, {3.883110867241228*^9, 
   3.88311086800945*^9}, {3.883468935877015*^9, 3.8834689360719337`*^9}, {
   3.88355381408307*^9, 3.883553815239447*^9}, {3.883554138115094*^9, 
   3.883554138381898*^9}, {3.8836451071242228`*^9, 3.883645126745316*^9}, 
   3.883816252897749*^9},
 CellLabel->
  "In[556]:=",ExpressionUUID->"e57ddf1c-67e2-47a7-9bb7-4c7dc728e854"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", "\[IndentingNewLine]", 
   RowBox[{"factor3He200", "=", 
    RowBox[{
     RowBox[{
      RowBox[{"Interpolation", "[", 
       RowBox[{"data3He200", ",", 
        RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
      "\[IndentingNewLine]", "factor3He202"}], "=", 
     RowBox[{
      RowBox[{
       RowBox[{"Interpolation", "[", 
        RowBox[{"data3He202", ",", 
         RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
       "\[IndentingNewLine]", "factor3He204"}], "=", 
      RowBox[{
       RowBox[{
        RowBox[{"Interpolation", "[", 
         RowBox[{"data3He204", ",", 
          RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
        "\[IndentingNewLine]", "factor3He206"}], "=", 
       RowBox[{
        RowBox[{
         RowBox[{"Interpolation", "[", 
          RowBox[{"data3He206", ",", 
           RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
         "\[IndentingNewLine]", "factor3He208"}], "=", 
        RowBox[{
         RowBox[{
          RowBox[{"Interpolation", "[", 
           RowBox[{"data3He208", ",", 
            RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
          "\[IndentingNewLine]", "factor3He21"}], "=", 
         RowBox[{
          RowBox[{
           RowBox[{"Interpolation", "[", 
            RowBox[{"data3He21", ",", 
             RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
           "\[IndentingNewLine]", "\[IndentingNewLine]", "factor8He800"}], 
          "=", 
          RowBox[{
           RowBox[{
            RowBox[{"Interpolation", "[", 
             RowBox[{"data8He800", ",", 
              RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
            "\[IndentingNewLine]", "factor8He840"}], "=", 
           RowBox[{
            RowBox[{
             RowBox[{"Interpolation", "[", 
              RowBox[{"data8He840", ",", 
               RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
             "\[IndentingNewLine]", "factor8He880"}], "=", 
            RowBox[{
             RowBox[{
              RowBox[{"Interpolation", "[", 
               RowBox[{"data8He880", ",", 
                RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
              "\[IndentingNewLine]", "factor8He920"}], "=", 
             RowBox[{
              RowBox[{
               RowBox[{"Interpolation", "[", 
                RowBox[{"data8He920", ",", 
                 RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
               "\[IndentingNewLine]", "factor8He960"}], "=", 
              RowBox[{
               RowBox[{
                RowBox[{"Interpolation", "[", 
                 RowBox[{"data8He960", ",", 
                  RowBox[{"InterpolationOrder", "->", "2"}]}], "]"}], 
                "\[IndentingNewLine]", "factor8He10"}], "=", 
               RowBox[{"Interpolation", "[", 
                RowBox[{"data8He10", ",", 
                 RowBox[{"InterpolationOrder", "->", "2"}]}], 
                "]"}]}]}]}]}]}]}]}]}]}]}]}]}], "\[IndentingNewLine]", 
   "\[IndentingNewLine]", "*)"}], "\[IndentingNewLine]", 
  "\[IndentingNewLine]", 
  RowBox[{"(*", "  ", 
   RowBox[{
   "\:0434\:0432\:043e\:0451\:043d\:043e\:0435", " ", 
    "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:0438\:0435"}], "  ", "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"dSigma", "[", 
    RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
   RowBox[{
    FractionBox["1", "100"], 
    FractionBox[
     RowBox[{"Mstp", " ", "Mbt"}], 
     SuperscriptBox["p", "2"]], " ", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"K1", "[", "Et", "]"}]}], 
     RowBox[{"3", " ", "K"}]], "  ", 
    SuperscriptBox[
     RowBox[{"Abs", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"PsiP8He", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "+", 
       RowBox[{
        RowBox[{"PsiP3He", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}]}], "]"}], "2"], 
    " "}]}]}]], "Input",
 CellChangeTimes->{{3.882090997305991*^9, 3.88209102661145*^9}, 
   3.882091291583541*^9, 3.882329912486802*^9, {3.8823527019837103`*^9, 
   3.882352892273625*^9}, {3.882353295227895*^9, 3.882353301831737*^9}, 
   3.882353477290258*^9, {3.8823535186184273`*^9, 3.882353550044425*^9}, {
   3.882353641795863*^9, 3.882353733531116*^9}, {3.882422382967881*^9, 
   3.8824224035610743`*^9}, {3.882867414865664*^9, 3.8828674825331783`*^9}, {
   3.882867643493663*^9, 3.8828677025473022`*^9}, {3.882867777115178*^9, 
   3.882867783996613*^9}, 3.88286840596602*^9, 3.882868453251996*^9, {
   3.8828720610865173`*^9, 3.8828720628706512`*^9}, {3.8834793555873117`*^9, 
   3.883479373369842*^9}, {3.883554183332094*^9, 3.8835541842134523`*^9}, {
   3.883644872973219*^9, 3.883644882406493*^9}, {3.883644922872542*^9, 
   3.88364496459529*^9}, {3.88364499803763*^9, 3.883645012409073*^9}, 
   3.8836451376497602`*^9, {3.883645322434209*^9, 3.8836453237777367`*^9}, {
   3.883645393762494*^9, 3.883645396831551*^9}, {3.883645474664419*^9, 
   3.883645475125362*^9}, 3.883645590071661*^9, {3.8836464316198483`*^9, 
   3.883646433916037*^9}, {3.883646514623619*^9, 3.883646532032226*^9}, {
   3.883646668153685*^9, 3.883646747837582*^9}, {3.8837212677594957`*^9, 
   3.883721271815209*^9}, {3.8837214164470053`*^9, 3.883721427297271*^9}, {
   3.8837217956422*^9, 3.8837218164328737`*^9}, {3.883723526071858*^9, 
   3.883723606093458*^9}, {3.8837236376549063`*^9, 3.883723709394614*^9}, 
   3.883811370427373*^9, {3.883812010693878*^9, 3.883812073282518*^9}, {
   3.883812115252078*^9, 3.883812134801704*^9}, {3.883812170848184*^9, 
   3.8838122159852*^9}, {3.883812942153407*^9, 3.883812948755904*^9}, {
   3.883813620817871*^9, 3.8838136214219437`*^9}, 3.8838139573201942`*^9, {
   3.883814017170335*^9, 3.883814018913117*^9}, {3.8838144598792143`*^9, 
   3.883814460235263*^9}, {3.883816283810004*^9, 3.883816400277882*^9}, {
   3.883816470226842*^9, 3.883816524255149*^9}, {3.8847718738211718`*^9, 
   3.8847719515370607`*^9}, {3.88477636066495*^9, 3.8847763975566177`*^9}, {
   3.884781707965879*^9, 3.8847817245184803`*^9}, 
   3.884782568760713*^9},ExpressionUUID->"7d563751-9dd5-4e27-9845-\
46f525c48682"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", "  ", 
   RowBox[{
   "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:0438\:0435", " ", "3", "He"}],
    "  ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"dSigmaHe3Cut200", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He200", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe3Cut202", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He202", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe3Cut204", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He204", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe3Cut206", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He206", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe3Cut208", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He208", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe3Cut21", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor3He21", "[", 
         FractionBox[
          RowBox[{"q2", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix8He", "[", 
         RowBox[{"q1", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"], 
     " "}]}]}]}]], "Input",
 CellChangeTimes->{{3.8838165554131603`*^9, 3.883816608574444*^9}, {
   3.883816662551721*^9, 3.883816721165989*^9}, {3.8838179828793907`*^9, 
   3.883817985064273*^9}, {3.884776389717065*^9, 3.884776413419263*^9}, 
   3.8847764468373833`*^9, {3.884776548950699*^9, 3.884776562316675*^9}, {
   3.884776601337124*^9, 3.884776631249011*^9}, {3.884779970226635*^9, 
   3.884779975927022*^9}, {3.884781744711028*^9, 3.884781782884651*^9}, {
   3.8847826456143827`*^9, 3.884782681919348*^9}},
 CellLabel->
  "In[634]:=",ExpressionUUID->"8d9835d3-d38e-4b8f-aeda-dab1a09c92c0"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", "  ", 
   RowBox[{
   "\:043e\:0431\:0440\:0435\:0437\:0430\:043d\:0438\:0435", " ", "8", "He"}],
    "  ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"dSigmaHe8Cut800", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He800", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe8Cut840", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He840", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe8Cut880", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He880", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe8Cut920", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He920", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe8Cut960", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He960", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"dSigmaHe8Cut10", "[", 
     RowBox[{"Et_", ",", "thetaCM_"}], "]"}], ":=", " ", 
    RowBox[{
     FractionBox["1", "100"], 
     FractionBox[
      RowBox[{"Mstp", " ", "Mbt"}], 
      SuperscriptBox["p", "2"]], " ", 
     FractionBox[
      RowBox[{"2", " ", 
       RowBox[{"K1", "[", "Et", "]"}]}], 
      RowBox[{"3", " ", "K"}]], "  ", 
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{
        RowBox[{"factor8He10", "[", 
         FractionBox[
          RowBox[{"q1", "[", 
           RowBox[{"Et", ",", "thetaCM"}], "]"}], "p"], "]"}], 
        RowBox[{"TMatrix3He", "[", 
         RowBox[{"q2", "[", 
          RowBox[{"Et", ",", "thetaCM"}], "]"}], "]"}]}], "]"}], "2"]}]}], 
   " ", "\[IndentingNewLine]"}]}]], "Input",
 CellChangeTimes->{{3.884777045074435*^9, 3.8847771599661703`*^9}, {
  3.884777215292577*^9, 3.884777245419136*^9}, {3.884781795531755*^9, 
  3.884781841785658*^9}},
 CellLabel->
  "In[577]:=",ExpressionUUID->"913bc2a8-096a-4da1-b7be-58d029b36d1a"],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   RowBox[{"dSigmaHe8Cut800", "[", 
    RowBox[{"Et", ",", 
     RowBox[{
      FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", "0", ",", "18"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"Contours", "\[Rule]", "20"}], ",", 
   RowBox[{"PlotRange", "->", "All"}]}], "]"}], "\[IndentingNewLine]", 
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"dSigmaHe3Cut204", "[", 
      RowBox[{"2.2", ",", 
       RowBox[{
        FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
     RowBox[{"dSigmaHe3Cut206", "[", 
      RowBox[{"2.2", ",", 
       RowBox[{
        FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
     RowBox[{"dSigmaHe3Cut208", "[", 
      RowBox[{"2.2", ",", 
       RowBox[{
        FractionBox["thetaCM", "180"], "Pi"}]}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "35"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", "All"}]}], "]"}]}], "Input",
 CellChangeTimes->{{3.881038678218144*^9, 3.881038680662716*^9}, {
   3.881039279562653*^9, 3.881039296173547*^9}, 3.881041219395603*^9, {
   3.8823529105519114`*^9, 3.8823529134836397`*^9}, {3.882353343127562*^9, 
   3.8823533556969*^9}, {3.8823533902298393`*^9, 3.882353390544724*^9}, {
   3.882353435880719*^9, 3.8823534363079357`*^9}, {3.882353570888076*^9, 
   3.882353586436214*^9}, {3.8824210727864113`*^9, 3.8824211221991568`*^9}, {
   3.882423533149107*^9, 3.882423575038761*^9}, {3.882423824742895*^9, 
   3.8824238585635357`*^9}, {3.8828673718287573`*^9, 3.882867377573691*^9}, {
   3.8828684945911217`*^9, 3.882868532676189*^9}, {3.882871786428021*^9, 
   3.8828717864951677`*^9}, {3.882871818799327*^9, 3.8828718490775127`*^9}, {
   3.882872378262281*^9, 3.882872378276483*^9}, {3.8831099503149633`*^9, 
   3.88310996786453*^9}, 3.883110450535862*^9, {3.883553953533923*^9, 
   3.883553968210348*^9}, {3.883554198187389*^9, 3.883554227725945*^9}, {
   3.88364537792879*^9, 3.88364538004762*^9}, {3.8836454653957787`*^9, 
   3.883645570468872*^9}, {3.883645624428377*^9, 3.8836456596437483`*^9}, {
   3.883646044863072*^9, 3.883646045013956*^9}, {3.88364629695015*^9, 
   3.883646297124249*^9}, {3.883646497820653*^9, 3.883646507509572*^9}, {
   3.8836465444485893`*^9, 3.8836465444999323`*^9}, {3.88372175612717*^9, 
   3.883721776578678*^9}, {3.883721821325859*^9, 3.8837218418257513`*^9}, {
   3.883723611845113*^9, 3.8837236210905933`*^9}, {3.883723694374988*^9, 
   3.8837237339415493`*^9}, {3.883810917681551*^9, 3.883810941614428*^9}, {
   3.883813327881988*^9, 3.883813337311658*^9}, {3.883813547794777*^9, 
   3.883813578134081*^9}, {3.883816408797614*^9, 3.883816419143138*^9}, {
   3.883816485836542*^9, 3.883816488290515*^9}, 3.883817132091394*^9, 
   3.883817194597436*^9, {3.883817516141509*^9, 3.8838175680897617`*^9}, {
   3.8838178455608997`*^9, 3.8838178483525457`*^9}, 3.884771913519845*^9, {
   3.88477197204001*^9, 3.884772036298699*^9}, {3.884776568674377*^9, 
   3.8847765940173264`*^9}, {3.884776654245159*^9, 3.884776657299266*^9}, {
   3.8847771667537203`*^9, 3.8847771687715797`*^9}, {3.884777251751307*^9, 
   3.884777282292418*^9}, {3.884779668312622*^9, 3.884779673901991*^9}, {
   3.8847797039347754`*^9, 3.884779758284536*^9}, {3.884779980251889*^9, 
   3.8847799809117327`*^9}, {3.884781862767408*^9, 3.88478186332283*^9}, {
   3.884781895977394*^9, 3.884781941596733*^9}, 3.884782033705146*^9, {
   3.884782097332941*^9, 3.884782142972115*^9}, {3.884782582106678*^9, 
   3.884782612344515*^9}, {3.884782694383593*^9, 3.884782757476849*^9}},
 CellLabel->
  "In[646]:=",ExpressionUUID->"b0bf33f5-97ee-414f-b509-6dfa628674e2"],

Cell[BoxData[
 TemplateBox[{
  "InterpolatingFunction", "dmval", 
   "\"Input value \\!\\(\\*RowBox[{\\\"{\\\", \\\"0.00723588552624751`\\\", \
\\\"}\\\"}]\\) lies outside the range of data in the interpolating function. \
Extrapolation will be used.\"", 2, 646, 475, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88477727346978*^9, 3.8847772828622627`*^9}, {
   3.884779669036487*^9, 3.884779674192841*^9}, {3.884779710854744*^9, 
   3.884779758610293*^9}, 3.8847799815933027`*^9, 3.884781863890913*^9, {
   3.884781897325919*^9, 3.884781962745256*^9}, 3.884782059374297*^9, {
   3.8847821176132803`*^9, 3.884782143681095*^9}, 3.88478262903594*^9, {
   3.884782685969124*^9, 3.8847827581619997`*^9}},
 CellLabel->
  "During evaluation of \
In[646]:=",ExpressionUUID->"e87181a6-4d1d-4c03-a3a4-2fbd063a9773"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJx0XXVYVcvXRkQRVEQaAaU7DiAtnMU5Btjdrei1u7u789rdeO1uMbAD41rX
bkwUMb/9O/DOZg3Pd/6Q53VNrZnZM7Ni1ri17VE3xdjIyOielZHR//7KP6/k
2Z7Js7O0HJsQ8L5ud/d0u2tBnG4jcPf/kfc4CrzXkL6swLk/dym/p8BVDdBH
4B6G8vwEnvs/cnKgwPsN5QdL5YdJGPWUIPDHsQkBgz9OtxEY/AGDP2Dwx/N7
Cgz+gMEfMPgDBn+8/DAJgz9niT9niT9niT9niT9niT9niT9niT9niT9niT9n
iT9niT9niT+k10j1hUlYmb//S9bNS/DLsQkBg19OtxEY/AKDX2Dwy/N7Cgx+
gcEvMPgFBr88vUaqL0zCGN9AaXwDpfENlMY3UBrfQGl8A6XxDRT88vyeAvPx
DZTGN1Aa30BpfAOl8Q0U/HKMdSNU8MuxCQGDX063ERj8AoNfYPDL83sKDH6B
wS8w+OV0jVR+mIQxfyOk+Rshzd8Iaf5GSPM3Qpq/EdL8jZDmb4Q0fyOk+Rsh
zd8Iaf5GSPM3Qpq/EYJfjo2MChn+jRH8cmxCwOCX020EBr/A4BcY/PL8ngKD
X2DwCwx+gcEvT6+R6guTsJGRt6HeCoJfjk0IGPxyuo3A4BcY/AKDX57fU2Dw
Cwx+gcEvMPjl6TVSfWESzlufrIivTwLnrU8KZuuToNsIzNYnBbP1ScHgl+f3
FJitTwpm65OC2fqkYLY+ifQaqb4wCWN9SpTWp0TBLzBfnxIFv8B8PUoU/PH0
ngLz9ShRWo8SpfUoUfDH02uk+sIkbGRkqHaNXvDHsQkBgz9OtxEY4wkMfoHB
L8/vKTD4BQa/wOAXGPzy9BqpvjAJGxkZknWrJPjl2ISAwS+n2wgMfoHBLzD4
5fk9BQa/wOAXGPwCg1+eXiPVFyZhIyNDtsgqgl+OTQgY/HK6jcDgFxj8AoNf
nt9TYPALDH6BwS8w+OXpNVJ9YRIWs1rwyzHkm2Ti8k2y4BeYyzfJgl9g8Mvz
ewrM5Ztk4vJNMnH5Jpm4fJMs+OX1hQmcW9/TvPPhT0mO+6k18NcM5xzQwwRG
fsN0cUoS/QeM/DKW60c+Tkc7nor+R/0oL5eekdeOt7nnolS0960WdEM3TEsi
0IF5PWp+/v8ZBepHfk7HL0zUj/+R60d5ufPnt+j/3PliJvW3lcC588FeYANM
diae31WiexAbz7teAueeu3wFzpXxAwTO3beDOLbSFBj/3HJsBT/A4AcY/ACD
H2Dww/O7SnQP4vV5CQx+gMEPMPhh2ErDy1PmHzD4y/1u3QR/wOAPGPwBgz9g
8Mfzu0p0D+L1eQkM/oDBHzD4Y9hKw8trFiow/778BH/A4A8Y/AGDP2Dwx/O7
SnQPgcEfMPgDBn/A4I/lF+uFH1/PFL7Z96Vg9n1ZYV20Eph9Xwpm35fI7yrR
PYjX5yUw+74UzL4vKw2x7wsY3xfKw/orvrunuevAmnDBHzD4AwZ/wOAPGPzx
/K4S3YN4fV4Cgz9g8Afsnb9fkb9ZqMDgx1BvZJTgBxj8AIMfYPADDH54fleJ
7kG8Pi+BwQ8w+AHGeDGMeYHymoUKDP4M+3R6rOAPGPwBgz9g8AcM/nh+V4nu
Qbw+L4HBHzD4AwZ/DCv8sfKahQoM/nL/P0HwBwz+gMEfMPgDBn88v6tE9xAY
/ACDH2Dww7D4rhIEP8BsPn4lPh+/Ep+PX4nPx6/E56OC2XwU2IN4+V4Cs/mn
YDb/FMzmHzDmH8rD/PtKfH0/puPru4LZ+q5gtr4rmK3vCmbru8jvKtE9BGbr
u4LZ+q5gtr4rmK3vwFinUR7WewWDP0O9kyoK/oDBHzD4AwZ/wOCP53eV6B7E
6/MSGPwBgz9g8Mcw9hGUp/AHDP4M1datLPgDBn/A4A8Y/AGDP57fVaJ7EK/P
S2DwBwz+gMEfwwp/rDyFP5kfnOfBDzD4AQY/wOCH53eV6B5c/lD4AQY/wOAH
GPwwrPDD6rsJeeOeFtgo78flqxL8+zOCfey3oPPzFuxjkAdKiP4wYj8rQefn
MdjH7AWdfb/KD5jX7yroXJ4owb9vkd+DOH+qHYLLGyWk8x302r6Czs97sDkG
CDo//0FvGsTp4lyXRxfnphL8PCXsbU+F/YuPhzPx/lftX7I8Azrvb2d+fhTl
uUp0D+L1ewnM+8eZnx8VzPl35udHlCf4dRb8yvYvWb6R7WGyvMPtTVYCc3nO
S5LnVPuYLP/w9B7E6/cSmOsv3SR5z0uS97wkec9Lku9Ue2BuuyT5IZ99CXQ+
PwKl+aHaz5Cezw/VngY6ny+Bkn7IT5o/gdL8CZTmT6CkL/KT5lOgNJ8CpfkU
KM2nQEl/5CfNr0Bpfkn2xnzyimzP4nTo+1V5TbbXyfIbL89KYC5vh0rytmq/
k+U52Z4ny3e8PV4Cc3k8VJLHQyV5PFSSx0NF/8n2S1k+ku1jnG5Csjwo2wNl
+VC2D8ryomwvlOVH2X4oy5M8v6vA/PuOkL5v1Z4oy5eyfVGWN0Hn33uEpN+J
kL5/1Z4qy2uyfY7TTST58bdWtkfK8qtsn5TlWdleKcu3sv1Slndle6Ys/8r2
TVkelu2dsnwMOsYDGP3NsJWG22eV/pbtubL8KNsHOd2EZPlZtofK8rRsH5Xl
a9leKsvbnO4qMPqL1+8lMPoHGPNTtpfK8rZsP5Xlb9meKsvjsv1Ylmdz1zPV
HsnpJlweFvoy1f4qy/Ogo39l+R50zFdZvuftcS8g7/PyPSV9gY/UXi+RHuuH
rB8AHeuHrC8AnevjiO93VsT3u3z2a64PyFsvvhJfL/LpE2R7r6xfkO2/sr4B
dLZefCW+PuTTP8j2Yl6fq1SfZwF9hWxPlvUXsn1Z1meAzvfDRGk/TJT2Q9Ve
bmh2Pnnf8CefPZbT8+xz+fQbSM/OZ/n0HaCz85lCZ+exfPoPXr+7VJ9rAfs0
z+8h6OgfYGbPy6cfAZ3Z9/LpS0Bn57V8+hPe3jBBR3/z9mYJ/Qn621BsPnsw
p5tI+hALSX9iVsD+DTr6H3T0P+jof2D0P2+PewF9DeiYr7x9XgXs5aBjPEBH
/zJspeH2/WahEn9ZQj+D/gJGfwFjPTD8yWc/5+ltCuh3kB79BTr6Cxj9hfSY
j5zuUcC+ztvnVcC+DjrmJ+iYn6Cj/xh/Sn/x9mQJ/Q/6B5jrS1R7O09vU0Bf
hPToH9DRP8DoH6THfOLlexbQJyE95g/oXL+h2udB5/oN1T4POtdfqP4HuX9h
v32Xd74vIuzJwKDnpn+be84yU+ncPq7ab/l4ZOR+/xuriPKAQUd7Ub6cHvMe
+rDc+r/k1ZemTfrfn/qy/ky1l4OO8kHn8qbKH/gBZutUsnUehtxtnCc/eNAc
A72EwIb50cxN4Nzx8BOY9Ue6P6F84Fw+HQQ2kGe7CGw4B4/0FthQbnuNwCg/
d//UiPYCo73AaC+wof5MD4F7GsY1WGCUbyhnUnlRPjDKBwZ/wOAPGPwBo7+A
qxn6LUBg1G/46xQt6gdG/cCoHxj1A6N+YPQHS5/pITD6HxjtuW/4LuJEe4DR
HmC0BxjtAUZ/A2N8WXrl+wNG/YZ2kVbUD4z6gVE/MPgHBv/A4B8Y/ANjvIAx
XnJ7DPV2ShTtAWbzv1OiqB8Y9QOz+d8pUdQPjP4wFBumF/UBoz5g8A+M+oFR
PzD4A8Z4AWO8WP7UUIHRPsOw/6go2geM9gGjfcBoHzD6Axj9AYz6DOthWmUx
HsCoDxj1AYN/YNQHjP4ARn/I9Rm2qWlJoj5g1AeM+oDBDzDqA0Z/A+fya5u3
T5fOO4+Y5slbeXb8PZYCG6pf4y5w7v7gLzD2q1x9Rp7csidHYNQHnMuvk8Cs
XgUbxjvdR2DsNyy9Ul9uO4JFfcDgh9MtBQY/jB7pJTDKNzTzWJgoHxjlc7ql
wOAXGPwCg1+WXulPYMO6lRnI08P/rm6kaA8wGz9BtxQY7QFGe4DZOCqYjTfK
i/QSGOPD8ivtM7TjaYxoHzDax+mWAqN9wGgfsOE8NzJEYMwHYNRvOOf1jxf1
A6N+TrcUGPwDg3+WPtJLYPAPjPEDxvix8tE/Y4n3z1ji/SPolgKz/hhLor0s
faSXwGgfMNon129YR2roRP3AqB8Y9QOjfmD0F8sf6SUw+gMY4wnMzs8oH+uJ
XUXRPmC0D5itJ3YV+XqiYLQPmK0vdhVF/7D8+P4fVhIY6zX7/h9W4t//w0qi
PSw/vnekj/QSGO0BZt+/gtFfvL4cIS+gfmDUDwz+WfpILy5PNPMXGPXz8qCf
l+6BKvMbmM/XMLGfs/xivPJ+DyuJ/VeWl9DfwGgP9kfsX5BPgXFeYPuVsG+5
ivzgB+cFNk5G0n4HeUHsP1nS/vZO7D/Yr1n5wp7gI/ZjYMincnmGZuRb/2V5
he9XJgKDjvzsvK/Qub45WNCRnp3nRfmeUv53Wnn9l+Udtl9gPBSM/gfG+R71
c/1gmKAjPfoXdK4/DBN0pMd5CHSu/wsT/Mj7iSw/gc7kWQWDH2C0l+FMD2m/
9BQY50W+n6v7K9on7yeyPMX2p+QSAqN9wDhv8/3WmO8f4G8scf7Gkvhe+Pfv
zstX+OXt9RQY/ALj/AoMfY9MR/0YT9Axnmw/xniOVe0HMn/Yb8AfMOYP4xf2
13z8A4Nf5GfrRb79hK+HxtJ+Z1KgPciP9oDO7pMCQz+hpId8ATq7H5qvfHn9
BcbSLMsnWH/ZevFQvX8FjPKRnum7Fcy+X6Nk/n3iPk57WT+H+9S4r2Es6eMs
BJ2Nr0LHegI6vk/Q+X3rn1rW3wqdfa/Ij/FW6Pz+9U8t5jfo/P71Ty34BZ3f
x/6pZeOn0HP5DZPakyXdB4E+0JHPJ+E/ZUygoz/4fQ4HQef3lW2l8XIU/cHy
Z3oIOr+/bCu+d9D5/WVbafwdpfvMtmI+g877w1a674P24TzgxtevNR6Cf+7f
5CDo4I/RMz0End/ndBPtB53f73QT7Qcd7WflYz0W9eP+G/ybjCX9pYWgM31R
ep4cKe67+XF9Ubq/dL/Nj+uHFDq/7+Yn+OPlhwk62g86+j/3/KTh69lXDf8e
hd+Ig6Dz+8IaMX9A5/eHNaL9nK7e72DnLXF+CuP1p4ZKdHfh/4L+w/kG84P5
z2R6CDrGH3SMP+hoH/P3aa+R6H7CPwT84TyC8kFH+aCjf7k9H/dt1PvVoCM/
9JFoH8vfXiPpK8MEHf0HOs7r3J4NfzHoH38L+zLowGx+CvuqH9cfKukNyfLd
rzX8N/zN22uEfg/tBR3tBR32U0OzhH3Ontv/bsJeXiiv/Q9y94nHkI+Mhb2E
nXcVzPQx+TBfz20K7E/MHnPXVqTHegw618OpmO8f7gX2L6TP7Xd3kZ6dR8EP
9D35MNLzeCPq/sbtSf4iPeYb6JBvZSzb2yDfob9l/aWMsR9gvcR+weR1I0ex
/iA/+pfJl1auBTDyo3/l/RDp0b9Ij/5l8mq6TwGM9Dz+h7pfIj3THyrp0b+g
oz9lzPhPDRV0bt+T40bhPmOePkvsV1nSfc0cQcf6z+elg9SPTgUwsxeKeAyq
nA46m89Cj+xVACM99heUx/RlCp3NXyU/m68KZvM1H0Z+Hs9B3d+RnukvxXnA
mOu/YX8U+nTLAhj7LTv/R/pwfVc+zPdn3H/3E/0DOttPlfzoD2Doh2SM/Px+
vJ/oH9DZfhvpw+2PzYLF/OD6DKcCmNlnRTwSDR/3rxpuj2wWzPdT6DOa+RfA
yM/jk2g4/1/V8wVrf2qowBgfQ7Pz6VeAmT4wH8Z5APMV5wXMV0aHvAT9Br7f
fFi2H8v6EWA23xXM5ns+jPMG119FifqYvVgZH+ZvqowP11+4CzrmK+iYr8z/
VOkfZv/19BF09A+z/yrjCYzxRHqMp2xv5voEW3G+Qf8w+0J7TQH9iqyvMTRT
2F9thT0W7YE/H/ueOiXy8x7uK+J76pTI+/8rcX+RTomiflk/wbGtOF9hfnB7
QI7QZ7D1CvpzJT/OU+AH5y3wAzo7j9tV5OuBnXq/EOc7Zn8T+gljAsZ+D30F
2gOM/jE0q25l0T+yPt/wJ59+A5iNl4KZ/4nQv7tyfyvomTdW4fLXRjUeSu64
3MvdN9/Av+aCwLn1PBPYiP2MBWb6GCPcRzOV9BN59sF899+4fsRS7P9cH4D7
ZbYiP85HoPPzZwlJH4C4Re6ifK4PyGt/uhp/kesD4EftL/JzfUDe/TVxfiwh
xpfbBzLEuZjpr4W9O0foT5h9VaT/Lei8P53F/iWfL0HPzZdnDxLnKScpv7Og
s/6U7e+znfn5XKGz/pPt87jPJvrHmft75bPf57bfS/DHz0umJJ/vkB7zT47P
Idv/uX8X5Bn1Phs/DzkJOr4f+fwHOvPHwvko0ovXD/sn6hfzST3/oTysV0jP
7Jf57ruBjv6V/RWQnuvn1Ptvsv8Czkds/on4kb8Fna1X+TDS4/sGna1f+TDa
w+droOh/pOfz10/6/v24f1izYL7+pftL8zJYrJeg8/kdKMYDdC4PqedVpMd6
gfIxXswfpL1G4jdH2NP4967epzMkl/0vrFT7GzBbH/LZ20DHeIDOzvOifqy/
6n070Jn/TD4s38fj+isnQUf/gs76O995md23y1TjrbD1GvzBfg5/SYyPsNf5
8vaK7y2Ufy8KPWpR+ucXg0JEfRg/pMf44PzK5Uv1/h63r2UIOr4Pfp42Fedp
jB/yYzx4fZYF7vdx+5yt5H9pK9JjPJGe65vV+36g43sCHfsD4w/rPvSRVur9
P3xfoGO8ZYz0ueV7cH4j1fuCGD/Gn1hPw6X1M0LSh6v6TbSf7T/5/Jm4/jKn
wH1B2T4LOvP3UvIzf5F89wdl/yNen6VIj/GV/ZO4P6utSI/xlf2XuP3YiXh7
7bn/EtZHJT3XW0Tx+aCkx/ghPfu+0V/QjzyN4fbKfPZopEd+mQ7M9O/oH+hT
8tGZfRz6lKcx3H6L/oS8rbSfxZNRMFu/82FWHuLNIL+ynrB4sWbqfUjMJ8h3
wPL9SFle4/cVTSV507TAfUnZv4zXZ1ng/qQsX3J/ZdsC9yllfzXcR8T4sfuU
kep9SfQ3uy+p9BfqA5blYRaP1iyUy89manwiyG+cvxzhb82+b3EfMkPL7QUZ
4j4kxgN09LeMUR77vvP5z/H6LUV69n2PVe9XcvuGVQH/O06HvlK9/yf7hzN+
rVy5fcRKvX+J9Vr2J0d+jC/ofP9W7w/K/ueM30j1/mZuf3kV8E9n9hzEG8vn
bwE6W9/HEv8+FczsnWOJ60fh79heIzDTh8JfEfc/OiWK8ZYx9B3s/NwpUWDZ
3sTpliRjXp6Z5J9hI9JjfoDO9nP4g0A/oKTH+o3yMX94eTivJYr5BDq/f6L6
f4LOz2+JYj4x/qDfzYdRHuYP+GHnb9xHSFfvo/LzWaJkX0iU5G/1fqmhmjC9
+L6h78H3n3t+1FHFt1/GDvpeiIbbp82uF6oX44P8zH5zTPVfBR049zvRi/Hk
9dtI/olWXB8F/5B844v0GE/Uj/Hj5TmJ+jGeoOP7lTHKw/gxfVgzf34/opm/
KJ/Fh8p33wLlMX21XUUxPkjP9cWqvs/AtrCP5kj3VTMEHdiQTNzPfCrltyQZ
ozyMF+jAKA/jx+uzkey7efcRH1bi/gT5xpPlt3ItgNEejB8v30m0B+MJOvoX
dNaf+fyrDNny3U/l+srfwj8K8iP3f7WR7otYFdBHyvyz/Ap/MkZ7wB8v30no
M8Ev6OAPdMwPw59p6n1SYIw3MNoPjPkPjPUImN8/LCHs8bA355YHufOL0Jfm
rj8fxX1O5M9Nb8zLE/ZgWd/5VrLHl5Ds76qfMfKz/Rn5M9X4Xdy+XkLSb6j6
TuTn9vQSkv28hGTPzYv3lfr/xN+S9Z/59JfAnF9nrg+Q42fhXCP4ceb2JAXz
9jpze6jQjxoLfRn33/MS7ZP1gZyu6v+4f54Xt2comPvfeYn2yPo66Jd4/wRK
/RMovg/Z/xt03j+B3P6WLz4U8vP+C+TyM+pPVeNBcf8I1U7A9UHGQp/C9bWh
kn5V1f/I8Zhy94cwyX8hVLSP1x/G/aNSVXsk9zcIFe2H/gDtl/3JQefzI0Ka
HxF8/1YwxgOYz4cIaT5EcP/ZfPGNoK8Av0w/gvul+eIZyf7joLP7pkaq/ziP
/+Mg0Z2F/At+uHxbUN7n+VV5HuPL4ykVlOfleESyPM/zvysQX0j2Twcd/PN4
P9ZSfB8HgTEe7P2U9gXj9TD+UkMlOvS1JOlniX/f+eQ55Ed/Q/6GPVv2T0d+
Fp85n/wEOrMf5JOXGN1KU0BeAh384jzO/EfHEl8f8sUjMvCV734xlzesBeb+
mOr7L6z8zILxanK/b52YPzg/8/VCvY8syweyfRrnW7TfM++8ivaCzs4/4vzq
KOrH94D0ufV5cn9A6MPsVIz0PN5cIl8vcH8tWb3fBns9ymfxAfL556N8jC/j
J1WOF2Mi8oN/nDeZvCnisziK9Lm9587jl8Af5WElgVEe1gPUz/R/4j6een8O
/mkoH+OL8tn95HzvnyA92x9wfk0tGO8FdPQHML5vfl61FpjJbyIer6PIj/WR
9Sfs1w/V92CAwb8huVMSv2+vnMeBUT/mD8pn9u2H6vsxwJg/KB/zBeUDo3z4
N4IO/oAx/sBYz5Gf+X9vVN97AcZ6hPSYrzy9Rqo/R8RPYd+38Ef9lHduNxPn
eWC2/wn9YJbkP/NOy/UdjjwegvDnVN9/wvqB+YL5jfygI79MN/z3D1WexHhi
PUX/ID2LD6CkB537c+QI+cSQTchP76R4za8kf+O89Vzcr0kTdGDk5/4lb6X3
TVT/YshT+B5Az+0H1X+YxzNV/Xu5PIb4aaWFfAX/CJQv+8eCztdb1b8V9Fxc
0F8VdOgjZH8FjlX/Cq4/U/0BgFEf0nH9Fvwu1fc1uDzmJ9Wj2jeBuf9puBTv
IIrXm88/TvaHk/3fePxC/wL6fRljv+f2WTUen6yvBZ3Fy7eryP3X8sVbZ+ud
Wai0HsP/oITkD1CC+PzKOzeGYTwsxfeRm66s5D/hzPsf8mcQ9ONluf+M7B+T
771W5o+8GPc5vUX/Q37k8VVV/xDQmT5Z+Hs4CmyAmXlxrPsHSe1X4w8jvaE/
6gaI9Gx+5YsXzOVB1R8A/ZF7fgmT5n8oHz/hD5GlZfZnpX+4/dtCui9jU+B+
C0sfl9euhxHS96zGj2X2Udx3FvZYC24/RbxM+T5MPn9UYPS3oR97q/FdQTf0
s5mboGP8gdF/wIZ965ivwJi/kJcwPnK8Vu7vaiLZAy0kf1gbyX/WSbI3Ohag
43vH+QJ07N+8/CzJPmci9mO0R46PBPsQ5qMBV8uTf54GCYzxBs5dV0I5XcTn
UuN78v3fQrJ/5J33D5PABrY1arxNpGffjyhPjVeB8QKdnYeQXviHQ74yzvs+
dKJ9OE+gPYb043UCG8rL0Yn5hvRYT1h+xBPMR0d92E+x/uL7RXpgnGdw/gOd
34/XifEypLuv5/6zYWr8SpyHwC8w6//aKjbkP6HGm0R6rPfA6A+Zjv0E+zf2
E3b+Bj3Si9sbIr0KyDes/cp4ArN4g/noKB/9h/qxviM9MOpj71nAvjE2b/9c
p54fsR+y+eGoYkP+KWr8STn+FPKjv0AHNmQT8pEarwrzg/tD+xSgo3z0nyGZ
cv5k8b7E+yP+3L6hYNSP8x3o6C9grE8yHeWz912EvIH3PJK5/Qjxr2BfEufp
HC1Pby/y4zyM/MA8v6VIz+Yj7qtbufL3C63U91KYPhX5MT9hL4lU30/B+CE9
i1+m0DE+yM/tCclivoLO3/dI5vYrhc789Z3U+GHAufk+aXEfEvIb9yfPEfEx
sV4AI38uvicw7Ddcv1okd/wf4txiJjDqR37D/Hisxs8EZvl7VhHpjfJ+3N8e
8TN3af/87xelvl8JzPXxb7WtyifPPvxAQ3eWFm21bM9dLepDedjPuP/zO0ke
eZW336n2FKTn+jM3cd5Aenz/OA9y/3s/cV4x/HXylfwRNNxegbi7mfBnCeH3
v5T0XJ+pEfs90qO9ON9xfsJF+w35w1T/QOa/11567y0uTx+apvpH4rwCjPMN
2m9YxxvGCv0W0gOz99zM3ER69B+7D5SpvveG/kR68If0wMw/KshbpMf3CzrO
i6Cz+/adEqX+J9HfOO8w/ZCSnscjJb6fHyauv8F5qL30vlmcRqRn/qxj1ffX
gHPXG/sC6XGeQnruX2IvzkPMn9JOfS+Mn2fy1ufa6n0jAxb6OHuBkR77J9Zr
bt8OE+sH049YGeXRjcW6zfX7rlwfmi9+FOx37D5+vvuGhmIV+Yn5Tz2N4f5S
T9X3HLi+DPdFVP98Jj9Yqe9PYL8AxnkD/HL7WyFRHo8X5Fwgvh3Gj70Hki/e
G/NXuatitn/l07cCo3xgFr85X3w07PfYz4DZfbh8+kp+PsgR8cVy50u22L9w
fuX+FllCH4f9AvGSmb+48Lv2FePA+Bf3dV35fBDvJQbz86SIFxkm1j9mz4G/
eTMVM3tTPv9YhsNU/SrXVzkKDH1H7rqNeJhluX/wGg9JXwc/MsSL9M6jOwl9
BDs/4/6J0Ofg3qW/SM/90zQCM/v1JMhrYWL8sd9wfUsE+fyvnmuInxch2gf5
PHf9cxUY/DCM+KDQJ0Sq77WgPUiP+Yr0wMxe6vT/6AcgX4v4qiT6B/Ix0x8o
6bk+MU9/R6q8zfyjlfT8/jqJ/kF65j+tpOf3xUjMJ7k9hs9akQ+Bc/tZL9oD
eRLlGYbnh+qPZvhMIC+FFZSP2PkY7x0gHi708dPU9wuBmX1rmvp+ITDWc2B8
v8BYn4HZewXTZHkC9y+zxfmWnX+FHi9LnAexvuR+/+5C/kJ6YKQ31H8N93Hc
hX4A6w3Td+D+FnnmjsdTP67/wv108Z4JvjfEO1PvvyM9v6+cF//8a4BIz+3B
YQKz++fXYE9U4+FgPWPxZxBffFqennxjFI/H9lR9r4npvyLz+ItT75fz+xnu
/HyX6ibSo//4fRNPrk8jT5Gejc9T9X0npAe/SM/0w0p6YPl+OtO3Jwfy893X
vP1Rk8jjDY0lbn/G/fJJwSI9iz80lrj9DvazaRqRHvNatq9g/wDG/oHzBuQf
7l+VJ1+dUO1fmP+QZ9j8+Ooq+hvyC8YX8gb6Axj5IV+AH8gPyM/O+6nq+R/1
sfP6NfX8nrtf+AmM+nH+RX8Do352/h6r+i8a5vXfsj0Q9zNVf0Jgdl4CRnwb
5Tz2JbDywncpGkryfeFYthTuE+fp31YlUqNhpntcbD5pB3d6dCiwm+p/AHsa
9gP0N9tf8vk/oX7mf5QvXiLmE9Yxrs99KvmDm3B9yWwbvn4r5XG6J/cPTQ7k
67+Qz/PiHcG+cRHvZxUX+ldD9rruYj9jdqXxeP+npMA8nlu4FB8lSshnWK+4
PsNW7Oe58yI6b//z5/aFZmXEeOX2r5Fob9cGD0/qaxemaxZlHdt8V/1dkD6X
P2OR/uTrxCOmUyHnv9VC3mTrV3v1/VbIu+x+jFWe/4+NGh+T+fOI96TD+HlJ
xA9z5fNfxE+X4lHm81fn72Oo7TGwm+ks+OXxzPK+u0xrrm9X1iecR5g8XEON
7w567nnjZ65+u4ueHhjmT4g4n+au255iPuG8kGRtWtPyEuKtZYv8OK9gPHBe
QX/ie2f+DJG2go7zCfzRsB4Z6Ca4r5bG64ssK/oH8pDsXyr79zF5z8lXlI/+
xn6A8efzM0fUj/5AecXbDdveNtCbliZ5zH71Jl6cf3j6IiRjrA+5/BfNbYet
ntvXlfnG3+sK4/s37m9hv4a9SRk/Q7/s0Ap9B85HWG+xfgFj/cJ6wexNSv9j
fPl9mFAxf3LLUzHmH9Yn9DfTl+UbX/QH0/fki7cEzMpPDeDnU3FfJlu091G9
iuu/ffsqykd+yGeQbwzr1Kt4Mb7A2A+5PKWeb3LXuTx/W5dYfp5Uznds/1TW
Q+ZfN026P6v0f+54OIn5mLs+qPOzodmRi/M2Yb2Dv3owld1T/8W156p/9POv
rVp3WaGnkVvf/nuujB9lLzzWZ8L+OFJ2kCctUzzJocaOoZrnWtq11mLtgeaO
lNQnePiBU4l0c3z/2EkVNVTIfvZsXZorbdSNqNrnQQj1uVjeNTrel0JLJm00
6xJEm7cUL2d7N5zomN/mDX1cqdGYSv0LeSTS8kjrG0vWl6ZjT8s3rrVSfT+u
1Kuxx79M8KIqKeOHeP7OO8co/W9Ry6W779ggsd9s+Nfhz6f66vur4aVHLXg2
JohePl7X7l7xCJo58IeVXw31fcxZef3TwH98GadUfL8mNK6H3+4/n3Q0bnen
2Vf0lvSs1eWggQd1dPXAhR2LJqH/fmqvTa9ZqlcNF7q05rW2XNNEyqEXrTOv
udLSC5mbm5gnUvmMu2MaJVlQhy8Dag+8rKPlq87VXBeprJehVfqlzggiCsrZ
7LbShzIL3wxK1saTzYvjxv+cdaSWHk/1o94l0vqAV2mxda0p8tOMmQ9q6yj8
765pZUe6UVu/uPiSy4g2/ZOcaWJ3X5t4zez0/DZ6yrBKflzjfRAd/DNu0kmv
8vTJSVP/RpsAuvBswuJDR6Jy9TiK/LfkzLk4z1+JVG1BrWctDmuoWvOACUYL
7ah8mfbFjaeq8dkWDXl0w8/Gl4KqH7/x0rYCGRdtef/eI1U/e7VTl8MZh/zo
2JCnf4r+jCVNvdVFirzI1v41ae+aqU31NOxK8roxE75p99s8eN4kUE/hp4zp
5yUN+f95culyu1KU8+udLj1NQ+l9Hj12NrWhgxGJ3ueiNPTMyLfu5y++1CEz
sGZCE/V7c7UaV8w3KYR2x9V7U22jhlL7Fru7cHgIXewb2tX7cwi1XnpgfxVv
f1rglGBzfFEM9YzZ2HWXv3p/ut3rkcZVEwLpd/jvqsZdomjmp3tV1k/1ocK7
PlZ0XqneF+6SoZ10qQrRy+eLDvTv7k1DVtpHj62fQIXz1h+rKkO1FxIS8ux2
XmSyrtuAytW11GNUg9aNqubpj/Ldl83OXDjAsquOzm1zH9lmjAtFpS34ebNe
In2rVXxpdA8n6tNR9+zEjETa2O5vm/Ezyoj9Dt/3ZMvYjl8vJ1JasQz7PWfV
+4/1326L+OHkRk9OFy9e+qsafzvF1a5N42dExU6P3x17vBzZN93ht66y6k88
ZVn128YxejqXkD5ySMVS1OnakJqNz6jvW/RbWTa61U4dPW3QM+jRQ3vqNOZF
1BVnHQ23SYiseQ3zvwQZP+1T9oSy3o498mt130z1vsJI/e9/H/dR/QWzu5Y8
lX0/kUbpDjebUN+fujQt3z8tXvW/0u/7892hRgz9Hho8v7Xyfe3r07j9pThj
yqq+y2b5DQ0t9nQaHqstRnvqaXYX/1dD0WVnz9pcsxAlTB21MPi2hg4kh+5d
3dWYItJbxje4qyHqVWWt5bosrXbQ9kCPG7ZkZ9Z4zYRqOsoaNm/M+ye2dKZ+
XOqJqjpyH7mvzVPbADp09pCuRnQMPRrh0kW/wp9evL53sdvdGLowvOOtv1+r
6/WYwwczLL0Q1zeOlkeMK+w42I8O3tkadbwv7rtbUPlfo1/1X6Kj2Fv1v14e
Z01v99w/9EyRP451+ivhaPdg+t7kefshFUNpp23M3qv9NHR8vetZe3Nrqtn2
6HuHlyFUu6JX0K0HPsqGan4n+3EgZTnWqtFcH0nZz5pNrH4xkNYPLzr6ce9I
mr2jYY0XUaXpWeS4teMG6yi58qRRN6eq8sffD9Z7bN7lSv2nrdHE3yRa3bhx
xPHlirzg8/Zitc6J5B/Z4lFkois1ztjiR7CfKPKIneuADHfjRPq+rsiz0d3M
6d2+7DlrT+A8WoKKPO162fI/HU2dfnld21LeFJZROH7B6gTaEzs85+SnF9q5
0xpnlRihp8YeHao5u7/Ujj4/cU3/enr6YV3z7dvRxWl8q/GmEc91NGJj4yVn
GvrQoux/fpjcrkA3brvu1d31pgo7P61Z/CWeHI50yIqqbUEdX14p3nSFjkYb
v3FsddSNOga0eZ2TTnTi+Vbrncr8G/1o7tj2E8KpUb+9VH1lAA16UfbyiEZR
ZHJjd9b0GMSFcSPvw/OP34tR169NuxqP/nnCn8ym7d75ZW807VxV4XvCIycq
dT+pZ9O96vcXMy17SOaiRHL3/+L/LE2VP6y6jvhWq2o5OjxnVFozF/W+9H+T
92VvGqOj06FBz9r9rcpLGyz6rQvoZU8V3g0eV/RrIp0oE1ey/n1V3ujy75sV
6Z5+dOhBmaK3HsfS64zSe90bq/v1Zoeh/ZIV+XVD0Abab+dIrabUmRv8JIiG
HDv50vNoGFXft+p99mIv2jzbJTbiL/V++5rxoz/325tAlVv1cEnr5UW6lU2M
bGYk0KTN7mY1SrpRi9NjSy86psofjWKr1933QEdpD+r9iTAPIuPmb3fv21ae
Xozac7XEtkCxv+4b5mI+4K4z2a5/+uPT4kTqkPR9wNQWRahmly7djN/o6Jmp
+fR3ZUPE+fr09i6lzfqG0JLVjlabCyn7zNBdt5KibWhB9sLynbup8sgv61//
NJ+tp8PNZs44XuyxdopPXNU2E/X07tzu1HXZAbTu9Z8f5dMjaf20oikrrv7S
rtiyI86tsp4O/d3slXfFEJp34MK+CdFBNP/GXbMBs1T5FevxWaOP214sUO8/
PL+xy7rFBqKc+MPJqyaaUb8h4W9XZevI4svzc5NrO9CELvq7r610FLl8dq/C
1TTUt33m537jfKhXXY8NXWqp75O03v9reqHVIZT+skvTFx396WL/aQ7Txqn2
esgz0TV/NpjrqKMmHYNWUlc7spzx+NOekjraVeiv+3HunhTwVbP840Qtlfw9
59SEd970YhldexMfTxOjBi2s7uFD16L+PPQzj6cX8c/Ny41xoFdbPiV8uZdI
95ueedznRAgNOz0o632lYLIPrLXAV1lPDpR60tExNoiCswZNPTNH9be7/q7R
h90xiCcXI+wlJXYOWWbUOpoObtx3+Y+RL41flh52/78KQh/RJfr87HUuetr4
81Tap2xnquKXMiBG+T7KD18wx2WrN4/HoYzn/sK+v8f9padOu295rml2Wcg3
0Ed3nR7lWSxY2W/qxnvMmKPGQ51n+OtDuxO2zL3oGK/Mr/2lHP/zEef/DYFv
2n0+U4SuFdUfbmWtp9JXDmxvsb4oaVrPLP13ST0NaNV+xrhrfhST2nzub/NY
WvVoYJ/iE4Npt9u0GW7K9zI4On1f2lcPquTf8dRsB6IR7YIOB3lr6FFwyNNV
Pv7UdWvfW6l/OdPvBTXO2fdNpC1Nwn6NtQ4hi8bbRrhVzvPTVeSpAyNi1iw+
pSXzrg3qVWkXQpPPlSwxSqfIB/2OzmihydHenFGj5Uw/ZT4v//d65AY/Ctl5
zmycLpaGaeY+afFfAPmbZM/rWjyabuyIX1JhegC1fnTq9PmJ0bly392yFL/w
4vZTbXE+fao9Zd8nSNdET8XtXW7oH5jR1qOj+t06rb43ven4bpvXyn5+0yrz
+OQKE7XbKuxzaqGc5x/dM86Y1N2Darima3ZWJDo7YWn3pF9WVG5HzpwByvpk
Z5VWdleAO2X2z7m1fBPRgjGvri9cpaHLzces63PchcaMXvDqvf1Xbf+W5Q88
baWnmFhPqwfnHcjZY03ya1MdZZRt7Nj5tCedqbfx86XlWnrW78Sw2mPMqePv
qCVV3uto4/Epqw/5BNOZd52rv9kcTjucBxXpNL8wNbndK+y5h57qb53x63Q1
M5o4fnD9Jed1NOnbXN8HGmuydq+6LrOujlpm36+0Yb019bvyo0lDZb+7OcOp
kPsSM1pY1GHvta866rNw4aS/X9vSb+fi8xop+3uIhcX6usPStd3el+lWa76e
Un73ndStkS/tvXi5+9kJFehqn2NrwuKztIGfmv9O7qCn3e1HXl+qs6QG3hsX
vp+qo3c5u84cavVRe63t5zHNK+rJ4pZ1evTQM9pbh2tM+9NNTyUfJ3jOmVCG
xj+YNK/3+kS6cK36L/33rdrBu6LMHyrnn2UXp/YZ3dud3D51H/6tAdHaqfs3
t6hXiMZ7ztxhaaan5Ae/rgRGGNO9szdXTjfW061ZB+6/vuZLn24Va1RDH0fd
7O+k7DX2osNevpuGP0qgV2PGb5k73JY2pDtmHXDTUfTsyJF1l3rTp+EVPsRP
iqdA3ebuOWFftCuaFkqpGaUnd8f9j2Yr+8Wl5lnWPRK9lPPb56yuN4IVeapz
zgA3ZV0q1mpHzwfBNOp529BOF0NpwODvbw7HBAv5vEu7k1leHTUUHLHP7uw1
B7o8KWph8n/q+aLNkjqvV00MoiarCncOWBBOnzLbzuqX4pMrtyrff5uPKYVn
3VDfg5k1xOHNkG8B1HXWmRN1TkbShok2d9puCaGJA2xC998MplPbHwx91DxQ
6AsvDWk4rkm8F02+4tnfJFlLv+cN+zlXOc8kVlxib1c6kY42LjIjc44jHWi0
9ahTViIF3/zx5tlxVZ9otfuF+8ccNf7g2d3BPfsO8KfB8Q7BI4rH0gX7oV3s
JwVTpVEDLhXK0Yjz2zCzPeHmyvz7686YUKPb6vrdpszYsxUyNHQiuarvtZNm
tMXufcbgB6r+0G5V8dOF72lo4NiRF81LfdX2bf7M5/onfxq/dnzjW51jyN/u
bu2wZX6UeS+89eWycbTh8IPO59r60ZtTHXbO7xBH5bdVe/h8rS1dU87bD5Xz
4t8VHGLr/KOh3g9beo1JL0MXavf9ZjJCQ2sfHWm5urQHHTtYOqx6bDClpFG3
dTdD6a/Zxt/WD9FQVut2A5qut6TP+nnXFp7zpUlN72qSSlcg61/L27mP88yz
O2qVdWdIesl7uC/6U/vZqU3nc+vfaOe4r/7pPlhPbTusDkzx96G9adk1ihWJ
p7bdizs4h7lT+4/GzbZ3UubzkOkDHi6wpBonVocm7NZRjb2ag3Wtfah8sT7f
zp+MF+fFrSvS/Ftv1+XNG3dqph03IXEvkfOZpUuMuwTTf/4tavUoFk6LIh7X
+rFX1RfbjnjwZGDUd+3erLWm5Xz01P5hrRu9e6jjO21sxxUvZ2uoxJRmZnut
3cjSI7jf5BvK/At/cHh5gwp0J09/V2tx8usy3StQt7dTpkV2DaHG7bsOTQvS
0OZyS5wHPStD1442Tou6lkihDZIH3Yx0ouIzj7xrkK7q58OMop4Oj02kke5G
WvtvZWnE7CWzP7VS4+cMSUn5lOigp0X9Ute1zLak/Y9LTxy/VUe/vX4M2d/7
rbbZnBd/layhpxuWDTTdVjiSrt/JhRZHEyknT97p3LGlWckhhchht7fnDOX8
vjXo9701re5rdwwOGtF4ioa8hl8s//PmF+0/efjju5Kje5l80cJ/5sehOpW/
fI6l68fql707QtVXz9ns0qvmFg3ViHgbZOHiTLfOZh7aWVPpr8UR4XNDy9F5
XWKT+4r8kba8u81aE0+6snVz8VfReF89ktpdqBV7+b6KJ7tfqnw0yZFaxtxo
s+Z7IgWe2tHEa7SGHn9/qrMuZC704/qYjDHtXIj29K26IdZZfV8a+vDaY/49
OnxaONnPLTw3fLcXHa/bOODZmwQKqjSixtsFrhQxuKxZ60dEHc+0Dk+u7EZ+
/a0PB74k0r2t1bfFrGI0+tv1Eg3+6KiXxbD9G3Zb0Q/3/fXPTVX1i8l191ZY
2jaAUgecbZdhqiHjAy4NhuQE0I8RunB9jyAqd26vr1V8BDUwrVOu7YdAso6c
2ut9+Ui6fCvnT7mTQXl2qvJUdJtd5aDz/uR4b/e+8ovV++Ld5i++XbMO0dwy
TtHnzztT0z2Tk4osT6Rjh6ZazSvhTKOHPUqvNCKRhgf3PF3oBu4va6i6/f3f
h2w96OimVx3j2xF1C17xwfyGOzVa1eBLg0iif15+7bA1BfNbvQ/zYHnthDEd
dGL/32O5+FTjMXpaUzzloUmpYHI5nvPh+d1wcoi2sX7zJ4iunjkbuKNPGJ07
2XXJ5ZTv2j5Nu2lD6urFfJ1NOXNG6lX/+YUzfdZPidLSydCXPy5uK03DqrxL
+9pTR682dNEbV7ei5n2OvG4wT0e+qfY9J/dzo5pFhj+Pv0+0f3CL55Ms3Sj0
6ZUbM48Q+b65+yW0UVFq+mnWjfVPdOR3mfrPTTOlBumF/7lURNUHVGhv1+2Y
pY7WnyvjtCteQ1fWzAjvP9GXjk+/+KxpXQ19mL5o7/qr3tQzp9N++70hdDjT
rLDZ3370uMTcLQMvqvfH7k9e2vlsgmof+rT6TLPOYzT0rzt5ejgVU/2VfWcP
ja2mxqva+1absipSR43SBofs8fCnMw1auZwYEivsTb6Xi6UUOZIXT8DKkUIP
RwyuelG9T2HRq/CY6EI6Si9Rvmn9ky50qVClIytHJ9LCLTX3NfUPpnPlO90t
PyecTJc69RpwKogOjNastjUNp/0XLDYk3A2hFikHqx+ZEUTdd4c/OWCsoYV3
x468H6f6+5htGxv/LSOaIj/rOv7q50+1escWfuoZQyf+Depbo1sAZU6Lul1h
ZzRlHJjRPum+ai+DXdJnRX/fPacrUMNq1rXJuQit6/VPowZl9LQ169lt90ku
tGPOth+jJyfmro+ZznQjPCyhTIdE+hL69nbj5i7U9eb4hdNnJFL0RZOBY01D
qN6FzpefKfMY+u+1btcajEnPu391zZuWtopbebBxPDnuW7l/6c9/tX/OGK9z
mqEn/eR6vwfftaPsVt//tSqso8GldIs2drOntnZPSpj6KvMrrsvsMtNDaPRW
lw91PviTefF1dmFtcrTfFq+9/LW+nrpPDfrqbx9AE9yj/BbHRQv7YeMxTc5H
3Y4iz0Ver6f191bOOYH6WjUThL3g55Detl5TEmhHtZmvr230Jr+X1f40dEsQ
8q1nB5sfY82V+fh7oW1Ow6J0Kf1swAdL5XvatW55ycd59xWUfjScY/b4UZNR
XVdUDVDt2/uuvq84dFYsaZ7Xc1zzQD0vVY/MfHFlTTA1K/YuwrtvGN0YfLhv
CwtP4R/Uq71J1WluXvSh1tzQBS201KViBy+XQA0FGr9vMmyGHx3c9a3oMz9N
rp72qZ8Yn4OT/Wv+T/8Aff6JfbNcqwxIpMUzVq+8t86dutduPdBvPNGGk7HG
acr4VMw7z1yqMstm/zbVngP7xsSggCsrmuvJaozFa02sar/bdHj2qLY1Qqjl
9nvtdK8DybtFOee0M16kj725sCwl0M/FS9Z4PfGiFKcOszv6JVClj2cjPszy
y+2nhrFUt+vwS4s8A6nL6lC7xPlRtGFMysjShwIo5V99sGWFaFrY69X9/5YH
UNF7Y1+M7hpNLbzqLN630pNaNbe+O8NfS2eme8w/nugh+itTd6zjm2ruVOd1
fQvXNkT13NruXFTBmtLMKqWUVuSBwS+G+o0qY0Rrng34vqe0njKWl1r0sk+e
P39qHG28VLlu3dc2NOvJ9gOLQ3S0ZL/33gbWGoosXidzch81ns3D8A01N1bV
k290vG5c90C6+CRo8qF3EXTMfWeRup9daM4hl4p9qiRSUU2c1dnrJWjF4J2p
fVJ1tCBixao1e0pRxskpD5bMyzvfjPQm5/v7AtusiSf3r2PNu4ZpqNTYxru+
TnMny1OTOlqXK0PaiZe/n96RSKuXrC11+Uc5+reDbaGgoolC3mtZ/fAt84BE
2t7v9lHzQm601ilj4McTRBU2hDld+BJIE3VNF5o+Lk/2AdMq3p0QSH1Xvyx+
NU2N97JKp7WpU0dHu0LezVlx6ZH2XMMNExu2UL7HkDqpvweb0el1pae2P6ej
HvGzDiW2cqDNC5+4Xn6QKPbvnZcf7pm5U0unXh1K8+jrQCmtwu9vuK/sb4PC
SjYrclIbcjG6+qEeemrwvdL7fpos7Sm3WsXOxOrp450dY+tO8iD3FkUz7iQQ
VTtS6LTeuyQVWzzTN+O2jrLn3XKp8d2Hhi9rkPTPSzW+ycxC94ttGqWjx0OS
6r5KdqfdS7b1DVxJlNDrheue9cp+4OKWODvWhWp5DqnbaO5X7Z4R0xe+bKmn
HUlVD6c/c6C5Wz+9L1tER6XOeWxOu+ZJycf7lp3xt5bmX7B+svWwOa1t9s5n
ZaaOwk72X2zhp/onzFpx9+rWEBOa1H/KeX83Pc136aj/sN2Usjb2/jFZaW/w
rYGf3leyItdnKaP+pOho8raYyzFl1fNB2bFPq304bk3Np/3UbRigyt+/R989
MeSLjlyX+fl+Vda/zgNqrR1ZXqk/vXxw54yr2pTu/xg1mqenVtGzV/Vr40tv
Iq4/0Y9CPJUsbalx2yesba+nle5zPvj7WtIn76gRfacr8l6q/aIqDT5oay/s
a96usp6sVy4Y6rHjlLbn7sSa07rrydPxwqfNfcrQY6sM212bVP8kt7Drlzr1
19O3lQv+vZjiTndNG6/70Zho4bvv/S2cClGFww0fTjJX7/9XCTx238pETzVu
X/CLU+SHeXte9VydHEc9t2396f/NkzLW9x3x7mUChVZvc3l1e1t6bHvj3gBP
HdnWPvdXu9ne9Ht54oiUmfHUqdLAyFE3srRmpq7Py0Yr39cMb7u5vT+KeGPX
zzwLOmCj+vPE7ele7MYVNZ7Y6PjN9UYPchf0rs7titg38BT0pW633n6JU/19
zvV9brzLLlDQl1vP/2l7V4339byK6VTv52o8r6ZL5kY7mXsKHNjg37+7PlPj
c1W8VM3N/6J639mh+a/iPbcVFuczyDMW20yWXrcqS3dXuLS2GKnG32rZqE+v
+nPV+Fojut9auWB3qHS+y9Je2PTG/esEb/JMXDCnyHgbYe/qcbaX+cy7ajwt
4c/Xoffbowu96MVHm5o1f6rxs+CvFjYmssnZOd405LXxqfFz1fhY6xtE+5+6
ocazsh/2IXleEU+B3916+6lXxQ8F4k0tPT/y9sH95WmOxeuHPoFqvCm05wxV
DpvVOYw+LnlT23idGj9qf6WtPbLvqvGjokMCArb2VeM9ucz8nBJkVlKNT9zw
lZ/tXjXe05ub/TvVvK7Ge+rQZ8DoZXfU+E4Djn0o5dZRjecUpPXe9S6gpLDv
dkycOPSfMBuBk8aUWJ293VHgwmW2j0/br8ZP6vbqr/5XphWMn5TVJTznuU0M
Tbdd/fav/Wr8pAP2d26OGqDGS5q1/uHpXS1tBEb/TGnfZmTASZTnTs7LfVqb
v60gzt8vj3qNLqrI19nb9d1e+fmQ7bm29qN/VBD+jytGFn3c5E0F4R+wItli
YpsVajypiNrjov2U/WSrTa90X7Lh/jJ7HKm4sfvv9VWIBvi/Lfr3LjXeULRP
pQklVxaMN3R0p+7SY0cdHX/YZvDkUx+E/0/rO5G/htxT4wtdOeW46floT4HR
vi2Pzs7f6qCjBn57R63sp8bvmV+pV/bshwXj9ywfmDb10x81nsibQbtCh5lU
pL+6+n1+9Y8afwf87r5x1LbwIzVe5BaXzePj+lUS+dOP+R5unFGJnp+fEjR4
vBpvBu1z/bFMd2y6Gj8nvMe1qUMWqfFJTh2+uPbpajU+zPuz5xfYd6hC6/fH
950TgHsmyeJ7W7XnyFm7AVVo6JP777o/dSDj+LD9+kLFaH/ViMUfGnvS9qYP
SjvbmlPIZYfldxwCaYr7Ds8jg8xp48jrg0rcC6U1M4e2bdnHjKptH9SzVhEb
6t25c/Y/5k5URF+0SnUnT2q4+75zwi9HCjys9/J8F0B9hhpP37ewDP3Vav64
9Muh9MDeccT8wWVo47KSP0w/FabXzfV+3X57UpXCswefzS5BIy1n9vrXxZPu
RO9euPNvN4rtdaDqtDqeVHHF09S2ily1f0XL6H+dvMh/QdTSmhsD6F2HJvf3
b/egbWaL3jY6GEqb3j76lfzBgxq4trF8M8mGLjwbX2zT+EBaEHh4/2ZnR7q/
v1IDD+Wcp+93sNaA5S5U7feW173v+lOPsS2OXjDxoZ8DND9MYwNpaeaJI8sC
/Si01YKEalYBFDu5Td+TCzVU9+7iZMc3AaQ5uHfTydoftVa7d9bZVzWUyu4w
rrHqL2U/ahIXq3EKJZMdvW/OeOxGVQ8MvjZ5Rygl1dnrcybQk2bfm27Zu2Yo
HTKtGD2nq4aii4x8ZVcylBKM4r89bflJ+59Jh4QXxSPoVnnfe8WqFaadGw48
sP1ZngbeHtNnVo2StKvG+6GznpSnacv/9r6wyJru7wj4dPt4eaqdPDjqwkgH
+lR+fXDK/PJ0ocPTU0M2+VHO3WcNJjSPIH3zNXNufwmgWtXWhhX9Xp5STt5/
XCsqmL5m9axzWjkfTEvVNPju8Ul7qvK0/77Miaa1ZxdssJlcmJa4WTrr10ST
xcwFLZtlliTzem7WDVOj6UO2m4mniw2NNNoRtW5rNKV0mH1hYZQjHdy67vPy
9dG0w8Uv1btSWTq1tLXRmgXR1Lzj1YpdVrnRlpvuJ4sOjyb/Ck71LpfxpOP/
/bWjVFOFXtzxk2aKN713jLr0zT+aTpcLdmr5/IPWJt2vkNP7OHrZMLJhenJh
yrx4KSLGtQK9fFGv/2xLC3p5tnK/f6tVoHHG898Xa2dD9dad/jOwVwV6Ytn+
W+1djpQxa3KPcTMr0PK0myX2ngimoAW/nL72qEApNz530i3QUKZT4w1jYitQ
1b0HjlmdCaXPHxY+98mKozErQioHrjGmL2sXeBcapKU2UU2mjrtWkmoPHF5o
wVktjZw89MquwTaUdMg8zNGc6MXjwSX/SipJN5+cXdZvXiLVGjv6z/weNrRr
2cNVbS4nUso4n2mXFH5Ppyws2m9iIjmcHfTh8VNvGv8+4FP4P4mUc69/6vaN
ftSwrsmS5GvK+XpJw5UtG33W/rix2rvCJD0deWK/eMmYEhQ9ZsqJHhX0VNx6
omePajb0qVn/lt+m6Ono29lRd+a5UdESHRfdbaqnXY3+jZs42ZM+a7s8DFmu
yNNLNm7MSAqmQt+P90pL0FOAydnqPSZp6Fvpjk5DU5TznfnxZ/+8DKUi/d0T
Q8fqFVH8VfveL95rP8/O3l7KtBJNsgtdHmhvQ0vvPF2WratEIzbdKLL5nhsN
/jF4eVCDSrT9SOiGQfX8qE/lq192+FaiXvcKR/ZqVZh6uR35MK9QFVrWssvi
bXetaWrqg3/6Zlemx2mrhl464EIDq/l7rrlWmSY+O7/b5F9vSv3Y7kw74yq0
+OLHTVu6BFNq0p9i9KoyDU3NSsowMabj47sNmzY9iSLKbqo2aZU1/fBz+3hs
SxKlVEo/VL5wWdrcvH3U211JVNi83/iVpp407FWOfs/yJHpvtHLliJhAar51
/Tn3L0k0elnVx9MeqP7b9caPsS5V7pH2baNYW4cvVWjVs4BVa3YVIvfuTzbM
u/Vem9WwSXaXC2bUb3jFYUPK/NQe2fqrb9/CpSljrXZT7JKP2nOeVn+/fWRJ
d4xnvO4z3IQ+jNJOWWrqQgfiIme8rZGlnbZz1Ijiw1zp+bUOF2ZNy9amm52/
NnCAK5UoognpalaItpzzXhfdwptGRu24YlTzozZq7Ptty6v6kotRStyI8Tna
ib271a6d5EuNN+46+dfVP9pNrV/06WoRTDHuKxM3nf+o7ZH4unNqVgjdepfy
V06nb9qFJfYOOPJJkY9Hej8+09uIGr97v3VkNSNKGP/k5JYYZd5+cy4UuqoY
vXtw5VrfTGv6025NqTbWxeiOR878urvsafhF6/c9JzpT6KnYw48PK/t0+hhb
hxquFHn6ZGVPd2ta8cZhnHeAK5V5U/38vX4O1Obzum7BEd6UPbhcb7sh1lSr
T+3dPj6+1HT7VtN9z6wppuSRCuUdfOngqP6dTiXZ063jRb0HfAki78nlKu2t
bE3t+oV9nvYghNxr3Yo8+NKa4v9UervzRgitbGI2+T8Pe0qtMcAp5t/H2v3V
/d/dme5GtR+N9bo38KHWem3Re8tmudOE6jdHvR34Q3uv62arGVtdqfr6Ec16
9rSnn2+bL7Xo7UZHvOMm/VjpRAd7tv+o++xKfWKCVz8NcqKS3jcPZrT3oH2P
SiUtuOZFJQecCHp0wo3eLHROWXVJ2Wesrl7L/u1GP2Pa/+f6xIeWjr1/fEBT
Vzpe7dYAy/1B9G70tMu7e7jRoCoZ9TrsCKGf7X9+SFrmSr8iLPxD/w6hChFp
Hxa09KCky4f2+9Q3p54T1704OduXVh2P+7V9Smmq9Lh4xICWvnTHwWblimuW
5D1x5NbZq/xp8LhlZ4Za2NGPVhv/OTXMh1oc3l74QS3lfLHB/+q3hj4U9Lzo
uIYxHrS17tJshwxfMjNN2N4o0IOK142LNqrtR0sj0p/MaeNFfu0vDh2f6kPX
ht4+VqpbAIU8KO9W8qoPrd65/8uZtkG0rfW69+ZDfelincNxR2oFUSeTrqG3
9vlRlbJvJy5wuaOd7lLhzsqbwTTzWbiv17kc7fmskuVd2waTx7pVhUd5OlDA
nAolnY8HU1zfu2dWuTqT+dkeF2q9DaHXCU/NHW470cqXQw6ea62h7E277pdQ
+u1P60ZVTruHUImKD4dfuOpL070bl55hEUIzs1r4xdzypw/T/cbU2BlCTV0m
75940J8szq+f27qXkr+N7yj6HUiNlk293eJ/9zLu9Nr4ekwo7V1bN2G1PoQi
4r867jN/qJ1f9IzHa204uZq/vJT+/YfW2eHn3q2e4bRVW9Xt431T6t65besW
RuG01L/e5+FXLenUhj5nRlwLo+I77r5ovtKDPDxW+BT3D6cp7+w82h31og2P
3MxXDAunsNZed+4v8KKO303q/GVcniqNa7c11FwZx7s76jQpE05z1tm0rV1V
Q1ONln1+XyxcOZeNsbJU9vnI+uP39xoRTk36ejdzTAqlRyM27tffCaeWlcYl
lrB/qI064JJY6XoktR9ZJ+Pirp/aPts+xOhvRVJN00oW+xcWo9O9+lcapdC9
y3cptrJVabK/97TYsDORtLmorWNMBzvySCm0d/OOSHpzfdrU2q2c6PvprOxB
cyMps0Gf4YW9XKnQqkNfq3WNpF9a32s/9gWRuVtVH+dCUbT5kKnfeWV9+ESb
1+z7GEmLd2/xWHwphEo1uP+StkbRysQfn6Y6hlJW65t3742IpPtdBt1que+u
NqHEnBlG5WNpeJlavoNr/NTGu6yzXNIolkanVLpzKK0YHVn1/ZZVv1hqPe/6
rfPrS1Pt6v4vn0yJJdtfsxffeWxH1hXD+o9aHEunFq1I2GTlTKd+VV9ea3Us
bVl29KPbYlcKrd0ga9WqWKqy/dGHat4eNOP89EtHFsZSnaVRQ+I3edGc5c+a
XR8bSy0XT+xTx9uXSvk5Jv9IiSWtQ7nf+/72pwqnZybZx8VSt4nXi38qHETn
65ju7V04lp7VP7T+H6Mf2lWmz4eX3RZPg78t/Gw0qhhRhrHm1vt4elf10Pgv
+0vTRGv7P+n+CfTpdpXQ1WRHD80n19ybk0D/FL7V9tnKUHqbcH7MPwviqaSZ
uf22p6b0z1/O59+uJVp/rtzLnqtK05w+a61b3SRyCvq0fkG8F83sPnCTdhLR
rjUH/n330Yfe36j14NkKolplp5zZtNyfLhc5OPfLTqKkrWvfrKgURPWnWo1Y
fpzoS4sZK1o+DqGJc9ZEPz5LFOhkp+0/IYR2z3pj/LVdIn39scC5WGwoPfy3
8I+BCv330OjwPw6h1KBk3fnl6inylLdJ989XH2mHVz5i0X2ljuLnOHU198jU
Nhoaa5HRWkem3QcEPShsRy3LLpmU4KmnnG47v5587E52g7PmvBioo68vDzer
dcKLWlRZOmj6Vh0Vf1zpw0HjG9p7XZp5VnesSGUq5MT38fqt1Vs2Wdx4UEVa
k/itXfJAI3o78eLLe00rUl3ns3NNXUpTyAqLbg1iK9Is/+73XMfa0Y7LLYLu
HKtIJQPLfO5cXpmfMfOazAiuSGfvpXZ6HO9BGTkTrOqNqkgPbs6afbWHPz07
Nqa+iVdFataiY8c1LYIow2j+/nntK1Lo2EtRploNpf5dwd2oWkXqkh7ja336
lnZEm1vPz+yoTI6po1LG2//Q1vYLslz6uxLdfbbmtuVEU9p4KLZ29Z2VacuJ
dz3fHLWkjtkNZ3g9qUTvTZ7MKPvajp5WbPRobofKyr5QaUu5jso+Urdw7ddl
KtOA4tGe/m6+FNvEuLarS2XqGPnfmq6hoVTr5866n+wr07Cc7FdLRpjRtYPr
Ot8snURD32tW/okzp7hzg+rUNkmip3Ozhjor+9iBiI5v35RJojI10/5z87On
kdVjatx2TKK+D8J/jVP2DbOET3smmCfRzI/mJScGuFHqzilLO56rQlvKvPvs
PcSLWie3eTnrdhXaeKzIK+uWQTT008gagdlV6OXJ8Mfr/wslo+Vtt9v0v6n1
urKv+UIFN9y80uVunUfaF7ubdtr1n+o3fyzx5+nEtEICu3RyjB711UzgOBvf
8dWTzYQ+ardjdq/2B9X4fmt3mz7fb6m+H7qh7/iI9+3V90N3bg3STWylvg9a
c2NNmhLrK+jBq5+NMbJU3/+cQTs9J79W3/9snNO0Q9lNv8R9RNgDA7eeKOc5
1pG6TZvj7h+rvt858OLy7ku72Ah7+90d7k1NLJwFHfaINb9/vJnh6kib7f12
fvmpxgvsfnDkgFFp6vuaDfyTv+9dV0T4l7ct9quGra1Fgfcxh3ztNG77RW9q
fMz+vydz7YS+LHtxi/T9F9X3Lqf9jK15aGbB+IJjXhYbVMbVg6Yvm/69/Vk/
kb68f4u64VODRHrYo2udq/t96ltP6v5qsdnPMSHkOK/0hDsK/WW/+DZzsj8U
eJ/y+IZfmogXgaKfl9+ZoPndy5e2v1693qrQrwLvU4amhX+e3juAlmkpxqu3
+h6lyfUiO4ault+bdKSwznvvlFvuR1+7r80a9NhR0JdPcnjp6FBW4LQvxzdX
3qXGP8R9w1KPix98MSyQ2lXr03HQFfX9yM43Fvo2rqm+Fwl/v55hXeNz0oNo
8Za+a1e6BYn0hcrtdCmzSX0fEvqS9iZf/jwfp6Gbe9/vt+nyVbz/2GZ3eqk3
Ey4JfLpV/8P+KSbC/o3+KGe947jLmDA6svmM9+SBJQUd+vM+ha+e3VcmjF5f
v1Oy/77SBd5/tPBpO7r05FC6NqfvE/ckO0GP2m535moz9f3G5ZccGl4f7inw
5NfjK99q4Mvj+XfzpT+fW9Tc3SOUXDfqX5zur77HiHgS2isrEx6tCCNT7aNn
dxbI7yua0M+zt8426Vee4oJruLr0LyrsC/Anath93LRSweUpYrJ+xaDfpYjn
t6HLLXf/63MmnAZeXzN0zk4bQQe/Jbtt8XeNj6ScE587HmvsKOjwn3xw6GSZ
Kz8i6GQPT9v77wu+jzio9cVFrf6OoFVbiwTrZxR8D/HWhkX7xplF0NxbIbVe
PlDfP6zpU0W7zkZ9z7BpxqPh5vGBAuN+TmChMeYNb0ZQ4NrfT2oHyfEpn2qb
aidP9jsUQzm1H7fsekN9HzAlIWXR5CNlBIa+tN2sgIRtv6LoQNft527NKyfo
0Md5XU99F7E2ioYWtRygCVbf92v0X9/yYyd5Cvzm5ZmpAffV9/kw3gvN3//4
OSeGGhwIdVtbMUjojw8NbVzVYWoIjx+jzPc6j6un9ekZRw2NIqespYLv413z
GX/c6XQF6rlmye92XdIEHfP92IT3a1qGxFNSje1NGvqq78lBfxi9cl+11b9j
adGywu9KHdKo79uF9e0S8Z/6fpyIv7IhduO9wQl08KnjfwMXfhHvx32a96pD
aubNAu/Fuf83d+ri9biPYmRUdZxL5qwf8WL+pu7udPHqjwQ6YXKl6+ovRcX9
VLR/+GPvMy/Lqu9/HZldp2rvrkSvu6WfqGyvvtd2e/e92jEf1PfX+t30GL+9
sgf9Kh8ff36KlqYdmP6r7mz1/bVCTfqkX9xX8P2155f/6vvlgZZunP5jfDGo
4PtrIU9Ljsy2Ixoav3fv+kPq+2tYzyLelovRR6nxd08M7L9gXHX1/YDXD3Sx
RrXU+L1HwzqkmGvUeJradJMm74ol0uMDvVr7hhbh8Z+U/hiQVsyq8wI13qbR
0fLOP9sniv5Z7jris+OvRCpr2XX4ky3q+2b71pnGLb+lvlc2b0HopfOLCr5P
dmZkl+4Vz6rxOYe+6Fo3yCORjpRrcfF3mqfID38kvy+dql4K1NHkY5l79ixX
3yPD+J9KG2Ux/oWe6u+JW/65qXHuPDimo+dzXXqN61SswHtg67ufu6gfq77/
lbq2StXWxSuS75ZH21Z1KCvyd8wwtaoTVvA9ryUzmtvVaIr87tR+95TM2rZ6
6nA+5MP2Ye4iP/j12xXnUOiJnhwXrdxx74gab/Pok8avf7wr+J6X8ZQKS8/P
1lOn/yPru+O5/r7Hrey993i97Pl62ft5bCFRaREiSkZSKmUkSkmSUZHdoGFk
lD1bRvaIUEk2hUIhv9fn9/68rsf7833+dx7n3Pu849x7z7j3HCGX7PAHW/m8
yOvJu/GbjEKzMRSxYM9rygkI/097VEFy83CWlPhWvM7e3lyxs4OmaLyoMkxD
PPS2/A3Rx3j3E6234nm2Nqq/TY01Bf2U8sfR3Gz/E3+TAdKuPpdsoSWX5wTj
mjii4mMztL8VP33IdjPFFMycrcRWhMVQ+dmz81ZiEf83n1bCvGfzUcwM7lrz
V57P24rn2U4Xx7Tu+3/jdx6lue9UgTND8tDbD8zpxp2mQDFs+IyJdite57OQ
i++mnqn8uzxpPbQ/5r/39qYZCGsNfFF7soDyc6H7YykOTbbmFvCT8Vv6Abet
+Jzk/r6PL531s7BA/Z0s2vUl4ZY5UO1gXF+aFEP0Y1Ic7BOf/28+rdREX2t/
CQuoavzw7Sml5P+Jrxl7eq9ec4YF9DT9eiTuvxU/k/zed5U3/1eGjzlYsgzK
YovK/44fSlrffQNn36R7bMWrevl9pDz7xVZ8BfdNET7FKEsw7Xl8qdmL47/9
2o7651+Vnp8yvRV/wVRBT2/62lb8he1JxnV0+y3hblidQz7VVrzKSpOE9VbA
o/rI6/fbxZIpgXVLaMWy1o5iW/ErD7/eCDg5+n/jVT5+1Mz7Ipf0/6LXa/gz
W/EnRekM3/akLqJ4XpP7x7NNpwmwTZFyqFOIHp6qxHO9niFAQdPGyp/PVLD/
a3bEVbMfmJ/dyZjPlVvxIYPLqAxcWSxh/3mq3JURIogcp3io0LeMJXz0UcaT
zqOqbe4ZxRtLGA1PevDvOQIY61wwLZD8iv0epw+7TIKFK2ISG7iXsBqGSyMR
btyws6qbzWuRB+Ij4td3F7CAX//mVM9THAxk3D32s0YC8G1XccJxONAo7+nJ
Fp/DxneGTJgGywPT53ajkHcTmMIcc2M0tSJMS/j6jOWJQK+N60RrtjzsecS4
RyWXAFLzVjoR9nIwZ14pDkw08PzehJmiEQFiBQ9k2zEzQ/qliPCqLwRwozg+
LirNBJtvL7JP/idut7Zma9spSajqqqpM0yeAvcyerC81/MCgSxh5Y6cOHPwS
F2X2i8C9a3/437iqw9msm6dMnwpDQeN6aLycBmgP+QTSaCuCmM27PY5VapAv
EfItIUwSWgNHZfvttID35IjapXRpeH1nToN1QQv+RrIOn+8lgtn5FjYjTA9c
LSqdIp/PYWICnjV4aQxeW3vK7fBdxIIrDWiqKwzh9sueFfbbwiA95bLxIc4Q
xF8feu22Jg5ZdKVn75HwjenGHd6P8MBvzLRnbcgQYpyKdlpZS4Pd4rZXzcuG
INUuK149JQtP0tR3FtBhUKn8HvzOykKgQP+7a0wAp2690N15UQFYb1QNZ7Ng
0O1ZnsqkpQAvOPApoh8wUE6rwdryKMFW/2DIp4NG8Lzt6feuQGootNNTNJQ1
gvoZTZ4kGwnYOH3esNfZCH7aFfxOPskEf1+lN5TsMwEPg9ptqSACHrp89HOk
/f+L7bFdP88okPAiAfc4TeBidGf9Hh9loPGRfyLNYgLW7r6OTgdnMXPflELg
I+0/qx9jF24zgX+RdG3IkClwNo+LnrjLCr5pXwXfJJrCuXp3m6kQEehmNsg9
+NMUdhZffaAqLAqcfOpD0S2msJvBPafSUhqs1+yDmHtNgf/VAlXi40nstv3b
8uowc7ghPZMbNi0Myi8vF/b8NQezyMPnrdLw0CUw1FoWYw60qRHsQeYK4Jo/
l6sTYQ40POevqC5TQo7K/ajjNy2BvpCj6JQPJ+yqXezeN2gJn7iyQvic8BBs
ut+2f5G0f7TkDCX1yYJQdOlZoyOWUKpyd/GhPQHMIoRT/U5ZQtETT39ubgJw
OeXzXtqwhNy/6sMFjdzwkCKmpOoBC1y8a0T1KJsW2nZPnRbzF4MQr99JufK0
wMAwKtBXKw5hAvzyLkfZgO2G54tHe0RgNN7keQQjDlzoXDaKWoUhU24pRnFW
DrQeaSaHVIiA3L6h38wtcuDkrTvkcF8CaMObMn4eeocZxAcFBQZLA7AtEXVJ
8mRDg3Xsk3dSsLbPeq7FnBc8vYVwVVnSsPQQXxB1URBwHZGvOi5Lg1bOYmTb
bwHwCmcvpb5Pksu4lgIiR0UhXzhg182zUnCd/2f71XAZGF8U+7xwQhqEUp/d
/n5ABpQpa783essCxc+CWxuVJD3R0eK+XrQUVDxNy71A/wdT7Ffm5sWUYckr
PU/2GC24BNvI3P6gBHsYE8Y93rOBOI3rD3tdJSg1jMBC7uFg38prczVjZfiT
tGmzQtpHzrl37P16i8RX9X6HvXok4fRMJO3qdiU4t87wlEGdA1jlap9weKlC
cu0+yZsPeYDnbZHmnRRVUM+ftbo3yw0nJSr1BzzUQM/9C1PKcUGYinTaCftV
IZ11+4cNMTFoCsh8zsikCv0mr0OnreXhyOON46efqIJcK38UraE8mAtQ+PZN
qoJxy7bKa5GKIBibuzGjpApvUp1Tju0XB213lZtjPzRgKeP+bGc8DsZ3PIrK
0tEEud+WLu2eOEhmK61hz9UEZq3Wb4WrkqRpKchcIOl3D3/soGPZKwMJRzRi
TxRpQNC69EPcERVwYyEMjFTrwPfH13luWanApZLHb98p68JLcQPxyiECUD4Q
C1X30gG/jgCl9moCFEnTdveU6sL1dTqbwXvd2NesBks5HwPouyUh8Wl5AFPg
GU76rmsAE9HGe6+tiQLvuy7NpNz/5M8WZM8WwsF00A/dJ2X6cGjbOyV8sSTE
tSXVTtXqAy753LJBqxz0O2c8Xi8gwWb5oso2imCkoscZflsf7vGVM72Uq8cy
MyUnfxkB5Cjb97etrWJWH1XvO5wG4H2YdoVGbwOLaxh56acJkDjAUVNIKwhH
vjz3o1QmyfuXI3PSr4sBu3Bi4hmS/A5RtGHxLlJAnNrHZHMM4GRFViSLxzL2
WPO33SK1MQwnN151p6KDSxv4rLcWxjDv+1pkpowOFPOscn+pGcPnRseNcQVB
MLJfsh5gNgZCEd/SZQpxaMMieA4bGUM2t0lx2jFFuCpkt2C5YAQvUytkysVU
4AyPxN9BRmPgdRx+cHScAOP78m6dFTGGI5NlnIEkfqacnz+cWm4MF6Xo/6aF
dmP8Xo9n+oRN4f6332Yyc9tg/96yzObPJrCidTjr+X5BiCqvfd04ZALBkhuD
t0NloJhwLZCHJA+/NpjPqX8nD+H52Y7fm01gFcdyPaiuBNsIP2B9LdoMen3T
Vwm83dgVC69Hu6rMobrsxGl8IQ1QMVc//BZgBoZewef1Utnh0VG9R4ZTZjC0
WZqp4ysI6cff72PIMwNWEbbGuA1JaKlM7tAsMwO6S8HZtU6KMBy6337PBTOI
O2gcTOuuAkI7qhY/t5jBOnXDNmMOFWhxpQieUDSHz/Oc5QKjK9gdx5f1py5a
wCu9mu6C+g3Mb1Hd0W6nBRDtL01ZOrPDgfEXQe7RFoD5J7Q65XKA3ptm3+0O
FjDxtAzPfUkQSoLPxnmHWMAZrZoyVlkchHnsa3y2ywLiiuu1qgXkYZllKuDK
BQsQ1VS+7+Vdi5HfcwXTrDNcle9C+eXJ8jqnk32T2SGA4WIPQvvaVj5fMl7M
bfWrbtJWPt7Q0eN/iHHmCF56eflw7KQFuCjM1vz154bki8pXDTh4kHyol9K0
o+QNJ3BOOWbdyyDft+IAHavc7DYTVuBIcmvFBUggfYFx9xjXKS5xeFVMTZgn
weR3RacN1VgXzDgh5YbLxmCbFPAT+Xp29UnAH+WT4o+PSsD3DxZto/MSiP7n
gd5vCRqLmOWl10r0yrKg2n0yjyl7CY2H7SkRGnuHb5jEU1klqRJFsLMOHo+x
JOlrDSUPKdRlQVTGs//VJVH0Hs4+bLU05CkB9CkaxgfrZEExZbmrqHjrPbMJ
gedo8NUp7Ov+QbfC7aqQQxiRdjlUj434rz6qDyDAoz/5Ys/P0ICwU6NjCT0B
yddEEftMu0UVSInMNiP82Ybefyur0bp1YhQwetf5zmFJVQh9vuq6/IcFDHVZ
ic+vqqDxkhkxf792ShmOT35j2/6ddSt+lZCakDYVI1wVj7559xcROtQKotoj
JKHzXd6007oKkr+L77x+IBKhArvZk1kulkqi8pZLI9jT29OYCsPZu75LGvA8
KDPhW+E7TMad+nCNkjqc+utPxTxCASyXf1+9N6cBqvdTPpX+ZYSvtN4uNz5p
QByb1x7+CE7Q+Wb6oO6dBlT6YM/XLwgAcUU6rPCCGrLfShzjFplXVwOVN2ZM
PXyC/9U/VYEYWP3pbBAf+O05nfk0VwO6F3IaDxuT9MG7RevbddXAaPxY2kya
KKI/XTEp/PiwMFio092qDtUAnms50yWYIgg8y9E4e0cN3Wf7wRIW9N5TDZ42
He729FJE5flsvwridaewXUZmtwOP6oDL5vuPaXSvsQev544VPtWCZ2lV94pH
KaCzwt/3UrgOMPdlDCe7M0Gi7pVbI4k6sPpouWh4ghN+LvVm0GTpgE57TkUF
Jz/kYG6q7g91wOtRYP3FGEmwUe1z6FbWQuN/59e9k6miWnA105Q4PSiJ4uMd
x+rWzy1JwwmVPo4ni5ooHuQ59VqjLgfS+ZehUPpMSgbRV6XFEAiL3zDZlgXV
3kJ9aB25GsB+6Tl2g/N37ZvfuvCl0mYg148C3rnLl1+c0Qd5x+RT93cxwWJn
+ZyJhAFwcUQxxnBxge793Zb37Q2g6tLwJvEbESpvng0sCNUFGrqOPXZqm5ho
Vp/UtABAXlM6K+U3Rvj5t+9btTlAi2NVsTup/LapevXJkwC7M/+GasZKgELN
BMeRagNY4+k/vV4igd67KwvofItQkQTBp4/ssC4DUMrXCJtzlET43yLDYTWH
5ICWWonv8ScDqKg8cMIlUg7hAx1j2az8ZYEyY/csJzeAYCuX9e9JBWCjrDIb
6jWAGufjFV9oFRH9KIcS9WjWIuaVyWD0qgW27JVaqjj95wATuzn6PnasYOT3
t/WODFdtlBlByFvdQP6HEcxQPHPlX+SEkrtqViEqxmAed13nuLkovNJveC3S
uHV/leFnpcatWADRSk6x9BVR9J4XV6FP8A7HQ6GT5s5LVMYgn/a8VqJyEgsp
bZxs6iKdV/fS7oW+oQZmr9i09FRjtD+UHBVeG4ginZ+XDL6MvaNF8RllfQqL
P5aR+C3UR7xhzAScgubF2h+KQldvSdfhPGPUHgGuTVw7qb59tD/YigbEUPnb
2Yd18ifEgb7ckPL8GxO4EqX4seeFMszYaw8kPdrKP5n5OdG72t8YjOKCRjmX
lFH5KzU7OlT9OSHPxIf1WaIZdLCYmNxvXML+Wuuv7AdzKOJRObUv7j1GjodN
68NBL31oE1N4Zc8vamwBV9XMb66zk/avF4fK8CrmaD+z9XY7VyliDuesvLBi
cU7oX00X1iTRu7F83KgqWET5zfu5hxNK/cl5n7ejeHIMaem+Ms2WMK7qHLDO
SUB4mVcvmlWTKNF9q6dJzYGeXpSQsneg8HALNfRbFFQGmFLCavIq4/MzdPBG
e27lYAsDorfWeyscucKO4N4nPm8GmxjgYhxnVffaOnb74/vuPBoBhB9Wsdiu
vcoPcn868QY+VLB3Bs91k0IE4S1ZDt+iviCO4DGvVN/9y8IQPzIidJiJCn4E
NFjjhoVBq8jsm7ATA6jYP6O5d1QS0dOe9R4I85CEA4xDZa90KSD6StVy1wFp
hKe4/+pK43ZZBMv4t0w175GG7dPFY1k3qKGcOcjg905p8HPrt9kXQQdeR1p6
RnGKiP5bz8XEXAlFMLumrPhycxPj/Tql5MCsjPAFWfvnvi+pIJj1hs9hDQZl
sHrI9yU8gBrmDBhdKWiVQVWIXjQ2hg468M4TIsNb8ejHPI5qGq2S8zXzwN1d
vFQ7p2YxvO74U8bd/JAgrfWo/tgMdrfzSc0FVUEooF1eNRCnQP7Vxee1ChF+
9AhuGFDyO/V3E4tV/CXbocULf/ZFyasG8SN80FHiMU0LfpjHmleZk/ihgti8
u1CdH2a135w7mi4Av8Rb+tfChBF9sArFeBEmjmDHsoGXaeeEQbpRKDlpgYQf
+/phSkMS4bOvY6JDsqT5+SE86vWSD37+qZqtUJRG+NXlTJYf4rII/lNTxFQh
KQ3Kxdcl52j4YNZq9fY6ozTEd8ovckYLwceMW1bqVIqIfrx6TX9kTQH+3NtT
SiPEBy/WhBzCvishvBqhEVc8qILg1KnbDwOmlGBl6P6rRXs+SIj6s0NwSAkC
S1WnCKuCcGL1TKdp71a+w2IjHme1biI083gIBbvwwZNGp5kxLS7kD86u9Ccc
mecE+4BE3ihpPAhR2cq13iLJY87hNVr3JcFOp97mjxMfotecFcjVChJC8Jcn
ZuUP7fjAZ2lW5iE/Di4mhWz/2IFH+J8cPwxZO6UQbN/dflWkAg9PNdfLDHjw
EKHaWN2Xioc23b8vdS5LwvojRp7RWgVEb+WVw//uiQLUTshL7UrAA9XzM970
pUoIX8zSMng9RwXBctsv1lx6rgSrazFy8qo4MDVqEo1t2MrHuJ7UGn2zmgiz
llFS12zw8Hmn20d9O/J9BTmYplg20H1GAY/qH8YThuXgGj2jqyErI8IfDjgQ
aneQA8HvXtD9xRYZYPTCjXJDOTnY9r4pwRMngfDNr7FjE+pb+VY4Mn6aPqSX
AMFmnaeEr3KQvLLSWOYgh/BZPH0LPHpyMG70WK99nzxcOSgqv3xAAeG5F4lV
go5KCHbYtYNi0loBaHSX3g50yUHM9Jz3pqgC8A8K2CrrK4JuS0rM9EMior8C
78M/pZP6T4PnfH5GHuIDNVpWUojAQdlPb0VUgIOjgdcStMn5rgnAobTnGk8T
JzxZTvGbSyOA9NyNcPxjPoTXj+cW4SHfh/hPHqufL3NbgvlAbpXF78ZOAuRf
eivPmiaN8I8/bcty9pMGxQOJH51HCLBZMfh63VEa3C/hpz7JEuG9oc0d5Zey
iP7KkQfLku/lEQyfla5Cjiws91vQqrkRQNeLwSvxAgHh+/e4vCg7QYAD3ISz
o/0EILzF8A9DiQg/+PH6jgvniTA46+Jw/RgBcgdilh8dI0KAVJdh0QsifMoT
OpetL4H8uzJnmK+zsktA5rbNskBxddA36lRyuoBH+MUm/GuGEikEj0uMMM56
46E1tULrc48avNCtDDdy3Xpvt13AbT5FSxlO1Z29K3hVHdy5FLwlMALCM/k5
fsyxJiL4vW6QzmUtAryptbOiYFaHFeZqzyciBDCZXT4naKsBGaNVL07IySH/
rkSqUL7hkixcMf3yy+6HFox9C260bJSFAkOQkLmmDR4KvpHv85QQfU5w1tjj
byoIxrYJO8fkKEGea+QZ9z1aIFqjx2+hxvfveL2SfPAq2d5fx8MQ8nK/WvYY
KiP8daeVaC5WZdhVnCnrRIdBwqG7im87laAjf9PAvRUDGeqLp+IOEhD95s7C
uEFL0rxYWD+hXDKEZa2j0nnyBAgaMe/q/IxBX+NcTNRNIqLXLrxY8S6SNF/S
9ry2bYZQfkrJX/kIEejaq2glaLf8fW97wveNaxoh+J2LCnXBra18M/vL0tx2
cmzFr7A6lTmTenIrv8zam7EaymFjGLz92Cyqnpx/wxiqPcQXJtJlQfhBhqrc
6FZ9OncvBmqlm0LpYcGvQvIE5F9SOljNmYgjwNMP1VGvM0whjGH7j3bSeiTj
T+vOunfeIoLR7Ryqgh5T2NetYiztQ9qv5PC5IXvNkD/tZ4PsrYGr5ggu+3GS
OM+ylc8gWS7SNNrRHMGX+d9OPxa0hIj9XpO0I0TYLy65XUCfEi6nZYq+JZ3X
Nu4XMrUDqUCSmcbgoO0HTIrTXy+f1hIu6Ve+/F5OCV+30Yu+j5rCDGkSg8N+
kf63KObGVVeKzVadCBGj5wDlFzVPXCO/YY5FR2+PD7LDk675gZ8atOCA2/aJ
nWorX3D2d9cySm4BCEnBz7WYDWFcvK75RUwCwCnfdiRS8heGww2HLrVzg8bZ
ReViPSbQdHj0o/EPN5hwpn5NukEBBXY3ghxZRUCBpUjluugXTHtf80Z3uDhc
ogmMeu7Vhb2tYjm+dlwcxrZTNepaMED2bjOFhoCtfMQ18SHcgb6SsE3HjdU0
oQmLo+MK7D0mCZkd2ZMSv1cx/lb+lRIPHNQ3hEZpyNIDFaWbprovDq5n+cpc
pqWGeUbbJB9nafDJjEunrRnH5gN0fdJsZYHPI0T4zd3X2Ie8MV49A1nIuvkh
NfEsI9i9rpQ6prWV7/igaD1tvbQivNzIfxb/5S0m9CH7ZSZeEUTWCuXS7X5j
My/GdC+ryMPIiKN4kgMd0ESc4JRUkwfmqJUeznxqiDeanNzNpgwnaUrqfEq/
YcwJS4VfllXgcvH7hOyKdkzDJCAlaFYFDg2aU/7FMcIzg+O2Gu9/YL4elBMO
E+yQgAUvrbn8wAS9RGeekvT2b74UlApdFED9nPaJljY7ZDCmtnRrMEC/1u+8
4lUWGPshvGekgg4sq5oXazoE4KSi/Jk6h638zI8nvO4G1bPB3giu4Te7hEBV
4+x1DhV2CKxT1Wy/wgcttc+j7z7nB/Gvus4johxgNHZmRSqbH5zblSS4fTkh
uoqv7USjMBxPWtAq0mGDd9Xh1MmO4qBENdqIN2UHyxNHsyMkxSEq9NeSqYcA
0OJ+CRzT38r/HIOVJtrvlAR6Y3n5Q+fZoHWJ2NxpKAnd90X2UadzQUBhH18i
Kw5uiL23sjYShuc7WXX2aeDg3JMBdZbbvBD88PgfGyNpYNq25CwQxg7mFKwT
GZqy8MrvyP0jy6zQ+Tv6+iq9LORlPspKdhMEmYidXq85t/JLr9xU7HrApQh9
H9qlysZY4U1/fMA4SR9lM2tjLd7ggpTm1H3Wv+VAqPF9JUFCCFxlLynpMclD
9suKM4HGfHCrLmny3LoSRGdMh3DcYYdV/weXByZUQMTTsHpVnQ2yPGvj8C0q
kCeSDP5ZgpDfbXXhwwARqluPCcmNssGwYmfnjz4ivH5dsRz2kAuO7c8aPT9I
AKG6tA9BtELQed32l+onAlj+bZuje8oHoVOuKf43BrD1cGcmEy5JkP4gVdhF
WMHsZ5ejv0ZKgscZIYOMwlUs+ohrWOR2PMCZ4+e/PuOCgRadjTA2MZDH+nV0
I7kgKpp9c/8RcegTEZeu7uWDd601n46HigLnVcK9dxtC4PvpyPc0dxHANyeu
7REUAukAykbJJjxoyopGCsSKIfkrw5elbXBCFGJSNp6ddpKCaF1FxdPeYiR5
TbzgzH0cNB0xKo7+joeWfrlEDRZxMPK0GaYhwYZen39M8ohD5MSfvPw0KdjR
ccJXtUES6Fp+WZrkyUCJRjc3zSIekgkarp9LZQC7w1DDcgIP4vbyRfYDCkCZ
Q7MvalMUgqnMqkfaFCC/3Ej5XZQ40ERHsHt0KEEFFsS4d0YEGjMvcL+sVIHd
Q/rsXR9EIZ6C709gogpp/Mu1jw3j4Y/0l+RPLVvxgQvaGVx6m4gQGFrcgpsV
hU9yGaqJb4hwQsRHyidVHCRd+z/zVxOAZXEBx2wtBc+rLvrrNBOAIVpcm9YC
B+9WNGQ0N6iALsWFiSZKGmidxje7XamAwlzNXuC8DNyIgPv6V5jAnDcsKLxA
Glqsug7Y1LPDe1zu8oN+eRi7/0hc3EEC2p6A4QEpGeA9UKsyMoeD+JqsyJpE
BViU6Dk3zCgFs/M17/aZKEApMZ3fS1QK9n+Mt9O/LA8DCRezA2PkQDqlxTL4
qxT40CtX4zzlIMo1k+eNmCx0FLUQboYoQHTO8bCQZmm4oLDtg9R1kvwtxVkY
HS4FcfmXb2mpKYF12MYr9WgFWE3TitA8sBWfZpuD4Hy0hgq8uvF1feWOAuAb
nikd2q4CMknMVq5EedB6ZLxDIZ8IeY+vRexRl4HbM+oYPwk+9/bOhVVtGRid
sqTDneeG0zuw9z3FisB9pEgjsZALnN1cNnhnlGEmJPYvzR5+yE5Xa6kmyVUe
d89e2G4jBAxn8271KhBBUfD5jsY7YpDhKsz6YD8RdNo3zIt+kPite49abxcB
vu/BHvvMSkNRRflnTFkJGHoKAyqqpAHS31iJ0qjA05iF+u+zshD6MnZn/pIS
FPNRaHkkykNmrKPVHzMibF4PuyP/aStfu2Fuvv38Y0Ww3k2nROFABIZzDCdo
XynCEU7L9J9VBBi7pvXqUiwBXFIdkv0ClAD8f2a0RhDAHXendJpeBfrO/Rp6
doMIScTn3CceK0HUBaq+t0USMKfmGZZnrgpdBewPfYMl4M6ODP3eOVVYUaJ6
6t2OB9+Hxydmk1ShIddOcsVZCrx9miwH6tRBvavlNPG2DEmfOUg12a4OVAXa
Z2aLZECpwtbb8rg66M1cTpDbTQD5Gnd4cFMV2oIy5ofVSfz74aRBMpUGrGh7
/fp5Tw4++HJ6ciVoQIrKzZYn9nKwx879td0TTbDNLtexy1UAcaPGp7w7NKHV
6uqeK48UQGaFrnx6jybM0ltPUy4qwXVeV5PHixqwrUZosj1PBZQGdINYHbXh
0/HmaeqfBKCOpaoX2asNB0Zq38ivE0A19ny424oWJPboDH+dE4Mey5K1gm49
GK2ueSvAJg5788uPWT3WA1rZyCeD6Tj45nn5cU6pHiR9z6BJIu0jsWGl/Pue
6cFrM0q1zyR+Z3O6EretXQ/2382d2E6UgnMt8ct/HuqRxoGLat8NGeCZeIl/
Q6EPr8+lMcW9lIFzfW7iNkl6cCbjyAT9ohwIW5xR5wd9WKpw5dMknc+n8nqp
cy/qwbsfJg4J7YrofuLIy0ZpbTtFwLsasAVe1YeosPtrDU8UIW7HQlC5nR6s
vl06ynpEAN4Mi9s0teiD8ISms20gP5jHN/BKBBvAOOa/qveBB2qod4m9M8Ag
5Oo3BsZHyrAzKJ7Wf0gfmuqnHSaPK0PbS39D6VoD2NflrP6OpP8MhBIF3DQN
QPIRdS7+JAEMqgtvvUo2gBP286c+PSLC9M4nxwfdDSApYteP8pB27OeD53Q/
I4yAeDWlNYi3D/uh0aV866QRBMCtwcepPFAVd6Pwe6gRZERtyNd85QExe/l0
Oh8j2DRVGOt8pgjXFP0Patw2gqHd/czxA4pQejf5tIyjERwKuluiGqECGdMz
Ioe8jeAozpLZiIMI/oOst46dNoKO8D/lOO/vmBK7XsrSbmPA1phDSnp4QLG7
LHRJxQR2658d4j4jBwK9vW5e9MYQMNYxPS0tB4yr0fWMTsbQxzUqOh1FBTn+
XFynlU1BZPOt0kAJDzzQv+tEP28KcUY1gTa5imBpnmSarWAG5VO6JvWk9Xl+
To6lasEUFGstezX2EWAjp7XVhsYUzpzw+HujnQidrc7WHydMoLj6PaVzDREY
n+0nHdOmSD9IlA3/K/jRDMYqIylKQpaxqvjz9Zky5uASPDJOb0oDKsGQZ3PB
DM7KHSw8KE0JajlsHzUrzAAXyMlw4S8tbI4YOP2qNoe8UtZ8gxs8kOLKa+7z
2BwmvRLjMr4R4ESb0pmJX+bgoB8rdXCDpB/tPEOnWmIOd+j9d9dKs0AIpczj
tHYL2HW/dyCknx+e7f25OfLeAt0fXFkTepK0aQFKosstKR4SEHCaJVej0ALS
qbLjsz6R36MOYeu/lU8XkWDbDaHjyrFlWHkt3uQcCeaeXJt9mTiFdXS8D+ne
wwCabF3qf8KZkL7xjVmmu4GC1C+rOWurJAZk7ys2i5n5GM8O4ngP7hNnOUAh
3zGCcJkddA5FzB7x4ATnflpTBV7y/X0KijzvB5ETTeT4Hsxwnf7Q7naSfE7G
xyR8mbu8FwdLVAOV3XLscOqX5S0WUxzQ9/50frDEBTpdFEur0lvvDhiCcJdp
8fIA+36ucGWzQ0/UripbQXnwt5Uz0TTjgrG1ArGucQJEVDYdaUxkBw/DPvXA
MQJ0viv48nAbF0hrOdErzm5gTvKWD3CzQkDR63C6X2wDU1vKYXJ4IwK6Cpz0
qaybKJ8VOX7WwXzTMuE1YbAs0DnOHsO2FR/FOPZlMJ8wyNzLOXGQXhgYX14d
2mlNtmcLwAstLCb4qxiIF2vkvz0hBuytYMtRJwaBQ059n9LEQdpkW+teZhyq
b55OsebojAyscWvH6niKgf+jffNei3II/2NCXk+2jwA2buaW7PMi0Fo5qZP9
ngAy70aPjDlJQARrr+j8zi7s3/FWejDvfYc3PlBKAdPi1Z06ztsgznzajcUL
B3vcaTiucSwj+rwUyxTWrxzIH3qqQ/6RShkvqLJkDSn1SyJ90003OllwFgcU
0+W7aP/yonx0Q23HS5fqBP8nXowQmHoT5o3NJIHovdB5Y0wU4XdtJP/qPC8F
1iF4Jc7z0nDKJW9G8Y0crNV61/7ZhgPrcvwFzkQZRE+zjVt0PkYJUn6znu4j
nXumjFcYs7KU0P9pYuWUj51UAdGfPdK7WGXgmphuZaePCqxa2bLjfUhy4tJ5
xoiqrXiD5HhYOyKJxi+X5MBsp/xZ881hjOw/3d7rllhbsIFpcXeP68orwh+t
XPzK/OY//osmeajVGHp8TJ8eVEW+nQy6roD4Je1LcdfjBUW0noL4uP0/hchB
/+kuydz39Cg+JO9wUvbwbh6Y8ZI4M8Qsj+L34UT1dfeS9BQWxYTWHVJkfwW5
Pna4b8T8+eAvefAb3vvhYR9pvd1Sc5RRlIOqG8X9v0rEQejrHyuaG4rw0Pem
aEGROGgZCT/9nKYIJw+IHL8+J47+/889Yxx8133WZ7eqBDKyFd1B5jIQqWzV
p+QsB1qVLNFHJyXR/93Zdtuo0SrBBVyHqxefMsiXU4y25f7COpqbp+8bk9+z
/MYoY62pdX2UkT3GQ3tNpbJVFQbXZ9iWOb5hZH8tmT8tagJCboWrgKFTr6BL
6wbCk/M93rxcTVSpJYCD94kYOU965O+9YJVze7abA0ZD6Km7qogQcPuN4Ykw
TpSPkCPu84uOO7zg8SfNMz+IiMZ3keFKo5ujKuLnyJibTfOvCPDceiBmnsTP
5PJ9j233NzQL/s97HCGgnD8g75ZABM5DMi62xjggVFXkuvoRgJiwKboIYoj+
ssbEyWRHWbjSpzxs2kAEPU0W5r/bZaE48EsfI4sqePSkqMtflUX/I+eHOBEi
1//QRRWexS6W4hMUUX1Vv3ZbpZquYEVD4O4trI7Gm03i4g/BdDU03h/2GLdw
B2rCkV/POqy0xzGyfzkvs+F+4FT//7zn6cHKzV5N2bSqwdOys2+TM7fBgfwO
Sz8qdcTPuKw+dmEHNXQ+/r1qfaTxtCYMJ4zTOt/bRPV7h8VWJkSywYlV/9Id
n9QQv9pG7D6lOqeK1oMd/rFLvLsmjJT+DR4ZZdjylx9fYj/2iBuWWgfsrhep
kc7Tt2KckxwIPx6id3+hhRfBZH/hlHm463t+dZCfews70oUQ/j2fVGokaZ/t
7KR1v2ylAQlME/I1k+Ion9jdaxpP3KnwsFTymTGASQOth0DzBWYlRs2t+8rZ
HGKL+urQuv/UjmQVPCqvdHj6TJWM1L/fF2lKQc7vzrehhhrw5lFPGd1fkjxz
6TnmQ6cOAY0UST+9ZBB9CA9vcLIEEfrGbr08wKoJSwJadg/DVzCaJCuNHeVa
IFcge8r3+h+MbK8lz3edqkts+kEteLLKU/5z7yhGztfhdW3FUMGlD9GT5zeI
bXv/Y0styHw97GQtTAsCEXPeT2q1wN2yQe7WLTpkDybP97OCWaNZZy00350P
/Nbaf+rAnsP6bH7mm+h/idRlbmUEdnDVE5a1qNECZpdzE8QBdvh3e9nB3vXB
5PVdWmj+jcuO/9mU1IWfcdPqzecYUb6RKoNVuYMWPFD5pYU2uUQLrVediDc6
HkTyeyhO6Au5ZPjaWhe+/g2/v/cGJypPzd4WqWEvCAq2Q6+YsrXQer1htGE4
9lMTrfcpRx7hek9dsK5bv8/2hg+Vr2X/st1zhxisfTH6QXFFC91DEvsgeffK
bU1I6E/W2UUUgWuMq1L6WTqgLVKdHyyCA+rI6tJ2Fy24PXXwZbCEBFB4WYzz
J+qAod9mgP59PDyu/CwnEaIDir4Gz3bvV4ISJ/6jFwu0gWvK6piQkBK8ObiQ
deXhVr5mOdWsJ9NFWnC3bV/K8/NKKJ8POd7vK7+Q3AwdHTCwiKl7R5Inye+3
CM8WsbN5y5jQ9RKJOmk9xC8xhW2Xact0ET/o3els4DipC0a9Ve9sOGjh3blK
C5ytHhxU8m1/VkWH9BsyP7DFl5unr+qCnzMrrVHlOrp/RqTyUiMcIslt68wV
J0/ogY3Yx3pNOw5Unjz/4y/95oxV9dD8m+UoF67cMYCOA+1GVAqM6H6HJC2z
pGYuSV4+QJ8sFa0Hi3aFHi9yeOHf78t44P65Cz533fUQPzznyq3m3DQAt0Gj
z1IDnKi+I72E1w48Yih+2VNT2c9uKjgE96Vgqx/fSm7l0/PciPfuk0OwqJfv
+3EeFfh1s2b1oCBJ/9tZwOa1QxHh2VOElTYrCDCak2r3oEcXHlm+oDv59yd2
ZTzjvrqf4db+zA7MwgMGUFg3bfpH/AtGUWT5mOMDhubjrruruawgQBFXmGHm
1xmMnG/5QGThAlvqNnBn2GHz4uVWPNfXSfWpL20N4YAWTvDcXnZgi7VyZN8w
BBYPO6z+GAfyn5DHX6Bnd87pVyQYP3TK/Sf9v/M5xnPD/BCH/AQVwESMR/cT
kn5G/j95fLuuVu5jrQa4ajH4PaadE5X3aBsUvbZbCJ4eUX9LdR4D0WB7HoMD
guh9G3n9TRfQPMYXY+i9S0Zz3e5P7/7T3qC6igdC6H/UoUMemmoSqP3kfCWl
3R41b3gMYVpTglXXXRwKPMOYvAsxtD43U2kcWXgB6Udn7+446CSPgVXgQfzl
x+Ko/r8JUWYvp/D/fl83hwe5sUbue7sNIYyxiymWBw8Bg6Ml1mMY9Gy8oE70
x6Py5Hx8grrDtB0RhvArscThtqw0wpPjky+ylx0wyTKEFydojTOZZNF4kfPZ
BSnSx9dnGwLv/aXPrFaTWCwxIE9e3AjYRj8M93XS/Oc+PP0YpRGab93hJ5qX
qgAu1gXJdy+sY4GW77LmCo3Ae19ywULqb+zf7+l+Yzu8Vi2kBo2gV7vmYS9J
P/3/1XgZQd1ho28UsiR+aNU/F61lBOENetE0Uhzo/RyZX1pwjfEiXEaIP9r6
tunKvTFC/NBs40ph5WUM1La1jA2nONF9ojneoLXTBfygtmLK7XkPIFWoXCDX
lg90duH3nttmBMEXZp++ixOB4KzTMzoURnDSr+ciV+9W/i/eQZHqMputfF/k
+T96zqehfbcR0GWy3hcizefBELHjXzq34tV737h3tETDGJbz2dWEDCVQ+eCS
wZgv+ZIw5HyW6SWjETqfc2+ZChy9CfDb5l4Gtwgetf93b1+fqJ8MXLcX6ZiX
M0L52r2v71x93AIQ/uHOsFiQImrvS8fN6lgDFQST92cHffGRaH8jSO5klrFe
ISA8Ob/5+Z+BA3WJRpDhfcWpbrP3n/Oa1xTibp5TuXfoA8rPSN4fApu+XTNs
NoYLQiNnwrvYgIrxtnPr6Fb+sg91f6MYSo2Bf3ORvxYY4Px+9Vn2OBPEP1+q
3facaDRB89lyg/doyAUT0K8LO93UzIPuCydJnZhNf/dffiC1R9Iq9KhcKz98
xaWrXPIzhsqFjtvHHPiAbvAj16+Orfyvn0SbphT+GsOiVRPT9U4hSM3Yo8Z0
wQStf4NHwh3Zz01go9czyWZQGP0vK5uf95shDpi19+/MmzFG8tfL4LMJjQ+M
gU6L6tXpQ+KoPUPrUStTJL1nlyijxq00E2h8oFlfdUAB1bdb0j/hZxkBEnQr
GKYbjCGMfkHthcgKlml0qaSw3hSuHA9xGE9bx8j+WPJ6yd/cf5c/xxR+iJg2
5zp/wUY0Kr/hrcxgcEXWiepMF/b/yXzN0HzUxls54L3MINN88svyd1YQNVE3
L40xRfNhmnhq+KStKST366WdU6SH2im9O4ZyZtBsJjPB9p0GvT8kz88ugysZ
spgZLB+7zz2qxfjP+7Y1UzRfpqryX/pI5Z1DrSq6T/EgfMx4wC+LTvZ/xvmz
GZz7/kb9fi8/PFisYl7QNQXnMNePU9v54Knl0rDQbVNw9VpeJa6KgqIVzT2J
BFO0fpRNX3nZGpkCywFPJ98/QvBx8OXk4V1maP48WB6oll83g76PAY8+uoqg
/wdPrFuVeCn+z3vMeaxLlYLrlMfW+0Pzg5yte2fMoYfehnn4Pi2Q7xPOrPGX
eMUxAuVG3nbWc+aovy9Gt1HW9pnDaxbbHS3L3Ij+cHir8htS/17h2F5J0JhD
h7r97XoNPqARvZMH+81hlTEn6OZ2MeDSyHlwhVwfqX9OuLr6NRNzYJcxDvmM
E4bI6I9U8XIWqH9GAbfKsCMWgDW6cuS1EdD7ykEH3/g2z3XsrrZlll+TJVBI
qaR09XBAlVQDNdWCJSzo1Zj1muFBz44juXjDEgLutvaXTW7lC6wfzvpz4BMR
SkaORO69/B3jObznSggjJbKHeXofLZ9hIt8voqCYH/OfnOPkgdMhfKdCHfqw
rgN4nWVaHuAXXTg3StILTOHI1OMOYVReNeeDod8lcVQ+4MJe5u3ncODjFzhD
PTqGmfHcrXA5gwOOPQyLddaLWLzRCQLbdmlUPin+0t4hW1lUPt24JZFFTx7e
O/o9c1kax8IyxR8J68pD6gd3xwilBSw2+rZ/JqUyKv95tRmEVlRQebL+yX9a
541mvTjUfTHO2Uf/X/2TNA+Z9IlvQk5MoXgsX7lNdX9v8CH7Fvm967uTHYeS
VSQgOsckJHJWCs3je/qH26dppBE9JH7aJtinhOD2j/5zl4yZkX2HbD9gWExZ
CzwsBbYCnh4DLpwITz5fJKqrS2bHpJG+dyEudFibKAu4CwMH3A7jkT1Mfzut
KC4aj8q/3RaY8OSWAoLJ5/vm7YKMZkZJ0gFjoUjR/Q3FRyHngziWmENHN6mE
5KHR5BT1Qh8V2NmqtCs7Qxjd3/eO3yM6Ik2+b6qI9luVFwObl5kU4E6cyhs3
ZjmEJ8sfO7sCC8VtFMFDvr9x1095VJ/bncOur/gVEL3H0DnaqgQigiftSvVu
xs1h/4oHQlrPvx4eVkx7sRX357SR0VnLeQLkPK/huj5E8T/2ESpY8g9dFLQl
QqEz765sDcZ/xx8hyVuf65YFapRU0XxTXt4n/YVfDeZiuKQEfkoh+46+T667
DEEalV/e5V1i7UJAMDlfedBoR3/SNSIEYmLPjT2I0Nhxx756mQhzxUd31HgS
4X/7Y9RtPxOToAGRx9P4m8KfY2R9ntx+d9X2vmehGmBUPohlszIjfZ3MT9It
KYdO7dGAxaYME8ZxToT/Zz65oMKGs+sBmwYc9av6EFrMh/Dk+dfjvn4j6Ik6
hF88eK3OX3jLfoBj/c3NrIxgcn7nkjJOUI5RB/eHKix36QjIvmE8FCugIkRA
9C6urygySucxsj6I7Jsd/vLSG9po/hQubEY+YdNG/b1n3WX4QkoH9W/0h7/w
bxMd1J/bB0rlkx10UPupLRo+Hd+ng/h3yZj4sTFAF+zCxbOYJ4WRPk3m121U
r6cVzHSQfB6ktavP31sXPJ+mDe3+I47oyevRXylsjU5gK//MzM4bOQVWutDh
LKcTcwaP6MvqjJqT+vH/zl9O4q+itsa8iCZtxF8jI2Oqb+l0oe3Gie06U1Ko
/KlKfjdlTBqVJ8v3lydoU05YaUNYVU/Ay12yiH7lUbede7osotekl19a6J/A
yPogebzDsMzNS2Jb8aop8p8LzAjrwdKFm2esiyn/J942FQTRP3s/EKyPxv/5
joHQ331b+QKuXq54yqZsAJV5zE7vfhD/nU87jwh8dqrUr3gNgHHd5Mzv4k3s
3/oXFVzoz76Xnomh+ist7N448gOq/9JPE6GzbgCt7lX6Ym0iYNEY+vdYpgEc
412fP0IpivTpyZCcyPcnZZF+R2dUVHbnlTzSb0IpPinWCykgPEer9fSIrxLC
N/X5hJu9VEJ4Gee3fz9SExA+e/RusQWOgPBV2nxvGw8TERyZFWuPfWNE8jS5
P4eCKW1aioxQf04m2OwsFDCG71e+8naE8SH9hsy/pslE6mMFAIrfcQVqq/zo
/ynfTqn+KMKj+sn8dEen7nfyMyOgOWS/arpXGuL+8vFWEYwRvzxTDI4QYzKG
2V3end/1/htPnqRPkPkBLpnKVxVtvceTEhZ9dYzCBLU3VaYnWPS1CbxrwT28
cZvvv/ufMWrvRUY3eBRlDLQK2j9KTASQvuJ5uSjwi6gEihdCXj+soYnUhDAT
WKiNYG8dx0NmCu4FC6cp6g9R2kpWn4Uk73YcVLuyqABwL0tiIMIYlD0sKS+K
Km7VH/tp6fIfJVQ/eT86kyxnaLbXBO2/AX7HQk8OmoCFFoWvzi1qJK+rg0N/
lS7X/8T34ALJJzucF46bAf+dXfT3LvGh+5Hk/n64lX/SYDdJHs1Liz3jLYDq
4zO91+ojSZILNjVvvy83Q/0NPpa9sXjPDEzbmbv3jkvD87ow1rlD5PudMmCR
d6uMWdEUetpft3YayqD62Nft6lmrZYHWL3JfxwMz2LvuUKdBIYfaSz5PHQ1v
+/c4mwGv7snSu6Tz5d/6wE8sTrk5l0vHHMqf1vFE7qZA8iN5/VUOajGXC1hA
bvX2JbojnP8T/4MLYvNdZPayW5DkyiMXj+/mQ/E7yOPxg3oP/rqAOTS8LTXc
ffG//lWSvC/tHmTIaicJvHv2TlpJkuVnSciRG1G2XDODN2qpZqvVkoh+V0es
b4uiNOTbz4Y7nbBA/DvHUBj6W9cCWPiWj3j3KEBtmP1uXUpzyBReYHNfVkDl
h32Oe9VMKMG39JXfagEWUOxo3qAloYz6Q+aPN02vQ8+KW6D3QClSZ0605JPw
4S/Nh6T+Gz/msQWszYiYD6QIINgnuGDN5rQEgs+x4Hcsn5cDcb1bpb0LFii+
y5Uwus3g1xZwbHrOsH5IDtEHjV3en3eDAC94G+b1Ri2gx8tk4cF9AsLbr9LG
1oovYmR/9nGVup6s3gXso5HrZ5nX9PA43F7c/90CdmjS4bDCDgZYt9L32DFE
BDp7219/r9DDekXRzBcFPlhjWAkMdzWEtd0nNXNHSPux47ByhtYaRl7v52Wp
SrEGC7hKbfCCIXAGU5bgS5xpswCJusLI/R8nMatt+eINHyxg3N8kijO3C0v4
ccO2md0SavfO3D9L3/RPvlghcnyVVxhRKuaIrZglPFgYmjyO/PuzmLa0/Awj
cRRD99Misfmnln8QTNZv6W3xWJgzDuqabTgk22TQfTayfYNQMlFRoIyDbW0p
04EmZL+tHLKXhOuyj9yNlIPPO9qAVp0c/4qA5PIqjQeHzcMI/+TzmlOEnF9S
gYeOqIDIm/OO/BMy6H47+X8TH/dnafGqw52v3krnmYjIX0C2jyj4Ufrb7tEC
qsHB0tUr4v+OB0b6356dtTRO9/Ugf5fikxo2PMKT7Qdf1c9ZmD3RA8mvrXjJ
WKl/26NJ/TESdD3ddFcPdJwogp9SySI8uX3z3qdO5nrogfVRBeo6X/l/258d
5UFjQ0ill0oP9ffm++XVuH26cI09LPGKuBI6b8h4EVsNp1ZDI9hBmPbKf6uC
8ALlA3EM24lb+UKfBbLxqhARnuwP0N7n6PJIyhRuHh0wiEtXQvvXc/MLsZoG
Smj/JP/vEGPHH61REuzkKlhtTETr1/1DVgSPKBHtL+Txbln3zZC7ZY7sF5q/
Jm5MWLJAcxnjfIAzDul7TX88uV/IySOYc+VFWKzxJBa9bdNBdlAELsbLNtQ2
jWNMFtcErrmIwfuaKj93JnGkn5Hn76Aio0RAsRCMj+T+btiUApfBpA6ckwik
vjM5kvBdCk67vrr8oEQM7i7eLdz5gfDv8vE08Dvhl5zVBB60a25Eny+jQf5/
RSYaixsheKiPEQu2JtWbmx/85IYXHmzPJS90D0lD7mDLyKMCOURPttcdOe58
yfrtVv5BkW7zkjkfRZDI2ZnvJsiD/OUynNtHdI8IILi8N2DWcIIkv3sdvPyJ
JOcwy84r/BwWhs2CeNnaGCV0/vyKJlI3jsrDeI4xxQ9pGVR+pofmrxe3AryT
rmraaFaEVqPwy5+rFjGyP/ifdYiDA1rtcRN2RKjrK9bhEsIhf7Hn01juzwLS
YB4sRCGnqgpa8bo2sVTSsHMHP3fuNVVwXcB9zzhARPoU+bzyntvVzpetDtt+
29nd4/2F9B8fsRbtG+40yL95/FZ1OQ8fK4LH51MfGfRwIZi8H5vO01S3yGuA
TkNJ6q8ROYR3GXo/ECVAgLadg1194Rro/zjnhhwtVW2woPzlW4n7bzw/IW00
vw99M6fvb9eGKrsirhP825D/i3yeNH9pU+jZrQ1mapIlHf5s8O/y3NBUenLj
6Q5tMNx57GhlGzfCk9+rB2w/Y8qqpg0+8Z96YjoEEJ5espaOolYUwT6hDteS
3ksg+GEx38XOMjxMiWf7n92uA3W/7r44KiINLDS/92Q76kAvZ8F67qoUfPT4
MbBaSdJfMhW/ud6UhRRTu7B6ZR0Y/1k3M9C+iP2T91AP9fe53N1h8zo9OH6s
/kJUJw2Q8eT+lmvx5PQw6oPHq5tmt9bZ4N/luSGq9889Xjt9YHjFuMpwlgfh
zxv+vD48KQh0e/oZH6Xpof4H3xI4dDVWH2Q5S4I7ewQRvSeBVvfMuNBWPMb/
/wnBg9Kwmr3Reug9sSf+k3Ulkz6kjDi5XVpURuX1XAp7Ix8SEDymFlZQdYUa
+UfI/fkiu+Ph/jAM+KkvgXUtG8JrfhGptB4SRv4Zsv54/hX/k49tBiCfJKp0
hFMBwrPzS1nFAPZgsR6yz5Tg7+xMBkgC3LEcGeYVJQDDkvFaHg5gDWsKc3Ql
gtIcMUNCAMDdym1Tu3Ae+3d8w3ksz0qUo+EXQI2ryjexclbkP1CLf/WVhlQx
GSav5+pT0lc/nSTpG0ItiUlKMgiP7FceLwcPJBuD1T2rG4Hq0kiePrBxdfCo
jDw8EklnpTEzQusnN3upJq3RCM6s4Ppu0Mmj+n7hHqiWHZP/dzxG0vkjoCRy
opeW7I+hgu+cXy51vjOG4rWSausxZmQPNxgYk1rolkDwuwedA8xyUsAtrJZQ
JLuVD3Vbsm6iX7IJpJiZBtoKSyH6lYZ9FYnPyPYYY3R+7t9RH/1axATp5+sR
ZT2/gkzBsPV7RvQnPDqfuNV47E9zyIJgTMTli0dM4PNNXvu0tzJInyCftzuF
l2WN7pPzpcpCYMIbpW42E/DbSJl1sJRF7SHb1zLPWC7tGTGGAJVu/NNeJYiJ
sjp1qNsEPqhkJAXnK8HYN985M2pT2Bb5Kjj8LgGVZ3F1ZZOSXcDI9uuPF1tS
e27ioGxy0Z92zhTtt7vONX95A2bwhTKqUvosDtm7Xfm6xnYQ8ei8Jcsbs5fi
hiw+myL7RpRnhYvuIknf+QBM5oPi6Pwly9uGgqwXbjw1BZckh9zWh1LQ56fX
fM7SDI2vf131Zc94MzDPEwjp5pRG/5/QHkrwHJMDY76vaq9zSfoQY+JZxig5
hCfzh1TZSqW/tikaT759pwLcRs1gPrs5osVfFrXnR+ffgs99KrBwbzC7QcsM
nYeTfpI0sjlmKH6owvLSF873pvDHZMbmLCUB/e9MKI9agRsRbkxnFTWfNUP6
eMTJj53795hDVuc0XvG3CLLfk/XPzvKyK+uHzCEo5GXh9m+k8Q+O8I1YMIfr
Zfveu5DkDbI+QR5fw+gKgQVOC8RvDwquaDFVmgMbZ8HQMy08qn8nj4xIR5gM
iEs6fnx4yxytV33fVKfkdnNoqmNf61KXQfSVsolxM/0ySB4i8+PL6QeUf53M
ocCzvjG2RQrpDzT72XcrBCsgejI/Xj3umOqkZA7zV2ksporkwfPU7YZdlBZo
PlwdNBf+Ex8SxZ++G/mntdYc+vSc4jz+yKP2KMkzNI9OKQM1c4DDbtL/Rb8V
4LJjlBGeLA/O3dbhFSTpP4mG9lckCpRQ+yKOLC14tmyDg5UfNpvsLWE+c9eY
3QI9ipdI9jfRv2pSfaRrCWl8Rz+HNv38733X7UhfMHi4Id83ZAkiz9qOZh3l
gcuKDc/DPSzhZnNNGp84H6qPfB9D2kTRRnkXqT6jk8c1H4qB1b5cjtDDljB7
5ELy3BlxRE+W/0ou35u7ZG4Jt7ObxvhfSQLTn3f82wwtEf/L5zxjefDXAunf
gcqHBpZJ7X2dyzSQqigLufHjh5u7LMHl3JdD9Hf+m//0hiWckU+1fdKmCO+J
Q3Qy5ywhRiu+ZERDCf2fLB9ntTp+PetkiewXJ5q4+FhJ7YlJwX2o9FvEPtDv
Lc0yooTQlGWNFUcSLAPpso5UMOpzzUhmghxvchazchiMclpfxJzb1GnN0jsx
dcbxZMLSIkbbvpCgGvcVs5E8RaNJkucktPe3XD63gp2RJbLs71rEzpk/++4j
tYTtmC6yLJkiQPlY1M5H/Qww4HGU3WiWAMzFX5REWiigIZ+aUPmGAF06rdcm
bCzA7yLTrArFEka2I80bVFCyfSK///+F3T7emn72ZQ5G0dlBNa5gCaLqP6YP
xTZg5pcvdNFKWCL704/Hwq9nCJaQdXOvMP88AWL+tOQ+z+vEUua6XqvOEYBz
8PtV27IVrMQwoLDy4Tfsq7wXCBmLg6z01VCFaSm4zR4wrKcnDto7WAiHnfCQ
n8U+Y+UjA7XB70WKLgsDl4TN/agCZWinscQdmpOCiOD61ckPqnBE0OPDrvvC
oHP9nrcqXheMD+oS1kbEQcjXK91GWBfuruqU+3ng4XPYzZ4hJl1Ydy318BuT
ArfFDT2uBR3Qv5rmqk3BD4UTERl9HQA932XrvnLww7Nn3u0imcaQwSJy/gs7
PxThWEomj5mCv8Kl/TO0/PAhjKLjjrI50KtuPzA5TPYHUMKg3J6KkyT9XeWW
YGzI1w2s9IRfsCjXOvJX/b+irjSoqTOKsjSioAgU0cSUJRBCE0ICKBhZcpIo
ixYVwQIFBAtYIFRQqGzRiGIRp4JtFBVFUIpgRVmKYwWRQYugLC2kVXTEYXHB
yqZiEIpSOk4+f55582bejzPnnXPv9907/KOY9+Ipi/C2dJErtVHKJP2gfO1N
xxJm+a3ur8SZuHXnaHIJLivjP2Gbq+8TO+D9iTbvbro9qd/bZ/ma5F9mo0fA
SUnuEYBrK1VU6HFJfTd27hzTfSo2ulWhnUYiO3Q9iGu9Mo+PwEaPvbKVTkhO
DMe2YBtQdFu3c1sF4MuDHijus6HveatoIAZQ0KpcolK5KHjoEOSdCCy29ph5
pMNHuHLluqU7gXM6pZZSH3tI3VJG6NuBmMyCa2vX2KP+on/ospbV6DAJUyZ6
vRWq81KuzzKz7GoWyU/lj1Mpvy5mkjyzXn5oXdZ9M5JPDFYNZWyutSV4f1hR
TfQvLJIPvO95V5pO8j/6+8jnDYXzzYl/LFzhmPrkLIPgScZt814uk2DdUCMf
s0ssgkNc9TOpVmyClddcwgz/sCV+6q6e7SsLIy2iFxQ0UcKjjQkej2dEiltM
CX6UJOOFs60IVs+fGh8J3GQz6IXern756xpb8rwkWb/2zpB6n+a08JtogZdl
PIfUN9T/i5d5lTqjIU54Jne3p27kwM5/xWRfmTPaLUty+3w5yC0Miq857wyt
GG/lm2QNyKpTWYIRMcY7Cu07czWxNu3rZ6lKMTodCjzvmGth1z5qQFWTGPyp
IZlmJhXTBax6fVcxHNIs9lvr8QgfCx9nB/jTeXhYMdh/2IOLwLzgqAWLePCn
MrpC6rjQY940m2xRCTXWhTukRUiIvu8q+WEM20QYnR6zmWGywJL+FqNFcSN5
TuvQdX57ugS6Zw6uzzRQffBXUgksg5ZSB840CM9taDAYfSHGBs8dLP78TqEs
ZHWpYvb7VWU+IcYiHuGPDTth+w5HHt7xzGTF9RzQc7QO01jq+TS2ZB+7l9eW
oBRzW2yJO8OsNGcgsvfAjbv1QN7YgtDofJVQe6JudHeUBCr9MDBH+ET3KtsW
V5y+QEW55xeT/XwxySMHLQ3t3d+JYZDRk+52yADlu9dvC7kuhra7jtGXb+jw
fr9a8ZWjCD4S01ODfep+2yKUbz12djDZDrpxS5P+39/U5EqRszay4Fu0TNB8
3BUuQXM+tWue1csSRaTgE4BpeFuH+kL9PgXSFI2yjmH1eYEhYVqxRVayhIVg
pxxHh3pXXD7xe8T9fywwfsXfizP4cR57kZ+p8+QcCXxTr99VOdJxMiSrsS9B
hD5RW4RVKYfoi/+bBzmreEY4zstLMN8sJv06unFq4apYEaoD9VzfavNwsHFk
VLfNDp0mtAZ2OwN+Oy3j0/j4wOthOq4eoE60Lp/NQxG0ou41dCxXFE/Vxajz
BwOXZFM3C+8B6aUXoyuKDbC/6qgy4KoYsbEvd60domFFnpV13l/q/DQh7Gno
aJKHSbBvpqsnQouOh8aG/IA9IkTPN852rGNAcCUj9pwQkKZbJjl9b4f8V7E/
N950QEbXT91HXDjYYjwQ1fTeGbeUNxZ2X7RGrdffp1o+cwerdeI8pmgQPGfL
E/8UYWRBzXcXuqaFA0dyVE2mEpw2vfPv60YD3PYLV2ZXizFc/Lg/vpmNyzRp
ZnuRAO1JC/fO1eChKZ9WJNPhYVPvya3To4aIPhVI1f9WjLw+i3FN2YTQj7Ik
sypYgpmxpxXHRAx87sGrvVUMHD1t10yf9ZuKJTEBinlu+A8r0xmf
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1kbFOAmEQhIcDxETO46eQ2t7Kh/ABbCxNaIlno0eltsb3QCsSXkBtvM5Y
WkFMiBQWFBT2zGSHYvNvdr/dnd3/eHh9XmYATmhN2pr2T1vRHgpg0Abu+R7t
A6M9YEn4z9yvWfkLWtkBfmg92kuKWvX4zqJO/NMBZzF/y3ydBTNpREyM2MI9
3t1TvhjNF6+6x37kJuyzsQbpejsExi3W8k0d+4ga9fgyu7Hms2bMnCPymi1G
WjSvtiZpn3tnxcSkVtTv4iszukGy7rXjyl/lwZd8x7xLxfpX6rzjTWbMV4x9
2lesTW5K/iOPPSrvIm21Nelu+pvdvygmbYM87qM79axHtZfd2POZd7vohx7p
ukmx52kefOGbbwHyGVG/
          "]], 
         PolygonBox[{{4705, 2070, 1836, 2954}, {3524, 941, 176, 3020}, {4651, 
          2015, 1902, 3351}, {3958, 176, 1142, 3959}, {3378, 726, 838, 
          4695}, {3966, 1303, 1643, 4280}, {3438, 838, 1041, 3633}, {3775, 
          1143, 1809, 4442}, {4442, 1809, 2015, 4651}, {4517, 1902, 421, 
          3167}, {4280, 1643, 2070, 4705}, {4518, 421, 1303, 4519}, {4469, 
          1836, 726, 4468}, {3773, 1142, 1143, 3774}}]}]}, 
      {RGBColor[
       0.23987720374272498`, 0.38104289096818056`, 0.6260437304892187], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1lM9L1VEQxa+/3nv4fvm+kK3VRaUE1R8QVAuFaBOVFEQUQaWim/dqUbkK
pFaBC6HQMqygFvpcWZZtWpVCiyAwaKO1zvZB5+OZFl/uvXNnzsycOffbc2Xi
9HhrSqmhr03fviylpgzd5ZR+51Pq17cue4/Wt4WUllps425B+wfFlDZ0f1lx
MzrX21Na1Pm+9lPCmQe73fY19sKoF4wxlEvpYZt9l2S7mLMPeVYjV77g83fZ
C2HHdq3k+7PKe7iS0jflGlfNX2Q/r/0p7ZsF4y7r3FdL6a9quFp1fupoKv5V
2TW81nomc47HWq+rr6+qp7fm3uvhPyj821qfyt6nmB3dHZP/ivbPhPNG66Zi
N+GgaDzq5bwavXA+qfhqh+qoOg7O4XNE9l5hnhDmiNYlfdvwUjG/7yvmDl94
H1NPo/qmtb9UMofPhfEz5zvsHRVzAjctiu1S3rlWY+MHPj3SHzwvFjyvmZhL
M2ZzLviBJ+b/J+oYzBmPuQ+EZqjtU9532Llnz6x/ldzbVGb8xZjRSpfjJqu2
cbcW2sLOPRhDgQNnjdDVQpzZ/8jbznlW36HQWHeH/f7rcCB6pjZ6pc4x5ir7
aM31UeeTmrXM3OfjLfTGu/hcdNydoudbCN3SDz2A26x4FssVx/VF7EBmvws1
a5Ac1LkT7wsf/MkH5rD8O4V5RBp7p3z3dH+jaE3hw+zqsSf2UWbdoUd67QwN
8/Fe8J+NnPSFDrZy7nP3HQf/8DcXfm1lz3VPZn/0g8YOZOa9P/PbAGNIc36p
/YTsL7Tuz6x13gp46BB+6B8ePoif9aLzfZTPpOZ9UPh3tdZr7qFR80y2o050
CT6z3QotT4cOG/GfwY87euyPtww/xzPzyr8E/snFDG5VXdvNqt8W/w24Jhd5
dvVT9fsdVuzesutnnvCGHU3wryH2aMlvhd7R30JocSO45U3Cxz/uccB8
          "]], PolygonBox[CompressedData["
1:eJwlkssrRHEUx8/MmDG5c+fOvYU1o7xS+APksaBko5CFlB0zxsawYMZGkZWF
UiSlUCzM2MlrY+WxI2VhxxplqXxOZ3HqvL7nfM/v+6ubmhvOhUWkDavAhlyR
cRKr+FeOyCnxZkRkIEYd/wI7IP6pFGnA//VFSvgz2GdC5DIpMs+gPHaFf4ud
M287JHKDvx6IlOOWqwV/BH4O7ATzJ8HniVuJn9i/wf5D32qKUaxyUC792FZK
ZN+33UvM7wdfABMibofjI34LmHfiMvsaA8Mo9p5chFkv9DyyK02cZVYH9hGz
m/S2GtewenMT+IxvvfV6s2836q26o5n6CFaCSxy+o/j19DzH7E2j9PYFhtWe
XvxO5lfF7eZ5emd1X8hyY9R3A5v1Bscd/BUPTlF7s2P6u8l94X9jaX2bhL3F
Gvuy9Ba4ty1mGp64ltOa5orUxuj3oqaZajftmPZ/xGnmdyXMz2Al6tWBvd0Z
PQ+O/QH9C8pBuRQ90045KtfrpGmfIl4kztH/GrYb9daewLirBqrFnWva7el7
ubZTd2exMv6CZ7NUY9V62TEuesMgfM+T1qsaqpb/c2deIA==
          "]]}]}, 
      {RGBColor[0.3054975721174401, 0.41106943429047416`, 0.6394838553686615],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1Vk1sVFUUvp1/Mu+9mfcENWoiLfVfrMSNos740zIzFDRCpIQYE8EUBxpM
bRujoInWNsaFNaQlaolo6qJDw7S6M6UJYlkYEhdqFyZ2IQkOao0LwpKp39fv
sHg599137jnfOec7577W/a/vOhJzzl3GE8czlHJuW9q5q1gXc84tJ5y7xXNu
S+hcPxS/DZw7gP0q9s9gfTvWRawHsW5mnCvjycHGacg85HHYqWD9R0r7n8DO
v9B/Huduipz7Eb7WQ27H+Tbsv4XvBbz/h/0i5EJemB7znXsG71ex/yxkLSMM
R1qc2wx8uyHHcLaBIFaSzr2C978h/7H1Mdh5EHaOQg7Cd4D9Acgm9lbx1IFz
D+xMQHcKdurYO4OnC+/7YrJFO50x4ac/xnPJYtwCfL/g2y5g+woYXsL+HN4/
SssW7XyOb+vXOTcJORcIewE+exLKc8VJdxZPD9ZjkXw9B5wdeLqx/gDnBlPK
CWtUx/sh7M9CdsDvSfj8sEX+iL/XyWcXvv2KbzWTF7F/Hd9/B74FrGehv4T9
3+gXOqNmh1j2JoSH9TwM/QRysZRFfaD3NDBe9lTfUcYeKofM5TnkZBo6A9ib
jAkfbcaw/xneX4bsQR33kh+wPxHI14lA/JkxDjWMU8xzF+y+DRtfwGYxrVzw
bKunmE/hbMnTuVPQKWUUC88QH3F2YH8EejvgazQQXzbEVd95xDUMewezqjtr
xPf7cPYE1mehfy/Wy/B9s6/8LVsOGZ9LqwasPTnGXLCfWpOq1xvw/TO+9UNe
Aba/MsrnHthch/WLkbAspeQ/mZQedX5CXNOwtRKqhqwZ60iM7AXi/AH7Uy3C
sxMxbIV8KCeekifM4VOR9NqB/3vTp50y9B+AvC0nnhAP/Vyw3mSPzgfKQw+w
bAqFs4pznXjuwFmXU11uzag23xjPyXf2LOtKDOT7VEqcb8GZR/B+IBBn68Z/
xsq+Y1wDzElS/Ufb5D/ts3/JY+a5bPlkzfstzx2IcTwv/iWMd+Qg+/1PTzPt
Wqi6Mq5566eq5eqg8WF/Tn3BGUI+Ufe6zY0JWy9YTzVtn1iuGB5ia1odG8Zr
rt/H+r2M5skIfGzE3muesBLzDGR3KF4dy4pHdxqXKKkPyGt+yJUvneImN9jL
20PNt0oov03rpRt9xRiZA9aGdSoZZtr5OhSHB23e10yfNhoWC/uNfdfmqRcY
P3MzaXmmnb6csJU9zQ+uE4a9zfB/bPwhj9oD1Ylz4p5Idu+HvJhVj23A+s1I
c2PRdMdstnAmLRqnOYfnbH02q77a6UuPPcoa8duizUPWqGL5eTcvnMTOO6dm
dnmW9WdcnKlLlmvOFZ7lnOmMqwbM/6FQ5w6H0jtvvirGCeqX4GMz9uc98YHr
XuNP2fJciKtXeZZ61FnNCT9jJPeeiGS/zebuecO2Ma1c8DzvJdaUZ3jHFkyv
6olbozndyavGY8ZBW7TD/mSfvhrovue9PwT5ZCSdczZP6Iu4RrLyXQ01a7vt
jmPf77D1cZs5nD2f2rzi3Fq7c+zemfZ0j14IhXclLT+PR1pvhdzka6ZxtrGf
mMdeq1E+oTqxx/htCPvJQP8KbbA5bPr8TjlsNbjLuEU+Puprrh2F/mlf9X8n
r3nUsLtj0e5X1qjd8HznixuzafFqxmbgWs/54u3dgWpQsLPjvubdhK/522X5
5yzkncB5dNJmUN1mI3EQA2ck/xlu4KIcsnuhaHWh/5phYE/ss7P8d+E/zMPw
+0IkHvf54nvJZgLjuGT/cvxGnd2R/ufol/8szB1nAvNPe9RhL8Rtpo1b3phv
YuNdzj7Y5onvJesL/rsNWG7J1wm7167Zvyj/SftCxcX/kf8BXxxoFg==
          "]], PolygonBox[CompressedData["
1:eJwllElszGEYxl/aaUnnP9MZtQSJdhr7MsQFpRNLWxQJRUXEoZpoVSo0Jage
dBEOKqKCSrQ4tBptuCD0YDsgQSwX9ECChIoDrvg9eQ9f8q7P9y7P9+VV7NlQ
O9zMtnPSOTPiZh8yzc4OM5uOXBg2q0XeSlBlFHvEbAuB/Rlmf7LNGolpGmFW
RsxsYg/GzBL4J4J1MsvsN3o/eB+J/4y/mHOI2FbwasBbGJjV4xsHxg6wCsD8
FjLrJuc5seVhr+Ui8fXE14D3CDmVZrZb2NSzi/s+gTEX/Tf5fcgnyO8m9zr+
6nSP6UPuJKYGXzYxJfhbwczjvmJsR1U7tiL1wh0lUccUtnpQLw30ZMhJ7n+W
5TWpNtlK8TdzRyl3reG0IJ/hlKf7zNqRKznzkWeScpr8FD3/JPcBGIuRq5hH
YZrbCtETgfu6sS1Bryc/Rf4i8s+R38z9k0LeQzW1P4557+ohL+w9qTfNeIDZ
JNC/glVPfhX51Zy3+EZju4d8GH9K+8L/Hr014r1cIeYr+e+wFRGbM9LsAvVs
5LyhvpHsb3PcYxQ7SE6K2pZj+5XpO9sF9n708hHOkcdgv6DG7yHfuXYvjolr
qimf+HXoP4h9iz8ff1vMuSbbKeRkzLklThWBtQj8oUyfoWZ5hJxOegmR34i8
MuyyOCAuWNS5qp0MQ/4X9d2L0+J2NTG5xN7HVhVzjoqrmtEC8OtivptX+Pch
jw1779q5dn+M+F7i9+L/EvYe1EsdOWfIf4ltKOQ7CYnL6An0XE4LteSQ/4S7
/tLjZfCXxp37D8HLJ/8weLPwtWHrCfxN6W3J1oCvl7MNuQv/LfxXwGhnVhHw
ryJXhf0ucUhcqou6TznKvRP4XQPM6Dby+KhzVxycgDwn6lwU55PIHXHnhjgh
buiP0F+hN6m3qRlqltpRQdx7Um+qqQt5O3ecx98H5lO4tgrbvwyfwSjik4HP
egX9rEev4M4m8ze+A7k98NmKU+KWMIQljNVgrQ2c65q5Zr8p7tztwbYTvSzu
2K+5Y55i4/7WO9DTAp+BZjFIPdPwHQc/O93fhN7GUMz/LtV0N8sxha03sIz4
KRHflXqcHPE3pre2hRoO4L8Zca7oz70R8Z1pd+JgC7G9gdciTl9DvhTzv0wc
E9ceRRxLb0xvbUzgtepPn4r+HxqZxUQ=
          "]]}]}, 
      {RGBColor[
       0.37937782371316237`, 0.43703373996309225`, 0.5960526531526458], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFl2uMVVcVx8+93Jl7m7nnnntOURMHWqH2oZRHCSgU2xotQ2uisQwVxLSd
aXVmaK3ijI8gxg+EwW+05aFjU7VQU8EyQ6Np5CX1g42xSS1UI4ht5MOd4dUZ
EsV+ohn/v/wX8cPNXnfvtfdej//6r33mPPrN1d8oJ0kyVEqSGRrf1p+L+p2V
XK8mSarfUclzm0kyKIUdaZKcb7Pcoz2vdyTJAskPa77RniQbpF/W+lHNz9T8
u3mSDOu8kuY2SX+iliTj+t2rX6d0BzWOlXxPI+7aXVh/Q5YkD+nc+Tpnp+7f
JfnbWr9J8muNJPl+JUm+K91+jS/qnGe0tjS1D8c1v0M2LNHaV6W7sWydJ3VX
n8bemn18VXrntbYi9R72LpF8m2wZks6tGr+c27Z1GteW7Re+t2r2GX+fkK0z
NHbVvQe//qzzb5T8Lck3aNxYs7xXexdpPFmzP3tKjvXrkn+pO56U/ILGr2hc
pTNna72r3fMpcdEdv9HcVt25WrY8pLnJkuOKDb/QOSPSSWTrZ+TLoPYOae9S
re1Pvb5ZMfyJ1rdr/49KtncocoGd9cjFI4X3HyP+Jd9/LLCxMXzhHuz4uOTu
qu96o/R/nzkH3ICZnRqPKC9bNNfX4Zz8KnK3Vz5/XXtmFraFHGAP+Gmr2M66
5hdp/ozmPiW9Scn3aFxZdy4W6oyiMGbATqq5s+0+nzxf0u8cctV5IkcjZeuP
Si4ppvt0V5LZ7201+/K2fvs1n2ns0fiIfl+T2njIX0qMRTD5R+Gtv2YZO8Ea
54Ct9op9IQdbZOuE5rbpro9V7S8YuC1sQ7654T23aOxWvP4gO0+lPps73tH+
5xu2aY/GO1P7Ca63Bc6xnxjvC7y+JL0B6R9ouJbA4Bdkw4jO/7Tmv9OwLnuo
m59r/j7prNG4KPfcwYbrCBvwcbzu+Stan5E5VmWNz8iPg22OFbb0hf50yNTg
Yo1HZNeY9E7UPKL/tw7nZ6vGXZnxuztzTWyqOicDqTF4p/z9XG4ugpPWBN6z
qB1wS34Pxh2cn2iclt4piYdr/j8q/euvs3wqdEox/8XC8u2680H5t6zkvLP3
UJz1hNZOyr8FGmfq9w/N3aR9lxPX7KXEdYs8oJi9qDiulny75HVl8xO1Qe2c
rrrmqC9qixzAmRXddVryWM31gn9zdNclycsL72UfdYpuW+iDqxlR4w8Ulhdq
37Ds+a3mHq/b3tNR+9TgYHDg3YXjTLzXBy8R/ztq5jJ8gIderZiLOA8f8Xt7
h2t2k/KztHBOyS080R15GpEPb8ZeuGUy8D8vdT5+qn2bteeq9O7LzTfoEpfH
tNZSjJZL972abQJDf08dO7iQ86bizD3BM/DNZelO1byfXoFPYOauwvpzdcau
hnP9IZ1zd+bc79Bcuex58tJec6yJLfE7Ezn4aGH5AzpnReF+MKB7Z1WdS3C1
oum+8qbOP1J3LWwpzJefLbvX0HPWhcz64oj5+xpX1sxz9FBiRz+BV+mL4Kk3
au6N4G/sohbo1fQL+hdcAd/BUcPt5kD06Q/wL9z7w8L1M50559iGDdiKTWX5
tSp3X5mWHwdqltnb0v9/SWdYuj/L3d8f1zkXyuYrOPl6rT0r+X6tPyXd45EP
avrZOOfW8I88Tta8n5r6J3jSns25e+zG6LmDubl1SOPNhfc+XPf7A794k2AT
ts3PncPO6DuLA0urA+eLA1dwbz1iujZyAocSj0XR08E9duEXNp8Pu4cbxuxW
jXekxk237l9WWGeJxt7Mufu1dN4KG96tGMPklzqE//ZHfMAgmASHK9sdL2JF
TyP+5Joz3opa/Y/wdkB6/9b4NLUe3Av3U4fUFfEYqxpX1NSJsGFv8O8LmeuF
PGHDlegL9Ic10S/uks65putkm3y5IvmDkv+rsVWxDfAnGOYtBQ6pxcvR1+7J
vJcz5teNPTCIv5zD3pPhF7bRG+GFa3zJXuw41+bagVeplffjrlbI+AiWpqMf
rYz3KdigV4MT+vUPmq4X3nrMocN8V9Qg+nPqfhO8lttP7Pxxw9i8HDzzV8lX
K7ZpQfSLo0335la8hV5qmr+HMtuVXOeYwH/bI699YTPz5I880td2NP2mSXR2
KbXMHL6AD7ABB4wENkZrrlVqDJl+wvxU3HutziYjPswjg2+wD+7BfH/0dOyh
Hx6OvomtnH/trrG4A84Af9jeG+8jzicWxGR+6rhRb+8EP1Jvu1PbNR123Ft3
7J/L7QN34SP3jIZfcMyFOB+7LwTnXIw15uFYckNe6OWHom92howvB+JMfKGn
wZXwwO+bfsttid4yFvdOBDbAG3mb127s0BsngrvA1HjogKnxwBX7JgKLcCWc
ybfR5zPH/E/y+y8RE3oI2JqKvFzMjXfe2sRqKvIyHmdyF3XBtxw5PBO8D+fv
jn5H3+uLt3qP7nyucLx6CsfoXOzFj1b4MlHxmw8ctqK2wDNvyUbI1Av8wlp/
9MK+3G+tw/GOSgK3L6fmJThpdvDwe1HvcBKcgAwHnAx+OxQcTu7m1c3fvLMe
y1x3j2buAfDxJ+XLqsx2z6075l1h92Ccw3tledP+XsrNu7wveSfQJ7vje4e3
D99s2Mmbpjt06Ec3Bm8z0peo7eEOj79L7Udv1b48nVt+Kve3xUR8a/DmgOd3
ahxruLePxki/IE9rc78Dbin8xmeemMMNPXHOstT54t3Et9FA6GDvvvjGIb9X
4/0Ah43HNw554J0Gvy7MLC/I3LfoX58o/L7Bzw2530I3xHuyKzPvf6Ruv1px
Ju/WWfEWIhbHgv8GAm/g7pXC3279hfvP+ojzicADHLKvblvpM9QZ9UKtTUZu
0J+dWZ6l8XuF+YW3A9yMTI1w9vHQ5406GHUBZruC5zsz63w4xvXxPQLOeXvR
C+mfZwPnneEjWPofO2VNNw==
          "]], PolygonBox[CompressedData["
1:eJwllUtslVUQx899Y7j3++79qBoVoq1AVGiLCVUKAkahrSSIFgGNURAMbSP4
aGtMqbowtEtA22oxWix1URSKj8RFi8pCYjTBR0xEjIkuCjYUXciWBH///BeT
zJwz85/HmZlTvfOF1ufTIYTXoCx0sBLCM4UQTuZCqC2GsDIJ4WgqhFs5WwXf
MhedfAjLUX4Lvr4UQmZOCHdw/xK2XdCd8N+DdZq7FuSr6L+Dk2b4m+IQnuT+
a+wXwNeg8y/yP9B94LdCWfDy0N3cPQ3VZUJYD0YafjcxnSCeFPePoHsj8grk
NPhrwVscYQv2EfwfQ/966Hewf4Nq0N9IzMNg3Y/OMPwW7AdT1lnIfTvyZ8if
Q33gbU4cywTyHrDOY3MO7J/x9xzytaJzqyXGBN1NUEB/3nUhLCnZp3yfh6qQ
jxNfO77/IoY66jHO2YGMa9QL9tKScxOGsAaQO7mf4T3O4ms/9ncRy49g1BPf
28g3pF2DIfj9YHyH+Xz8tYE/Bu2FbwJ/K/aHE8emHJTLLPd/g/0G8iX4lyPX
ZgF43fB1sX2pZqrdw8jdyp/4DoK1ivhm8H8JakfeXbHvWaiauzH0m3N+c739
FDG8CX8RzGbkNmxm08ZYif4oPndwN4W/DFjd6JRyzuFD5Hoo4m4c//3YLgWv
lVgfxH4jumsT95J6dg38s5F7NUbeBT+CfUfBGOux3YTN5ax7/hB3t3E2jbwd
GkG/P3JvqeZ98FVg7kH3Xc7mwTcmzlU9qd6sKTo32R9B/ydqNkW9InSeAP9T
qKfgmhzF9+MV35WgbRXbyPYCVF10DJJVkw9Um8S1/gNqoF6LE9uO4n8R/PKS
7zrJb3viN9JbKUflejP0VdYzrFnuqHi2TxFj31zXVLV9EYwL+F+Nfgt3W7BZ
A78jdq+0qWbw/dDFtGemA/19Zfo+755Wb98D3kzBPdkA/wBnIW3MEfxNcvYY
98fAy4C1kBxzWc/wIvha4vsTvB7w14E/P/bueIr6fRG7R9WryukW5DMV104z
MY7+GD624us4GFfKtpFtK/G9TiwPVfyW2jEb4Ic425Z2jw/CX+asKuOzH8D7
r2ws9UhT7BnWLE+QwxX4NDSZd08uQX8D8RWp5z70z8B/E5nvQueVxD2uXj+E
/Vn4NuL9JW+fU/DfFt3b2gE1Ze8A7QLNbCNyDzbLCvYhX9qR2pWqoWp5LfYu
18xp9pqgTM4zoFnoLXtX6uxV+A70Uzm/od7yHHinM36zX0uOUbEqx8mid752
v3Z+J/wn6AynvVO1W29PvPs0A5qF3opzn9bOQrcrdu9pxjXrJyP33l7sJyLP
rGZ3nHxS3A9E7kW9qd5Wf4z+Gv0hq/F1b+JZUM+tgH+v4t5RTu/rfWL3mmZQ
s6geUC8ox83gDXHfkHNPqjf1pnpb9eA0+XwUufe1wz+GP1X2rMlmENtl4OXm
+A/TX6Y/Q3+H/shHkdfhoy/vNzsAP1D236GapdA9ETn3q+DvAm9nbF49od4I
sWshDGFpp2u3ayeNEmtjybXVTH4J9v+BG/dn
          "]]}]}, 
      {RGBColor[0.4532580753088843, 0.4629980456357101, 0.5526214509366304], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1V2lsFVUUvq/L65t5y7wZIEpkaVGQsIkLq2JCS8AfoMbSgkoBbdlVKCgx
AiYS3H4omLKpLIUiNVKoGAXBQIsYIEGWiCIEISkQEUjUCKKRze/jO/yY3Dt3
zj37+c6ZouenP/VSjnOuPOZcLtbSpHMDsL6edq444dxgPK/i2xKsi/H0AHFO
5Ny2AuduhM7tx7e7cB7DuhoMNuJ7LfZH8p2rygMPvJ/1nEuBbzuc14H2RZy9
gH0V7u/AvhLrEdAs9J1LYu0D2a1ANx5yLuNeBrTjM871x/sFyO2HdQ7OV0HP
T0Hr4U4FzsdA5pZA+rfD+i7O3wfPNliL485VQ5+3wKsL3j/wpff+rGxoAf/a
XPFvgk5b0rJnAnRbhW9DQFOYcm4o+LbB979w7xxoHwHNTrxXUP98fSNfyqRP
5uH7eZyX4/wcZM71pO9s6L8Sek4PRBuaDyfDtvbYPwz5x0FTgvsf4qw/7hbi
vZvFhjbS1kH43h56NIN/E/3si1cjaJbhWzn0nxSKZgHul8GG5Tj/HN+3gu46
zjdArkspPjNh6yzwOAheCTxncH4SvlsAHaalpQ/1ehSyf4E/B2HNBf0VPANB
vwl69ANNDXg9HWp/GPSNuH8Q9D1AXwu6f0A/xZOvaQNzhjn1X1x+GQK5Kex7
hsqpvqDZ7mTb9zH5qiJPOVnllJfcM060ew94LcXZ1ITiTp6MFfNtH/YdIvGs
gk2RJz/8hPOrcenA3GJceYf0vSLtJ4F+c6g45MCWoZ780A9ypyV0nzn2RST7
NmNtlZYNHbG/F3b/gWe0p/V32x/OkW8bcHdrqFz+MlBO0ke0nTWUb3XUIava
2gM/jU9oPws0E/FejzsDIOsKztZCnxjWVrnKwXG4OwB3y7A/ANrhkHEe+nfD
vjJPe/qT9X7B9rSJttEvjFWz1Xj3tPR+ArKGZRST80nFh7nDuq20Gi9Myw7e
oy0D8d4OPCfhbifo8yPs3QsdLoF+Ouh6hcq7jYhLEuvFPNHQxpH41gCaEDw6
QE6+yeqYK2xZBJpDrOGEcvtagfZHndatdt7Vcpz6Endu4YHtFxo+fBMpz1Zk
lCO8S34RzvdhvQmdu6fkqxzoNT8Q7yqc9QyU88x9+v+HuGLA9Wqe9tchay2e
RbBtXUL4SPtpe4lhL/OX+NXg5I9TcfmkGjouw90decKYf43nkLjomYfk+UlC
tXQ5V3hEH9G+LmYzfdDBfMh4Mgf3Wa11Nf9cAv0aw7ggUn1lsNYXyDbm0y7i
mi/sPp3RvZdT6iGnE6oprmfwuHxhBXGCdsXgu21xCtUZa5fn1JU+YUx7WW40
ZJTzZZbP5FdsPM+mRMM8Is7u8tUbik0udWHe825NWn6kP8n/RIHqrRHfZgTy
+9eQNSrU2ehQfi2xWFDPRqtNYuom05k5vtHO74n0jbhbYnoyptPNLvZBxmed
xX17Slh2IBQt71BH7q+ZjTeh0wncm5tSXjI/V2YU4xbzFXGBmNARtZUbiuea
jHgUG89Fvnok+08T7fbVV5hT833l1Xrrb7dwKaH6Yf7Xmc6URZ4tphvxg3Ek
brSYzpQ1Dn6IsH8IPj9fIBwhHszMk5/pN9b0MusdfSLR9WU/DKRL20AzB/uE
w/n6SD2nPlKfabR8Ih4Tl2PGb6mdPxCpZz+I9WhaNv+clh/pzzvAv8ywhRiz
NhDOE+9bpxXfTtY3Giy+p+CnOl91vhjrDF93DpjP6fuDOFvnS58/odcSX/Je
8XSH9DdD9ajvgJ+tcHbAlw3MpWbrWcS0GXHhGOuQmMG+84YnGeTf2tc798Qg
YtGISHzJn3NHUVo8J4bC9MFWm10KFG/KmQI+zZ5ixpjzjHJjaeFLDfKqOi59
GmxuYF+KpdTHqu2cveiw6f9OUjJmQO4E0414WWvzFecs6sOeTV3HeZqrSg1X
pvmajTpHqtUukXDgTet/7P+sBfIaEwgPnw00OxLb/k7qO/mRhv2OfYU9ZUSg
fQ/o1dFXXBnT90B73Gab17Ly0xTQdsbZRTwjPfVH9gLibYthLWuBvsmxvrMX
uh4D/TGs33rCSuLkPOvLxIHe0DOAzPuwjs2qn5XD33M8zdD0L3GLNlPnMuvr
xED6gOe38fC0YR1nRuYZc4x1Rt9ST/qZdUQsog3jzM/spcxN+qs6qZ4RZqQj
exb1ZBx2e4rFc4HOxwfCUepMTLgz0KzyNvx5yNPsSzwmH8aFenKmZJ/rjnwo
zOqfoSgrvakfdVuJb5Oh5wqryxqbHzhTsubvjlSTrM02ltf1NrN1s9luOb7/
ltR8wjmFMx9ruChSziyxGbLU8o0z/JOR+HCeWmo0rOfCSP8F/D9gTay3ma0O
/MthVw343w+aX6Fz70jzF/GI9TjW+F/whZ0p6zuPR5othkfKmUOGtxdC9deL
oXoO+whx8mPO9Dh/JhC2zTT8pHzqTkzgTMa665EWr51Wg/Q979L/7K3MP8aU
8q/ZDMxaqrK64FxTaXNgSUoxiYH3pazk0e5VSc2axWnZN9bmhJGWU6y5DRnJ
+SyjOZj9MUpLTqXJ4r8c64t1xrxnLo1Ky8f0J23gTMzZ+KtAuTzN8tmDT31f
mN7kq5dxX2G5TZ9nIXcv+IRYk77qnDXOGaHZ5oS5NjMwV1fj2Yn97HzjbTzp
44WGvfzf2m3/XPwHIl4QK1pu91jYMywURjyGNZuR30+n1K9q7b+GM/Jq+w/i
/wBl0qfs/ydt3iu13CR27bBZmjHljMVZ60ZG9jEfmBfML9YOsYj5u9Rmevps
qtVYW+utdVg/gv41vma+/wH9ThQ+
          "]], PolygonBox[CompressedData["
1:eJwtlmto1WUcx59zjnP7n8vOOf8pBW26dbHa1OymbmQvVKoXGlE6tXRazmuX
bQkjkMCsVa+6bLm0Ni8rFZq2eiE1SycEGVQaZSVYQRbVJkSpXcDKPl++e/Hj
/3ue3/36/GseaLn7kWQIoRMYA6zIh3AB5POxIazOhLAlHcLGKITKRAingHXQ
t8N3ugxaHMKqYgg7UiEcQkkz+CZ4m5FZWhJCCfJHsyGcAD+DzvnI3gHPhbHW
sRH6k9wdR7Yf3avg3Y3Of9BxEh1Hwc/Av7c0hIXw1BcQyoUwB/nZQCfnF+F7
ARiPzGX4tItvh+6w+TxwH/r/xvYweAP8y6EvANqBEfjexsY68AZgD3gjd9cC
TaP0K7ibQXxvYn8ctru42wCUQb8msk7pfhyeHuidwIbgmC+H1oj/L0Pbh/xC
8G5k24BD+FQP3zF0PMF5QmSdAXuDxNsLehH+Hs7t0KuIbW3snCv3Af3rie2N
8hAeSrhm93NuIoc7sXcKHVfB+xyyQ+gtljlH07j7CdoeeIbw9V3k25B9FBgE
n83dn/jajv6tWd+JdhSZArJ12FgGfoy7KeDXcXc4aZ3Xg7fk7bt0toI/RY2r
oM3C3gnwA3n3hnRI11vY25pyTVXbvdhrRvYLeKrJ36f4Pw5IYOM2/N+MjW5i
mcz5IP4d5LwS+nZoW9C3q9y0ueRkJ3gX0Ii+GZw7wXuBZZybMdePPyuQryhz
jpXrIWA9eCV3DfizJja+hLsD4KupyZGkY1oD/h4+tuJ7GzBV/MAtxPMz9Bti
x6zYhznfzLk6a9/GK568e1i9PBdIIDsZnd+B74f/LPj02LJD8N8EPil2bQc4
L4L+kvJN7IPA++i6JO851bwGbH2NzqGUe+0efNmEfAfxLIdeD30f+WhJuof6
wf8DPgEvB87DX+R8HvmH4Skot+j7DHwvd3eh6yI6Pir1TN+OP89kPfeq8Tuc
T4J/ie08OZ+GfDHnWZiO/ATkx+c8W+qBKznHnPcnvVOqOS8uOlbN4JKic6Lc
fIu9H7B1Ju05bR+d6+qcd5FqMBX511XXtHtaPbQI+sSUc6xcq2aq3RzuHgQ/
W3Bt1DPnwLfFpinmOujLgKcTjjmGtiDtmVZ+B/jWxI5NMVTAu4D4+8ba/nbw
D+B5Je3doZlMUa/uyD2sXlaNVesR9M/U7omNa6Y129oVi4GSyDvjxti9phnU
LHYV3EvyUb4ehjdKuwc001O4S5a5Z9W7m6HNBGqDd5JmXnzi/wreKeQoC+9u
ZDrQ3wRvRdqzqJlSbq+WT5FjnB97l/+LT3eCJ5EfGeOZ1eweJAcVKe/0EWhd
Oe927Uztzsq8cylfqsCPoDuT9r7RzvgdO79F7vGS0ZnX7GsGNAvF2LuqG505
8MlZvz0rgT30X03Bu2U29Ang9bF7WTNdo12kHozcs+rdvsgxK1a9KXrbjnMX
Re7xXznviJwz5eAvzqm03xO9K3VF9+pjyM/Bl1n4+M0Y94R6Y2LBvmgmNZva
ydrNk4jh2YzfonNpv2V6k3rQt7bUNZmb9Rugt0B3vdDK0fFhqd+cgZx3nnyX
zVvznnnN/hp4XoU/AIPoGoY+D/q9edP0Zi4FP5317GtmmvB1XuzaKke1Oe9Q
7VLpSBTdI+oV7ZQfs66BaiGf8rFroFqoJ+qgf8/5Y/xJAL9k/M+hfw/1iHrl
tbx7Qf3ZB/5HxrtJ9b9Y7jdXb692VBu01qJzp38K/VvsHrWnN0VvSyJ2LfTG
JsFrs45dPOIdztgX7cDT4s96l2qnXYq+/wGGiCzj
          "]], 
         PolygonBox[{{3884, 1230, 2723, 2603, 4784}, {4798, 2664, 2498, 2067, 
          3381}, {3387, 2077, 2499, 2666, 4799}, {4784, 2603, 2464, 2409, 
          4786}, {4284, 2489, 2665, 2066, 4703}, {4775, 2362, 2777, 2556, 
          4773}, {3842, 42, 2672, 2454, 3843}, {4817, 2597, 2388, 1117, 
          4795}, {3380, 2066, 2496, 2664, 4798}}]}]}, 
      {RGBColor[0.5271383269046064, 0.48896235130832816`, 0.5091902487206148],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1V1lslFUYvYXOTP+Z+Wf6Xw2LXWgfUKesBaNYhAcVEAQTEcSlQGhZEqm0
aIxLkCUt4IOKKAmobJKUKpiIaGWNhhAlCkVQQBN9YBGXBEJoFYos9RzO58Of
78693733fNv57pTX1E+c180592Cec90h13vnigPn1kHuzXduYcK5YZgfHjl3
Pu5cFWRZoXOPQr8l49wRrPfCtxM6k9LOrcT8bdj7SejcVsxlMK6GfikOn4S5
ozHnNkD/OaztiHT+cuxrSDl3EToZnJnC7xzOWZKR7g8x6Y/IFybiaU461wSc
/QC+V1bzedj3fiT9ezEeDbkH8zno9zacuzCuL9DvDcSa0PjmfCB8vOsh3F2O
vWMhf40L/wonObebxqtxRxfO+A73T8C4CeMA9u6HLWux/gLk3/g245wbOOdj
YL6GvXdDbzJwpnDv45CN2F+Kexsw3gr9adBflxHOeQXCPRprncAxivo443bg
eBHnZHHf11gPIRfQx1ibmydfLjCsTThjOr5pmG/G3F7MbcH4fowP2/gDrC8z
G4nxVsP5LfBswdwrkK3Q+RxfJ+5L4IvjWw8dj7UEvlrobSzQncQwE/6sxdcG
e5qA/S1IpIA7CdtWYPwH9pTla8z5QbDhLM4c6oV3TKBYtHeXzbT3rN3L2HHv
SnxFlhu7LdZVyLclkE9n5bPLceUl/fF7TD4agVj0xf1FuONVfDmMKyErcUaz
nUnstGEMxp2Qkek0BMoVYrsSyH7aTt1Zpv8IbLgBnBMsPueAYSkwLIJdUwvk
29ew7wB0v4LxpYXKvXLIauC+DAxPQS4CzjOBanIQxtfxzTe8xEQ8szHXFihu
JTHd24Zxf+QKi3tKKB8yjxnfM2nNt0eK8y/5wjMQ51xNyrY2y4tvnHKLNkRe
HEBbmOtFXvXfE/J4Qn5+G/Pbgfsc5FLc0yOruHQB73Yv/2yDfMPr3uFZxbnB
/Hk6o5j+Bf0kdPYx3l7+YE5QZwZ0huB3TUb5eAhYjznpUb/AK5f3JJQ39Ant
oS19E6oB7tkNXx+EvBP+eR2+mI61KuB5CfM52HI1EkbO0z9JyGMJ2cj1pm6q
c9Yn84sc4tLinJ44pw7Yni2QPvdyHEBei+Q/ckal5Txz/wLODGI6d2YkbpoF
WRxTnTFXmL+X8pXDf6ZUU6fgh25e9uZB9suq5lohl6dkc30kTmVcyJ+ncHeA
+6bC1tmhOKFPqJwnp1GX8d9rfqvIap6c90Wh5ktD5TLnmfMJL64gZ/S03Ojt
dc5hi1Evr17xfUr+qDOfdBh3sW5pP2vlf98eMf8We/lhalrxbTQeLsxof5TR
WfQtew/zsc78T34jNzHveSZ5lTgKve7alVGOkBOJtwzzJ6DnmRv4ZmC+AzJp
PYf9L27nkIuInfxK/IMzOudn2DgrLW4nxy/26k194L/xWZ3jEJfHIvHpRMj9
2PsRzqnBvh2FytUvce8e7F2I2jwK+Tx0RiK+n+GMLcY91SnldLPhJ6cwXwZD
/65AcWKM2DeajEv/jeRj9qv7ssp11iV7J3ESb6lXzkehavyE9cqVMemTP1Je
8WH/XxvKB+Rg9nv2y8mQz4SqtVwovzHnD1geMA6LIXcnhI9xpe/owzVe/eRm
L8Md/QPFgveSh8hLjDXjUG+xaDfeI/89YLnSL1Kfr7d+yvFv1kcGeo3LgO2n
hOxkzjCXmD/M6SFeunNC5dVx8wPrjDXDetns5eNP6fOY+j77CGWljckNI6xP
vRkXj3E80uZZm6Os16dxzvWM+lFHSrU70nSG2Jnc25xRPlakFWe+M8hX841X
ya/MDXIlc+tlxKYC53ekxankVuZuRagaGO9V07XWyy5iPof5XdDPi/Q+4Tul
yt6E1yPVctL8xvgwPxij2XHxFzmEdcmYbbUaJ9ex9phrxEBuJw6OmUO1aeFl
TbTApncC3c1au2SYycO0hfnMe0rsrvci6TyJvN5UoPpnThTDljPAOQA23mLx
Lvda32RvoBq7d5xX7fJc5ir333zf5ElyD/lnFXCdAr6SQDmzzziI7yT6nLx3
T6DcpU8YI9Yk4zTRar/Ey8fs56xn9k7GO5eVr3JmY4vFmjEnZ9F/OyHDjOrk
JPZFOOMKzvzRSXbaeEpSOIiBbzmu0c6HvcZjvfKE/EHMd4Q6a7UXvybjsn1a
ocan08r/nPUU+pXxpv/pM47J1/NTiie5gbHrsFpm/2m3dyz7WJm9Axvjenuz
XsgF7fYupS9bLYerjffGZYW91d6lfGuwrlgX9PMi608bvOKz0QvXHMPWx3of
e1rOOIrvgtZC6ZSEwlJmePjGoh/pQ9YlsXJ+m71t+gNPu9UL62aVVx4+gfmj
WF+TVA9ZZvHlW4n/A5LGY3yTHkzqXRq3dzb5sSVf/2doF/8X0edp+79FPiIX
HcK+dUnl2VKrNfL7eutVzOHtSb19iwzLkUB45lpu08/tgc7iOY2B/muxV30I
WZfU/4ke7EVJcQu5N244aUdgtgywdwjfI3zjD40pvrxzs/mBfH/B3lLkWtpC
vu3KyOZ/UrLjvNnSFalPOPi12Xpbi9e+TtvbkBW31EMOS4sn3sW+A6bPfeQy
xmhcqHolZu4lp7YYr5I7GDvGkDE5HchvfJ+S3xn3/wCztPLy
          "]], PolygonBox[CompressedData["
1:eJwtlmtMlmUYx+8Xe4HneQ8Pz9NGHgDhQzXIE+qKZfXBNslDbVpoM4GQg1u2
AO08igTSPriKcrNSpLkhZW2u1DR1bW2Gm0YLqWirDyIdt1oLOlkI/f673g/3
nuu+r+N93df1v56Szc3rHslyzu1hXcMa8JzL952r5Fub69yqlHOlCNTDO5xw
bnPaucUIvpjt3HAeh5Fzp3Kc60RmKmTPugm6BpkY9NHAuTugf4k5tzPp3Fzk
v0R+hHUttufBb8RXA+sIvPdYlc7O3oe+io1f8dWF/iR0yNkn6D7PPg86TTy/
z3BuKz5T0Es4+x5+L/zF0KuxX819CrB3gP0Ed+gjnnJWLfLXwT8NvSLuXBvx
PQ7/N/zdgM2z0HO540V4vdgcgN+MvBc3Gck+xtrvLMZlxJdEphTf06wyZEN8
TGBrBzKtyJ4ijqPEcwvfDb75lO9+YphGNpcYP8bXYeRzoKuQaWJNcr93+ZZE
lrtXsN9A/mLon0H3dta2tL2B3uI0MlnI1rOfBT2b1QAdi4y3k5juRLef/VLP
cn4osjfQWwxibz7xV+GjCNlvuV8Z+uvZb8W3z76G3PQQ00ZWHTLz0KvmzIP3
BDLLsT8Le5/j7yT2Z0JfTpqucpJHvIWc5cA/gHwBdDM+rmf/KXfYgf/SwGpH
OU2gex98H36CVQU9iM9tvuVSORrF5svE3oWPC8QSsB+fYTGNov8jb/AS/GK9
Obyf2Xdn9pXsFxHDOWc1VA59DBtN6I6xL1AuWGfw04fNE/CG0R9wdtYErzpp
d9mCznH4J9NWq6qZFu6SD/9m9rXY2038U/AP4Xsp/EfhFaZMVz7lu4yztTHr
qTXo90RWy4WsXuiV6Jeg34n8eeRf42w5sQ0iX4atWwPz9Q0yt0G/qr4iV3M8
61HlQHeXjbugOzh/hlXuWd93Ye8gOCCQGCOWxtBq6UPu/AH2F6LzWZb5XAQ9
Qj6G4V3g7CH49+PzL2z/wP0qiO+BwHrhb842QU+rJzL124r+SvxdwX6I/xvR
fzOyu44S88XIemfcs1pTD6lGVCtvk6N64lsfWm28g48j6I/C745bfe5OWQyK
pY39vpRhmLBMMeQjO4bNPZn8Ks9n8bnXNwwRlijHyrUw5Kpyh43vcqzH1Gtb
UoY9OluA7tMJ6+V/0FkBfxI7C1jN2G5h/Qfdx3cobmerIruLcrAaek1kbznF
/h7ouyOjC5Fv4L4TKbub3mocOmR9kWM9ol4RRggrdFaEbgx/7Rk81J0e9g3z
hfVdrNnIdMesZ+dAe5FhrzDJj+zN9fZfsS9m34KPorj1zAvctT0yOzXoVCTt
brW+1bDuGKVMVzNAs2BDympLmCJsKckzOckX5xnmCnt1VsT+eGDYVIG/Y9Dp
yN5aMyHQvPAtx8ptK2t+ZL2rHlWvbsfekrhhwCXeb1lgvaEaUa38mTAs1nx4
EP7XkeGuMPJcZBgoLBSmCFuEfR2ZXqnL1JRqSzOpBVvJyN5eOU1Ad+CjIG45
a0zajNGs0Qyd1nxjf8WzeaserMz0pzDtp4RhhLBCmHUZXhs223MNU4QteyPr
HfWgelE1olqRT/nWzNPdNMPrhD3E3+kZvviqR2IozbaZ9m9oPane1AzfnrYZ
o71mpkvaG+gtniX+E8h3YaPfN2yRzecShv3C+HvhjxDfW77ViGplCHqhb2+l
f45dSbOlmTYzsDdQvMLIP7C1MTDs0Ezep3+N0GaZMEpY9VHKsFkzZBfyPWmL
RXi3H/p8YLNZOVPuJvBXlm13fpL6ej202hVmvRFa7Q55lpu1mZmm2Sadp5C/
lLR/D83ITez/B94ZMNs=
          "]], 
         PolygonBox[{{3914, 99, 2823, 2711, 4804}, {3740, 2331, 2530, 2686, 
          4795}}]}]}, 
      {RGBColor[0.6010185785003288, 0.5149266569809462, 0.4657590465045991], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFV2lsFVUUHtrX9/rem+XNSNlRSGSxov6BAFalyNaWHxoJgkChLYFAAy2E
RRCNQEETBQIuLBIQgQT6iImCCIoQRRBoG9kSSRDZEhRjgghFAxT1+/wO8cfk
3jlzz7nnfGedrlW1L9TkOI5T08pxcrkmHWc6ngv5jvNgDATQO2AZ6mv/S9px
fvL1bTDWbOQ481KOcw7rDHxbiGPrPcf5AcI+znOcQeDpBVmP4umDfZPtz4K/
BPdcx7lq0BvwvibuOH3BPxt8H2E/FPtzGdF/xNqAc57pc6yV9HGxTML3ZxKO
Mx8ybmFtxnMS9P3QYyvkf4V1FnTtiPMzsR6DwTXgOYUzm+LSj7rxexFk9AS9
O3iO4twXuLcydJw2kDkHNtbGxbsdZ8/kys6ROP9Ajva0tw44tMX5KvA1gO5B
5iGcGZSW7rehw8S46JSzJCF7aXc11il4NoB+GnefxVqF88MDx7lKOdBhKe5Z
BLkrIOsOvj0BerkvXAvNlrHwyQrguwBnGwy7UpxpzJcPiD915nnq38V8PtOR
nCaTdQ/3ZqFXUyhdiBHxeR16HAHPGayFOTpD27nusP0EX/66CbsH5go72kv7
nobNX4JvUSQfXIGOd3HfADzf50nm87TdUTxOM/26wS8Z7FeDbxF064iztdCt
0u66fycxIdbN4Gkwe1elpfswrMWkx3UXZTB+DuPbMsiag/c2ruJi032/QJ/O
ucJ8NdZTOJ8FbUxG9BGedGyMC8N7vjAn9oyFDbmyl7pQHmN7Q0LnqUO/jHJn
NGxampAOPMOVPNzTH43mL/qo2ewiHrcs5svwXhrT+UbbM6eI+dS4bOyK2OgM
DErBV5+Rbrs9yWdMMH5ejexu6LMnI94HPdnA84zPXfm6dxv2O0DfCPoeyK/1
lUczsBYE2pM203LwH9y9B3zdLI6Zj8xTxsYw81HrQHY3G17LLXeYQ5MsfmjL
7ozuLYe/UtD5W9CTWEusXrFuHQd/ZUzxRNx6mczXcEcB1k8z8kNVTL7jWmn7
5ZD9HvRb74ifdMbkAJx/H/R6R1i2SwlP0hgfpJdAj7+gzzCs+yPF0HnoeRC0
XiY37cpPjwSqm4wBxgLxHIU7VuLOGzjTE/uXQX8LZyrA+zbWN9PC4ICnnKuw
+rPMU4xcgsyLgejkO56QTPqI62iTPzVHdYJ1eFtGdN+Tb+lj1tNmq9vEjXhu
TAgf+m2i5fX8jGrTs9C3f6BY2uYKQ/qF9g623jEE67QcnWdOZWFLDPsyT/l+
1+rAcOB2B7xlkXJ0ksXwJxnV1FNp6bjT9Cy3ejge6+Ic3U3fZSC3Hu/bwVcY
6u6RoI1Ny58lgeoBc5L3EjtiWEQM4du2eE6A/gF4J+PMulD1njbyHHXfG1fd
Og2ZRXh/DDqfsdq3BvvrwOJz8N4OFSeMoTrg1oLvv8Wl58ZIdZ71vgr69ca3
LHT+OqHz9ZbL/+UheE9ArwNJ+YOxPN96zdBI/hscqV/dTajfMW+mGIYd8oQt
e9RK3FEM+j1XdS0W0130WYthODAuOmOme1z4kl6b1gzAWYB9rMzqT/9QdvUL
5buOph+xqbYeR5uKDYcKw5MxXBoo1zbDj29Ap7Hg3QXaYVd+qsNdQ3Dn47h7
BHiew74f9j2Sspc1hTE5PdR+YaBvuThTDvo3vupWBeTdCVWP7mJtwbMX+3uh
4sizfjcvo1p1E+cnurKF/Ydxx/ijrM9wZh/7hKd4KDRb2EtYS1lTv4Oe+5OK
IeY0saXtzBnmQjlk9PDkk9JIMc076DvasdPummrzCeeUTp7u5f0PWSwwR1n/
mGuckS4l1IcYN5y5OHsRt4PQZ0tS/X+B0asNF94zJNLsc8l46f8/LQ6J5Vr2
HtASkepafqR5i3WhBhg+FahHPYm1KabexthY6avPFLjqsZyBWFuoG/ViHbyc
ULwy55k33S1HriXlb/qTeBAX4sN5p0vqfztKzcZKs4U+XxUIj3PYr0vKH/TF
UewfTmnGSMOGQ6C5keJrSUpyruDM70nNKOz5U20GY72qsZpFPtZ/5vfPoB1P
yScTgEUBvo0P1Q9fylNfLkgph+mzLb56z1ZfuNalhG2Lq/zPi5QH5GUfHQFZ
+aAvhI59crVn3yBml81fnMFj1hdYn1hbGJdzGWd4/wOyqz3VKNYq5lCu5dE4
VzWFfZI9v95qzumEei7vKjS/uuxRgeb4lKu5o8nqwJg89TjaO9lT/rNGMmaL
bJaYY3FWEUr3NqZ/Y6j6XJ+WzAaTw9rFHGGt4+xFf4zNaD6mjWWB5mtizjNZ
mykpi3WcPmGOfBipr2+IhOsY8wtrG+Ntbivpctni8IT1P/J0jDQHdsB6wVV/
Z58nXw/jXeyrHtb50negzTmMo3dSiqWlSdWyEdbziSt7NPW9anPLPsOedNrV
YPWNMxR1nWt9nLnLmOQ8ctpmEtZK1sz2oXAkBux7jDnmPfv4UHy7jTOvgP63
q1q/KiP9GAusmRd9/XfNcpWn+XHd1ybQvwH/V84bDptZw8D3a0p5wdy6avnF
+GJcl5v+16yXsNf0snq42uoC/w84m3G2Zl9eZLbSxncjyXkxUI7ONgxvePo3
u4k1sDmDPZ+9nzEceMKy3nBmjT9rdb7Y/kGoG7ErsbrIs71tvqUN0ww31tgG
+yctCmXLnLRqQNbmQ8ortnnmZEK5mrV5eZ/p0Mfyib2V9fhISr7ZmtT8wbir
wTodz0XIukC9UvJ5X1f6rsH9g0PV50GhsGQdIp700zSrV8Sv2vanUqpTzAf2
W8Y27Wqx+ZS8nMPZv1jHO0XK/86RejnzkPlFbDhf0paJNrdU2T/RdPPdqED+
ot+o222boVu76gXsCe0iYdSec19KMcT4YW6ybrLuETviRazGZRSHFyHjkisb
6fNjSeFFrNaGupf3M34Yc8TA8xXHvq+ev9xyiT0ua75g3hRbPDTZ/xf/k/4F
FVE6AQ==
          "]], PolygonBox[CompressedData["
1:eJwtlm1M1XUUx392gYv33v//3v9NJEF8WDO05XqT84E2Y6kTqq2JLhMwwdmC
FbgVhvkikKgXydJm0NYwMyYD11Y6FXswhzoF3EzYbDMJfGHZ2pzKrAFSfb6d
++LsnvM/z+d3Hu78ytp1NQ855z4D0oDmmHOb0p17GTgad6416VxiunNX4F2N
OvdWxLl66AboEhRPIf8VsldDzt31nOuNmq0/M5xbHji32HfOw/BW6Fz4i9Gf
ACYznavBTgb292PnbNi5CPgY+t405/qBKXT/hc4FvwbMJJ4iZPqRn0D+OfAy
+D3YTsN/N/gLxNMC3gP/Af7zkBkCP4LOOuhhoB26H53zyE5Pmm/pSFc5K/dS
4H3ocuBAyGzMRnY1+p9gaxz9NeCnEs5dhP4b/lr4xUmLLQf9SnRvRSxn5TpC
zkPwR8Cr0BmGHwMuUZ8ioJF834ma7Sfw2Qf+LD7+Un7wH4UfQb4/Jd/gm4xk
e/EZxvaxuMWumr0Jf1ZguZZDL0U3C1gC/jD+lyN7gdgupmKbx28O8gMZViPV
6jL8LOAA9Fz443w7EbY31lvH8HkubDVRbdZjvzVk36LwPkb3Nnr5wEp8vE29
FmK/iRieR/Y4PdGOfDbyTdjrhv8UdBf2EvAKkdmBbD46O+DdjRn+GFAHXUAO
G4hlANstSau5ar+T+pz1DYTn8m0rvF/QacuwGi5E9yj0DXzPBCoC6+0+YDTT
enxj3H5F78f+ImKqRb+QGKvVz3wrAP+OeGdD/4iN97B1EJlW/LUBzWF748fV
v771tgPWgq8G5sDL4VML+Wcm7S01E5qNzdjLCtsMaZbakFnqLIfrxL4M+9uo
8QVifhf5tsDe+j7yn4KvwOc18Dry3wO9JbBct6F/DP3+uPEUo2IdBTLh3SEn
D39r4Vfir0I9B94D/wjy3cBU3HpQvVgM7AZfSA0msVWDjW+xf5q4eiPWW+qh
xpT8ABDFVm1gb3MeHx+Q23b4BWmpHKHHkGmkFs3EsxN7q8jxfth20gLP3lxv
rxyfjtuMa9YzkSkJbMY0a3nob0K/AZk+6E5qVAHvkG+5VQJfgn+PvcPY/hU4
k7QeVa8+Qz570V+dNF3FsAY8G+jG3iB0LnhO0nDNgGbhN3S+yLCeUG94xHw5
bD2+FbwEmb3Y24hMp+KLWuxL4F8G/xCZLSGruWpfmrBcqvE5Ar0B/uvg1dhY
71nMir2emteiPwicc9ZDr+B/EjgZtprWJ2yna7drh1Whv5kaPKnZ4Ns+eFMx
y30l8BHyxdTvVprtXO3eYs92r26AbkE7/l+cZjIHwJcFdgseIJODbd+zXF8C
DmMvmzgHI7ZbfsJG3LPZ107ogj8Er3m63ZoifufAr0L3NeAE/KnAdv1u+CvA
F8Wtt3TDdMsuBdar6uEB8G/QyUq3mnwNfsizWmrHaNekE/MZ7HWpJuTXm9of
0imLmU/5rgbmoluHzG3wBcR7Fnwf/MIMe1O9rb6Jp5pPBLbDtcsl80/MaqLa
aCfeg/49aruhDxiFN4/850cs910hy1G5ymcBeA3QEbKefiOwnlHvXMHfI+Ty
B7o3U7tXN1czqdnUDtMua0vaLtNNzfdsJ2g3KGflrjfSW6ln1buzkmZbPa/e
v5mwXaebMiNmN163XjH94FlPqje1U8qQHYP+OWQ7ew/4uG+7Tz03Ad7h2yzq
BukWacdr1+vm3MF+Z8xul2ZiNG49qd7Umz2A5/u2u7Szt1OLXeRfGrHaaQ+U
J2yXaGZuxOw/i/67KKZ74DPi1vvaQVngpz3bTeq5k+hW+vZfRP9RKnzrAfWC
bsCr4AeT1seagc/Bm3zbjdoB2gV5nt0K/ac4Dn0dPmH8fwOGwQfR6UjNgmyp
B9WL+g+winpUBnYrdbN0u/4DcwdNbA==
          "]], 
         PolygonBox[{{3929, 2458, 2457, 1894, 4506}, {4756, 2272, 2669, 2458, 
          3929}, {4505, 1894, 2493, 2661, 3128}, {3926, 1269, 2691, 2470, 
          4796}}]}]}, 
      {RGBColor[0.6748988300960506, 0.5408909626535641, 0.4223278442885837], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFWGtwldUVPcl9Jfd+j/PdBpXQGbRoxQeOZaYqJFgIYO0QUENyaQKlCdUZ
CwUtj1YcSVLo9A/kJoGCnfoaCSWggq2PCq2dtrQFHIXa/qgPEqgixRmrUqSd
IQq4lms7/fHN2Tl3n7332Y+198lli+5pWlbpnNtW4VwK66q8czG+L+KPUta5
yTnnfo39+rRz74GnFt/CKue68RVxsAZrhN/2g/4e+FdXie6MnPs69ruwDnmd
f7Dg3PgK7d/gxDcAPduxty5wbg11Jc79NtT+b7BOzUnmq+AvYb0P3ws4Nwu/
v2H2TMw4dwf4AtBzqp2bje/DlOylPupaCrmXg2cZ1oG0+A/it22gm+zseej7
GmSfC6XzfrvLaMivB8+fIGdaTvu062DRud3w1atY10BuA/Y6sa6NpLc7kg/r
sL8Cem4B3/9Az8Q6Br54CGevqta9SxnZ+W/srcZeD+iPsP4X3wR8T+J7FL/l
sroX+WttnWf0XNi1B/Y+j7Pfhh2T4YO/F+S3vZWy/xLwHgC9D/SESPsLwXtt
JL9eg7UOesbh3DzofNfprvT/2LR8dgF0R1Y+uQ97L+N8L+hXEvmV8SAf/UF/
ve3kM9L05/VpxY4+PxDq9yHoW1dQrj0fineqnZ2F9UfQdwD8XeDJ4O87oKsM
mb34ZoLnMtjdB9mXRvJBLi0/8K5TLce+G4r+B2TU4SsUlCf1kNEEvgXgeQa5
eid0LYL8UTH8Azk1sewlTT9Tz1qsOyB/LvJ2M2T041wj6A2gf+gVE+Yo+Wl/
T1p+247fduB8BFtuh58n0Rb4+VnmEPZfxtrnJYfyBnCf2yBjK9YzzA98f8X3
OuTNTevuw5HkD2E9hq8M+ijWMZDflNcdGZPllvNt0NdaLX1fzSsXmYeroLcL
e/8JhAEXF4QD+yDrYZx7Fr+3wjeD4OmtkKyy3Ws5fBRAx1YvW3hnxusB7Ndg
f7cXb2NO/MSAssWOucS6Zn6er9A+66c5qzg+VKH4z7Kz7aDzacW0z3KA5xhr
7jO3GWPGektRNhPHaDfr6YzV1CBisB48X8L9VoaK1yrDgCUp+Z3r+ErR/aH+
vhAqH4gdzOFp8NePsb81lL/rLK+aLUbNsGckEu6cxfpJpLMfR6qXAZPTXKUa
JlawdlmbvDvxlXjI2unHd3VKufcm7nAc+i7CuhPfO6AzWdl7Mi2bvxGLvjWW
La9ZztwUi/5CIMw8i7NLsC6D7R9AfhApN8/nlZ/08et2lnLesHux1mgr7dwB
vrfNBtbWHMPhTvCMw/pzp/y6nH6uUGxTOdXpRsTpI8qMVYukWY9HoXe4SjVK
THo/L1wawt+HkFdnwPdIlWLG+6738s8CxGJLIjktkDkpkd59BeHr1XlhLHP8
gvU79o37U9LP/sY+1wCZV1aK5n2Jd8RQ5hj3UynxMGeZ08xb6umu1B37C8K7
hfDn7xPl6b9g44JANcXa8tD/Jr7p0F8Gz3H6OVZudhrWTIrl81E4dy6W7j2g
+yPl2bFYcedZ2rORWJ7S2RmJ6IOwpVwUzwzwj8Xfp6F3frXqpiane30rEb0A
60Gv2nvJq3+zj98bqZeyL7Jmf1JQjl4XCTvrbGagDzZY3L8TCvfCUDnOXOf9
iWknKoVrjCFjea/h3FuVwv+uRHQ31jmJcma23WmT+ee5UP2LfeyPhqXvB6oh
9j/m57hI/NMT4Sx5yMu+Wl+t3vp9r1xtg7z9kfTeaNgwM6O6X5RVzjP3by1q
7tnr1eNW22ywCzJ34psIuYdy6lnEn8NY00ZvKajnN2KtxbnR+E5i/6cp1Tkx
dmVR/LclmlOI48SKXwSav47G6j/0LTHhd6HuPAbrP/FbGfyD4J1mvmWN8K7E
DuLGPdDdhXN/gJ4zefV+1td2kz8cK6bNhkv8GD/WLO9EWwdN9qMWO96ReMvZ
Z2ygfOxJ5K+5Fnfqo94Xi8L+kuE/ZTxmtc38Zp6vx12GE92hNlG8N9l9XzQ5
pVh132f79F2/0Ru86JFAsqmDsninFrOHtUVfscaZs6wf5i1tY39ibp2yvORM
1OvFcy6QzvVWa+NjzWdHvHoda+eCzU5rs+qZjDFjzbwnrpatf3GWe8/mVc5T
xBben3XEfk08Ya22We9uNZr7X8mo77LnXhkLiziDd9ssmoedNwby62j48B3Y
9xjsOe7VB0gT27cEsoVYNVIlnCXGNlqufhmy7yrK/juxLs0q/7fbfEBftiey
i7YSX04Fwn3OF6wP8nOeZH9eameJ0cRq9oEGnGuvFg5/fk/Ggvi82DCavWWJ
zfrX2Oxaizw5kZEcnu0wOZS3w+qJ+cDz5CMP+0qD6epIlOucAYnFHdX/t6XD
etl022POEcfpq3WRetke69ecs8o2K7eAt2TzPGVMNzmcF1psPzRs5Gy4wiuX
OJu02/1oG+cz8tOPGw3z6BPm1IDputRm4LOBfLPYzs+2O1AvseSw1eYngWQx
l+utz/Je7OGcJ9jHbwjUhzcn0k+7aQPxkTi5Emf/HAi7G7G33KtnfRCoh7HX
lG0Ga8uqLxAbWo2enxXN2HQE6indsfoR5znmBuPfbfVYG4m+KVEdM5+JObRl
jfEEoWbHAa/8fcV4fCh9T3j5r9P4v+k1AxyB/ppAc84Jrz5WMjt/6YX7v/Ka
j5hDd+P87Yl8Spx+3AsXDxdUuy/YLEYbRsyOhfZuJs4QW0kTy2/G/pQq+Zo8
rPsGm3tT1arrMYbtfLe1WA9lvnK+6MmqN10Rym8ziornUavfKUYzzscC9br5
Xv4bMtzeGKu/bML6cSDMJHbynUcM/Pz9W2Pv4p1eMY2h89qieJ726pfsm+zb
u7xmir8VZMOI2XM+EIazJ5+zmZt5xNqqtzzkzNtu+DDFbKd/JlsOs+/0FISt
MyP1tYusj9dav9gWCWffshmDPXybvT85I7JnlL1y6RHrCyX7HwNrmTMT54xM
UbMjZ7uziTBsv+XnqER2sVao45S90Z7KKP+ZA8yFk0afDpTDzOUPA+Uh6+Zh
3OmlrPLkB161xrfFaZsjiPOcUyuyyr2rDA+4z/cM53Tu/wz23AVZDyaKL2n6
vCnQG41vtaZQslotz5lH7O3sR3026/OtwzvQZp5bYW/qEctV2pnNyk7iWJvh
Pe1ZbG8s1km9zYqcned52V9ibQaqO9ZfmxfeDAeqp0MW3xo7xxziXEJ9n+kK
9Bvflyl7o7FeqH+X+Yt9lrHnjHlJIt9ejHXQa2bi2/1IIr8PJerrjB9nzs9q
1N44nPf5fxvWFe8zwfzM+1Mma6dk+MyYcP571+SwLvdavjHfN9vb7S82k3Gu
oS9vNn9ONBn0YY/XfLU7lC9I99qbaIrV0adBPoo5
          "]], PolygonBox[CompressedData["
1:eJwtllls1FUUxm+n0460s/3HghRNCIqAuERJZFGjAi1gRMGCbaSAUMGoyCag
xlhaKPFBbGlBqhEMkaIsUcSERVATlygYwbg8uLSACsQHRVSIoSzF35evDydz
zv/s957z3elXM79iXiyEsAGKQ29kQigvCOHe/BAWp0L4uSiEK6FTyKN7hLAi
GUIV+kpoB7YDoKH4jcV5IPyWbAgPFYZQDWXxX5IL4cHLQpiFPDMKYV86hEXY
JvGvIFY9336lgBPQMvjvikO4jVw12O8gVinfDmG7gRgNxNqMTxPyT8QYQb6a
yLF3U0MDvoOJX4RuBt9Kyb8x61y71Bv8WGwa0d2MTUuxYyr2SPJ/TuxqbBLo
e9HrJPyPkCOHrh6bWmxf5Nvk4Bp+Qfde1rW+j00t8mLka6h/KfIp4m3l7G6F
riPeEKiMGPvR/ZcIYQz8J9T7LLWUEm8m9ruxXQJdRYzHdC7E+xF9M/mXYd9J
v/3R1aH7G/vR9LCc/H2xaYS/nG8/wE+CVhH74+74JcSfgq6T2GehJ6hlTg/H
VOyuvBBa0c/Hvg/8Xnx60k8T+QeTr4V859Fvp/+XkQuov458begnk38dPtXo
X+dbueaJb8c1C1n3comcHeh3pXxXU9BvRVeN/R74fGy26v6wOwNVUVsjdlfQ
75fo15OvPbKNbFchf4W8E3lBsE1v5IHUn4i7piS53iRHZaFnTrNXRA2DqPUP
aFDGM6JZaSPmB/B7sX8SeS40ALln0rOm82zGvwuftznLOToT9AOo9c8i11pJ
ze/iP7PQZ66z35dy7DTyC8WeEc3KevJPJfYZfCbifzu/N0Lbs76rT4n3Dvwm
6BC9xqGJ9Lcbqk1451qJdyzrs9adDyd2B99+C96pL8i/LetdXEW+GmrJpHz2
2lHt6lF8Jsc9429Rz1riT8X2NN9a4b8tdi0l5JyGXIb9sbjPQGdRn/Hs9kc/
F/1JYtTGvAMLiT897V1LEnOa6sHmKWyH4LMa30bkUXmO2QT/T9KzvQL/p/G/
Ke2zK2FGh1J7J/rmmGdyJfrytGf/EjWWwbdD44nfxLejypczbtWhn08vM/Dv
XeD70e71IudB5DuJv1C2yGuIfz3xy+A7sWmLe8e0a5oJzcbd6B9PGROEDeqh
L7HXFXkmNAva+fP4b4obU4WtaXy2EH8t/pup/1zSu6WdakReqvNI+A73Y/t1
sbErn2/3o3seGpmwTa12A59lhe5ZvZ+FKhLOeSFtDNDs6o5b4BdAd8S949r1
cdT0e9w7qF1ckjL2C+OF9X2Q98Q80zfQ632Ra9GOadfWZHyXyqncfyWNfSuJ
sYjaLiKvRn4JuVlYLJtubCtOeyY1mzqTR+CnRp41YbiwfCM0Ic813pPxDqof
YWIJsSdE3g3tuHZ9OHJ9zBg5IjImCZvUw05hd8azfYKahwkboLxCY1RFyth4
unsXhZGtOd+1MPta9CUZY6PeEL0legP1FmonG8hVnjO2a8Y0a+pRvSpHFbnG
E+OumDFL2NWeNDZuhw7gOyMyNujN1Nt5ku/bqKOw0Jh4DHkLvwXdb1Rd2m+v
MFfYW5Dz7OrMLxC7IzJ2asY162vQHyb2GXyqqP3qtO9KO9UP/nDSsY+T53ts
50Xe7c+I/6He05R3U/UcwfY15OfyfafzyH8pZWxUj13wm9J+W3WHbaqVmN8E
Y+w4+PassVgz2QH/QOS3RZgn7NN/Av03KKXm2dhXZrzL6kG9HEl714UpwpYO
5EbkW+i3JWNMEDbo22H4UXo/enhnDhD/FXxmJ/wfYxj9rKTmgTG/8XrrhVnC
LmHAubTPTGcnn1fxnQ7tjfk/y8ORMUpYpR3Vrj6T9exrJv/Vrme9+8KYrqT/
Y/Tqvs8p6Gbl3Gsf6NGcMUnYJEzuGXlmNbs6c5297kR3oxo+gu8q8n8IzZze
lIOR30r1dJHaG9J+6/UGLof/H2sXS98=
          "]], 
         PolygonBox[{{4828, 2577, 2576, 2371, 4778}, {4797, 2656, 2475, 1543, 
          3295}, {4827, 2847, 2395, 637, 4787}, {3294, 1542, 2474, 2656, 
          4797}}]}]}, 
      {RGBColor[0.7487790816917729, 0.5668552683261822, 0.37889664207256807`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1mH+QVmUVxy/vvvvuu3vfH/e+mwk6ZmpBv8RGBXYXKDSYaQbD3UVLwSZt
1KZmAkGbkVgwxgYQWYwsZlzXAkOatMxYYoom0aH4UQHTH2bsMkBqNTGS6KgB
i9T30/fwx93nec99znm+5zznfJ9z97IvL+xdUEiS5P4xSdKkcUItSbZI8Lk8
Sa4oJcmH9DwmebXVv5kvypLkcs1PVJJkjZQ+qHmfdB6R7rWy0y55k2RjpbNW
66/R+PFWrykUPcdOReNEPQ/KxpR6kvTo3VrZmCL7y/X+Jsku1rv3mpPk7oL1
ZoUuvwsl239XsixNkh1tSbJEOkN6N1/4iyWv+aowbRGmftk5qveXar5W82WN
JHmnLAx61uj3zpYk6dDTVTLm2YG7JzOG7sz2mmLf71ST5GvCd1bjEo2vaU2P
9r5NONZLb1Sy/WXvgX1+4/NXCvajGr5MjDWvyP8n9aTCO07y1cLyTMm6e7W3
XEyu1589mv9eaw4pVl3SO63nraLjWJPNpbJ/SLJ90lsonWOS/0HzOdKZJN/n
a3xU8enWc7Psb5a9jcI81OpzvbBmG69r7RjZfUrzfumckZ/TNd8l+Rekc0J2
U61dpDjuld77Ze/ezDnz74rXsX629B4Xnj8GHvB2BT7GET2dZcea/CBP0CO2
YGb/a5qM4XDF53qr9unX3r1av07jv/TupNaN0/jp3LgvlXxObt0DituG1Gu2
S3ZEY4fkLwrPTzPP7xLOQa2ZKVmvxrvk1yydwQqtv0VYfyWbx2X/MT3bC9Z9
Qus+K/kD2muP9LfKznKtP6f53zT/r8ZjBe/H+kcKrpkVYyw7qucFyTfIp31h
v117Pq41v9S7L0neGfOP1bzvbbI/0GR9dPu0R49+L6u6nmpRU3Mzj5uq1scO
2OcrhoOa/0jvb6nY1lat+WLuNX+WT/fp9wTZ3lS3PnbGaf/1mt8h+TnJb9f8
ask3ys6o7HxKWNdp/h+t+6v2WSrZvLLn2FrcbJwTxjgmW8MHsOHvgOQDVdc+
HLBNOKqS31A1J4F5W5wNZzRZGLZVLcenTdKZKwxPZuYHapLax79fxF74ye+P
CuNzitOqNvPXkM56iuYjGtfqHM4lrjdy9VDUF/zxcLM5blXufGgP3kI+V+uf
qzsXv01ctcd1mn+g4vesQ/dp7XOm1Rwzr+Z6f0ubPdRiXsLO/uAM5mdr5oVT
Gk9K96I2605KDRKehXfeLLq21zc87xWWCXXn1fi662w4am21bCwPTmcv9oV/
LqkYM9j3Nsx1IxXnJXY4O7CfDAwHpXtAz5Vl1/iAnhnC0t7scyXfXtK6T7aZ
797T70XNtoPsoZB/LzfmuXXboP6pfXi01BZc2vBZLdT5/lPylXGndNRt91Vy
ptW+XRHcTx6QA1tbzXHw21DgejHym9wc5axqPvd/KKZ9uXN0svJlO/cEPKnx
rNb/BC7XeLTmXBmp2afF4Rc5Dl8Qs3OpOWll7jXgJHenlcwFKyJXyJlvVO0/
ceAMjwtzPTUXY4t8wxa1MKdkPvxTi+fURWfcXT+mRhTDnrL5/SnFZZ3W3pg7
l08H96J3Y9hJtfdm2X1CaytRb/QCm8P366W7Uu+2yPae1Dw9tWT8/ZJP1/xM
xfwKl4F3OLid2oH72Rv+74w8pM7HVc1pcBucArfMrPsenha+PJx5r9MVy6aH
HL6ZFhjgGWJIfAYz+9VWNa/0lOzbDzPPf5A5p3ZEXs2W3bLwLdC+36w7d5fW
zVtpcBd3468jfw7FXYZfnE85zmhNw2fUkO7L8HBqLi5K74Y21+lfWuOdnt6q
c/PzwrNYGHZr/m7NvHg07oyP1JyvY6PXIPfGFxzn4+HvvIq584Wa73reE0fs
kc/0Ei9r/5fa3NPMVGw/0+I9vlv3+6d1vrty9xy/09hbcc7skM2bhC+R3zfH
PTkUd9nX5d/r+t1Wcw8DB1wXOMDz88xYkIOHu2V71B7nwpmwris4Ce56LfN9
yr0Kj8AF8ABc3hO1vE74bhfO/ty9QXfZWBekzinuEHK/N+T4ho9HAudVwa1v
y6fnW1yH8B824cALyo4R8fmEzvSY5hdF7zMQOfzb3HVMv4B/+Invb6bOGXj9
fL9LfuITtX+eH47HnNqiHwDDvQ1jmpE7XyYFt6N3bfAGeXdni3NvWXAUXIUf
7wSnEKfOqC96XHw7onN+MHiGO4o1J+J+3KU1z2i/gw37TG7QVzASh1cT97bw
Enrw/GDUAH32UOTpweiliSG8wxncU7SNWWGHu7pSNF/d3bDsTo1ToyckB+j5
4W167PvrzpdbhX1l6rzbUXUfTU9CL00OLgkd+KAjzpT9uwNDU9FnQb9N3qVF
515Hyb0iHEifuCV6XfqFjugZyDHWwH0jgZP4UxvkF/zKGfYFn9NP/99/6igz
xmHhXxq5RYxHAzs+0kNzFhWNwzXXLXxA7dLnc83TZ8H1xI1+lHh+KzeHgxk5
e3IHwI3k47Hon3+WuY98NvP9wBpiMjb6fPp9uLAS3yzk4M64S/bWfW89r71G
owb4DvhN8Db8PTu+y+jf6XnZl3rHxtuRk5x5GufO+eyMMwILuMHzRuYaogeB
A4kXsYKX4edVen+q4jNbzdrc9qmbqyL30D8V/dKjoXfP+bPLzSkX5r4v+qI3
5S7cU3Jdd8e9ybnSe86IPuR9ude0a3wgdYyfrdqnzRH/3TVjPpy6L+Qu4E6A
a/iOo5cbiZ5hn/BvyF3L3899p4JxSeq8oAbIjTuix6bXHogeC5zcUXwn0GOx
/9XRG/OdV41zp//Gv43CclnNNXB5fCvhP/faYNicETUB153n5KnRJ4zNbZN+
vCvqC/8nx7fNRNl8Q3t9WO/uy3xPjY+48U3It+Hh3JwEf1Dj3CcXRw0Qc2oM
/+HO3fH9Sy9PTfKOsz0YdwznBn7uvr+nrhN6t/Xx/wf+D8Geg+EXI7/hqwsC
D9+sJ+JOgSevjD6WvOVbfH/wGN+X9O2cHTyKnDnn2RvySzLHqZEbP7lHbMGC
LrxNDuInPrZHLg1rzHPHg+/yA+HjK/H9QZ4QB74d+DZgr/8BdFlLNQ==
          "]], PolygonBox[CompressedData["
1:eJwtlntMlnUUx39cQnjf533e54FcYCu1i9ZytGUTyiwt2NowlVctLFrRtFab
QmRbJJfMDRSBpaYbZkmWuDIrwqhsuZyGgOVqUys0xeyyWqW47oD1+e7wx9lz
zu9cf79zeyY+VJ5YluycawNSgWt95zanOPcx+MqocyvizmVd5FxrknNPgX8N
/xPwC/C/h783dO5x+AXQH4E7zqoizjWBZmc4V43OuzjYjM69nnNH4fUBhfCK
gKWZzl2f7tws+GcD5zJizn06xrkbiKEMvB6Z15GfKlvYGcfZAPwowV5HLAux
fx58MWeb8L8V2WPI+kAuEBDPEb4esAdeEfozsFNOfJ3wDqCzGt1G7nAO/28F
Fqt8TCG25UCC+BamOTcPWR+dn7G1Itl81AJl2L0a/pXAdu64Bt212PuG2BLA
IPF9Bz0N25nQ70OXQHeA/8kduvEXBQaxXcjZt/AfxEYL/jYA9yWZjefBm0Pj
NaE/Hl9VxFdNfDnKCfoV0NPTTSdE9gj028Q4gdg+A98Bnhqx3KRwNsx7PJZi
bzIE3o/OQc57sX8Z8Y5D9suI5Uo5aMHG4XSLUbE2wPtxNDfycYqzZnRvxP86
395eOckdzUF5YHKN+GzH3xrovdznd85m4bsBOh39dvJTD16Jve3YbsFegvtu
DC3Xh/Se0N3EM4j9ncB+8G3ozE8zHelG8DEXeg7wArx/0ZkBfgvQBP0m/B3O
zpqhe7FxDFsdxFoBPQjsTLMa2Y/v24E/0ixmxb4H/X3od+HvQ/CXOCuWL+7X
GbMaU63pTS9GtzQ02Zvg3x9aDauWPWAKeB1nBdgeyxvnxcyGbGVx9iy2WqGr
oH8BlkI/g3zhGNORbn1otaAaawBfSDwO34/gMwGeg49VKVa/2eC1wGTke5Gf
zHv9ELXeVk32w8sAHkZ2hPcuRn8J/vPR7wC6we/CRzv8qdBzwA9HDVcOXkZ+
Aza3YTsHm+vBv4ja3R+AvyuwnCg36nn1/rzAfF2KTDH0pLjFtgmZ2ege96xu
k4ESZIcUvzMfw+BVUaudJOjbQntTve0W7O3GXi1n74APEHMNeK5vuHJYj+7d
2HyUu/+KzD2B3VF31Uwswfc/wHT5x+YEdEvhr0yys7XIT4vbLCyGnwe+A34r
9FXwn4B/BTopqXYm3pPAT0l2h+Xgv3kmq1lSifx43+6SD/23Z2+it1FOF6jW
OGtOshrfAp3lWe+NAPn4f5GzV5OtJreCL6a+zzirmSWZdgfdRTFNBG9E5mZk
K6Dfgz6ETA39kAd0gp/QTki1NzxILF284blku8MqfJ/0LddNyJwCPx+12fYV
8JdvNaxa1k55Om531F01P8+ifwdnk7D3GvzhuPW4er0H/lh89RHDNRHrefW+
elS9qjPxDiDfh/wA8Y0Q31DcbGnGPaf55lkvqAfmByYj2dPABfBL8DETfgw6
G/y/mPHKuNM68GXo7MJfI/BBpoFwzQzNjtkx01UMiqUtsF2mHEThrQ4sl8qZ
ctcCfWua1ZBqqTi0XaOZVMdbLSD+WvB+5sF67C/ybBd3Yq8qbj2h3lAONoE3
+VZ7CaAZfB86pzMsh8rlzNBmrXKsXGfHzJZ6+g3Nw8B6Uztbu1s+5Vs7VrtW
O0u7qxj5anTPBFZrd2rHgc8NR2d1uu3OOt94mjGaNW1xqwXtLO0uzTjNOtVU
t289rd5OBU5w14K4vb12jnbP5Z79K6hGVCvasdq12jntns10zXa96ZB2Mffe
nWE1FuO7KDDb6vFEzGpcta6dU4R8b2C1y1O6HnDPt1mgHCzjsCZmd69EfqNn
/zJHM8y2/mm047XrNaM1qyO+zWrNUM1S/WPoX0P/PPr3kQ3Z0j9UD3fJDG33
aodrl38+urM183rAW3zLrXaSdtPJuP0L6J9D/x7aqdqt2lFd6tfQekc1fRz8
lcBmoWa2F7N/tVJgKMX+2f4HwdBWBw==
          "]], 
         PolygonBox[{{3418, 2443, 2482, 1570, 4209}, {3308, 635, 2824, 2477, 
          4206}, {4212, 1573, 2657, 2443, 3418}, {3309, 1570, 2745, 2529, 
          4801}}]}]}, 
      {RGBColor[0.822659333287495, 0.5928195739988001, 0.3354654398565525], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1WGlsVFUUft1mOvPmbaMhSKCkCCQQFwJdhB9sNSaydXEJW1xQQlG2tCQW
tKKAQOkiiygVBayaGIOiLIKJmNQCgmLiD1MLLqigATdaDVAoot/X7/jj5dw5
79xzz/qd+yZ/zuKKRZmO48zLcJws0EG5jpOPpy9+zwI9B1oI/pkcx7mQ7Thl
EI4C8VemHOcH8GbhqYDMbFs/hPVqz3GmQ+FZ0N+ytK8W/EbfcUZhbwPoXtdx
Ung3GTK3Yd+teIZCZqet+2L9Pd4PyZTOy4HWB3DuGewJsP4JtBq2HYP8Nehd
6OqcZk+ys82eq9BzBU891g0xncezVsUd5yLkerB3M/zdhCfC77mZkl9qcai1
WIwFvw3nTc0QPWzrAtg0E3RjJJs/NX5zXHKLcFY7dBy19aPQcz1H9qyEfE+O
zpwLmWMmMzUUfwrokjT2wu409LflKk8H4MPghOPE8BTgnISvWCdBN3jyuwcx
2wm9uZDdmiHK33sc+cNcM79FoeJWAfmaLOWbOcs33QNx9kaLD3P9dkzxYqyu
YM9bkL8KWh6oTjaklYNa081cMC6MyZBA+aqHzBNx5aME+09nSYZ2N0J+KvQ/
A/nryOmdeL8M8v2yFDvG7ZuYbOXvDsh+jacIz0s472682wLanKuYMm+0faPZ
TN3TTD/9pM3MH+v3R6uZkkDrvJT86a3/QPuph3X8J844Df7EQHoY/0rwaygH
m58MVKcbLW7XTCd1M5/NZhttbLbch5HqpH8omxln9lkf5LUb+h8Plf+bcxW3
o55yOxd0Lx+csz3U+0HWy03gz8fe50GrEqo51jbPZX3SBsaxxuyfnpJO6n6O
doD/DtavYL0Z63K83wf55izJUQd1sW6roT8/ppphD+XFdNYO7C3D+lXQ3Vna
Sx1ViO158Avh9x5XOua46qGU1QzPfB2yb+Ldy9g/hbGjXZHywrpbD9ofTxIy
++PSuRx7/Ei5ZY9OwHo0+HWh+n57TLhRF6kmWZu0i/rZJ9viyhPjMw4yf2O9
DLYNy9K6Cfx9kPnVzloBOsCwqytUrTQhb3FP+raC15KpODBPN0bykVi4I1v7
uZc5Gmg604hDOq6e3YX9D1DGU+7ZO8SxbaHik/TkO3t2AN59GSr/11zhDXNc
aThAPcwd644+svbWh+qJ8ZH86G++sJbZU/V4152S3wPh1+dx8WlbqfUU41sQ
qVZZsxUx+duAvUvh1ySrj+5ANcnaPBYIg7ekhCXEbWLGfMN/1kBNXDhAfxlv
1jDjMyKhfKyATAL7h4Kus7iOtb2t1ivcS9tZT6ylVsRlK2sW9P1AWJgGvTdU
nMo94WuhxZN5YOzoL/G6n80UxvZfw/P5oXRS9z2h+KdS0kWdZeAdgp6RMdlA
bCBGEE84T+ZbzefbzGH+LmN/A2RWY+/DnnKdAF3g6/0/rniMMXVmxtWzrDWe
Myqm+DB/5PViBHjtNjebTI4yI62uqYf5YF5qPeEv478T8VmY1gzohD1vpGT/
XZ7so52XUpr/1E2/uOac5m/2HSnzVBxT7hrN9gY7d5NhHjGTNVVqWN3jaU5c
A+3O1UztpA85ygVzkgsAOIRnHPKWA3owKb9q7B5Saf3AuDF+hyF3OKmZQFvo
O+WPgF9i/AWu5s2wSL7SH/o1y5PNzM+IHN1d2C9LXdVoMeSLImERcY73mtfs
7nEhVAwZy8u++H9hXxSpHznzD/jym325HPYcS6oeT4FfD/lfIP9ZWv20BDLH
0+qvD0HHQHYQ3g/H7yKs81z1CmfcaYvtB75qopTYCJnhkClMqO/rzRfWUYPl
5zhkmpPSecXiXW/4QD2sqzaz52ha5x83ec5mxp9Y/C5+nzOMy4DM+KTw4kRa
tXoQ9A+834JnUbYwuRc/M9T3PJcz5aIv3Ox0FdsdZnNrSnevk4jloUj3vI8t
D8Rr4sZa/J6B9RrQ3ZHuIu+BvoDnEaw3R8LR/SbPvfsNBxLWg8TdAaHmxKlI
OSROMb/0rcD2TgtVo6WgXTaXiUcxTxjaB/4Wg3eH3RFJ+Xum3U8YO96liNG0
jTXfYTJcT0L8Rrm6r3G2EYMnRupX+si7Ivu+N5cZ2ldk+teE6sO1oe4arEn2
3hewaQ30fpXWPZt1z153PWH6TsivdJVz3jv4PUC82g186MLZu2gn6NOu8GhK
pDsN/QuwLg91X+K9lb1Lec6nx8DfBT9O4ty2SDOUs5T38B7DDeaAmMzaaHFV
y/e7woRii+GDNnM5e9Pwo6+rPeVYj8F6QkL1fj2hmmffcD4ttTlVbesqWzOf
1SbD+n7K07zg3GCvsP9Ze8sCzewZiEcd+Lfn6E7SklQfsgdvwbl5SWFbWUq9
w14stfWL8HdySr3fiwEx3W+oh/OW/cYZtDgp/CJGkZc2/oG0Zkw26KpQPcXe
WhTqPvZ7Sr5UmY/EY84CYtpEX7O/hLPF17fTTaDFgWSKAt3/OEPXhbr7Ek/6
g/cs/EpgPcxXroj1zFeXK2y85Otbirkkv8e+rxjHTsPDw8j5fl+5rYTu5YFq
jLXG3qfN7KmfXcXkpK85wN5gL8wLNH85h+kX73U8a5av777ZvmIwyXwn9h+x
GI5PqC64/3xCfcWeWmGzhHOhw1dez7rCyTrLC7/LPvn/+xnvPrJ7Q0Wo+8F9
ofCA+M36ZW/yXkKsYD1mW03e4AoTiYfU0cfqdoO9I5+97lm/HzW85RxgTX1n
deWDekn5dCKh/dxLTP02qfjmm82MP3Gp1b4ryWuzNePabnf7IvvOqrX/CtrM
X/I6DIuKbV1kONdlelptTdyjTLfJt9uaPctvQuZrcKA+YV822n25xWYQfR5s
36Wc8Zwto+0eMcLkeRbjy3P/A5I0Ihc=
          "]], PolygonBox[CompressedData["
1:eJwtlmtMlmUYx28R3uA9Pc/z2oxKdCxq2jq4DKk+JEhrK1DxtZqKK6Nc5hQy
2kKMcFp4ADS1A6gp2mHVaBhZ0Afakji4cqs+WNLBmtayk1hTUYj6/Xfx4d57
/e/reF+n580uq0iWpzjn9nFSOR8Hzm24zLnhcc71e86NxJw7Md65pfBegD7F
WQj2UDoJfRz5ZuTL4bdHsJFwrgv8BrgXPAB/N/hO5CdAb/Kd24n+VvBQ1LmD
3D0NvzDNuS/hTUT/M3A7+kfRvztmvpLgA+CamMWWC34G+sq4c5ewVw/eD15L
zAG23gdXQ0+Dn8HDDmGjHX4Y/DvyNfBXYe84eAv8dSHn+vDfwklCN+BjKfLf
hZ2Lc/IzeCNyndAHONPBtcj8yu9pTjZnCnrHiL8e/gzoDdjq5D4dPIvf27lL
xWcPuAn/BdzFwI3gnDEbk8EF4NwM81EWsdz28iafXE2JW+7+wdYscAX+bkt3
bjGxxMFf4bMhZDltAyfR3ws+h84e6Fxy3o+tXu4C+KP4OIi/xhTzuSZitqeR
oz7oj7B/r+LirhzbhcjewP1cfM7hdCbsrbdw1sPvh59Q/PgPoTcR2T/Hcqe7
J5DJDpnNI+h+H7YcKTeyqdzVjuVWdmPg+WHLlWrQBX0H5/oMy+kWbBxGrwP7
E6j3v/jLVF04gWe5rc6wWHLG3loRttj1ZtXic+6HxltN3k6YH9GPob8d/DWy
g9hf4Nkb9Vb1eAe8XnAteB/8c9Qmk555EJwOngpeS76rkN0PvhA3G7L1CHcv
kv+dgdGqiWqzEnuHwKexMRNeHWcR+C74o7xtENwKvop4SzQbgfWGekC9MBX8
aIrJnIXODcxWFmeVbzOiWfkPnQXgXM5J6Cq9H14ReBn6w9zNgR6ImuwoJwnu
kQ/iaCVHK3yzKduq7we8bxk2msZZDlrhLfeMp5wqt7MDq7Xq9zq4GZlicDP+
30N3r2+zW6KcQr/MqcfePeBXoP+IWi9eRP4K/L2JzjZstXEq4DdphlPM5i7o
Ffi4Jt164gtwKf4T5CbBe9Z4tnO0eyQjWdmQrTr64ig46dmuUA+oF/LRX4et
eeBKcJtnvVYDrgYnPNtN6kn1pnpSvakabkS33LO+k40i3tLN6cP/D7znEm/Z
zZuWIP8WdxeRPQ+/Afkd8J/3bYY1y9rRXYH1gHphBPm5vs2sZjeP99f5toO1
i2WjFNmXfMuldmwoZjlULrVDM+O2c7V7lcOH4J/nroV4pmP/SWLJB08CZ3Fm
QycC2yXa8VnYDqPzWort+D3gV32rpXZqBF5h3HQ1M5odzYhmRTVRbfI4v4Vs
BjQLHfi8FnuPY2+IfLR4NguaKc3Wp8i/o12GTDd0MScF3gHwau1/8LchmwnN
hr4B+haoRxeiv9G3XKkmqo10pKueK4G/NW62Z4Ab9a3xrDaK6QL0/b7NxnL4
90EvQeamVNvB2sVXc7rT7Bv5SdS+Kfq2KEcPx6zmqr2+scMx6yH10nXIZCA/
z7faaiY1m/qG6lsaRf5y6FPUa3Oq1US1KYoZTz2l3jqsHKVZDIplUdR6X9/I
KuIv4ZxJtR2gXbA9sG+J7nYEVnPVvh48gP0jyFem2X+A5/C1Gv7NaRbDN/C3
xaxW8infmhHNima+AHuVEdut2re3gn+JmG3FX4D+YMR26Y2aGfDfEdudwovj
tiO0K9o4PdDvxmw2VPNnkS3xrRb6xs+HHvbsv8tP6I9AF/u229bDb0F3U2C5
7oe/Wf9l8FGaajOoWZRP+dYMnI1YTMKqcWncYlbs+g/xM/xdY/o/akaitlO1
W9WDK+FPjloskpGsYlAs6vmn4E+Cf2KMr1hyPItNOVfuG+LWi8e4ywN/SH7L
wrYDtQtnesbTN1/f/gci9t9JNv/yLSbFppk5A/4fPA1TXQ==
          "]], 
         PolygonBox[{{4815, 2478, 1567, 1569, 4803}, {4203, 1016, 2624, 2856, 
          4805}, {4772, 2346, 2713, 2658, 4790}}]}]}, 
      {RGBColor[0.8965395848832172, 0.6187838796714182, 0.2920342376405369], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1l1mMVVUWhg813Lr3njucU0lbYWiTBsohPthFVYEDIGriQBUKRhtxIhIR
FJEg/YBK7KQdqgrtbjUipT4oilPU2CiFMZoIdFUROtGoUAoaExPnIQaIiI0h
+n/+qx9O9r57r732Wmv/61/r/mnJqktubkiS5OJxSdKo8a00SQY0rtB4qJYk
pzQlyUKNr+h3KoH9eZIcbU6SpVpfpjNva71D68e1Jsm3lSR5tSVJfpZMVzFJ
juj7QXI9hSTZpEvWS35U8idJvknye0Jmp/SdWkqSfq3fIZlFuq+s8QC2IKu9
jbJpsJok6zR2Z0kySTL3Sudh3blcv9t0x/WZ9XWFTuyaV/C9jD0x3yi5uZo/
rLHc7PnjDbYRmS26Y7p8mKT5TZJJJTNDfm3WekfB81Xya7zmR8LmQ7pzWN8u
ra+Tbe1aK8q2vVobizh0xbxT3+K64qi1C6T/Cfm1Xrp7NT9J934kvSdr/EX2
PK95pvGHzPO/KCZfaG+zbPhK4xb9Xqmz16bWy33E6MnU58+rOn7YSQw7ZdMi
2fa1zp4nmXat1WXLM/JxkeyZo705krlF4zLdOdLsd+IOYrsnfLlXtgxo/uE4
x2R6xKdda6P6pup7uuo33ayxmvtNJkjnZ/r9X61/XrWN+DdNet7NrPdGYWOo
bL3EeZ10X6azXdI/0OwzyO+U3HrJjWm8XnJzi8bulVVjDKzd1uqzL8vH9xWH
70rGFPYdHed3mljw2q3SO6j16/TN1PxL2Xy79L0uPS0Vy/K2u6XrXK1P1ThV
e59IZ1vJWAJHT2nvvfDl39KxsNF3YfPkuIf4fqzz9+jMTsn0FG0/fmxvtg3E
fEz3TdDabI2Z5Eakc0nqOB8KvA3H/FKdO1t7bTp3UPLX1J2nz2k+KnuGdee5
mqe5MQAW1sqWbxsdtznaO6bxc+n4tcl7a8bZRt5oARgIrBzV2JOZCy7WOL5k
nBFH3m122ZjgHJji7FDN+lZK/lHtDRccZ3hlJObgA5xUct9PvIjV/oIxj92X
pdY3Rzb0F43DoSbHmHflbe5IjceXhIULM+sA1+eEj/hKbLCf3MPfCQXfeTBy
kFzsRafWFifGMjwF71yUmf/mVx2/tfGm52eOJTzaLR3zJd8V+cEcm2Zp7NV3
mr4tVfPNI5njMRjYW6C9S+IsObikxXmHjgWxDkaQZ/+m1HkPR7ZH/rVHrIl5
t3wZ0HeV9PTnjuvXBWNxduB3un4/qXyZrPkmjXdn9uGnivnjq0JwSO75NHg+
t541qc+jh9z7Y/AzPI3N6MH3MxscU+LJ3QPBS8SbN8aHw3XHfEj33lD0HrGG
dztCT2/ROQNHL02dp1fX7fsJkQvkPf6SI2AH/cgRP2yaHrxC/sAtL7Q6d0dS
czV8Ct4mZrZ7p+wpVXwGXoH7+oquVWCwP/iQuzcUrJPcBW/k5L7MbwKXzKqY
/6kD3wSfw+u8KfkPBo41mk+oWe9n1n1VzbaQM8RxJPgWH3nzkcB/X9gDv8O1
uxu9To4wh4uo7X0hs6zuHHhefq2uu+b1yp6Vuu8Mrd+s8cHcOHwg9znO4/up
BduKnXfKztcU2w9anS/USOpjoWpfNmj/r6lzjroHBqjd/8/xzqhf9BFtgbfu
qOm8BW/DG61NHVfiq+t+z6XTS64X8yu2Hz/AQnvkwn3BjXDkSOQd+TcW+smv
0ZDfFfW6O3qJWZGv3A1Hd7TYBzj/tLj38XgzZDYFR8FVw4FH8ABHToh6PC/4
Ex49XDM/w9OzcuuZWDN/wr+810ira9UKyWyLuojOreLahrL93xN8gC97wnbq
yMu58QOOVrWaa+pa26c7/qP11RXjG2z9SzEZL7kdOrtda5Pkw32R12PRY3QG
71LjhqL2ko9wzXOtjtdWjcuLzmHydx41ITW/7MgdH+IEHgfCR3A9MzjiIsnP
oNaVzNXLQ8914SN+EfOOwN7iquf0pNSfE1LnOPdzFny9HlwBZ8wsu37DWWCJ
+IMPzo2P+kXs+8K2u6rOIeo/suWQJ1+JFTbfHz0VvdXfq679d1YtS74gjx3Y
gx3vRKyI2ZXR99L/0nfCbTOi5lMvicuOeCM46dHM/epg5jc4vcl3fy9955dd
k+Eh8hec7I4+BB+m1D1/SPrOrrv32xhYIBal6LPJxfnaf6TmOj5J8jdmxiF4
nB39yVmxjx7etVhzXZwr2Y0tjhHvhQ/bI1Y/Vswdf8ucI/AqeXdFk/VQIxbG
f5DLNb5YdY9erBpbxO1Fjbe32E9y7ETF/UjJdfqtiu/epxiemNse7KK2XBH6
eduFwYdnRAyJ1TmK3ympa2Mtd76QN/3RaxDnXXWf5Z07A19w1P6Sc4Z86ZSe
P6TmwLaot3Aa7/Pn1G/0v7pj95hsm1b2GeS35vZtKPceMrwD2Nwb+DwUfIXv
o8H/1IHN0XsfXzPWyB/wRr8wHD3FF9LxZjn6E9nSELlJnYU/4TRsPyvs6Q2O
he/+WTdG9tac+/Q/9D30UJOjH8K/cvgIluFNOJOeiTw+IL9+lp5ndddrFce2
L2ropzpTSs2V1CRq03LJDtb8dj9pvq/keGEbPcIN8QbUVe7CnrxurjyW+n8F
fEVvvq1iHNBr8Obb4t2xsyf68Cz2VujOKSXzEVzEfm9wHVh7o2y80RfjC7gC
v8/EnFqxNHxvKRtb4IoYzQ09Q2HPP6qOL3WFOvKlZKeU3Qv+oq8v+k/GKTH/
DUZa63I=
          "]], PolygonBox[CompressedData["
1:eJwtlntM1mUUx58QX3gvvO/vx5YEUVsgmfMPZwnOijTduhiouG6m5WIrLBQ3
7Y9SZptagXSxVqH2R1Po4rKZJdBWW2Ay12WtNVpia7UuatqcthTDWH2+ffnj
7D3nOec55zzn8v29VzWuWdKSF0Joh/Kh1lQIR5IhbLwkhJEJIbTFISwvCOGu
iSEkMyFUoD8GLcGmAdqXs64Vm03oR6CaRAjXcHdZUQjNUQiXIz9BkElZ5OIQ
ri4MoQr/R6TjbAzb6dj8xd0v0a/Hfx++N6NvQa7Gfin2aXJpTjvXk9yZgtyF
vhLbKmgC/BHOOsllNTb7sZ2FXI7vrciPIc8n3iF8jSHPg7+FHC+SWztv6Cb+
IigFv4Zi9KK/NOs6lOLjFLp3se/mbjXyU+S3Gfke9M9wpwv9Ds72o78D/U74
V6EFCfuU75nQIPwhzrLkdhB6GrmBOwPwbxPvIWLP4A3rkadiX0e+A9iU4usV
6PU8++yMXHPVvpc7Mb0Yhd7Edi53/obfS01qqU0X/t+BLyDfeu7OIOcV8P0Z
++6HLsNfJbX/DZqZcI/LM/YVEXMe/hYib0XehbyX+4u4M8rdJs4WRq6Zapfm
bDG2udhv3UmO5eh34bsAuinpOelBvwHdndgPo28gxmnuN3L2Ero5+CtDLiH/
Z+nfk5FnRTkol6nYHEVuRb8K/XLsv0OXgpbBvxjbl2qu2lfh/3C+Z7o9ds/U
O/Xge3Q5qApfs7GJ4Pfg42H4UagW21nEqCf/ivGZuxJ9G7XsoB5XwBdmPNuj
UCX362LXQjOzkbtH1cOE33wA3bXQ8YRnTLO2DpsTyBXIA/D9UGewzXXYniLm
H1Ap1I7NeWLcR26Tid9L7GHF4/wG5AHko/T8taRn4Cv4Ps7emugZGeHuxyn3
RL1Qz5+npyuCbS6gX8udukLvUA2+J3M2H/0gZx3omnjPWt5agn4l/Er0/5LP
Os56eM+H2LQlvdPa7QfT3s2D+C/C35bIcRVf2PEFtj9BZVA+tD3yLmlmNbvJ
tDFK9ZLNR/AXk67/dH4b0Q8mXIP34Z8rcm20Q9qlH7AZThqfSvidVOxd0E4l
sE2lnUP+eI3v5z0bgnfyAfjbIs+CMOhW+Lk57+5Szm7OGeOEderhTN63IDJW
qUa3w/+aNvZ8KvzDdnHOsztEPbeRy72cTcv3DG7D9lzGbxPGCevOpD3bwrBz
2J6IjY3dzNPvsXv9IzWpG+/5mdi7qR05GxsjNbea393F7qF6qZ3QbmhHtauq
YYT9qqx3oQf6h9iPp40lwuxa9GNpY49sZHuBsw8KPLOa3aGUvxn6VtRwfjbr
XdYb/4Svi4zNwpB6+M6sa6mZ3p41JgubPyPez/SnTzOHv178bYqMWcIuYf4n
2Pah+2Z8N/TdGcIH4v8Y8i38e+TXkTBG7IuNOcIefZP0bdIb9VbZfK1+EfPz
CZ75LfDHY9daM3Esds/UO2GWsOt8xt8GzbRmu4WY1+d757X7d+N/T8LfnN3w
eeTbkzJmzibR6ti7o53T7r2cMZboG3M4ZwwWFsvH6cgYIawoQ34EebjYNdDb
H41cM9VOb/ilyLNxIOVYmhF9Y/StEcYJ65rH+62cVwv7Iu+2enoy45qr9tpp
7fYcfE1Je/f0n+GFImOPMERYMg3djSnvmjBfOSpXYURTzt9UfVuFoW9gn4mN
Dfrm69v/H9XoHkY=
          "]], 
         PolygonBox[{{4612, 808, 2444, 2663, 4791}, {4769, 2338, 2818, 2698, 
          4802}}]}]}, 
      {RGBColor[0.91124917515638, 0.6481229378909502, 0.3248724429847782], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVltsVFUUPe10Zjpz79zHCEJFjMVEYiJoSzXBgCi0lZaEGv2pBlEGaBur
aD+whgja+NFaakRE4UOaSMVgRCJaiEZFKAX/fCQtTzEmyqOSgLyUEmNdi7UT
Pm72ufvs19l77X1OeeGFx1YUO+cmFTmXAF2Qda7Kc+5iyrmZ2MiCuQB7fb5z
Ofy/nnOuHrxD4E0gP+ncFPDnYL02dm64xLn7QueugbcNNgLQ46F0aaO7FHL4
ZsBXD+gGyByATnsGfuF7i/Epcxo2D2LvRfiY68TjHuWp12MyeditAO2G/88Q
+3OQfQZ0Bv7LEeterN+BzChkBkPpMA7Gf9LWjGcj6FJ8DyDWasRTwPcf9Hfk
nVuE9aegzaAt+KbD/whsroRsIXJuGb7x4C2NJEtd5vAS/BXDxnzk7W3Q+8F/
AzpPIqYh/J8HfwZ0liOOWbDXlJGPLsjUp51bDRv/IrYWyEzEujmS7UUWWw/s
TEI+5gTOdSQk8xJ0OxOyRTsJxP0NbPWBnoWPdvDGB6oR68PcfR8qzxuwvxN1
OG5xNiK+22FrOfz+g/0RrNsgP5BSvpir/VhvSmu9DvHcjXgaA+Wd+b+KOlRC
/zfo3wv6hNmkbZ6vLq0z9sP3FshcRixt2P8I/IXFOg/9dkFmGHY7YX8okL0G
7K1yskE+7Qwgvi5bE3fX7IwjsWyeAT0cSOYQ6Ofg5RHHe071ZGxc8xzEecZw
/iG+xYwzFoaO4SzTcMaxjOrKOtA3/bIn+ky+gHVZQjV+mudIKu8TI/XYXl+2
aHMF4qnB+gpk5oHug69OxDcQq5ZTof9KkXJSbrVgnN0pxbo1Kb/sR+aDedlX
JMpcc73HUy6f9ZSDesv/uVh87hMjzAntk95ka8b9a4nsPxxq/RDojzn1Uoev
HiI2WEPWjbFSN40c1QJbDaDvWx8R64uhPwo7T4EeitW/7ONVWDdBbxtyst76
9wBkFpWqrqxpLhb+lkDei4XLFXnl+wj7sVgxMbYHEeN3vnLO3LMHeM7KWDhi
DPQ3G/8XoPsybK6GTC34B+G3Hf9/gT8L+ymse7KqB2sa2Ax819MsWQDamtec
Ohppxpy0mfl1RrmgjwHIrAbvg7x6iPGzj4Zhc3dK+KFP9vP1+sc6V6unujB+
YrXD8sz61fnCyGuRsHk8K3xOBy7a0sLobF9n/Rjnqzf5/kDznv4587neb/Fw
5s9NCmPtWZ2B8U+GjkN+bgsk921Suudy6oEvYLsX+4+m1Ufc32MyW2wucT5d
9jVvJgXKJe8R1nd8JPk92N8MXoPFz7qyR9hTzA1nL3uXPbgmJRnWlDOisUiY
YG595O/mSLxKXzlpsNiYb85q5nxJJMyf8VWLmZaTU9DfCvnToC6rWcm4WVvm
iPUl9umL+M8nFAf9MQf0R1/k/5zS3nrk8tas5jlxTXzzvmu2e4Z1J51qGKhH
7b/C+qeceGFG9WN/F2fU45yb9EG/JxL65/pLT/NyGeiaUvmqsLqwb9l75HGP
/UbsEsO7YuWJ8TO3xEKvzce7kKMW+HgzJxs8N+0wv/RZEWk+9Zs83wWcG6wz
7/Ruu8cPQ24Q/CmhfLPvmAfe9zUl6qvHkadZnvJBfLH32Hec2Zzj7IWrSfV/
wTCy1PqCOWONWCtiv2B3B3EzllAfEstjNv83BbK9MdCZmEOei3XjrGDt6hDz
KHzUR9IjnmmnHPk6hf+SQPnkeXiWPsP8FeRmMFLNDoAe9XW/1kbCV978hXbP
s76896vtXfFIpHPOj5SnGssV7wred8RRWaS6sD6Mg/FURXoDMR7O1Oqs7jDO
B75PdiT0BpsMfl1W/uaDVnjC2kJfcq/CTjYWtkZzN/SpSwwQT5wHM22Wsad2
epopR6D3VigsrQvlp9KTrztCvflK4We7vZno8xfsVWSVjxbrR9rke2HY3qjc
H+eZTEZYIU7W2puR+CG2iLGULywSk+xZYmqX9duQzXTiKwolE4Z6w3E+1OX0
tuo0zDD2Moufb1/Orh67g4g9zijW56DViDOX+Ftl9871tZP/WwzbxeafZ6Tu
oMXP+/MeT3coa5KyutAf/VaFqnPB/PKN0G73L+c7ccT7gZjtsPh4DvYAz8L7
oavkxoztsHfX77Fi5Pzg+2XY+pdvVvqpjjR3N5su/TMO6hDHJ2wmXA40Ny4F
6peVdn/NszfPefi5GMjOhUDvRc7wP2z+kM/5OS4Sxg7zPrQZxfv2T1/3YBP7
KKezn7Va95ru84Fq3gq629eb6W/k7c5Y75U0+D/A1hXk+lhe774WwzCxzrNM
gP1P8qrDdtBpSb23OHv/B2wIrgM=
          "]], PolygonBox[CompressedData["
1:eJwtlVlsVVUUhnfH29577r3nVBDLYKwm4gOSQBsTEmkLAYQ2UWNiHKIChRYi
gjZGa2SQ6kMLoqIi8uAQCjU1KolaSEgUtFJ8c4iU1hSNiUKpD4ytUmPE78/P
w87591njXvtfa1c1PXnfhsIQQjurmLU/G8Juvm387AZfzoXwHoKFJSG8nw/h
ahzCodIQBopCuIC8LArhOPLFrE3oDiUhpJHNw/4osvXYdII3FYTQwL4yE0Jj
OoRL+FhUHsJK9t+U2uZT8D58dsg3/9rYTyHeL+wfxP56cBkxVuFvCPlMYh1G
pwJ5dyqEM+yH8R1Y29C5A/+rkT/PrzPoVCGfjv3VIh92BvgBVjm+32V/CXyS
1Qluxd+H6K/LOFYlNkfBj7M6MR9lf2tiHenOpj6vcdatxJ7FaiH2ZvxOyzmX
i/iYj26KGvTjfxf7Ic7zIuddiL+nsP8W+zL2B/D9OuvjrGuu2jewf5r9cxn7
SuG/Hxzhs4/9HnKYir+eCs7J/3Fy+A58kHj7sd/HGsfXVGRLkc3E32zsqpG3
FtlHJrFP+b6H9RH2J8i/g3xvx/5V7BuRV5PvMf4NEu9t5HWc81f2C5DXIy/U
2fF3DPl0Ys1I+67/I04t+v8G+xwA35n4rsURcWVuYu5VoVsNPs+ZT4Bv5t85
cA06A9h2ks+pvGv9Dr7XlLvmy9ApLDJHxdVm1k3sn8F+NHINVcvDrAZyrYnN
jWbOUA3ey79/0O2gnl8T/2LO3NiCvwXIRhJz7W50ToNLI9dC/N+I7iv4X1vk
mqv2VxKf5Vn0/2TfS03npX1Huqv6vGvXg//7+beCHCrAnxFjBP2W2LY38G8t
uEa1TJvbXdRxB/gUOF/uOx3m25Y2R8S7l8gnW2iOiWsDFeaouNkHnhO7t34j
37ngpawr4CZslpPbWXK4rtQ5Kbd1nHEK+r3kHCNfwr+/0W/lXx265znveIl7
5Bw4n7fuduyXcL7b0GlE9wg6k2Pfoe5yOblvI79PyOmRcs+HWuwb0Jkocc+r
949Etv2SNQnZ55G5oTu/nPcM0l2ox9RrF9jfm/IMGwP/xGpIuccHwYti371y
XgxeE7vW7firx34FOT8RPIPS5HNcZ8Z2Aps3I9+54unfZvBXkWefOFCJr6bY
3JuMz9WqNTqzij1zNHtUM9VONV6J/CwxPki5J9WbdehMK3bPqHfEOXFPOqOq
NTpfpDzTNNtSOc8m3cnPyP5IfLeagb+D91b47mXTBe5Bv4X9BDEe42zb0ZlT
4B57Gbwr8mzSjL8F+UZstpRZpyLyzNHs0QzPJuawuKweUi+JQ+KSYsyPXFPV
Vne6DNu+xL0mjg6j+2jeufyIj2bsDyaelSPiHHgMeVeJOSQuSUe6egP0FqyK
XWu9IXpLNuRsK86uB9fy73SBZ9hbGc9EzcZu1qHIPa5eV813gLfGfrs0u9pj
vwF6C9Qjd8XuUfWqZsxD+O6PPfvEMXFNnBf3dec7wX/lHUszcw/yH7KeRcrp
+6x7QL2gmfdwxjEVWz1xgNrfmPPbtfvaW/1C7LdCvT5GLoOJe0OcPQmehI83
rs1ezYj+vLmrO9Rd7sz77VKPqFf0puttV4178fc/258ZOg==
          "]], PolygonBox[{{4780, 2383, 2863, 2617, 4788}}]}]}, 
      {RGBColor[0.9230511322802973, 0.6776278307007434, 0.3614585100689218], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVltsVUUUnd7bc++t53FnLrX6CaFKifigJZEEU63xESskiDFVE7BAkUQt
NGhsDDGAia/6oQbxS0HDlxogigYiChoF7JfYlt5gaqTFKr7apm2oifGxVtY2
fpzMzJ49e/bea+09Z8GGrWu25Jxz5/Hl8c2UnDuNb6jWuZGyc6shW4ZxHTaf
jZxLoFyqce4zfA3Y+7Ys+TmMA5nkPYlzf2LvBOYw5cZirVdg/2yNzjdivRM2
n4C95zE/mtce5ZOQ/Uj7+ObndHcr5hOxzt4HO3tT53ZAXo/5HGSrMW/E2I8L
v8K3CJ+HHzdA1pcppi2R4hpKdeZV7F+Jc+txRxfWeeiNY329h8/Q7cV8FfZO
YN6D+fKcYmOME5l8PFwrP18uKx/vBOceTxXHPsiysnRSjH9APgI782D/u0i2
n3Lynbbo/8EKfC44tws6TSXhQZ9P2/wxnPvSK6+3IB9feOX5G/jzJu5ow/5e
jFO4ayHs/+PlE30bhs4gvudg7yTkV0E+jLsaMb6FcwPwo71GGDN/xL4e+9sY
N+TdOFeA3muQ7yrivoL8acY8mN7HWB+LZIe40Raxuwe+HifGqfLO/Lelios2
2mBze0UYnYT/D6Tixk+m22065BH9ZzyjQfk7Estf3kW8t0bSZz6fKcomz3Z6
2bwIm5vKimMbzgbDuQP6T2c6tx3jdCRukJ/EnHfzXspnInHm3aLW1KHutMkn
4Nt72JvEeC7RXhE2743EB+LdYjxbhnE4ka3foX+rl/1qovjpM33vzImvtN8E
+WbMZ8vylT4XIGuBjWIkrJYbHsTihVR4/Iax4hXr0kQ1NBsJ3znc/T7OX8J4
LAjjTzC+mIoL7AcfJuIV+UXMqU/cZ7D3NmPD/mBec+J+O+66hPltXvXEOeNg
PY1ivpK158WzDRjvL4rDrCnyvcn4wf6wxuSsF+aROeww/f/6yhu1qj3ytC8n
jFmHlM1kssH+Qjt1VtPMz82J+tEdXtwhb8iZIcT/KMZDsXhGvm3EeAHy/dD5
gTlL1KfuRE5+STWnbBh7r0OnivFnrBsQ4ybYP4j1k5AfMI4QU+aEcVDOWJq9
8rPUK0fkKDHrNV36Qc6yj1DO2mJeWCvXeXFkRaJ8lKxXH87Ei4fLyitrhvXC
+mAdMt5+yzl7Ti/i3APZfsT0dSoMzqTiGLHnHnsx7U9CtzUo5wcqwrO5+H9P
YJ6Zx7/h20fY+8trv97szA/qvezB5Be5vdbJt3VF+fNgLB6Sj91l8fymIH6w
F9H/9V44Ek++N6zZC7EwIR9ps2o9kL1wIhVfJ1PJqF8yvOnvQxhnM+VxKlNu
FhsnmRf6vtHLBvsP/VtsOWRuGceNOd17ude6ybjA2Fl3wXJFW9Stsz68yN4y
2qTtQXsHG7zepCu89vsNL9ohNsS4kih37KnMU4vZ352oP54yDvQbD/je8N3Z
6VU7nBPL9sT6CfT3xKqdVsR9jb1hY0HvBjFda/4PGHbsL+TmEm9vZ145ZU3U
WV4oW2ncYD0FW7MG5+xNfCmIA31BHOywGhkxXd5x0f4leuxNZh9hjQ/YPczn
r1abrFHWWofpfJDo/ZtGjHVBdvlWB6+37NNE9vlWss97L06fhW57rN7CN/97
L8z538GeyjP0h28wOX1XqpplDbN+q5Dvhs27Y/WAakHvBGtmh53lmnzmvaz7
cTtLHHiWPXDcekKX9bTPC8r3Avh3BvMu2L8sSN4Z63+Ifgb4OS/TfZXM3ka7
a5/9X/E/q94rh8cT4UObq6yeFhq3mUtiw3yOedXjKMZrjSfky9VBMT4SC7cR
48OU1dcryP+/RGZVwA==
          "]], PolygonBox[CompressedData["
1:eJwtlG1olmUUx689z57n0e7n5b63tfqotQyhTDcjoSGsV7cKdH7IhHTqpqJz
hoQiEWrQCxYomX0xX6IvUTjKTRiaU0Gjb+ncSxPDnCUT3QY5JiJJvz9/Pxw4
5/zPdc65ztvM1ZubO1IhhPVQOfR3EsJ3uRDeRDk3DmEedC0TwnvpEGrzISwr
wJeF8D74O/BD6O6A/ws1YDu/FMJi/Pw2LYQvKkI4j+4THCOGc/CHwBuwXUaM
PPwadPvBqrIhtMaOqdiKWQv/GHQafgG6e8R7BXkKeRv51BO7Dbk665yU26/4
3Axeg/xhMYSfohCmY/s18Qb523nwDvCPkL/M24d8jaCrw1cn+FL4xeg+wN+L
4K1l/uNLsd/o7Sbkc9gWoK5yv9HbRvAs/CZ03UXXQLXoR34efAKfl9Ku0XJy
W1uy7VfIbfAD5HiC9xuR++GnoJ+Jl/DHlcSvwOeWlHV3wV7H3wzkd7H/Hn+V
2FzB/9vkXKF+xP7bW9iU83anapx1jsr1IrrT2N7n/UjkHqqXP6he4L3QC7xd
h89HwUbz7v1O5FXIL0MtKffkVfij/Hd3yjE64f/AfhJsB/aHybUd3WzqMZeY
V7H/C2rPWCfsFPYnM65BHLsH6kUvtIT8ngZvKrNNAr4QfIJ4zci7wEaoyZ/w
2/nPNfjb4CvSrtEt+AtQD3INeBP+eqHHkX/kv+PY/4fP4+Teh26sYJ/yrTe/
F9xT9SuHrglsHPkM+UyDxvE1lHjWVLMqfE2AD4BtRdeZuAfqxQVizESeSBxb
NVQtB8Grg3dmCL4+cSztyDb890BJ2jt6HSyLzWjaNVatd6NbkfOMVyAPFFy7
u+TQD9+F7tuMZ3C84JnUbOrN54l3UrupmS6WvHPavbPk+wh4S2ReO6XdGsbm
44xr/Bm2rZH/phyV6xPgN4i9D90Q/6tDzqf85nLJN0W3RTteHXuGNcvqwYPY
M6/ZV827+Osv5LAr55nR7GTz3nXFUKzJkmf1SWJ0gz2HzT9p7/Ac3TLoYNY+
TuLraOLe6CYd5O0zsXdHM/SsdgHdkYxnTrM3lng3PiXHU+S6iD8vLHNN72B7
PfIuaSb6yLeh4No3oDsA9kbkWmhm98M3FpyrfMjXmsizq5xnEOu1+OGuYTNM
/Kqid0k3oBJ+dezbqRt4E3xl5NuhGzBd8xV5NjWDmsW95PhNuWdsD3yS9y6q
J+qNbppum27oPt32ondFbybhN2jGs94Z7U6u6Nykm5W4JqrNIPJTif+sv6vm
I+RakxjTzGp2tWPaNdX4GPH+BzVf49g=
          "]]}]}, 
      {RGBColor[0.9348530894042146, 0.7071327235105365, 0.3980445771530653], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxFVkloVVkQvcnP+/3tN90X541tsNt5QtFNG1vdNBow6sKVMaB0wLT4F4I4
IYLjJu2qF2ZQcNWCBlFRUAO6laZNfhJnzKC40R9pccIJz8kpcPGoevdW1a06
91S9V7OluGFHpXPuFp4cns14mQhla4VzdyCX4H019JaCc1vwfIC+LZC+Aval
zLlmyM7QueuZ9oe8cxPge/YH545i72KVc+OxPg36I6yvQcyNeI9S7Z2CHIDv
buxfQZy7kfJYiTjPctKZz2e8X8479wnSe+XWBduLeGqgl2PnTkA/iHOvIV4d
1h4GOqsbcU5Dr4Uew/cq9BCyHbLD1jvh+xd8b8M38fJbiLU+vP+N9X7IITxn
oA9DLq1UHOIzCXUcwoMtty1RvZ9QS2I1slbi2mi11GOtp0oYDiDGrpzyXQy7
XqxnOPdjqDiMtyiVfYr1A7DdBNsi9gZZAzC5gXxOx4p/HzaXEu03et1Vyc4q
wPdmXrkzNnNb5FQ3sdjkhPl/ed3HmEz2jcjlp0zrUzKd2WJ8IAaMRx68x95b
+Ffj/K+I/Rx2Oyt1P+2G81TY3MH6VsT0OemsnXm2WK7E8wh5g5hF2DwJxBvW
w7reIcZ8L+wWWI3kJfPpgv2zCtX1Lqd8yMNO+LQh5qtEschF5twXy6c/FtdY
P2u/B8wPI+Z9yBleXBrMhD1jMo/QuNSbCc8+4zn5UrD+IS9Z/xfjG/VRnC3X
aZDrQ+W7D7Yh9tchz3qneLOrFPOJFwfIhdF9symZPnq/mep6H8tvlvmehNyX
F56PA9VIHtKO9ilil7E+Emi91ksvgUvzvPCf68WvstkM4/0N3ttC9TrXiTP5
R7u8cWCncXWWYUgs2dvE+h77KxKmy7F2Afop2PyPGttS1b8nEo6cR8RtsvGD
tfwbqZ7Z8O1Phd2ZSLVONhvGoy/79LD5sk8fWq+x56rhfwN2Y71icF6Qqz05
6cSZknvU9+cVi3EYm3OJubUa5jyXPVE0jr21niU+9bHm41rIZYnyrE2EI/Fc
ifXpkfKNvGYQZ9FM6F/xVMD3n1Azl7E3h5ofxJO8PR4rxweo6zye9ajrHGRH
Ki6cz4Qpsf0Ra3tNJ95NxlnWwnwnWO+cy2nu8C7JtV7jHvuIPcz86FcwnMmF
Rqu3aDOfufL+6yzPPwPVS/6/iIX1S8jfvM7qgD4jUk6vkdsqrzp/jTTLK+yO
jsKuAfoxyD9Sca4Jcmyi/h8HuTFRP7Rj/ZdMs7grFEeZ58+Z+MeaexH/bqqY
jN2daLYPhcKd5/4eC4sDNgdGQt39SKL+bjKurrW7XoHY9TaXWC/7nP3emep7
xdnF/uW3qMHq4uxhn5NznFmjsytUjPE238i1Nuvx4VCc7Ek0RzmjORv2xDp7
L2Q50SwoG9c+WD4Nxu1am0m8G65vr1acQeNdjdkM2HeH+62hcl8Xfv8/oC/7
iXfPPuAsnxuoL5jzSeuRUqK9p/YtqLN/g+ZAOTMO/VrNnnfGuyvb932XzeqC
nbPazm+2HPit9sa/zOteyCne55xA/ctz2CPElfdBXGPIb4bnIsE=
          "]], PolygonBox[CompressedData["
1:eJwllFtoz2EYx9/tb4bf/3faHG+wHLI5RXGBZdwIFzOxKzZZlCmTCzkl5Uw5
XLgwO5QbqR2csmIr2Z3EzmO0MVIOm0OMDPl8ey6eep73+T7P+5yztpat35Xq
nNsCjYBeR879SnHuO4/98M2hczvSnDuS7tz5JHrPuaMAJ0JLAucu8rYTfVPC
uQ7fuWXYDCBfB9+Krh3ahK/D6Jeji/WGbT50BvsB/F2Gz4Y2IP8FkwU+Bfw/
+DlQL/7KkBdg2+nbXwuJtQDbL8RXgf4c/9Wh/4C+BX0r9BF+HZg8sK3478XX
EjAl5DeITS7yLKgQuQc5Gz6EXiTsLYBvAr+IeLbzFiNvDCzWcmjQsxyUSxsU
gV3lW+zV+LuJ7IcW6y30QWg5yj4HKoRfGlgtj0H9+EtFfov9S+wfJ63G0k+C
lgX2h/6qGOlcH/Gc5L/N4CvB16Mrg2anWY9awIdJy10xng4sJsWmGqlWV5G9
VPPRFRpG2HXQWfi2pNVKPVVvu5GLwO8FvxJ5N/IcdMdVA/ArfJsdzYRm4wBy
PthS5AvIz/kj39kM9MC/R/8UfRX6G0nLQbmop+ptAp9r8feUfKfGzt2lRvuw
f4I8BbnEM12Ejwb4ft6uMgtrsJlNfJNjw6qmqm0n8qV062mE/lFss7MJn9ew
r0WeBn+F+OrgG2OrtXbiPvy92HZBM1UOfg/0Dv0/8NuINxOfjcS+GP+/yO1b
aLOjmb5Fbs+Qj6VZzTtDwwj7AB+j8Z2H/fiE7UwH+GH8j+Pvt5AnX6H9VYZ8
m3yqsD9BLMXgq+HHoO9IMZvf2FaFNnvKqVK7EtrsCXMA/8We/T2KP+s9q4Fq
cYe3P8QyHBmvHqlXr2LbFfWgLzYb2aqmHcjtUAP6UvRtsfVAvdAOz4XPDWyW
D+LzIfJY5KGE5aBcpseWywTeZsB/8m2XNTOn4N94NmvaCe2OaqLaFOC/Fj6J
z9UpFoMf2cxp9nTDdMsysPmRsD8z4WtCs9WM7vdt5jX76lE3uqVJm/U+5Hn4
aw1sVw8Rf7NuXWyxaie6wH4NbZYVw0zkodh6pT9/wlf6dgtroGb4nMh2XTdJ
t0k3U7dTM5CPfn5kf2sHtAu6gbqFmrGMyGZes6+Zf43/wcBuk3ZSu/nZs1nW
zdHtKvKsN7pxo2LrgXqhGzyA/j8sH9dG
          "]]}]}, 
      {RGBColor[0.9466550465281319, 0.7366376163203298, 0.4346306442372089], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1VUtIVmEQ/frzetV773/vhWhTGAU9NxUGWfymS12k9txILQSLNrpJKldR
hEXPRRS9IFsUlaZRhAZl1KbCIrNUCnrYpijTCIWsRedwxsVl5p9vZr75zpyZ
f35908bGjHPuKr6Z+B7Fzu30nDsROleQOteb79z2wLmF+F05wzk/cW4eAhrg
XAf/VdAboe+Cvg36buj18KuC3gx9D+zHfefOefL3Zyon48oS+axF7rORYs9E
yk//HPKsgyzHtwCxW7OIh20z5Ff4vYT/GOo9it/LYT8CWZ3n3Hp81fD/Alsp
9JXQuyBX5ynPEsjFppeanT5H8nVGO++hzyzoFZ7qoK0oozuYnzWetzq7QtX9
DXXtD3X3XuglGdXJt1dCf2dYDaLug4i9At/LofIegv8TfIdwfglyLvDvQ01z
IA948ue9/fCvg38O+E3inh3EB7IT9mLYWxF7CvoEbC2RzneazxnD+XEk3In/
MuTZFwmDdtQ1GutdHTj/Gavv7P+iUH3/BdtQLMyJ/Xnw4zfuvY86rwUi0nPo
Y8gx7uk9bfbGAcSVImY2MFwD2Q2/cmIZCJ8YsVuQd14q/R7sS1Hfe+RZAjkI
OeTJhxwbNL0zT/1j74gBa2BfygP18HtW/ByzeshZ5qw0Lnd76lVHYFwm5xPd
9Qy11wSqcwXqL0x053LYyxO9cQB6lChPCDmF7w7q+QP5y9O9nAvewRkgpuzD
sNkfw+8hZBnq7Av1tgz0k9bHJ7F4xJzk0sasuLopKy6M2KyRs+tsXgLE3Mbv
v4HuGbHZPAY70rg+xObj3rs46wfek5H4WQRbDmdT8Flrkv1iDGflts3Lv0Q4
s+e9sXjWgzxvY/F1GPIDfC4gsBY+l331i3Uetll9A59XqTAn9twLrIf43DI+
j3PGrY/sZ2Gsfv8JVE+nzSz3RJfp3AEHbF7ITdbAWSFnecZesl7aqNOXdp5z
Tji/fOOPrDDdYDiwR6yjw7AlxqNZ2dlD9on94vy1+eIwOUb8GM/YzbbHRlH/
DfjX4u6bkDWResn59lP1gj3h+4kD57vR8hGv0764RE69Qs4HyNkU6k7yhxzl
juJeImeI6yqLXRnrva2IexOKoxWJOMKdwx4VGDfIkW+2l/9C7/FUB3O1hNqP
F5HveizcuP+Yh28h3xqsRtbQbHbmJ0+JLbEgL6rM7ltucqA91P/Hs1S4spfs
z4T1iT0iB1kb530qEAeKYuFBzMnb3PTudpqjEsuftffEiXJPWt5prpAb3LOs
+XWo/xja41Azvc3eyL3G/Nzl52xXcGdMz89n6B9TceJTqp7zv4d4PQ01Gx9S
zTxxKE7Vc9ZdbbzzjXsvbH9yj74zPrDXr1NxYgDyP6TX9Es=
          "]], PolygonBox[CompressedData["
1:eJwtlEtIVVEUhrder1c9595zDkQTIykqrYlaQQW+hjbIzKiJ2EDIsoFNitJh
YRZRTYJIC7JBUKkZPdCgjEYpVuYrKbDXJEgziQq1Qd/farDgX3v967XX2ntV
/eGapnTnXDWSgRxKObcVUB137lbg3HXfuZPgE8gEeg7Si70cvRlbRejcPLg+
zbmqpHMJ9Erwfc6yQuOIW4Z04LuN+MvxX0aus55zg5Fz5xLO1aLf8IwjbgXS
gm8ZMebilmMcfQHOHfy3IAeJtRspAJ/JdO4V3DrsjcR6G6MWYi+h3/3Pb4Q7
xJnDtpKme4jXljRcxfEpcJyz1dR/gHxPqaUIKce2A/9i8NeU1Z6PPgMOyNkP
dzMxfuPfBafYWc5u8DAcSvvX8wvwGviT8K/R83PfalJtutNFz2Io1gBOWdTq
wd+E3odPEtyKPQe9hBpz8R+DczFhHHF1Jls7/FnyF6LvQX+DvhZ7EXpTzGpO
hdazeteMJ+GXUs8T+IuclYB7qCkRsxyj5HqIHqB3or9H7/Yt12VkRvsR2t0r
ZzZ40Lfc6lm99+PTELc77Yts5pr9PfpdxD4V2K4VqmbwHPIyZjv1DXycej+n
2Yw0q3nO9mPPo/9e9A+R1VaJnk+8XSmblXakBnw7sN1WjJvgcaQqw+60E38/
tLtWzHXo05HN6hg1PqDWIc6msB/BfolaHmH/ge9P4l3AtpF4v8Ad9DNNrNeR
vQXt5EhkO6t5643prTnkU8xiKnYBPu/iNiPNagP6UfB2cgyj5xJjONN85LsU
Wu/a6T/gfZ7tjmam2V2lxlbM33Xnoc1Is9Kb6/KtJ/WmmCuIPeYbV29Ob++j
Z7vwmJ5GyPcsab3XkXMCbuDbrNSzer8S2NtNoO+F35K0u9GbaAZXe3Y3urN2
z2akWann9eBZz3y1g7P4jxK/Nt3uoBT7Qmi7op34orcb2d1oJ/Mi+wP0F+iP
yA7sT9LfpBg7wW0pe8ua+Wnwed/eunZyAP5fUCOrdg==
          "]]}]}, 
      {RGBColor[0.9584570036520491, 0.7661425091301228, 0.47121671132135234`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1VElIVWEU/t90ffbuu/c+EFqoC8GCWpgKBVFLTTcaWQRFbaJBAnMX2iJT
iIKioCAloWjRpAYRmIVS6uppOTWAbSxw0WADpItsU9/Xd1pcznnnnfE73/nL
DrU2nYg753rxJfCdTjmXh7It5ly751xdgXOrsB8NnNuSdO4YpIf/XuMrg30m
kr4b9mXIn0hWBlkC+SeuPE0WswtyxHfuEWokEHcNsjsln2r4tqBuM3KWw6cO
thh81kWyb4KtNK4Y+n8OFdsP+2zOuavocw6yNYtY+E9m5X8Y+n7kLMB/zzDP
wYxzhcj5GLFrIOP4HkJ3kN+Rsxf6D8gqxHoJ9dEI2058lXDLI+8cbG2+Yhg7
g9y/I817JyOcNiflT1up4VCbEWYFofAhzg1OOMcKnRuGz+2M+t0HuYLfs8hT
AdmZ1C7oUxXKXgnZgT4a0MM96Alf2LcH6p2Ysv8U7I343Ybe5yFHPOFcGGp3
3OHehOqxFmOJFeNHQ8UyBzGgzrmeYOYO9PMUci16GYmJJ/yfPKAPseD8Eznt
hD7kQR9yXURsnjmQMx1X3TPQDxgmNeh1FfZayLfw74d9HHqxL5+z0L+F0mn7
EmpWcud8oHznAs3VnNJs7Jf8XDb+FhmHya/auDCZRPwOHgRi+0L5HIc+iFkC
+C3k1Dt5yD0RI3KAta972gtrjYeqOxZqPvbBnrhD7pt7TOW0i2ROXLjraXbW
Zg/FsC8mpJ+EuTOrPB+yykNOEPM5w5Wz0P8d6u6JieMtxgPeHHdPexfi6u2u
eTfcN/nOPZ7ytKd665M+M4FipiEvZOS3Ffov8GYKsR/RTzoU548EuiHeHXnP
mbhHzrU+Um8vfPFhY0q1GNdo95WGzyD0gki4E//mQDVYawl1hoxj5Pp0Tnsb
yCgHczHmiqc7ZE76DhlvyZcS6+cW+uhEzBvknAqE58tAXJi3t4h75hzcNe+M
ecqsJ9ZZRd1P9tasRuIzefzvrgP5Jn3hO2Vv0U1f7+wr1vW0M+53xHZDzIsM
F+6U+1+03RFX4sN83Vn9R86SA8SUPAiMM/S/bG8O356v6KcHOZcgn4fC5ZKv
eQPLv5AVX2/APmFvHd889sZY5idmnLPC3vsV2wV13gB/TxmneBd5w5xv4Ggk
Xo1F4kXadvHe6v6v32EYzoXyq7G3q9bmIk977N0pj2SfQM8bUtrjsGFVZbvj
3sgJcmDAVz9fkft+KN70803OCQfeepthuj0rP/o/8MXZLqvLu6+2dyNvOLKX
v00K550=
          "]], PolygonBox[CompressedData["
1:eJwllEtIVHEUxs84c+9oM3PnDgRB6cKFQS0sg6IoamW2KCWLoKhNVLopd1Et
UoMoyAoKsgf0WETlAyLoBVLqSjNfGVGbHrSxzIKSaNrU7+Ms/nBe3/l//++c
eyv3tjQeKjGzzZwUZ1nW7GDS7FFgVhabrc+YJcrMjoZm/fhX8H8CaE2bPSmY
TXIuYtcQC8m/jMzaabQEfEfe7BXnOPbahNlCeo+RP0F+KbGz5AZzZt3cd5i7
L2G/4NThT1I/nPMa1SrWgv8avx2/mvxpeqXxK8GupGcp9rqcYxU7D9c5/Ldg
H4Dp4/7VYIrmHEex24g1kKvn3AN/Dv8X+How/XnnJG4beV8n9jYwU+RDTiN2
A3dcDV0TaTMFpjVwjrfoleJUUjsnTuTG6PGY3lvItyqPfn2hcxTXN2h4IfQa
1W6g5zH8BfA9g/2R2A5ypdz3AXuEHu/o9ZlYAj7V+NsTHltMrzWRY/Vmvb2X
fDnY3dTPwmeGM4pdB+Yr9hB8OpjnLupvZ7yneo/CoYLcTfBtgb9Rb11UcG0i
asqxP8FpKOkzv0Ftd961nU//Luxhav6VOIeerGsibZqpGcS+m3dtpFmSfDHj
WGleRu43/VeAfQafNL0G8o6VJu3krmddmyJnklwT/FelXFNpeyTns9XMNfut
kc/yMjXfsHdm/O3S5A/17wv+tlr6DVH/tOC7rx15Tv9e6sOkfwMT5MY59+nd
TI8x7Hmxf0viLO7J2HdRM9KsBmL/tjaBH+H+/ZHvsjgfwP7BHdeorwA/DX45
/kTKd067dyryb0GxGnJV9NyXdMx3/JM5n7VmptklYp+1OJZg92Scq3YwgO+0
dj7wHeiS/rHfrZn9xe4m1hl4jWr1TevbVuwL/p6Mz0aaSJvanM/iDrFZ8DOR
a62d1m4PZ11b/XOqyKc5DwN/g94ijLDaKe2W/jH616imNHbNpJ3+KePY/wE3
yKcd
          "]]}]}, 
      {RGBColor[0.9702589607759664, 0.7956474019399161, 0.5078027784054959], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1VEtIVWEQ/u+953iL+59z7sGdEiRBtEl3LULdaEWQLQIJcVeYm1Bo3cNW
RiFRLmzRY1NhD4Iem0yra6TpLS2pIAs0K8hHm6hwFX2f37Q4zJz5Z76Z+Wb+
v+ZA976urHOuF18OX1h07gOU35FzWzPOrcfhHtg/R9J/4Hwhce586Nx46lxd
Vv474TuPbzf0Ssh6nK/gLITeEzi3Smx8c8AZh8885DBwWqH3QD8SKfZVJDzi
dsK/G/+VkH3MmQcGzmpxdhL2RthLsFdkhcN6D9p5G84ueeeOIulr+LTDXmW9
sPZq8ymbP+uvgd8z1BogbhC9bYHfadiaAtmZbwByb1593UdsC/Qh65191zlh
sw7ik4NTFc7NZBRHTMb+KSr3N/SxhBwXYF9O1Cf7nYoxD9QxinyDsK3C/x5w
2go4Q8wCMN7DNgH9AXAmI9VK/DOQ5Ug1Hffil/x8gmwO1A97GTWdNR+KVX8H
5DXk+Iu6X6Ti7HlOvJFL6tsz4iy0uYep9NsF+TOWPmOpOLhqeKyf3MxGmtlF
9meck/tH+H4irs9LNludjCfOfsibXjm+W68tNouPhjlr+zWWUyy54ZzIKXfq
cE57xTjaGfvSuCJnPN9lu/crUkyAPjYXdVbr9VHPwXa2oBnXw7fKa89mrI8x
28mRCu00MTd5cRYgdgR+HejhMeTi/x31umftxjl5LtsuPUHMQ8ROxMJmDvbI
e9MQasdCuzvM0Wo+rIH8V9tcyDu5aoqEcyyUD895N+jzBfX0Q78B322x7u88
ep2OdZ/Lsfpey5lRXL/FvkmEedmLZ85pyO7m3dB6MpwSehr2qpl8b0jFfyYW
N9wB9nDFeOE7xPt0J1DuFcRfx/9yUT2xD/I2V1DNrJ1vFmN3RNrxBbunPGcN
3I2viTjjfLhb3LFbXvtOfGI+LeoNayxod9gTYydj6V1emJwR/TiTAauT93zt
vifCrLJZcHYz9nZki+InAzmV6r2bToVNXObiO0EeOasTXr3wPeA95w43RHoX
aO9EXe+gn0P9byGXYtWzGCsnOWTedYn0fCLeyX8ZeBvxX4I96yWJQ96IPWrv
BnmotzeNb0nJ7MRnLtr/AdRN0j4=
          "]], PolygonBox[CompressedData["
1:eJwtkkuIjXEYxt/zne/M0Dnf+c5pVthQkg32mrGZGVKyUNJkR8NGM2U1RNgp
SYYi5bKhcUm5bDAjQ+bKDGIhl5kGMTNWimYlv6fH4q338vyf/3t5Vuzq3taV
RMQGLMW+ZxHLSNxtiFioRbSXI47j/yR3Cr85s99ciuipRPwmfl+MGADTUI+4
kEe0UNtMbj+1wdzczyB/ij8JprcxYq0+rZlDXPfAjwhP7ihYUvEEv5VcA9gt
xFf4/yPx9qJzH/A/Yc+JD/HgIlwn+GM1/lb++FGNKMKxj/o68P3UW8BPF4jh
OwvfOLlNiTGrwL7M3LswL/An4GgK9zSJfwBr1SxYkbc9/+M27CD+TXJL4dsJ
xyy9fMPG8TfC9xX/LX+cZleD4Jfn7kG9KPeO2nXen6H/XmyG+iyc51LvVLud
Br8A/iF8Y1XvULu8Qz3BHyX3oGDMFNgdWEe4hz/UCzVjdxOv5K95OM+XfHPd
vpH4duqb6/a3sFLRN5vgdid586vgG/SDTWueTRoo4e/l/xniJmxP1TvRbjr5
YwB8V8W960Z98KV130Z/lOrWgLRwHxvF/4wN4Q9jU/gjYP4m3vENuNrIrYHv
MHyvc2tEWrkmzdJPR9la1purZc+s2TXznPaZmVsaPZZZM9KOdj6H31n1LNrJ
IvDDdd9GOx3CTyq+pTQgLaQVa12xtPI49+za2SP8+Zp7k2al3UsV964ZNWtf
bm1ph0eovcqt7fXES4jbwSxOPLNmf5Nba8pdpj6WeXfSbHfmN3orTX0B+w+5
nYxk
          "]]}]}, 
      {RGBColor[0.9820609178998837, 0.8251522947497093, 0.5443888454896395], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJw1VDtoVFEQnf28TbH73n1ZDFkbXUGwEUlrkSLaJCoINkrKmNYkWrhLJNnO
KKtVgpCAYCGinRgi/lEUfySSQkHw/8vHBMFCTRPwHM8Ie7nD7My5c87MvC19
gwcGsmY2iJPDabaYrcPRjvMzY/YQzu24TwWzbZHZadyTJbOTiLvfarYRdi9i
5oN8NcTsBc55+FuA8S42O4ZThW8qCO9EJMwPRbPRvNmzxOwwfF2wqxm9/SAn
nLWscBg/j5PPCIvv1B2nCtxPuF+mZpdg98A/jdp+ZOUv41wH3kxOucSreS5r
om85Ee+rBbMK7tkg/CnwWIQ9i9wF8JiDvRN5FfgnYXfDPxQrpw/2IWA9yoln
J+wecNyBexNiv+ONc+C4hPsy6huCXgPAeRMr5y3uV6nqnkBeG2I34JTJFzm7
YN8K0oA4rHtfpHhyvB2k470gfuRJDdkD2ivAno2lxRzuAmrogP8X7P2JcFeL
um9k9G4jrzppsz/EJy/2h32iFo9bNTdPcI8F5R4p6f91jxl1Lvj904u6HY2l
Bbk0g/Slzn9SzRr5E4takGNnrN6yp9SU/7W5PtSb88ra2GfqQk2Ix96wL8zr
cf/NoPhmSb497r/WKuzxos9BTvWzt9OR9GIee/H/rXmfyc9BnK8As55olrOw
nyfS8WNRu9LufeHbxGqA11PEjCDmPWLqBelFrc54DOsddkxiU8uGc7+D//pR
21nEfgl6g3vJXvV7vyYicSCnu0E4w44z4m+xD3nve7fzoiavY/X7BfJWU+3k
BdS5OWgmjifStup9+Rr03rcgXYlV9v2dcTtKpWc+FRYxd8fCICZxfqfax4NF
1d7hfRz3neJu8Vuy5t+HxURv1ErqT5f3iPy2RuLIeaz4TJLTxYJ6seJzzz3g
rvT692c5VcxSqp1n3kLQfHP+FhD/FwmfpjM=
          "]], PolygonBox[CompressedData["
1:eJwtkjtoVGEQhWd37ybF3b13VxStdEXBRsRGg0UKtfFV2Rgso6XER+EGxMTK
V7QTIaLYBNFODIr4FiVRs5EUCqLiO4kxQbDw0Qh+h2MxMI8z58w//yzt3ru9
pxgRHViCTeUR6woRrVLENP5YNeI6/g2shd+RRSwAuKIccZz6uUpEL34TGyOe
od6A5yyYb/gb6fmDwCHq58Fm2MqCe1rgT+TmuknuGP4V6gvB70TvM/FAbq55
cJ7MzSGuR9Rfw/2c3MOSZx7Hf4pmH/jetoj7tYi1xPMT596nEWv+x3qD3nKL
ng34P+g/Bfd41W/VGw7g78c2EW9B8zD1Hmxfe0Q/Pc/oH4LzL/MOkBupR3SC
/068DXwf2En4z+AvIjdJ7SA96xNrNjNzinszdgnsWzCP0etE/wj+PXK7qDWY
7y7+aN1a2tGn3Bhhd4O5QzxcN9cqctfwf9f8l13EXaln0mz6U/3t6Yp7pXGb
/jkwCVoT2DTzPYDjKHpb6b9IbQ/45doF8z/J/Af6C838Bv8Feh8L3sFL/K/Y
UJv/6FXVHOJSboZas2It7XgQ/Vly7UXfzBz+4txv0c6W4Bcr3oU0GsQTuW9F
PRcq3rF2fRX+XzXfpG5TbxikvgzrLvlPvlCbynx7evMss31I/be6Ed3Ou9Rv
Vazb6a/6VnTDuuUdqbV0A7qFBM3hsjWk9RP86qJz5ZpvWLesG7rMbv8B9Dh9
2w==
          "]]}]}, 
      {RGBColor[0.993862875023801, 0.8546571875595026, 0.5809749125737831], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJwtVD1MFFEQHt3b02T39t0elY0XY7iGEgiFJFprNMZYeJVCbSQWcBE0NBi5
xMIEDz0trLSzUAuMXkFoNPGHaEXDWQH+QUK1lHxfvile5r23M9988828PTU5
deXWUTObwIqwlkpmrbJZjv0j2FWcfx0xuxCbvfb9dGq2DvskmF2MdFfHamWy
M7Czx8x2AdzHuYa4uyXhdxEb4f4LYvfw7QZwx03fT8fyISbzEXfuuFkTK8e+
ifsO7k8g/lpi9gb8iqr8yI0+68Cdhc9z5KkH8T8JWyCmhDUEn5eIWwPWeeSa
jMWBvB/AbxD7Nmy7Jsw46PuE8zxbMdsHzjnYT5l4b4JLG/muw+c9/O/E4sp8
VyPVy1hq1oB/Hfs/VXF6kUgf5qXmPyrSZTFVPHkOee2sm5y/eY7vsBsV+f2u
ihdjmeteKu1v4/tn8FzB/mYqLcmDHKgb9WHtHyPpzvjH5FMSH3IvXLeHqfT6
gLzLQTichYb7E7Pn9dJ/zTUg54NE/VkAaAe+Z2L5D4PbAM4jmTSmXuTPuKb3
iNpQowL7GZ+9ZZ8fcib/S4lq+Il63+aav3ewW5lm+m8iPTiT5LESpBf72S1r
z7zsYc8154yylmep4qgXY+/nmo2yz8aez/+roBzU/l8iHbdd+8Lf19egGjN/
Bz2vl33pOz5xic8ZpIacZ/LpBunWSvVGB7xHtDXfE5f48xVhznm/ic0zNd/J
1IP/4DiWidsobCMWZ+Kwn0u+54xyBlZz3Xe81ztB73E7CKPmb3zRz8RmfdR3
3HPwvg+8y5nm5mmQtvzXUF/2uuFv4RATo5FS
          "]], PolygonBox[CompressedData["
1:eJwlkjtMVGEQhWdhF0h2771caLBxQww0VDw6GlpCeMTYUCnbGkSbXUASGgi7
0YJkIbBQoxWFWoBCDKGBQiBKo4V08obEai39TqaY5D8zc+Zx5m/NTTx+UWNm
nVgSex+ZDaTMBmvNCoHZeMasHdyGLRALwB0Js2nwCXgbe5pyn2JfwDlwFlwI
zc6p8YAGy/guiD0n5xHvGZodEH8DHgM/wz4TX8947X36/4L7EssyVy++CvFS
5LNU8RV5l9Nmd9Sfrjf7GJu9Iv8s4RxxCxnnLtPvgn4t4FFqT+E7gp/CNpO+
s3YfJqcNvITdULsfW6zzHurVQ7yZWAHf10aza3zlpHOGtG/oXGkm7X6nfdcm
rItYPnRt9sBZ+t2mfTbx1btKzQ91rpm00w10ix1siNyHkXM1k2ZbBbeDT6iZ
p98cGsQJ32k+dk2lrW7yVvNQvwJ3l3qn1L4EJ+lVxa54r5FTy/sJ8W9wP8Wu
rTR9FzlHXN28RO5e7FxxKuDzyG8tjaW1dtbu0qw7dI20q2Ye4V0k557af+Fv
Ra6ptJWmf0L/A/oLG/iuiZ2l/fZbcA6JH0d+S+3wk9zZwGfXn9Lfmmwye93g
mvyDuxK5VvIp1hd4b2kibX4ErrVm+s77PwXVblA=
          "]]}]}, 
      {RGBColor[1., 0.8881274628726986, 0.6339889928863099], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNVL9PFGEQneNcb5O9b2/3/oAFAy2QgAkqMbE0ES8GEyPyI4TWBBrdo1ej
/AWQ2GospBUNOc+jsjExaqPFVUpDw1VAyXt5Y7TYzHzzvZl58765u7S2Mb8+
ZGar+Kr4XjfMbkZmr2DvpIhVzFqwBewxvllgfgT5/czs+UWzsQu4R/wuCkRD
wjBvFHFA7FFNuBnU/Yxa73D3sG62D3wf/jgwZ4nZVdxvNs2+Bd19D6o96vUf
14Shz/uVSLx4f8Xj3Vh96L9vCPMCvbbq4kzubxrqGcFei5Rb9fk4A/nPVaUD
+f0KmuslahyC/x5iXQxW1pW/gzoPwDtF7xXYdlB99pkG/gT+lOexDzUpg3oc
uGUfzhLq4vABuV8b8hkrYmGyijSiDtu4X/K+7M/ZBz7/sPu70OZLprwTaBxi
6U9Oc6n0vQ3bzs0moe8m7AJqTcAvc+Uw9wn864m4/041P+e5DH9Q0Qzkz958
a+rP/aCmN4I4svdP6NhKpA91eptrP3ZzzbfvdTjfvZr4f4yVzz39k+q9b8E+
y4V5mosfeZ4m4t4Gfhy2EyufuctN9Z9G3zIWhmfyKt1PHf83RkutWKt0v+13
jLEXbeZxnllnyt+9n0gnYnie9BziWbvj7/EJtufvxX3krlND+pyXe8MdII7a
rTU106LvAt++cJ57vmNHmfaW+8vaw16/5b/ro8T3zmuOOIY60hb/+T0/c6e6
8b936bhGxIz47g38POO8yI946k5t7je1M4X/n/R8LtY/B/8dg+c=
          "]], PolygonBox[CompressedData["
1:eJwlkbsuRGEUhRdzzpAcM2fOeQAxoUVB4pIIpcQQIRGCKXQaGoYHIIwHQKKl
Mq1LNKLSuIRKMxUaDRVK37aLnezL+tfaa//FpdWplUZJRSIgfiKp0CDViSCW
HgrSTlZaa5JOEymk1wnuulmqptJ6C8GsP5T2mWWJGkQz9LbBj+SkT7haiWHy
Cr0uZt3EBvkzvauMc06gPQ+n7ZOHf4H8Hv0+uNuol6m3EuceoPcb+Q62i2ma
9iExyCyD3mRe2mW/cugaTzn3ZN5G6Z2Qf0SOPSfewR/HPiuBr4A/iF3LPJpX
82BejPOC2ThvOgK/kd1qjLo98F6JvJy6lxdMLabuwbzYje/A1xK/rXk0r715
3+WbG/SQz6b+1m42R/5KD9i/xht5PXLsGW9uqY/YMQQ/zf6Psf+J/Y3dpMLs
MvaZ/UmV+ibnXr+o96g3E/8b0xiC+w/Kr0HW
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJwtUq1OA2EQnB4HveTo/RkUAo9C4HgCwJCQQIAKHAYc8AQIJM8AhiIQvAAe
6hsSECUVR1NRg2WGWbHZ72bnm53d79ZOL/bOEwAbjAXGhPFB4JP5C84l42YJ
2FwEhh3guwDuUmBcGJtmxve7wID4Y+rvH+JJZHFWqTOi9iW1XjoO6Yhz1rjH
ewW0me+IP6ystctebfiTp0FtXPWt3JrXxE6oU/Fun/mqjn61fcqfvKWlff7m
9qWaeqkmfJ3nncK+tgv3k1ftQVzxxJdXeX6q3V+ziDcN//Kn/sKkIT3NVoZe
EprPXHyemasZ5zHn7TJ7sfbaA445T0nOUWP+KN5oJTM+1pw9e78v/YbiiXPY
WP+gMU981bUncXR+i1n0Dnr3NvY8jzOt/t8VdxLYLPCH2Kf2OouaNLSDNv6B
P6q/XK4=
          "]], 
         PolygonBox[{{4698, 731, 2063, 4700}, {4699, 2063, 2071, 4706}, {4696,
           2059, 944, 3379}, {4524, 1670, 462, 4523}, {4483, 1877, 1334, 
          3062}, {3811, 1170, 1654, 2877}, {4472, 1654, 729, 4471}, {3062, 
          1334, 1670, 4300}, {4470, 729, 2059, 4697}, {3379, 944, 2064, 
          4701}, {3659, 258, 1170, 3812}, {4702, 2064, 731, 4698}, {3521, 938,
           44, 3446}, {3661, 462, 258, 3660}, {4004, 44, 1195, 4005}, {3063, 
          1195, 1877, 4483}}]}]}}, {{}, {}, 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3210, 3521, 3446, 4004, 4005, 3844, 3063, 4483, 3062, 4300, 
          4713, 4301, 4524, 4523, 4302, 3661, 3660, 3659, 3812, 3811, 2877, 
          4472, 4471, 4470, 4697, 4696, 3379, 4701, 4702, 4698, 4700, 4699, 
          4706}]},
        "0.00011960000000000001`"],
       Annotation[#, 0.00011960000000000001`, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3179, 3783, 3037, 3634, 3635, 3636, 4286, 3813, 3050, 3662, 
          3664, 3992, 3190, 3990, 3189, 3991, 4728, 3064, 4484, 4485, 3846, 
          4745, 3845, 4007, 3447, 2894, 3538, 3537, 3208, 4023, 3391, 3392, 
          4317, 3539, 3209, 4024, 3085, 4047, 3227, 3545, 4330}]},
        "0.000115`"],
       Annotation[#, 0.000115, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2904, 4343, 3558, 4071, 4070, 3096, 4045, 4046, 3544, 4328, 
          4329, 2975, 4544, 3225, 4043, 3226, 4044, 3086, 3455, 3211, 4025, 
          3212, 4026, 3703, 3702, 3871, 3870, 2889, 2963, 4530, 4531, 4006, 
          3197, 3441, 3440, 3993, 3191, 3815, 3052, 3663, 3051, 3814, 3181, 
          3975, 3977, 3976, 3639, 3637, 3038, 3784, 3180}]},
        "0.0001104`"],
       Annotation[#, 0.0001104, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{4287, 3785, 3039, 3638, 3040, 3786, 3182, 4520, 3978, 3979, 
          3816, 3818, 3817, 3994, 3442, 3533, 3532, 3531, 3198, 3389, 2964, 
          4309, 4308, 3872, 3074, 3704, 3706, 4029, 4030, 4027, 3213, 4028, 
          3456, 3548, 3547, 3546, 3228, 3395, 2976, 4332, 4331, 3549, 3229, 
          4048, 3097, 4067, 3241, 4066, 4551, 4550, 2980, 2903, 4342, 3557, 
          4069, 4068, 3107, 4100, 4101, 3573, 4358}]},
        "0.0001058`"],
       Annotation[#, 0.0001058, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2878, 4288, 4289, 3787, 3791, 3790, 3981, 3439, 3530, 3529, 
          3528, 3192, 3388, 2959, 2885, 3847, 3848, 3685, 3686, 3687, 4310, 
          3534, 3199, 4008, 3075, 3705, 3076, 3873, 4034, 4033, 3457, 3552, 
          3551, 3550, 3230, 4049, 3396, 3397, 4333, 3553, 3231, 4050, 3098, 
          4073, 3243, 4072, 3242, 4552, 2981, 2905, 4344, 3559, 4075, 4074, 
          3108, 4097, 4098, 4096, 4559, 4558, 2988, 4357, 4356, 3572, 3260, 
          4099, 3118, 4134, 3275, 3585, 4381}]},
        "0.0001012`"],
       Annotation[#, 0.0001012, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwNzjsvA2AYhuHHQJU6zbVIdC4bk39A1GwxiYHVaBESYiQ2FolDR4lOxKRC
EKxmiapNUpNruHO/h+f98o0trdVWu5LM4r2U3A4k+zjAvT6DSXkkGcVlf/LB
d+bjw0mTK1zlIvfh111BZlG2jmf1C3rselFARb49lPzgU75j9ocT+abshX3L
rs7fXOZNuSN+1R/zG2/72xYm1ROYc3+IK280cG22J3vD3bzujQ0+1Z/jDCvu
l9FxV9Q/+ceCvoZ5tPCFGfsdTKun8IgH7Lr5B4WrMB4=
          "]]},
        "0.0000966`"],
       Annotation[#, 0.0000966, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzj0vQwEUxvHDJG7byxcgFm+TGG9a9QkQEUMHg82iMx+AiIHZy2KxVJkM
Rt3EQCkmL6OhCZNEDX4d/vnfc57nnntHVquL6z0RUUE1F3FXiPhIIjIuooTr
gYg2t+2XeBlHacSm/iFvcD//ytdkHU7MZ6h187wu9vUa5j2+Gow40FvAq/vT
9qn9jvd38Wx+QQsn9k+85cY2zs1f5jrfuHPqxp8bHXzKL+y/5aOcs8sjwYNu
E3X9FfR5/tFPZQVM6Y/zBMbwLn/Dpe4wD6HXv93qTcozLnGTi3zP8+7NYdb8
aJ7pfpfLfGzfwD+8IzYe
          "]]},
        "0.000092`"],
       Annotation[#, 0.000092, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwNzj0vA1AUh/EjEoloqy8+AAkxeIsYO9VirsTcRMMkiNUXEJtZ1GpRwWCg
k09AWm8LrQ1tEwMW4jc8ee6553/OvSPLG4vrPRFRxtZAxMpgxCrOUxGldMRX
JuIbWXUOQ6gkIw7xkIjoU4/qj6Fmvs137gtm73me8zzNM+iVH5Ypy16g6dzC
hN4UJjErn+UcfrzTr1+SPUHduYG0Xk0uw+P86c9n3Jb/dfeHI/kF9an7N37H
B3bwKP+EOWT0d/0rzc/m1rIRL3zlnUs0nVvYt69gdk+uzg0U3W1z1Z4kUkig
ggMcm6+ia39Xdok73OFNe275VZ3nFt/wtbf+AduFPRU=
          "]]},
        "0.0000874`"],
       Annotation[#, 0.0000874, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0DsohXEYx/FHiXJ3cpkZZHTdTodyyWEzYTpui8JgMJyUM7oUkdlgMpBi
MJmwUspJ2SgsqHMWEx/Dt+//eZ7f+/zf922ZWR5fKomIZfRXRlzXRdzgoSYi
j0cc10fs1Ebs4ltdRAGH6pXqiFHP3fMdclURKT7QG0Perla5Mv2sZ9Zwq95X
X/Me33A2EZFw3nTXFnr1tvV6+Bkbdk7Z98WfOJct6I84p/Hrnm++0C/qt3Oj
3hU3cN7OR5zZkUGF8498s1kTuuQ6/40OvJq/4FJ2Di3Opd69x6wbSflBHsIA
vsw/cSW7gDbncvknuWHzPp7md87wG0+6fwLz6g/1DM9hFkf6q/Yk7Vn0PaPm
F/aled08h1P/5wQpmT+ggkFq
          "]]},
        "0.00008280000000000001`"],
       Annotation[#, 0.00008280000000000001, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3336, 3500, 3150, 4223, 3316, 3611, 4413, 2936, 3013, 4779, 
          4780, 4788, 4776, 4814, 4826}], LineBox[CompressedData["
1:eJwVzssrBFAUB+AjC1OGQSmEkoVszdpjNl5LJTaI8shk7GXFFlkotuNRLJVR
VoaNf4AarL1XFFn6LL5+9557zr23bWZ5JFcWEYtspSJuqyPu6KGXjcqIDJ/W
X4wxzrZaPykzNWTVlsjxUBNxVhtR4N46WxdRkhXJiFXnCdluZkfeyLWqiHUO
7B/tr81dkXf/KH1qGXbN7vFjfa73WxbkptlO2eiNomyQl7LkjlPz01RZN6kn
Zc5/KmVaz6t844kXnrnQP8uE+yc59uaK+onsNjOlNuiugf939GXpcJ5wPqw2
RJ++ebnAHO/2v3qKetOyi3r9H+pH/n9Iq30LzXyrH/hnOfvkueaOP0gxPNM=

          "]]},
        "0.0000782`"],
       Annotation[#, 0.0000782, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzj0oxHEcx/GvUR7uzmBhURT7Hasoi6djUGK6BeeQh8koAylPE1kki+mk
ZKYoGya3YtYZ5CHKy/Du/f99vp/f9/dvys0Nz1ZExATmqyMeayNeqiI6uQvd
uElGvHNZPspjGMeDvJiKOMW973xdxB3/6BXMfzmViFixt8jL5pW+1/TX0SLb
kDXzLVZrvI1nPOFYt4eP7BnBq91deo3yffsP8OX8jQ9cyD95050tXDk3uHPJ
Je+d2ZFD0nejPMFz3q/ltM4O72LIjm15ljN6e3YV3Gsza8UbysjKB8wH0Yt+
9OFQvqTfoVNwbucF+zI843zuvyftPpFN8NT/P+ovIq1Tbz4tuzbPc4n/AOW+
PJ4=
          "]], 
         LineBox[{3525, 3505, 4249, 4250, 4248, 3335, 3423, 3021, 4630, 3334, 
          4245, 4247, 4246, 3151, 3766, 3152, 3953, 4428, 2942, 3501, 4229, 
          3318, 4228, 3319, 3419, 3014, 4612, 4791, 4226, 4792, 4812, 4227, 
          4822}]},
        "0.0000736`"],
       Annotation[#, 0.0000736, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2945, 3625, 3506, 3160, 3526, 3429, 4268, 3352, 3624, 4443, 
          3961, 3161, 3960, 3963, 3962, 2946, 3507, 4254, 4255, 4253, 3339, 
          4256, 3424, 3425, 3337, 4251, 3338, 4252, 3153, 4232, 3320, 3615, 
          4415, 2937, 3015, 4230, 4231, 3950, 3147, 3767, 4234, 4416, 4723, 
          4417, 4233, 4418, 4772, 4790, 3494, 4207, 4813, 4820}], 
         LineBox[CompressedData["
1:eJwVzj0vREEYhuFX6dseEhQr8SOsWpQae5ZGotHv2ugELYkgBAVR8BNEpaA5
4qtROz2VxEdBYjfi2uLOPfPMO8/M6MJiWmuLiHnc9UU890S8dEZM8CvnvNQV
8c2f9nP8xT+8Ij/tjVhOIv5k64WIDfTLNmUJn2O1O2INh+bv7a/NXOHEnRQl
2Ti2dG5jp/WWv2RmbvBhXdX3zkUdx85HeNKdJhrY1d9EA7/InE/xhf6B1p+Q
o6gj4bq+Ao+Z2+cDVPTsyVMumTtyv+p+h/faUZZNoyyf4VmkyHVU+Ew+bG4I
g3iT1+SXOh9Qt37kW2R4wj99XTl3
          "]]},
        "0.000069`"],
       Annotation[#, 0.000069, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0Dsvw3EYxfFjbt3jsomFd4BZ2JpIGtfVC6hIGDGwqrTCIDEYGEwG8QoM
tdlbNfAiJCif//DN+T0n57nkN729U631JVnBYilpDSUvaA8k7+jifjhpDibn
+FL/4Bs36r3+ZB8n5eRBfUyf5C/NqmCGN4tD+SNc8z7N/8ACf1T+jN8o9qnv
1G/0lnbpwUgy5X1qZh3LvDpvifbQsPsPPfziWbZCH+2ZlJ9AGx2MY1fvGJ2T
uyjuxJo5Tf4qnXfXlf6a/rKbStjgraPK36IdvZvFH9GWvlf8A45/MhE=
          "]], LineBox[CompressedData["
1:eJwVzjsvA2AYxfFjVteNSS2Saox8CkXHqkXUSFTHui0Wl+/gFpMamGphYZBI
zHwFzFj8DP+c55zz5Hnf4vJ6da0nSQWrw8kKGtgbSnaxg5m+5LE/ee9Nnszb
si20Mc1P6fZ1XfMdRlCS1fVLeNVdDSYdtAeSWiG511/zZW+N2p/ky7g1L+rP
dAXzhGzWjQpe3DmRn6LpTtVeV3/Bz+lbbs3Tc37h/+/2O24c8T92D+kvPaZ1
+QH95sfcKGIcl/JN+ae8Sb9oi9bkG/SDf/DOM27whj9U+i4r
          "]]},
        "0.0000644`"],
       Annotation[#, 0.0000644, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3985, 3804, 3805, 3652, 3653, 2957, 2883, 3833, 3834, 3677, 
          3678, 2961, 2887, 3860, 3861, 3695, 3696, 2967, 4316, 4315, 3880, 
          3082, 3712, 3714, 3715, 4326, 4543, 3222, 4737, 4325, 3092, 3728, 
          3093, 3897, 3239, 4064, 3466, 3467, 3256, 4093, 4556, 4555, 2985, 
          2907, 3912, 3913, 3746, 3747, 3748, 4378, 4573, 3269, 4739, 4377, 
          3127, 4503, 4504, 3927, 4755, 3926, 4796, 4800, 2927, 4778, 4828}], 
         LineBox[CompressedData["
1:eJwVzbsuhGEUheGlUDEHSioROj2lGIdCNTrEYVQKoxoqicQFoHEBCqfKIQqJ
KUylJtHhFtBJEM8Ub95/r73/9Q3UNqv1jiRVTPcmM7grJ8OFZB0vXcmRbMh3
hacwiZXu5KGYrPJuKdnoSeq4d9dEP0bsl2TLeNJzqfcKO+4X/deyvzGv2Dd0
rvK1ucZ77m91nJtLfMZlvmjveQ0FnJiLfMpzOg/5jwd1T+ip4FFXp/4f+b79
Lx/wLG/zF/e5H3U7hpb7b/6QN+w/eYvH+dhbb9zU984L7Xdl8/xqfpb/A6QZ
L+E=
          "]]},
        "0.000059800000000000003`"],
       Annotation[#, 0.000059800000000000003`, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3187, 3808, 3047, 3654, 3656, 3657, 4298, 3837, 3059, 3679, 
          3681, 3682, 4307, 3862, 3071, 3697, 3699, 4019, 3206, 4018, 3205, 
          3881, 3083, 3713, 3084, 3882, 3223, 4042, 4732, 3094, 4492, 3898, 
          3900, 4749, 3899, 4065, 3468, 3571, 3570, 3569, 3257, 3402, 2986, 
          2908, 3914, 4804, 3915, 4766, 4765, 4767, 4768, 4818}], 
         LineBox[CompressedData["
1:eJwN0D0vg1EYxvHb4q19WiyKVmPyktgbNkmbIJaqhkSXSgwGtUiwYPIFJA2+
hlZisHQyGQxd+Qw2L4nf8M//5DrXfc55nrlmq3o8EBF1LCQRz2MRi3yEfiqi
PRExb73Om9hAMx3Ry0Qc8HU2ojUecaP7ovdkfpa7XORDvNtbNpe3fpQXuMMN
83l5AVVnbONK9w052RQmMYNp1PRTnEZZt4IL3VcMyYYxiFGMYEv/V+cPK1jF
qW4P39Y/OPOOL71zXuMGf3LW9y3Z3/HWGvblH/JEnsGJMx7kJfmuf3Drvj2+
N3OHku6lrI9/I5oppQ==
          "]]},
        "0.0000552`"],
       Annotation[#, 0.0000552, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzjEvQwEUxfH7rLR9r/b2vbVEi4nVWoaGSmgMtLFpLWbB4CNI1CgGg02I
wSJ2m5lv4APg1+Gfc++5957cYn/YOUoioodmOaKFz+mIq2pEoxTRphtYR38m
4qwSMaDndJRFXNp9tdcyX0QTy1jCIX+B5vTAbh8DPOpzfpXW6SwtJvm0RjO6
aW8LXTzoy/wKSpM5Ujz79Qkjvwxx4pc3/LkJ8186RROs+XlOf6H+Vv+o57Et
u4u9NOKLn8rLcCxnzF/l78ruYQfXblbsncqpm72ra7RAjju3t2jw2/bDfoJ7
eTf8MV7cfuAfUO0pQg==
          "]], 
         LineBox[{4299, 3809, 3048, 3655, 3049, 3810, 3188, 3838, 3060, 3680, 
          3061, 3839, 3196, 3863, 3072, 3698, 3073, 3864, 3207, 4535, 4020, 
          4021, 3883, 3885, 4783, 3884, 4784, 4786, 4785, 4774, 4775, 4773, 
          4807, 4824}]},
        "0.0000506`"],
       Annotation[#, 0.0000506, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0T1Lm2EUh/GjGetbgx0EBaOtizGTb1HsIKW6lJaqtA7a6BCrgu4tlCL6
BYxCC2nwBUTaDnXQIUo7OgkdiuLupJt+gPrLcHGd+5z/ue8HntTs8uulqoj4
jK7aiOOGiAwv4vJBxNdkRKf6Jaf5FedrIrKccs4/jJjDquw/9Oj3ohv96MO0
/BPuwBvZt5jEX/l2vUb3tPEjfswT8r/UgXXfU8UFnuKk+X/zEfuj+OiOff0P
5vP1EZvmC/zNrIhnsl28pn+lvlNn8LMu4ge+Y0Y+h7y7yrg2v0HWnWd2CpXv
qHyj86nzC9k079nt5GrZFfeX1WfqBLbNtlBCq/5zO7f277DrjYL+Op7qD2Fc
r4Rh73yRP+cLjOl94iOZZrSgCbvYwYG3qjmBsm/Y5A2ceOdd5T/Y/c09nOMi
3mPQ+Q8P8Bwf4h77lUGu
          "]]},
        "0.000046`"],
       Annotation[#, 0.000046, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0L8v3HEcx/E3q1JtJU2Yzo9udWzqWrdo/UhokBgNSJwfIZxWRCMi7kYn
ciemNtUORNqOBmnSgaUDf4BZLEZmHjc88/y8X5/3+/393CXGF4bnKyJiAzNP
InJPIzK8xdOc581nEX9rI95UR0w8j+jgNdlVVcSK+qwm4jOfcz9W3W2760aY
r8CEfBK7sl7UyxqwLPuEfdkAWmVJbMlyyOPGt9Oyl95TVJewh3v5HQ7l576Z
4G/yRu7Rf8oPvO5tr50LenbwUVaQDXKT+aLfU8KlnpT6gm/1nXrPFMbL78cv
u3/jD9rc3+G6/B/ZlXR+7/yVP/Cs/i92reHI7ldmWtCMSvUY/tvdr78PL+yo
w4Hzd4za8YN/YtmuLI7tOjGXMzctzyBlphMZeRen8RaN6nf8j7P6lrCIpHpI
Pscj3M7D3MaPBfVCTQ==
          "]]},
        "0.000041400000000000003`"],
       Annotation[#, 0.000041400000000000003`, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{2920, 4386, 3589, 3280, 3405, 3004, 2921, 4387, 3940, 3134, 
          3760, 3761, 3762, 4401, 4597, 3302, 4743, 4511, 3143, 4512, 3144, 
          3948, 4222, 4221, 3498, 3499, 3332, 4244, 3331, 4629, 3019, 2940, 
          4427, 3957, 3159, 3771, 3772, 4649, 4650, 4647, 3350, 4648, 3512, 
          3513, 3364, 4672, 3363, 4673, 3029, 4460, 4459, 4458, 4675, 4674, 
          3175, 4693, 4694, 4692, 4763, 4762, 3034, 2953}]},
        "0.0000368`"],
       Annotation[#, 0.0000368, "Tooltip"]& ], 
      TagBox[
       TooltipBox[
        {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
         LineBox[{3333, 3524, 3020, 2941, 3958, 3959, 3773, 3774, 3775, 4442, 
          4651, 3351, 4744, 4517, 3167, 4518, 4519, 3967, 3966, 4280, 4705, 
          2954, 4469, 4468, 3378, 4695, 3437, 3438, 3633}]},
        "0.0000322`"],
       Annotation[#, 0.0000322, "Tooltip"]& ], {}, {}}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImageSize->{490.22727272727315`, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882353399904924*^9, 3.8823534398663683`*^9}, {
   3.882353647633873*^9, 3.882353676356699*^9}, {3.882353716623851*^9, 
   3.8823537457144423`*^9}, 3.8824210398498096`*^9, {3.882421077045025*^9, 
   3.882421130976942*^9}, 3.882421498359668*^9, {3.882423516943931*^9, 
   3.882423544762652*^9}, 3.8824238627130337`*^9, {3.882867369847785*^9, 
   3.8828673785810738`*^9}, 3.882867789674388*^9, 3.882868457679789*^9, {
   3.882868501901722*^9, 3.882868537046026*^9}, 3.882871597629115*^9, {
   3.882871796046742*^9, 3.8828718459066563`*^9}, {3.882872047392091*^9, 
   3.882872060079914*^9}, 3.882872119085088*^9, 3.8828723702076797`*^9, 
   3.8828725321746187`*^9, 3.8828731175750513`*^9, 3.8828734590819807`*^9, 
   3.8828736561246853`*^9, 3.882873954433775*^9, 3.88287456216481*^9, {
   3.882874637267109*^9, 3.882874666371213*^9}, 3.883105852540347*^9, {
   3.8831099456410217`*^9, 3.88310997067447*^9}, 3.8831102017788877`*^9, {
   3.8831104450617456`*^9, 3.8831104559385633`*^9}, 3.883110761739184*^9, 
   3.883468947545887*^9, 3.8834729621780567`*^9, 3.883473331608038*^9, 
   3.8834793142932043`*^9, 3.883479383393044*^9, 3.883479635710585*^9, 
   3.883553790022189*^9, 3.883553832771365*^9, {3.883553959810821*^9, 
   3.883553971165102*^9}, {3.883554191053564*^9, 3.883554231527503*^9}, 
   3.883641272608241*^9, 3.8836442336554947`*^9, 3.883644890056961*^9, 
   3.883645019112156*^9, 3.883645345502302*^9, {3.883645505438012*^9, 
   3.883645662312215*^9}, 3.883646046958832*^9, 3.8836462988537083`*^9, 
   3.883646449238927*^9, {3.8836465002949743`*^9, 3.8836465090191307`*^9}, 
   3.883646558778575*^9, 3.8836467423032207`*^9, 3.883708497991164*^9, {
   3.883721760669757*^9, 3.883721778716421*^9}, {3.883721824346439*^9, 
   3.883721843470553*^9}, 3.883722064861602*^9, 3.883722205655966*^9, {
   3.88372361563008*^9, 3.8837236224509163`*^9}, {3.883723690790511*^9, 
   3.883723736011222*^9}, {3.88372377710293*^9, 3.8837237852408237`*^9}, {
   3.883810934040372*^9, 3.8838109437708883`*^9}, {3.8838133311891823`*^9, 
   3.883813339359695*^9}, 3.883813581669477*^9, 3.883813626072631*^9, 
   3.883814022179655*^9, {3.8838144259231567`*^9, 3.88381444549296*^9}, {
   3.883816303560357*^9, 3.883816338769309*^9}, 3.88381642097686*^9, {
   3.8838164893247766`*^9, 3.883816532283369*^9}, 3.883816634102497*^9, 
   3.8838167811442823`*^9, 3.883817132812429*^9, 3.883817196977854*^9, {
   3.88381751923562*^9, 3.883817569995205*^9}, 3.8838178496095877`*^9, 
   3.8838180008730087`*^9, {3.8847700946825523`*^9, 3.884770096817354*^9}, 
   3.884771902380024*^9, {3.884771966375272*^9, 3.884772037453115*^9}, 
   3.884776332288706*^9, {3.8847765752300797`*^9, 3.8847765947127*^9}, {
   3.8847766376655073`*^9, 3.8847766586662073`*^9}, 3.884777170998395*^9, {
   3.884777253566815*^9, 3.884777283823307*^9}, {3.8847796700656223`*^9, 
   3.884779675167552*^9}, {3.884779711675523*^9, 3.8847797594265003`*^9}, 
   3.8847799825607758`*^9, 3.8847818647352333`*^9, {3.884781898109952*^9, 
   3.884781963599761*^9}, 3.884782060173778*^9, {3.8847821186783113`*^9, 
   3.884782144731091*^9}, 3.884782630148099*^9, {3.884782687079832*^9, 
   3.884782759292513*^9}},
 CellLabel->
  "Out[646]=",ExpressionUUID->"41c8ccca-1c54-40d5-982d-df4c615b40d6"],

Cell[BoxData[
 TemplateBox[{
  "InterpolatingFunction", "dmval", 
   "\"Input value \\!\\(\\*RowBox[{\\\"{\\\", \\\"0.7950559526337914`\\\", \\\
\"}\\\"}]\\) lies outside the range of data in the interpolating function. \
Extrapolation will be used.\"", 2, 647, 476, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88477727346978*^9, 3.8847772828622627`*^9}, {
   3.884779669036487*^9, 3.884779674192841*^9}, {3.884779710854744*^9, 
   3.884779758610293*^9}, 3.8847799815933027`*^9, 3.884781863890913*^9, {
   3.884781897325919*^9, 3.884781962745256*^9}, 3.884782059374297*^9, {
   3.8847821176132803`*^9, 3.884782143681095*^9}, 3.88478262903594*^9, {
   3.884782685969124*^9, 3.8847827593953533`*^9}},
 CellLabel->
  "During evaluation of \
In[646]:=",ExpressionUUID->"4cdb19fd-ba9e-4329-9504-2f34f43832ea"],

Cell[BoxData[
 TemplateBox[{
  "InterpolatingFunction", "dmval", 
   "\"Input value \\!\\(\\*RowBox[{\\\"{\\\", \\\"0.7950559526337914`\\\", \\\
\"}\\\"}]\\) lies outside the range of data in the interpolating function. \
Extrapolation will be used.\"", 2, 647, 477, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88477727346978*^9, 3.8847772828622627`*^9}, {
   3.884779669036487*^9, 3.884779674192841*^9}, {3.884779710854744*^9, 
   3.884779758610293*^9}, 3.8847799815933027`*^9, 3.884781863890913*^9, {
   3.884781897325919*^9, 3.884781962745256*^9}, 3.884782059374297*^9, {
   3.8847821176132803`*^9, 3.884782143681095*^9}, 3.88478262903594*^9, {
   3.884782685969124*^9, 3.884782759407482*^9}},
 CellLabel->
  "During evaluation of \
In[646]:=",ExpressionUUID->"9082b55a-d2f8-4bcb-b369-378708249c31"],

Cell[BoxData[
 TemplateBox[{
  "InterpolatingFunction", "dmval", 
   "\"Input value \\!\\(\\*RowBox[{\\\"{\\\", \\\"0.7950559526337914`\\\", \\\
\"}\\\"}]\\) lies outside the range of data in the interpolating function. \
Extrapolation will be used.\"", 2, 647, 478, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88477727346978*^9, 3.8847772828622627`*^9}, {
   3.884779669036487*^9, 3.884779674192841*^9}, {3.884779710854744*^9, 
   3.884779758610293*^9}, 3.8847799815933027`*^9, 3.884781863890913*^9, {
   3.884781897325919*^9, 3.884781962745256*^9}, 3.884782059374297*^9, {
   3.8847821176132803`*^9, 3.884782143681095*^9}, 3.88478262903594*^9, {
   3.884782685969124*^9, 3.884782759419614*^9}},
 CellLabel->
  "During evaluation of \
In[646]:=",ExpressionUUID->"1091e660-ceb1-4842-927c-e883b9e4caf2"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"InterpolatingFunction\\\
\", \\\"::\\\", \\\"dmval\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 647, 479, 26498628498337399412, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88477727346978*^9, 3.8847772828622627`*^9}, {
   3.884779669036487*^9, 3.884779674192841*^9}, {3.884779710854744*^9, 
   3.884779758610293*^9}, 3.8847799815933027`*^9, 3.884781863890913*^9, {
   3.884781897325919*^9, 3.884781962745256*^9}, 3.884782059374297*^9, {
   3.8847821176132803`*^9, 3.884782143681095*^9}, 3.88478262903594*^9, {
   3.884782685969124*^9, 3.884782759432003*^9}},
 CellLabel->
  "During evaluation of \
In[646]:=",ExpressionUUID->"7cf2453d-63fc-4018-86a2-2dea1558ed8f"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41NsfB/D5jiVFt9ImyhoisoYs55yvmCi6iAqRiJJkVFyGUrpC9xey
RCI7ZUlxb0KJFmKkrLnDtd2QbRhiGCO/c/84z3lef7zPc57n8z5Hzt3PzpNK
oVDS8fpvb9p3f7iQWwDWtckOqD4loFVlmrsVPwKqb+zI+8+ybNqVnfwkeL6B
s6CC/elNhtPaa5nQVJDRvgf7jkhaiCA/D+r3XDRSxj5km5K2yiiCat5N+xSx
qdZNriuhz6BDe3yJPLabv8U0w7gcsmj1FTLYb5LqwxaX/4IuS2etd2JLV5lt
DKx+CTv2+F2SwA7te5s5x6iGB6SGJbdgs6iklr9hDWyVbrDbgJ2W0O/GDa2F
2ne2bluHzcyTVnnRWwcPvfpyVhCbV+HCuWr8Dq5ILYGfJQR07O25Obv8Abaq
JCTNYEexJQ8/d26Av34WEh/DfklxEqdXf4SrcaM7BrG3KXZnTzGYMKGMx/yM
ba6/3aeY1Qzzj6gH1mNftTyu42PYAu9eaS16hT2mN37mR+gXWGfsX1mATald
W9+u1gpJx0v30rAlLFVUy3tbYSuv/0cctoXz+Vl/43Z4SXq3axB2fthI+PRy
Jzw1YVFFYteICI+2FHVB+jKVrY3deU/xyFPnr/CLyIESBWzB3LObfau7ofTV
XS0C2B4fh3LGGT1wU/3og5piAjJsqSJNqr3QrTZLpRg7niV38QmrF6rBQbMH
2G8n3XTPG/bBL6oLuy5jx0X5Dc2GDsBHyhlO0tg7rcMShzoGYAOjmCaC/XhT
LK1NbRA2fD9cwynC80t9Wvi8dxDmh5I277DZxVOX6cb/wre7zVbdsK1bfQTY
y8MwM0jjj9uFBOwadjU/6DwCs8Qbyr2wXXm2kSlVI1BA68kxGjZdwUD0YPAo
zPp4YkkAOz5AcHPKwnf4KLS4N+gJzu9IlzflTMBGXqOQ5WOc3xd3NtlmElJ9
PHNlsUdNb+VPlk7C1ZchVdwCAi76eKsmX5qCs3FK1rnYUjX7tScn2NBP5qsY
N5+AmlqjskfmZqCYZfdieB6eZ/VA3bw8B3rvaNtoh/3SnOWeaceBAVfCM2Wx
SadPufPPOVDCaLvyq1wC2t0q35NJn4VSn2+3TubgfGeY5vzUHByrs8nQzSZg
ZbAEyvi+AE32BEDXRwSM+WJlJLeVC0+fOFUpi+2ufFMvh+TCc/oLr4bSCSjW
OaZWkMqFK4T9GU9sN83qHaVWi3DKXV/GM42AIqMuczXPlqDqiRdXjqYS8KR9
Tn5fEB9aRUplf0wioHrR1yy3PD7UDy1xDsWmUsXSh1r5UGVLfIYGdnHp1YQR
1RXo4eFdn5iI+ylKu8HuXYEynVNxjgkELKj77vgTrcL4C/bSn+IIGLI9WThW
kEAZcxFmp/4gYO2n5INukgSaL07dJYAt/HvKDS1NAu2jH7395A7uz8wDXrsz
gQIWi4TnowmY25jGlignUCGf/e52FAGbQ7K7ss9QkdIf6npJEfi9D5Tkv6gR
QKzxEWXXMNzf+0//jewQQCELoQT3Ou6bVams47gAmmFF+sRia1c+S13eKojO
j0twaq7h/ya+PAb5CqKjc7NvJUJxf8wqA5ukhJCJ9kJkRRAB6x6/p/UFCSMb
UfPmLH98X52a0ag4YaRxx7tNHvvw64ooncfC6GaK7/EcOgHbWgubor4KIy7b
pDvbj4DfeHFHdfTWoMaHu98/9MV5a5fjUXNr0KZRe1qAN85z5j21L61Fa8Yr
UYMbAdsPKEfc9hBDTZPaCWPWeH6qoD0tWAxppD4Wc8CelHSQK48VQxYqNttr
rfB5/PDX/dVi6KTQ6YHEIwQ0qOmbN9iyHr0WyzU9YIn/N9P7XhPv16P+7cq2
vmYE9DoiZGGjtAE5lF4bCjck4LWn/kJ3f2xEYerRdl6KBOTCC4duzW5Gkhus
lYY4FPhBTTfw5tA21KteVsyqoMD0oUKL+YwdiLfey94uhAKdJYxTk1J2IvXi
y/MUHQrcvZ0RW+Qqg8RuX1z/S/sqyHz5/uVZUTnUuNOD6mewCrLyHMfWRsgj
8TVKrYkRP4Ey9/2E97AC4v32OVGwcwVkRr1Wd/NQRM+tWXZs0RXwrkHay4ml
hJwnnm1ONeGDiz7H6RsM9qAcZBMtErgMRH6VqnIqV0Ffrc21y+7zgEryi063
rXtRk5XffEbtEjCR6ddcSVRDt06I5d1sXwTL9vTw9PX7UHfsn3EBI1wApr/m
LV7UQPKz6fHuwlxQfdZLcP6qJpKPaY3cu2kB7BBslmYqaSG5ewHcSdV5YMXz
1FXo1EJlnKhPtRY/QHBcvTctXhudsmRrVxybA99Pios0mOogk9FjDEn6LLCt
210vTtVFNE7n5dMhHBB7wyds4DW2eLVI390ZsOFyepao734k5OJhNuY1DaIF
7v9L7NVDJxOHwu2SpgCtITjGoVcPdU1YWwRNTIDuwXu6e+/oIyTVDXSPjQOP
NDqPSTNASv/Qi8JyvgOtaEOVpgUDpJaddF515yhY3Mr8LeGvA2i/tqUu7eYw
oHbSNKrOGaKuuHOc5l++gcHxhUH3bUbo9ATn561nQ6Ay0/fPrnYjJPUobtud
g4OgI+rzdMHvxmgxJii3jNcPxjYuHjYzM0GDb/LPDJ74B7RP22e5UwCSYW85
fnKIBVYp6W59pdh8l2uNf3YDxbIiqHgJIjvW87DSoC5Q39T27tsGhB7sP81f
uNEBhke9h7leCBkfT6n3Lm0DFIdv9+kfEFr3yCshofMLMHHu4CfvItFHKQfi
Hr0FKIk3psnJkKjK6OhStnsL+KXxtXGRLIkYF3o0K+1bQJ9eQWiNAok2Fy6c
mjVoAdfFGfxvKiQStSbSk4kWUNsow9fSI5HLDNexJOETMDXwWWYeJdHdyZ5c
anUzUJ0+/dDBhkQ9UqrlD0uagXi+vVG/LYms6/NmDTKbwdBmEDJrTyKPbnOB
GxHN4Nb0xmUJZxJlJy+7IJtm8D7/Bc/zHIn21U7GRI8wQbFLUer0eRLZ6B/+
zfNvJkjckmkYfIFE/ll60ebNTOAZHs34ny+JODpMZfEyJhB2PcUru0Kig7nG
pv9cYwL2FttU4wAS+Y5c9GbRmaCLaW5YH0gi4yXTFz0eTJB/QIPxdzCJriyM
1IxbMkHMjIKkRwiJIn0qgheNmSCwQKJqMpREyfXaJ9dpMoGr63qnwOsk0sv7
21FWgQkObaXyVsNIxD+jdt1wGxP8HyAmhas=
       "]]},
     Annotation[#, "Charting`Private`Tag$7845639#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41dkfB3AuWUqTUbKlLCEiuyTOOV9bKmuDyo3u2MpWtGgsZWlB02Bk
G3NFZckyUUqWbKNcLpqRpcJPlmyle7PrLl+/M3+c5zyvPz6f5/M85/05yt7n
j/lRBAQEcvH572buy5wsXS0G0uZ+Y3pBJLCvpXvb825CXcb2q/9ZiWV7cQcv
A45bGzjrYnc35XmIX82HL5gvPHSwb4vRo4R5hZAdVUzXwj7kkk1fjyyD8Lbg
dg1sigPTix9dCUuN29pUsGlhduxI8yo42bn8WBG7KaMtZo37HO4rSX0jg72z
zloyvL4G6phmqf2IHT3yd/5iZD20nBd/Jo49SCH0w8waoSJ1NkIQm373I201
uhlWbjS5shZIgs7CnZrVwy3Q7eG3MhY254Xn/CXzVqgwICf7Cfvk8FDcAvc1
PL+9PrMLO5Elf+QJlQFzuo1KmrBrBDykQuvb4XCY0uIT7O1q7x98jeyEIMxF
Jx3bZr9MUPlgFzwwna14A/vSYXfDILM3MDLW3eYi9qzJ55+Xov+Fh1imB52w
BZrF23q1eyByoombY8se1tSqGu6BO+coW/Zg21HPLoSZ98IXyU3N/AASFMVM
xbO5/fBlHNGYh90oJjL9pmwAnggMsbuF3f+72tHH1Hdw9azyxmBs4QLfrSH1
72GziqaRMbZP+/jDz5FDsOQ7S6XxLAkiXShiTK1hSNxPC7iHnTaoHFwyOAzr
Wt9MX8X+e45mdNZsBNbUyv1qhp2aeH58IXoUJiMQUnqGBDscYtLH+0bhOaPZ
0BvYj35MsX2rPQYpd1G5J3ZTzuPSJ8NjcCF9vWMzNqv864VQ8wl4auqHB77+
JHDoCRJicSdhG6nCmPMlwcCkl40VdQreJQLJ59heHJeE7LopKOkTdeQadqiq
6SariGlY+H6zsgR22mXhrdkrMzCdFdG+wwfXy+WqWM5/gfd6xoSlfsb1+1J9
s5zn4Iqg4q9dNBJMW14vmquYgzbEZfVb2GtBAVpZ577CIe90+sppEig0GhvM
fWFB9afGCV1eJNDTn1Y6uvgNJnomUu1P4fesH21ZVpmHx8uiTdaoOA82g975
x+bhvaol9YfYhEd3wfKTeSh66I7digcJjl2v2pMfugAVKLtTfj+J6/tj9Ja/
LsLnzUl6dHcS1EbIoryZFZjBYfAEnUmQ/K/9QWXpVajFdFTJdiKBt0acyUNi
FXrMHInWwZbon9UuzlmF45yWbjdHvC969XIV9mswWiphmm5PArFpz8XGyu+w
eDmCL3yYBCdcHxaN/MKDGjMBLHOCBDpl7+7TCnnw2LlHT2sR3j+KRO54Dw86
hp8vN8Yur7h0d0qLD/2sGtBeiPO5yTaWNcyH1xL8v0pYkKC4ZeYkidahj2TG
6VJTEkTJZImkCAsip7232A66JGjuzrKiyQsiLxupO8/2kUDkRnasvp4gKsy1
PiOPnfrtD04vVRA1Dbd9mNAmQUEHnSVbJYgqbUIrQ7RI0BX1YODBzxS0f2RV
x1MN7/voX0XVjULo8FhObZk8zm/m44mEPiHk31eMOHI4b/YVSic/C6HmSaao
HbZBbWUOV1oYMXpvuI/J4P8mrSoZhQijkz27VzdK4/xY14YzFTagR8J7nM22
kKDl0SvbkV9EULth7EtxITyvYeN0YqoI8omzt9GlkOBIw4tEw0ci6NSMMesn
QRK87SllJr4TQdlXi/Nz1vngEyfV0dBEFHEkySRFHh+IOHi6Jy6KIi3R8Gvf
l/jgyPyyn8E5caQQtPvCxik+6D2gcfOWjwT6pOk8lP6aD2haoJceIYHiEm45
Z7zigzl5N+WqFAnk7yArmtGK+/HiGz7WSyAUm2ma1sIHpo0jy6bbNiPoy318
vYEP6JaZ/l9ebUZWB+K+Wz7nA/+jG+yc1beg7DhuomEBH1x9HLbhtyVJNPmT
2vvRGD5YhYGHri9sRWedOAho8MFrbaPwuPHtSJLjLn6mlQdyx0vtlvPkUCQ7
3oCg8gBV1jwnI3sHcg1Ni+sb4YLdMpEpZV67UEmRUlYAjQvya17V+G5SRq5/
dr33G+KA+4UnZ8VvqqBLZkLdSQQHaKy++hIwqYq2lcoMFZZ8B/mJDTo0HzXU
9fmaSQlvDbQydvp7DKqjcYV2Na2jayA4yD10i+keZEfjrkXlrQIxJ4U6jypN
ZJctfYL6cQVoZlX306T3oq/zYTRDjRVgseujHj9dG7ndFBnfT10GXNfQ+NzN
+1D3WrSyfcoSAOx3hWvBuigm2S4g6c0iqPf1F16+pIeqKoKEs7gLQE64a2en
uj7yfqCYcdN4Adhz/IxU+/VRw+BL1tKFeRCR2hZgm2aAZH4IfKuZ/w3MnJAS
Y1gaIpXUxpiaGjZwadndJkUxQokbPVtKtrJASmxQzGiDEYo/3hooHjUHtlzI
vb8pxBiZBzcLWgl9AUlCmROCe02Qz66PCw0XZoEtIyLZbdgE3fkgNHFGeAa8
H/vdaO/t/ahdwOqbQeEU8KGHcjptTZHt2g6LPv1JoJ9kpslcMUVTjpcT9MYm
wJp055W7zw+g0Hn5ntqYcUDpt9WtO2OGTvcV/ChGjIGxzytj3tsPIrnnEsHP
to6C2vyQZwO9B5FJzHEYVfU/0Jf4D7v4hjkSL+gtsosfArOSa0esrS1QQ3Vu
SIfFB9DLdr3vLQBQ42vxi0DpHVgXyKWNVAAUQr0Scg/1A7WnZVDtHES3wDF2
lGsvaGO+bf20BSF90YGj2g97wOR0wOSqP0IFJfupT6X+BQJunzJDXyPk/4eA
rd5KF7Cg9vGyFAlUITAepabLBOpSHXTlXQRSCBdla6oywQ8dDeZlSgTKZLaI
G8gwwYhJcXSjKoHmyq8YOax3gGtSkbxPmgSSSwp2rfinAzR37OLpmxDoAWIG
qIR1AEvTIG6nI4FqDn/Y31LdDrTYp/90cybQhjrt0QNl7UCqyPXgRxcC5Vk/
Ua3OawfjW0HUgiuB9i1URtYmtoPrbEmuLJVAm4KNPL94tINXRdUcvzMEql7t
zeauM0C5Z1kO+yyBikq9Wv9aYoD0bflmEYEEItzuxPvMMoBffFLknRACccd3
N3x4ywAiXqc4Ty8SyBLdkZkvZADWNpcc88sESvsrbKgphwEGOm3M2sLxvM10
vbQUBig6oBv5IYJABYOSvxERDJD8TVXeJ4pAQz0xd3eeY4DwYtm6uWgC/e0U
q7nuzQBeXps9wq8RyOJlgePEcQY4JE3hrMcQKNcmhtJpzwD/B6uozQI=
       "]]},
     Annotation[#, "Charting`Private`Tag$7845639#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV03k81dkbB3BZLpKS9SJ7iCTbGOl6zvnaicQwhUiWVJgolGXSnvo1qIgs
P7cIg0iaIkPRdYU22RJjF0l2ru9F5jt/nNfzev/xOc/zej3nqPiecAng5eHh
yaLOf7VJ985IIScfCga08xq1ueBQmenrsHIZyff3O/1n5UnrU1tWUtDBOiHH
15Tfvsj2EP6diWbT72exKV8XyozhX3mATONLCBZlG+e0zLXoIjTxRGdXLWVe
xybv1dhHSOGAwqVqyj5htlPRjHJU9OScaiXlFynsuKXlv9CU7H7JJ5QVn1uK
RVZVoIIhpnsJ5djeOuZcdBUKjPKezaf8mZfQDzOtQTSnpF4m5czbfT6c2Jeo
ZNhY8S7l5geKWk97alE/26UsiTL3mddMOOMVmvljOPUqZfee7vOzy/Vo4/Hg
Q6cox0/K2Zd5NiD47oePUq7g8RAPrXqNvPXbwg9Sllb/dP97dDOCQ6qfzClb
/SwTVPz5DUqh8wr+RDnc7lfDINN3yMfA+5oG5a/G44fnYz+gxOLEeEHKPC+F
2a06LWgXBApwtLhAt9PSLu9pQY9vvWgfoWzreXQ2jNGK1EI4obWU8+K+XJha
bkfjkwU3QynXCNFG3xV1oE67okIPyu031feUeHYi4chdMpaU+XP9JUKqPiHd
srVxScp+rwdzxqO7UaW/3+8l27gQ7cwr1KTdgyzz5wxuU771WSX4z889KKFd
gXGact2Ej9FR017UP25jZ0Y5Kf7E4GxsPypz3eFUq8mFLY5xyYNt/ShzlX2P
Sblgc6L1R50BJFgpYhtH+UV6SWFZzwDqGshONKU8Wfz9ZChjCLnzmIj8qcEF
x5YgvsnlEaR29fTTAHUudIx4W1l4fkE4ICfFmLI31/lq2vMv6ETz6UIa5VA1
ExGLqFHUtEM7IncrNW8Ev0Ta4hg6MLwtsUONystmqZrPfEN9a4e7JFWpvG6S
f+q+CXS5jS7VpcKFUfOLeROlE0is7sWVTMpLQce0U3/7jt5Lz4qoUJav+clg
4tsk2pYZ9X9lZS7o6Y8q75mbRn+XfhwjFah9VvXXLqjOIHsbkStllCusPvsy
XWYQ1/6G+1HKhMfb3IWyGSS5EJfTuoULLhfLtzFDZ9F7sZ5XTHkq3x6nt/B9
Dm2VFmNIyXKhMoqOs8cW0ZU4+u5ACS4kfHDYrSLFQfq6l7ZvoOyred44h+Ag
0X86gh+Jc2FD+1ed/HQOWm3dM7i4mfovelWypQ5LaH6z/t0YMS4IjXrN1Twi
UfB1kuEvyoUDrjl5vWdWkLZoVuJjGhd2FHXe83mwgi4EVxQSlHl5N2QNtqyg
1f/ly3wQ4EJxafjtL9qriD6hMjrOT71PEetzkz2r6LlEqBedjwv5tWPuP/Aa
0pUfLHFZIyFGJpWWyL8OJ9XqqFlxSHj5NtXCR24dbn6iu7N2kQTapbRz+nrr
8A2BnmQG5aTpu9xWz3WYmeoVor9AQm5j5iS9fB3ePszjKjFHwpuY+x33D/Ni
0fdiPBWTJCj2P8x7WsOH+zfOylweIcHvTsnQ1TY+nNG4KXhimIQCh1Jl93E+
3OApJf8LZYPKR+nLUvy4MYH3uuIQCTa3yhNwCD+29L1Z/LCfhFDLysgmeQHs
7iu48WE3CbUFLOveMzQcsLMrSa+FmtewZjQ+iYYfpMG98A8k2Fc/izcsoOGG
ovUzz96T8LGlsCm+k4Zl9ko6Md6RMMxN2mtoLIhV3LNpjGYq7+j1a/ycIK7/
4BYmU0/lZxYCDH4Txqf3R+RBBQmtuzQvX/HbgF9WK+1xySTBRxtaM6M24L0V
npGRGSRMyLmplCduwHbHU1fvplP3rVyo7qvagIUtHZT70kgwqeldMJEUxY6n
fCsOp5CQaX7nyDeWKD7/RY6wTSDhyB4B230am7Cadbd6RhwJv5eECfwxL4Z/
eGuNe/qQwEHHbS7OSuBQ0orYIklCvY5R5PlBaTz6MaLbpGYJsgYLbReyZfGP
Rp8ppv8SeNIZ6SlpW7BAdW5yKsmBrTLRiUXeSnhqPNW58wYHmBWsCn8RFXw/
7yhxXI4D9x64fxW+rIq9+bPzNt5ZBE0O69uxETVsO91a4S+xCMz46h0+fupY
g2nem3x2AV41KB7x+KyBQ7ZYzg+NzENw0K+hm0y24dJ/DIcMXeZByEn+uUe5
FrZgx36fKJ4DrdSn7T5S2/Eum6ro8xvnwEypT281WQef7C7rFTw0C8uuoRey
RHWxckZOV0bpDMBU54Ol4J04sKkhu1F4Bqr8j/AvhOvhrDalEy6u0yDL/0ax
WUMfy2vyc3p/mQIHboCRWrs+3t4Fm5UFJiEqiX3M+pYBbinIzYxIn4CxA+JC
DeaGeOso62GK3Tdwrt3KFuc1wjmvs/h9+r5C4rmguP5qI5x8+KZCT9wYbDqZ
dU8k5Cc8pOrek84YhWt8d4bWbTfGEdH0cLHhEbBuiEpw6zHGqooVEpMFw/Bp
4KbR9us/43ky5O776CHwywzlNlub4IN09YUDuwdB/5qpVtOiCQ5rKPq7TnYA
lqSaT9/+axdOKrFwCGztA952653PA02xecacuHzpPzAwvjjgK70bC7fG+j4q
6IZKZsiTjtbdOOq+rGj8jS5oi38/lX+Jgc3yaaoNf3bCV7Ele0tLM/xH13RY
8NN2aJ1yvefLA7hTzsclebgV1niyfHpLAb+ln3u4ZvMR1B8XIfXfEFa1MAov
YH4AdtPHV8ObML7lH3i1Y/87GBk9NsI5gvGL9fKDXXnNwOM2fCe0HmNFaTel
jK+vwcyzbSVVgcD1fTrPFi+zQUO8MVNFicBebmM/8mPYsLGxmlGkTGBvp4ig
g2Fs6DXOj61RI7BFaVXZu4NsOCsevTKsRWCO7MLXT4ZseNmotKJvTOAz/WYv
Lw7Wg7lJ0HLzXgJr2tEf65nXg/bUoQy3fQTel7p+xsqkHsTzXHf3OROYkapu
761bD4MSEDPrSuBDd0/apcnVw8UpsWW6J4FlK/JP6s+xgJX3lBsQSGCy7o3y
Ui4Lir2K0qeOErjphPknyGBBsiTTNOo4gWPWm+XG32RBwIVr0TdCCHxE2vmM
+lkW0LwPch+fIrB9axft0n4WTEo6pzMiCNyQ5XVgyJEFHc1WpuxIAqvuO19l
ZcmCvF07o7uiCJyy0+AvCX0WJEyryfnFUP1q+fbEabIgMp/+fCKWwMq0H9Pf
FVjg7S3qEXmWwHzldXmHJFlgI8XLXYsjsJPjXFDbehb8C/DZwts=
       "]]},
     Annotation[#, "Charting`Private`Tag$7845639#3"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 2.3892287966759736`*^-6},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{490.22727272727315`, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882353399904924*^9, 3.8823534398663683`*^9}, {
   3.882353647633873*^9, 3.882353676356699*^9}, {3.882353716623851*^9, 
   3.8823537457144423`*^9}, 3.8824210398498096`*^9, {3.882421077045025*^9, 
   3.882421130976942*^9}, 3.882421498359668*^9, {3.882423516943931*^9, 
   3.882423544762652*^9}, 3.8824238627130337`*^9, {3.882867369847785*^9, 
   3.8828673785810738`*^9}, 3.882867789674388*^9, 3.882868457679789*^9, {
   3.882868501901722*^9, 3.882868537046026*^9}, 3.882871597629115*^9, {
   3.882871796046742*^9, 3.8828718459066563`*^9}, {3.882872047392091*^9, 
   3.882872060079914*^9}, 3.882872119085088*^9, 3.8828723702076797`*^9, 
   3.8828725321746187`*^9, 3.8828731175750513`*^9, 3.8828734590819807`*^9, 
   3.8828736561246853`*^9, 3.882873954433775*^9, 3.88287456216481*^9, {
   3.882874637267109*^9, 3.882874666371213*^9}, 3.883105852540347*^9, {
   3.8831099456410217`*^9, 3.88310997067447*^9}, 3.8831102017788877`*^9, {
   3.8831104450617456`*^9, 3.8831104559385633`*^9}, 3.883110761739184*^9, 
   3.883468947545887*^9, 3.8834729621780567`*^9, 3.883473331608038*^9, 
   3.8834793142932043`*^9, 3.883479383393044*^9, 3.883479635710585*^9, 
   3.883553790022189*^9, 3.883553832771365*^9, {3.883553959810821*^9, 
   3.883553971165102*^9}, {3.883554191053564*^9, 3.883554231527503*^9}, 
   3.883641272608241*^9, 3.8836442336554947`*^9, 3.883644890056961*^9, 
   3.883645019112156*^9, 3.883645345502302*^9, {3.883645505438012*^9, 
   3.883645662312215*^9}, 3.883646046958832*^9, 3.8836462988537083`*^9, 
   3.883646449238927*^9, {3.8836465002949743`*^9, 3.8836465090191307`*^9}, 
   3.883646558778575*^9, 3.8836467423032207`*^9, 3.883708497991164*^9, {
   3.883721760669757*^9, 3.883721778716421*^9}, {3.883721824346439*^9, 
   3.883721843470553*^9}, 3.883722064861602*^9, 3.883722205655966*^9, {
   3.88372361563008*^9, 3.8837236224509163`*^9}, {3.883723690790511*^9, 
   3.883723736011222*^9}, {3.88372377710293*^9, 3.8837237852408237`*^9}, {
   3.883810934040372*^9, 3.8838109437708883`*^9}, {3.8838133311891823`*^9, 
   3.883813339359695*^9}, 3.883813581669477*^9, 3.883813626072631*^9, 
   3.883814022179655*^9, {3.8838144259231567`*^9, 3.88381444549296*^9}, {
   3.883816303560357*^9, 3.883816338769309*^9}, 3.88381642097686*^9, {
   3.8838164893247766`*^9, 3.883816532283369*^9}, 3.883816634102497*^9, 
   3.8838167811442823`*^9, 3.883817132812429*^9, 3.883817196977854*^9, {
   3.88381751923562*^9, 3.883817569995205*^9}, 3.8838178496095877`*^9, 
   3.8838180008730087`*^9, {3.8847700946825523`*^9, 3.884770096817354*^9}, 
   3.884771902380024*^9, {3.884771966375272*^9, 3.884772037453115*^9}, 
   3.884776332288706*^9, {3.8847765752300797`*^9, 3.8847765947127*^9}, {
   3.8847766376655073`*^9, 3.8847766586662073`*^9}, 3.884777170998395*^9, {
   3.884777253566815*^9, 3.884777283823307*^9}, {3.8847796700656223`*^9, 
   3.884779675167552*^9}, {3.884779711675523*^9, 3.8847797594265003`*^9}, 
   3.8847799825607758`*^9, 3.8847818647352333`*^9, {3.884781898109952*^9, 
   3.884781963599761*^9}, 3.884782060173778*^9, {3.8847821186783113`*^9, 
   3.884782144731091*^9}, 3.884782630148099*^9, {3.884782687079832*^9, 
   3.884782759497106*^9}},
 CellLabel->
  "Out[647]=",ExpressionUUID->"a6b3022c-7bf1-4922-8076-35e76d3add3a"]
}, Open  ]],

Cell[BoxData["|"], "Input",
 CellChangeTimes->{
  3.8847766578598747`*^9},ExpressionUUID->"04292cc5-c934-4329-a9c5-\
85b2278343df"],

Cell[BoxData[
 RowBox[{"(*", 
  RowBox[{" ", 
   RowBox[{"1", "-", 
    RowBox[{"Dit", " ", "Cross", " ", "section", "*"}]}], " ", 
   ")"}]}]], "Input",
 CellChangeTimes->{
  3.8828685894781933`*^9, {3.882868629623494*^9, 3.882868663328025*^9}, 
   3.882868893434067*^9, {3.883811382175132*^9, 
   3.8838113971152773`*^9}},ExpressionUUID->"50a3db6b-50c1-4c63-a4b6-\
e0a5ab5b7a7c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   RowBox[{"q1", "[", 
    RowBox[{"Et", ",", 
     RowBox[{
      FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "180"}], " ", "}"}], ",", 
   RowBox[{"PlotPoints", "\[Rule]", "50"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}], ",", 
   RowBox[{"ContourLabels", "->", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882869907389391*^9, 3.882869920654478*^9}, {
   3.882870073759598*^9, 3.882870106317532*^9}, 3.882875871368724*^9, {
   3.882875931589867*^9, 3.8828759690473146`*^9}, {3.882876164781519*^9, 
   3.882876168127355*^9}, {3.883109980792049*^9, 3.8831099947433577`*^9}, {
   3.883110327898386*^9, 3.883110328405862*^9}, {3.8831104617016497`*^9, 
   3.883110461779323*^9}},
 CellLabel->
  "In[114]:=",ExpressionUUID->"c36da682-78eb-4479-a88a-6d8ffe69fdb8"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxknQV0FUcXx4M7BAvWQAguIcmLAyFDgkNICO4hwV2KFC9Q3D6kSPEWChRK
oRQrUCgUintxl+LuRb73NvndZQYO53B+3Nl9u/MfuTN3ZrZwQo+4dind3Nx8
crq5uf41/+TeOm/ErPqPI3R2U7BX/ntRiUPSK93uLmyZO+YSLmT9R17hojWn
Of9+YVzvJTy7/uPeGVt5Cxew7ldUeIHr6XoXFy5s3b+k8A9rKwX+M6a0cAnr
98oKr7xyM9fWeeWEPazf9xM+PWbP26NN/I3ncQg3tV4owHjfQOHzG7o5/wYJ
W7nZO1i4Zd2dB0oNCBEuaN0gVFj/nSwKPXR2UzB66HZ3YfSA0QNGD/16L2H0
gNEDRg8YPWD0gNEDRg8YPWD00J/HIYwe+vsGCqMHjB4wesDoAet6eBp6eBp6
eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6eBp6
eBp6eBp6eBp6eBp6eBp6eBp6eBp6eIoeI12XZSwueujspmD00O3uwugBoweM
Hvr1XsLoAaMHjB4wesDoAaMHjB4wesDooT+PQxg99PcNFEYPGD1g9IDRA9br
h49RP3yM+uFj1A8fo374GPXDx6gfPkb98DHqh49RP3yM+uFj1A8fo374GPXD
x6gfPkb98DHqh49RP3yM+uFj1A8fo374GPXDx6gfPkb98DHqh89n/RZ66Owm
z4Ueut1dGD1g9IDRQ7/eSxg9YPSA0QNGDxg9YPSA0QNGDxg99OdxGLoEGO8b
KIweMHrA6AGjh+k3JNWXYKO9Cjbaq2CjvQo22qtgo70KNtqrYKO9Cjbaq2Cj
vQo22qtgo70KNtqrYKO9Cjbaq2CjvQo22qtgo70KNtqrYKO9Cjbaq2CjvQo2
2qtgo70KNtor2w/rbt0oTPTQ2U3B6KHb3YXRA0YPGD30672E0QNGDxg9YPSA
0QNGDxg9YPSA0UN/HocweujvGyiMHjB6wOgBowes9x/hRv8RbvQf4Ub/EW70
H+FG/xFu9B/hRv8RbvQf4Ub/EW70H+FG/xFu9B/hRv8RbvQf4Ub/EW70H+FG
/xFutFPhRv8RbvQf4Ub/EW70H+FG/xFu9B/hoscS6z2U6KGzm4LRQ7e7C6MH
jB4weujXewmjB4weMHrA6AGjB4weMHrA6AGjh/48DmH00N83UBg9YPSA0QNG
D1jvzyON/jzS6M8jjf480ujPI43+PNLozyON/jzS6M8jjf480ujPI43+PNLo
zyON/jzS6M8jjf480ujPI43+PFL0gPX+PNLozyON/jzS6M8jjf480ujPI0WP
yS8WO9+kiuihs5uC0UO3uwujB4weMHro13sJoweMHjB6wOgBoweMHjB6wOgB
o4f+PA5h9NDfN1AYPWD0gNEDRg8YPUZZ/Xs10UNnNwWjh253F0YPGD1g9NCv
9xJGDxg9YPSA0QNGDxg9YPSA0QNGD/15HMLoob9voDB6wOgBoweMHjB6DAxL
4/vjleqih85uCkYP3e4ujB4wesDooV/vJYweMHrA6AGjB4weMHrA6AGjB4we
+vM4hNFDf99AYfSA0QNGDxg9YPToad2opuihs5uC0UO3uwujB4weMHro13sJ
oweMHjB6wOgBoweMHjB6wOgBo4f+PA5h9NDfN1AYPWD0gNEDRg8YPdoP6bgq
26TaoofObgpGD93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrz
OITRQ3/fQGH0gNEDRg8YPWD0aGH9TrToobObgtFDt7sLoweMHjB66Nd7CaMH
jB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQGD1g9IDRA0YPGD3iXMnCYkQP
nd0UjB663V0YPWD0gNFDv95LGD1g9IDRA0YPGD1g9IDRA0YPGD3053EIo4f+
voHC6AGjB4weMHrA6JH0HrGih85uCkYP3e4ujB4wesDooV/vJYweMHrA6AGj
B4weMHrA6AGjB4we+vM4hNFDf99AYfSA0QNGDxg9YPRYaF1XT/TQ2U3B6KHb
3YXRA0YPGD30672E0QNGDxg9YPSA0QNGDxg9YPSA0UN/HocweujvGyiMHjB6
wOgBoweMHnOt340TPXR2UzB66HZ3YfSA0QNGD/16L2H0gNEDRg8YPWD0gNED
Rg8YPWD00J/HIYwe+vsGCqMHjB4wesDoAaPHTCuj6oseOrspGD10u7swesDo
AaOHfr2XMHrA6AGjB4weMHrA6AGjB4weMHroz+MQRg/9fQOF0QNGDxg9YPSA
0WOqNV5vIHro7KZg9NDt7sLoAaMHjB769V7C6AGjB4weMHrA6AGjB4weMHrA
6KE/j0MYPfT3DRRGDxg9YPSA0QNGjwmuxyjUUPTQ2U3B6KHb3YXRA0YPGD30
672E0QNGDxg9YPSA0QNGDxg9YPSA0UN/HocweujvGyiMHjB6wOgBoweMHqOt
+ZNGoofObgpGD93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrz
OITRQ3/fQGH0gNEDRg8YPWD0+No1PHxh66Gzm4LRQ7e7C6MHjB4weujXewmj
B4weMHrA6AGjB4weMHrA6AGjh/48DmH00N83UBg9YPSA0QNGDxg9BlvzWY1F
D53dFIweut1dGD1g9IDRQ7/eSxg9YPSA0QNGDxg9YPSA0QNGDxg99OdxCKOH
/r6BwugBoweMHjB6wOjRP2MrZ8omoofObgpGD93uLoweMHrA6KFf7yWMHjB6
wOgBoweMHjB6wOgBoweMHvrzOITRQ3/fQGH0gNEDRg8YPWD06G3dqKnoobOb
gtFDt7sLoweMHjB66Nd7CaMHjB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQ
GD1g9IDRA0YPGD26uZqvxc1ED53dFIweut1dGD1g9IDRQ7/eSxg9YPSA0QNG
Dxg9YPSA0QNGDxg99OdxCKOH/r6BwugBoweMHjB6wOjR0ZrvbS566OymYPTQ
7e7C6AGjB4we+vVewugBoweMHjB6wOgBoweMHjB6wOihP49DGD309w0URg8Y
PWD0gNEDRo9EK10L0UNnNwWjh253F0YPGD1g9NCv9xJGDxg9YPSA0QNGDxg9
YPSA0QNGD/15HMLoob9voDB6wOgBoweMHjB6tLJ+p6XoobObgtFDt7sLoweM
HjB66Nd7CaMHjB4wesDoAaMHjB4wesDoAaOH/jwOYfTQ3zdQGD1g9IDRA0YP
GD2aun62bit7PZzGbgqW9XCa3V0YPWBZD5fMsh5Ou95LWNbDJbOsh0tmWQ+X
zLIeLpllPVwyy3q4ZJb1cMks6+GSWdbDac/jEJb1cNr7BgrLerhkRg9Y1sMl
s6yHS2b0aGDFQ1qLHjq7KRg9dLu7MHrA6AGjh369lzB6wOgBoweMHjB6wOgB
oweMHjB66M/jEEYP/X0DhdEDRg8YPWD0gNHDeu4c8aKHzm4KRg/d7i6MHjB6
wOihX+8ljB4wesDoAaMHjB4wesDoAaMHjB768ziE0UN/30Bh9IDRA0YPGD1g
PT5o66Ez8cF4Iz5o6wGjB6zHB+ON+KCtB6zHB+ON+GC8ER+09YD1+KCtB6zH
B+ON+GC8ER+09YD1+KCtB6zHB+ON+GC8ER+MN+KDth7We7239dDZTcHoodvd
hdEDRg8YPfTrvYTRA0YPGD1g9IDRA0YPGD1g9IDRQ38ehzB66O8bKIweMHrA
6AGjB4weSe/ZRvTQ2U3B6KHb3YXRA0YPGD30672E0QNGDxg9YPSA0QNGDxg9
YPSA0UN/HocweujvGyiMHjB6wOgBoweMHtZ737b10NlNweih292F0QNGDxg9
9Ou9hNEDRg8YPWD0gNEDRg8YPWD0gNFDfx6HMHro7xsojB4wesDoAaMHjB5J
v5tgrG9PED1gfX17gugBowesr29PMNa3J4gesL6+PcFY355grG9PMNa3Jxjr
2xOM9e0Jxvr2BGN9e4Kxvj1B9ID19e0Jogesr29PMNa3Jxjr2xOM9e0JooeV
LydsPXR2UzB66HZ3YfSA0QNGD/16L2H0gNEDRg8YPWD0gNEDRg8YPWD00J/H
IYwe+vsGCqMHjB4wesDoAaPHNCujEkUPnd0UjB663V0YPWD0gNFDv95LGD1g
9IDRA0YPGD1g9IDRA0YPGD3053EIo4f+voHC6AGjB4weMHrA6OGaXVy73dZD
ZzcFo4dudxdGDxg9YPTQr/cSRg8YPWD0gNEDRg8YPWD0gNEDRg/9eRzC6KG/
b6AwesDoAaMHjB4weky01je0FT10dlMweuh2d2H0gNEDRg/9ei9h9IDRA0YP
GD1g9IDRA0YPGD1g9NCfxyGMHvr7BgqjB4weMHrA6AGjRwZXeGqFrYfObgpG
D93uLoweMHrA6KFf7yWMHjB6wOgBoweMHjB6wOgBoweMHvrzOITRQ3/fQGH0
gNEDRg8YPWD0GG2tN2lnry/R2E3Bsr5Es7sLowcs60uSWdaXaNd7Ccv6kmSW
9SXJLOtLklnWlySzrC9JZllfksyyviSZZX1JMsv6Eu15HMKyvkR730BhWV+S
zOgBy/qSZJb1JcmMHql8f7xyc4ath85uCkYP3e4ujB4wesDooV/vJYweMHrA
6AGjB4weMHrA6AGjB4we+vM4hNFDf99AYfSA0QNGDxg9YPQYbq3/aS966Oym
YPTQ7e7C6AGjB4we+vVewugBoweMHjB6wOgBoweMHjB6wOihP49DGD309w0U
Rg8YPWD0gNEDdvv0z3BbD52TzyMbbuuh292F0QNGDxg99Ou9hNED1s4jG27r
AWvnkQ239YC188iG23rA2nlkw2099OdxCKOH/r6BwugBowesnUc23NZDz48r
yecxvI9Iyu/Xwkm/l1rBHz66/oQq0550/oaHKma9f2Zh0ptMvsNJ50WUEk7a
H+8nnLQfOFB4gLVeKUS4rRV/riBsvXZYhPB8K18qC0+3CkaU8Dir/a4qPMxa
n1ZNuK+1HqdG8u86VBdr/UEtscPY21gPUEeVd+HNAGHXr+S/FyjM9TDXN7bi
U3Xlepjr4aTqEyTM/czri1vz+bFyPcz18GDrvYOFMzb98XJQljA1P8e1L9ul
ta/3tuS3r4e5Hub6edfLzxj2xE7/hTU/VE/Swy7V97wNEeb66eun/zrngp0+
rzV+jpP0MOnHf3P/+K97bXsOazxR37Y3qvr00DqbR5RYkP32/AaSf+mt/qOh
cGqrvjQS/uDKhy6Nhd+6imejJsLPXdlfuanwY1c1KdtM+K6zVRiRp7nwLVcz
kbKF8BVXdXhg8wVXO3GmpfA/Lhl2tRI+5iztada0Frb2P0bHC19z3f9Pm+Nd
5S20jX1/1++ttrmZq34XSbB/z/X7s21u4CpfWROFrWIxMlGvf29s3u96vh5t
hWu4mokbNu92Faxm7YQjndm16ojNO1zVuardXrkZf8z2if/X26ssSmdPo30q
bth9jPbKYaQPNtqvMOP6cKM9U8b9Io32rYow++1h9nvD7DfW9J5UW5j9lpTv
WR/yNmjvHSNcPbZdzejBdv2MKLy9Y4cO9n4os/6ppx5jv46z9+OY9S1oV48f
vwu394eY9c13xt97fivZwOZ2hW8dyWnXL9ZnX3aV0xFhar+zPKT7pL6xXhhm
vSrMekmY9Xow68Vg1ivBrJeBWa8heiavF5DynxyvhomXwsTrYOJFMPEKmPly
vXzY9Y35Qpj5Kpj5EpjxOsx4UfI7ebwC4y/Duv96JYL6R72Ctfo23Kifn/h3
1E9Z35LM+Cv0FzDlj/JIeevq1LV2ZJg65mpviqcVdvlVef7KJ+xq71pUKCq8
yVkafGaUEXa9/rB+/sLrnHL96x0k7HqO2COhwmOdF2waVFHYVfzccylhV/ZV
uVtZ2OUHfbUjStil7+pvqwpnd+p1tWt14XTOG+SOqin83qlOrXy1hZ85S8PQ
R3VUdVcxc/IlZ/Hu93sjq92s7uQ/XXo8ux9BelfpORyTQ653ZeOm4V7CruIz
7mwJYav5dfgKd3bWjplVA4Rd7f2HJ8HCylm62y8oL1za2bwfqVVJOJOzvH33
n50/KZzF4eixSOFXzuKZenkV4QeuVmNoNeHrTv26NqghfNbZ/ywqXUv4iPN1
T7nVEf7L+f4ZTkcL/+7UO3x1jPAZ5/WbdsYKn3SWnxOr6gkfdt7vwSy7fFnt
z8j6KqtVr0JVPas/qy/23U4s3L2BWpPY9EYVJ0+f9MvkTdEN1UlXP1k5zGp/
d1VppDyd5TrKaXe1V/19G8v1vzgr7Lj8TYRXOccJP6RpKrzMWXu3P7Z5ibM8
njnfzC6fzlrydE9z4dkur3tdC+FpzscuPr+l8GTnY6mxrezy7Kxmzfq0Fq7s
1LO8b7zwNmcF2PuDzRWc5b1B/jbCG535e3WKzUFOB6F7mgRhV/P330CbXfVj
7GObf3K+f+72icIu9+D78zYvdeaHX722wkWc5XXbHpsXOn+gVsV2wq58Pr3W
5u+c+dW2RHupH7RbsEvWSmXeR8Duzv/o9S63pHc1lxkaewu73Mhza0oJu3qf
hqP8hJ8469t2v0BhV/dT/GKI8F7nv1PGVRB25c+roAjhWGf58utVWbia0/9p
Wz1KuKLzB2d7VhV2OPPz4LNqwiWd+ZNifw3hgs72JmhRLeFczvfr1M+uL4wP
YPx9mPYYpj2GzfbY7O+vlQmZuPST+pLV6n8aSH3Av4bxp6U9SvanYfxpad+S
/WkYfxrGn4bxp2H8aRh/WvqXZH8axp/+tH9x+dMw/rTcP9mfhvGn5feS/elP
21eXPw3jT3/afrv8aWmfkv1pGH9a2qdkfxrGn4Z1f/pocv/8QPoP/GWdPYXx
l3W7j90eJfvLenq7/8Bf1q8Pt9u7ZH9Zv5/df+Avw/jLMP4yjL+s6TnJ7l/x
l2HOx4A5n0HaH8tPsesD+9PpL85a+tr1g/3S2E9a+tr1g/27jFepL/jTMOnZ
X+ry0xxOxn+G8ZdJj78M4y/D+Msw/jKMvwzjL8P4y6Jnsr8s5TvZX4bxl/X8
tRl/GcZf/tSfcvnLevmw6xP+svSHyf4yjL8M4y/D+Msw/jKMvwzr/vLRCGva
L6G92PX5u9RSv5jfZH7sfPJ8njnfY573Ys7nmOeNmPM72Jk/gbFTnrGbbJ7H
YM7XYIcp77C+//+1jN+T8uO5tD/kD/YkXVMq7HBSfqWV9zfPKyL/YDM/yM+D
VjsfZPmTadbY+Uv/Z5WL9cGWPzrvT5svWe17vaR2eXOI1Hfqt3W/Hg2E61jt
M+9/W95Xn399IPnyaXt8PjhENbf6jzj5PbicsxjmqhiqGln9h92+wNjxX9EP
lvH7H5lPn+5uj8+vv5vy0x83Gkh51sdzR+U5eT7yg98jP/g9GDvtH3aY+1J/
yB/qh55fWaQ8Ydfnr7PIfLQ+v51eOGleOK2UJ8of89N6feV7CDk+m+/W1jHJ
ed4exu97qruW3xKU9L676gq3s/yLWGU1u/7BwtQfyi/j4U/9NVf+m9cn+SN2
/aQ8c/2n/p3retJjN8sXTHuAvweb54OY5U8/f+R5BPnNfAD5Rf0mn/X8y5Ls
F2QUu9WNrQhU5yx/LlqY+kz9pv7SXtB+Ud9h0lOeyT/aQ+ofdtoT/GHaX5j2
gvJP/pJ/3I/yT/tAPYDJr6T8ePcZkx+UZ9oPOMnfyqeWWxUrq+QfjJ3yQH7B
n/ozLkZfmOdHb9o/7OQv7wsn+cEh1vjmShq7vJF/tGfwt67nXhCqQlwXPrb7
G8YTlD+Y6/db/rB9HoreXtyOMMsb+U95Iz/19anekt9J6bzkeehfeV8zP+kv
eV/6xxuucUxjOz+WufRpYb8vz0n7pXOWpPxskl3S6f/a7ROM/jw/9Zn+E/7U
H3Y9P/WL9yU9THren/T683rK8/L71A/qV5KfXkbel/oGW+OwEaWk/SA9THrY
aucGlJD353qY9LA1jutWTOKTXA+THub9iF8mtQcewkn/5hf+0cr/gsJJ+VFY
2Bo3JhYR5nlg2jOY54HpD4mf0p/BlHeY54e5v8nEX4kvEn/FDhPPJB5Levil
67b/+El81jVP2+28vzDXw/T/xG95P5j3g3k/mPeD0QdGHxh9YPSB0QdGH5jy
AlPeYMorfNtlnuUjnBRX9hUmv2Dyg/gx+QHz/tRP3h/m/WHeH+b9Yd4X/4P3
hXlfmPeFeT/8D94P5v1gygNM+aH/oL20xvsqTvKD/pXywPiZ/IDJD5j3p//g
/WHen3gw78v8FXoyf8X7MX+FPsxX8XwwejBfxfvCPA/zV9Q35q+o/8xXwcxX
oQfzVdhh2nvmq9CL+SrsMHbmr7DDvB/zWdhh8of5LewwejHfRXqY9Kad+TDs
MHozP4Ydxs58GeURJj1MeubTSA+THsYfxJ/GP6G/k3h5sr/C9aSnf4Wfu37P
wy7/9M8w5RF/Ru9Ps4j+2PX+1f6+H/0n5Yf+W09vf4+O/pP6wXyh3h/b30+j
/6Q9YT5Rv7+P1G/6N5j+Sffb/GR9GKz7Q/b3rrCzXky/v5dxvbew/r0SP+N7
IHb/rO0rke9JBMr4B8a/1O3un/W/zKfC5vd76H9pP8zvy9D/0r+a30Ohv6U8
M//Ke+j98WPpf8l/vX9yU3p/nd7ov9yV3n/nEkYfGH30672M/t1bGH1gyhtM
eYUp7zDr+WDW88Gs59Of57H0v+QHTHtoMv0r+QOTP/p8Vi5h8gcmf2D8FZPp
j8kvmPyCyS+Y/IJpT0ymvyb/YPIPJv9gyh9M+TSZ/p/yDFP+YcZXtK+MD2H6
Y/wF9IKx4x9QnmH00u3uwvTnJuNPoB+MfjB6mYz/gX4w7afJ+CfoCdOem4z/
Qn2A6e9Nxr9BX5j2w2Tid7TfJuMPoQd2/EGTSU/909lN7PgTJhMvpHxhh7HT
f5hs+mvYYfM8I9Ljb5qMf8f1MOUDpjyYjD9I/2D6i8Rn8GdJDxP/JD1MeTLZ
9Dexw8R78AdID+Of6vEK2181/VfiQ6SHsRN/xQ7TPpmMv4u/hR3W93dfiSA9
jD9MeTX9Z5OJV3F/ff/za7kfjD/N9cS3uF7fn5r6M/+b+BfXm/64vp8ytfjf
+NOmv078jOth6pPpvxNf43qY62HS46+Tnngc6fX9Vjk+8++J13G96e/r+4Ny
SDyP9on0MHau1/ez5JD4H+lh0uv7LXJIPJD0MOlhyq8Zf6O/ZfzA/D92+kvs
zO8zv834wcqGc/Z8oxa/WhMjzPwlzHw48Qbux/y3GT8w53/5Pav5KBAqTH3S
/WW3z/wl8/sqpn9jfp/D9E/M7zuY/oX5/QXTHzDPKzf7d/M8bLP/Ns9fNvtr
87xfs382z5c1+2PzPFOz/9XP97wSYZ7naPav5nmWZv9pnjdo9p/meYtm/2me
h4cd/8jsH1lvQP9onjdn9ofm+WHY8Z/M/o/1CvR/5nlcZv9nnreEXfu+0if9
nXk+kdm/sd6B+m+ez2L2X+b5HNj1+mSfj6D3X48/62/M8yDM/sfsL8z95PQX
lBezPzD3A5vtvbm/k/YYPYgHwbSPxK+XNVj85cqf7fbL3M9Sb9CKpj0+ac+o
/7SftCfaep1dNtO+cL/3Pi8vVd1t22lf8jUb3bB5iTC19q+2PwTNrCvtH89L
/Iv5Gpj2k3gmTLwYprzBtMfmegTio8wvwfyea71x/gN2PM6Mj5Lf/D735/fM
9R/EZ/Tvz76P4HmIp5Ge+SX9e84e8vy0E6Sn3urnm3hLejMex/yS/n3iUpI+
qZ0qIemZv9G/1+on6ZPmT3wlPfMz+vcrAyV90vxAgKQnfkJ6mPRDk/0A0jOf
Q3qY9J0sIcpLeuZ3SA+T3qrPdStJeuZzSA+T3qrH75WkZ76D9DDprXp7IlLS
s7+O9DDpM1vlvIqkZ/8d6WHSp7T6y2qSnv15pIdJ/9rqH2tIevbrkR4m/UOr
nNeS9PgfpIdJf8Pqr2wmPg8TX4eTykdR4bbJ7TiclP/+wmOt/AoS7mO9X6hw
K+t5KgpbcuRQwtZj37b1dLf+tfVKa/knth7vLH+juvBTy3+oKWz1A3lq6/PX
D+qIP0l7RnsHk5/Mv5Ce9gc293/gH1rvMTZElXVVmFd2/IfrSQ+T3ipfZ+up
Xa5qkKa06GEt7H5bQvTYZnWHxUSPpHYqp+hB+we79j34lgiU/LeKaeEAyf9b
Vj75S/5b/x8XLPlB//A6/9c9R6erm9TvXU5e73knRtgq71fs/iShVqv/2q2I
Fq6X3F9Z/fKKkKT1Zrns9Sb83jdWuSwj7al1X7dS0l4m1bPi0h5a5eBeUWnv
GD/AxO9p3+ivaI9quZ7jhwBpb6xyvNAh7UlSufOT9oL1HdtdOky119/o44Oj
EeQ/6zf4fdYPUR5Zn0F/l+T/ekl/vtHybwvLeIf8YTzlWoe/KltZGf/w/Iyn
0JvyzHoNrfx1fB7BejvW67A+Jql/zS3rA5PKUR6J//C81a14U0N53r+seFIj
0SfSlU9bGkn53WG5TY1F33BX/i1tLOX/d2vc1SRpXJLLR4W6snlqE7XPcqjK
qQ2ujE/bVPQJcCUb3FTK81qXvE+aih7lXAWmQzPRw7WfZeuFZupv1/3m+ivs
1nqTLxwKO+trSln1ormsR/nR9f97m0t+Yye/sVP+ilrhjRZSX137ZR6vayHl
D7t1+xH5VCHL7W6pLHknFVDzrXLXUuozTP7nd71nzlaS/7OtDVStpLxj/8qq
N94qt6td/NAqeXxSxNqPU+nL1tJ+wOjnbtX31qKfVe5846W+Yad+WuW0c7y0
X5auS+NF76T2Il70tu47tY34azDl3XqOA22kvFvPnSZB4pXY0dt6T5Ugelv5
MihByhN2yr+VjxsSpPxbj/04Qeqr1Z+VSZTyZxWL9olSf615hAuJarzVQfha
+9vqLk6U8mPJ4tFWyk9Jl45720r56OB68RTtkscBftb+oq0V20n5tvqR/u1k
vIU/Tftrjfe/tNvj3VZ+xyZlv7vdnjMeMa+nfYFpT+CcVnmpK/2Va//dC3+7
f1iz7lFQP2f7hX78HvONtIcw9U3fj/wggvFK8MqwOoHNc8j45UmL615dRnsJ
772xokDFyyXs/ftde3pkCfUVLj/wu/Q9agQIe23/8M3p58HC2VImpFLO9h9+
UfWv4cujKwk/rJJrWHpn+w/fuvXXtorO9h++PLb/u55OfxA+XbpUhaXDqgnv
P3juq7MNawhv6z5xUxanvwZvcK/0qrLTH4Nf/Xsia7izPac+4V9UsdrVIOlf
+rny1Yv9KBcj0IfxHmztN+ls68d4T98fnlb0y9Lj9C3vFBmM/eL5xB6693XH
AEcBYz94UbF3uxe55u6TosZ5F2XEHtUnw8rfa5U1zrvwF/uE9x3i9hzzFzv+
JPYhlQ8cKTc0SOz4l9jbfFMuelZpe387/g72uH3/2//xn4pix//BvmD02yLr
K9v73/GHsE8vuSrhdh57Pzz+KfaJ+1su/uKhfV4H/ir2gV2zXYndbZ/fgf+K
/cusOwt+M9feP48/i73LL71bbu5p76fHv8XeNq7ovAfV7P31+Bfy/s9PnSvs
aftjJzv83H/dNXfh4f0rdGswo5DwrKi2/v95l7D1PVC67MFB5YQXrxgwve5d
h/CYB+fdN34bLNzPP2Jyoajywi37Lsk09lG4ff2FEVVeH7Lzf+7QwJFlf4i0
89vr1s74gVWEx/85y21mbDX7edvWjNhXvIZw77T/DXn/zs6vzstXbfU/UVvq
S1J5fxkh92u3ckaBQqkk/ez7u702nMhpP3/ktT98K+cVLvKhZKZVkYWFM6/Y
eK7jV0WE33zzKM2Q70oKX/MbeirseGnhA1k2uNV97ivcvIV3x29y2+X/eK3t
Q6YsCxCuveibmw92Bgr/Nrnwf6/iQoT9b9xOaNTdLv/Lj48aEP/Rzm+vknWu
bM9vl/8JHrdf/P1TJeG0Xde0LLE3Qjhs9dLNecva5f1943EP9m622T+m8es6
Ke3y/uJN+bLvpthc6kn6kK/P2Hpd++5+Z7/2dvkvMn1L399+tvU7G75gRduK
dvn3COq6/s4oW89Tl2Nuz85h65nhtOczz+a1hA9+naLEods2p/jqiH+cv13e
txT5tV2KP2xmvZDOnsKs99HtPnb5SJ431tPb5Z31Lfr1dnln/Yp+P7u8s18Q
Zr+gtB/J+wVh9gvC7BeEiT9Y45rJdv/BeJT+3/JDqtv9+SLXc3awGf+K+bPU
rnbtpN2/Ew+C6b/4PcbL/J7V7N+1x3/WdO10+3riLYxPYHO9BHarG9hn38/y
bzKFyvib/i/JX7X7Q+ZbGY/yvjDPy3wjdvwn4i/414yvyA/z/AgY/4j+l3gM
83Ew5Y14AnYYO+stscPY8RexM18K4+/T3xJPYb4M1tdX5ZD5MX09dhV5fuz6
+1WR58euv18VeX7s+vtVkXgJdhg78RHsMHbiIdhh7MQ/sMPYiX9gh7ET78AO
Yyfeoa+fuhJBfSW+oa+3ei128ovyC+P/kV/YYey8D/EEPd5jr4fGDmMnPkd9
hKkPlBfssB6vvGKsV7oSoX+POIfEI2HilbwP8UiYeCV6E4+EiVcSvyF+COvf
40st8T2Y+CC/RzwOJn5HfcNOfYOpb4y/aS+Ir9FewLQXjJcpT6yHJt4GM562
xuEN7fUh2Lk/zP1JT34QT5Pv8SQz41/Gw8x/YZfv5yQz633N9MTfSP/peQKu
9IyftXjBGzv9p+cNuNIzvqa8sN6a+B3M+NvSYWJbKb/YiefBjMdJz/Ng53k+
Pe/A9Tzm/Ykfcn+Y+zP+5/7Yuf+n5ye47m+mJ/5I+k/PV3ClZ/6A9KwPJ/2n
5y+40rdxlbMHdnrWh5MeJj37YfXx6fsI3f/2EDvxMJh4F0w8C6a/golHwcSb
YOJJMPEimP4Npr2GiefAxGtg4jEw8RaYeQ78sTp3d4QXcrfH2/+M6jZj7WZ7
fF2x1vvdK4Ls8XSO47v+GDjZHj8/L1v14tI+9njhRs/lzbJ62ePj/esznel3
0B4PbH7dveHlT8e/BTvd+f6T8W71HflLnvlkfKsSDrbP/Iftz/umHrpUzbT9
9+LLfG98+cl4tWCNq94rPhmf5r07rc3FT8ajaSdWWZT9YR2jPDyQ82yYv3C4
ipcf5eNWBPsF8B9h/LFfXMWiuO2P4X/R31gy7w+U6/X9AO8j5Htwycz8Is8H
45/RPmLX17fb5yHA+L+0QzDzKfp6e2/jexnekp54B8x8i76evpRcD5Oe+AjM
fAzz+cy/MN8MW/PnszyF8a+4v6xXSR4fMf9MvIX5Z5j+l+thrmc+mvTMR8P4
P+Z+Qfxb5m+JrzB/C9N/6/stUot/zPwu6ZnP1e+XWa7X99M7ZH6X9PQvMP09
zHog2i/W+8CUZ+LrMPNdxCuYn8J/Mvcf4q8zH078ivlwnV/L9Xr+Rkr+kp78
hclPrtfzN1Lyl/Tkr36/zHK9nr+Rkr+kJ39h5s+Zj6N8w5RvmPINU35hyiMs
8Y9kJr4BE8+AaT9g1iPxfvr62kiJR/A++Fcw/hjXw1xPvIH0+BMw+jMfiJ4w
+W3ux9THGxklPkn+w7RzXA9zPfqQnvgXzPiQ62GuR0/SE3+E0Zd4KfrCtDfm
/lDGQ+hN/IP2B2Z8yPUw11M+SE98DKa8EK+lvMCUB3P/KeMtygfxGMoHTHng
epjrKR+kp3zAxJeIF9O+wLRX5v5WxnPEL5n/ID4JU/6IL9M+mPtf9fFfSjmf
gfYCpnxyPcz1lFfSU15hyiPxbMbP5v5axpuUL+LdxGNhyhvxb8oT8W7G1+Z+
XMajlA/i4cRLYcZ75v5d1tfS3hAvJz4Koz/xcdp3xr+w/v3z5xIfp72H0Yd4
N/WV8TKsfx86t8S7qb8w629ZP8v6WpjyZcbLiY+T/8S36W+Jf+Mvsb4VfwnG
PzLj2cSv8f+IXzO+tnTKb4+fYcb/rF9lvA0zn2rGr4lHoy/rXVkPC9MemPFs
4tcy/5Ccnt+H+T2uh7me9oX4N+M7mPLCeJ31tzDlg/g4zHie+2GnvWM8z3wD
TPk14+uM97kfduq76/zOxfXs8TVMetNOPB47TPvCeJr5BJj2hHg9zHib+2Hn
foy3uR/M9d6udOtsZjxO+0565hNg2nOuh7me58HO8+jnLboL8/tWXKCEzYz3
eR7S8zwwv8/18Kfnz7meBzvlkXhAqFVP7PEe6WF9/JZF6iPjb+oz8R6YeA/r
5Rmf0J8zXoIZr9D/Y9fv7yP7LRg/0d7B7BeAZX1PMrN/Dra6h8WFhKnfjD/4
fez6+NFPxg/Ep9g/wfgBvfAv0Qc7jL/JfBZ21kvB5Dv+J/4e/jD5A5M/MPkD
kz8w+QOTPzD7K2DGozDjbBh/D6Y8wPhzMPslYPprmP0SMP0FzPwDTH8NMz7D
P2f/A0x+4N+SHzDPg3/J88Csj8O/ozzA9K/035Qn9o9QP9nPQf/D/g3sMO0/
+zFov9mPQXvCfgqY/WuUPxg7+9Www9jZn4YdJv5HfhBP5P1ZPw2z3nO4NT9u
c2Wrv7fXAxN/xI5/TP9rrjcmPfVFP0/hqMxf6OcJ2fMbevlwk/Ue1AfKA/XB
ZMYLjH8ZrzC/A1N+yS/Kr8mMD2iPGV/gz8C0F+Qv7ZjJzOexvpLxBP6ivj/+
towvqC8w7Q/+Pu2PycSb8Ffx7/FnYfIXf5/8NBl/n/xlPSz5C9P+MF6g/YHx
T/Dfaa9Nxp+nvLP+lfYaZjyF/87+J5Px5xlPsZ4VfwFGD9oLWV+urXe1GTv3
Jz/x38k/k4mfkZ/49+Sn6e/TXjEeYH0q/j+Mnf1wlFfaL9pn/HP8cRg7/j3+
Me0d9ZX4F/UVxk68jPylPcSfJd6DfwZjJz7EfgfmK2jvvrXyx/7+Eoyd9mGL
dfsw1c/1fF3s8z+pbzD10/UrOzPZ6z0SrHbBZj0/vY3vU3tL+8J8N/P1+GP0
XzD9G/Pb1F/aT+o77SX+EvOr6A/zPsy3Mr+Bv8R8BvsFKO/m+XGs96F8s5+A
+DfxKJj1QLSH7DfQz8msbJwHZM936vO36WX+jPpNf0D/Rn/E+n/2L1Ae9fmU
d9J+Ml9mni9GvJ35Dtoz/CPaP/wn2jP0Zz4D/Vn/z3iC/cKMB2HGp+wHID37
ifEv2B9Af6DPd9yW/QDkL/uBYeL95DftHeWN9ovyRvvGegDmL/DPYPw35i9o
r7ATD4Apf6Tn/uwnlnhN/aT9ANwPO/4/duoj+3Xpr1lvz3ic/bm0dzDtHevt
WV/A/fD/uB/tobmfV28vbxvr9V/LfmDmo5ivQG/mMygfMOVDX8+f+bP9vjD1
hfkJ7m/6q8xXcD/8V/pH5h/ob5m/oH+G6c+ZvyA97T39N/MF+N+0Z/SXpn9m
+le015RP03+hvvI8pn9AeSc9/Svx3RMBE56sD7LXk7O+jnhu0u8eiijq6PvC
Fe99+HpvSM1HKcWelG9uCnvJzL3+V61UXrEntcceYr+VZVjUl92KiD2p/fMW
+9aZVStV3VNa7Pet+l5a7H9nHf3FhGz+Yr9q5Zef2DfG3Znz7PdAsVv53iNQ
7Au+rZOnRcdQsW9MXpeIfeK5NTN256qov9/eCmLvUzBnDp+dEWK36smXEWJ3
+P++d/+GymK3is3UymIvfaJr2o8To8S+ziqPUWLP37dg1YDEqmK3ykHFqmLP
lufoyA5h1cVu1dcc1cWecfPXf36XrabYZ7j0vlND7CmaB6Q4erOW2K168Uct
sT99dyMi9dY6YrfGSzPt70kSb6f/hfX5mLTGebqe0j4RP9fP0y0u8RTi48yv
M/8BMz+jrxcMtP3H5HEH/ir9O+Nh9hOQjv6c8Qn7CWg/WU8Cm+v/WD8Cs36X
8R/7dRl/MF6DiT8xH8X4Cyb+Q3uGvwbjD9Df0F5Y7d64QFlfy/Oxvx7mvHSe
l/O1aR/xF2DiKcRX8A9g/Anaf/pXmP4Y/4zxAM8P09+Z4wHW01H+YMof8/uU
F9bH4X/ClDfm+8kP8zwL/TymoxHM9+OP4u8zPwDTfzLfTnyM9WX0XzD9D/PZ
+Hv0B8xnwMxPsF+X9dOsl+b98bdg4k3UT85rgfG/6M/wp2Dz/BbsxBuJL+Ef
oz9snt+CnfpHf0X94PwUGH+I+s54D+b8FMYl2PFv2Q+J/0v8CGa8yfgdO/PH
xJeon5Q/vb7Gi/+MnfigWT45T4zxEOtDKX+UJ/wt/byt57K/kfaV8Rflm/EV
/ifxN/w/3b+7LeUb/wt/DX8C/wl/A39JO0/K+Yfyz3or5oNpr5kvxh/Cv8aO
f63Pn3mJHX9GXx+US9pr/CXOe+D3sfP72Pl97Pw+dn4fO7+PnfKGnflq7JQn
7MwXYae8YGe8hZ32CzvlBTvjMez4k9jx/7Gjv/5+j4316rcjWJ/B+BI740vs
5B/9G/mHf8vz07/x/LRntCf0b8xv6+sPHkfo52Helv3t5C/jUfKX+Dvlk/pG
+aT9pz/lPCLGC9Qv1s8ynmD+l/qAnfEEdnM8wflzjA9o77keO9dj53rOM+J6
4ptcj53rTTvjE+yMT7AzP4+d+CJ25uexE+/Tz9t5L/tZ2a+n71d9GaGfX+Ih
81dJ9TuXsT81l3E+j7ekT2qXChv7UQsb56GUkvRJ6+9KGvtPSxrn+fhJ+qLJ
7Zy+39TPOF8lUNInxX8CjP2lAcb5PyGS/j+rvNrfl4f181oqSPqkemF/fx7W
zwuKkPTW92t3VbK/353M+vkvlSW91S6GVtb334ba57mw3pr0Sf2RvV8WJj3t
DektP/yG/f1pmPSs1ya9VQG32N+nhknPem7SB1vzSTUkPUx6/HXSW/5Sh1qS
HiY983Gkt9qv8DqSHmY9NOWb8VNS+Xsj4+db3sExC+/llPFV0n6t3DL+qjGn
zZJFdQuLPamZKyz2goVLzu/1Y0mxW81x5VJi/6rBq9qF3fzEbrXD0fb4uN3s
ZvvGrQoQe4w1nxEg9toXtlV72iRE7FY7ujRE7BW8Cu9ulqaC2K1+IM4eHxdu
O6ryrrWVxG6V/w+VxJ76ZJ/LuX0r6/MDDe3x8bu+xQrWSmOPj7+05tft8fHz
PKdbDD1fRezW+oEU9vj4/uax361bW03slp91pprYrzYvf+7WmBpit74v9LM9
Pj75/l7eAq3s8bEVXxplj48PLpzfOCbQHh9b86HN6kh/Qv/Ffkjmz2HWv9P/
sf4Af4H4P/6XGV9nfh//gPgd/hjxN+IJxMfoj4lv0X8TL2K8YZ7vCTPe4DwC
xluczwbL+XjJ4xHen/dlfhj/g/lf+jPmc2Hme/EHsMOMN5gv0853+cKhz38V
Dvhs/RrzscSj2M8FMx5FH+ww4wlZf5Acj4IZLxCfgNGP9Wkw4wPyB/8bvfA3
0Jf+m/Eo+5nRg3gI8Q39/HqbyS/iEdyP8RfM/jjZH5E8Pse/Yrykf//R9rd4
P8abjI9g/DPGM/hn+B/MD8P4a/gj+nkvOWS+Fsa/Ih6Af8XzUp7Zr7LFyn97
v7TJ5n5qyjv3g1n/xHoBxiP4y5RH/GXGA/jLlA/8ZeajaW+o/7q/7C7zN5QX
5o/x15m/oX1gPhl/n/E55Y/6xHkmrIfAv2e+gfrO+lXGH8w3UL6J71A/iT+T
P5Q/WX+VHP+gPjFe537EG3he/HXeH/+X+TzGCzDzI7S/PD/jA9LDpGe8QHrm
w/T4e355P/Kb9oh4EOlh0hMfIj3zYaSHSc/8Gel5P+a/YOI9rP8x4z3Mh8HM
hzH/wHwB+UE8SN/fYI+n9PYsszLj5ejFfBjtHeMf4j0w4y3pP5LHW/hrrFuC
zfFJUruYR+njFXs8ktQ+FjHuZ48/kuLJpYXN8UZSPNgeT5jji0zJOunjH5ut
92wUqvTntccPVvwjZUVhc7xgTQOssccD5vggSV/b/zfHA8et/I4y8sNma96v
me3fm/6+FZ/2qy5s+vfrrfpfU9j056244AXbXzf990VW+bb9c/x14gvkN+0T
TPtk7m/Tv0/nLUx/z3wT7bv+/T2bWb+KP0d9IH+Id8K0N8zHMD/OfD1Mf0N/
TH9Fe0z/xPwh5UX/vm2wzJfSv8DEG+iP6V9g4g34EzwfzPMxX0v/AhMf4Pdo
T2H2U9AeED+Had/4PdZTMH+M/0J/jL9trWO+GSz9L/qgP/OjpGd+ifM00N88
r9E8n5Hr6a/M8xRZP0F/xHoD9mOjJ+e7oCfrpU0m//FXrPNnN9jM/fT9sz4y
P2yWf/xC5ssp75Rf4l+055RX4jc8D/nJ7xOPw05+Yae/p7yQf/gj1EfKC/nJ
/B7+DuVFvjea3P9RX2mf9fNdfMQ/Nfer6vXnsTDlA/+a/KM+8bwwz4v/Rv9L
/cI/gilf5veDqL/0v+bvU3/Rz/w96i/9Pffn+/F3nOnW/VVX2HU+0bPoWGHX
eDtLmJ3e1S6UKBon7KoPlbPVF3bt/2v+1mbXeLvfzQbK0/m4UU52xRPHHm0o
7Kr/25Y1lvSu+nLpf02EKzlf6/XgpsKu8WOOjs2EA52vVbZ+c2HXeLF6pRbC
pZ353KZUS2FX/RuUq5WwlzMXZ3602bV+cc3d1sKu573hHK/B6Zz52OuKza5x
y4eGbYRTuGIhB2x29X/5KicIu+b7lm2w2aVbQNlEYVex3LHYZtd8ZXSetsKP
nKXs3ESbXcWsQ8p2tp7OYvK8v82u9YZfP7DZqiWJ7VWptpsGRETZ3+87nyXu
8so39vf30lXomWONe0mJ15Pu3MQtp5dXd6h9reJf/l0/p7Ef29l+3Bs5Ze8z
X5mfT4wfF9fhKx/VZM2Wgv81svc/UL8Od/CJL9DH/h7Hpaon51Wc6JB46YFl
7dfsneqQ+p523LJfLw5xqL+Hex+u4WaPf2mPDsxxezGmb3lpf443uh19uESE
/G6Z5qWjJ6Wyvy9Xesxvmd03RcrvT3k3Nf2rW/b6vAkN7yy/lsP+nty8TJmf
DKhgf6+tcZdGz165299ry/T0wZfH50eqvDtmdu08Ip3SzwdKr8ZNSD8gvlu0
3C+iaZE0q3ZGSzxrXdzhl2s86kp+jnhZrv7AfjGSnwfSZlr2+7EYaT96BbU/
UuhH+/tnY/cGnz98Jlbev1tLz1qvl9rr4xdnTrh2cUY9Nb7Z8NhFIz7K+T28
f70Dm6pfCLW/PzZk+q2CzwY1kPb6+YygfWUaNZTnq5PzxCv/+o3U/PDjleP/
tr8vwni274sRq37N01iFnVpa+u/spWX8RPwq25HzHj+9a6xmNDsWE7TS/r4I
77PySt40e7I3VbfHPqt7qsV92e+Ifntbj/zpqzXNJD+9nw8Ymsethbpaa3Fo
mzK5Pvs+1vFVtXc+G9ZCTcw8KGb7W/t7H0NuVl5atKi9/o7xctbOPW62XdhS
ylfrH+rtid3XUoX0TH2vcUCQxJ+fHfHe+jjIjjcdiag1KM/g0jLe2rLyQ+p/
egd/9r2NLi2GJt7r10aljq1ec8Cfn39vY2O6tulK9mmjBnQYuNMz/pqsr+P9
px2Zn2nNrAQ1pNS6KlP2299vmjf5SYexM8vJ+OqNY9gR3yx2POvXxve+aP5j
2s++r9ElZl+5E9GJaqtvxPSIonZ8i/JQfHT1/EsfJaoOP1WIuf63/b2lQLdr
dyuG2PGsjumKl75eLqvEp64tHd2gawE7nrU2xblp3avZ8aszA9NFr69qr6cb
dNXPLVOcHb+S/U4XVu0/HNtOHVlfbHL5Znb86urgvzPma23Hqx78dP6PDfEh
sn+kvPfeYjH+pdXrmttiqjzPr6rXDnk8r05Jlflau1IXmhVTM+I2pZ7fNJd6
cH3p3WWxDnV1Vzr3M4Xyqjff9Hx1NoNDfajSIdWSvwqobKl+6X5uqb8qlmH2
x8YtglSP3I92fl3IoYoOHHl+vp+/2pbuUrefczv900I78xZ9VERt/WHaw3R7
o1TdxG1jO70upt70Xjnj9V9R6vvzCZXyzHgfUXzG7z9szBitRnr+fTN9WS+V
Yk5E8KXcMepPrwsR1xuVVpnGV612pFesmjTjh1VpWjrUoCJei9M4+/NFXz7P
+O2lnOp67Zip9dwaqvqhjkoX83mpU30fbxzwuKHaNfV/aQfU81OVU1yp9XR9
U/VoW8nrSwPSqx5h91/tGtVc5QrMvnrL3ULq5Opg91dFWqmB82v/NyShtPo5
ZG+1cZ3bqIXNnxU64ix/X53ekXDVWV4PjznWt8//yqk2LdcunlstUbXx+6ZD
zaohavvI9ntvTWurpj2OXj8oyk9NGDU+f7687VSa1dvO/VIvRH3T+P7+9Fnb
Ka9Lk35p4tSrboajbweOaaf+GTxj6EinXqnTzolu/rGdetqg5tHENiHqZcqM
I3b0ba/+Pf93UM2iYcpz8auK6S9VUV+sqVCgtleYur0nS9Wuv1dTzzbOydWw
QJhq+seaKZPn1lCewdNP58zt7O/Wps2QZnAtNfj1tp3ps4SpdSVDl/waX0fV
jTq/qVPKMOXTv0DRtLXqqsKll/zX6U6o8ugVUHvgkxjVMj5l8b03QlXqiS8L
7CsdqxLzf9/6bMYwtankxqIxD2qrKZUOxJ99HKpKVd/YcaVfjLoeUjHXBJ8w
FTtxdI/qx1KpbJ6nlo92ct98tZr/2zS9unw/71c9nRy28cHEPbPzOv2Sttnb
Oznt9UzxMVfyq4atWi0Kd/LOt/tL7vm+iFIds6f0cfKKvrubDdpfVF3ZvaTz
k7JhauiHId16vy2teh/rHHzOybMH7Ow2pFhZ1fZMDs/xTk5b5IujPiX91eOE
kH1dnNzh7g/x83f4q5O/p6uRxsmj2zcusOl4oJrxqkrey2XC1Pt3xWdd6x6k
NlwMX9zayXMb11IHB4eqLaPvzPVz8sFRB+vP9QxTRz8GHJpR2ulPrCkypVnx
iurGDwHLmju5RZ9pHU4erKgK+v7kvrBUmCqw4FC7ukciVMCuux7NnFwqQ/kj
cZWU6jm9+OV+JZ3+2R8rau/5vbJ6eu7cySJO9qzxbt0Mj0iVte7gPr0CwtSc
gafaNU77b4RnxH87hzvf/+uzuyPcgrOrI/3fejdz8oYKnf749mYhtfTenb/z
O9mt/+9pH9UsoWa2d9Tc6Xy/NR9/H9RmUTnll67vtNpOHpNlQcuM/znUqWIJ
hzY43ydfQpk/By4NVtW6Bfl+dD7/q9pFc/SNKa+2Pq2wqZCTz1Zp3vL263A1
xzH1VHbn87+YsaHc5aNK/R3/7PTBEmFqa9+Rx+//EKkOtjs86Ufn76f+MeeZ
udHvI0aEd9o+xcnph9X9NkcaD1X0VKXvWjs584gKddo291YvGv+cy8PJjese
/bbK+lLqY5GDw9c6n+9d2YOVZ472U8Uicoz0dXKJtBVrZAoIVBvbp7o90fm8
WzNmXj/qcoiqcGxwz7+cz+f9pvvLFBMrqBrZU44+4Xy+kHuNfxgZGqGqFex0
aI0zP3vVfqi+6V1ZTZl4enSs83kvVe+x70CNKPWw0N0Fy4uFqVtvnufzcK1P
2ZWz8rIiYarj8SJe7V5UU543233rV9iZf4czldhyoIbKdPj5jZE+9nmrIblr
1I73sc9bLfSkcr6iPvZ5qw+qjXp1qKx93uq8He/vNi9rn7eaMCkq5EAZ+7zV
kPr5A/KWsc9bLXb+aoZKpe3zVseGTGoTXMo+b/XnMZdPv/7kvNULh/5+/9Om
EFW5yo1SE73t709snTRw+pfl4pzlYOvzvdcD1ZVJwUVyPbK/L5T5zmpvj3TO
8ee6doW3hpVR363ZN7B/qucRy5vePF6yQBm1fcCDtsfypVFZvN4W83oepFbv
ObKi59h3EfO2ft+z/Z0gdfPvxEm/LcutWuXcuav17SAVfG/e2ZeDPdTFAdOi
HQ1KqQez/l37ZENhFfbheKuHJ53+aPaAygdmF1ZVeg268/uhILX3j8eNCzQu
ol7n/rvNIa8SanrUkXHNB5dUlfuNnpRtY5AqM/14sQn5S6rCB4N371nuqer2
z+bXPtFf9WxTo1VoXGE1qmvJ9S8H+ansA4ocKNm2sDo2d3+jLn38VPP2E4eV
v+etcn97c+j41r5qzZp7Zx+dCFTHnucOipwUovyPbi/9YUWgiq6473imA6Hq
XqbDGd7/6a8qH7zW+OGCyupq/xvLltZ/F5Gu1o7h35+LVLeerToT/jylKhmf
P2fii0jV4YuKflvnp1Fr6vwv49RUUSpi04qjkY8yqenzUzTtVzRKTV5Y61qB
L7Io7+ztnxcu7bSf25U5sn4OlTA5aseH6CjVMeWT3s8KeajsP/nsHtw9Sq3+
plPE4ef51OSfIifVnRClit38u0PTE55q58x3ZXd/H6Uu/5Auy9FLXqrX+KxB
TzdEqUUdLpYclKuUCvL4b1/kqij1IOuBUQ2jneOV9ONjho2IUtnV3Bl9Jvio
Y2tLV6pVyVne03+T/+5yH/W8Rq7FA8Oi1JzfPBYdUr6qZ7V5//z6JFLtr/Ci
38YsFyKqn3g+ufqcOur+3J5FDt17HlHL40juJ5fqqAWlHi/6Jk9O1T24+Lxb
b6PV3NH3J7yM8VDjZ3/8Z1GluqptueIlqk3wUN9v7b2gc1RdtcDjj1K/vM+n
1k1p/efYiXVVuHvKTOXOF1HDwsq/WbopRk3+s+/cJ+WLqbBUl3deeRmjGmZ4
tyXH1GIqww+vPx5PGavGzt68/HFUCVVusnflfaVi1a2H7dy/T19OVfzpUrZB
+2NV3J6/Ejd97av8Mm9rfPVhrNrwekpdv42+6tCrjItOPYtV6Wv2T9dnnZ+a
dvR4yf951lOz16/vvv+nANWkRw+/4PX1VPDUr8cdzxSoFqWLv9FoTz3VflFY
x9Q1QlT3+S3m/OaIU3O+utTtvxvnIlR3jz+7nqivxrxtcSlHisxqXpmgZX3n
NFANAn5st/lqZnUn2PfB+UUN1NmnezKenp5dLbwy/ptapxuo0F0PN/W7m0+9
d/zmP6RXQzXgzyWFXpzKr3pful4wbmRDtbZetZ7jLnqqOblrX777R0N17uak
LSvii6i1tzLtK/N1I5UisGWuVO+LqwavF+RbE9BYlTo55nji0hKq7c/rUu5o
1Fhd+jB64aIsZVTGUnUun/+iiUpx45vFZ9aWUYcD/Ocvq9pEBZ3P/7HkAF+V
79i9+Z4NmqqF32/uE/LubcR/KzINnP6smVrgPr/r/pyp1LAs17b/E95c7Vv6
17SIOx6qZcNU5fOeaOH063f8MvxMgCp8oXPXHW9aKPeMF5deTyioGt+bfOXk
zZaqdPHXy88/D1Svm/SrV+T3VqrcsIABbdYFqWEem0b5+serD8Hv/8h8LEj9
t3HWDu/m8cprVXDa1FmCVckc/bf9+lu8ujn7X0ezFaVUvlvHWvb2baNicv4Q
1uvPYPVz1dRLo8onqPqxld938/JR3xUY+jjN0AT1ZGmTAge6+KjAfwdn/3FJ
glpf7fbUjBeDVY+qD7/cNylB/bGy9zu368Eqzd2080stTlDl//JJKOQsL+eb
h/0v3YsEdb3I8D6xH4OVI9uW2DcZEtWyLfXGr3mRStXaXO9+3yGJKt77rHe7
uqlVgefbLyZ8k6hGdFg7LzpPiMpya8W5LV8mqsIdjh+YN8RX3d19d1atJ4kq
689nW2ea5Ku2Rbc6V/ZDosrVrs/2a2VCVI95TQ6nvpqoik86+OzBnMxq6ppO
JWZ1b6v2VB6eO/apr0qs8Ne5xy3aqrrzNj39pX92leGbi43+/K2dWhNQsO7F
1dlV70Xdaw693k6NqLKvqMfD7OpLt9a+i0Pbq5PduvjPfZVdtX/6+7o/Ytur
0LAKQ7csC1ZZ3rXI1903Tg3qX21Ns93BqvaMGSN2+dvfe4pIc8GnbKY4VXLr
484V0oeorMcyZswVaM+XDm4xdPWQgDhVIHLM151eBMk8xo3dP1VI9ThI+jvm
1weNDT2fLjazjM/KngtfXfErD5VhT7VlflNLS7yI+dVV2X9JE33ZS3X8cPDv
15fs8yqIP3RsnqfLsfVF1bSFsZUKly4l42bWA5daX3LYlnklVD/3Vd/+uNM+
34Lxc/SCfPm+fFVKlezZOeO8acVlPpP1xwsmDtq24or93aVu37/4MKSzQ9av
XqlUsNO0a36q2tb56RYHFZZ4Bf1jwukvam8p56/S/FtjathX9vkTxBf9D3QO
eLovWPUfX3DV2uBAiTdFda3bodM/AdJ/E6840eLqvm2FwlXVzKFTPFoFSPyp
xu5LLZb86ZD+nfn8P6ePfLW/tVI5fsz4dtKuz8+ruHfOJ2hiXKTKXfPG6vNP
/SVe1etqmXFeh7NLfIrxfb+pmeu2jrfPoyjnyLjyv+H2+ROHP278feY8+7yJ
YtU7LG24zj7/oeK9g9ce/Gqf99Cuxw/5M8yIkvmWzWPc1t1sHaVuPdi3588K
PvL7jMendNtZ+tHeOvb5ACdmX03sV0e550hVYVyqWRHEq2R9dOdBa3Z1rat6
/K/DsrrueWS9Lfqv73rgsFeeWFXUc0iFDuHFZf0Az7s6YEdIVDV7fYDHvA4r
qmWqpxyrQipnzeIn89Grlx8furdxqDpaL1e7H5z9gd+b0BE1Otvfq+d5c6zz
OZB2S321NX38lvGvfpXv0zK/MmBQ9TrDdzZQHRaMKr7yfhY5f4v8rThwxJ5z
Sxuq4F2dz/+5uYCsR/DLd6y5T7MiMt//25fT+/+eppTy6v+mVp3vG6sUeX6P
PV3eV9YL+LZ53uaHW36q4oc+ped7NlOZG037udizoxHz56dY+LhtM5UyON/C
Kv/5qy9Xbzxw7m0zmb8qPzN9u7N5m6st03skfgizv8/evty5hzfTZFUF5m2u
ffhMc/Vb74fvY1451L7ZF1KEPmyusoc3CCr+S3a1O2TC9a2lWqi5Bct6zc5a
UNYjrOwetf38xMJq97Yd54etaqUizp8q032T/b1z6sv3bX4p8nR5K1V76dlj
U/cVUdvj04e+G95aVR48/fGcG8WUb9tle2Mc8Srtgy+qnj5XQiXm9vm346p4
Fda4zerTj+zvk9Me1b9TdOHksfEq/NjFiFdu9vfJaX+m/zY39lSRNmpY0YwL
Mzr9o/5F/2lbcGsbFbFmc0KOrGXV1iyDbldMm6CeR74Jy/3v8Yj6b8bkS10x
QfRenPdegVn5ElTPWX0aXT31m+zv3H9vwMvgw/Z5INuPdUn1sv5/ES83rtjw
8I39vfHsMcV+zLI5QWUP2zgg6on9vXDiLY3/zVmv6vUE9Xrmf/+bXck+P2Tr
nJQhH05m/Oz73LVjr3X6rpv9vdZVN5+1uuzeVvXKEDHy6jH7/JAWv/kNWPXR
Pi9kUIscZb++FKp+Pnb7/C+dYlW+qN8atdhmf391dN7z23otCFXnYzPn82tY
T7XIWbfQjZ9DVZYZpf95XKqeWpM715FKs4JUX/Ws6KUscWrKiX92bL4doorl
ThGaJmec8o/ePz31kVA19XiFNfd+jVV/rdt03sM/WLU6+7TAzk++T32jQ4rc
RcrEqbP521e94Pj8+wcXF95f1etqPfXj1mU78uUMVTUOOq63+VBPZexx+/7I
BZeM71NfiRj9q9fQca0dsp9ozMn80buiotXlU8/K/vjeS/aTEU/tXO14rfI1
Y1SOhEbhpaqV+Sy+2+90lftjJseqU08q1vqnjeOz+G6KkT9MLjzRXn8/Zmlc
4fqv7e9T9z3SfFL3vA3UwUaHN+Senlv2hxHv/TXzprJTfRuqDL+fGfF+g9dn
8d8mxZr9fLSYfV7GudyD2t5Ya3+f+sz+tR+uXbe/T5292KLLjb5prB5ndniv
Sf3596p/yzMk569/2N+rnpOz46/nhjVRI7vniZ78tMxn36/uOTb3svF7mqgz
+S7PbNLg8+9VX3qVY0/GIfZ+pzH+qy8O/rKZul92WEyvt/b6xNFv7gWu/J/9
/Wr2Ox3pm6bG3MvNVPWLjV/t3J9e9j9Rvjde6Tu8zy57P9SC8VWz3G7QXOXx
GZPLv4D9fev/Nv581m+2/X1r9LnbcP7daf80V+X2nv47V6fPv3cdmaXSV2Uj
7PVUBd7MrnwuQ0vVt70j/MKaPJ9979rtysgCV+Ps710/950y6kqmlqrzzk4H
Zvf3kvat74SDxSr0/vz71jsfftzT61UrtdP3a8/YI4Vl/eTuCRdXf+1uf+9a
zhO+nHNOg6b2967/3bBkY6mdrdWB3UFrEyra37/O7LvxjHcD+/vXlA/3aj6l
7+Wx9wOmr5MvbatNrVWpbnePf9/p8+9jH5wX1Deofrxa6PvL7ftN7O9lD2iR
uf2/te3vZeOP7e29eZrHdPv72aMatY2MOxOvonv2ahFUzv6e9u5OsV+lL1bm
s+9lPy3/dbcyJ53t8bN73h8mfP697OpRrRZXamSfR7Lw5vs3M8ITVHC5uveH
NLDPIwmu8vTg637297Mvbs756nTgK/l+NvUxdFfC9ImXE9Qp93or4vq8N/aL
pVap5m97cmVMokp1qHqXLx/Y38/+37JyVVuds7+fvaH4lOvXp2aT80gyLdx0
1KuR/X3smlXHFK98P1R91/fk6nuffP96zPKQOQPexKrEhkM6jncLU9MXfekx
dUJdderSxJU5XoSqj2mX5PPYXVe+x9Ji58/dB5aKU30rrV5bOU2Yuhnhd373
mWi1f1CV7N6niqnpJ8b6li5TRjV+lnbzptpOfzfHRLeMVUqr43cfzonyCFQN
C95eoypUVAeyX9z39RcB6rQj5K8B6ZXqF1Wz+9dX/NQNv1Ujh9WOVHdnnfeL
dwSrPe0Hej1yts/fz+tSqFKXYNWge9b8/qXj1I/Xy20s5vz90q1enL1/KVql
GtX1buhd137LmnF7zseo8wXz5rq0L1TFzDvk/dPBWFXs/PGH+9KFqYHrCuco
1itapc7WcFcr5/VXx2ZZ0uR4tCr1v/b5W6QME//N80j60tvPllY//7KkavOP
7qpB1KWhHb51jifyhmecuji3yjxq5dkU3YqqCZeflBvTx0d1n5Lv1P3JQepi
p0dFEuLKqQIf55TsMzhIbb0Sem9fnJ9K2LNGPejrrrK7fxfyZLBDhYx/uGtp
TA71z9hMKz84/f1LMRfehg8OVLNWZS316n2Y2rqo/wX/xQGqUdFjXwRHVlJf
xHb4Pt1Yhyoz4OftnU8opx8Uuy5/Dz+VLn+g79Qpkapj/p0PS44PVbk3PEnb
Y2g9NferzvNPpw6V9ax+pxpUSPHTrIilD8o32VbDoeqnfLx96bNHEVnaLs0T
3tuhfooYM2xCmysRHwv415nn7K/ih1wf/7hDCpW9Q3hNj2LR6rr/svG9t6dS
19O3HJgiPFp1Lnhrc4/G6ZUjU8m7h7pEqx0zbq/Y2d1LFax9smuawjFq08Tp
eQYV81ZfVF44s3XXGLW8dtCgad0LqxaV3m3IHB2jqiakLdp/eWlVcsmTNiW+
ilUpzo/N5Ne0rOrY6M7NMYtj1cPFnQp+XFhGDer4dFLzqbGqzKtMazc429sU
GW7Wbejs7zI0e1XZPShABQTOD/1mXj3lkbL7qROpA1S5kBZ3hk6vpx4V3F/j
5ZxnEW4d15TySNNAvXw++HrtEy8icrQMmnElSwP1bFa9PzYEuKnFnebuPRnS
QP2bYn2zJb/kUsGTv67jma2hWr/8n9ATe/KoqOk5unWt0VDtu/Y6z5uLHupd
jdLvu4U0VOfnJJYa6XzfLb/mXNfwQ0PVJmWjjXfvFFarThXrsr5SI5WvfNsS
Yb8XVo13Hur8e3AjtefWniZdjjv7S/cDb6/+1Uh9/KVk7+cli6mVT2+9+e6f
RqpToVanDlZyjg9OXe6eKktj1frtb1ebPiqphseU+DVhQWNV0LNi/Y6tS6tv
fHMuPvO0sfq3xMKwr9+VVeWXDb30/LsmqtMUn/pHvvJRB9avPJG4vYn6zn9w
jROVyqlM7ZutTPWyiepeY2aqe87xxfhdPatNdfaXj+Mz5rjyw6GIBY08++9u
00xVSXfj0NNmjyLcBqZeGv1TMzUs5Ypml/r4qyWnd22YN66ZmnZr1YxH36ZX
KX+Ju+47vrn6t9fW8hUruqsj3Ue0a/6+ufrrzaNRo5zlOuJwxyOLezVXS/8p
sWhCXC71/vi5/fmGtFAnV5682qZLgKoccmvR+Z4t1Mf+8/oV/TKfWnq09tnt
ZVqqgJtdntf6M596Xato4rFgZ//1slFWj6cFVLmq6zvFjGmp5naYMHZ4pUC1
aWbx61nGtVTLE9XL8wleatvaIxWHVW+lplTa6V9nfqBaMqGj5+mCrVTB9m/z
thgaqN60GHVs2P2Wqvjqo9Fha7xVhYO3rjzK1VrdyJbVEVQ1SB3IeOr8/Zat
VbYnN2efbB+k5u7e73dieWs1ttjd5kPOF1WdW/Wpc/yxM336D0fHOet3xicr
j4xMFa9avqxxdsSN4irgf7t61Oger+ZnKlO1wt6S6uOGihf/uh+vnuTxOnhm
eGnl5ujyZMSXbVT5oBze553+ZcZhOS++6d1G+Y3I3uNchrJq5tMVHf+XOkFV
bTT51xzzg1W/pVdHjTnVRr1sdndRy2nBKk27sErnf2+jKs7dl29Y2TsRG+ss
i3s1IEGdzXkk4/M/yyq/sw0deeonqGz3lpYNLvw8Yle1xb2DNiWoAX+9Gbcv
4EnEv03+9i20MEH1vxzdOF3uFKrN3k25oiolqh4Tv13Sa1Y5tXl/h7iGtRLV
7n3xVRvFpFNvx1wpteZIojqWseEFlc9XvR03uPnqJYmq27/dXq7I6aseP7vY
dfWCRFV3yb6afXJnVENO/zqrlmdbNfLbQ8ULhmRQw2u/WHU3VVvls2KW3/YT
WdXASxdveexuq/Y9P11wVMZsqlbNhMvND7VVa0JrZf2ppbv67bz7guCC7VTB
jkdiOlX3U3f+6pniZNF2qk1xnyUv2vipme3Obuo+uZ1acafCrd7O/iznvDMD
Oja390+Eb2p5079AnDrs55NlsI+9frBwm/J3yj0KVePu703xrnGMupBl7ZOs
D0PVjGxp3/83OkY9bT8tcd3JUFX0Qu01338XK+M/n6bH0wx9XE+NHNl13ssD
9v79uiVjzzd8GqrWDTyRfWCWGFX/56etNz1ztreLp2bZfqOuOpNYa2+qkSFq
zboa+dP7xKmj//1ZvfPUEOVzN3jiidL2+sURqTJtPVXEPn8wZGCH1fNqN1NT
H1f/2qNYmCqfvt6hnI1yqAYJPxc8VzRM7X2UteXVkV7q2Q8pl33l5M6N1a9b
L5RQvf6cdP1pkTD19tzOYvOCfNWmOsd/jHTya3/3tKp6gJrTpei3bb3D1P8i
C/VY/yxYjb465kJc4TB1enCGBWUWlVde/ZYcSOMVpv4K6fxuaZ1Kynu1v+pT
MEw13/53xmnvlHI8nrJn0hdhqvjDsvVOHI9U36efVS8qf5g6MLVTdJ4VVdTE
vimjBuUJU9uGL13ealg1tSD6cWzOXGHq5Niv6q5sWEO1vDil17lsYer6pX+m
/Femllp/JapLo4xhqsAlxyXPbHXUik5T4r919sflhrfqXyNlHTXQt9uqP66G
qg4nTmfOER2r3oys9236HUFqzvpxeZ47x28vzkbt/OtmkKr8/dWo3fni1Lkp
Eas8nOPFzTV8L83oEquWbfh3xrQz9vdWf+59xornjp6Vc2ahlBnVq95drPht
hundHmb8pYDqsKaAFa99P3Jn6KhyxVT4uf5WfPZlW+9XL0eWVSHdqlnx2EuF
5rwtet9fTUvf0Iq/fj3pzrVfZgapHW3eWPHWO2NuHppYKUwF7axsxVfP7ezd
bdGtiupe+P/LOvN4qP7vj1sKRWXPmuw7YxhjhDmMLfu+7/sSWSKEkrImfSqF
CpEshUKKUChL2UIqSpS1LNmXLL9bj8fH/T0+3z9fj3Nn7sz73vN+n/NeznP5
73qqVwTr+JgmgLXr17/rp7qx1C4L7GqwNfsixkuIAJ3hTfL7X5Dg3HbCuy3k
+eMlV0OSf5FA1Ilibh9iZw8z54mbJoFsyOqjdeR5upLnJcmnacANlv1c7oi+
2xvmJtKhAXR1h/RvIpowfnLxar0GDK99HWhEnidWRZbB2VcLvF6duLjITYAX
SrfbtR5owS92jk1HxK5terqrPFULFOnYyuLZCcA7ak1MVD0OB9krIt3YCPDl
Q/QX1+TjcK9zvVwUsS+U0EdkOx4H5u2wijlGAhQ/ojleelgXEl+pDRozEMDq
LnU21l8XDjv1BmUjdueSguQFSV0ocvtnKhh5/vISUyudM3rgZF5fy0VDgMI9
TbguM314Ym0XDYidvuriJP2GHohsr/xdTxZxNDtQ5kIPmLyFv+vJx8Vv+YQc
5gHdyaG/68nGweMneSaEgKtd4O96sv/imdDrJCl4nef+dz15fmG18GY3FoYp
Tf6uJ/NrQDvVOXmwGRT8u54cu/7dVRyjCFmXpf6uJ8fd0D/NM6IMl9bi/q4n
z50tzTnfBkDd8OvverJZg+bWnjw1uA1vjykjz4uQGlmfGaoO9U3cS9cQ/+xu
pVFxPqsOg89EP9xB/O3UV2E3G01N6O6mZG/gIUBwnKGiuoMmkIoyWSSR56FF
y7B8j1kbXCuHLWuQ9r1mC/7GRG3oLnPgfoD4V6qOWxHNyHH4mjfKzIq0Z5CB
8YImvw6cXvUgr6EngMRtDd6hYl1QnKEdLETaY3Qe/16De5FITnXJPhzRkQWf
NLPPMMGB+IgiPUQPHI0+8+0wL4ReoJ+lQnQtb3BCUZAI5EzoZ9xH2uvG13I2
TKc0uDu99BVFtIBcjSQpTRbG60Ut/qxvKyTRSIyQ8PBqOkvrLdJe9xuvFpMt
KsKFdx/HhpH22t9lNVuZqwJUlHwMTH/Ou877kcZWVMCTNt/6H2nkfU01KPM6
R4SQ752CzYg/OHPxFyWLqsKqmEi7FnK/Pe7rVQaqquCG/3nxBHK/Z5r3LqsV
qsKrN08qA5H2xxh7VQhQkMAodPJCEaJ3Ph5ru0NJggia9bV2xF9oPfdN/75M
gis1JjStiN678GSr+AoJeqwSfpQi/eOX2aDQ0XfqMDSpmnIB0YzdH7y0HDWA
1b4izB7Rv0d8xWd8NIA4asUzj/jHbSuKkdRsTXg2380Uizy/ZoP5dg0pLeDu
GbkkjOiXH4LKj2pqwebovQh25Pk9alVaJfpqI/3bjvI1pL8c+G0ncPO3NvR1
RwxMIHYGJur7qXzH4ckqaacD8Zf6BWK9iZwOMHUoLHoi/afIU7WiR806QGNL
rqbGRICyfjHbAjJdcO7Vyk6hIwBJ5rNR42U9oA9jEyhC/KWucXrs0IgeRJWT
79wWRHmmZO7R1WR8KM80Yu+8RSo3yjNl+nq6hIoN5ZmqTm2372FAeaY8rw+n
LVCjPNPyrmVWkwQc3Mrl6TKmRfe7c+ZurpTJmECEbaCphiYeFJtJwy1YEzg+
069E6YOH6aI4BTKMCQi5HDQU8sDDIxm3jwGIdmHFHZUYlYd8w57lCSx6/q4w
cBv/QhY9nypNdtY9ngHlmd6nXbKLYjOB0IUj9zzm8NAvFG/DTW8CV0fsHn2I
lIcTl9PrJSVMYKRVWGwTrwABidzxHaMoz1TEOMbZfN0YxuWC8iRMUZ5p1B3y
K5s1eNjKn7Id5zWBDzUH3vu8wwO+3UjVH4kvUuN0Bm1GFeBh8MincawRbJZI
xihPKEC49g1DZXojePRPYVBiFh56GtJ/eYsg7dG9Rn73CcrP+rtvrwgP3+0T
m3FCJqD0WJ18exGtx2XA8srkN6LNg2kOdOK2if/Ox1GSehOzJFAeqUn7q8OP
3sjsnjf75PbLa1ZJBgojdE4XSKF8UY+w1FrTIzgoqfKoLJiWg6Gjti52B3AQ
w8C2w52K8kZNM6R/3ElE613C3doFLwPS7nxgqQantX4gaff+3x/YbV1MJe3e
/96NSJJJIWl3fjB8R+xrfQ1pd76I98nZG9dfk3bnf06XbW0TW0i78zW3rQSe
l9aRducDpzlrs7juk3bnY2buUnq0RJJ251+cVcINJbP1dudPdH8duy41r7f7
+6Tro8sc0g12fx/VjQURtV8Gu/ebBb/NYimUr1lQMCao5IDyNSelMCc+C6D8
TJWPs+P2Vmg9rmvp1Jz7Ppnuthf3kcmjkWNmu/dToZzyDu5C63XyWbZwFsag
/EuRMPnpU84o7/LD/vYiDSOUb6na7BJMN2cPF0o0tqTW0fpazLTbJP29OEAy
1fizgw5Q4OAQOMONQ8ata+vVtI6QEyn+no8Z5Vc28PZ/5eCTB6szivKUn5yA
63w8zXMReag6q3aBfNQJZIoXZ3Rfi+6eLzwesLZ9mlUMmLnn3zwwdoabbDTT
p8xRXqVGp2yQn608zLxu0alXcwZvywzaFVmUT+mUfIH3uLEU/Nx3e8KSxxVG
/9F6uZcM5VFGctPmpZHjYWOpSa+VyRW2XNlz62nx4F4h80WY6AoFPflHiewo
j7KYJVl0ghsPgilN+Uw3XKGmf7yZgg8PB0IMPpcVu0KwgunTY1Ioj5I/Lici
Vw4PwbeqPQZZ3ODNy09u84iWX6qYf3rYDbp+SuznuEOH8iUp7nCq36ODdnsx
AZoAN9hmWO/JeXEA+Nt0T3xMd4PZTUfTS+Qoj9JXm74y8SAGXK8s1z1LQq4P
MEhpP4SBTZnCpbgUN6jeRwzWJaI8yrZ1BstRZJyEUMmRpDjk88qefEexKH+y
QO9IR588BhQZ8DGx825w8sTorYd6KG8ypKy2stwQ6Y/o9IdbVtzg+dl0h8sW
KF+yf40/4bwVHgpaPnTbe7mDTRu+gNEe5UmK7RmqN3fAw8fTj/p0B91hgXLJ
09AJ5UeGsKdTCTjjodEisjjN0AMYFRhKmZHx9PQ2RzxDCgnooo5btCDjiTct
/VmpKXUQDPu9FIpoATa6KhkTDdA6lilZi4yXd3pNtX73acLVpjCni4huiXlc
PcikBWw1ZIBD4p9wSx3y0dfasCSvelAM0VJrVoYi77Th+s+S/D/5xL/nA7Ur
uvdr0qM8Rw2f7AvFkijPcVv6y4HEP/v19LZarFmoIAI7GOL7Zz9bx7SpWi07
VBJwF3CIvijA/XxcXgB2vHmox5F4Yvxcw+j9VHFQS26VOoPoxDPOuZhTMvAt
9WrQAhJfzDEvFSYdxcFQx2lvbUR3zdeLjrQrwLjTyJUwJL7huZpdLBuuBG99
ojcikfimvT/y9Uukm7woYfheH4lfGn9c+T06qQqa5DvNRcj9WRdi7H7gZ4iz
yfLmxZIobzHctvjvfsl5zq6nGduju7xFqaSDlVxyJnBj8gaZhQDyPg9Xyc4h
4x9v1v7FRyJ4MKLA20wg+g6xfuz2C5S3+O95YTUN4bEbf8Y3b6XLQ9Liu+OJ
ynvGkg4Qh9CTX+mCRUaI5t03SxxZxOHNpuhmUwEVDCwnKbouI/mV38APHYVy
YslpTHXfJMpTjG0/5UqG5NdJCwUSOScOgMyYo7/1MA4s2l9kykRxgX2IoI7t
O5Sf2PFE6hD7FxzgY/e6ioQdgZTrOzbiLcj4vRKw78g3ASgRNr9b/hDlJX58
KXOkthoH0+vt1uevCYNgia4ldzYODmMPKaXtIM+r/Ns9g3uI3VSObYYoDtUV
Tw+/CmcGJZPnlNEGWNhhTZrNAFaoD7r5uBaDhUb5EFWxBTboIQgv/1qSgWdO
jwN/r7DDet3+1QdIP44zyGQ8ncwNMlWMAuxeKF/RrRHT9CIMA4vBqu/jeflA
08SH7ScHZrf//soi8cirQwp6D17+x7ODD+4Jf73WFC0NFXIMnnkOAtAVeYf+
eZwkLFYUvJMo4wcuSl27pFNSu+OTgUlCx+HzWOD9dqS6o/IXUeR2x8epYCzc
7HxIYfJtlbiV9M5s9hwW3rc4RUcN7RDDSiPcsMlYoA7NSGPlWycyLnNj2WPR
9cOMxgNBKv9g4RsVeSBlLRkcVPN5R52CBS5JcTeGNUp4rJYQdPcKFjILbnQ+
pqMB3vjEypeI/sJxKGF9YA9EpbJxpyKf/3c9i+fC9+3QJOTzl/a2pMzQAKti
7UYscv1YQWOlqxQd2KYORG8j9q2DDcJm0vQgqTR1uiQaC1RnGy+aL9LBPYVw
36pELOgpx8O8Pg7clZz9fJF8a+XAknKnCg7mfv8scUyWhUgdAimuFeUtpt2O
GPyCvL+ez1zDKRB/03/72IHhkgwoSwdRy3ShPEXJAU+eG9lqEDaEmUgTqyaK
athzWCarweesldriwI/ESbmrDoIZasCUFzvZtfOD+DvFJuNUmRpw91F43fEa
I75gUJEiFKC8xZA62d9futTA9GaAYUXHIvHz8vVrko1qsCHJcD58YokopvLC
yuC1GiiGns6g/rpJXOa+Ukv4jPIWrxyYPGO8pQZ7vN41J38jh8c6dV1Oc2qw
llXGpHyKGoZEcjfOHCDttm+pSVZnljAJiE+aGRJt98FXs3++iBwmgUmbR+tF
LD0kFEdtqymSgGee/6RLDjOwLPnd03UhgdsH2WhRCnZ4ER4rMXqBBDl2+2io
LLhBoEblKuEuEm+p6c0ydRyF+z9kFyOqSEDhnfXUeJAPmMt8U6KbSEATbRyo
Mc6H5E299C8RHZD3RIBpRAAKu2anniLx1/hoMr3qsgBsHVEu7UP0F50i6swF
IeC7LC5q3UCCu2ZHHT3WhKCVmYFSDdFu24oZvLMi4PXxy4PbpSSgr7gq5dAn
BgOCv633XkZ5i8bej7TtlZD74Qvv7/OWAk26sLQ7HKTd+AfXbjCVg7TnfYty
LG5aCjDxp1fvkJNATTvwcAAfBqKTVDIvVKmBbwdZ3vF9GHhN2sK6N6nBDcY+
oZzSReKUWd9qx0eUlzjZch4CbupDv270e+5KGnihPKh7/aQ+DA42Dnl10sLi
TZyzRao+5GwdFstRPwS1BeSh+yv0oVU0wyf54QEwCCukbs5FeYqVOK5PLNP6
cDVMf77HhAGkT1UVHenXh5LQRzkU9gwgURTbP4NofHSvltg7JqgX1A/U2G+w
Gy9z1Oc1RqoawCbLsGXOO2ZQob9meJDHABxGb0/pd7PBooA8TWmwAZRmbS47
+nODX6XImF+/AUyuT3rw9XHDtxfj5LJfUV7iLxmu8pU8Q+B7dGB05zEfZF5v
V6O5aAgD9/CuoWT8IN6mY+l21RDoyeTWZpf5IZXW9XxYHVqfdsjWJL19xxC+
pFBc6XgiAL4ZjGZbQ4bwMqPM+uQ5IUg1NZqwZTOC3/spO7JXROCgiU2TlrER
kMnx9dsfFIW3zOIVcaboeVTKeZPR4RdGMMp/2s/lhwQ8LMmXOlNmBCe4Tn7b
LyMJ9M+1ziw8MYK2zOyc8zgpiNJK75rrROvh4rSEfabmjaD6SG+D9LAUkCdX
dNF8NQJ8xsP3Jz2Rfvf6w8vEQ8bw89O79ZYEGRDmGVB8rWUMtwfuGzc9kQHC
dqX4fmOUj5ikc2L+9AtjoE2u7GHPkYUti+yvtY+N4aXOM25ZEznAqmrW+/UZ
7/rv09iDS0I2ZpCI01PPukQG1Od6DhQpmsH2VoY4zpUSPoTrZuUZm0G5YjuZ
5BUqGL/bin3uawZ3V5+aX1KhgmvdnE5HvVEeYs0VnVtaWWZg2bt5zahmHyis
j6kKxJlB6a/wjOs/6CGKHypevUX5htq2U3Fnoszh4v2QdH1Ddgjs6ntZ7G4O
O8GtOAkqbgh/Xb26Vmq+m6/Q0ibnnNC3hCRm3uRexD95uS6Hp8ig9WC7l6tG
0pSsIEaS0ylxnzjsw9u+6+e02u3vDhHW+Au+24BtU17A9e154r6w+5Ib1Tbw
2nPTVcF6mahWcfCKTJcNTAcMxvV7k8EhC3l9Sg60nuv+h+rPnjbZAeWFiF83
njHDW0x8snSSHQyG1a47ZrOAy9ba16YCxN7K9YqpC+UHji56Na2ly0LEwN2G
s4V2IJNJZ9SbKws8LJKZ5yvtgEdI755iM8oDpAwKl6x5hIPrXZEtE1JO8ELr
ccndOSQ+ic4RiIt3AimxIrJ2NXmovrxP/gCTM6Su2Ptx6suD0G2bm/zCzjD3
6ZkVVzXK+xu554ufLZWHGklMQCSlC7zdXJqIeyQPq6r8y5eoXeDpP3S0ei3I
5z0KtwjHXeBS4e+AO5aSu/WKNqfNw5jYJeEal9nBqAgXOKz9ZnvtK8rzE//o
44DvlYda6piuKD8XuCJkVf78lzz4ZlGePfHOBRqyDbJ2ZiWhOkasX3PCBYLL
6AJsVPbs5jcpDztzSM8ogPVXT9YpZ1c4xXWyMZIeD8u2Nbkkc1fgaJ947B4v
vZvfsOFjz70ykwbVJeehQ91IfjWYWDYtigc3Tz16Ur8rBNn7JX7sk4aNfspX
j4luwLy+YTyghAcTChq1OQM3+MhnPXJNGQ841huihWZugBkN39YSwMDN/NU5
lhduEBex41kmjoENz9V9d3qQfOR9zKC4DpJfxO+hjq53A7LImoV1XTy8G9da
Kut2g+UN2oKbX1Ee387VaZrPbvTAscx6VIfXHXpZhFcTX9ND2J3KB/r67hBz
0pYviJcBFHm1teui3MGdiz/YZy8DeJaHlxz1dwdKLTLmCDM80Cg/+O4p7Q6i
vsnCYUi+c3T2Z+eyjjsY6UxIb9xk2M1vjk1hlVJPMoBk9G3+mjJ3yPzGT32h
kQHevNnpXlxzh0EOxlYLP5TPtyLK97zeDQOnco7P3LntDoJGuK+tvhg4VqPg
3vYKse+9y3AsGAMHSeL88pvI9y/58+BPYmDaRS2X47M7OF78ufXWFsmvbkQ8
KrrrDiFFNngbJN8K3uFsv9XkDhj1WPzkIsNufrXRc5n92yADvG50jjjM7gGk
wFP+OdsMwE9fzqge4gGeNaL0Y2Eory881DdGKBQD17IwrGQcHiB55pavCGJP
bTQ69FrOAyIb3t33isCAQ5LB8QR/DzAKkfbsDMeAQY/va18LDxgYzfA/guR3
LjMqA+osHiASEmA/gOhblDxHaxVRvp9b6qmR+xgT8NAU7silxIMtbdSeDSS/
OGRaK3VrWWx3P/W/9byiKcUGmbZowE/2dpq/gCC4hjfMBdlKQEtiozpTGMrn
+7fesrHK3jszlRJQUj/84XgWyusb0CePLkz7X17fYhb22BNDLGjFrE6El7GC
+2xGzmVh7O7+J0EdqV9zZFjo7hSc2qfOCebVcVWFlSiv70gzX8Nikgyk/Xw0
HquC8tOvM8emW2vzwOvmMXsdPhlgy95+co35KOD1bANJ6xh4uscwiPE0kl+0
eZvGFWFAvK/E/lA8yuv7N79qij91NgaJT//dT0Yv7197a1UVPi1EM7CfQHl+
ugF7vC68w4CbpEldprnabn2jxoWwqL0RamDAwt/84bsMaDzSzWU5j/L6Dj57
pOgTpwb8QkZJr3wY4WKoZ9WQAQk4/Nz3Fisww3DoUdZiBxKwtuULTfWwwnf7
z0lmp0hIvpDQrrGPDcgxFDTuUSQozzHV/SXJCcJXGGO/XyPBj2n3xpffOKFk
omieN50EPvhbHlIRPLBn4QD+7UMSbE/c3f7SzAOfkuE9CxLPXdK4dfX9AC9w
306oFKknQfYF786dP/WQGe2EpP4fv4/wpWVeBIkH9xZvBPktoHy/TW4ukR+f
+aF1ZbqksRnl+YU6nJt/gMSX6aST+SKTgvC4qfcMbTPK8xP3nF07+IoELW6z
9w8sC0Pds3nl5GoSHBc4cZ+HXAT8b/lT/X5GAr4S/T3m30WBnfZ4LyaHBJ3j
egFnJcVgRnhfUVAmCc7fthKefSkOV4FXrvc0CWzsM2nPhUjA2zDbRjpXEgzf
fTNtnPmdaPDd9IxlgR48XaUTCPn1k5iJ67m/v1YPBs9Hzlw25oRHDZ32AkUG
ENotYC5bxQl0HVsDno9R3l/bOYmmuSYDyFvp38f4//h/TdlWdEItwtAsmafa
hzMC71PRnUHcIlB9zds6RNkIJMRpk41aUR7gsaeiL4wOygDTBr/xd2ljYMSp
3UrhloGem9rnqrEoH3Cz2mc9UsUY/B90Ke8ooLzA8V8nTvkFovXX6mSyx4wy
0fpq/86fR1mcfFsk4QRPs51qku6h/ED3/DVKx0G0/tq/9UX6XnXWJIW5wNbX
6JGVDPLd8+b/1uWaulI+02SN8lkafhhhZAtcQSdpPTDEiX73vPeiXOYtfm2G
/+EHKlwFJ1yOO/jWPB0yckX5gme0h8S6TqE8Qc12kSfZEf/LD9x/Mecoj7sR
uNy865FdgPICPcnurROzFODkDw6lOnNjyDFPfDBaqwDZY+W8FDtIvHom9m3a
KFrPzxyb5DeQivKZ/q2XWXHhjArRwni3PuFzq1xRSz4TeHKdQ3Jec5h4wmG5
MdQRC8mi4+MOQ7+JBK1XXkvkaL1tjqeDJ5U49EF5eA+PohAPPJG7R5vxG+X/
bZFRGJ/jMoRX2v1zUjq8EOm0PzNP0xDeWszSveoShWP5RVxH3P8f78/es0E5
1AimfGPa+s+JQ2z4oqxFihHobkaOjS3KwAQn1ZUfdii/z40kbyOP/J/G1c7w
jTYs2FlqX7GKN4ZX8ksVj/XGiHG3BdfOfjOF/cqZxJ+WP4gWfT8SeaZNYbPK
tJOYjfL7CnQbimn4mWC2wXcP1SLK62MWsq6l2m8O1sq0ymlKrGCWeKDqmrg5
PI18bWTqwANdEae4RodQHp+n/QeGn+vmUDbCT9siwQts0k049SMWyPiTrR/p
zQ+Yn8+vtp+3gJD15odYDgGwpbqocCzPAmqzYsdf3UR5fNvvWbWyaTBwz9bb
qeUCyt8L4lJvtKqyBjWOVuuFOxhwzuXji5pC+XsvTvBG1TDYQH65m6ZvEcrb
ubLEEvvgw14QKPL79tIV5e/Jnd+f25ZgC5Fl3IPtRrQwRv7wlOJjWyhUTyca
fUX5e6faa5dksbJQ8d2r4pUUyttL1CB8MfW0A5fW8cQtFZS/98DkqB/f/v/w
93hlIWzuyIkqLjuwemJtLXaDB3RK8vtUWFH+HolcFi6oOYCAleNy29pRoFyP
8LgejvL3jtmoDgdlOiDvWbRBphDK43vPcmS80wcHidTBbbmPHcFrtVQo5DzK
30u+4hOz6C0Bhz93SVtKuAChjUbPLeN/+Xoe911FR6lcoFoybGrxzTbxRLPi
RCMnytO7WzzJGyPlCt0qH0lFMv/L1yt6kdo4vNcVsDo+GfnvDsFpKhw+7Zfb
7nmUyXOrG3wc7hAqp6UZfhjl62XUFR86vqIATZWHTj69bwBDouk1vWQEuGVW
GOmeaABk9d+dxSgJkBp+v4bezACy+sfeEskJEPqe4ddoHMrPu7OqJk69aQza
o+2vj6/IQeSmxsPLC8YgDnfqbDlwwJLw+VDtmjHk75SYcRnjoOOzRdExChPQ
Chvo09bCQR7Z5uMSMhN4W32NJr4VGX9Ywh4U2PCAI4nL7meNMBj0ezq83hCC
j1SfhPR9GWF66VTpujcWoi6fY6zbkAORwm+X65C8RbJWrodVVw4GFNNpFPiP
gfGFbr4eJ6T/bm60eoAhwoYPh8p3PBb0Nb/bkKRUoe1zR/67k/Tw+T2xK0CJ
BHson9BSDu8BqRKyIEdtfXiLD1ZZDlKAa+9i+k3vIf5P9eQSO+UGsciD/4PJ
ETOYuSUUOZ7PB8VXC1qLHC3gRcyanEGiIOBSWlL4pizAifHpg+AKUfhC2/b5
4RtLCMqWvVeTJQkmRK/HMa1W0Bg/AEWfpcCuQW1/koA1/OP8QrJy/jtxvTwo
eSreBnJuPrAlt6WHSmHaZ/NkdtDLQyn5iIIJcpmiOI+Y2sGP03U/6yo5wLa9
21nU2h4yg6iG3OnkYFbJqjcd7MGmgmAjJsENoqSJGJkqe/Dw6Xjb7S8HummH
Y3l67cFpQq/WdFIMJIzxlOTpzqBRFtSwWioOx6kSHD4PO0MIpSxtQoI8jNR6
uuzkOUNA6Fn6RNcR4jWL+mC8jQsYf845lOHxizgr38WnjeRrkQe3DiY8l4R4
boOyyLcuEKRDadv4fi/otfW8FCx2hc8Tyi8HP0lBep2Dk1ioKxDs9WUqamgg
wS9Qfe+KK3Tq875MaJCGvJuW6/ySbhAWW4cbMcfARz9c62Frd7i9j+HA8jjK
42J57lr1Z77/wxvRMj/ZNuKFetO/Grvza29KWzcx5/St+nRJAkh8DjCnYqYE
/vxTHCcRO3t3h52QKhkoWJ076I/oGi36LztDZKDMvTQVhVx/S1JsqfYYG9C1
pWrZI3YK65wOXC8rSNooqNkh+ngnhcUYz2GI5JPM00Gub968T2gO5YfPjQ91
FBH7+QiJt55NfJDrbWhKQPRJZv/NSxN8YBkg0bolQYDyqW9m1V1iYNIa6rQX
se8dLG58wi0Gx/Z+id6D6D4pBaEEFSTuurmWkYZc38bMe9yOWQYMPTOs67AE
YArJLdasRfrhM5I3ahHt1qXQc+INBuL+OZR3CLmeszj/wreXcgCueYlOiD29
ZURry1sOxApLZxwRTQ+2BoQQOXiFIf7j9Wc95nkDe4CfAsxuJ5dMyxAgXDXj
CxWbAijUxJL+6K5y2uhsHgXgeBmxfUuMALejQimoOJQgZmGs2QGxm479xPo3
H4M+ho7MP9p+XZPtatsx4Ji6xntPFNFVd+Lzm4lAeWaaywhDgG+adIYfA4lA
3LhpGy5CANZ8KcnCalXITGnBuUoRYGj8skRRsir0lAo9//N/FBwuXi6xR+LZ
UDWSCvJ9WXK3RbqkNEDfxre2U5AAOGU31b5tTfAXSCJc50We3+j4hm+HNkhb
GZRS/8IBs3dPabXNAVD5jvMITRGDPmlmqyUsK2BT2tW13otA/zxnaFAmP/Bh
sm8WfpGFPTMleiUaykD+bmZWuQ8LHo1awmcDAcjAlT2d0pe4wyT79l6o3m69
o8/P3h7x/mgMP7mCWFxOy8GwJccKyyASD4jKX3S7JwfqcxvhOd+NYfJJdPDZ
5CtEO3vt/LUaU2BYtKVfaZMDhmeJj2VOOAC1v4DryhwOQpi8BckSnGBO+LFe
OkEUGKyk6N8dcIaXVyS+2g7mE2cM/FesjrjAU685jv55ebieVh9Aeu8C7rqB
Tx440oKCD8tilIYbXBuO72usUwB27HvLS5tGsIwPlTZ+JgM+K9yKqQ02EKhT
41FXgwW+2QfDUmW2wInz4DqhzA/8xvIlZ3UcIbDDe1rcWRC+XrHO5GRxgp22
0pgxJ2FQ/HzegTHFCQa+VXbrmYjAMzbyGwbtTkBTpXCm6/Uq8exLVfWGjy7Q
PEDFZiVAgCr1Tw/9PqnDHiUFuaCjBCit+DDU+0gTGHk7FO5yIu/b9zWB8wna
YNYZ1JfOQoANVbOxVCcdwP9wW3KmIYDiWJ7rGRo9yJ976zV+gADm9nLqRwl6
sCT+4VOhJMoXsCGaCgYg/vMjh3kmSW6D2HHkxV89JPOhGiezTtQj3R/5s1+R
DqfyHfOJCVizJv2cELtbuELPb2UWmNOb8XZENJl644nWJWaoPD3cbv2n3krc
J09zDV4YVN6TRUTs3H6HcVsrvCCHKSpUQbSCnNMZqz5e6DCyiGBCrh/83SFC
nSUCl/6h2aFD7L08N8uTDERBrrqM54+OWa0b+iElCmu1JLNy5P0OijEkK1mR
hn3LFAEtiH8+PXo5rcsEA+TXz5Q2I3quR7CCUQMD9m1dLHLI9RShhJXcAlno
4gg190Ps+hwJEmzbsvCpSrrmBKK3fafFaRdlAUOyL0xD/HtiP7PWpCkeRITp
YzYR/5Rd1BRiK8ID9VkLlj/aKD0wwesuHmr9JeZ7EP+eE/ZPFCQ7BgxNMQeD
EHs3k7VGs+kx6N94/TkQ0Z30ntl4o2NAc3ElYRzxx947YknWD1WAzNlV8yLi
31fbw3KtyIjwUOmcaRvi3z/jrtuoSqjCo/vzRzIQ/+5Mig/ot1aFiTrGiT/7
zZ7YVoYbUpDAc1wST0L+n/bMzpSKHAmUDvlV+iDfn8QYHHH1kAa889/RnUH8
/WBu7ODBaU1gOnEpPhPx95Rvd7Rp32jv8gTwMY4TQlIm4BpT/K1YnQ00vOTl
Rz0NAPNS1HefjxAEljTd12E1goN9oVF0WhgQzVqUKqExhtylIsfDlPRgLrOW
NvncDAqfRzc/s+ECBhcFO4+75mAyRT1yQZcMck5Ucfqy2cLzvFwBJwsR0KTq
NS2MtITiqpuaMlYSoPumNc0qwAoMRR5eXZGUgR8ZzIPrJjbAq6LjXqqEhfcN
e4oScLaQ1uI2icWwQVDi3l/MO3ZARhgl28vDB5kytMJaww4gc06gLdNUAHj1
qbC+zxxhLNByu8ZdCERjMOE0Rk679VwZo/mEUrD/e/7kv+vP/+2//nse+b/n
Ff7b3/wfuUYnYg==
    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNl1tTllUUx7coj/CC78vzXkJ5yAMqigdQEVBsbLIZ5SAiSNlBy0wU6AOk
HPwGqHCnpl3JjM0400zqV6jbpsN0ZY1ddFfN1FX9f6z/G1zs2WvvZ++1/uu8
n00XJwcnqlJKw6tSWq25M0vpSnVKL9ak9Ex029qUrmq/oZzSAdFdpZSKdSnd
qUlpn9ZD2v9d84L274jeIXpDMaXnutsu+prutmreq3FJ9EudaxF9SHNZfPK6
ONeguVQX8p5mwXtM56dED2i8IvqO5tsapzVGNUY0Dmr/i5rgOSJ6m+aHWvek
+D7vM4NZ3OfuvHDu17lNwvl1FvSsznxsrOBEJ+gp0ZnOF4RtjebtxTj7t/A3
i54RfTGXXNHTot8VfUY8GzV+lQ1vGutvop9kYR9wToge9/6M5rMaL0Vf813o
MevepPO7Ne8yz63iMScdv9R6azEwnpPczaInRf8lbEcK4a9xrW+Yzy+6e11z
Xxb+bdG80/td7MnvrdVhe/yLbbaLvlUT2NvFq1/zgRT8+o3tlnlCg73VOMeq
g8Z3jzQPa3TAw74ZSHFmt88jv8vYiEFikdhkr9P7zKzByflu0QrdpbjAv2uw
RRZ2x7b4fdr74JzT6M1CJrKJefww6/O7fB48+GTG8dNk+qV9ioxDlsXd9aKH
HG/ot8sy4N9qn2KH+5rv2RYL9jv8+3y/37F6xhheGgc2Z49vrzoXBq0XdsH+
jdbltPFgwxb7Fx5D5tOWwgb4E52ajGHaMQZP5DZaVqPxQMNrp/Wa8F322Wux
v/psY/DgozftL/KSeCI3id1ta5fz9IHjgTz+KoscOa4Yvpwirz6xjbDPiUKs
yT1q02lsliLWz2DHFHVn0Ota5W6P7gwTS5rPgt25Ts6TP+QKNQselRoE788d
s8hYsH+xI1iwH/akflErkYk+W6lD2N940Qs9eq0D+UVuUd9OFuLcrL+3me9R
jS3m1a3xmsZmjcMaGzQ2atwVj8zr7eLTrFG07HqNdY5bfImPZh23xDl19apz
mFiEB3p2mvemFPgGrDsxJRcuxRV5QxysNqZajYLvSLVUY7w1/jbtWF2qXVrX
GR9yMt/ZYh58W1eO3lDUfMQy+H7DOUseUQOJoWb7ucO2GXZ+bbB97jkXMq/R
ARvcz5bP3vX55kpcpojHxSz8/6Fq6ymBu5BH3d1m2f+Uond0liK/Fhwb98x/
vfk8dK0YcDxhz0XHPPvzvnvQ+B95f9R3R4zjkWNx0XRlb9HnH5on598T1reE
+bzm1bLjTtHH8oj9LsfUkP3NmhwlV1c5p546Pod9Fj+Qu/SBpZz1HnFKDp1y
/J6xH+DbbZ57qiM3njmn6C37nQM/N0TelYRxVPjeEM4RzZ9lUeupG7fLYfP1
xcjP5841+tKOFZiYjzpu4X3FOKkn6EHtpwc02bY3bbc+71OzugvRO8ete4/r
BXlFfpFT1J4Trk1v51Gf6P/sYXPWzKypUe/nMfNegMdSrmr9WPj/rYm30ZJf
CuGTo4XAMeFcbvZ57u00zfuE+9SwVQ1Rw3gL7DD/ovl1WxdscdJ1ExsfN85D
fo91aG4rhY9/KkecDTr3efNRH7tLUQduO4/2liIP/9Q8XwpMvAfhjYwpx8GQ
4+JsHu8T3inHCmHbSdv4mPXl7cJedTn2Xvc+2E/ZntgdGcTdUB5nfiiGrl0+
/53foMQXcY/dvtVeoRzvzMli9AXedZOOEdb4vKMQb9xKnZ5dYb8Z+7/ed7l3
wra8bF1qzfNwId619JP6crx1Py1Gv4CuvK/BQ74t2IZVDZEzL/wOB88+9yR4
trnf9FpmJf+Yebv2GeNlx8C4ffBRHrrwhu2xnc7az9ec913e4zz2RudZ+2/c
59C71ro/dvwSh8ftc3AQQ8RSeynqxMiKWjJsGU/c58nZftsY3HscVz+WI/6u
puVeNOZzh0vhg7XlwEzvoeecc10nr/8oRa5UlZd79v/vH9sMGcgilqkl/EuA
iT7VY2zzrqlgfOC6C5YvXXfIUfKCtxd9lnnCdLv9gbxZn6EvXHVfBs8Wy8FO
9CHqJ/nX5F5NX5hzr4YfdQodeF9Vei3602s3e02/PW0MBcvg213LJ39b3U/p
ywesP/9w5907PuBfJo88HM6jDqErNXCPYxMM3xejZg3m0cvBslFjXynqNvU7
8x768V9zxW+Ietuv8i7YugLrEccLfW20UqvzyIH+PN6l/C/xHsA2c67tyOm0
HbHfqHsr/yzIRi7n8UHlX2bK9m0xtir7aMr82Rszf87f8P51n2efnn9uhX+v
2ccX/H64lEdvoza+k4efutNy/HYZd5PjB+yHnXtLOWrMFTzIxgen8qgRvXn4
84Z1/Mb9oCePXkpPrbzPr1uXTr9h+CfutQ2Jsf8ASgd5uw==
          "]], PolygonBox[CompressedData["
1:eJwlkskuRFEQhkubrqud2+fujQm6WXRMCYkxsbBo8xBDDDHs6PYGhkcgvABr
Owu8AguJGMKajR0LVnyVWtTNX/XX8J+qW79emMonRCSLlWAuFokrRTrLRSa8
SDl+Ev+yTOQ9EnlLiVyDPbFkbDmae0Ps0YlUEHNw3aFIDm7XWa72rIJbJ3bA
nBz8BngAy4BJk2o+o95qr+j3yqwott5dzEiBu9HQCj4PRB6caVJtGvsAd2Jp
8Bn8PXw//dKhzbh1VqO1GXK6yH3C74PrxSbJrcFvgjsiZxu8gx0H1rMjsp7a
W3Pa8BNo/ATvob8IXIrGAjjkvWXgPPknge1Ed7PMjH34EeatgOe91Q7jL4Ab
yM/jD+HP4L84w4PYNP6Wt90dkrPpTaNqbURDFj2ChovANJ3iF+AjZqewythM
cQ89xqifwvpDm6mzS2LTrjfviewGegvtEcKNe6vVf0D/Bd2Z7k57PFP/E5m2
dub/gte8vVVvvgpe8vZW3cEiuI6av8A0q/Z6Z7W6M93dd2Rva4b+At8Rawnt
pnrbRGycxorBc952pTeYBdc6u7XeUG/ZG9m/pDfX2/8D+5lNiA==
          "]]}]}, 
      {RGBColor[0.4904290523370268, 0.4760613282973577, 0.5307701417571472], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmXe01MUVxwdQHuwuu/wWTawRsITyALFgV1CKXR6IR1AQ0SQniQqCKJDE
FEGwxEIUuyAIGulgMBGJBXM8KoL0KioKCCoiegKJGvP9vPvd8/xj9t6Z38yd
O3fu3LYtBg3udUP9lNIc/TQQvDqX0v8Et6qdWEppQcOUVhVTOqBJSj8tRP89
4YsEx2nO1EYpVVel9E/3gXcIni06J1XFvFHqvyw4UvC5fEpvCF/MnFLgnwge
JdrzhffVeMdS4Mu17z3q36Q2XK0mS+klja/V+IHioXUh+r2z2Ge9xnPllMY3
Tmlj0+BlSAp+PlR/ifoH6fsMrZ2udozWzxQ/b2p8o+Z0KwW+Q/DkquAZ3ifr
jC3Vn6N+e32bJbhB9M7Rt9ZqbTiLWiv3J4pmF8F+ai0LsY5+N7W2atVqXb2O
/v1qt6iNUHtE7TXNfzRFWyz8sRTtdeGPC54iXv4lfLzwr9TeFr5H8M9qwyyv
8aaHzCc0ijWcZ6/O/WrD2Oc+tZu9972WMf3u5rEd96X5QwXvUitIdg9Itpua
hrxehVfOoTPOyMedrlVbhB6orVF7yf3Vagvd36D2itdfqLu7TbCxaF8sfLTw
vPDlgi+o/V1tXTHumftfZ9ovqw2Qjl2l9p3wbdZd9HZ4FuObtW63+YCv0yWD
i3Ih0/WmAR9rTf903e01WcwZJLjC+/9DbZXaiz7DSo/R/1jtLe7Abwa4RO1U
7dUtF7Lerv47akvN5xL3+2Yx53LBFjrzJfAnHtZqTU/h+9XT2/C6ZWo7DN9V
22mInAZo/Xmi01/wtKrA0aEvLHfOf3eKe0Q/PlJ703x/luKcnOlT06O/y2dm
/ef+Tr+H9aI9UPtUq3VIoePoP3p+uM5ykfi4QGdZ1TDwejrLEdyx8AtLIcen
1CZbjpPcX6n5F2pO0vzn/QYes7wnel617utrwW9F59ByzD+/FLoFvSkp7EMn
jY8VfmkWeMti2AnsEraqjfqvC/5Xa9sK3yT8m1LYia5V8bYWmd7TagdJxx9p
FN/aaf63GrtRtP9mHh+3vjxpXhvrDBtFq5HgNr2ZNcJbluNewRsIbtX4auHN
yyEjzs/Zd2p8g/BqjW8RvkL4IcKfFw/z89GHLnOqBHdoznrhbcrRB28o+GwK
G3qv39MT5m+B+aU/PYUNwmY8k8KOsIb160Rnf8Fp1iG+zdRYC8lAoqr9hr5y
JuwLdgY6f/We2JjnDCt2rj86m8LWXOk+EBuKTR3h71elsF/AgWpHVoXt/VEK
ezzTOneidPAEtauFX2EdhNZTktOkfPgSdLaZ2gEp7K7ElXR1qbls1xGFoLm+
adBfWgxbeIX5Yh/Oyl5tvU5irrX1JdOq9lgzvw32OZCz5cJOYaOwy/1MlzPh
D7C12KMzqkKH5qewzeg9Nv7MqrifZiLeW3R+qc13S7e/UHvRtpw3z5qh+tZP
c4YILm0SNujhFLYA2wfNXU1i7rwUesd7rF8v5AsvPSz7ruavv++EPrajr88w
OR84NuVp4VPyERt01P7Hqp2r8evFx2XCfy04Jx/vijf1UdPQ88PKIZv+jjkG
5cKGf498tOZ84QMFr1W7WPjPBLdJ4A/oDVZp7eHF0MOzNN5T7VTNKWq8p+b0
0XhNKWIEbAF2ABsAjq0nliGmuRE5iE4nrT1PNNYUgw705lpeyGqW4Ga1mWr1
xP9s8VBfcJnmt9f8czT/gHLYiAMFV2j8OI13507Uugu/QrBPFrHRZVnIDB6Q
W+ti3PUHonmG44+sHO/zL43jzaLj6DoxSe988NChKnwyc/CdG6zD6PLthfg2
xm/9/sZBj/gIHL+Lv5prfcAfzHH//aahf5ubhg9CR7BP+5pEDIFcsKfItFcW
MeFmy3mCaI/T3g82DvxB88AZwLGNfOfb7SnkPcFzRheCP86yyLEmNJE7OHYb
/V/YJHR7nPa+SevvykLP0LfBgmeVQp4PlYOvWaYDnG38PfF/peYPy8KvsAc+
aLP3mukYk/mtCiEb3hzy2am1Q7V2rNb+Se064bcJ/gE+hP9R8EPNuVb4SOHv
Cx8o/OYseIfOQynub6Fx9oA/eNkkuLFJxF/EqjOsq+jtDMeuxGHc7yVZxLvI
7aIsbMNuy2efbcXD5v0L8w/c53uE/ibvtdE4e+31HNYuNM2Kzdnrcfhg/Z0p
GjTuMv/TTadCF1uBTcI2cW5syEbPgf5S0/yqFDH316Xgb69t1hLrKTbyHUNi
hKWG+OFOfiP4AnwsMRV+Fr3okwufPbYQ+ofuYU+xqxuL4WtO8Pu6IYu5+HnW
sf6bFPFe31zEUMS++Fd8HTEBsQGxODEEsUQXwRpsSS5sOPkMvuiEUsTKrMM3
7nDecY7gzlLQGVqMvIj8qLPtAXE8PhYb39c+ZVMx7Cr5DXtxFmKarfY98Lul
GPECccRHxbC92OCPixGffSx8azH8AfEIdvga22Ts8SDj1xrHPo/IYs4HfkP9
zE9f48iO99fLZ/+F5l8i/OeCjfJxT9wRsRf8lssROzAHu0Oe2NNnYT04soJe
Ta5urMZz8J/PNIoc6T+lwPcJ/rsU99moHLEzOkLs867hC/Z51fZZwHbG2xsn
vu3gb/j2CaJ5q2Ct428aePOi53pt1yzwd4vRxyeyz5JixBNnZuFzj7UcgB2N
H6c5eensd6XwIR1NE3i851Tl4xvjV1tvodcjizkrbW8G+O7I0fGb5MPkPVNT
xHTEj72rImbcbt+KjyU3e8b6TZxNvN21FLEzOT+5ddtyrL1Y4zcUw5+0KEa9
AJ92ssbbac6l3GspYtJeVXVxZU1VxI/Xa/7lWntEMfKxad77OvU7C/6kGDnf
0+b7xlz490p8DX1i4Q7lGMf/t5F8Wudjj2rBtvnYG1uAnuPP8A3oKL6XN8Bb
+InGDtPcQ/Lxlsmh2Af6w3Lha3L1QsboMbJnbLjHf6z1h2q8u3i4M4t75D7v
yGLOp8IbaM7+mlNf8Fe5yPWIofEh8Iicziv5zWp+r3z4e2wmMRf1BWIwbMkk
x2Hwe7B5xv9wbmTc3zkxOjDMPH4pfGQhahPQwtbCDzH1Hs/70m8Z+8G7Zpzc
m7wZX90sH/bzTNumvaVYBw+cuWk55pQEm5TDtw8pBn/M2WO5sYb5B1vm4Lwb
9Bvdho/BucjjtxdDX8mNPinG3X8qfEgu5nA2cPSjsc+51nzjq4d4zmDjzOlj
W/6tZXioeUDmNfl42zxzcgbifWL/tu63KET+MMs5/rx85PfkZ+DkcSWvI3cg
P6j2enIObAk5ArlCbT6dIg/hG+Pc/3zTYR3xeTfboR4/WNPD39p7LbYK+4Kd
eacYNMgbvzeP840Tk891XM57QP+J8ZqZLnuSr5G3kb8dXA4feF0WPuow6xs1
NWicW4o8nHx8VBa1DPzv74QfrTmtNP+ocuT/5B2/zaJGQH3gN5ltvOtIvAvm
97Tt4I2PcWyzyzEMet7Gb5z4gHiA+IA3xHtH/1uVA7+pGPOwCbw1bBa2a7Rj
t2rbB2pPxJ6DNb+h8LzG9y9H3oLuU7siZid2J27h3pEZd0QsQ0xDnNPH8cKW
FG+QN8Rbmp0PWhv8Bnm/nf3W0EF0cVQh6qHQaidYXYj4YGeKPLtBvbq4hziI
WH5qPuwvNhJbSd2CWJY6C/UVakes456p82B3oTXPulCpnwHp4yeXeQ94fMp8
rrMt4G1RE6I2RA2JOhG2slI32uVvK/ydPSt1K3ihJrXba/iOT4Cn5Z670/L+
yvtV6l/kIsienPNyv+8vTestyxgZLvGZKjW5rf72pr9vsey2ex4yn2KaS73P
9lQXa0KPHGqBZUMu/by/LzIflXrnmlRX71yd6mqHq1Jd7XClZUP8sdyywefh
d19J4Xdfc3+ax152W+97QMb4JXw3OoJuUZfFP6O3+HzqqugF/vmUUoztV454
iLjo/Cz0ZZ3PcEw53siwYthJbCSybVuIOi/x6BSfuVJve8lnneizUQOb5DPT
n+O7QfZzfR/051mu9J/0uhesN5wJnXjM8kbWT/g7d4CtwE4QExJHL/6BvJAB
72uq5cX5Zlg2zEFOc/wOX/Hc9akuLlxmXlb4bnhb0/y+iC/powvQgBaxEb6i
l3009h07Tc2kvmu4lfcHRLePrcRr5hc68IEt2W79G2f58o5nOR9FruQv5IrI
m9rPa67nj3HOjSzxB9CnzsR/HLP8Pwf2eLVrj9jgVbb92OCVtv9zLR/ORe2n
Up/rZnqV+tAAf4M2e5DzkAe97TrPbYWoSzxhGWKnkBux+uv+X6PGMiP/pb5E
fbFSqwaSS2KjkAk2drrzVHLNk37wvxN5KP/zEN9SZ7vHtDr5PyjyfXJPcldy
TOph1N0e9Tze3jTvh95gR+80RN/vMOQ+KjVN9I5chVyEmid+crq/sf+zpnu3
aUP3Xq/jG35yheu9w/2NddjbiY7rzrbsqRlSQzrNZ6BOgnyRKXWeMZY1ee1Y
60GHUths4ujjS2HbiLWpGyEL5E6N7XTrEDrOPXE31NvOsIwqskA2S117Ye1U
j3E+6v/Ej8Q5xGTEZu3LdbJj/WzXYdDdLlnUc6tLcYfYpSGW7zivmel6D/q/
rRj5PHV07Df+dYtlQx15uPV8hvUQewDOe8eWYFOwl9gU/M3n/j7TdgE7hy/C
1mFTmUu/i2VPvD3YcTEx5AVZ1BnOzcKP8qYrfhX4mdcNtz5Watkj/GZuMd/9
/L1SWx1m3ccXTXaMUeP8ANrkedAZ6Pc3wrSIn4ml95jufdanW7OIpX6fRWzY
3PEhMWtz171r623WJWwEvgSZEItNz4fNr60XFurqkeCjfU+8vdr7zcda7Abx
y9H+T7e3cxru4UjnHZ1NB73FXrGunddy9lGOf3gLI52nsO5I/5+KL8IncddH
O15Cv5kz0vRZz3hf8zPKc1r5XXG3Fbrg5I7oLbqAbFpYVm94v8XWYWqC2BNy
AOwgNpK6zHjfMWeqfZPJcrKsqOeSK5EzIVfkS+3iAb9h5EGcu8H/7bTyW77d
utrG5yUmXuP/XEb8wPb0cs6Hjrc2X5wTPwGtSSlq361N80HLHz6pK3KPvMHW
9i+1+/p/f/SQ2h++/CGvHWsftMD1dNb+H3p+X0U=
          "]], PolygonBox[CompressedData["
1:eJwtlVlsVlUUhQ8Vesv/13t7L04BBCsUaqdfQIpMMrVAkYK2BREREHAIIpQK
DqgoMjg+mVpFnzQOD0bUSHjSBxVjTHAICNIJNA4IPopTFPVbWT7sZK+zh3PO
PnuvU75mU8vGohDC08hAZEcawp25EI4Xh/BTWQhFyFslIbTmQ3guCaEjDmEv
+BLwBVkIq/FfgP+H+K9Avx9ZB/6XXFfi249PbWkIn2JvJP5Z8CvEHgBPBH+O
zz70UVEIs4i9FVlE/Ees3YJ+EzIX/AH4BvTfibka323k/w39btZWYD8HriNX
G/lbyL8d3IX9IvBQ8HBknmIT792OfRL6Z8S8Cb6cnDPJ1c99uwaHMIWcx7Bt
RrpKvOd0/OfgU4etQHwteCl4Nvh9crRKR2pz9vmC2Jn4fILtDfZ/PvMe2msQ
+DzwICSP/ip7/IpvUWbby+BfwKPIMSnyHkuIPQFehb4S2ZL6DDpLOTXuJnZO
4lrvI8de8ECkJvIexegvIO+gnyWmhlwF5B/0teS7j3zfxNbXIPeC68lXgv8E
8DzwOOy5ASFsBT8B/jm2vgV5HDwe/wj/ArgBfFo1RG9H9oDLwTvZ7zV8ujjL
CNUI/BK4Ezyf+EPFPqPOOp+YicTWI0fx7Y5d63ru1IZtJHhZcE+pt+5g7Xp8
W5AebMNZO4J/M/6XojfqDtjGI4exD2XtMPaF2Iehv4jsz3utKXGNVevVyMnY
NVFt1OPfxp4JzYZ6Tr13T2pf1VS11QxoFpRTuePMvbWbtfMz10S16UDOxK6B
avEu+48jdzv25Tn3eL/ysfa25oX37lEu8EHw6/TLn+jnkDzvM4wcF2P/I7Ft
OverJL6XtYpS12xC4p5R72gG68Bj8ZkWeaZXsfdo8OTIM6BZqECmROaEAcxK
RHxniXtsMvFjsE+NPLPLiV+PNER+0z5sLanf7j3w8dhn0tk08+v0duRYErln
1DtXqH+5ywbwo6nvrLurZwqaf/lgr0LGZu559X4f9mpsZxPPkmqm2o3GXol9
Pfm2k68G3IOtjT1r0bel7gX1zHfEP5C6d74Cfw9+LPVbaQY0CztTn60b+2nq
cWFmbtSddXfNvGb/IOepwr8h8eyJE8WNs5L/zwruA09LXJs9rE1FX0yOTvho
F3gR+lOpZ01v/KTmlT2vYa+PiTmJPkMzFpnTDrHfg+JT8FHwD+Bm8DODPYML
0XchrZFrcAr7Q+DF4GPgH8FXJe5F9Yx6Z3fqWvXqf4jNWeIucZS4qi6zTW9Y
QJ+betbECeKGBam5WzN9bWpOFjfrTzmDfiQ212hGNasJOYbkzcni5ptZa8q5
x9RrqplqJ46dnfgP0l8kn5XoWebat4KHZP4j9FeIQ7diX4Y05tzT6u2HU/fG
16oH+43I/Paq4UjdJ/Fs6U/R33JZ5tqqZuXom4hfSvzf7LEx9Z+lv0t73Cju
z1zb61SvzH+s/tpq8lWCN+DzV3COu9A3p84lDujQ28f21UxoNtpjc4l6pDQz
p4pbxQniBs2EZkN/+iOp76S7aWbG6Lyxe0s9kQM3peZacb64XxwqLlWPzQBX
Ze519Uw1+pexuV5/nv6+3ti1FgeLi29TP+XMIeIS/bn6e8UZpxL/8frrm/FZ
K25NrYuDxEUnytzbynF76pnQbKgnyjLXULXUTFeg/wc30Ayg
          "]]}]}, 
      {RGBColor[0.7390484205617114, 0.5634355471622627, 0.38461690292857864`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHeYVdXVxu/IMHPuzO1jN4AIgiUiXSlGUBOKDRBpglIFUUAUsGFDQOkg
vQpKVdQkxhqToMaGxho1yRcVoyY21GAsmES/98d67xP/2M9eZ5/dzi6rvHvt
03j4hD7j90ulUvnqVKqe4vb1U6nBSSp1r+ib0qnUTIWM0s6sTaVmiH5X+Vrp
/c2i3xY9LR35yNOolEo1Ub6Gio/TuxNqUqkHq1KpAflUapSeD61Lpb7MpVIf
KO3zQir1QCnqma+0E0UvVP7bi6nUwxWp1CLRDym+tSboV0SvUbu3pKP991Rn
Z8Wvq571imen4/lKxVcpnKQ2SoqvULhc9FOFSP+P2qpTfF063jdXPYeqb6lS
9HG+2rpfbf2+EGXn6/30dHznRL3/UyHaekPxmqpoj7ZeKsQ4LFb+1RqDuaL/
qXpmJ1GW8XlaeUYq77O5aGeu21qvb54n+gulLxS9VGntRF+r+FqlT1V8XU3Q
y0RfrfiqmshHzPMS8ijcWBPl1ijMEb1a8c2Kb1G4T/QNNVEX9ZDGu1+JnlYT
ZZeLnl4Tz8vd/nVui/7OcZ/XULfC56IfUVhaE/O2V/3+RN+4R9+6pCbm7xXP
J/TL7tdct0s8z/QbFVHn64q3aRyWi/5a9a2gvwqvKv3i6nh+1W0uc/3Ey39A
L3WeqvoxF/STeJ7px9W/k/VupuJK5e2r9E8rNb+ZVOpc0Z+J3qF3JynPDYqf
UnoPpX+o9O8V9zT9X62b00WvV55vS5HnNtFrXT/tHKa0MQqt9bxazz9R/Jji
75TWXeHvqucJ1d/NdBPFl6RjLzZWfLFCO/aX4rEKbUXXV5/7uZ+HKB7NvlD6
o6r330o7RuP3f6qzP9+r5yrlH2D661K0tU55Gyi+SKGNyv5Wz50UX614nsrO
VzhMY3Ws3l+q0FHvmiser3Ci6N8pX2fF1yo+WmkTFDro+dlMjMlHaitTF+O5
SXlS6sMZTl+oeIFCSyW30Bz30LxeXozn+XyL4mmZyHOQ6Rsz8a5pdZQnb4es
5l303aK/0L5bwR4U/WPV+TPlW6VvXZmO9O1KH6s2+qofB5Qi//61Uf5Y5T9F
+Vcqfbb3C2vyeKX3VPoUlXtC39BF3zdL8WvqyzleM6+I7i16t+h0XaRvVJ7n
lX6m6I+VXk/19XGelqrzdNV5leqsqouydyh/hfKc5fyPeZ3cpHg/pfdS+idK
T9VFnRuUXk/02aJvF/1iJmjy5Oti3jcX/rf/V3mP3+S9f67CBIXxCscpdFP4
mcJk8aspCttE91O41Pn6Ou84hT4Kl7AXFc5xGs8TKKt4iEITtVNPY9tA3zlQ
z5crXKbQ2+XGKvRXmOg23taYvCS+MUlj8o7ol0VfUYxxGqW6DlaeN5X+otIv
hV8Wg+8tUjxK35lljhWPVsiLXqP4QoWc6FWKB7h92uumOs+ribpG6l1GeZYp
Plz9vVDph5C3GHkmKm6q9DE1sReaib5I9I9EHyF6tOhDRX+kvv1V9c1U/sEV
MQ6TFc5zPElhmMI18G+FlpqvKxVfoNDV+QY57wKF+fQhCXqKy5M2z98xFz5q
fs98wvNPVxilMFLhY9U/U+UvT2Ls57nMV1ofsz0OPZ13hMIZChe6fHeF4e7v
+6pnuuoYl8T6GOo+n6UwRmG0wgfKM0PvL1Xo5bm9yN8zyXN/SRLr4jSFU71G
GKczXQdtn+I0xqKH+0U/znZ9Y7xOh7kfH3rMe0vm/kPzt0XzeL3G/wPR20Tf
KLpxbcwTc3RbOp6hG5SC/pHij8VDPlG4RturUW2sA9bA2nQ8Q68W3UB0VvS6
mpB/yBHK7XbZburHT7W2DlSdP3edU5V+WCnqOVTxL5yf9/vrOcN86jsOMC+C
dyHvkeusldVu6zPP9TTP9/Ji7OXPVPaC6pDZyOtjFVfVBs+k3FqXrVNbBym9
pLhFPnjon0vR7oEKO6qCD9KHJSq7NYn8J1dH2gHOgw5VWRs6T0Up9vgxqu+e
YrT1rfqzQOlr+BbFn+j5beX9RHPSLx99PUT86clC6E7PKO6Rj32+Wvn/ovxP
Kf8YZIHqGK86G6v/0/TcSPHRyvOhytyF3qm0FsozTnkOZ42rnjP0fLby3KB3
DZXWXPR1ohuIbir6n6r/PdX/qeo4QumJyr6m9HGi+4u+RHF71XOM+tND9POF
0H17KU9rpTdX+s+U3iET64A1gO6IDnmU3nevjnpeUBubNYbZ2tCFT9G7ror/
qrxNVT6NniP6p0o/Velvim6m9BqlvyF6t/q5S3XsVvtHKb1W6X9Set+8x1Pv
ixrHgRqHbcpTrfeD0Dm1v3epb+8o7BF9XjroWmSG1tx6hb/p+eIk4rGKxyi8
LXp0EvW9JbpG8V8yoUOgM6xVuTUKf9Xzbdlog/qRM+RJK16djTLkT7v88CTa
Jj/t3K/xeEBhEOOr+EGFyfqeI1R2YCbsi6WKl2Vivvsr7kc/KmJ/LxG92Xoc
c8D4j0qiXyMV35mO8uWyAxR2qc6XS6H/bNVYzU2irdlq9/3qyEf9K6qirWGO
+7ssPOZ40UcggzIxPowzY8Qz7fPtqxT+rOc7FP9d8b8qg749G3z0jUzol+hs
i5V2q8IfrCOgK1Qqfi4TNDoAPIDxgg+MT6IO+DDjRzo6f78k6jg3CZ0L3ate
OuQhfaAc8T/cH9bAu6K/qIz4PdPIyQ9FT0xCHr7rNcJcr8vG+mAu+b5hSayH
Nz0OlEEGwP83ZaOeL5W+RfTmbMgi0jdmI9+kJNKQTeT9yPmR25/4fSd9WwvR
nSti7Ft4/O/PxnMT0X+AfzJepdCHc5nQiV8qBf1iKfSumkzoXjtLQT9bCl2r
KhP61tN6TkQ/pXi7npdngp9gF1A/tsFDXqv/qgh9jPzoZOi0lZnQa39fijqf
UPxYKdJ3KF6gPj+TCb3313pOiX6kFPo/NDYA7591Htpf4T7U87teScg09sVW
xb9V+f1E/0bxQ9RF/0phm5COfZKrifT9zde/sHxBF/7Cei/fxLdh27KvFmWC
V2403V70HaIXir49HWGB6HYVsdfoawfRs9hPmZCVa9Lx3BpZabosT8nDe/R4
9PmDU6ELtbI+NNS6ETrGVu/lEyviPelXVQT/a2WauLXLLtI4L1TYmYl25yhu
o/T16bBn2laEPTHNdsTiTPAT5MRmP59QEd99q8dhUzpoxmO96zzUfVvssnwH
dSJz0THmun3GiXFDV6TcXJfd6Hekb0iHnbXefHegefg5SXxHnyS+6znzBOay
kea1QvEt4mXtFf9G8QyFtqJ/jU0meXGZxminZMQ0Pbdm/RbimfQ+orsWQ1d4
QWmvKPxK6T9V2ix4sdJrZXu8qPRf6PkUdOF82N6HSea8lgtcp3sx9Hzyow+g
FzQ1fU423qH/ozuzhtCf+dYNphkb0hkHxpixLo/5RqcfZ13l1GLkvd1ly/PK
nNJmE7fLM3lYn6+Uwu59SP09Us+rlN6sIuxR+AV8GF1+k9tibTAmzOP1GqOW
er6/EHu7iM6fjn1VQOdPx/6vQ/dIBx8piW6YDtsbG3wOdl4xcLCexdAh6QM6
3yOq92vlOboYvGl/xtGyGpmNbD1G5buAd+g76uoifXsh+NEByt80HTL/YNHH
pEO+HST6qHToNOg2j+RiTaEfsK7QOdA9fq30q1TXj/Xu3kLoHOgej+ZCpjNu
yPE/lqLsw7nQP9BDfpMLPnug6Gbp6Bdt0Wd4WR57TfFU1dtC8S8L8Z187+xc
zA3zC2/BfmI9HOq9sN50leKX2Q9J2LXYt/XhB1pXSxReygRNHmzqv2mdrAB3
K4U9jU1OHcuNUYBV3J0O/g5fpV7qGJAEr73L6fQBDPMw6/YfW4ennVfc1nKl
LVN4NRNy/IVM2N2k/zETmEB1OmiwVN6/6DysPXSAJB3fwztk+Inmp/BSylD3
eUlgCWAN1HcBeKfo85Oo+zW3RV3oFrxfqT6syEY+6Desb/B91I9ehAzZZpoY
XgYfw/aFf8Gr4dNrTZf5eBvrYJu9T8m7znnoJ/KS/mCvUxabHaxltdd8e/NZ
eGwrywnqhi/e5nk/KRv5s5YXa1xPWTeCL67KxFxiF2Af3GsaO+BuzyNp9zgd
Hr/F33iCeTfjzVizHjrSl0yUQcdAH0M/gN+yltAhmHfyUSe6CWsSPYA5BUtD
loPdoYOhEyDHwQKRx+CEPdXvx9RGjyQwVfBU7Dz0OPS8fbpcJvRN9M/pCsMV
kvqBFwy13XuxnqsV/mzbEMwUHbhtVWCdf2IcqgNDxe67RGk1CnsqQj8Dozm/
Ing6vP2lXNhqYNbg5AuSkAHdqgI/+0NVzMWAmsBNsGtKev5Gn7lX4a2qmFv4
a17hS6V9lYr3bym8jXxX+oEKB3neiZlTxuPKJMakUBHlvk6FfjlU4Z1U6PQj
FL5NRV+oP6e8xYrISztgfPS1u3jAFPWzP/ZUVazhWdY34O3IfDBDQk+FHgpP
uo/0FfmHHHwVvp1EHnDIpxR2OR/8+BnleVP0IOV5WvE9qdiv1yWxZ+n7Xpdp
K3pLVeBp4Is7/Q3glU+77iFJ5OW5od7vB79irLCxwWVFHy66nugdFYFtg7mD
b4+ujnMScPVFxuDBwL9Q+m6VeU30W6KHiH5cdPckvgm968LqOIt5gHVSHbj9
HyuizK8VHlX4p9I/VPqD7F3F5yPn60e+R5zvdef9jUILhf0VDvC+nmNd6Hin
HWhZv8g6FdgWmA94EHgPuE9P6wnzrBdtqY3xespjdLfHfJvSt9YGXsC4D/K5
FZhRd9eFjrvkB2Wgl6aC7/dXWJYKDIw2T/c+A+cCZxrltDI2Rnym+wtWBY4F
JgUWBkYFzgXWCe4FtnmSwk8qYr086TU2xOVOc96TFbp4b3dzv8G/uroN7D2w
s5+63i5+N9p9oW0wa9bWqfnQFVijXfIhJ1hbz3hfvek+7PVaZs2hgy2wbo9O
NzwVWBZyb0QqZB86aG+FkaKPqYi9yv472nueZ7CDCxXqRB/r9/AJ+HnnbOg9
nbKxd5srHFURNOWRVdcn0d8R3pfsvbP1fBZ2rejRxbBb3ioEdjbV87jTe/Er
f9OTP9iv5fXyfDZwN/Crnt7/7AH4X0u3x74n5vvPSGL/t06FXd0Xnu1ziYNd
Fp7FXjokFXjsAM/n2x7fMv/7xmN/VRLnP3wLZ4JTqgL32FsZuOwm9kdd6GZN
9K0H1YWu1Vz0gXWhmx0pemoSZ0Gs26FVIQ/g7d9UBh68USGVDf0WXeO7TMhl
5HM750d2fFsZmPBmhdsVblGYpbClItLBmrc6BoO+TWGGwkz2SHVgaCu87yl/
R0WcMdygcKPCfzIhN5Gf613u5oo4l5ymcJPL0CZ49DqF6W5jg/PSp7XOyzvO
JTifWGi+s8Ftf5sJWYxMPlXvt1fF+O7WHjgF3CQfNhNyGrupfVXIRcbtYZ8X
cG7wgM8LODeAl59QP/bOz31GwFnBnkzIeur6VybkO3Ie/JvzmitU530+j+Bc
4tokzvHgS99kQq9Av/gqE3oC+gJrn/O0d5R0UxL6Kvsd3J3zR+T1zUmcPSFH
wE05e+YseVoSZ3Y/VvoHmpd/VMe3gf1z/shY3ZjE2R17E3nLOSFr+5okzhJZ
2/+mn6wthRuSOMdD5l6dxNkge/8/lbG+4PMPe00wty3Vj/9Wxhr+kejvKmNd
bayKNfRYRdju8NarvKY4FyifdRBP8bq73O84p2BfsaZ3VwcWih4ED4Cnb08F
fsQZCWPOHrrM5VlPnClxxgE2xp5hHy+xDEAW/MIY/BLzumu89+Fz8Bb4EPYB
84es+H0m9jC8AZmDTILXgMlz7g72/nQmxqvMt0aYjyFn7jG/6uG6aQu+stQ8
FrwbOfZ/ubD7mRv47oDqwDsYN/RGznnA/+83hrrvjMB7jn31gPcY+2alwvXe
k+wfzmU4e/u+Mvb5Du+ti/zuQZdjLw6rjv2Mz8Ajnmf2G2f31I8PwEPOyzrg
jJF+cGb6mcq+XxXtv2n+B3+e4fYvMT8gHue9Tsz5ImOJPB5l3jDBc4mOjL6M
3rzC+a73dyMLx/iZcshqxgWZOtzjMsbfyfiNcBs3OC/lpzrvCPOd8W7750ms
P8aadYkMLp/pEQ92H/j2Ve7DSveRb0Y2IuPgB+O9t280tgDGcJ1tZGzla2yP
Y5df5j3AGkbmls/N4E8TzRfgSRd7/4Oxj/E+P9p50R8uSqIsMhm5i+6ADtG0
InQTdBR095P9jP6GDoIuAvZ2p20ldHh0JHQq9uQ3Pkf8lfbOfdnAaVdnAqfF
PuJsAV7G+cLKTNhN2E9HuV/043jXR3vN3C/6QXnOpzlznm78ChxrtseE9tnv
e02DkfayfE1sJ8O74SffWr5eAK5l3bWRbSVsp01OYy/gH0I6fjvgK0emA2M5
ryrKoJe3UdzauvhgxY1Ng4XgGwEeApaDDwd4Ducgw83fwWbwkzjKtn8/81/w
G3wswHCQRZMsS+7wOMNzbza+B84H5oRfCLgTuBQ+HGBTYASDLW/AovAXAY8C
BxlovQE7+hzzdM4vRpnXd/R4c57PXPbzHDD3nPf39vpAz+nvuWIvDPReZL3D
A/f3GsKn4ADPMc+cHyCr0BOLXo+sa2wzbELsQXgDPAJedaDXHOXRK8mPPllw
Odb4WOeFh5V5ygzv9Wnel6O8J6/zXr/Bz+O9z+E9yCVkCzwWXsM6g/cssI0C
XjXSdZT5BzE8o8y/aHu40+A9F7lf9GOC66O90e4X/Sjbw3znPOvg4JezbDOB
jdA2tgV6PvhJLz+Du283XnSy54G5WezzAXCOfraDOStp6zqwGdo4xp45yfPJ
fLd2GjZPB6+FPu4jaez/E7wW6Af6Z5OqwCOwucEC4Cvo+vAUcAF0f/R+9jdn
dOgi2PR5zyH8YI7tPPqFXQhGxLfiE4RPCGuhu7EH1hfypOi1gG8OviKMJTgB
awT9G6wC/w7WIDo46ZTJuc3mnut+/v6zCqE7LZKuOMnfBW5yhseFvnH2hW4E
PoENn3d95TFt63Fq5TI9vH7LvLOl37HP2G/wOXTRplWBt/fyHDPG8MQWLn+W
62YtoG9jb5dtdGJscXAC0tHN8KO80Hb7r5Kw4cEJGppXgRGhp6EHgDNg04MP
/MVrq537AW6B7oYOd7j5JLYD+AMYAzrgstrQGcE5WplHwlfBIsAk0BEecR/B
K0paC8VsnJef43XW0eusjMmxjn/idc38dPY6Bcdb7PUxzuuz7JdEDL+6xHXx
bqzXKet1oueZurtW/M8GneBytHOx81L+Io8F5eF1zVzmFJc72n1kvbPWwQ9X
W85xRolcRBYie+FXx7qdTv4e5OtxnuPennO+H2xzpfc2uPRyy+BT3SZ1gd8u
9T4/2e3TP2Qt8h5bAJnc1OOGryu+rPi7fqRxn1MVZ9/YgontIM408FPkXAPe
hC6DHoOe+L31eXB9fA3B9tED0fXQe9AH0TvRCdED73P527xGWAOD1F4D2wbo
mA+6zMyasCfRF3+ZhO6I7tna63OH1zT2BTgY9lxX20KXus79jJGxB8iLvNxr
e6Sd5T7fOcJ7DRpbhr10h/PzDD3bZ2qcrU3g3N99ftR5qH+T+0M53n/r8Xnd
fWD9r/N3853YqJRnv673fmBcsI92eIxX20+HOlq6zd/6O2gHPWc/9etM22/f
lPtbEToLGDDtrqoJLA/sD1sX3Lml3j+QBCYINgyuDMb8RUX4UuPHDUbY1rwc
/WeidRuev/VYokfNc3/53jJGwPMMzzff/Wkm7FXs9Q3+7kc8ZuX5ucXjwvuZ
HhfKT/N6Yl3N8vyQb7rrZu3c7HKUuclplAEboD/YlC28H8Hz8SnYnYnzJzD+
Nd6npPFun/2fhH7C3sEfAb8EdO2OmfAzwd8E+Yyc5mzoXx5L5ozxXOkxhY+u
MC/FbwJ9nnpXOA/p85Kw30+rH1g7NGeX4P/kwxcFn3FwIs7lF+TClsenGD8O
/DmwJ/DdwE9jn/9iNnRVcAv8dNAly7L2RuNy+ANwfsx6wFcFPRR5VmfegLyD
h9xkvHGYsQBwAGQieTgj4HypmXEL+kc/wbL+XQpM5D+KvykFVrK3FHLhUu9T
xhE9m3No6qQ+1htrjTWHbGprmrU32VgOa3VrVcgkcGzGbJbHsInrop5uTkee
zkmCz00xD5juvc99Ae4KwAcftO/DZH/fJMt9cJYtxi+wETZb/p1vGrlIvMn0
RtM7nH/jD2QnNHsEnyN8j971Gc9kf9dpSeBW9PW7UmBD3yuen8Q7+jnc/Wf9
7PuuJO4UEM8xnsiaxb8G+/AK7z/wn88ysSdJw07AXkD/x4YkL/gS8aWmwWIm
GFchgLGQxrkrNs21zkce8OyrXS91sjbxU8LWXeCy9AFMhHwjjSeDb4A7dbc8
4ewMbAWMZR9Gmo108KrxWvcnKh5XCJzqgHRgVWA6YDtgofhSYQ/xPD8b/aG9
xjWB/bHu8Q3BHrrGmA7fca+xXNoBE8MHA78mbKMzbFft81c3f+GbuqTjPXYT
5/X4tmF/g0fN9Pfi94S9NtPzAD9kTW3NhnzhGb85fOSwEU+2rYidiI8emAD7
sGs66sau/0k67Fts27med9YAMhvZjf3LecF0zw/zOcPzCJ/D5wrbEl5yhfu5
1d9F3y71XYUlubA/JyX/m//LnX+SadLx52pt7BMfNzCNfW0nwRveSUUf53pt
c0YDf3omFePN/CLLKuoCG91P8fhinDVOUPz3XPhnXCv63VycT18t+r1c+A1c
I7qyLvDf+oqr6wJ3TupCzo/w/prnPQReih472Hrw+7nwTZlaDP5DOvptTV3g
5rWKt1UF3xliDOA886jhrr+sVwx3W+hUQ827vsrFHZgtxcCkuzkP/Io86F0r
LS/gBz3sCznM/OoC73fi802vdFvQDbJRlr5tcx54zvkuC79CP0GPQX7vycXd
hnXFuGeFnXBHMewq7CVspRVJnCVh33DeeqrpPxbirhZ3tq4sht3F3YiLCyE/
LimErUY6thjnMvi7gv/h20o9p8m2mlwMu447Hw1rw1e2u2010rH1snVxhpGr
C59rznY5g8avGv/qn+XDfhlkPampxxaev7IYOuWqYuiG5MHGaei5QwahF6yx
bvBBLnwIZhTD1xkMdt9ZXVW0hQ17cj7S8U2eXYwz5jmKP83Ffaqlov+aC18H
7pewthp7nUz3XDJf+BRzzgT2i08w523gzkO8xpBrm3LBs05UPR2L4dvUqRg6
4QR/L/W3tqxBR27tb1yYxPk9aw2dsK1lIu/b/GAc2nj9o6sim9/wmtnmtYSP
M2djYNVbnf5YWR6aZmyR6eio+AxxPsU5FX5FnGFxloWfEGdYnGXhh4SP0P51
4Y+Ff1GhLuTWdu8LfIzwNSrVhe80Y8SZ3S+z4b+4w/uqib+L9lu5D4xNS69z
5vxH/l7Gq4HzMPcNnM64kQc9drD5AnufPXO4x7ba81hOP8I066ih57fG/dlj
3aOpvwW+0NTp6L0t3Ycq44+UbeN6fme+0c78hHbauS30oLbOj58dug26Yv9C
6DDcg7yrGHr/9mK02d7t/jsXPur3FuPbG3mu0eeP91hhi7f33vnO6YwJcvhQ
y5S52aBJ62kbEZ+WUdYv0Q/7GivF/weZBlYy3NjiKOcBgxlhXXSEy0Lj38rZ
CRgu995OSgeGybsLjelwB65zOjBM9APOVzhboczZ1hnGpUNGIh+R4eBN5bZp
D1wI+dPUeYiPNI3PxjDnHW76HZ/lDnU6vlSv28/qHadzzozMHu60SYXAftfk
ou+jbVNcYLmI7BvpcybOgY71N5IHuxf7F7u7TS58guqrvvdsn8EfGqHDZMNm
61kbMgOfobutV6IPdM6Fn/J3+ciLnKA8OtN7rqdXbejB4AH4yOPrji88+MwH
PkPkvm0rl0H/4j22yWCVPa82cCX89mcYVzhXaX1r47yEe4qd0oFvgz2RF1u4
v973q43v5M7iidYB0IfQi7DrOWuhDjBZbCzsVnAudCl0KvSX8daZGHvuL3a0
/sk9yw5et8PUztDaKI/uTR/RQ8Z4XlhflxUCJ1+RCzvpGOtaYOR9rK+28fNI
n+H1tc451fN4reM+pvtaNyUP9tNR1hXxX9tpHzb89/AZAq/v5/yUZbz6me5v
PRUdtVzvVJ9h9nc6Pi/neV1NLsR6XpcLv4dBTsdXE3sNP8DBzk/Zcnnqw3eU
fuLzia8jZ5+cGQx0H/gWdLpmHnPi5qanFIJen4v9MMR7gb060GWp+2iPAzr6
4d7LlxfiLGNVLsZ9jOdlou+mLsuFjVu+s4Jdij8MuBp1NHY9+OLyjD8eewkc
jL2Frt/Q6xAfXWj8+ogbOX2Zx5O5RZfnrGKM27jIbV7hO66358LnlnWCPy3+
m5wx9/NY8+2MPTzlgh+kne8x4azuYu934rHJ//o71m3hD4ydhc8hcRPzQ+yV
I0x/ko99eqviPtxB1jo/qxT7FhwbucTe2s/7C1sSPRh7GR9ZfGXnlwK3vysJ
feegUtD/zYfOdWcSOmCrXJwl3Cw5ki0E5tEpF/u7vscQnXFbEnof2Ah4E3sX
HgQv6l2KfwnAp/bxqHScSzF3a/NR5oJS2MELrcMQL3Kf8b1lXVJmgfOQTj6e
y3b/Aqef5rLUhzyp9rjhM8ve4xk/XHg6NhX557vsPNPYDPjtMsd85x8K0f+j
1d/PqwOvHGa++qX5JL71YBsLS5G21+kra8N2BSsf4LOGj/PhmwKm+c982Mzj
vAYmFAJrvVXjfE4heO/CfNhMh3hOwUDoK3YNvH+ux7amENh7B/uPc5cPH7T+
/g/DBu6o5gP3GKJ4T3WcE8CnqwuB356QC9mDDGorulchvufsQpyR0H++g7uD
6GroZtyRfzITa+5c3/VbobYG+e7AncW45/54JrBJbPIK41F7lCfF2lRbn+dD
DnDfmn8l8H39ClE3fhhgoPhd4X91sHWBs82fGRfeY8uzR481P7+yEPTGXLw/
w3naek6QiSNcF/UgJ1g76KfYt9i52MT71qPXCTg05bGdh5gvYXejl+A/hk6C
HOplmvvxXcq4QT7m9LN8/NMC2wpZy9jgFwtuuw+PTAfPYIx6/uC7e7j/p/tb
TrdfWnen93Qe8pfz8R77HDsd7Ad9vq2/nTFob3ql1/fAUtxFQ25VWq7Ws2zF
tluehH03MRf3ipoqXu31NLgUa3+N1z+yd733FLYgdiZ2JXK70rL7M48J6527
UOiFtIfPxPjyvkgC17jC4z3OY97bGBFYEfPCnmI9oS+Rjt5CPxhjdCEwpC/9
zdzJ5Hu65mN+F5pvcLbV1fWAxbRwX/gG1gBrBLqz9+Ai33vl/msXrw/WBuPU
xbbwP3Lhpz69GHoe5x6cnaOrgtuig4Czcbdht+9y3ub7d7QPNsR9PeQhNP0C
ZybPHuveq30PEUyYOwno5Oit4LbIcGQx+O+++x2ZyIMugj68zPlfdfnrvAbX
uX76Ac3aZH/RZ+QgNsK8bNgFYGZgcOBm2ApznQ7vAtcD62Mfk45Nge5PfvA6
9jj1/N7zz925pz02a90Wuv1a30VFJiz1fRBk4xKPG3uItsCZ0FX4dvQf0ua4
D4wR44COxvuVzsP9g5Pss8r5NTT4A1gLujRrqU827jhxv4n7iAdm45z9K839
5+gPrGH7vmadv3c27Kxyvc1sf/X2eSh+Zfg0b0+FrdfH+Ttm4x3pYLnUz/0i
MDxw3X3/a8jGO9Kfy0ZZ+nZ3Ie7ncH+IO1L0mbr57tVeA6yjDV5XdxbivhB3
i7cU4i4Q/5Po7XNb+oMuwPdyL7YuGzbDobYd6mw/FJ2OPoJ9WTSNvGWcX7cc
YC4e8/wv8JpBRwarRXdbmQvd7kmN62nFwCa4h32b7yC9oPS1ubA/nysFvkIe
sItuxcBcuM+NDzB4AnjLvbnAVZcU4n4297N4tygXePTDqmdpLvDf34lenAu7
91HRy3OhRz4uenUudLVnSoHl0BbYzgL/m4J/VDyTDR0KPwH+Z4Gvwq5c3Fnk
7iK+fchnsKfyvQJifIfB0ciPbwy4GPgaafwjA/qtXNhI+Ebiu8Ide+prWQrd
DT5L2/hMgPGB7xHA2qgPfQu9a10+/sfEXYD2pbDT8B3gfHZzMf7bs7EYcoC7
iOX5gUaXRv8Ff0evx/4YZ5t6ZSHkDP/RAT/bap9JAv6TT6VibfMPF57Zw+xf
9Fz084WuH72e+tHtiRebRi+Dpv2l/ncN/7CBv7NPwbKwGzkLxf/gHO8L1v+S
YvzX6NZi8F/8mfFfOikfsgyZxvczJpxrry3GP2FWF+PfAeRvXYp6uTeBb8OG
XNhR3DW/w3bCq6XA0rjDiK85/1yA5l4j+3Sn9z//S6KeDnr/bCH27k7msxD/
r9lVCH6BLw1+CNj1jcyL4D/4HHDmyfc95zp3ZcMPAb4En+DsATsbexi7mHHh
TICzCmzrnS5L28i+5fbtIOYZObjC6dDrrLfnLHPJgz6B7j/Mdjf2OvVz9kq8
xTRnVdwJ57wKbA+Mb99/J7LBy+Bj9P/tbPgy4K9LHvRM/CdIw7eBb+YbSQM/
2OqynHfQFt/HOQVtccccPW6jac4suJ/PvXjOraDf9xkaedD7enuO4G+73Q94
CG3e77FlTtjn7PFelmfoo+i2j1uXg89B/933wp6ynoy8g0Y+wv/mW96Rf7Z5
I74g+ISU75+BX3cyTTp33Lj3tsp5ueuH78idfr/KeZCrT7qtctvowgTkLXok
57HcBQNfnVeKeUY358yW9Mv8fo3pW0tR5rlc8JpnLO9YIyu9fkh71umMwRMe
B3zon7AtQN/mWu4zb8wf64S7mE19H7Oz6+nktfALrxnkHmuGNc4ccW8T3250
6u61gZWBUYF5fWSbGRn1QiGwMzA0zlweNJ6GvXpGKcqOLUQ7z3vewbHAvuCP
YFhgWehwq6wzJ8jMUqRPgQeUIv8VubAX+xv7op2e5bZM7zKmd7rT6TP42rvG
r6A/MhbH3ue7CPCCMs9raJ4AT4W3bjev5fnuVPjOd3D6WcYN5ubDJrjdewG8
BX3gbx7XrR7bZ73OGX/wObA+ZM+5paAn58Jf+lxjgMjU571nj6+N/7mU1+rx
po/HP0B0C8V98uHvPlc8tp2e28FPSrGej6uNe53ELcp0Ker5cSnWAXMOhjOk
FPztSu422h6pLcTe5huxgfiPDPdfJ+XCJ4Q+cB6EjOpoeXRsKdo7RnFnhQ6i
O5Xivnjz2rgD+7b5LHyAcyf6PNT29GBjpGDzlMUv5z7zNHyzmpSiniNKwU92
mdfhs/m26+TO+5G1cT+9cSnow0thq3JvAX2DtGbOw/9uuOd6eS7wGOwaMBnk
EPLoLu6P+xz9XP4tU4o7wPwzCZ0O3W6fHpsPu/7rfNhyjCFjCaYAtrBJc9Ss
FPdq+ffSnbnAdBZYjmHvIxP5HxZ6Iv9qQt4wBshM/iNAHrCB143zIqvRfdCF
0BHAWcBbvs9H35Bz1MV/gvhfEP9Ra1WKNcPaYS1CowuBY3F+t88n1fbphcUY
d9KOtG5FPehX24xnzS/E3sZ/EvnPd4OL8M23FGNuPlbeeoVY65WF8PMabXx7
lXF8bLtZxRhP8DPKgbXR/uZcYHNzCvEvJHAS8JJ5ubCXP82HfkE6OslducCw
FhZiXVAX9WA/M7fcMwCvAbdZUww+RB/us33JekTHwZ7nHbxqSy7s+bmq8yP/
t4r/V71SCL7zaiH++dfV+MnWXNjq88CE/E/Ml0XfkwtMY3Eh/u8JvgTOhN4E
je50QinGcyBzVAqfqndK8Y9L7nMsVp/vzgWef2sh/KcHGf8/0nuEvdLWZyLz
OU/PxVnPIuX/f+/wqbY=
          "]], PolygonBox[CompressedData["
1:eJwtmHm8TuUWx7fhnPe85xz73Xu/SsOlzDIllYxJypgIIRrUvRUhoVDd3IrM
U4bMUzJPkWi6zWlGqjtWqGQomckQ9/u7v/5Yn71+z1rPeob9PGt4yt7Tt/2D
RYMg6F4kCIrzPZQEwY+FQVCYDoIXoyA4EAbB0PwgeBp6Lg6C12m7CtkJlF+D
vwfKB18HrUb3z+AC+CbQGvBBaBh970oFQadMEMwFV0R2Hm21sXcp41UsCIKF
tO2SbfDV4OHIZyB/DRwwn7OaD33rg3tjqx46DeG70acYsnrQEuTz6DOWvuOh
o+DnocuQlQJfhewFcDXwBeCrwe9hIxf7RcAvITsM3g0ugc5L2J6EzhBkT0K/
ht4D7YXWpLU9hk6DnCCojv7j8Efov4/+IXgDeCh0LfLa4GHwbyBvBV8UnTfh
u0CdWcu6POaB/F3wzWnP6f3Ea9Ba7mXNXdi/VyLbOsb+b4SP0TmP/pPZpkbI
24JvAu9Afwy4HbgN+AfwBPAj2OsIvhXqhOxlbNTC3lHsrYdfxPq+4CxMYszF
8N1py0N+LbSSvnWh9cjHIZ+P/BA2r2fu17HGg/CP0taasb7IDYKd6A4EtwJv
BW8HHwndV/9I/2oA1BL5FuTfItvOnOqx9vrQDvgOUDvm+gzjb4s8Z839RcYs
Bp5N/5eYz0jszYH/e+K9PYf+WuztR2dH7h9rRnY3OI2sMbQK+VZoLfLKzOEG
+t+JPBdZQ2g5stn02UDfKYxxJfhJ5I1yvGdPwb+l/YYvzpjvwK+JfBYOs5+r
4ddBNcFHwGvh306sGzDfddofqFOBz4DOwiF09jKfbuCu4MnMaWoRn8Ep8AeQ
78r9ow/yJ8ANczzGEPi7oBR8I2gFtjeD97C2bAnOfJZ5gPfTvzv976D/oNBj
3Q51S0zi17O/aXQHh9a9G7oTWVfaimK7LrQY2XBw4xz7hBHwt0Kn6TtDZ47z
8Cf6lIWfh/wHZBFzyGUtnXVfwR/o/8LnsScfwq9ijbORz4VOY38p+Dn46dBv
4MnozMbeANYwCX5T4r5Fka9HPiWy73kI+jC0T5Fv6YF8F3gic9rFftRljrcg
Wwp1SXtO27CVML8U/G36/8heiH0XpkDHZR+6GFkEroHsSvp0T9lnXQ1fmf6f
sNelafuY/iugrmnb/Ep3FeoIX8g/LQlfEv08cDedR/kb7F8In6GtOvarMN+L
UrYp2xORn5f2HndE/9nId7MP9D6ySZHP9oPQB/IdjDGduQX8o3Hw/6VtE3vX
GJs9sT+HtleQH2U+DZHtpP+stOf4DfhTzRdcyB5/Dv8R1B6cD/4E/uPEfDH0
X0b/S/kH7FfFfnP9S3B59EsivwL8k3wMuCf4J2Tfg+eA7wV/D/4utK+QT3gE
/TrY3wO+D3wNfJ/I/247eDR7MyHyXe0Fvav/G/ns94be03mJHJv6QpvAR7Gx
n/lmwK8iGy//Df8A9A7yMZHP9v3Qm8LMYSBz+5Y5jIQfh7y+5g+9jXxs5NjT
A3oL/CN4gfrT50dwC+bYjLmWZo8vYOwtUMj4Ocg3It8R2lfKRw7GfoPEsW0m
8hXgPOwdTNnHpeBHRfa1dRhjNPyr6LdIO0a+Dn8H4/VL+Z/q316DjZLIz4Jf
AY9F3hq+FdRG+tjISXsPljGXjYl1Q8avRt8HkLcAj0D+FfzOxL55nHwM8ttp
K572nixVfIRKw8f0r6n/p7YiziGmgfehv0rnFbwb2c/gNTqv4D3gEHyU+R+g
Twn4+bRVRn4+8ivl3yOv/TT+9A3lGtDhlGNWPvwtic+y1tge/mH6XwJeRp8q
ugusv2vKPl2+fXxs3/4Y9ifEPlM6W1rzTchnxY4to6HDoWOqYmsX9mAv8qaK
f+DpnMm98NeJwNPAe+A3o9Mp7X++Fb4WtJ3/3QWdK+BHhI4NyrmUe80El0U/
y3i1GPvn0GevE/qjwLWVn+Xa58j3tGOMcsz/CuZ7udan9dI/of/l6NdMLNMe
a6/bol9LulANZJ8lvtvF0d8Qek1am3zkTnT7YqMLss2M2Qu+KvIa9F2Bvb3Y
O4HOYtZ6Pm3Xwn9H23RkM6Dt8N+hX7vQa+6IvHrisXUGdBZupq1mgW1WQ/Zv
2iYgmwj9B74Z8huZywrGKJU4pii2TIPGaP9i78032N/H/EeGzmWUwymX0x3T
XQvwnyWyPpM6m4rZU0PvkfZKOde00HuuvVdMmgFeHDlWKWdQ7tAUeYWUc4Yt
oX2afJt84izwR4qZ8H9B/mHkPdXenmU++Yzfm7as/Cd3uA38XKg5+BJ06sTO
CZQbHFfOy/znIW+ZdsxV7FVOo9zmKPLTyOfT1jrtHFi5sHywfPEZ5CnGW0Bb
m7TvqO6qYqRi5Sn986x9knyTfL58/2blx/n+B/oXLZjTRtZyDW2t4c8gfzTt
NX6g+5bx3usM6izqjuqu6szPC53jK9dXDJkDbhk7Nsjm1+BmsXMvxYxt4AWx
c135/GOhc3bl7orRC0L7ZPlmxci+jN+KMS9l/pdAFyeOgYqFqjEeiRwDFAsU
gx6Wfuy1lEA/L3HMUOzQnRsQuQZQLfCbagL2Zzn6vZjPL8znJLKLEo+lmKXY
tSxyrqAaSLXQqNC5uWoA1QIrI8d21USqjabHroV0hw8pv4wci1QjzIJ/Xnc0
bZ8s39w/dK6gO7CPtfZQPMD2AegY9seE9oVqO67aCPudmX8Z5nih/Fto3z0S
+lq5cOS7uZJjdhmyfuh3Q7859muEvuO667LRB/6f6I9Gfz737yPVO7Tdl+89
1943EdF3GfLT8PfFrkXkA+6PHSMUK/pjs2HsMTSWfMqD4H8ofud5jH9prNC1
pWK0YvXjsWNpOcZrjf0ByMuwH0vQr5TYR8hX6E7WRD4VGg4eCm2NXOOp1lMO
tpC+NyBviu5yxjyTcQ6kXKgU9rOJcwDlAvKh/SPneMr1VLNNDp2TKTdTzH0W
vEg5b9o1kmqlmZFrP9UIM5Q/Qh3SzsmVm0+PXFsqZ58G/1zkWls15NTINZ3O
TwFjVGGshbpjadckqk1Uo8m/5SOvFDvnUO6hnPQhZJMzXvvT0JbI/1z/fjbr
HYduknitS8GnMq5JFH/S2KsQ24fLl6umVG2pHEe5jmJ6P3R7QoPynPNPCF3j
qNZRDluO/m01/zznqMpVPwUPSdvn9VK+hf1BabdJVpC1b9QepeFzsvZNugPF
4KfGrr2VQyiXUM6i3EU17riM74DuguakuYVZ+3r9k0L4CvJv9K2MfkXlP6Fz
YdWs++nfKbKv1hnsHLlGUq2knLtyxjFcsVxn/Hr4J2LnrpWUP4HHxo7lqjH3
y3fSVrzAPnIT9j6JXAsUo60I4/+ecSzrTFtt9OfGzi1UU6u2XhK71tgGrg/+
W+yzrjUMiR3zFPuU03+Pradi5za6E0/Cn0R+uNAx5QT8rxn/+5PQDvifod0p
14S/aG3oLCv4oyYAn4NW5fkO6S7NjP0Wo5pTtadilmKXbNwc2YfIl8iGbJVL
vNfK8ZXrq2ZU7bgBm4W6q4l9gWq4Z+Efil37ywf1hz+XOPYppv2uWj5rX6wY
FmS959p7vRmVVS0d+S1AOZ1yuzOJY6Ni5in4obFzFeWATyufzjo2/v9OwX8Z
+W1BbySfqZ6KnQuq5p4I/0zs3FQ5k3KnYbFzV+Usyl10x3TXhkFTwF9E5pWD
3w6ulzh26M1Kb1c30VaBvuUVs8ALsTcx3zW/av+64LL5ztmVu6tmUe2iN6xB
yMsk7qsaQ7WGzojOyjT6LIv9xqO3Hv3Dz1Wb0FZedxuqr/oiNq8zqrNaMbYv
kU9R7qQcRLmI5rBIuXdsXySfpNimGKBYoDcZvc18GroW151+P3LNrdpbb2yD
I7/Z6e1OZ/K3xDWpalPl9AMj13yq/fRm1JL5lI/ti+STlBur5lftrxjcLeMc
W7m2fPiN8B2gwUWcYyrXvC3jWlF7WjfxmdPZU00xB9mJ0HulNwW9LSimKLbo
jaK03m9ivz3oDUpvUdWR5xY4J2oSO2Yodqimqx46h1AuoRz4OLKVsWs3vbHo
rUVvKHpLUY0yK+M7r7uvmnI0un+N/TahM6Gz0SB07TOHttXIToXm9Sait5Gq
GfsS/VP9W91p3W353HaRfbp8u2qQqqHfFPW2qBpyRsYxWrFaNUu10G8yeptR
TP8B/D8QVeBK
          "]]}]}, 
      {RGBColor[0.9140044391032581, 0.6550110977581454, 0.3334137612201002], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHe4VNXVxm87c8u0M3NVlCYktsQWRQRExRJ7ASxYsQAi2I2JImhQsRfs
IiBVLCCKIFWK2LEBdpMvKoqxETUWmoB874/13of8sZ+zZp99dt+rvGvtadvr
4uMuqqqoqOhbW1FRrWefpKLiaaVdlXoVKyquUv6zpYqKs0QPED1L9DjRa0Sf
U1ZZ0TV1FRVtGysq9i1UVPxF+aOUf40q7at0rtK1fvZTOk+pm1J3pYf17a8q
30/lZ4quUz2/Uz37qJ7zlP+Y2rrO3/VXekxlNii/RarfSml9RcVKfXtXpqLi
TqWTVWaqyiSq51vlPym6SvRFomeJrhe9QvQX+YqK5UoL89GXvZU6KF2qMuNV
/3KVuU10O5XvKvoCvTtO6XilS5R6KJ2kdKHzTlC6WOlEvzvf4+Obi/yed9ep
zudU/1eqs53G+L3oh0Sv03OV+t9bZeZmKyqOrAqacR+r1NXzd4x/M69H+/d/
Vedo9fNHPftUxbdHKV2tOo/Qs5dSg+Zqhspk9bxZ7WzQ2q5Pol/7KHV2/3ju
6zF18rtaffOMvq3Ts5V+VyvVKJ3jdujH6Wp7tsq8rTKXi56str/QuC7R8y3N
8fdqc0pDfPN3pQUa4zW10d/Brosx5fX9LNVTSGO9u3qvbK3fzyl/Gz2LSnNE
p/RH6UXRrfU8RukX0RekMfesZ0evQUePp7X7niht62dGqaVSlcd2uNJuSrtX
xfzx/JPSavX3Z41jF9ETG6LMYUpXKn9XPQ/1XOyp1M7rwHd7eJ728Du+20Jp
S6VbNVdbaQ9fmEY75G3Ft2rncK1PKYk6yGumNE/l+qr8fD076Gy0UT86lmKe
2nsf76XUXKmF+7GNf7d3Xkv3hfq2dp+2drlj/A113KQ+DFTqy9kqxFnjzD2j
dKbon7S+c0T3Fv0LfEB0T9E/lmOP7uU2Zyr/bOX/XI4zs5/S/u5ThVKl0rMq
00dl5qYxv2WlRqUJDUHvXBVz3Oi5m6P9c5nmPRU9VmVKev5RaaXy/qv+FlkP
7YVDlHZTauN1rvUcVHq9P9fe/ExpptJTavt09WGKnjcVYiy/19xO1e8zRE9L
Y442Vka/D1C9A9TWFUq3s15KhyaxVutVZkNl9Gu1nmsqY77J+01plurqpTpn
pzH35FHvR+rHDarnwiTGzXdrK2PMv+q5TunmQsz/9qXYL+TR3nTVdZbyZ6Qx
T3zHN7cUYv53VPn79e4g0Q+kwaf29Xp0Mk9oVDpQfRgpQXCd0iR9/7TKP6Hn
1Pqg7xb9pOq8SWXPVj2v1AWPXVwVMgBZMEX7emht0OTfIrpS9PSq4HlTRZ+m
523aEx1EL1f5J1TnDarzTNU5WfSNos8SvUTffKP0tdJrdVEndcM3htQGP9lP
ebsr1Ys+SN9ezf5KQ7bAB+GBv6uKvfD7qpA3vJugdndUO0fXaN/XBE+CF8N7
36OvSt8pLVX61v24W/VfpG920Xy+rd8r/O5dl/2P0jt+8i6jfkzTnJ2sNk/N
Bi/tpTbqlb9U+acpf6nmvL/yvq0M+jmlfvzOhBxcofw+2eCNF+n3xFLkIye/
1rtntS7f6JlTnd/reYbqHKsyfVSmo8q8rryZKvOGnl9mIv8t0T9oHLsr/0o9
P9NzmdJRmoe31f7z+Whrd58h5naJ8nor7019+7nqOUP0FNF/5TxmY433Vdsd
Re+j50PaQzOVZii1TYIepbQzOobaGabUqxz8HL5+qPr6DLxZ9Dvqy9tK01V+
WCna2pu9nw1ZxvzQn/n5mM9vakMG7aB+tRD9pdLBSfCtQ5WGJiFvrvH6bpPE
+r5vXsE4G0TvkMReaK40x+vKelarT/dqrD3U39nOY/2f9V6h3CilWfA8pdFV
UY7fL6rPL2RjbA/5/Qz2ktraU+0epOdI53FGkGkb1c8blcZURT+oa677S3uf
aEwfK+1ZE3oY+th47eeX62IdOHN99Xut5qNezyfVxqdKf1T6phy6DTrO1knU
Oa8q6kCeIctaNoa+h943y2PlHCADyd/Z4yBvifkz3+7icZDH2V+rvJWZkKtj
PV+M5y5km/pwoJ6vaH03qExebd2vtELfbNTzFsahMe6vd/dr7S9R2d1U9h3N
5dtK7bU3tlXqpNSxOvgQ46bd97VeicoPRZe0jvVIMfpGGeaZfqHfIsdvq4+2
OteFDju5LvbROM87/W6ZRFttlC7Mx/oMZ782hl6Kfjrec8k3o+pifev13d/T
OGtX67m/+vQHvZ+qsdwr+mL0bdHNkvj2YaVWjdE3dPD1ddE/+vZZbawddbb2
uDtUh64Cr2OeWzlvb6VZ9XH2p2rvjlTbh4h+SM9hSgeLfhC5pj5sqbnopTq3
Fr2F6LNFNxPdKPos0eOU3qVNpfFK7yltq/Qw+0epjdJYpXeUWilNUPogiXM/
AHtA63WlnvsrdRbdRc8xevd2EvM6WmmpUgulLdVuCf4iegt0D9E9kU+ii6JP
Fz1GczBS6QXOuNYij35ZH/vqxSTW/h6ll5XySveyzyhLvtoerT7cq2dv/Z4C
P1cqqJ5cQ+g0d+jdCJUZqufjavc6vT9dc7WV6LL6cKb1sz9kQp8ZJXqJUnPG
oDLNMmFLNRe9VSbaaSl6G9HnontrXU/Ren1Sjr3CPhvvfTbWvzknY/x7tnnK
GJ+tGT5/7OUZPmvzXAf7Z7Xq/TGn81cOfgAfmG4Z9a55yLc+v01y7G3zNfjS
S0nssaVuBx6A3KVtZPGjeveR0u+VHlP6h9J2So8ofaj0O6WJSv+XBE99XOmf
Stsn0c4sjwkdblVl6EnvefxzLWuXuH/vO4/x7adzsr3W6LNyjGOOv3nH9fGb
ffxUEnJmH429g8aeqwq9Crqo50at9aokZMRf6uNsIg9/U/7KJHjy5crrgO4q
eoPyf0mCX12mvD2U/sse0JrmVeep1KP98ZWezyvvCtH/Yc+JHiD6O9Gviv6r
6G/Yo6IvFf2l6IWiLxP9tegXRF8uegV7l/Jqpx16tX5fovx/6/lcIWz0z5Ow
09m/n3kPJ3pXqf4cK7pOdI3o7qJrRVeL7ib6b6qvPTq86CeUPlbaiXVU/VUa
Zyrec7HoL5S3QN9N0vNfSehKTyo/ozJbqMwk0TWiy40x38s8579qbX7W3luv
599U5lv2k+ppo/3zg/owQunPmdA70TnRPTvZfh+ZCRv1D16nnfTcXvn9M2EX
8XuE8t9Mgl/ybUfXA89CziHj4B2T3OcjXKZLVfCRid6TZ3r8jB0eN5nzrHSp
5mZXpe9Fj1R6Kwk5OVzpDaWtlKo0nkV6lpXuT4KmnftYZ+eXVaagdk+jvHjJ
VapzEPxXvxcnoYN8qPk7Nh9zck4m9Je8+jlM715X2iIJeYQs4t0D+v1aEuPF
5tjR5ZGVN9fFfh+uOf+z2hmh5watwUqtxUY9c1qnjaILjWFr/MP2xjGmC0nY
QthE6Ms3ZqIc54Y+fujyH5imz3z3kb9FX12XDz2W8v/MR90/Kf2q9KPrxu5C
n1zrfPTJf7g89VP3B6bfN835vbg2dFP0UvRT6Lqq0JeXut1Zrp9xoLd+5rae
BrcS35heCuwDWxS+3dt6JDpkB7dHW+jjS62Hj6sNWdq1OvTNJe7z/vmQs92U
7qsNnlUluqY6eCs8tbo68vk9pCpwDTAwsJa2VTHP1zsP3OhHrdlcrd3D6ueD
xbCXapT3QxqyfEQpcJk2/n5f14Fdg/2PfQ9OA96xrct1cB74x34uu11V4CKt
XY61YT2wC34Gb1Fbk9XWSuWth/cp1VaH/EBvHpCPcaJrZKrD3uHdZ8bN0DGT
6pgD3r2Wxv7fUXvvwdqYl5bVocNQD2XXuS3WEX1hserJ1UXbvMMO2tZlM9bD
eNKvhcb0mBNwHL4B61nvb/mN/YAdcb/GdYPnG2zvlqrA78D2HtTeOFppS6Vb
nXep5S7f3Kh0c1Xgehf7N3WABV6UD10fvfCmpjzLY9qgPuT6Ta5jvJ+8e9zY
JrrkWNdLudHeH7Sd0bt1Or91jZvtTGRgtX6vVX6iZz26qOisnhVKq0VXNYZt
MsR1IXtHue6L84GxYn9gm1zncjP9m3ILs2FrY3NfkA88d4TSMw2B8w73nnjP
svqJYtgvbdTu2caNsSd+NS/g7PD82fQ85/+7Ms7tcp9rnl+Y7mRdnzXnvK9S
WpAPe3at65nvOqlvUC7sBOwKyrGP2Rcr/S17bL3zoXsb60bvft7tLnSfOBtf
6tla+2at9vC2erZUWiW6VSlsO+YP/WrG/8xlG3iNyrQthZ7e2mNort8/K7+F
ntVKH4muKcX8rDWf3Eq/v1N+s1LYOq2sz2PPY7+PLgXvaeV6f8kGfwBr+Epp
dn1gA3dqjeaIXlwZ+/RG76ULvb/4/YjqHKz9vncpzsQN3if76Pe2aqtTKfjT
9d4b7AfW/sGq0E1aih6UxF6/2fWiH7VQ/sAkzsktfneJzwG/wcIzStvUhP7V
vCGwCPBx3g3hTKit9UoldC714zK9f0j93VP0X0WPLoS9cZztwOvT6NMQPV9T
mQrVUyqG3Yj9+IDK7y76UtEPiv6T6L+IHiF6lzRsym6FwGVpEz3wCz2XK/Wp
Cb1gG/VzQBI6VCvRV3numMPRaeiMrZV/dRLryR6Fr/5dv48xbwH36lQXeuUx
1imYl5PKsY7we3S5Y/2umcrtpT29XHU9rrZW6Lla73dQO2vqAgPrbPmP/Hqy
FLj7r4XA4GcZh/93fYyHsbRXmStU9wS3gz4Frxqj/K9U9mflz8jF2M9R+aPc
d/hhF+tixf/hleRPy0X94EhgrgvqA3etKcT36DMttSZ3o8+hV8GXc9HeqmzI
HTCsU8shB5GH6IrVhSi/Sb/IhCzYS/28XHnjC6HD0UewPHxC4D790rCrsa/v
K4RPAt/EFcXA78Dx7lH+XLX/U33gUeg852ZCn7kpjTW+MY3v2Etgo/iH8BP9
pRgyCr8Sch+5ljONLoZOBnaxj3UzdLXB9UGTv1RrNwP5jo9NfZjjfqCD/r0m
xnO9+jdFz/56zstFX1fWh4/rNWOh850HpkYZ+NIDNcE//gPmIPo55a8R/Zro
ncG11cYsjWNr8btr4Q8a44Jc1EW5A62DY+MOKUR95xainz+7zv1E75sLzL3J
z4c8wJ+DrACbPd68psmHdoHl7gmWjbzDX4CvizpOtFzl3THOwzfU3d/Bh/B3
9Pc37TSWv6mPYwvhA4S/nOT3QyzPuvm7pm+uc1/7ur/09Wj/pu+LS7EmW2h9
53p9KjTePsXw09XoORxdtC7WHH8W/i1wZ/xUYE3gjF9pH1TWxLfYrJxVzmkP
80HGOb8uMDKwG/yYW/h8HeW+NPn0eDb5B8GzwXvAqL60bQB+ub8xTPxu+xmz
ZZ9+WBc67Kf1gRuCGVZovg5JAhvZPY0yu6XB6+H5f9QYW9eGTbKjMdWDXf7d
+sBnwWaxo8kHKzhC9OH5wCWhaQvePiUXeeCq8Iep5ildbR9cqfqfzgUGTd8m
50ImTjem97JxvYPz0S5n8Ilc4MNgy52xi+F9YP56rjLuhn2OHEIGDYYPquwJ
en5eH23Bo9Dhu1q20i8wcHjIT+bv8Hb6NsXv8CuwzgcXAusEDwULnZ0PnxD+
IPBrsN7DVOYA5XdRWqxvX9HavZwNLGZ1Gnupv87gRI3tY337uJ7XptHna/AP
6LkEPqa+XVOOMnspv1sa2OmyYryj7v56/qa8EUqH1UW7fMvYkGPgGsgy5vCg
fMzdfPVlXjb60TGN+TlJfT6/HPsYvysY3/XKP786ZBbyCgzknGLohBOLgTmC
pYKj4ldhT7Oft0pjrx6oOl8S3UX5b4humYbucIjoabbLsM/Oq462hig1poFD
H1AIPxtzm9Xvx/T7WrV/Whq+oFfsY3pU+dco/1TlH10O+Y1/FUwEngdvvKsQ
fe+axnwNsZ+rWX2UZ36Y4629Fuh68MJF+raUBmYLdovPHrsM+wwf8rz6kHXk
4dfCT8DzdKUnRU/2b2j0wXXsP9U5XOOeD49W/lP2qeBPOTgTeAV4Apj83LrA
1rfR3HfMhez/KA28+gM/b7H8Z+8381gWGaegng6WQ5zlB0qhR/ygd7/q3WHG
K+AfXcxDxrk+dIme5ZDL2IXY/D8YTwO7BMM8vhjvkfXfVYZM4zxO1/PlNMqv
xw9VF3IL/BBMCqwUu+GEJHQ49Ld6lTvO735JQ7acpXZutV51Sxr8gfP/obE5
8tG1Ps5G3uLqiCMhnmRGMWzzOrc7SfVfDz6URjvgzdiPxyeBQ2NfgJV1M+YD
htbdWE03P7FxwN0+r4m9lS3EGPi+oRB1Ue+J6vczzAmYmfK7Wsd6NBfrzlyx
Jz7LxPpPVJkhet8zjbK0D+YJDj3G+mKTfws+fG0h5PA5er6SBr62s8Z7XiH2
7G9a50Fp6KwD09Cv8WWjY2/iEUof1wZ2P+p/zh40vjv2wue1sR/A1NCP0EvO
ws7Ox7slafje7i2GHMA/gSw4phz07ZYjKyxLlqZB4+dp0TTf1SGv1tgPh7yd
Yfm5qBC60ofEfuQD48eXh97dx/yZer8xPrZvNvYe3+fzxvI93hHmIcQrkH9r
IeTEKvvgEttn2FN8P919eC8NHnoemG4x6llRDJ0M3ewXeFghdFF00jcaQl9E
TmErEFeAvYDe9JN1s9V1wa/p1zlex+WlwFXARaotq+DJ8GbsWXQO3o0qho6M
v5c4COIeiHkAa0mMp5xdjvwxKvtJNs4G46nNR2zDrUnEakAT7/C7UvSTOAj8
KhuU7lSZHUoRV0B8wfBi2Jf4tIn/IA6BeIRzrR9+q7InpeGv6pEGD1lvPrJd
KfYe8RRN2A1z3asQtsinel+fjzpvU7vdCyHb9iCeJ401uqsYdlVfn/carxU2
MLII/ASdE/xlo31zYITghmAI+CfQx75W+T8XQgYhi54SfbPe9UoDs+DbScWw
m9Cl0KOIaQOH7an8d9LYk8eXA/tDbiFP8GVc5rWYbT8iexJ9HP2cvfJUKfrT
uRD2Db77JZrT14jhqA9f/RUNEW9BrMUN2Ajo9pVhx8+2LT8+F/n49ZDzi60n
jM7Ft/dURtzGtPqQP2NzwYuQTTynuQx1THf9AxriHfkTctEefRtVCFsbm3uK
6FtE92ZdrBcwfmz9s6xr4ff81TrY26XQoQdr3h4uhL2J3XlCGrIYmYysRebS
f/x5I7330G/Qc75H7y7H2b+tEHxwjH1/yJZxllPEf602TzuuEPrjm6XwWdJP
MILB5WjrNdWZzUdszO1JxCdBEy/zfw2BP6C7osestV91ZTbWjLiN+4rBc+B/
3xWjz7cX4tyMdv8/KEU9xP3dUQifJH7pnUoR/0McEFjpKPtzwULm2tYAU6EM
uErXbNho8K639M01ou8shi0JDX9Fn0CvQCYtzIWescg0th/v2uQjJgp+/jS6
l+p+VuOeStyF6PnlwJS6G9MGP6c8ePEB5lX0YYbKz0KvKsd8H+Y5v7EQ/Tif
WB7LIGQRdhg4IpgYtvJbdSGTp+vdTNXzSjn8hUscL4KPGr8XPi/0e/KR6fg0
8L2h1/Obcwx/xuZebLsbuTrPOhVytWdtyNZnwDL03Ytqq73SXprTduUY36Ge
k2nsGZVZWA45RD5zcKxjC4kxvM7jAOMDOx1hW3JmLrAS7G3o74yxVBZCv8Lv
PMiYCTb1MOMgYBrY3WvNH+a4DuTs1fVhi22fCbyE8tiH4AesOboc75H76GUd
bKuByaxJwr6jXXC70V4D9KDXrQs1YdBg0mB+Y1wOTHCsf7fMhU98YRLY73Db
zK1z4XN/Pgks72HXdZPr4/uOPnPsp5mah9kq+yb4lug5rHc5sC2+BT86Pw2d
4o001r6d939R5bP4B5OIWcBfi6+WuB58mdhq+zmmAj2dGF/22exi+F1qLE+H
FwLrA/PDt7er5TKxwuil0xwjzN5kL40sBN4I7tgtH/Yq/jv8OZRhDvtpH52b
jfjQamNAfIu+Th42Imd3kM8vPm0wG2wWzkGd23vDYx9aDGw/Yz8HPhP2AXsA
3wm/d1KZynLkv55G34e6P/tkA5dAV6DPV/nbC5V/QTZ4GftnsPkGY6Hf9Jlv
HrSOcWwhsFAwUfS9X3zGwcCwV7Gb8GHjy76LOMCGwBqwN8cUApMBmyE+4Guf
YXz/xFUhg4lDxM/KOuAXxz9+Xxp1jHM9YADo8+hA8NTLre9/qHF8kI1ywwqB
5YLp4n+qtU+oufV67At8z/ig70a3KQb/rrcNiOxB7uBrx+d+j/IPywfvhw/j
v8ePf28acSvYhxM9B497HvD34/cfmob/Hj/+nWn4zvGh35aGjx9f/x2i3ysF
r99afXmjFLoicdOsW86YEj5+fP23q3wqOqc1PCUJXQpbD1uuoPwG5Z8ED9WY
lil9qtQuG7L8HvtZfrQfo0c+9Af8A+1z4dMAl37Z331SGfYc+ge6x6vwUNdL
G9gJ2AjoKsuxVytDX/nCv/G7QBNnuMjv+Z5z29Y2Bmf5ZNfFeOD78HzGeIrL
4bvHbw9eRAwSvnnw3TP9BJ8hD5wUjJR4Ib7Bp098zpn+Ht8u2Du+IeIzfm8Z
85LH+nFlxG+c6n48nAt9DL9Jz2z4fomr3BSbmQk/0aZ4TOPPL7qOfzHGbPiQ
GfuaQpR53HGLy23Xj8tFLNbrtvcXeY7b5YKmzCh9c4vm/6FS6G2veH1OyIee
xtz/VIhxjSyFjsd7xkT8A3YasuOXQmDqYPnEHoGDgIEQg0T8EfZrHz+xYYlZ
6uNyk1wf4/tvIfoPZvCk+0ufZpcj/pw49DG5wDfoL/L2c9uzzNu9DTF3qwrx
nECfS2H7di5HjDQx3OjOrBdjZ2xgQuQT1w2Ogiyn/UdLUecjpYhHpq/s1VG5
0GmZj3WF8HXgA9lQCAwBLIH6qBc5gQ/tK/tliHk72/vp+0L0/55SxLZUK81V
fl0+bKf5ScS/JPgZk5DbC4yZk8DPmed8Y8g4ZB069Vj3j/iaSqVnk6ivzvYY
sWfYq8hZ5G3BNDKW+DbkLM+iacoWbN82NIZsRcai0+as16LbYyewb9h37L+p
xqJYM2yBZfYz4m9E7zjHNj6yAJsT/ylY7dH2R6BfgV/Mc33jXSf1jXWd2A3Y
D7Ntr3CumuKUobEpeE4wDW70SC72xDzT4GnT3QbnhRjFXt7f2IkNthV58ntB
EnGB29vGQ/Yil8Fnucdwk+OIwNL6WV6vKYcOjC5MnGFPf/9bOfTAac7bwXKL
+EPawI5knw9uiL1CnM9p5i/s1UENsV/vLAU9tBTvt7MsvK8U395birVizZ7T
u3Xl0MPRx7+2zgu/Ajtv7hh1xvaVdd+MbQVkFTKr0nHL7EH2JPokmHU7+8Uq
G0MHRhfGPlhou4CEjQAfACNYbL26pjH0c/T02sbQ+dH9a4yLVNivRD3o+mtc
DzRrRSwYmBExkL39e3gp9ste1r3By7EvuKvAPQfuLnCngbsN/OZuA3cq+M2d
Bt5zN6J3Odb3ykLckyAPXvJMKXhGl0Lsf/R82tszG3IRmdjO+v+e2DtKe4ve
uxwxm08nm/lgH/PGvOqq17seScRyEm/HeIhZpE14V2fiqrARK+N+CPdbuC/C
XZMW/s2dk5b+TSxCK//Oqf4Tk8BAiVlp7XebYsGSiO/iPBDLQ6wOcREzHetC
7CTtgzlwv4R7JswXd0q4W8Jv7pbQF34T00A9+GSb7kHRHu1jJ6Ov71GO+fpT
Odast2UH91xGZcL3S8wjMaBNsvNUy1bi3YgHbToPp3nP9/O3h/ocnO5zSpzv
JMt8Yo2JwTvL8vtMy3riv0YYc97Wtg46LXG4T7gcvPtsy76meD74FVjInl73
HdwO54Fz3tPnGhmITMR2Hmyf3/ul8M+CJ4IFdmSviD6lGPyNPQPv4tnBNHHK
E10v4/jE/drHdyI6lSN++XGPnzjrJ5PNcruXzwux2E/5N/yWb+GNLzaEfg9v
RvYh85B37M8eXj/0MPYB54a4MOLDOvtcEaO/i8/Vbv49wTK25HPFe/xZnMn9
/D33rcZabnIfjHzix4grwy+Lf5WYNHy6x1dtvk/I707Ow/fLfTB8t/h79/Z3
/G66p9fdbeK/7eF9zP037sadWQw5jjxvure2h89YO//mjO3l3y3cHr/Rk9Ff
8WW1dNu8G6r67sC3lIkz0NFjauPx0HfupoCjgutt6b7s5nO1h/vX1mPex+ep
k+tq5fpo73OvCbxtX4/vRPcVPzf+5+3tHwZz7JWNOEfOKXgh+gwY5sn5kJGc
XeQkshPe8KX5Dme9Qy74yArr5r95T6CrwrNWWaeH5661jr7Ovz91HjwVm2Gj
v/+Xv1tp3XmN69rL68kYsCvgd/SDmCv4Hfoz9yUP9X5D/iJ7sY8HGgshDpMY
Wu484ofa0/NxlOca7A3fIjoEdVZWbb5XeWTV5ruamzA6x/rBX4n9BL/hHAxw
TAf7tof3Apggsa3gJdt7LY90XdN8vuAb433feYs0+AkYK+fveZ3navC1csQM
Et9DLAzx9pfZz4sv9ELb3X3LYYMPRN/Qd425wNx5Rz4+1K2Ut2UusPLXi4FV
glm+DqaBbNXzVaVa0S/r+RLYhegX9HxLKSv6De6UKeVFLy7H/Tp8tyeCMZjm
7t0E379ulobtOTgb9ifxVtyhwGfcyTgrfl/uUhA3gEwixhnfIuvVXO1skwu8
knsDxASAZ15QjnkYVIi7F2Bh4FF3K3+U8u8qh2//r747dkU5+nB5Ofy6V2TD
/39JOeiLwW7VTrNcYM34i6gHvyUx0cQIERdNjDaxU2BLxG7jz9t0zykJ+xPb
E7/3fMdSPJeNGA78+u9mI24Q7GMgsQn5iL/jLgs2KvYpPvxXfJ+Luw7YkMhA
7kOgCyL3uMuCLxAfF/dC8GuCSRD3jU8RPyJ3X/Ad4jfkbg18HB7O3Rp4FnuU
OHd8h/gNP/C9J2IVXnAsAX0g5vQlx51eis8iH+8vdTwqGCXvX3T5l30fjXhF
4viI5yMGhvEydvAf5uM539Pm/fOOAeX9u46rBH/5wP2BNxMLhB7Cvn/Z9RMX
Q13Er1AHdeF34Z4Qeg86D3HuxIeBbXIvB78ja3qiY97wTXxpzAIegw8cHgd/
w4Yjfgw77iTHkuEfwWblW2xqzhnnDXuN9+1dHhu9o+v5wjGZxGbC59Dn4HWM
qbPH1dnxTuh5p9gXD84Mr6U/8ORlvvf+aTl4CfE6m+7hZyO+Db8dvjh8cuBa
xPoRu4l9BuaAjwF8Cl36afuX31NdZWQ99yKJbRP9uGO0qRMZUMpFGWxVfBTU
g73FOeY843vAhwnNuea5wfkrHddKfGsxF/Vjn4Jp0Dd8fmu8JuDii4xZbMIi
jFWjt4BxEsuTNb+90jy3r20w+Dz75UOfr7eN40EPchn4MJjfx54f8PJBzgeL
bpELv++cfMTc4NNAV8GO2M7PAaavNE1/wKtb5cJ3ONB1Ins+9XpNKUW91I9P
mSftYYPDa+A5+LZ4woOwN/HpDXNsCXutnfcbPJ09B7aMPcVYsKlWOGa4pX2h
8Hl88fBN+CdYN7Z/S4+RvtJnfJ08GcMm278h6L7+Dv6L/Uh9yA8wCu7QcJeG
Oy/czcJ23c58jz1JLBl4/oXG9HkSvw4PwceBbwO/BrwEeqTpS+3zuMjfQsNL
LnEZeMxFzgcf7e8Ym+vtJ0TmVhg3xT/OffMhjjcYYH7b0j5sfoNNv2heRjuj
HKNAfReb19HWnmnISmRm0/2QWutyC20rgc8RIw5Gx3Oe6fPto8D2Ie6bb9G1
htivS7/JW+g6wQWJQUe3udbziE8EXWuesdYq60DoIZRd4PLEp9M2mCRx6LwD
VySeYo73M7FZzMcMnxHmBB83/In4S84ciVhQ/O7sKeI+VzpvnvObfg+zX4lv
iTPAT4WPqo9jRGfa50SdlOM8o/uMtv6Dnvmo8Rn6RuwNvtWVxrvAGfiees8x
PcdtzfTasm7LXYZ2iREmFpA8MK3UsR2cI2Kd4fmMe4DHjtwZmN88HwO9T8A3
iNsjlu9D922G2yIf+5FYP2L4KAuWQiwfcYb4F4glavpusse1zGXaOXbxaZen
vmluCxu4v/15s2yPs2fOs++0u3Eb4iGxMfEd4Y/Z3nyRuEd4IzGSxEo2lT3C
vgd4CZgvPJa7VMf4W/JO9PxgCyCHkEHMG/l8B86PLEQOIu+g21tm8g1yCtnF
t+RhT5zsetr7e+Qsdvaxbhc/Ev2Hx2MLYhOCOxzpedihKuxTbFN0A2IK52U3
x6zOs64F1oRMw9bmvhf1c89ro+9KcGeCup/Nhs1Fe8xd05x1dX/YD+CT7AF0
dfDHyZbX+1lGUwd1YbcSH9HN5xlMsofnh3OHfwvfFnEUxE1SlphNaPxQTb+7
mffAs+BfxFFCb4qVykcsaTe/5x38Db8Z9ePba2OZhYyCH7FnsE2+9x5i/3B3
DZqYk9nmCfQN//ts0/DdC8z3wEhP8H4gNvZg8w/SQe4bdbT1t/QDGn83+Fsb
96fSGGKFn4d7H7Y1T6I89R3scXFmZhijZI9t7flkDrp43ogl4Df6IfUd5rPw
lu+8cPeFfbiN994S8zx4xoGWX8SgP9IQOAW4BH4w7hjjKyJGjvuZ6PbcLXjQ
9hf3jMFzwXiINSNOoymOmSd4GvcduEeKXs0dZXxI4EMD6yOehLgS7mVw5xM7
gtg/7m2itxPfx9119Hb0rJ7WtcDCwatZk+4ePz7wpnuM2Jqs7VteX2IGuTO/
6f5KEnfgsReIN+Q+OfbCacXQU/Ep8b8X+FSQP+B144z5HJWJc8gZ5B4wvhzw
y1/9jnzu5oLDgudRlnzs7ZOLoUPjL9rJ9WzSi5LA3MGlviuEP/H2Uvx/CX4a
ZCkxlMRSPpxGPC5xuWPTwFr4XwDsLGzt8ba34UM9zIuI0yVed0wa9+q5Xz8u
jTvN+KjA5IiDJB5yfBrxDEd47ZbZB4Uvam0Sd26JsQDH4cl4N3o/sC/A2sDc
2A9bOI8Ye+5z838BxCFx55t77wd5D7H2xCRwR5z/ESC2kVh7YhqhazOxdqwh
90m5h8z9ZbCr9aZbeK8Q64afljlhbrBTf0si9gO/Nj7tO72WzBf6SF0m1rcJ
F+aJfsJ5oH506ZZun7hZYkOGeXzEzxA/Qdwj8RLEShBTB8ZCLDA6IevP/mAP
HJSJ8wYNfojMwefCfDPvYLb0d5j7/JnnvsnHu8jf4Gd+y7Ya97mP9Dyg8/xk
fQsbCvsKewocYdMdhKqI7SGuh1gs4jqI6SDOc3US/91AOfDjfsaf8R3hQ4KX
rzOG9bnxLvqOXret5xtd8S7t3avwa5civpp71GAF/Yz/sWfWFiIme1Ip5uJA
n4WRnp8uxqkO8lw17TkwDXS5ldbzKHuQy/OfPeB36KQrC3Efb1wp9EPwLHRC
5PDJlsXM+eHe5+BYK2xf4jPnPzXAHyqNtfE942A8rCvrgN8VG4Q9xr0pxkgs
+cGm0RFOsJ6AbXeybc9VxvjACAuluCdWLAVuuNzzutb44DLjf5/4929+/29j
iMu8Hqtd3yfGJtkX9JvYNeLWusn22rEY8THcQ6orxR2V+lL468613bcxjTsn
FaXg4cwPmF22FHc5cugOvi+xQc9X0+Dji9LYK/28vkNNs5+RH8gRcJsfCxFn
+WAp/Bj4NcBwiF+EJ4BlsXd62g/N/1fh58OP2qMYWAN+8kU+Y2BixC3CWxLz
DnhI3nvnfp9B9F3uqbHP4WfoL00+9ie9lvzHFv+19Wga/4fF/2I9koavFZ0H
3ecQnxH2ITGsxLJOTOO/tPhPrQlpxGsStzk5Dd8+fvOm2IEn3Pan/k1fDjNf
ZSzM9xGeN3TWc21fb/Sas663+1yyLv1NM+fYDY9Yx8QXhG8IOxT+8GfzCDCM
XsYxwP/7Giugnb5u69VS6JeLSrGfXnJfuTNFbBx8j732ot9hu2DDgNPu6/8M
4b9D+K8LYkrwEeGfwfePj4b/tyB2BL/TEvt+lpbi7Gzweq1L4rxx1jKZ0AGO
N1+63fODn3C8+Tj/FYU//G+F6CN9hR/iZ5ng/63jviF6Afu8rfflTPP5m83r
T/E5BYch5pjYY+Li4c13uF340B3mRfT3ZvMfzjbfwg/5DzLquNwYKDwFu4z/
Xdp0T7oYOjCxXOhvzYrhYyZeif2AvGBNOa/8nwW6+R2WEbT7MXxD37Yphi5K
HDy6IhjjdN8X5jnD9Ezngz+kxcAFuLNb7/+tWpPGfHGvD7kKvl5hvYwY7Zn+
Flx5rfnxglLUX6s6/il6mehWxbhvRz3I/TuKIce5o3CcdTRkKPvtRvMc6Ju8
/7BT/mEbDD2ug9eM/72gPGcCfDfJhB636T/dNM9XEJeUjf8s6+dYz7szm8d0
l/tzhnVIvgETRfYj78k7w98+a3wQecFZ6W3/EM8+phfwXz+ctXLcDTw2GzoL
9xWIIQYHA0uuyoTuzNoN9f55M42YwHe5F1OOb7uXA59G10HPYB+xF9H9eJ5q
+gPPC3ouZ5j+bcJJXD97s7fPOPjnXNW7EdusHBg5Z4lzxP/W8X5AIfAB9hK2
9uE+X/AW7uhPbgh/0DxiCUQnxfBLrLaeAOb8tO9jHu59Cx8jj3fcEYCe6jLT
XJ78OcQnia5UnZMagsZ3hQ3yqH2lM0tB/1aIO5rU2cdn+hGXecw0Ngv9neQ+
07811nmw/Yk1x87Cl7LOvKW6GL6gVWnYJ6wV94BYt5HJ5rtB2CTcRcI+wZ4h
jpbzgc3CGWE/YlOwJ/lPoBEux/8xPOa+Nfd7YiX5ryDsDuyPGt915Z4id4qI
Me5cCpwe3RodmpjcCeYj/LfQQ8nmO1LUQewlcZ7EeHLfZKLngflcb30N3eIa
+yHwQVQUI2ZnZRr3OaZ5XfAD8v2u5iHP+OxT30TP7ab/MGwIrOb/Absre/M=

          "]], PolygonBox[CompressedData["
1:eJwtmGeUltURx5+FfXbf92V52ioIxBYT2zmJCigW7CUfkmMhKmooCit2OiwW
AoioKIgUlbo06SB16QtWFJQmtpMcjaBolGIh9Jbfn78f5jwzd8oz9965c2fu
me06tehYKwiCzkVBUMy3ZRQE62sHwVd1gmBOFgQzkiB4PgyC2nWDIC0Pgpfg
h9BH4S+GfzPwXSlf6BbgbwNhWRB0QeY1ZBuhfxR+f+D+2DZlexH0Fujz0iAo
KwRBRT4IliN7FnRr8Bz/O5n/ncbYO7kgeBb52ciPBu5B/24Bth4H+oKXIdMD
fBj8W6BHQ+8EX87YAnw5ztgK8Fvx6WLm9zn0TOg3gUWaHz6/Bf4F0BC8HT6c
iy+rsHG0BF+Rnw7vQ6AO/O7ojMPWNGQexrcfkdkHvSzzvzrCHwq9GTpGvif0
ROgPoPPQ3aDHQFdBL0f+PDbhSuhroJtDb2JNNmJ7JXQR8p2QHw7/JejR8C9j
foPAv8W/F/H1CHRL1upKxi6H/w7676P/F3QWYnsNY5Mzr6HW8l3oSdDDgSrw
q9AfAj4BfrdS+yTfJmCzH//eiw9HoVvAbwKvMXAR9Hj4feHvgX8I+m74zeBd
AjSDbg3dFXtLsd8K/CVgG/TV0O+iuxwfn4Ley/rVhncHY83gXYvN28EvzPyv
+cxxJ/T/kJ9LoB6E3gveGH5T+NXQu+E3hZ5f5LGLwdtgM9La4t826PeAUvCu
2B/F2vwEfMO/2+DDa9g7BnyA/SPYOw5+HvqnwesLvR771yLfDns12B+f+Qzo
LKTwP4E/Ffm+yK9mbAK8iYw9zb/288+AeJ4R+yy8BX8i/DWyEdqn98H7IN+I
vbsIe/3Aq4A+8H+Bvx/+O0B16DP2LvjmxGv7AzZHYHsddG90nwLWgr8N9AC/
CRinswT0BK9C52fk5zLHzujuZg0OM7et2PxjwWNfg9+W+WzPRv4Y8ufGtl2L
sQDeJPQ3FnnPL4XeANTFtx74OB57qzOfrc7Qr+h8ACvAM8Y+0b/Qb4u9Aue9
HuszHf+SMp8ZnZ3PgVPA70XmbGQvg76Uf9VA/6q5Y295aJ2P4U1m7Bnow9Al
2PuUsZPAWyH/e/Sfh38a82sG/QL4y/DHYe8A82uR+EzobOjM3ITt1xkboHyH
jTz2AmxsQXcROaQF/KPwN0E/CH0b9ADoU7F/MWPPgX+GvXrotoH+A7p54D/g
jYmxVsifA30fdBnzr4/9Muht0H+F3xZ+S9Z7A+t7CvyG8JcovvHnDP6xNHMM
KZZG4u8NyN+B/Dzk6yPfAPlLMp/FZdj8GX8eBxqg+yfoJ8FnJd6LFNiSOWYV
u72xdx32noLfEPkLkP8neA38haFz0irwj4CloXPievAn0HkU/ceAB6DvwZ+d
+NMAfxrhTxXzqyC2viPefkV2Ejb7o38Q/drwr0BnV5H3uLn2H/5VyA7k/18k
zsHKxcrhN6O/L3Hu0D87ZL4DdBf0ga4E7wRUgq9h7AF8+ZT/r+D/JUB96BrF
aOicr9y/Dvrsgs9Ac2R7Zra1Gf1z+dcU4FndJ8iX4W8xMl/kfWf2iZwTlBv2
4VMF9s+HXxdbHZBZqXyHzMrQManYXAFdEzpGFCtj0WmLfhuglWI99V4rB0xB
tgE2VuecY5RrVjK2KvQZ0VlZCywJfcesy5zTldsV40N1XyL/APiDQEVmEL4C
mQzbT8LvBt1de5h5D7WXNfBPhj8bf1bnvUezwPcytqfENtsj+zT07/C3CTLP
JL5zdPccRKYD/lYBFZIF2uo+Qmag8hnxUV7unKLc0g/9c5CdCv85xRv8GH5H
8XPe086Z73Dd5RNZjzeRP5D4X5rDo5nnoLm8h84Z8DZCLwudozapVkFnPv7O
A1akjlHF6g5s/EN3K+txf957qL2cCAwp+EzqbL4Av33eNYxqmeH8Y2fomukN
eK9CX6dcA10B3hGoD70Pf25T/gF+CJ1jZiE/CHp76Dt3GvSDyod5+7APf++C
PobufmCo/IP+NvQdPFX1AfT3oc/UDO019ODQPi4DX6Q5aC6c74Xgo4Eled+Z
o8C3q97B9hhgV2yf5btqsnng9wMvhs7ZC8E7AINC57DF4KuALnnP+RXwkcD1
eetI9xbm0ATbW9mvwdhfzVjXvGVeA38T6AZ+AzAK/C2gO/iNwBjl2tS1UTH6
G8AHM/Zd6Dt2OvN9InFukw/yRTWBaoMB6PwCP+WfgWpJ4EP0T4ptSzlhM/Qu
5Bci3wv5XZHvGN01o6APQo+OXDv8F+gGbwSwK3QMz4V3PHOtpJrymO6u2Llm
NfAZ9oeq3sHWVuJrcOqaRrVNJWM70R+S2LbusJnQDyeuLeoBf8PeZYw9hK1q
1rCQ+E7X3a4YGQJvZmpflXOVe3snzt1aY631yNRroTtCd4XuBN0Nium96PdN
XHtoD7QX/ROfZe2B9mJg4rtTNYRqiUdVk+Vc0z2i3Jj47lPNodqjWHsAbzj/
q6295p+ToNfwvxh8GGM7Qp/xOfx/KPSPoXPsbOiXY5+VQ8Df4Y1OHBuKOcVe
U+BLeFeohs18h+suVw5XLlePoV5ju2QSnxmdHfl8c+KcodzxOfQFiXOEcoVy
zJzYOU+57xAyk2PfAboLVGOr1v5zYl3NqUvsO0Z3TTEwD/zyxP9WTa/a/urM
vs5Afh17sRuZC3PuqQart1I85LxmTSLfAboLNrF+Y2LXYKrFVFM3j5yzlbsP
QE+E9xMwLvfbGQMfm/jsKAcoFyjnKvfuxt44+GuxMRHZJ5B5H/6vjI3PuccY
jOygyLlAY+JN1v2Zd82n2u8x1Sc592C9kH9INSh0DlgMXh0bX689wf7c2Guz
FjgLeib08VL3eKcqPySu/bUmt4I/ljj2lTOVO9cif0rOe943c0woNjRnzX0J
PvUq9Z0UxO6R1Cupp9gGfWfiXklz1twvSly7yWbjxD7K1zywBPnPEtce6rHU
a30YuXdRzzQscw+qXnSB8if8HbF7T+Vo5WrNUXMNgfnw6ieOJfUQ9cA/SN2r
qcdcAz4odm480VOrv4LeC74M/XbQU6APl7oGeESxhD+doJdA18Xe8Ni9wA5g
E/SGxHepemL1xrXK3YuohygCXxp7rtpD7eWC2L5qD7WXTRWDpY5Jxeag1LlR
PaB6wdNT92LqmQaotwZalzrHvQxvLDAQvD1jzeDVV45Fvjfy/ZQvY/uqHku9
1hWqd8BPBy4HTxLPXT2petNYdxT6Fei3i2xTthciU6r6THdwwTnyRK7MXItp
zR5W/5+5l+sDfIR8KfJf5V2T51LnJOWmjdCH4Z8f2xf1VEXoHmPs47x7gOPg
Y1LXsprjuNQ9pnrNnxlrG9uGbKlHOAJ+b2ae9vQ+8EORey/t4RvoH1FPWuI1
WIN8VeS3BuXEHtA5bC4u+MzMAj8VnX1598TPILs/cu2iN4kZ8GoS157qedT7
LEjci6imV23/OvKVoe+wXsolid9i1MOol1GOUq7SnZnwv6WJ30ZU46nW6xk5
9lVDtGQ+36Te2z06L+p1Uu+V9vxr8D3If1/iHmACdHXi3k49r3rf11O/pWgP
p6rXT9y7qWdR7zIp8luKaqzKxDWhasNawDToj1L3Zidq8tQ9lHqp7eh/mbrG
VK1ZAsxBfkLkXlV3UM/Eb1x66yoGZkJXRs69ynn3qL+IfJepRrgjc0+m3kxz
uov16RU5t6pGbg2/Ueq1eBUf+itfK4cUHEOKpQL8rXn3fHXUKwDf5h3jEXgu
cWzrzUtvX3XK3Yuq5yqA58rd66rmLwWvRmcK9qcpRvjfL7F7fdV0qu1O9Jh1
3fOo96mTuJZQz6HeQzWIapG72Z/b9V6DvScLzgHKBapZVLtobAh4lDj3qKZX
ba8eXr28ehL1JiclvptuIt+VJ66xVWsvAEqUa8rd++kNpBi8f+xa6d/wG4JX
xr/VagWv3ZHMb03qQQ+r98TeTHizgVrwD2Z+K9Gb3wHwEZHfzlRTd9Zdrvgo
+AzpLG1JnAvUY34MPizy251q6k7Qr0Z+u1CN2UX5OvFdqTP6XuI3Sr1VqodT
LxeVuzc80WOA3xi5N6/mf6v4d2lsXD7IF62B1kJvpNN1noGvC44JxcYx9KcW
vKfa25GR31ZV43dN/IagtwTp/Av+manfrrYy9mzkNdRaKscp150R+ywoxhRr
YyO/RaoH6a7aI/VbpHqEBaljSLGkO/U+dK+O3DvIp8Wqn8t9ltTTqrfNyn12
9Majt56k3GdTbzR6q9GbhN4m9OZ2J/ZeSf32tg16N/xhqfE+2B+hXJ4a152i
u6UInVkF77n2/sfUZ0s5cAf49ZHfLtTTrYS+JnLsSWdZ6hhRrOjNsX3sNw+9
fSgHTkb2/z4ZURQ=
          "]]}]}, 
      {RGBColor[0.9537199931327605, 0.7542999828319011, 0.4565319787115574], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmnmQVFWWxtPMkiyyKvPly2IRCW2XdkVFbSMmZiZcUAoQl1EnJiYEKVZx
68YW2UEUsVsdp1sFQXsmZmx1UAQLRO0WtVWWgmJzbUAEBGRz6Rl3kUVxzo/v
yyj/uHmXd5eT5557znfOvccOufmqEdlMJvNYTSaTi/zU+ClHSiMNKGYyPeoz
mUHRoVfkjZEuj/Zv2ql9YFZtfPuxnb71jPJlkQ93+TrnjS5Pj3XGR5oQaVyM
vyDax0d+TaTzojwg8isjvypSbV459SNqtOYFXvchzzExUv+g8/xo7xntX7VT
+aIo/0es1zvKf4h8Gut57QcjjXV9aHwfEok/f0LMMzDKu2Ps/Ej9ovxs5Ce7
/aMofxfz94/yzCh/3l7zPBBpe5rJfBH1I1J97+c+TfDP818b+bBIh+WUU5+R
1/fBke6Pcpec6Dkyp/pQjz21qPJh/j7MfZ7zf3w+pzkGmc7JUX8k0sM58eM8
82SGeTYp0pmRroj2syKvRL/TInWL1CnSmZG6Ww5oQy7uqGQy99RlMiuTTKYh
6qd7TIdIZ7je0eOo312n/lMsU8xxSqSNtZnMvdE+K/7fjZHfEKkxaGsX7eOi
fCB4/Fbkb0Y6OfrfUlH7pFIm8270KUb6zxi7Pug4LspT4vvqyMfXaY7ri1qb
dVnnbq91bbRPjnLXaN8V+e5Ih0f7xti3T6N8avBhfYz/TZTTyC8O3vSplxyR
Uz8sL1mEb51rxPs+5v/kisbeVtF6v43yHdE+IepTaA/6x1W0579KlN9Wp32E
tm5F1Y+I+tmRzoJvtRp7sJ3WvNL7xX/8RVFrrIs+d9ap75Ci5O/h4OcqzlWU
V0f+o2URWVoW4+dGeiZSa6TmSPMiLY30dKQ5kZb7O9865tW+JFJTjB8XaazP
Neec8z4k0qRIEyO1eA7WGJaTLN4GHyI9hA6wfoA3t0ca6u+MH+/v07wO+YPw
x32Za0v8zy6R5gRdmyLvFOnJKA/2+qwz0HMxx5ygszX2eFLw4PboN68Q/aL8
fVl660DkK+P7ikhrov25OMOPR58Fkc+Lsc31kpGH4tvyyGdkNQdzMs+urMai
N7KJ9OPCGDvItIw37X/wmTyY1R53jvR9VueNc7OvTnS8EW1r89Ir8P3Fgtqh
7ceSdNyfUvH4Aeuzuc6ned/I0bUjYs69kQbH2GXtVW6JfGmk76K8JPLRdVqb
dRvNO/b5Yu8Ne9s3p72k3iun/0a/3jnxnTpyd3xRsjegXrK3ICvd2WS9ured
vtE+rKjyc1ntP7pqZk7/FXrgKfs5w3Izyd+pQzd6oynG9jGN0LEhZKEh0hN5
yTz6FF5faplDjtDbX8bY+2tkl5ABbBNnALuCjuT8Ip+0N5uXfGNfGAvf7w36
P49yzxq1feU5ab8n0mdRf75eeVO0L8tLz3SrUf4365xLTBf87WneD8hp7i8i
1eWVUx/gscgj81xX0d5OCLkYVpEeHR/lD0I+WmPcwCjXR74aWxL9C3m1941y
EvmbedmCPtHvvRh7XFl6dJx16dZIR9bqDP5X9K3Uys4Pi/5jYtyHqf43/x/e
NCeSo2NinuV5/Wf4k0b+bl68vaNe32i/KMZ9HXOuy0vPrLOuIV/r8pyK1r2i
JP2Mbr4oaPhlrLUmyieUtd8Nbu8U9dei3Dny9yPvUCt+NkT9L9QjvyjSZ1Fu
jLmPb5BNeSXma4mzlkT5nJzkomOtZOCEBumZZdHnxAbpn9VRPqUsm3RqWTp4
ivXwo3nl2LufN4i2xdH/2kiLo9y1LHyzNC99vhl6a6VX0WWdTPMl8Z+LkZ8U
/adE+bPY987B8w6R/hbljql4O8M2faLlF1lFP3bxnBPcNv0n+mLOT/TFXOuS
OdY5veN/ZCJtijn6gdMi9Yj075FGRroV21IS/e2Dhhvjfz0Y5SWpMBBYqEvk
v49+oyKNjvRApDGRxkb6nefg2/3+zrcuMcfmSNtMa7PpG+869B4R3zfkZY8a
g8bvCqq/HGlyvWx6A/ggrzN9e9D5ftBTE/RsTEUztHP+OEvIKHro50XposcS
naNK8Pzl4N+Y+D46L7w47Sf48UHzjP+KTuHsD06kn9HT7PPBvPTh1Kh/E326
xvqdou39vGzvE0H7WHRKjJmW15l7Pyu5zkf6OsovJsJ9JwY9Y4vCRklOmGBt
nWRsrfES5bfr1AfsRE4dvDS1KNyzN6e+a90HHfkLY47FBZXBJG/E9zV1kj9s
4M4oV2o0z51F1V8tqM832Kz4fxuwLznROaaodfjOXDPzWnOd1+1sjAPWvDna
fh1pcl4262aXB8f5vDbKgyrCvGAmaAM33hRpQl54mP9wCGNH23DmD3qGVFR+
lDPXXt9ox/6xxoQonwidUf63vOwNthA7dWOMvQVsWpGdpwx+IB/p8k0VlWcl
oneE7eykevFhWdDzq4r04cSS1hltOwv2ZC/S4OemyDdHeg48WFSdsSsib62T
Xl5YUPm1KHcvSx8uinVXgRnM/01ZlTdm1Zfx9+XF37625+hw8No55v0l/na2
bST1sRXh5NGRL0jkTxxflgyhJ0vgrGjfGeWp0eeykvazW1nrQxNyixxd5nk5
X9h7MAF2+0bvXXfThQ0/1fYPHY6srPL/Il/tOTcbh4JV4dWkSBvj25ac8q05
8XKT29iH9y2TH3hci3UI82yqka/Sx1gGLF3V3zcnOmOlRD5Qo+nbZnzM+d1a
IzxN/XTPAT46zTljtnhN+k0uiZZ/jrxX0L4uZGsutqYs3+JgWbrmqXrJ6jx0
YdDT7LbZbm+IufbFuP3Qzn+I1D3SzqivirQ60t+Vtda/xFp3x1qnoS8jdbVd
x6Z/GKkVWcvpjDD/ovbCuU/XC+tu9/eVkabk1Y789+Y/e+0d/s7a4IUtxufo
VnAKtp55+Q/YkV41oofx2OcNxmzYvfdt+7Dz67wX6B+wOOelZ1E8wzfgbILv
oRe/oTnSM+xRpOX+b5vaayyYCTu83jhhe+THRFpgO7nZtpL/N8f/Edw5z/OC
WcAu4LHZFeGE1xLh0fnuB0ajD//3Yu8JfjYyD97GroCDPi/IRkHbxoL+15GJ
MMHUyH/ISj/iG/wYNuMwfMDIf0hll79PZUNox2Zip2lHrok9EL8g/oB8rSmI
X2/EmDfQ15EnifDNyEQ+ZGtBeLeSSA7HRr6eNaL9iCjPz2tsDj0Z+aqC/OLV
qcpp9Bkc+3JXXjGT3+SF9cH5T0VaHGlRpPdS/d8uiTDpxwXh0J8l4uvdiTDp
pwXhmp2pyjvAO6n49mnkX6ey+19FfrTHbqJv/N+PCsLJ21LNvzXyJ73+65H+
Jys9+mqkWW6jDl7YW5B9/jZV+ZtUugSdjk7ekmr+4xJhDmgAt2ILmy2fyBll
bCWYbpP906o/MMCYYWG9cAM+zbOWIXQouvSf4sx+Et9erBfOPrmsuMWYkLtC
Khx/VCIZXFsrvd6hRvrgQE70brJNOZiTXtgV6c4Y/3H0P7esOnpijcegC7Zb
p2xz/aW8dCqYYUpR7egdaOO/4NdsMH9Yi7YX/B/7loWJri8Jz4Pz19r34EyA
e1mbGBbxE+wh+I21Li2r/yVlYV8wyKUl7S/zf2LMBX/AYo94ngU5tS0034gZ
di0qhkkc7Mii4oScZfD/If/EvgA+wQ856TL49bDnY296lOWrNQUN35tP9ANz
wk/4BE1Nxob5VGeZM03M5grHMJEN5KKb/aDP7d8NtG5GLxJXgg72DZmhvck8
6+Tv6JWOrqN/O7h+dlnxtbPK8l0o48seVSt9h66bkGiv3nX8DDuOrWQu/htr
o5cbPC96uuI6MYxWn33WQ24Y8160rY/0Y06+xiCwsP0R8iGRrg6afhfrHhv5
35e1Ljhikr/jn2LD0dtbvQ7roZewgV1tB8eZHwPtFwz0epxBZLPiNbFPffyt
l+vIF3J2uP1hdHRfr9/H9bdi3Tcj7Y65iqn852OCzpUF6b4ppm2F+UA/+nOe
LnQsu7/j2ZSJu2L78KFOIq5cVPxigP0q/KurnW61f9XDc/RzGuVvA+w/Vf2o
B+1X8f339qtG26ei3hJrTc8K6xJnpzwtq9j7NI8f4zkYs6SoeYmrYKvBIj38
n8ZU/TT7K/xXzuLzPo/4o5xPzt2dJZ394SWdx08cK2eNpyPNNq3YhidN62zX
S+Y5vGd+5kSfcKZftM7sb1r43/hP+Fzw+aOisACxOuw4eAUMc2desfuZ5iNr
48sy5xemmRgGc+PTjfT3+yLtKureAZ5dU5T/AC/xfV4rSDctchlsTP6qy+Dl
RS7jWy0pCHsT56WOL/NK5C/hw2blQ7/icl2iWPi+OCvfer1vzH/ik+zBqCg/
WpBcoYfxwbBTYMvGouqtxnMTjckXm4bmgmKC6EbigpQH+z/Psp1caNres52k
jq1kTfAi69YmsvWvxn7dk1e8klhlayqbdW7YnDrbLGzXCPt2yOQdJenV/iXF
JDkXPX0uODPIHpiUtcC9YCj6gaNmF1SmP7S3+L+wN5SZv12ifX8l1f9YaN5y
jlgLOQcbgsOw3atSnfPzK9r/J80Lzsccy+62SPsj7Yu0Bd5BV6TtWcVzD0Ta
6u9825EVnuMbsWLiksSA50I3tKIrKtIr58Ref+g5WOOdoOW8OulV1uA+hrsU
vhMz5u7lgop00D/E2LsS2bbNqdbmXocx0MKdDXXmZRz1naYF+gb5Dgo/mngt
dOILo9sP4cAa0bLBeh47tN7t5O+5jC58y30OWjdS3uA+lEmM4XunRPp4SuQd
XX43ldwgP2CfOebTUu8B+RLrDHLw5Tup+NUh5hhdVIxkT7S/lYo/8Am63jEN
I4s6l5ytNY5lcJb3FBSXBLOs8L6yJyu9l9u9b1u9/9yz7PQ37qGI4RDLafH3
D7K6g9nlfsstQ4xv9dzUS/Y395elm5+xjDzoHB6gy8D287LS5c3u95DbqBPH
YC3OIPqmxeedM7SoemaNT8ApxEC4+yQ2sdT0bs4qhrDQZ5/YAnz6xnqAGNUG
99vjby8l8ttH4FsUFJsDI3/g87HHe7XZ84HHN3quodzZ5cWnxf6+0f9phfnU
7Hy5//Ny78N87w39VjpOwFhiDewNPsiz3if6jUvkV++qSLc8ZZ/3r4n8weZK
mw+PT7/CeA88vNK4b7v9y23GKuizZUXpHPYFu8uefFxUO7qXOAfxDuIxxBvO
cL231znDGBYsC+4hdoK+Zu/A+BXj/FXGp9BBbOVs95vIuSkqrtLX61RjPGe5
H3eVvX2nubSo/tyn4ytU4yj0486ki88uZ3SX16DtSK9/0FgRv2Cv+QAWPs54
eIe/gw+520QWsT3wDB9jn3l6wPV3jEvBp/Dsr+Zbq/sxjnhKN+8NsZhTXede
j/7sw3avybzEDuiDv3/QMRZ8XGwjcQRiBdjIRpeJ0Z3os8C91UlFxb+oc0bQ
h7TzJqDJ9/DczROfrd7pLkykS0/2WPozlhgj+Ykuc59/isciV/h/+BoTi443
5PTfKc+zHM5zP3gJT9GPxIWZ40+J5oQeYqL8L/4TeGBURTFl7kyISS+pla9+
VFkx7zmJ4s2rrbuI90H7/EQ+yr2+zyLGAt+mOW90LOaGRLbjOfO2l9uJP/Qy
DiGuhn4jRs09E3rl4rD71yXix81BYyb6tNRKF3wfaVGtMByxYe502F9wNRga
G04MmDsdZP76RPHOeYnun4izEn/tWBau4a4MueJMcj7/sazzzrnHL0LG8UeH
+1xx/piXcwJOwIfnbo4Y0bU+V/Tj7rNXru0utLfPN3elnHnO4uGpMEa7VHeO
3J1fbv7AG+J0+Jr446t8Npd4XWIu0PW89cMa96vKBDIyxGtebPlhz5+x7LRa
lq4qKY6TCRqeSMQTeAO+/sQY+NGKzlKP6PvHivbgyURna5nP10updM0FJemP
pdY59GEsZ/bPqXD5+SXhVMrgc2J8nFvie8+nuv94IdXdFHc13PfsycvvAO9l
EuG8F1NhQdrxO7ZXhH2b4vt/VzTmj4m+j3Ef4mvMyX1YLhHefTkVf581v5us
RxrdtspnER8I/h/yk3J6R8A9/m7/X3TmdLdxx0+skz7EVO+wDHFv+JC/c4+N
PiaeR1wPn2K350EWP7K9WG1di35l/V2mYZllFvuCL7LLY5d6HvrebrlkbfD+
R9afH1nmKU+yrFTfXJBX32gM83jeleDb4uPib/P/OcsPe8xk/6dBlnd4MNB1
7Nbt5sFA87WX+dfktvnm8QrrkOmW1Xnm1wwneFZ9UzLYdM90G3Q8Ylpu95wz
/B2Zn+65FpjuR7y/M11HbpHhgeb5Ap8t/jf/HywODsEfBWPi8+APzTJuedLf
iDnWOX7Z6FhEk+MIQx1XQH+iO/FhX/ccjK93DIL4QxXXgvGGJTpHnMXhiXyq
J6J8k+9Yj24InZfIt+Tuenkqe7Ai8oGJzgXn47BU+iUb+ZupsO/baRtuZr0+
prEaLxnseAnYGLwGhsY32GHsig+z3XX8A3AmNhF/5EN/A3uD9/BTDnoc/bCH
g/wW5M+2F9gN/AB8CfBEd/OueqfRp6btnqG34zjY9k6Od63xvSK4tJdpH+j4
WWfHx8D14FOwfot5DJ4Gb+EH4Ud9aGwJhrzBd1Po3mcS2aSjy9Iv6JlyWbj4
dWPgjZaJxcbM2KDXjGtf9zf8GfwafB3sM7ihem8JH/G5wDH4atW3eOT4aMSr
dvqu8HS3Qfco3wVzL4fNRE7utr5Gb3cp6/6VfcDmcv82tNiGi581Nq7i6Wbv
Exh8jfdtles7jJ2pbzXuZhzYHtmFr/t8v4n/sb2Kx7PybZabv/wn/FL80TMt
++z3s8YAYIFN5uWSbBvun+e55pvuFW6bb1rm+j8UHF8mtrzFdPF9s+eDVnBn
g2Oa4M4Ojm2CFzs65vmd5ZgzwF33VGNc+D3KviV7wrd93qOpvhMnXsp9GzHe
Kb4rZyx6m/gR8Qn2YZjfG3BvMsTvpvg+wPFqYhjXuMxbBGIevPHhfocx8AEM
N9hjeXPEuugh3mIxZz+/w2K91e4DluN+Cp10j/sz7h63T/S9KhiCnDr4AR+B
O1f8BGLpvLutYrH+jqvzbZL7c6+ELsWOEGvp5z7E5Ac4poaunljF3kW9G4C3
8GyKeXtrUTxHzvEBaN9q2m4zncg548veI+apto12O/kYz0/8DfyMP8KZGeq9
YJ1b3efQ3Vx7xacarIOqsfDTHMPvYD11unXNmY7Nn2Zd1Wg91d39kP0t2bb4
0NZsWzxpm3XoEdab6IXO1r/UOff73Bc9gYwyH7pgv3Xw3d5DaEOvHci2vTEk
Zy7uIqAT/cjdBHEAzgu+M2cPXYqe4+0LeAp/8Tnb9j5+AwsWHWlelbxHI803
+HqtfRPeEVCG35wl+qCLsb28k8T+8j6X96zIC34q/xke4IegW/HnGbPJ5/g7
6x34uMdt1Im7EC9F7yJ319uOH/A7T+48u1vfH+JHXr4F97xgH3A6mH6E4xgv
4/tUdO/wVqJ4M3FnYuHEnfu5Tjz5ate5u+TekjuNZaliwUuJZZXEU7Aqb/J4
g1cf7b1Ksi+PV0Q39GNTiE0Qoxjvu9eceT68oljnnrJimsQ2D+d9i+Obr6d6
X8M7G3ytNxLdx39WUfwe2vGbeJ8K/w9L9O6J9xnEcPHbj/N9EG+muDdibd4u
vev/ho2d4LsX7p25c+YdReL/Dabhbpp7ad5I7G+veifj8i8dq8e3u9N7wH37
077HB9+Ac3hTxv4jB/DmwpL2DL9kvecD30MXWB+cD64ibkt8H5x1n+s9S/J7
H6soJsWd7ZKatjsq/s8P7fX2DLrBRNX3dN+113qsQWyw+laxv2PX3A3yBh2+
rUv0Rg85SLwGb1bgTyfzA5rxZcF4+FP7U8XLDqR6n/KBx3BXiZ7lboP3I1v8
bWhFce9vY90rS7rn+yHKrYnum/+vIv16jXXsWO/5ITxTo7cq1Tfg5MzNmz/W
ht7d9jvwKfDHWj1maaK3Gv9b0TvBFo/Z67dP2CveJUPvwZLeuODX8g4FGUKW
8F25j8UGIH+cH/w65OLQmbD95o1ewXqJmD+YDBuy2nxFxrA5/Ypt92zMgVwN
KblfqtgAugY8N9Rvs3mjTYwP3/9fS/Jxuvo9DP+T9z3Vdz1bzfce0f/coOHC
iuRjm/lC3IB5iC9z/8EZyie6Z+RuGLvPm2jsMWf1lxW9b95bVuyDGMiiVHGg
oY6//+j3jJyrvOMx6ED8J2IQ+M6d/aaAWERH3/Hib7I37FFLIr2KTp3lM8ZZ
4/7rL6nKF5UUT57idmJCvNsAU3xsnxSfE3+GO1fu71K/xyGe9tuSzsyxqd/Z
m54j/fYHfnbwux5oRi6he0XQNtd3RrW+4+K8o/duSRQXOaPcdr/L2mCZwcYz
4D58ZWj/TUn65We8OU11Pr9M9TaOeClvh5cnelfEG97XE/2HSdG+JNF7IN7n
Xl7SWwre9Yz2+7fxkb+dSDawA2sSvRPi/e9w32/yxuF5x85ujT53laQvjkqF
R4njT8+2xfGpd050F7IuFbad7v8z3/9pptvAifj7Zd89czfFHJzn6v3tOPdD
v8P3NxNhI/Q4OpzYxhPeL/aV/QXzP+5YG/7NryuKe46oSGZfstxmHIcDF5Hj
X+AXrHadMn4p7b1LeqO3yv4YehZ9+3TShlNZF76CBYiT4ifxHoB3OActd+DY
S/3muSWVj40u5374tVT0N5YUlyWuis9wq7EhOGS2+3LPjA92n+dPHDsnlg5+
mW97Otv3g9wT4hc+4H0iBsPZ5lwT/2i2PPOWcIPf1WCfaSc2wt4jAy8kihuy
FnL8tGlhXt5hzXN/dAmxcvhNfJozhY92lN9ooCf/HzXQ7fo=
          "]], PolygonBox[CompressedData["
1:eJwtl2dsllUUx28p9G3ft33ue9+yyypiBONecQSQLaCoxJGYqLQMGYYCYqGA
jALOGOIHNdEPRBABkVUQZMhsKass2VRAJEBoInvK8PfP8cNJzrn/c89z7zn3
jCe/sKj30FrOuWqoNnQhOHc17ly9mHPn4OsmnVud6dyQhHMzvHMBeSXyVfC2
kXNLWYshb4dGppxbhZwDvwdqg+5abKzA3iooDvYQa73SnUuBPwz/ILQPPkBr
wTeivwbddVA2cgsom29VQn+CVSNXwP+Dfmf2NoDWwA/jfD+C9US+hNwJuTvn
KWFtAfrbsZcLfwzaGzOdF9FtC52Bb4t+B/SbgsfBN0KH+V45cl3wQ9AH8Dug
xvDHoA/hX4nsLnuhB7A1l7U77F2P3B9+M9QAvlr+gR8G7YfPhTbAr/fGH4Qe
Yf8g7O1n/7Us56bAvwftQb6MPBl+L2c6wF0OQg3YO5i1Q+A3wafC358033/P
2u/g7VgrjlnMFLvnkcfGLKa5yB2QJ8TMh/WRJ+ODk/Atof3sb8TaLfBxPJKG
8M0gB1aG3BQ+hs71DL4tG5wtmbS30Rrcw9cBvwZeqm+CN8nFfznOXWStAKw9
3x8FNpP7LAGfwPc/IRafQVvBu0RmewPfbIK9y9B67jod/dtgnSKzvQ68MVhT
7Odh/zL2+7L/KmsV6M9HP11nQa5EXoBcG/kK8kbkOcgOuRv2PsVeOfaa620G
83U7zjMBfCx4FXfbwp73OesY5IJa9o0BKTujzqo30Bmsgj31kY9Aj4O1grZl
Ws4s8fYNfUs+7Yr+GtY8fDnfzPF2J91NMegIfj1p314OngU+hLVqsNusfRzZ
G9RblI1eyF1Sliub0JmC/k4oD/k49JTOohjDH4WelG3uuxnbW6AkWIls1DIf
9cVWmjff6g2tQPdZ9pwin1uw/zn4O5HFVjFdBv4XVExhOc/+E/CvgTdVPiFP
gH8zsr0noKflb29vTzlZyvf6g+9QvqM/KbIcVC7Kp5vgf0Gnmtgc5QxvgD+K
jcNg9aBXkU+Cd8927jvwYvQXIZ9CP3Cmt8AHQtPgL7L2q94eOgm+dx55KfI7
yinwGuQy5Mvc4XrcclS5WsLaeLCvkUfDNwOvHzOdK/CnWevN9xtioxTbNboT
chrnWa76gM4GdPOQK+HPgheAn8bni73VYNXia+hcgv8bvGu21dDh4BeDYV04
Qw+wWsj78FU5+HjOtxKdb9hfBf4T+ALkL5A3q16q3gWrNbmsNYFvHqyW6A66
ywj072bYN/XtUchpMfOpfHs7ab6Wzi34vGC1KqDTGL4HZ7jEXbbxvVnov4zc
mrPtQ56LPAl7dWIWE8VGNUu1axfybORGwd6OYlTK3gbB3oJHp758A9Vk2Rvr
B/56ZHc/xP557N+DvbKYvRG9FYf+wpjd4S7nrR3sLaYjp8MvDVaLLnCfRYoH
dC5uNVi1WD6Sr7RWE0xHujOQy+AXB+NVc1V79cb01g6zdkDxk824vWm97Ube
sCOcoU6wnFZuqwYNUL9i7QzyNuTCyO6su2vtOHwBa29j/zTyUeSW3vizimmw
GqlaOZI973p703rb2qO9ipFipTOdhM8Idha9+YmR1UjVSvWIft7esN7yIeWA
5gPk3fA7dSfk5cFqaWdi3gdsO3JV3HzeO7IerF6sN5oGtjJYbe6DfqG3GCgW
2lMVLOeUe+r56v26k+6mmNcNNlNotvgKfIjO5u1s6pHqlcpp5bZ6vnq/aqpq
q3JuU7AZQ7OGZpbVmm+grfH/a2CwmqHaobVtwe6ku6mHqZflB6u9jbDfAn42
+Lfg94A3Bx/L90sTNuNo1ilC/hzdYtaGpaynqreOQB6CPMsbPxwajDwOn42G
L4FGIH8ETU3YDKFZQjmsXD6AjRfQ3RUsFqrJO+GfwP4k+E/RmZiyGUmzUhE0
EHlQyr6lnqjeqJxR7ihndnvLWeWuasgKbz1ZvVk19jH1C2+21bPVuzUjalYc
DPXX+VM22+nM4+GLU1brVDNHpazmq/arJ6g3qAepF2nGqvLWM9U7NUNVeqvx
qvWaUZ4B+5c73uW+DTnfjWA9Tb1NM99o9G9IJ8N8ODxlM5tmN/XAXZoviVGr
HJth5iHfVA+Dn4T+GPTbp6wXyoft5P/IMMVUsVVMFBv1dPV2xVyx18wzx9vM
p9lPPXa73h5nzEm3GbcC/g6UlrAZTrOcZibNTgNYK8T2b956i3qGescfypmY
1cx6YBuCvX3dMaFZOdisrBk2oXk5WO9XT2sGPhnKjFlPUm8amrK3qJlmPti9
SZvlVbNVu7OCzcLak6l88ta72nDHlrkWY8VaM8IPYAu99a77wPPBf/Y2K8rH
8rVyXLmuGU2zWhnytJj1PPU+H6zWaeaP4POSNksrp5RberN6u5q5ZnqLuWLv
WLsdrMep18nHPSPLSeWmfHwXvmPKZn35UL5UD1IvUsyLsHcrmK1uUM+U9VT1
Vr2xm8p/9e+EzaCaRad7i5XWCsDyWfsyZj12oLeZUbOjauTuYDO+Zn39U2z0
1uPU69QTX4rsn0X/LvoHOx/Mh/KlasYibz6X7+WzZapdwXJf/1jr4f8DW735
WQ==
          "]]}]}, 
      {RGBColor[0.9934355471622628, 0.8535888679056569, 0.5796501962030146], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmMVeUVx195AzO8mffue09NY0pEZBFbcGkrrayCWi0DNRVZpdotigLD
MAxNK4u0sg9YkjZpYir7Zm0aUi2y4+CCdSnDDLtUBYwssotaqTX9/zj/CSZz
cu/97nfP931n+Z/lTbufj7uvqkUqlcqmUyn9peaXp1J1oudLU6mJJanUA6KR
ovtFVaKxoisKqVRO769LUqnBeh7ndxNEw0UjRENE1X63SbRUtEy0UbTEz0NF
4z2v1t+x3mbPXS4a5DXHmDdr1IjOaA+fZFKpc7p+pI231FiJedR63ud696Xm
/LcQ3wwzj5zPNtLrD/W7au97qPc92M/DvCZzT2qtViWx3gyd/5/idayYSjVp
jV1aq5/u39N417JU6h/F+KZONFf0SEUq9bCok3g06f1Cfftn0Ret4h3jfMO3
o3Kp1GvZVOq4qKPG326tc0gvb+n6ZHnc99P4YNE4UZWot6hDOuaP0PdbxHuN
+P1IvKeI1ur5lxp/W9ertN8+nsu6P9P4Gxp/QfMf0ZoPZ2Ov95v3WFFOZ+gs
ul6UiG7wM3yYe7uuB3X2ztr/38WntDTm5K3XidbNHZrbT3RWhnefdTtadF7f
V+haLjqr+4yurRkvC5nsFL9P0rE2e3nK/OB7wfvLij5sHXzheU8+lfqWvn1X
+/o4He9Z47Tuy3Qt9fr32dbOpGNN3jVmYq1P08Frhmi66EXRM6KFoitL436t
aJ3HFok2iBbb1td7jGf8Cn7/Fu0oDb7wnG0fwu7OpUMGGdv+IPvfpiRspSIJ
faLXnZrbx3aNna7T80CNv6hrpa4DRC20Tl/rAP/Ypnf9Nf6yrocyMd6PtZOw
yWeL8R3f/8VzKz2/t9fBR243P9aurYh5z2pOe2SI/kQnbMPYcpXPgV81SCdP
a60/lcY57hU1aP6b0t1F2fYbul6HjswLwmYytnGu5aKHsmFP52RLF1vFPXZ1
tHXYwWNa6/Hy4Hle47usG3AIe8KuVlsHC63XSsuM8+5Oh01gL+Dio1pvrq5N
ktvuTNj2/4wz4M1czVsuWibaqnf7RfuYk4n7l0TH9P1R0fdsY03ms0/ft9a6
baSHtnq+TfR9ZCxetaIJote13wWaM080RM/V9v8eonbpkNku7/cUY/q+h6i7
aFRF8HlAdK3HWKPJc8G2xzRnOfhoP2v03u6WTfTTnu/Rdbr2d7vu7yqG3TeI
dtj+G5GrZYysm+wvOz2vWzZk+Fk6MO8R4wy2sDUT9g32MH695lyj8x4pC39Z
b36N1t9ur/Gp5PZ1fd9J++qgucdFm/S8xbLfC+Zor3205zuLoT/OhR9u9vs9
7DGJ9Z4rRsza4zW+kYRe0A++gs8QO/rkY63eut7hcfyojee/kwRmjDbGDNV6
460zYg0xYY5l8+JX5LfOmNFgXOHd9mz4En7Uyz6GH2zWGjnt4Zv5wOW+9svO
9mmekQOxdEVJ+CJ8KvTtttKYA0aDo+Dp/JLASHh1Et2juJAW/+WSSV7zu5TF
PLALXMW/8N+BxqIm7x39D3LcGJOO+DmvJGIhukX36HeC1+QdOlxrW+ppW+ac
d+YjphBbOvl8YN6BdOA+uL7fV2LIO+mIE7xDvmAq8t6TjriCP1/HGvaN4fat
GtEwX9HTeq2X0bordPZ95g02H0yH7bAG/rxStMo6nlkSOm8v6uU1xlnPYHxH
7x0c7eBrL2PCE5LJNSWBk8ydhW16TfY91mOssdX6ZG3yoAuZwLH60uCD/VU4
XrxcCP8m1pG7nCsL3aHDffaZs8Xw/dH2f+I3Mn9Q+p+ejX1dynnEZ5Fooe2H
Odg+sb5TWdjST3KBbf2kt5mat9jfVIn3ONEqzZ2l5yV+19ryQif9s4FJxOPh
lhX6PpwJ/2KtX+TC7u4W/0bjFjng+5Lhe6ITup+aRL4zOYl41du8hlrePN+o
tbpmI58CGzk/uDcwFz61SjIYq7ExHh/tOSPTEU8ed5zCD8m9ejkPIh8ipyK3
6uN3Gx1LwOZN6bDF3Y6P2+2P8HnN+R7xhJhRXxJ4SJ5IfjU6iTiXScLniJnE
+g3mDZajY/CdGILO2/m5zDLm+fXSiC0/xpaSyCW7Sp7jxbNa9Hvs3/waHWcf
zEYMJhafaRFxdmo2/J68Y4R11Zxr9DUGfSRZdhS9pDXf1loLNPdWrVUjXs+V
Rs6A7g6Vh86IvW3KIv6C/W2N/3WiFY6va0oDqxkHr7kfLL3dlo/5Q3JhC4dt
D8Tbk46507KxHvs+URb2T+3w7Wzo+1ca357E9Tv54HHEfIbl4tozH7Zc5flj
fI/cOMf7no8sV6djnJgEL2wVHxtru0IuHb2HOenIHZamQ0fsGT0NNlaBJ8Ql
4hOxC/t9tCJiOmfm7H8tRu7YwX5F/ohPEe8rjOvgELFto3nd7/esMcTr4Cc3
mz82X+7v4PuUz8y55otWiVaK5vmKnpiz2u/At+PlgUvULk+6ljnpXIgz8v6Y
dTTQ+S32PVN7mJGNedwzBzzi21OevysbWI0f/aE0fIr8cLtjJvfTktD3rGLY
3gTb363ZsHvsslIyLNeclcXITY/bN8mbRllfxDTwC2wrlkbuSN44xmMzrPca
58MrHd+Ic5vTgen4/5Z0xBWehxo/wAr2VOtvyfF6+h21Xg8/k2vXOj8nPwQb
+qajXuvuecPMDwwa7ivzJnhvnJfabrbPQ/473fFrka8zbTuDjMm11is6H2+f
JOetse55nuD3PBOj6nx+YtdYxzdsapTtdpVlQ16BTcEfOXe3XQ6yLQ79im0O
sU+Q18z1Gku8BrFzsffOM72EOZ63NR25AnJf6rm8q/Y58L8e5n2p5+F4hZ0T
m8BLbHWc5yI71hnjs42SjW2X/bTLB0aRK4Bj1J/E3NnFqGnIbdoZ96Y4dwJX
2/sdedZ517zIhjyJHI1+w5mywIZt4rlY12pdG0ojrhPT52qNP4rvHF1/kI/5
d+VDBzXmxVzmsCdyZHJEcornk6iTOuSjXmGMHGev8YZ5nI+ccE+L2G8v2yTy
Jc+i59HONtjd5+np5zq/Zx/NtRw8yC3RP7U8/sp4ue11hO0XX95lf8TXucfX
wfMnspfx/j1j7MtJ4NbNOkv/XHzTMX/ZH/APMGiEfac+HbkjeeVLvu73GfCr
QT7DYD/jfxPtg0+7j0PcBzPADuI4uSPrsj52NN6YudoY8ax9dJgxoKd9njWo
0w96TzvKApcqLO+hnkfuQ3wmTu9yLUltRV5CvKYu7mPcBvcnGjfAGPys1r72
VhL7q00iDlY57yGGUwtQT5DfbXNPpzkPIAfo5/eMz7f/w7emGLY0ORd9D+qu
T40LNZ5HDoUO0TV56zHHCGrEbq61iYXkTORQtzhGEz/xU3IZcprmfJpz/kf5
7gG9n5MEbrT3uzpjFmuPtT7RY0Hzj0lexULEqnrrf5LWnuz9jbfM0VNtMcZf
SOIMw22jv9M5z4nP1eLzbiH6afTV6BPQi6OOJs8m39hvn93h+IG+kEW5ZTLJ
605ynokcp4nXQc1rVQgcAAPAo+mOp+Rwp5zn8O6DTOyBWpXY2dbY9WEmvufb
KssAe6u2TXHOcR7jGf2id3Lv5hqJM0/VfvZoPy0KgdXXWh/Ei7Z+Hl+Mns7n
+cilyJVeTQI/6GXQx2jjHg557YQkdPtKErgGvk0Rj4uFyIX7F8Of8ev6JOwQ
OwdLUq0Dm8Al9gBec94urjfxT3ANWWKbA7LRJ0IOB+1vYDW1Bb0j6vZDZZFb
rnHNgt0gM+zlqPtLV7ofTl+8GTuasaTefMGRrX5H7Nni577lgcUNrp9O2sfI
4cjlGpPId5lP7kDNgr6RC73HJvcfV5gf86gBP3K+Pce6RLc97Sv4w6+TwK1u
+Yh71faNld4jvO51DkZOfrvxAyygD3Q6E2uTh3A+cIx6j1zsp7nIg8ZYXrMt
M/axzOfAn9tYrsics4IR5POnJce9up+dRM9trn+PoD+w1z0C9LXG8zu430P+
fMQxgGdyswb7F7UcNR39EnoZ2N/fkoiJ5GfkKUuMMdRS3M/y3vmO+ot+xVKP
Ide+xcDaXjr3gHz0Eun9k0/WuI7CB6jHqMOoo1vZN9AN9TR5LDnANMcv9Lag
POqBmc5jFjlPWeoch5jIfohZ5MXwbWsfn+H7dl6zuebj2tp7YX5LX2e4tm/O
+Rbax/C184WIOcQy4k6lxg9o/ItCyA/fxdemFsMmJxfDDuuM8T8sRk+iMh96
nFce8gLb63yPbc/1N78rxpzdyeVagnhCP5q+9L25qDtZl7izyu+JY6cy4Uvo
m9ydfW9IIgaz/06+Pu17+hHk6djpLtfg4O1ij82yjBdazsusc/bK+gu8B2wU
m/ysEHhSmQ3sgD/1M3Uxujzh+g6sAuvBq9eMdWBeS9sEc77reoR4zHmJs2Xm
tdB7x0YXpy/b7BLbJjnYcue8k4oRE6bkAhPgj67BKn4DItdabXwCp7o43yQP
IyfnHv2BSZ2NS3sLEcv4fYmYz28u9InBSmIZeNj8GxW5PXkAsZH7PrZv9kJd
+ZhrAOJ+vfc2yza+2FiT9Rrtbb/UtXN8PvzhmGtCbL9lIfpQVydxLuyCXIvc
cJr7FNzTs2i0frhHrvjeEx6f6nxyp2W8wXPROTEKvdcZM5D1Ta6RweT11g/f
kYtQM1c4/8j4+QbLLG9MrfA58cWZ9kdkjw6ae7KrjFMNSeRuE3WdWQysmFEM
m8RW8Efqa34v7GesWmr7wDaJidRxe4zBm41vTcY4ZE3flN7m2ULoHz8mr+zm
vv0BYzF92t22P3hRL9CzAiPoJbH+JPfQyCnJJ7Fr8BFsxGcbjNPYY942CY8v
zafez9Qg5FbYaN65JPtpdBwqOg4eSMLfphejH7bB+yO/aON8uMn65N3jxZDV
xXz0UD9xz+2GfOD9RvG7KnFuDR7qfpPutxVC99RD1EX0K7AjbGavY/Na65a+
Mb3p9kmMnyxEfo1MyIfQPe+R+zWac0T8Dxbit1jyt1lJ4FmDsZjfm8nfZmr8
1UzsH4wCQ6h7qAnol37g3ynAdXry64z/vKcf/GEhdHC0ELaFjKn3PvZv6/zG
fsGyX2V/o1e00ba/1efHVzd4DXRBboA+Lv0Gl4n8aom/22Df3WxeC70vfuPo
mIRd8XsOvkLPm9738ULwPFYI/EPO9Dyxq1ssQ3KJQ84nsDEwlP5Gje2Ne3wO
u6YGwXaw6UbnyDnnyfVaYwNn1vWw6Dh950L4LXtBl9gq43nrEp12SCLeIld+
e3vGZ1pr3OI3B85DHOY9z8j1gu0NzMEmwR9yF/RILMBnB7jvsNf+usX+ttRx
abX5oKOJxod/JYHr4CC5WaV/nyXn+1oheqxXJBGPHrJfgNn0E8Fq/m8AnP9t
ErH9xuzl99yDddgr+S55Lroe4NhX61ry9ST6vMj+zSTiALEB/v0dKzkXMRY7
xoax5bdsz/jsQ+4501enD07uQy7fxb8PEkeJp9RNnIdz/SaJvj95664k9lRp
3KPX8r77zNQlfHvpt+PyeKY2wD7IL8ktyY+R2Y4kML6rzw5WPuw9YBfoZp/j
CDpEf9RG2CV7Ou/31AF7kvg/myfdG9jhuh55l7pOpL9M/3h4LvDgsH/7IDcn
NyL3IUdf4Wd+jz3iOfV+j+5fLcTvqq8U4veTw8YEbHGP953xbwpbC4Ftb1om
2PKlvoLjwTuWC/a33GsTw4nlI23Tu833tL/jGbnd5DmbbbPL05d/tzvgOfAh
HyDO4oPsiXqXugi5/B9Gk/yH
          "]], PolygonBox[CompressedData["
1:eJwllW1ol2UUxu82df+5fO7n+auVJBN1m5ZGBIH0oXSbLzMXQiIoWYSGiIYj
rCjdhtrUSoVBffKD+EFQFIqYBJmkU5crXa7m67RgLV9mTtsirGXS7+L6cOBc
9znnPuc+b/fE5XUvry0IIdRDw6BrWQj5ohDujAyhD/7zfAi9JSEc4exiDOGf
NITTxWDkJeCT6ByF34W8NgnhZmbbKmzmYXs8s+4ATlaj38JZP7J29H8Gn0B+
f4TvaNNd0BD4MLgV/jA6JbkQzkJr4b/Avg/7GQT7Kv4mcPYbur9CV9BfxNl4
dC8QYyN8FfrnkN0rDKESfg40C/tq7Kt5y1xwJbgfnevYzwbPBLcS32VwP7ju
4RDexf4Uvh6BzqPbBf2EvCbvt3ah3w9ejM9S/PdAM7h/IvrX0b1BPCnyx6AU
3T7FDL8J++3Y74QuoJtAbch2o1MH/xnyHmS38L+Euz/IW7cF+QbJoUJ8nYJW
wf/LnQ+UO943lLkmqk0n8inEM8DZX8j3I/8Dfhv33UJWDnVjvzCx7y7wNPSP
Za5FM2fzkS1IbfsU8lr4H7A5iGwdObqTd06V26nIZ8OXjqYeo1zTNehOBk8f
5Zofic6hcqkajY3OuXJfDD0e3XPqvT7um5m6Z9Q7d8FzU/uU72by04HshdS6
ZdAlcCX4NnwF9EriHlQvKibFppqoNjehDH498t6ca/gj/HzlLOceUa+0crYM
X09jX4b9nNSxfEdMW5C9CB4ET4dW4u9rzqYU+s16e1t0Lz0DLh/tnlXv9kKl
0T2j3lEPq5dngX/PuSer8X8NquW9B7jjPfUWeCH4S/w3gt+EPoGvR/9tZA3Q
HnATuBF+BP6u8tYizoZr1jO/fTU1W4G/prx7oRn9rfDPp56dHeDN4PPRvHpW
vascKBfycRzZlrxtFbNiL8g8iwXIH4KvzzuWKu48iv5H4E9LnGPleh14A3iQ
GrUg78k8Kx3Yv0F856LfqpnQbHwITcv5jo/hX0+8G7RjtGuuRPeSdoZ2x7jo
t3+jfcbdk/DZnvMM1WB7NXMttCOa0B3MPEuamT/hK3jvs7x3H/ZnkDdAnYWu
gWrxfvRbVSPV6iR4L3gN+Db4Pnd0D/OM/gc/NvPbEmgMfHv03do52j1no2v9
Dvgu+EbmXaUdrV2tmdRs6g16i3pcva4ab4R/LfEsagY0C+pJ9eYA8s2JY1Js
6ukT+JqXuheU0xrtr9S7JaC/NHUMikUz34n+6ejZU06Um03RudWO1K7cBn1f
5B2tXV0GjVHu9cdk3pnanTqbjOxJfCQ5z8wTqXe+dv9I6Cv4Q9G9rR5Rr2iG
NEvK8bfaJ9CEnGdYs3w5ehdox22M3pnandJ5LvVO1G7UH7OAfAyBO4q9g7WL
tQO1CxXTS8jrE/em/sC35D91bJo5zV4F9Ch8N/Q3b1uVeFdqJ2g3jMuce/0B
+gu2Ru8O/RH6KxoSz4ZiWM/9k6J7Qzn8Bf17mXMnH+XIlib+G/RH66/+H+ry
I+g=
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNVTlMVFEUfWE+S5jlL5UJUBBcorUClZrIZoJAFBItTIxGGCXRDmgUBgSX
QqKGhK2z1yBOtLGzErAyURSwAiSIGaRQwMJzuCfR4ua9+e++u5xz7pvyyzfP
3shzzj2FxWBNnnNHYcdgg75zLVhrA+eOFDk3W+jcNfx+CcsVO5fF+iTu3OO4
nfEbzyZgzYpRCTuEu28Lbf8scq4cvz/45sPvzLGDu39g77HfxjqnPPsKnGvP
d+4qLI3f/bAMbNozn1lYDfLvqp750Lkl7GuQ54XOZ2BVSecW8X0BtlJkNazF
bH1VaPuRuPXDXtaLrQ/mK0etSXwbwtqZNJ8B9bWh3hqAUQ77eq0jikP/6qRh
1Is7Y7BRz874jfGHsT6EvcG3PM/qiWFdQQ+vsb+FvCuh5ayLLOdh5Z0QHoyz
Bp/vqHsZ6+/Q8DyIu+M465Mfa6EP+2MtvTr7Af8tfNvvG67b/3Gxo30QGg7E
ozXh3LmEccf6ryeth2XVsBpa3HZYhyyjXOyd9VJL4+KZfP7EvU3YJPa3feud
GIzpnHyW+MYveU7nmz6ojV3VmRW+9J2CnQ4Mt/uR8dYpLqjztOrKqk/WsQpc
K6QJaoWaqZTfGc/usU+elSpGk/RO36/yp/YXtF9SnDLh0SfciV9ad/d6lSYb
C6yvd57pc1X1fPSttueR4Z/UPJJT9jUgnZOLMs3opjDh/OY0wzwnZ/T5jJiP
sL8bGS6MRW30iZsx9cu47IfcVitXhW+cbYRWH7XL+tsSVl+L3pImYUetrotf
ap1xS3XWIWx4r029ZXSHdXAeuhKWo1+4s/epyObwC2opkU+p3pVm7x8Xzarj
RGAYEkv6dsuf/FQJt4zqYQ6e9ySs3nX1z/p7dDcmP3LJelq0Z74S5SYGB3zT
6K/QcOR35q0LbJYXfbvXqjjdykmfSXFJLELNIGeR9TNHnt6FAem9PrI73+Bz
MWX4TOk95KxwLjgr29IGtdaod3ZWs8N5I6/ktyGy+ljnNPa10ifnb06+nJ2T
geE3GNl5rTRMvVXpfaDWhvXWHRNG7JH6IS/Ek/rm/kLK4o5LBw80w/ciw4Ca
JlbUeE68UMPkqV+9she+/0OR5b2D9ZNveY4HhnOXeKRm2CM5ZJ/cX0INV1KW
K9Ibyf+brOK3C89TkfVODKY1N3vvrm+9zmM9n7J55n8g3wnyUqn6t8RFWv91
M+JhVLH4ltfF7R3+C/bbECg=
          "]], PolygonBox[CompressedData["
1:eJwlkU0vQ2EQhSfcRKP09r5bLKo+wm8QEh9tlyKRsJAIe7YWIhJarY2IdOeH
2PgXFkXUriUpKRIEC8/JLE5y5p4zM3fOm9vaXdnpMbNREIGx2Oyj3+wNdBKz
NujAjxBb8ONgdpY2Owd3eCfAH/oP+ER/ApeR9zzDy/hHIu+pwIfxP6I9gAZ6
hXqwz2x1gF70pazZMv6plFkBvplx/gLms+6RV54yvbN864Xn0efgteD/esG+
U/gtnmvm79HTpQ7snE75zgR+g56jboH92D3yamaDugnqzOqil5i/nvFdbTBD
/cWMX25ZxFPFWw2+Wz3qrYFC2jP6TjwjZaWe8dh71KvMXxPPXNm/g3zsGSmr
JhiSNzhXpgvwYtb/TTdt828nwd9GNx/iLwWfpTcpBr9Rt16hH8SeqbKdBBsZ
v0m3KZM16vvYNb2Z3u4fwB9UoQ==
          "]]}]}}, {{}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
       LineBox[{3965, 4838, 3966, 3964, 4052, 4782, 3672, 4156, 3673, 4783, 
        4055, 4159, 4158, 4056, 4848, 4057, 3968, 4743, 4058, 4740, 4742, 
        4741, 4160, 4675, 4676, 4569, 3867, 4568, 3868, 4059, 4785, 3677, 
        4162, 3680, 4787, 4061, 4166, 4165, 3973, 4840, 3974, 3873, 4368, 
        4369, 4370, 3683, 4167, 4168, 4062, 4744, 4746, 4745, 4169, 4678, 
        4582, 4583, 4581, 4585, 4584, 4679, 4680, 4589, 3875, 4588, 3876, 
        4590, 3976, 4599, 3877, 4598, 3878, 4600, 3977}]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0ktLVlEYhuFlkAMLNc3QieGhQkMQoqKBA7Ogvs8IigIVgiRELLQjmJqk
Bf6RNEKJShtUipmaQllqVIPEMHBWWTnSCrzW4Obez/O+ax9gF9S3nGpOCSE8
Rk1mCAVozAjhIe5lhXAsPYRC3XF+uS2EMYwizfwi8rNDaOJXui28ZveKcx32
r3KxPKi/5nqIr/Ml3qVP2OmVn8nNeI4+OanfY17NE+47iXFsNR9GkWe+4BI7
pRhxfd+5E/b3yif5gdyiT8e6rk2+pW/nMnlU3+G6M/a4HL8Bxe49xuV2xvm7
2UR8f7yO720+yfvMp/iH+XT8LrzFbvM3vN98hn+av+MbmMWK/J4PmLfysnyT
s5HiGzeh03uexkE7Z7jfzpx5G+YxIJ/VHzJvl+/In7iLP3I3V5hV8mF8cM+c
eJZ3xD080te6x2ddnryZU3FbV4dK58/xE3sL5kfkKhyV78oLdvP5C+/kHgyZ
nXdmUVcYv4m3x2fjgn6JvyE3PhPdugYk4j/HT53/6ly1nIz/nPzL3m+sYBV/
kNCv81+s4T/+IanfAMDBZec=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV09tPz3Ecx/FPBxQ6p1L9OrCZC2PMhbFy5s4wmxtTOkoqbMrhIoQ/A5VD
wiiHnOfKIec5XNiMqc1Wt4WN8PhePHt+3q/3+/35/vb7fSutatncHBdCiPen
MTWEkyjNCKEE//AXu2QnUOxchHGMoUF2HDHnQoxiBPWyDhQ452MYQ6iVHUWu
cw6+4guqZGmcipTo2WkhfOYK+XSehqmIyT/xNnkyJ2FK9Ax5B75nhnCMP8ry
+D3n8gdu57ecza/4DV5jhZ2l6SEswzu9K+qt7l+i3sLtSDSXgJd4gc2yEH0/
Zv4i014bhu228nO9DH7G6TzIy/XKsdj8EX4mb+dBXiRbiE3uneA/+I00vX0Y
MreX58sW4JFzr2yj+XnqDdyjfihPwWPPe4onKJPPNdPKbdiPgziAJrO3Meo8
wHPM3eRZWSHc4gb0Y0S/j2frX+VS/Wtcjxa9PWjGFXWJmSbnwz7Tbv6lTpbX
oVu9PnqPZOu4S31ZXqSOoTfad/clTsKD6Pflh7zWfKGZNdxp76K8FgWyC1xs
r4cn4575SXyfV5vPN7OKz9g7L5+pzkOj+px6FzfgpyxRXYPT6pV2cmS5OCvb
KevmGep650P6dfxDnSC/G73LHPNZqjk++n5lcXwnetfMZ5nNRlf0+e12cqa6
Jvpd9Kt5XB3kA3YqudB9O/if/s3of5JvRe8UX+cbuIZ+9KFcnuGOMj7lvjN2
06P3CVXq0+odXIkx2YS5Ctk39Xb+DzAchZ4=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV1fV/V2UUwPE76S7bn1QUBIMc6X8g4UBpUOwCi7BbYmxjGyPGxgIYGylI
jO4cjcRPivWDLwVGp+L7/PDZ5znnOee5d/c+z/0+OHJ02qiUJEmu+dOvSZL8
3DxJ+vM/jdE0SdqJ2yNNbkqzJDkjf0b+Obkxxs9zDXFNzFRTIO4oX0vciTP1
ZCED2ZiKzvK5PA05OCvO41Sewed4OlfH+ta8r4Xr8Uy583Jnrd0hroPO6IRZ
5vKj19wA8Vh1A7m2eJbeQcb5XFdcB13MF6gvxGxcEM/hrlzMF7mIL8U6+u53
DwO4RO6yXLU1Uq3ZBYPku3Kpublxj+YGi8epG8L1xLPVDDUu4Abi+uhmfr76
MszDFfEC7s4VfJXL+Vqso+8B9zCYF8pdl7sQa1izO3qiBxaZWxz3b26YeLy6
4dxQXKh3hPEcbixuhB7ml6q/wUv4Ji/jX9Sdxq94WtwT+8yl6Zkql40s5CIH
VeZ2mMu0dhW/hbfRC72RLT+Q/469hRwcFN/rf2plnFijNbcS75XfhxS5NnLd
4pmgB9qKd5m75Xo7eQ92Y2/slXj3+EPNCT6Fk1Fjrp+1jhofw370jftXd8D4
Mb6NPBwW5/IhnsZHeCgPQ2E8Z2v9Z/xsnAn0xhRxL87gPpzOf8Wz43PoF88s
engU3sFk8TNq3jT+CauNM6193Dgj9rj50+gr7hP9cv3j3OF3+XT1v8WZjL64
Ni5EHOeT/8R5VGO7nklxTUzERmxAG88zXf0Vva+LL/MbnCVXyNvwPSbgO6zH
unhe+iaruaR+rfg1FMQex1Z8g2/xNSqxBq31nFK/Ud898c7Fk4wvyq02/yry
46xiC77EV/gCq7ASj+o5qX6Dvrut8Yh4YpwDuR/NvxLfIMzAZnyGz/EpVmA5
Wuo5oX69vrus8bB4gvF5uR/Mv4zpyMMmfIxP8BGWYSke0nNc/Tp9d1pjiVwL
XswvRZ38tNiXPJ7ncef4NvCxOKPxzuPZiZvrWyhuxhU8Mq4R30fexeO4lDvp
L+Ej+srljnKluKm+BeImXMYvYol8Du/ksVzMHfUX8UF9h3EIa8SN9DVGQ8xX
+wIWy2fzDh7Dc7hDfCu5St8B7I/3Jq6vrwHqYZ7aEVgkP5W384exN7h9fGd5
j7592ItV4jr66qI25qodjoXyWbH/+IPYF9xO/6w48/p2YxdWimvqq4UaKI1v
Hiridyf2Ir8fe4Kf0j+Dt+nbge2xZ8Qp+u5AgpI46yiXz4h9yO/FfuAn9efx
Zn1bsQUr4lvAt/EvitUOwQL5KbEH+d34jvAT+nN5g7pNcQ6wXHyTb+EGitQO
Rpl8euw/Hs05/Hj8fvLa2Lux92K/iq/xdVyN77raVHXz5btyF1TGe0Zb4/8B
htQ1IA==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0sdSE1AYQOHLzpUKYsOCIBYgCWXBDpQOIrZHYIEKCFIERJGiVB/A9hi8
BzowLGjSIQl7mLHM8GVx5tz//BfuZJKclq5nnWkhhDlEzoRQmR7C/OkQls+G
sIKYtpwRQpSr7X7aVfEvruFSvY4XzLW8yPVcpjfykrmBm/AAp/yvI7tjVCDd
XM7d7uWh1Z3n+O3tDWwiX//i3j33Vpxf2K/ySz6nZ+CPXYH21fm+cxxVWDNX
8l8U2n8zVzsnUIt1cw3/Q8T+u7nB+RJveXtNa/POeXMmesxJ+3pcMNfxRf7P
pXaz7n7GNA7NM1zCU5zkSU7wU/efoMjfxnDorbg+Yf9Yj2oRJPUD/ZP+KPUZ
tAIk9I/aOPLNfe7c5bg+po3ijrlXv80H+oj2AXnmW7iJXOzb7bs3bNfsjRzt
Bvb0Pf29/lDP1q5jV9/V36W+V/2adhU7+o4+lPqu9StaFrb1bb1R+2Eudn7r
zhYP8CYPchH38wb3pX4D/IZj3Mvr/Jp70I2ouZO70I5X6MBlb5wAuNBiFg==

        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwNzckuA1AYhuG/NcXUlr2hxLBDEGNwAcaqea7a0boY6qZYSMRUtlwAEnae
xZv3fN//n3OyhXKulIiIIjpSEfNtEbc8x3e8wDXtEUl8pSO+MYxXeYjP7XTi
Sh6R753HuCqP8oXchWt5XH5wnuQJfOIDDWZTXMv1qMOP3Gt3w/+bWMeLnOce
zvEzr/ETz9qfQcbdNN4zEY/6VfOU3IpLuYXfzFb0y2iWy/omruqXdItolEv6
LCrO097+wy8GdUU7ZzjBKQoY0B/xMfZxiAP063d5D1vYwTb69Al/JnHj3bx/
Khxyt9k/O3oteA==
        "]]}, {}, {}}, {InsetBox["100", 4904], InsetBox["200", 4905], 
      InsetBox["300", 4906], InsetBox["400", 4907], InsetBox["500", 4908], 
      InsetBox["600", 4909]}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.882869943813424*^9, 3.882870081259675*^9, 3.8828701166396313`*^9, 
   3.882871729377467*^9, 3.882871865813219*^9, 3.8828720659863653`*^9, 
   3.882872131858041*^9, 3.882873121832155*^9, 3.8828734641296663`*^9, 
   3.8828736620083113`*^9, 3.882875873212578*^9, 3.8828759718578873`*^9, 
   3.882876170985383*^9, 3.883105853929991*^9, {3.8831099767956038`*^9, 
   3.883109996566893*^9}, 3.883110210204383*^9, 3.8831103304892282`*^9, 
   3.883110463645043*^9, 3.883110763208725*^9, 3.8834689541537952`*^9, 
   3.883473334934162*^9, 3.8834793891091433`*^9, 3.88347964277168*^9, 
   3.88355384539804*^9, 3.883646077759963*^9, 3.883646562487159*^9},
 CellLabel->
  "Out[114]=",ExpressionUUID->"5d6b7975-54f9-4f76-9afe-74ad694852e3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ContourPlot", "[", 
  RowBox[{
   RowBox[{"q2", "[", 
    RowBox[{"Et", ",", 
     RowBox[{
      FractionBox["thetaCM", "180"], "Pi"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", "0", ",", "50"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", "180"}], "}"}], ",", 
   RowBox[{"PlotPoints", "\[Rule]", "50"}], ",", 
   RowBox[{"Contours", "\[Rule]", "10"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}], ",", 
   RowBox[{"ContourLabels", "->", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882869946235857*^9, 3.8828699513682823`*^9}, {
  3.882870053861499*^9, 3.882870058838035*^9}, {3.882870091343609*^9, 
  3.8828701131764917`*^9}, {3.882875864487756*^9, 3.882875867330675*^9}, {
  3.882875978035491*^9, 3.882875981124445*^9}, {3.882876107810185*^9, 
  3.8828761458585567`*^9}, {3.88310999739314*^9, 3.8831099975130577`*^9}, {
  3.883110316326748*^9, 3.883110322401126*^9}, {3.883110467842113*^9, 
  3.883110468060246*^9}},
 CellLabel->
  "In[115]:=",ExpressionUUID->"19052f96-5012-4bb8-8d61-ab162fcff6b3"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxsnQeYTcf7xzeiRsm1Olmusvpi73asO9au1dnVrbJ2V0m0IKIlCCFqCJJI
k5CEaJFoIaIL0SXRiS4hsUL0/r/n7P28x8zv7/E8no935txz5jvlnXfmzCmb
NiC5R7aAgIB/SgQEWP+af4r89OnYD1tf9+ocoGB3yX8apL+ZW+l2l7Bt7l1Y
uIz9H8WFKzSe6fv7kpHfLTyn9fVBL3QtJ1zKvl4F4bnW3Q2qKFzWvn5l4a++
rxd+5J2qwpXs36suvPjspcI/fVpDuKj9+7WEj76z48HBDqHG/XiEO9oPFGY8
b7jwyTX9fH8jhO3SHBQp3KXFlj1VhkUJl7YvEC2s/05+hR46BygYPXS7Sxg9
YPSA0UPP7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9vuDB6wOgBoweM
HrCuR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5Ch
R5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5ChR5DoMc7K9kJF0UPnAAWj
h253CaMHjB4weuj53cLoAaMHjB4wesDoAaMHjB4wesDood+PRxg99OcNF0YP
GD1g9IDRA9bbR4jRPkKM9hFitI8Qo32EGO0jxGgfIUb7CDHaR4jRPkKM9hFi
tI8Qo32EGO0jxGgfIUb7CDHaR4jRPkKM9hFitI8Qo32EGO0jxGgfIUb7CDHa
R8j/jFvooXOA3Bd66HaXMHrA6AGjh57fLYweMHrA6AGjB4weMHrA6AGjB4we
+v14DF3CjOcNF0YPGD1g9IDRw/QbstpLpNFfRRr9VaTRX0Ua/VWk0V9FGv1V
pNFfRRr9VaTRX0Ua/VWk0V9FGv1VpNFfRRr9VaTRX0Ua/VWk0V9FGv1VpNFf
RRr9VaTRX0Ua/VWk0V9FGv2V44f1ty8UI3roHKBg9NDtLmH0gNEDRg89v1sY
PWD0gNEDRg8YPWD0gNEDRg8YPfT78Qijh/684cLoAaMHjB4wesD6+BFrjB+x
xvgRa4wfscb4EWuMH7HG+BFrjB+xxvgRa4wfscb4EWuMH7HG+BFrjB+xxvgR
a4wfscb4EWuMH7FGPxVrjB+xxvgRa4wfscb4EWuMH7HG+BEresy3n0OJHjoH
KBg9dLtLGD1g9IDRQ8/vFkYPGD1g9IDRA0YPGD1g9IDRA0YP/X48wuihP2+4
MHrA6AGjB4wesD6exxnjeZwxnscZ43mcMZ7HGeN5nDGexxnjeZwxnscZ43mc
MZ7HGeN5nDGexxnjeZwxnscZ43mcMZ7HGeN5nOgB6+N5nDGexxnjeZwxnscZ
43mcMZ7HiR7v3p7ne5J40UPnAAWjh253CaMHjB4weuj53cLoAaMHjB4wesDo
AaMHjB4wesDood+PRxg99OcNF0YPGD1g9IDRA0aPt+3xvaHooXOAgtFDt7uE
0QNGDxg99PxuYfSA0QNGDxg9YPSA0QNGDxg9YPTQ78cjjB7684YLoweMHjB6
wOgBo8eImBw1F55NFD10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6
wOgBoweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0eNW+UGPRQ+cABaOHbncJoweM
HjB66PndwugBoweMHjB6wOgBoweMHjB6wOih349HGD305w0XRg8YPWD0gNED
Ro+eb/Ze+uK0pqKHzgEKRg/d7hJGDxg9YPTQ87uF0QNGDxg9YPSA0QNGDxg9
YPSA0UO/H48weujPGy6MHjB6wOgBoweMHp3t32kueugcoGD00O0uYfSA0QNG
Dz2/Wxg9YPSA0QNGDxg9YPSA0QNGDxg99PvxCKOH/rzhwugBoweMHjB6wOiR
bCWLaSl66BygYPTQ7S5h9IDRA0YPPb9bGD1g9IDRA0YPGD1g9IDRA0YPGD30
+/EIo4f+vOHC6AGjB4weMHrA6JH1HK1ED50DFIweut0ljB4wesDooed3C6MH
jB4wesDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YPGD0+t/MliR46
BygYPXS7Sxg9YPSA0UPP7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9v
uDB6wOgBoweMHjB6fGz/brLooXOAgtFDt7uE0QNGDxg99PxuYfSA0QNGDxg9
YPSA0QNGDxg9YPTQ78cjjB7684YLoweMHjB6wOgBo8f7dkG1Fj10DlAweuh2
lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6wOgBoweMHvr9eITRQ3/ecGH0gNED
Rg8YPWD0mGHP19uIHjoHKBg9dLtLGD1g9IDRQ8/vFkYPGD1g9IDRA0YPGD1g
9IDRA0YP/X48wuihP2+4MHrA6AGjB4weMHpMsW6jTFvRQ+cABaOHbncJoweM
HjB66PndwugBoweMHjB6wOgBoweMHjB6wOih349HGD305w0XRg8YPWD0gNED
Ro8Jdvykneihc4CC0UO3u4TRA0YPGD30/G5h9IDRA0YPGD1g9IDRA0YPGD1g
9NDvxyOMHvrzhgujB4weMHrA6AGjx1vW9PC2o4fOAQpGD93uEkYPGD1g9NDz
u4XRA0YPGD1g9IDRA0YPGD1g9IDRQ78fjzB66M8bLoweMHrA6AGjB4web9jx
rPaih84BCkYP3e4SRg8YPWD00PO7hdEDRg8YPWD0gNEDRg8YPWD0gNFDvx+P
MHrozxsujB4wesDoAaMHjB5DX+jqS9lB9NA5QMHoodtdwugBoweMHnp+tzB6
wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdEDRg8YPWD0gNFjkH2hjqKH
zgEKRg/d7hJGDxg9YPTQ87uF0QNGDxg9YPSA0QNGDxg9YPSA0UO/H48weujP
Gy6MHjB6wOgBoweMHv2s7mteJ9FD5wAFo4dudwmjB4weMHro+d3C6AGjB4we
MHrA6AGjB4weMHrA6KHfj0cYPfTnDRdGDxg9YPSA0QNGj952vDdF9NA5QMHo
odtdwugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdED
Rg8YPWD0gNEj3U7XWfTQOUDB6KHbXcLoAaMHjB56frcwesDoAaMHjB4wesDo
AaMHjB4weuj34xFGD/15w4XRA0YPGD1g9IDRo6v9O11ED50DFIweut0ljB4w
esDooed3C6MHjB4wesDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YP
GD06Wj/boquzH07jAAXLfjjN7hJGD1j2w/lZ9sNp+d3Csh/Oz7Ifzs+yH87P
sh/Oz7Ifzs+yH87Psh/Oz7Ifzs+yH067H4+w7IfTnjdcWPbD+Rk9YNkP52fZ
D+dn9Ghjr4d0Ez10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweMHjB6wOgB
oweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0sO87MFX00DlAweih213C6AGjB4we
en63MHrA6AGjB4weMHrA6AGjB4weMHro9+MRRg/9ecOF0QNGDxg9YPSA9fVB
Rw+dWR9MNdYHHT1g9ID19cFUY33Q0QPW1wdTjfXBVGN90NED1tcHHT1gfX0w
1VgfTDXWBx09YH190NED1tcHU431wVRjfTDVWB909LCf67Gjh84BCkYP3e4S
Rg8YPWD00PO7hdEDRg8YPWD0gNEDRg8YPWD0gNFDvx+PMHrozxsujB4wesDo
AaMHjB5Zz9ld9NA5QMHoodtdwugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweM
HjB66PfjEUYP/XnDhdEDRg8YPWD0gNHDfu7Ljh46BygYPXS7Sxg9YPSA0UPP
7xZGDxg9YPSA0QNGDxg9YPSA0QNGD/1+PMLooT9vuDB6wOgBoweMHjB6ZP1u
mrG/PU30gPX97WmiB4wesL6/Pc3Y354mesD6/vY0Y397mrG/Pc3Y355m7G9P
M/a3pxn729OM/e1pxv72NNED1ve3p4kesL6/Pc3Y355m7G9PM/a3p4kedrn8
7uihc4CC0UO3u4TRA0YPGD30/G5h9IDRA0YPGD1g9IDRA0YPGD1g9NDvxyOM
HvrzhgujB4weMHrA6AGjx0y7oNJFD50DFIweut0ljB4wesDooed3C6MHjB4w
esDoAaMHjB4wesDoAaOHfj8eYfTQnzdcGD1g9IDRA0YPGD2s6OL3Gx09dA5Q
MHrodpcwesDoAaOHnt8tjB4wesDoAaMHjB4wesDoAaMHjB76/XiE0UN/3nBh
9IDRA0YPGD1g9Jhq72/IED10DlAweuh2lzB6wOgBo4ee3y2MHjB6wOgBoweM
HjB6wOgBoweMHvr9eITRQ3/ecGH0gNEDRg8YPWD0yGMtTy1y9NA5QMHoodtd
wugBoweMHnp+tzB6wOgBoweMHjB6wOgBoweMHjB66PfjEUYP/XnDhdEDRg8Y
PWD0gNFjgr3fpIezv0TjAAXL/hLN7hJGD1j2l/hZ9pdo+d3Csr/Ez7K/xM+y
v8TPsr/Ez7K/xM+yv8TPsr/Ez7K/xM+yv0S7H4+w7C/RnjdcWPaX+Bk9YNlf
4mfZX+Jn9Hi+5sKzl2Y7eugcoGD00O0uYfSA0QNGDz2/Wxg9YPSA0QNGDxg9
YPSA0QNGDxg99PvxCKOH/rzhwugBoweMHjB6wOgxxt7/01P00DlAweih213C
6AGjB4ween63MHrA6AGjB4weMHrA6AGjB4weMHro9+MRRg/9ecOF0QNGDxg9
YPSAA579M8bRQ2f/eWRjHD10u0sYPWD0gNFDz+8WRg9YO49sjKMHrJ1HNsbR
A9bOIxvj6AFr55GNcfTQ78cjjB7684YLoweMHrB2HtkYRw/4yVPrD+cDPPbC
WedpFBU75QRnne9QRTjrffZawlnv74YLD7P3F0UJZ9jrxXWE7duM8Qp/Zj9H
feFZtpAN1AsdF56JyB+jhnb8eOB7uRKEBzxs+t3PfzQUTvvs8bX7KxsJt/Uu
D6kxuYlwi3OpfdNSmwknjAtc8kFkC+HPAs+/1iNnK1Xbuu1LYaqcXTytlNXL
l/wnXJj0n16oPXv0DSf9S3b8I0nSw1nVPUL4DXsfXKQw15u1atbKj04lyfWK
2/PFZLkezPVgrgdbqux4ECXM9SePv/rbyp3O9QJtf7u1XA/mejDXg+V67RL+
27fCyV/A9k/aSH6Y/DD5x1aaW/DyZ449t91/txX9Tc5u1992wk+s5+jTXviB
Vf3adRC+ZS331e8ofN1qRtU7Cf/ta6Vji6UI/2k122ydhc9a1T3T4VNWuz3W
RfiIVYzbugr/6qvNOZZ3E7bfR2yeKnzeuv5Wh1OtBhDd3bm+9XvLHO5ktc/y
ac7vWb8/x+E2VvMskC5syzouXW9f9x3ebd3fgAzhRla3ddHh7VbF6NRDOM5X
XEsPOLzZaq4J9KdnvfQfdO1mf8L/6/1Nfslv9jecB6f3RxUNe4jRP3mM9JFG
fxVj5I81+i9lXC/O6M/ipb7uPPRFye43nf5n8+vJHd/flSi8pnj2Obs+byz8
3Y+rjzwe0lR4budeRTzNmgt/+KR4m57lWgonturRuPkbTv/iLbuxd69eTv+g
/is68a1kpz1HbBuw8JNYpz3WnP3LjtWV28j9m/vTzfbE/ugzVr0cG6N2+5Ln
eqZ9sV8XZr8ozH5FmP1yMPu1YPYLwexXgdkvIXr51+ulvvvXi2HWK2HWy2DW
a2DWC2Di1br+TvsiXgcTL4KJV8DMl2Hma1Le/vkCjL8K6/7jWS/tjXYEa+1r
jJM+wPhD+9Lsz/gH9OfUD5Ppr/v6dG0aF6NW+Ir3r3IRwtZVWx2IFp7oe761
I+sKW9XFVVgJW48b/3d94WBfcQ7f3EAdsvq1+lnnWtVd307sth9446oXttTZ
3zJQ7NZjrB3jFrbkmXS8krDdnXlqCr/iq33vJ4QJW/3nkxuRwspXe3rOrS1c
1dddHmhSTzivrzw+eeg8z3O+4jz4a5zwXZ/82b+JF860SnFUQ+ELvnbWt00j
4eO+5/6iahPhAz55Dwc0E/7Zp1Keo82F1/taV+yylsLHfPnXbmklfMjX//++
NEl4v+96mR8mC9vte1xrVcDWOdr+vRwDHH23+36vbP82Ym9mjw8O77YLtK0K
8unSwJfe6j/iOrYVe6I9XrQVPa33v7fFt7PrtceX/gVfBRhfs73kt/qP90p2
kN9f6tP/qxwdhRf4WtPG6w7P99W3Yyc7OfXPV73/25EiPMd3u/lWdBae6but
ip91EX7Xd1tqYlenvvruq9PgbsL1ffrXrpkqvMFXwXd+5XAdX31uU7K78A8+
Pc5NdzjCN0D3z5EmbHVHD0c4bNX/idcdXuLrQIr0TBe25PjypMNf+8qjVlKG
cHlf/d6ww+HPfT/QpG4PYatcj37v8Ce+8sqo1FOYfgFmvIbpL6Q8/f4/jP8v
evj9f8tvSPTxDV/qjbXCha3kFf+IEt7p+3f6pDrCVva7EV7hVr72XGtgfeGG
vvqUkdhAfm+S3X8mCI+2xyenfQ2xxyOnffWxxx+nfXW3+z2nfbW3x5cWwhXt
8cRpT/j7MP46jH8N038uT+94MT7O8W/pr2lP4o8Z7YnxGca/lf7M79/C+LfS
P/r9Wxj/Fsa/hfFvYfxbGP8Wxr+F8W9h/FsY/1au7/dvYfxb+T2/f/ts/2z5
tzD+7bP9v+XfSv/m929h/Fvp3/z+LYx/C+v+7UG/f5sp7QP/VecgYfxV3R5i
tCePkd4Zf/BX9fyxRntTxvWc8Qd/Feb8Jpjzg2DOr9H0nNZUmPM7YM6PgDm/
QPoj279y2gfvb8O8Pwzz/ir1HX810WqG/vHF8k9h/FHS449yPfxRGH8Uxh+F
8Udh/FEYf1T08PujUj/9/iiMP6qXj8P4ozD+KIw/quvrtAf8URnf/P4ojD8K
44/C+KMw/iiMPwrr/uhBrx3WSjPGk2fiT2Z8wnyf3IxXmO+Xm/EL7KSnvmA3
mfrD75vnD5i/j90up1WRtj92cI6Tnv6c54Ptx1kXZftb/4xz7PjLPC9cY6Hl
2Dr9vT5fzvRSvro/f1D8ecrHzI8edrUOjVTt7P4yq32djIwS5vdNe5Ldfzp2
kxmv9tr9foSUD+XNeAhTnpQP6clPeVHeJuOPkh9GL8ZHyhcmPeXD/RAvgulP
eD78VcqX9Nh/tscD5/1Xnpf6AaM/bI9jHcqKf5Xlh9QUJv4Gc38w+fHHyA8T
H4S5Hsz14IV2RSkt/hzXhy9bfsKHzjnr/B7M78FcH84al0qKf8jvwVwf5now
14OzyrOo+JdcH84ap6oJc32Y68PUH5jfg7P0zS7x62A7np9POOs5A4W5P9j2
e8ZWEeb+4Kw4uEeY+4O5P5j5OvHzrPWQe8LcL2z7WcMqCXM/ML8P83uw7Yel
l5f4vO2n9QsW5vrwWst8MlSY68NcH0Y/4v3UD5j6CHM/8B2rWI7UEub3YX4P
pvxYT6D8YMoPRm8YvWH0hnkemPYCc78w4xHM/cLcL+sd1B+Y+g3zezDXhyk/
5kvoCaMnTH2B+X2Y/gXm92Dun/kY5Q1T3jDlDVPeMOUNU94w9Qem/sA8P8z9
w9RX5ou0R5j0MOXNfBJ9YeojzPVhyof5J+UDUz4w5QNTPjDlA1M+MOUDUz4w
5QNTP2DqB0z9gKkfMPUTprxg+lvm2zDzbcqH+TblA1M+MOUD055grg9TXozP
lBdMeZnjN0x5wZQXTHnBlBdMecGUF0x5wdQvmPoFU79g/L8Uez6dLOWJv0p5
wpQf/in1C6a8YMoLprxgygumfPDPKB+Y8oG5X/wvygemfGDKB6Z+EC/h+WCe
D6b8YJ6P+ArPB/N8MM9H/IXng3ke4jGUP0x9gLlf4jXcL8z9Eb/h/mDKA6b+
w9Rf4j3YYe6X+A92mPIlHoR+MP0nTH6Y5yF+xPMQP6K/hdGbeBLjDfEkypN4
EnaY9kJ8if6B+BL3T3yJ+gCTHqY9EH8iPUx6GH2JT5Ee1vwVH1MexK/ID5Me
pryJb2GHqR/Eu2hPMPlh8sPkJz5Gfpj8MPlh8hNPIz9Mfpj8MPNF+jPmZ8zX
0Bs77ZN5sT7/yi/1Cbs+H8sv9Q+7Pj/LL/UZuz5fy2/M94KUfn3ne2nm/A27
fj3n+3DMryhP8/th5vwNuz4/rGjMB53vnzHfov4Rr+R6sH6/Icb9Ot/zYj5F
e9HeW5XvczjzN+z6/NL5/pI5f8PO/jDmS/RP5veVdHthYf37CM78zfxekTl/
w879mN9/Yj5FPYHZ3wazn8ycvxH/5fdgfs/8nhDzK/p383s22Ck3c/5Geq5v
fk+H+ZQ+/3a+54Kdegizv82cv5Ffn48736Mx50PEtyk/fT6X25g/uZQ+vyss
TP2E2Y9nzt/4PeI55vwNO/oy36J+m/M383sb5nzN/L4H8yn0NL8vgZ36A1Of
YeJT5vzN/J4G8yGeB6a89flcbqXbXUqf3xUWprxh6pOe323M/8r9z3zN/J4C
8zHah3meP3b0Zf6Fvub59NhpH/p87brMzygfmPLR53O5lW53KX1+V1iY8oEp
Hz2/25j/lROmvsDUD5j6AVM/YOorTP2EGW/N+RrrP7B5fjjzLcoLprz0+V1u
YfxDk5nfMB6Y8z3zvGvSU74w5QtTvjDlC1O+MOULU74w5QtTvjDlC1M/Yeqj
fj/O/I76r9//dZnPUd4w46HJzM8of5j6ClOeMOUJU556frcw/ZfJzPcoX5jy
hSlfmP7UZOZ/zAdgysO0M99DH+zoA6MPzHhpMtejfsOUr253CeMfmcz8UvY1
+u34RyaTHn1g9IHRB0YPk5m/0v9ih7GjH4x+MP6Uycx3Gf+ww9ip3zB6wtRn
k5kv0x6x48+aTHr6E+wwdvSE0RNGP5OZfzP+YIfN+Tp22DyPjvToCzP/MJn5
PfUZO/XXZDM+YJ6nhp34h8nECxifscNmfEE/f+yexB/QG8ZOPAF/GTtsxiOw
y/zFv34v8xc/037JTzzGZOIX9E/Y6Y9MJj2/D/P7MPUJpv6YTHyE+osdNuMp
2GHzvB/s1C/yM980mXiM5k89E69hvwO/R3rqo8nEc8gP0x+Y8R/9PJqzXtJL
/Mof/6H+YKd/M5n0zE+ww2Z8yTzvBTv9j8nEn6R9+O0wdtqfGb9iPwi/T3rq
o8nEt2gP2KV9+O1cH6a/M+Nl+nkVgZIeJj4m8UAjvsZ+Fdo/dhg7v6efp1D0
f+Jv7Hfh+mY8DjvX088DKCrxNtqnGa9j/wzXg7kerK1nPhO/Y78N14O5nhnP
w05+4nfkh+k/zPgf+3m4Hkx7NeOB7Pehv8AOY+f6MNeHuR77hcgPkx8mP0x+
9heRHyY/TH6Y/HYjH+Pkh8kPk9+0s1+F/gpmP/MJe/xorppY5fRVmMQb7Wnm
onBh9q+ctttvkuR3WemuOP27Ob8xv+9j+uvm9y1Mf9r8XoLpH5vfHzD9YfM8
eNO/Nc+7N/1V83xy0z81z1c3/U3z/GzT3zTP9zb9SfN8Z9OfNM/LNv1F8/xj
0z80zyc2/UPzPGfT/zPP7zX9P/N8Xd2/dP+PP2eeL2v6b+Z5t6Z/Zp5/avpn
5nmxpv9lng9q+l/m+Z16/tz/40+Z51ea/hN26hOM/2Sev2n6S+b5i6a/ZJ6f
iB3/2vR/zPMCTX/LPL/Q9HfwX9DfPI+O9Pgz5vlupv9insdm+i/meXSmf2Ke
T2b6J+Z5YqY/ZJ6nZvoj5vlapj+Cnfprnm9FevpP0/8wz4fS7Y6/Qf0w/RXT
PzDPz8E/wD821/PM8Zvxl/prngfC+E39YvylfsLWe0c1Kznjy992v+Osd1H/
ie/iz8OMP/ns348XzmmPDwmSn3gr+WHSZ7PHA4cf2f17ouQn3kp+mPT37P7c
4f/s/rmx5CfeSn6Y9Nfs53bYbrfFmkp+M14Jk/6i3T86bI/Pmc5+FNqv9v1Q
H5Peev9kaU2Hx1vV5JVUyU97JT9M+m1W9/R1ql6eZ538tFfyw6S33kfbUdJh
W5+23Z31eX97JD9Meuv9pdYzuuv67XHy077ID5Pe7ndzODzcqvcqzVnf97cv
8sOkt96P6jfSYbtfWuPkpz3KecB+Jr2d7LqTf7BVv6qlS37aJ/lh0tvNsqfD
9vA0z8lPeyY/THp7H/Aph+1uqmiG5Kc9y/5sP5Peer9rXpLDdjue6uSnvZMf
Jn1lqx/Y6XAvq30810Pys15Pfpj01vtjP9V1+KLVfoY6+VmvJz9M+nJWv7TC
4e5W+8h08rNeT36Y9F9YAlRymP3qvK98ZuLQR68+0z+xPgWz/gOz3gOzngPz
vgrM+A4zPsOMvzDjJcz4BjM+wYw/MOMJzHgCM17AjA8w8yuY+RLM/AdmPlOi
04S2KZVi1Cz3n1tSR8Q7553795OTnvcN9PfhM72kZ3+C/ryBxvvRgcb5kuUk
fdY46Dber3dLevYbkD5rHK1knBdSSdKz/k/6rPXkmsb5ITXFnnX/OY3zAHKK
Pev3SxjnA5QQe9Z6bAXj/f8KYs/wj+v6eSbVxJ61XhxqnGcSqvTyd/T4/8u7
nHG/VYzydfavsz+B8oJJn7XeHCbp2W9Aepj0o/zzGtKzX4D0MOlftsfr2np/
GuPV+1Mfk97u31vUk/Ssr5MeJr3tVz5Wkp71c9LDpLf94N/jhCfa7SlCHz/2
RAt3tW+wrrB9uUAlbP/MZed+XPa/DcQ/o/7YxTavjNSXXfaEoIZwul1upaS+
ZP1uMakftp/xYnVh3s+Bs/7NKc9j+xU5qgrbv182TDhr4Kwkz5s1fyovz/uN
1RG/5BHm/nj+P20/K1Q4y7+/7KU8svbt1pLyYf8pzPNQXvw+/if+LMz94x9y
ffw93sex3xfa1kLKJ8tfSpL+75PBZ5a2mnjLC8+5ut295vdCYi//pHLepXFl
he+P/zfHm59UFt6Tf01Ai1s1hSf3WDy7VJnnhfMPOPpnuefyCL8ed35TzfrF
haN33usd5iklnG/RDyd6Dy8v3O+fuOV/36ggfL7WqMMxv1UVbjA4z+L1TaoL
p3Qu13t8kVDhKY97Je/41eFqW14o+PbEc/K8h3p9O3TFeZfYxwyt06/N7DLC
HzbICH1YrpJzP3uqVt87soYw/RNM/yTl6e+fYPonmP5Jv15+g4OUfv2Khj1E
5uPMd5gfm/E3xqOs+a5bxpvJdjuoKWzX5w+DZHyx/ZCxJWT8sONmhUOEW/jf
J4Ozfr+I9Kf2POCFasLEB+Gs+8om/ant9wdUEc6aZ1WU/tNut597hG0/+2w5
6S9/sR7n41Bh7p/+Masd1RImHgnzPiH9I+UD8zzMF9l/CXM/zAcpf+Z33D/z
Na7P/IvyvGDPj5z9Ifx+VnykoLTnrHpQSOKplCfvJ9If8n4g98f7ivQ3vA/I
87F/lP5Jf7/vljfO6jd/bOePXzzybrbDKu2l/LHTf2KnfsRav/t1e+nfrfM6
+pXqIPUDO+MHdu4/2iqIGR3k/tdY1TdnRylv7PSf2KlfYVY1fqOjjA/fW9Xp
RkfREzv9NXbKt4Z1X706Sfla53H8dKqTtA/sjG/YqW/Y6Z+xUz5VrHJNTpHy
WWi1z50pUl+w0/9jp/5gp71XsISL7Zw1zzxZ1j4f5PqKzqIXdvTCbs+D/6mg
ythhoy5Z8+TrweozqxzmdpH6jJ3xCTv1paRVfwt1lfoyxz6Apqu0b+yMx9ip
D9iz+qkXVBFrvHzSNet+Py1gn19S77VuUn+xU3+xU59gxkuY8mc9gvInvoG+
2NEXO/UPO/0p8RD8H+Id6Imd+ood/YiHoB/xDvSHqb+kpz8jHoJ/QryD9oSd
9oSd/hI7/g522gPxEtoD8RDqD3bqD3bqH3baG3b0Jp6C3sRLqD/YqT/Yqc8w
7Y/09KfEW+hPiafQX2CnvsPUF+It0p/44ynUH+Ij1E/iK4xPxEtoP8RD8DeJ
b1CfYdoH8RLqG/EP6ivM+gD+AfF4GP/djI+a8U4zfmnGI834ohkvNON/ZjzP
jM+Z8TYzfmbGw8z4lhmvMuNPZjzJjA+Z8R7iN/hjoYcyVs9slin+YOTimGbh
KYFiv9H5grvPBLfwzouLStU94/iXn/Z9tWj+aMefbvb35tgyrpzCR97uN/v7
dSWE6zZ5vH1RhOMfB/62bdOId6sJ36qe8MfXg535NP0b62fMfxl/mA9hZ76L
nfkRdua32JkfMd/kfUX61x62/q3EznoadsYPic/618Ow0/9L/NS//oWd/p77
e/Z8G+v+aB/Ynz3vxrLTPrA/e/6NZSceiP3Z83AsO/E+7NQP7GY8r/aIT3IP
aBQm7N74ZPzRW5HCL2ZLe175/Fv4dsLPY75pXk/4Wnzh0bl9/ir8558/b6jr
8w/tuNiZ6Kx+4aJzHmPN7KO+Vu875zEerVqlztejG0p6u8P70TkftuKCmhdf
6+Oc17h774nhx9s2kvSRtn/lnB9butG5covqO+c5bug/dW1+n39L+uq2v+Oc
L1v875nd/yjmnPe4xlXvbn2f/0t6e/0/tpnEhxjfsFvnXw2r4pxHyPgEMz6R
3h4XP3fsjDcw441WfoWd8wwZL2DGE9LbzWeyY2d8gBlPSB9v1Z+njp3xA2b8
IL1dn4Y4dsYPmPGF9HYc6G/HzvgCM76Q/kervFIdO+0FZrwhfbRVXocdO+0H
Jp5O+lXWDTR17LQnmPg56T1WeW127LQvmHg56b+zHjjSOe+R9kZ/yDyK9Al2
+02Q/Pa4neC0hzr2/CNReJ09/3Dqf6g9P2gsvNyeHzhsx9OTmwp/bfvnDtv9
b4ZTP7+18r/lsD2fPO6w7bfeddjur1s69cn2c/o6bPtt2x22p9vnHbbdtNpO
fbH9rPYO24X1ncN2v7vPYXtfR7BTH2y3Ls5h26/4xOHiVre91uHX7QMvHb0/
sNyiGg7fstrPBIcDrf7/S4dftdrLQ4dnWA9YwqkPdvsY6NQHxjfqw5v19xyo
MSpCb3++8Q179/E1mn9Y1TkPl/ENe/Ku93Y/PVJX7MT/sM+d8KD8qvrOebnE
+2T9ofLStMvFnPNzif9hn7q7y7yXrjk8b9GwWS3+9gi/k3nS9cMHkU58LdT7
bpkGtYW7DJmfd+K/sU7+U2Pj7+1z7u/jUeHjqn8VJ/xbk41vTl8QJtz0i/GX
MreEC69+t+zDu8lRjr9z8XJau/5OeX3z29vDUp86v++u3OzsxpJOeU0pevn2
L0vqCefsu7xLpZ1e4ZhlX68rXt0pn8ftJ2XuXOdwaMv295plc8rj9v3a1R9N
d5h9DHq8zCkf3gfU42dO+fB+nX49p3yePS/OGs+JX8HEq2DiU/gndvxleUth
5tcw82WY+S/Xo7+G6Y9h+luY/hQ21xeJD8O8vwSzv4f2RDwLJp4FE8+CiWfB
taznyuf0X+b4bI6/5vhqjp/m+GiOf+b4Zo5f5vhkjj+UF+X37HmEFj97HqHF
1C/04/0v/FX2M2Invgfzfhj+47PnZ1rXJ74Hsx+S/OxHg9lfBpvfEzbnA8yP
uD7+Avzs+XgWP3s+nsXPno9n8bPn41nMeizMeqz+Pu5jr3xv28/EO1ifJD3x
dtLDpGe9ifkt6YiXw8SDWH9ivxnxevavwcR7WJ/i+ti5Psz1Sc9+L+ZXsP5+
9Fkv8yuY+sX8nfzsl4KJHzCesR+P9UKY/o79iqwPwvR/7H/DDmPn/rHr+9ni
ZP8g8QSY/pT9oeRnPxtMPIjxkf12xCNg9kOwXw47rL/Pe9ZL/AJm/wTPjx3G
zvNjh7Hz/Nhh7KzDYIexs78OO4yd/XPYYezsN+T5WQ+CiS+yP439j8RrYPaL
sN8QO4yd8mP8gNlfQvlhh7FTfthh7JQfdhg75Ycdxk75YYexU37YYey0F+ww
dvarYoex019hh7FTf7HD2Km/2GHs7M/EDmNHD/192LNexg/0wA7r7wtnl/EI
xo4e2GHs3A/nicK8P8D+T+wwdvoL7DB2+mvsMHbqM3YYO/UZO4yd/avYYeyU
p/5+71kv7yNQnvr7xPfETn3jfQSY9xWob9hh7NQ37DB2ypv3FWD9fYezXv39
27PyvgPlhR3GTnvT38cNlPcZKC/sMHbul/cRYN5noL7zPgHM+wqUp/7+6T0v
7xtQn7DD2Llf3g+Aed+A8iZeCfP+gLwf549XwvhjlDf+tJyn5PfH8B+IZ+I/
wPgPxDfp34mn07/D9O+sJ6EX8Xb2v8OsH7FexHhM/J3xGGY8Jn5GfTX3f8Os
fxCvwn/Bjv8C47+Y6fFPSQ+THn8Vfcz94zDrKcS36E+ws78cZr2F9NRP4r+8
vwCzvke8ivT6eeluYdITr7LjIu4Yic/D+Hcw/iHM/jEYfw/Gn2J+Y6+7dXLi
XxvtauHEu1bZ6+VOPMv2g081kfUz830u83tdzFeyW/IdilSP7fqS5MRvLL0a
OvO/q1b5/uSw9f2R26HOfM9e11rosP38Qc58zy6/mQ7b9S63M987Yd3Pmw5b
1a3BTYft73D0duZ/yVYFPO2wXT9bO/Nn/Ffs++z6Ei/xHBg7/ieMv6aVxxqn
vPGvYPbbwuy3hdlvC7PfFma/Lcx+W5j5Hcz8DmZ+BzO/g5nfafHDZ/bbXnz1
m04F3E78bfeqvMde3+vEj9bd69/2zLPxtdIvX/nymXha4uaSlY89Ez9TaXt7
5tvUQOZ77M/Vz+N67GX+BrPeTnqY+aV+ftdjL/0xzPo++WHy6+dDPfYyv4bZ
n0F+mPw8D+OQfl5ZUZmPwtw/6WHmv/r5W0Vlvg/z++SHyc/4w/4w/X3ncnI9
7VyrdVGSHjb3e7K/jOvD+vldVeT6MNcjPcz8Gv+C/XWMFzDr5exXg9k/yn4D
4sWUC/lh7b2pDgUlHsj+AZj9F8zH8U/o32Hm/+yXIZ7IfhmY8W7Us+O0b77A
+AATL2D/BfFI9l/A7Bcgfs14xfiin9cXK/tR2F9HfYXxTxiP8B9gxgvSw/y+
7Bfyx8vZXwKjj24PNM5XC5T4Bvqwvw99YO19d7nfopKf/R2kx5+BZT+QPz6B
f8R+Pcqf/bvsV4HxBxmf9fPR42X/CfsL2V8CU7+Yz1N+sLY/p0+ilB9M+cA8
L8z+FBj/ingOzPhGfSJejH8DU5/ID5Nf2+/kS0/9gvFvYfpr4hsw4yvtm3g1
/Q3M/ib2T7MfCaZ8eR+O8oUpX5jyhSlfmPKFKV+Y8oMpD5j9WjD1C6Z+wdQf
mPkP+3Vg/A32JxG/x/+FGY/Ir52n4stPeyA9/T1MebJ/lfKEKU+Y8oRpn+Z5
1cQbtPL1+Z+0V5j5Cvlh8mt6+NIzX4Cp7+SHya/p50tP/Yep7+SHya/p7UtP
/YeZX5IfJr9WP5YlyX4+mPGB/DD5tfrkS894ATP/Jj9Mfq3++dKzHw+mPjJ/
oL7B1B8YfwamvcK0V5j9efr53ge97IemvsHEq8zzvvX4zAuyf5r9hzDjDflh
8tP+Sc/4A1N/9e/nFJX81GfSU59h6iv7ual/MPUJRm/z/HHiRejPfnD0h9Gb
/DD50Z/06A+jP/vL0Yf94vQnxLPkvBV/vIr6wX50+heY+B/5YfJTn0hP/AOm
fnE/xDvN89P1+Fc22d/O/leY+kR+mPzUL9JTv2DqD/vhqd8w/Zd5PjvxNeoH
++fpz2D6L/LD5Kc+kZ7+DKZ+sd+e+mSe/048j/rFfnzqF0z9Yf898UjzvHj9
vJKDXvbns78Zpr2z357+BkYP83x54oPow/589IHRh/32lL95Hj3xRPRgvz56
wOKP+/fjE7/jejDXo75q+YuFCjOfIr7JfApm/mS+P8DvM56wP5PyN8/D189D
OehlPwN66O8DZP+f8/JZr6Y9sf+B9gTTfxAPxZ/DLudvGefpE29FL9a/6Y9h
9DLP3+f9aPRjvz/6wfinMP0L+/mJ97LfmfgtzP59cz+/vn//npznBhMfor6z
v4L5I8z8BKY+sb+a80tgxldzvz77IZnvsR+b+R7M/M7cf8/+SMYP9m9zPgmM
3uZ+fPZLsl5DeublMP0l+WHyc//6+WnO9wy4X/LD5Gc8Zj8K83OY6xPf5vow
1yM9TPyb+SDxbs5bgaU/M94vMN8nwK7Nz++n6/Pz+87vkx7metR39tcwP4CJ
v7C/mvgLzHzMfH+B/aO0N/ZfE7+H6R/ZvwOzn5T5DOmJ58P4D+SX+Yo/P/dP
eu4f5n7JD5Of8ZH9RNwP6wPcD8zvkx5m/YD7IT33A/P75IfJz/2wn4n7Yf2B
+4H5fdLDrE9wP6TnfmB+n/ww+ZnPsB9Xj8fmV3p8Nb+MR7CePsiwO8z7srqd
92ULSzwP/5r4H0w/gj+Onecxv69AvBD/ANa/LxEp+bHDejzwssQLOQ+K+B7+
EXaYeB/9KXbissTzGM/ZzwoT35P1S7+d9kd8TjvfKcYr4yF2mPgZ7Rk79RGm
fzG/b0B8j/EL5nwuGP8ARg8YPWA9fh0nv48dZv2M9kF8j/6XeB39LXaY+B3t
DTvzFZjzxIgH4g/D6A8zn4Lpz4mf4S9gh4m3Ub+I51HeMOWt2wMk/kd5w5Q3
THnr+V3C+Ft6vLKwMOMpTH2DGX/0/M736ug/sMPEA/G/sLMeTrwP/xnGH4J5
nxCmPImvUZ4w5anbAyQeR3nClCdMeer5XcLa+9+ZzvcTYC3+lel8TwHW4luZ
zvcVYC1+lel8bwHW4lOZzvcXYC3+lOl8jwHW4kuZzvcZYC1+lOl8rwEmHg6z
v5X9zZyHwn5b9CKeiF4weun2AIk/oheMXjC/RzyM8Qc7TPzMfs+haFTW+vuM
JHke4lf0NzD+Fkz/BNO/wKwXwsxHYOo/TP2Hqf8w9R9mHITxN2H8A5jyJ/5G
+cPUR+JV1EeY+ghTH2H8Cub/lDfzZezMR+kfOd+K+Q3r64wHrK/L/NO/vs58
Aia9yay/Mz6w/o4dlvNS/f42/gHr8fi7rMfjn8GkN+2s12OHsbN+jx3Gzno+
dpj+SW8vLmW2J13vADmfgv4D/eg/TCaeh79CPBF/Bab9EF+k/cDUP+J71D+T
iYcxnyYex3wbpr2Qn/ZiMtejfpGf+StMf058j/4cpn3BtC+Tib+hF/E6/FGY
8id+R3mbTPyN8ideR/nD9NfE7+ivTSbeRnuivTLfhak/xOuoPzD9IUx/aDLx
M+oz8TviyzDlTzyP8odpn/QnvM+AnfgaLO8f+39f/F9/fI3+y2Tia3Jej/99
IdaLYMZX4nOMryYTbyP+Sv9HfBam/RBfo/2YTHyM/oz4Gf4uTHyJ/pT2wv5B
2geM3Tw/l/6X+BXxJ+IXMHbz/Fz6Y+on8SfqI4zdPP+f/Ix/pGf8g7Gb5/vT
v1O+xHfk+yt+xk58iPk2/T/tn/2ItHcYu/l9TMYD2gvxFtoHjJ14jfY+6Wxn
vyD+M8x5ZDD+MUz8Usu/x2H0gylPmHib9n7nPIcZL2HKA+b55P00f7wGJl6i
7SdMc/azsd/Cfk/aFZP1vm5SvLFfLL8TjyYO7W+v7F+ifcP0B+xn0vevBYk/
x34q/f2dWuIfwfhP7G9ivoOd+RLM/ZKe+sL9wcRPqB+k19/nCZf6BJOe/VD6
/rgQ6R+5Hv408Q78bfY7cT/YaT8w7Yf0tH/uByYeQ3snPe1N30/kMO2b/Uvo
QXwFJp6CvqSnPyG+QP8H0//p55FdN97Puiznk7Fexf3BxFPwz7geevF7MPEQ
6hvXRy/iB/S3MP0t7YPxRt+PU17261D+PI+uT7zowfWIH/F7MPEO6ru5H4j9
KfSPMP0j76sy/+H9JuZH7FdBL963gtmvS33gevT3/B7M/hjqJ9fHv2A+iP+B
/8z4hx1mfkn5s7+C9sN+AtoP/jblhx1mvwHxO/YX0J7xv2nP+NPEE/BviTfg
j9KeWP+GWf9m/oT/S3/F9WDWo4nn4L9SHvi7rKfBrMfhz5Ke9Wjmf/iv1Hf8
Xeo7THnjz1Le+LOUN/4n/RX5Ydav8Z/wd/l97LI+5LcTX+D38Ddh+lN+n3EI
O8z6Nuuh+L/oib+Knviz7KfgejDXIz7P9WhfXI/2xfWYP5jfX+f9GuYb+Lvy
fQa/PyvxYev/CznfW8eOfwfTv5BevpfgXy+mv8Tf5XqsTzNfYb2Z8sIfprw4
/436y/oz9Rf/GP+A93dgzt/G/2f9mPLh/R3mZ7C2X/Ks8z0wrkd953p6/Ms5
Hw5/jd8jPoIerE8zfyA//T9M/8/1mA9wPfYvcD36V/IzPsKMj1zvjWfH+Wjn
fSWY9kp67pf1cuZDrIfL9/L88w/5foufiVfiv5Ke+Q3rMayX098xH8GfgBk/
8H/ley7+9Wf8G5jxA3+Y/pv5Bf0367f4I6zv4i/CjJ/4z/gD2On/Yfp/830r
Mz7F+i71mfVT/F8Y/wh/nHgF/hj9H/6Idr7hmIbiz/J+Jv7scXv+5TDva9I+
iBdR3814Doy/YMZLzHgH/TPlQ//H85nzdXO+TX/A8zGew/J9Xs+Q24lxMeqH
5Csf3VwfnnVOUq2YrHQDwsU+94NmxTr3jha7fd+losU+9cTy2dsL1xW7XY92
1hH74NKFAkO2eMVu6/CaV+ye0PU7d6+pL3Zb1hn1xV719745n05tIPYV9v6G
BlJfeP+E+gDT3/H+CfWH9VzsvE+i+9shUv94H4T6y3yG+A922g/zA5h2ynjJ
/AJm/kB7hRnPWd8lXsj8AGa9lv5Ov75HWNuvsida+i/8fZj5Bv0NTH7WcxkP
uB/6S5j2Rnruj/mEnBfrX7+lP8efh5lPsP7AfAP/gPVW/HX8ado/8QT6V9o3
THuG8S9h9nvin+BPwvifzJfwF2H8TeoX/huM/0j54w/B+v7Es179e2Vnvfr+
wpIS74PxfxjfsOPvwfK+lb9/QX/8GeY/sOxf8PsvlD/+B/0pjL/CfjbGB/wN
9IXRV/cvznrN73Xp3yc96GX8p30R/2J+BLM/g/1S1E/stB+Y+k96/GfOR+B8
HL5fyPohTPlR/yg/xhfKx2TqJ7/H/kF+D/+Q34NpP3r8t9b/fM8OO+0R/eX7
qH5/Fza/Z4ed8mE8Qh/qC4z/S/3GLv2P3y79j58ZP/G3S/r3e+Ivw/jH6E/9
gyk/7X2V5g6b36/DTn9P/aV9UR9h/GP8I+yMJ9Rn6j/piZfwvj39O/4djH/I
/EX3B7OJv0h56N9jyy7xb/k+oN/O/mT2V4o+fjv+K4x/Snr5vqDfv4SJdzM/
ws58kf2Q6MP6JvEL/FPmP8QrmI/j38D4N7QPcz0fxo6e2GHaG/qQHn1ID2NH
X+ww16O/Ij3zK9LD2OnPsMP2OYdznfPQ8GeI/1LfiIfiT+AP017N7x0Q36N/
Ih5F+eK/Mh/CfyVegP+Kf8vz469y//jHMNeDmR8xn2J+Q/3G36X+MP9gviLr
eX7Gf2a/JfNR1vH1/WuZXv08sfwyX5VzSvz1kfg6/TXxdfwD/E3GM/QhP3by
Y6e94L8RT0A/5tu6P3jZy/u49A/6eVqPJN5L+8dOvAk77Z34K3owX+L39fOt
Lnt5H5Lf18+veiR2fh87v6/nd4md58fOeI6d/gI78RTsxFOwM/4Rr6U+6u8X
XjfOm7rsZTzn+fTzpB6JnefDzvPp+V1i5/mw83zYeT7sPB92ng874w922of+
+26x0z6wEw/CTnvGTnwGO+0bO/UHO/UHO/E07Mx/9fu7bpwn5d8ft8zZT6Wf
F/XIa8avsWv745Y5+0uwa/vjfHbiJfhr9Df4Z/gH2OlvsOPPYmd8x048Ezvx
TOzUT+zUT+z4X9jpH7HjL8GUp35+1GUv8XnKEzvliZ36RPye+kT8g/qEnfqE
nfJkfkV56t+DKSzzJ+o74w33x/yH+yM+Qn7iv+Q3318iXsf8lPGF+QvxL8Y/
M/7F+SaMr7yvgD+HHX8RO/EH9ksxXrPfHjv7pbCb560SX2A9OWv/b5hx/m+Y
8b2/KEn/0J6/Rkl6WP/eXh39vJxidSQ9rH8f0Cvpf7X9+XqSHta/11dfP18n
ur5+PnK08/0387yhLP+xgaSHiRf1mNNp16SlYRIvamnHG8PE3vTUhob/dYgS
u63711Fir+Muu71Tjjpit+tZshPPKpvxdv1t39cTu13eT+qJPfuhwWeK1HTi
WfZ43daJZz0aEly6SQ4nnvWa7d82kPbE+wHUX+I/1HfiN/SnxFfoH4iH4E+Z
+7th/EtzvylMf8x+S5j1Ovor7ftMvv5T21/ma/+sl3G/+nrXZdmPxfOzf4n7
08cXpz/DznwN/9N8f5Hrweb3iJhPwsxn6U/Z/wSb7yOSn+eDGW9Y/5H9/f75
Ocz8Fb2xy/f8DDbfF2T+AeNva/vv9zjv7+E/Ux4w98v6Acz8jvqkfQ/Hp7e2
X8nH+OPUF5jyg+n/Nf+8bNj/fJ8Gf10/39iZHzGf0v3xEPGnzf0ljJv0z+Z+
EvYPMD6wf4D+mf6L8Q6mvjN/Yp5A/4W/AVNe+NvMF9ifgP8A4z9wP6wn4p/j
T8GUP/464xf+MOM5TP3BPyb+gn9MucHoib9M/IT2yngPozf+HXrR3kQ/f7xH
vjfojy/Sf9FeYNo/6xu0D+382eYOU39YL6S9EL8hPgETj2A9jPgf/RHpYdLj
P5CeeCv1hf6K/pr6BxNPZ78G9ZH+GSYegv74g+hPf4kd/ws7/hf+KPFt+nfW
r6i/+GfUX90/c0t8m/ZAfID5APFt+kviBfin+vmbl8W/o74Sr6S+0p9Tnuyn
5XrEF7ke9UniWX4794Od+QP1jf6Q9TX8TeoX/Tf1j/6VeB39J/E3yt/cDwrT
XvBH6R9ZH6V/ZD8m7YX5C+0JZnxnvxP9J/4A8SXTP6D/0OJTPuZ6vA9FevZz
kh7GTv+CHeZ6rN+QnvUb0sPYiU9hh7ke+6VIz35S0pvfu6U/ww5zPeYPpGc/
AOlh7MwvsMNcj/qhld+e7nr57XHsjNfYYa5H/SI94znpYeyM59hhrkd9JD3j
Pelh7Izv2GGuR/9IeuK7pIex039iN9dfaB+kZz8v6WHs+BvYYa7H/I307E8g
PYyd+R12mOvRXknPfmLSw9jxf7DDXI/2Tnr2I5Mexo7/hB3mesxHpf77909I
/fczduar8j0KP3M95q+kZz806WHszG+xw1yP94NIz35q+f6bn/EHGL9g1l/x
DxivGG8Zz2DWYxlfGb+4H8Y3mPVZ1k8Zz1g/ZryCWT+j/2c+gT9Hepj07Bcj
PfFpxh8Y/4Z4Nf4N6zmsR8H4z8x/zP1TpIfN99tIT/mRHiY95Ul6yoP9VTD9
K+tL9Jf4o+yfguk/Wc+gP8QfZb0Kpj9j/kX/hH/Mei9M/0K8h/6C+QTpYdLL
93v96Zk/8D4ETHsm3mN+Tyavf1zXvvf1TPzHztcuWtiM95yzx6+6+nnHz8R3
bDdjuRO/MeM5WeXtxGvM+M1v9vM78RnmN5Qf94v/BuO/Mf/K8neLyv3jX+nf
Jykk6x/4N1yP/QYw+7WIn7D+qX8PJUCY+THrJ9RHygN/EcZfNPfj8/zEb2H8
QeZ7tFf8cZj9Jqz30j/B9Gf8HnYYO/MR+iuY/o3fwx+H6c/of/DHYfabUN+J
t8L439Rv5new+X0h0x81/UnTHzT9OdMfM/0p0x8y/RnTHzH9CdMfMMdzczw2
x1NzPGQ8k/fv/PuhaP9m/ID9T6yXm/EC4hWsL5rxAcqX8cOMB1De9G/m/J/y
pn815/vsf6E/ZX7P+Mj98fzcH+M3THs14zHED5g/w4y3/B71m/cR4Pft67WW
9Snil7R34pXMv8zvxZvfhze/925+n5396KyXET/k+c3zbomrUP5mf8h+QPYr
mf0f+Zn/kZ/+jv2B7A8x+zf29zHemv0Z9Y/xnvpH+bSz4x+t5T60+ICvPPG3
6J/pj8iPf8V6Iv0R5Y0/RTyJ/ojyJz5AvIz+CD2IB7OeSX+EPvp5cuFSf7g/
+/yHca3FX6K/5n5h7ldfz8ou5cF4o+8PfOSlfKjf1A/qN+2D9gRzP4wX+G/m
7zMeoD+/x/WZ78P8vhVPaRoXk7V+UzGnsKV/sZ9LCFv9TOc6FYStehMyu5qw
dbnRr4cKW+W27APn+gV95X2ub6JwLt/9FGnQWNj63kOTEk2Fb/qeYtS/zYSv
+ORe8XMLYWu8uNm8lbD1/Yf8MUnCVr9VqUKysNUO6r/YWtjqz1IetFZBvgJs
4GPrfab+l9rY/bjHx9b8YsTBtmK39n9uWNBe8lvrIaff6yBcz1f8997oKGz1
J4G9OwmH+4q/eusUYas/SazXWbiqr550r9JF2FrPGFm4q7DbV57vP3XYWn9Y
/nc3Yes81YuvpGrlO/Csw1a//aRtd+HnfNV56h6HrX6hRP00YWu9cMEah615
Rlj1dGGru988z2FrPt+8WIbwvz79Tkx12KqOvbL1cPT0VdtbQx225rNvZTps
Rx3Te6rgm+/H3S5eTvbn/LZk0Z2+8TVlP8/DPU8/ODgwXDj/kOBVro+ihGnv
OUpuWtwsR0GVuj/OldnW2c/zr3trxrk/y8j+HPqXHWtjWhaf7VYVy377y6fF
aoj953ebzh4a6uzn+aft2r6Jy0rJeoR7ecPPpz0KE2b/wI/XRh8YV6OWanOx
wFunl1aTfpT+YF5UfMTXb4aoCaV3fD47zdnX/U/t0e2uJedW+nn/hVWxuXsv
LjzmUaO2/d1y1soqYj82bukHJ1s654fNWX9//tiGzvcnKZcxfTvHt4uIkf6q
cpt9d1JqR0n8uGqtWRklDkSJP7zjvUd/FqhbW5Ua9d3SwSWc/eLEg3/JM+Kd
luW80v/We2f3oaO7YtWm0ZUqTQ529oNvPbq0wduHzsr3Aok3p6R6Cvd+ub48
X8TtXZ/kzVtf9r/MnL37x48+V+r1pUPLV8yI/J/94jmWZ6S2OxOngl9tsLLx
3QjxRz66+v2iiMIVxD/i+SZEz33n06IJMt7sPBo+sNHoeLWg3P0tc7o652NR
XpOLtC19e0+izG82PM7XY/vJhvL8fV1/lN78aUN5/gLPt4tfn9xQddm7LeSL
gs5+depj0JXh4dOyN1L7/yhX/ofGzvfz0H1Ih7yHG7ZtIr/ftsjx1xY+bCb3
O2VIwosrhjST+vXRnLffORTTTMpj+pLDj1debapWHh4y+9xA5/uiXO/KsLaf
PBeUpN4eWqbEkl8LyfpCxolJOXI3dc4jQo+Rc3aVnzwkSfT4r8jg9r3eSZLy
+LR8vQExHyVJebzbf1K7O4uTpDx2Vnh5/YyfkmQ8ffObYRfv7EuS+tW43tbs
Bc8kyXpIidM5R31wKknut9Sk22OzH2mtZv67v2yfiNxK/15ablUpsmzlXhFt
pD6t3tC30nvt28j979hU9YerI9rI/bdu8N6aTz9vI/fT4nDk5SoJbeV+Tg5o
UPb119qqCl+9eSLSXV3GX+5n5MPk/IU3tHPeX1/4cN3GYu2k/KvO+XDS7fbt
pH1d+67D9rdLtpf7vXemya7RzdqrMu6g4LS4Ysb47VEpkzKf3GzcXu53xY5S
RX76r72Ud/xn4xedquX4W1/MT/yycXQHVTihS799rZz3VXm+1lM+e7+ez//i
fdcF7one3892UA+iCwTu7+K8P1pzYvYvpyzOIfM/6tvzD5dXblysk+jzYZE/
Uqbs66gSk26vmVooStLzfAtynAqeuL6T6PHxyIs9H+RKUe1f/2jnyhNFZf5I
eXkSkqp0zJ6i5g8K8fzY0DmvmOe/1j/HpgLfp8j61dqLNRatnO34e+dTmz3Z
eaGz+rd+h6Vbdj2W/efVP33z9q6LlWS98YfF0fc+7OB87xZ9NqcMfaNfald1
Ked3t/4Kccn+cvqLljOXJe57o6vq/uC7k6OSnPczj31Rr+C/bzjfy+V5d66+
NPn32G4q/nTIg58/KCbrl+g1ZMTondNSnP388T16v7Ohbjd53hHb1p4NKpeq
urkvbE1o57yPKfv50hesT9iaquodLjJ1xGdlJf7mHlZ4y/Otnfcl0Xt+yuPx
4fNTVcKwI9fqnM2U838pv7B3RpUeXK676jwo59r+58vLfJvynnOi0O6Nvus9
iRm8YMlzoWKf9rh4yeeyO/utWI9ruWVH79+HO+93rgm5/He997qr/H9VaRR6
IFjm71/0znP8boNIYdpfuReH1x1aOE29HO65tqeAR+b3iRuqLw68VUXm8zHr
652rl1Fc5vMfvP8ktt+Lzv4uynP9kdPDu2xLVyOHZT9+YmVJme//lvdmxIUl
1YSbjHu769HEMOFHC/puuTzpJYkHrJznKdU3sbow7fFe6x6/t16aoUKjfhn1
1uXSEh+IylO2U683ykh84L8lqZcmLysj8YGPO3ubTw8upy702+S5HvGCSszV
KPRi+3CVb/X6t7yvvaTenZB6fk5pt4qMPVdkSdNgtSc5ZVZMbA01q8eDoM9W
VFDJfVKPro8JV6Oetg7fv66Cylf8WEL/ai+p2amhndyLq6vOFR7Mvlywuqp2
Oj72js8/n+zK89WYDOv7SMHFGhTzqBlXX19fe1Bu1fvK2tH9ckSq/oNc8Znl
qqq2m3ouONDGNw7++v5719uGqTLNhhYecSJCBdaf8NVR3/jQ4LnRuy6+EqFq
7f343+9ulVfN3lrz1+8z66rKVbMV+zHKo+626/R72+N11dahOV6Ze6GUern1
6Fl1Y5SKKVB6zXgVqn48MmR8qc5KdcwZHXHu+jXvh3ljz6QlxKlOhccuunLh
sbdL8d/yDi8Qp+68+1Wb6UG1VNdscyb88qi++uSrzzv07e3rf7r0OP9S0zh1
/Mj+i51jq6uRJ+sNO/hXAxVVeeX0dZ0qqL9X/TDqxScJ6si0K/+UyF1RHTz0
/KymixPU95sDZ5bqEaE+f/FCjtsPEtTiB+fuvZXtmjfqr3X5PvwxUb1fL2z6
G7OfeHuua1/q5leJ6vihhMO3suVSRWNbT3prSqJKCdnRMPObAuqrRtUyjvVL
VJ+eyP11nYZhamz1J20/GttYvZ7nw8GbkmqphPnb726Y1FRVzHn6Sv8yoerd
kPvTfg5uqj77d+2O+Q+ueEdcTDtU+fnmauGywqNmzHns3fHw0sjovM3VrkZ/
za1aMJca0uD+z60KNleb651uV6XZiyr26ZJXaxZprh7t3r/0zoZCqkWUp9k7
RZurHPNf+nbQgWJqzYGiBZ4Ubq7a1yx179PjpdR/Ey5+WcXVXG3NeaF3t5Nl
VGaOzRen5mquesR+FLL2Sln1y41Rw2c9aKbm/1d1wrTXrPWigbneq9JSDXrw
X3COY4+8N2/Mu1ekbpJKr//vnIMqlzoya0vO1i2T1PlSu1dsfMGlZpXO3WFq
WpLq0/X2qMa++nSmS8OT+br7xuuJg+7FF62lxt9I33a8YrJ6480CLbZVClVF
in0/+WJostof9an7SrhHfVi73os5Y5LV+OD+AVvqhKnKHcvlHFk7Wb2WreTq
Jr763CciI8+MsGT1cPO0lttKPfHGrYys+/GLbdR7Aat3dW1aTv0yIue9G0Xb
qgUx+z0ttl/zBoe+2+7eX+1U7JFL7U82C1V/PPz2g11/t1OnK8Qv/G1kIVXk
bOlqvZa0V98FhqyoXqGcigvJWfqH7zuoroWT2wx+tbKq//T7Anm+76jChz3e
MaFEddWzRcWic/t0UuVm7cy2McGt7jysnXxtYGe1+qOHVRc2r6DKd9+RVKt9
F/Vt2tphPZOiVf7iM1vvrNhVfZpU5cE71cLVLwfDmn6SrZta+PrK/id948Pz
I/+88ji6m5o8P3J3cMMI1Xz1ijK5X09VV3el72zsqy9bGp4+3/FRqqowc17z
lKhI1ezrhxOW7euuBu6ZErE9srg60K/Chk1r0lWNkp9NyagfpnKOeX1WQHCG
aj3Vc6DC2y+pPXNWDg3/JkM1K5mnQavq1dWlElUqn5iZodocb/bt2CVlVNka
vx1Y7ptPNas0ZNG8YjHqZOKN9GKB97y76has0cnHh37eEhzyY2HlejG92M9F
Y9SNlZsfF/+xrCrS4fddp4vEqDrd71XMKFFFnd0aumRe4Rg1olMHz4zYWsrV
oumBHIVi1NW4+6nb/g1Tn38+e2RAwRiVvca1eoO+jFJ7X308aFyBGPXSqoEF
Dnaoo9ZO7vvfyLwxalSvJZ3cLq+aHDMz+tdcMWreqjvu0xn11Yy4RZ3Tno9R
wYVWlM7foIFqvG3/1V63o1VmoS+797odr3qXT53X6Fa0Cssc8+2A8AQ143yX
d05nRqsnHV9LPflzQ3Xlh2Pvh1yNVq8F3XyuTolE1W/d5sBFF6NVt/g3fsr9
fiPVanvKgorno1XRReN/GvlcY/Vlcr9/zx6IUHuXXU/9PkeyGvVJpaprzkar
bFs2Tvtpcpr6JWLYrGhf+txHIsdHLUhT61vEvbnnz2jVOSTq5ZzPp6t3Y9xX
jv0VrWp/2b5/3RLpKqFf+WKH/4lWjxv/u/voiHRV9OLPN6b67mdm8dbLlkxN
Vy9kFLx0899o9ePsQm97/0tXOzpMDOx/PVptebrw0PCADLXlzsHE+jd9v7e3
ZkDjl316ln/pj+k+Ltn8XpG5r2WoXL/2//agrzymfpnnyaMzGco9t2bl5+5E
qwk3Tm4reCVDlX3l0brv7kar1ncvB6a166HemDfqyF4fF/c0vXegSw+1L+Zk
3qv3otWZI31zvbm3h7r53P3UBz5+sH5wu8O/9VADakw5NOl+tDr++/5iSXE9
1eFWtUPf9fH9zdnOl2nUU62tFBe+yFdf8IOnzN4wfX4+X32YP27bvL8j1YJz
mSMfvxCjRpfcX+jk8Npqf9G+JbPniVFN7rjm1H2+nrp87Vrg4pwx6r30JV/e
3qrUwaijjc749H5uVO15GWPi1C9BtadWvBGtPLvKdB31XEP1xb1XPhpzOVqt
3jqpXr5TiaphrvQWUy468f1p/Xuo81ec+P7dHO5Wza89873KV7NfuXTDie/3
HFFm5qZbTnz/+luv5rtyx4nvr76yP6jfPSe+vzX71KDW9534fr/33mv1+X0n
vo9/9c6lj+5UKJasXG3eDVKNne+bjn035tH4+jXV81sjc/496T9vmS8u59oR
XlPdvNnh+F+Hs6u7G+IS373jVoOKNp7Q/JFbrT34SbnjLUqraVNCWy+qWkXN
CPf8tvvbEHX6gFr2QnoVVfBQ5+PTKoarHV/mnFvzUiWVd/ONt149UUJla9Lx
1rtHa6qwoKHz2/wRptr0H9Ku4Mu11Mb+HWvHHgnz1ePjE8ttrqVyLg/6pWqu
QHVsZ5MnBf4MU+v6nCpdLKmQylPor6JjOoapQm9/efyz4Gqq+ieDXs47Iky9
PvfXAyuq3fMe+27FuYT9UWrDhPOLlxa+761za3DBzzZGqVXtyw9Qeauo4N/X
Ht2XJ0rVGt5pZvvWwerBwsDOH3apozwzap+fuSNY7Zq+PSYos7aKmtr4jwHz
PWpJ/nvJRZbVVi8OHFS+jStKJVWL6bGoeh0V9/FbYa8eDPL96y3Q7oZXrfkk
Y0dKvrJq+ahSPY4tr6fqvDX59R+3hKqK806e/O9UPfW4WMm2JU9Fqis5NpQ/
+Uc9NfaNtJy790SqL84cvnjggFctf2Vf8CcX8qrTvYLOxn5cXyVVeC5z/r2C
qsKI8ZNbJNRX05+8uGjE3UD17ZC6dS6G1FdX33hvdcdVtdQN793pAZH1VeOE
8Fq5XwtRA7pt2xz4cgM1rOWsX0+Vr6RuVquwIqpPgnpra7HcJ+tVUZc6Pv62
y/l4Vf+FcQcm/hKhzmys8enao/Hqo68zJv33RkG15/Wuvx3tlKjeSaw8fPjt
IuqNRe9NyVYjUe3blPrf7LEl1fhGrfr9fbehCgmJDBlVs7SaWOGVXhnbG6rq
C4tszhZSRm27fGTIF6saqohWRxZOOedW/SMPFYyY3FDVeOXszV0XwtTsiq8c
e7KzkVpYv+iND+6EqWLZb6QtXdZIuR7mb3NqT6gKP/dXvYcbmqhb5SNWdXxa
Qe3NUX/+myeb+cbxp+siQyqpj5ZOqjx3fTNVx3vj5uJeVVTV0G/3vjyjmZpa
4eOOngHVVOSe2s817tJMfffFgFJtV1VT0Y3mrfq1TTNV+tXFBT6I8dXPnE1X
zCvfTB2q9XTn9tgj3nJlum89XS5J7Xg9T93oTbe8459sPd8oLEmlTR0w8vwf
UerFcSm/pV1opbZveOQueMKtarQ6dWLw8iS1aEPp47l2lFVNYz691P6HJHXj
1VIH/ilQXuUaF3994tYklXzjveovLy2vfn+6L8esnUkqfsTLt67GBat6kavL
1j2cpF7beeXfoFnB6ljRfB9/czRJbbvZ/8lPQyqpf0+eztnzryTVPnbi3uYj
KqnUva12TfBx9bNVSuxOq6IaJe7sduBOkro1q9TSIc2qqTvugDen+8aDzBuj
IzZHhSjVffzp2YWSVWoNdTwluKbq/+bsTtPdyeriG7nyN/D5zfkvz/uzzcMk
ldju976pnqPeqbtWTvrpbGv1kXpt/ugOhdSPjV5JHziwjSpZNqD6/pNFVNDl
HsN2v9NG1R1Vpcu+c0XVq+On5Tgxo42aMXZ96NCeJZX3/JJrzb9vo+aWvdR1
zJ9B6kjbk+l7f2ujpuxPHZNyJFilZvz+aH+Ptqr92Hx3RqVVUn1yNt4XPKWt
OlRqSmiPCZXU7JnejqPebasG7tq7srmnipqfu8bAPOvaqsGB6tZ3RWuodR9n
37S9YTsV1WjK2NYzaqp1nw/91jWsner1xtHji5bUVJ8XWeCaP7KdKv7Z3w8H
flpL7fl79PyHK9uphNGz4ys+n1NldvyozF9126tPH4x62Dkln6p8bF2nqxnt
Va/st5ePW51PZZaKn1S+V3s16sb9apOWFVSLVasDB2f60hfu3OPubx7V9esX
JvYZ2l6daXzuUsKIUmp8vswrC8t0UC/2bNn5pVGl1Zz7W1u0atlBfTur5vTg
b0ur0QsetGyc3EH9OHFLpfSrblV9ZP74pxM6qMzC1eOK1whWjYPO9lhWoaMa
X2nKuQ+nBqu4gCalXg7rqDpPvPaZyltJNRh96lKrQR3VopuPPiwaf9jb8LPB
wa8830nVm/TzimWzL3jfezt3/IPCndQvR3b93v6dO97Mcpeufd2ok1rQ/cLe
WSnVVM6q3XIvi+ukmt4u9Ffy0/zqZrGF4wZe83HVN2fE5w9U2facL7e8Sopa
8PCLcffvlVT13u/zuNKVFNV087BXF54MUjsXnA0pUKOziuzUrOe5y7XU8AV5
Vuy7kaJWjepfvNDBKNU4z6aceat0VrnPfJm4pmR59bn7gyedC3RRCyt7VnfO
E60ud3quxAdnO6viHbzH4rae9EYcbD/Es7OL+i1p3J9Xep7zDj42Y1Hgr13U
2y+88k6L6Gh1sFBKjVfndVEzJua5cnVSDuX+ITAl5cuuanbxNS9PGFxF/b7/
g+DVu7uqJeVf7XrpZph6of2T+s1/6Ko2tah0f+6tQLX6w2H7y0/rpqa/m29S
1PUS6rXj/+V4rm6qGts8MOSLRSXV60WipsU1TlWlJwaufVogQu364Vynyz57
RLfFdZtsq6kKXOx67qX1qeqka+/aXkcj1KHb60/8V7276lf119OhFyJ887SC
MwPrdVc1ek3++s/O973f5z4/vd/C7mr4C5l3h5aKVIm/xV5o9nF3danOhQ/7
7A9VbQZU7fJyUJrKP2fT16eOhKqSxz96mhScpvrN/ST+64QqKl/+rp0XBKSr
IgVWdL870Need6YdeykwXS3vv+LLQt971Pt7bhzeUd7nj+Xpuizb5kj1zXMX
rgypmK6CXm/1TczeoqrPhscLzgxPV/NXnVx16R+PypjXdPvJUelqdONNFxsf
jlTxA58b0XNIujrXrEHT2ycj1Zd5V/cYMD1dvVln8bDllaqppcG3/v7mfLp6
acr9mt918/WPpfd8vez5DLXy8919t5cJU81af9Sr4B++9P1uzXrzZqTaemft
nsn30lUZ14HQEz5O6DzgRJ0H6Wpv4djyC1qVUgOmPDzUr0OGmlnwhZk1L1ZT
Cz8JOP5KSoZKu73r4uOcUarm0O35qvfKUP2n12vVrWiUSvl4ecK+wz5/cGqR
a2/3La1e3Jhv44o2PVTljX887ju6tDr+/f6BfXz+38aAV4vn/yZM7fpp8KYb
Q3qoT8NKtw4uF6WqVI/PVaBhD3Xh+8kB+6uUUaUHzf5w36YeqtnVW3cKlA1R
/+xI/yDH6h7qnWOVOr8SEaLqtY9evPFSD3VqUOWY+BVhaneu2QcHrfX5j7+s
jRv8Q5iKmrPi8IyLPdTYbp79bapGqaZ/TStz9YceauKD8n8smlVGHeld95+B
VXqqaQ2GJ77cJEQdm77zvbNhPdXGlfV2F20ZorL3vpr5dtueasLvPzzutyFM
PXy35JkcPnvTE39kO7QxTDVMbnF7T7ueKl/JaeEXa0SpvMu3n+hTrae68Pqf
J6p/HKHaP/mg5luuZNkfuOLw/lXrniapN8fdHxQd7Hw/pk/31KcPk8vKehD7
NbK/0rzJ2FxBauivbYf3Twv/n/OH+r+ycuiphhXUsI8vxpz4wS1xNNb7S33w
075/Z1RWiQe+vR4ytIbYiRd5M29envt8dbXAvaRqZEBpOW+I9xF6heYc/VFm
DVXwpZR23YqFyHoS+2+2Lr66eU3+qs77Ul8FbG50uabEu77o1TD2rQ211IBq
0wPOniwu57de7XA1Z/eB//u9msqePB+sOhmqbrUoGDF6YHVJL99H2ht2/tt5
HjXwzz6dolc637PZ0XFeoav9oozzYrOr6DPnjy/4MlLioV3L9zvY/71wtfDy
7PnvNywo+7eIL++JVYFV54er5WG5/ju8varYZX9kz6gLP7WNlPNVZoTdWfpj
jwh1eOimzJrjne/hEH8cm5y70ubG0ap/zREJhfLe9bK/rPTwpZXH+ub7sHyP
0rVh26HiMSqsgnfqtD0e2U/B/pj4bvfe+jw0RuKZ/0fWewdiGX/940b23nuP
7M19o9zHFm657b1XhVSySShUUpQoIynJzhYiMyRJZqEiEhlZFdX3+jzP4/L7
Pc+fr/t9Xdf93u9zzvuc18ElZ+1syx2BekMyxSEBMdS/bH6zdvbb0v/Nj8Pr
MPVbleIo2m92t3pMrnIfgVMMQ/xG4Uro+/v+GC1GHvJpZ7Rghb/bjnRDDf3e
vr8ME4ZH6y3mKDpfWuerKe95AqjE2JZIywqi/msoX3adswReESBifYX27hNF
tHw/Xmb7cFnhBVJteMwpNVlZ+7/z63zEKWhOf1xwOeATOHRs1k+nSRvEr5T6
3HvBgPoL7tuLLcpqmF0btEHoBKfnX2Re7JfnHCq52psuj97f7fs3+dxIHRay
0UHvF5y6s8xIWHVA0uOST03qQX6dQ7jE5esn/2++nMS6rggZCT04/+hii06L
LOqPt7/+idYoXa+Y6aHjUXFYP3JbwgC1N/O/oBbyTtcH0v6dn5ccJVD/iH39
zqKj5V/frD46nzf8p8csvA/y0VBObbuVaB3knwmeyHyGYzIE2hvXSP0qudF4
rf35ezyMRuCOxzGYbmPubvmojMZn7c836W9W8Vbzx9D+aVXCvGd8fpBfZlg8
aDGazARqBPx+pG4povyx+/PTb6aMpPbzQX6UJ6KpMnd6DvKh4ORFMtYKTGEr
PfafTqAUGu/FzD2hJn/9IB4T9W8XnyZTbDRH19crMx/hZDkCen9d+eiBSb45
AZ2fJu9WLacLD+KVupg9DnetEgAaCm4tZx5G9eP99d+pQkf+Edmf9+/T9jQO
XxdiOIivd6OdPiHHdxDffk3liX7rpiVkUPBfj8zkQuPZ9/dXKnry2/+6rND/
p2TmHJgttIaNQ5d6iV4eRuPX9+drW+qK7mKuDYQYZHnY9cuj/j5Vd+ibC3mU
4KSLngpe8SA+KltTbuNnrC1w3E/9edaCDvVHF2vXiR+pVkIxytdfrqL3+6wd
hKb5Hr+9xI/6BxVH3v7d2a8C1zXlDHyR8v3x4jGrDN6xs4deF0Xjd5/FUH8q
l+zjCjYbkpCrVfGg/Jc9yIpQ0r/4pgqOH6XBwuAgvip62+O9urwDFDXF4e/r
r+L2/a3yIgt891alUP+rQ+6nCz8yygFzlgvnl48OED/Vfe/PqBq8ofuSuWjo
AN0jolsYISbUH2vOf0EgzUkeFu4EH25Wc0T7+9DWqvU2vROwy15IOEPPi/pn
rTD0itu3CMGRdP9b4W1OcPt9FCUxtRL8G26f7u9wgmraru0XixiUrwqNN7IL
D2ordQLzLxupA1eEUX95qd5q6ojnYqCeFSsWXuMMGfdt8+LplSH4ZsXtKxXO
qF3qRv2muN99Z5AcVji8QXoYFuzedfLSuUA/9vfGYK4yev+3f37mfwhqPPvI
BdE35YvIOGmQ85WPM3zFBVw+44/dcJFE48c8Xwrc1GqShrByseUjd13hkAxl
2s9bbFBD+vbm9kdXoK5XOsI5JgsJSlaqL7TcoGqQzrCnQQVkpldeHv/gCpcf
8lqXfVJB7wP3/fsKz32Ed9xusCZgo+B3BYvGo8mRPq73jhGAAZe0QvUnbrBx
XfYOEak8eh+4vz/0NvNpsVW5wXHv6gD7BUF4T0R+WvSDG7zx/J2qWHeQr0YB
TK4FlIzhum6pOFobuaP9JV3KqF4v6w6/e133sn60o/yuSvOXuBR5ROA0/aKG
O/L8BRrSd7jnChAVJumxrnOQbyGHc2/1nIU73Bksv0v7iQwuxHmEsNF7AKw+
qycXF4NukSfs4y3ukHlz8Ap3ND1sl/srq0Z7QMi7asNXyPjIvVBLPXvUA2Zd
uG7iPx6GRr5fiR4XPaBqsqcjSo0FhJ46uB/a9oCch0+rqq+zofa+ffmFulxY
W9bfExmfs55MfUpo+f5+apUBxcVIeWDOVEJd70F+nTaMzE3qhYN8OqwzsYPf
Vrng79fvZ1KpvdDzlWO70eST1EF+hItbA7Rhgl6gs1nvWJXDByxrMu66xN6Q
ovBHKG7lIN/Ovjz4N0Cge87fGwLTCMmqZQf5dLyHpGoNtA/y6aiuFz9feHaQ
T8dN5/p2EOEgn44H86TdudaDfDr78/d41Qf1l2oW6HwiuUn0rlbcAl7eeoCP
zMPC4b0/Hg/u4+Ea+aMu45tYuMGyLnhFygzOQlXo02vKcOiEb/ALrAX8lBj8
/L1JGbrOEaUeQ/AKbceUVJ4KtJvN1b+TsYBg+TuiKtUqEHi+KLRJ2gJqPjc8
W01Wg4BPjxr7hgmQGrB6sukWFl7bvJnpoXCDVc3mGxlXsaD98u7fV00HfG0l
NU5kBf4EVF6UumRtMidqBbW5pQ4MT4XR/OD75/V915JDZ+Ws0f7HzxM3Dvyy
hst09BFGIpu4fX7Gff95SqfndhoktnCfjaT2WKAiyt+4L1/xi7K/vMxti84f
1qsin6lHbKFsl7RBuk35//jXyxGKnvFt2ALJmgMlfkr4//jXf8HTY8Vm7CA2
lXuSkK2C7u/746F+20DjzmU7WJwR+9mN6AX/2/++mtF1c3fWHv6UVMe2z6mi
+/3++uL+3CB1xsQe7a/DN5cLP2U4gPb3ccU9Ktn/46/v4XFTwaED2c/Dc+lp
Xqih+/3++aym7mxld84Bbf+x0yInTyQ4gttj68NP5+XQ/X5/f7nWcaaQ3NgR
xJaCXjyyO8hPQ66QernISxDdv/f1J8lw//yd4gP+QYZqWx+8lhMk319g+kGs
iJ4PzS7dfxyKFNH30fijnvgJ6TwnYIn+bmF1QfT/8BEm7pVgHaid4UZuRMTZ
I0ro+UCafHjLqE0JfX5//Xs2iK2pxTmj56NQ7qBV4B9niH295ejIN4fb9xfe
nz9SM5+0+OQO4odPfyrO2Jlzhpeb+WWJBuKof/G+/pDsnLP8UO6APzOwvZhj
isoFWvcmnverKsP///uUUB0Ye/t1nwswFBOl8u5RoOfLPp9eIMkQTzypK2B7
zo2l10mh/iX78qZ6Nqk2KbKennGqZ4hTsaLnxf54Siv4XBH664rKU9spvqVB
a65QWctdK712wEfhkjVKGk8vi55H+/Nnl3MrJkbBDazSHrqsI/N5//n9895S
4qzIlwA3yL1isZM/xX3Av/h6hkryMx96Pu3vfyOG/SuLGQf8n2cTmQW5A5Hz
62IIBTmrHPq+4KUE/zvWgmh8GRpPsttI9mbNDYa4E/21k1Thf/OD/lk2HP5p
8R++uTnd4X5hNN5sf33OqTmH1Nm6Q9IHOXrGcgW0fF//YTy95vzC8oBv8bJh
36n61+7wIWXAsPDGb9x+PNr5d/m2x4tIUH+V/fX4LWi+aH3PHZQ146dJZkXR
+LV9/225uyFZo4MH/OQEp/QAojp32Ho0kJ1udpC/aH9+fA3RG5eX8wC56zrz
K3kUKP/jcvU2EYcqLeoPg+ajx0+NkXl6QIBmXGtykTj6PJEh7aMTQYfR5/fn
q19ZnEmY20G+Imp1h6vjkh6Ap1v0eOF2kA9pX97t7FozkM32AE4PgZynaoxo
vN3pt0PbbIeZ0fu4/f39R6fAl5uTHjDJx1sWflgCfV5AQiC8XE/pf/FVsoLW
XiaHp4AnDN3e4TRYYUH5Fvb3R5J++nUOrgN+c2errKTuFE+IW7QoeX/uIP8R
8UPt68fucaH84/vr8fIqY7VzmBcEMq8Uv3E9yHe0jhPhljnGh8br7a+X/F5/
v+JVLygzdJWMTzzIb/TYkFF/jEUFcr3OxpSqWMCZBJJ+YklVCJxINVYRtIC6
7z2XRBRVYW1Z7A+xgAXQkRrFHf1PvqOPuc9nI49B9z9WtlcTWDii02mYt3sM
fs74iZ3vx0IK4w/hKDkTCA1LMoutx6L62NsH8ewrrViIvxrJ50lkCpULNebL
xViwKovUwDPh4eqZlrqySixs8J++G/XOFL5UsCaV5mPR9cQqeVSmMRML7KQJ
yhn8bqDHJ5cujsgDcqsi8tNHEfmQVujW8yIsUOTax1sGuwH2caNg6kMsxIxK
q1W6IOtb6ncdfS32gP/0soCJdgUWwj9XfDPIdYMouE6S+RQL2PKYLP4SN7BL
aH7c2YjUrzgrCPPZDcZdP4ysN2ChuGSz8sQUsr8ULnLvtiHyraMfUyuXO9w6
kyLY2YMFISdq+Qf2yPqSxzTmvcLCB4PxCfor7kCoxTAeHcYCt2fHlN07d3is
PZuXNIqFVLoEM/FddxAS82Ud/IAFnnXCaRUzD1Cbo1H/OY2FC92h1xb8PSCM
ev7frW0seLEqd+U80QO7xgfnfZH27cczvc4/ce12xgG/UNX7NtFXJQf8MwlY
geYrLQf8M/t8VfTkd7uGydxBhp9xopBDHTiXwt/dt/6Oc3jXIhyI4BBchLiD
EzNI4yluf2VXh/R5lmmSREEY6rspx4LghwGXkt/PHIajjaJki6zq4M65qFOP
Rc5Znfjf6cj7Nc0Vf8bpyIG8lJ5XFcGb2odyExu4YLLAWyAJeb+Zfy2FXhXZ
Z+LL2ZLZ1KE4/LvtKCIXKV58RKGEfI/c72cE/pwinFAcFfrmrgJ6o1VDQifY
4d+HN+dTPOXgjuzpqC/SIvAjG8MU7c4Bwhk8zEkuipDTFdZv8J4DTO48ut/M
pQhN0bdqL/PJgOJlij0iB0WIGpBnPBqAAR8zjjNSFQrg2bjAMo6042l6tLHh
PSzcScs/8bhVBMzrrmnsNB+BFCum3Xfb3LB08VfKrDVA/69Ph/89k4cXk/8G
LhrqwHw/uelwgTSYscmOvBDQA9NEzthHSHu1Jl76lCr/wGFzwy75ITici5nL
+AgLcGq6Tk8j7e+XiE/12xSEnB3KMjIEy+mdiVA6JgHPytsUxpH2Z4TaHfXP
locsby+HHOT92uhxwWZ7YigrOrqWgWCq/ATNOONDoKDRF5qIYKs8ySt+ndQg
eo076gaC6192KNa8oQDde61ueARzC150J3LggF7fr8ZH/jMem8S1uElO+Mn8
MIELwYdDLIu2uHih/vq9k7II/igXLKudwQ0E+8+ylUj9wgsWbLyJRUAvcf14
OoKrP4uTsfSKQMSklZcTgnU/fvnMcEoMevuYQqMQ/I2lpTf7vig8O/T3dDsy
vmF/6G9dtpQC+1rWb3cQzPl2NShFXBrkXmonmCA4galpPrxfBtpaXo2HIzjj
FcuJ1E1paAkxm4tB+uPYjVbSvCEFuMU0uaGL4O+rz8RGdRShX3hV9iOLOvCe
OeOkwqEEqTZG3QJIeT77GaPAAkWQMdBcLULa86z485VS1hHcQqJg0WMEp+l2
C+vpzuNmBe58ikGw39zAkdtEjPD9b6f6OQR/vh08ShrFBENkdzMpEVyZu7F2
v4QfSo2/Dawj7SuiFMrV4RKEl0/5inQRXHVYrlzsiTjMHjuNE0SwuTZlPFnI
Ybj7z3hAGmkPbzTbR+nfsuD5ChfxC6mfPpsPi+c7OdB1f9Sdh3z/v/f5P7hU
sadUVgjet9d/IuL8+IxdHbW/J63oDL9BvrdvbzcI+BZ8g1UdtV+PfIoJike/
Rwejyr1mTCjmg/MXfMGcXR2N/whb6Z7UZFNH7fP7/r3ncrQr2hQsoD+raZDy
lAq8kelculZKBxEyFnYlJkLQYtwdtfyCD6KnNJhomuQgljImJ+ooP4yf8Yxr
/YKcPzFnRp+lyoFkWj/TiTAMcOT/iaLxlgU2wQAt9U5WiFDzWMqqVIJdJvZU
9jxleJ9cftgXkTN1mjtcGjKVYXZjvPj1OWW4xBg0P2dPAnHROOeKDTUIUsyL
d/Qhgal6593X62pQ7uc3zVMkAWylIqYv0jFAzyX9hv+BOJzkc6h5SaMBNxeq
iAZKlIB9MIxV8LwGxFhaMxIShcHFQm04tewoiKpFUekUccIZxY0JwXsArCxP
n8s+VoOKWn/H6S8AS4XsDS331KDocVVujKQ28F4l9/MdKMGxbQzwMobqwGkz
xU+g8xEn+RMjcMhVByJ6rCxNf8lBok0ik/1THSg6TPGsp0sKulxHQ/6e0oMa
LlH/zQfCgFEgqQ8zMgA+LxbvbXUR0DwnzpsnbwBjaQ6F5OdUQEXFXTt3wxBe
PRs/MnpXCUg8ruGMRY1htWpHq6NUCfzuqibosBqDe+pltrPbckBz0ZVlYMoE
6JhIjXud5SH/dErtyT4T1D7SaQV1z8J1gDXz0lZFGiNYJCSTP/ciwMXefs1x
HDNsHpOnEEP02XRlrjdDzqzwbQm/YnOeAMkKnAl3TIjhwzSjiR2nFTQpJ1kx
95GC8MNfOH9hK/jKHqQSFEwJglkyQaBqBY9sDA8xnhIGabLftVFc1rB8//iz
WGFRSLyoaj6mZQ1PSFSZflwTgQfhgh7cStbwdUl5x3VCChZG/z5/8cUaljrX
3IWcpKG2PocncNMaiPtdSugiZYDDWQ+/wGoD2ce1InHbazjiS+xvfJZtYHhR
HBKT/+Lqzm19OcRqCz/c3+ITsn7h7IYoLiWR2cKtrujeu8i5sFapcdp2zQaO
M1075yGgBC27cwJ1SrZwUvrWH+9frEAqXX2Wts0WiOnkvp6VYwfyC3RSWkO2
0Lct1PHuKCeMGv6j2VyxhXJ29dnIeGX47LBIUtRhC+tm0UREMioQKLNEwclh
B/E6VttzbCowLkKnO01jB3cZ6Osqo4QhhGEnarvFDkK0fsikU4iCRObgvPOO
HdxPkOhKLxAB6gYO6qqvdlDwRD+Vzl0VpGbNwsXH7ECR+IQXSbwE6BOZvLWs
sYcZy2deJcpS8JzrtX8SuQPcO4Ubfu6rBik26u4rbfYg1yxVPJZGDBguNWGa
GAfYmjna2DdJCjL9TYWH0hzg9SyrcdMQBdi43sTp1zqA0MyvdKImGUjWsSIu
SHUA3cVQBwtNOZD/F/SgdMkBkvw9bk9gMBCul2k79t4BBl+LX6xUx0CDpleh
0YwDzLb8pedhYoOeyU5vAV9HONrb0Eanxg6msh1PnS44wvuiHNNUak4w4aPr
/FLoCOL/VLOTzRTg3OGfctk3HUE/mDL/6RUMxNDrqHtEOUJ4/A71ip0g6NIr
vW8/7wTPl3P7PygJgzdbcp3RpBP4NPzFjUYpglEz/ePntk6IfLhz/m6QKJSH
HDuS4+oM19jvfCO5oQQ8BTlVxmrOwHX8XsgLy02c4alG1nZWF7hhTPHI4d4m
bkagbvMcuwsEnsbwl/X+w1EHn2kddnABmpBQRppGcXjF85PE+aczuBvMjZ8G
RP4nUbvVf8IFNF/9Y8ZcUgYJTVGiN/IuYEOp0F6/Tgmj85Z+xEMu8N1Arv+r
ASNwkJSUWhxxhW/Hh2vvZ0uBWRkbFZ+CK8wFlj0NcFCBS3fUZwUMXOHsFZnb
f6Kw8EAntGwY0Y+vfIn8cv8TK3Q6urwx6HOF5ZO3hnrEOeEJ1ZFACl43kA9T
UZ9/LQMymc9ePTrkBjmHyvjWx1Sgr3to9gmVG6x8jJk15uWDmx9v3Dse5gYc
eFmbOLwg1Kl/dtF64QYO5jIyzsNyUEdDkno10g2Yd7tkzJxVwe7XaBw21Q3C
iqNGRciFYXeZ4CDF5A6qMdd/6lgqgOzimFkyIj9+qNJMWC1QBaHBzZ29OTfg
z9XLjbujCg4qqfdPjbhBPOvjK+uJq7jcm3xev0Pcwe9c/uQfMVEQDxXOm7/o
DicsY+tyhRUhO5av1fKqOxSeNVWoAkVoTI9X/vDAHbBKUpoERM5h3I680jnh
Dkwpfl593Ig++Jm10QLRT9MFKhpEYhUhAO459I+6A2cQ9/oRvBocJeqNC/7l
Dgn1/r+GHdXAqdgydYrTA/QbwpLkdakB72TUHq/nAR/Kad387A9DTcXCd35b
RL8cMP59U1wJJN9oPCEK9YClBqrABmUleCDRVdJ1yQO0ODJecYarQd0NYyp9
Rw9YqN7iITFgAuLvW98IDR7QYaA3OlohAdTMFRePvvSAmyM6nvjTSpBJPL33
tt8DuiK6L52mZ4PsxwNW4Wqe8DLdiqtOTAqMT9lmYl094fjkgHC+O6IPSmQ5
WUQi+uHaU6LFAE64LCfgebrNEyxINZwu90lBpG+Hd2WFJ3xs+l1x2lQZeCuo
shK0vKAQnz3KiOiD/ldxQUIBXnDtlDFG5xov7BRmWYcXe8Fg/xHsVxsZRA6I
3D5c7wWiyYkdMgkyUN7GE+v9yQs6w1MLFc8qg/1W6y+WAi/QkEtP0yjgg2Dm
JRpDUm8wf5WdUFAnA29Uuz5JcXgDufqE5RcaVZRvdfixdaT0GhYUbE9sOjHq
AxslNcXAPBZkT7Sl+S4awGxTYRe8x4LFeRMBng4jIHAzGg8j+tHVi9/WynKM
UX0kjvhc+QqbKeT7FvBNdGBR+4ZS19eaiNdY1L5w9NQ9jcAxLKrfi1ixHN1B
9KV9fZzC/3fwsS9YVP+mIHbuu/YNi+rXLdxPBD+uYFH9+v5panPHH1hUn9ae
lkxh3MKi+nInr9cJuh0smr/LY5c00fEnFnT+i5/BG5ZOJ7MQ/8JC23/Fs/sA
LrZM1jsZCwsDn6vVHrrCk7S9PS0rDHq/f3dmrOmbOQZME/j4k16ogPj9PK0K
ZQx6n3/Vvk30niwGjHLmI84herIdVwAFrRQGEqWJxWaQ/2Foo7rMRoNB79sF
Vy5NXqHEwAUXPcHAIU34aWhMwWGI/R9eRHOofWw256CGhRLjTL2vhuZwmlbD
WFAGwZScb085mgO13gfXhzRY1P4YXzDgm8mEhVPEPleBxBnMJ5VFp4SQ9lD9
2mEDZzAV1nLWAixqD2y5EVD3wwQLePOEj8fJkP3v7YMHZSexqD3wfvmmFEkg
Ftwve0a3I/vji5CWqmwKDNrfJoqmj6KoMOAY6jP6J9QLPH+HzAkzYKCHpM3K
KNcL9rCXw2k5MOh4eEVelV/lQtq/afRwfdMLTF/S89TyYmDwIv2/RjpvuLRS
SnpSGIOO18l8j+3LYhj4IzuqXHfaG5JJHwpXimMgyIlg0hvjDTeD78XMSWLQ
8Rx5olJVIYMBxoWAv5FfvcHQ+1ElEzIerWLR2qHr3hAX98DkLoL3x7vGknHm
mTwGfNvZK3xdfSDOcanvJYKDZmwu9Xv7wKV8/D0SenVgoJGm8TJShqEjbyLv
0qpDH3Yh3eC3Gtya+q1Fg2Apj3PYyU01cI7r9h2nVgcLNktZ/zoNqP4a8a+E
EtGf+NsuGudrQIufA10Vgp8KJQaxhGgB2+7yyvVDiP72cPliM14LYjnWHrKR
qwPedKDjO682dESQ5ab9w8J2gIgu53/4Wo5pXl4iUYffGEs+U2JduGl+qfAK
Mq/CjzdFWA7rwGrLX1/GbWT+3PMJNerRg9kPPhJ0G1jQl9maob2tD3vLbz+K
ryLrz9+n4eMFZH0v1550RtZT6QeDkROPDSAUr9A2gqy3Y0Y97xVOGUJud9M2
NbIfsBir/hW3MYLZZGG96TksZAx8Dv2QbARU2aU1NR+x4GKXQk/QPgY6/TLX
5kewwLnwS1jOxhiOlUR/+juMBb8P+JqcSGPAbtlPN7Yi77/bcww7ZApUL1gf
zbYd5Bspoiq4pfgCCwLhYxfnedzB/5CFEnMnsl6r7tg+V3UHDM09k44BLNQZ
wRWeO+7wcLCnEAaxYHLhvKluoTsYetXHHh3Hwqez6pmuTB5wl2usuAvBZsML
1YkcHuBZRfv+/cwB/6CO+djSY6T+mcnPriUle0BhhSEd3ewB3+DSCdnBn18O
+AXXflXyJyH9kaTU0BC05wHORne7Cr4e8Ale6tUnZ1464A9MlIc7wQg2lRRN
6z7tCSAqLGn4/YAvsOTcro3B6gE/YMDLDN8kBGf4hHyLnvWEr3WvrJnXD/gA
5Zsl08t+HPD/HX+KDRtHsIE4nX2KrReE1FDLcm8e8P1pXsX8st864Peb5pRs
DEZwx6/5p9/7veCE46WrgdsHfH5H3tJr2u8c8Pd5aDLt+iGYsPytIAu8ISgh
SZzn5wFf32x3P6b25wE/HxdBIrEFwUHr14JTar3hukqZuMSvAz4+2mD5yOBf
B/x75qaFCaEINmI4/LZbygci3vGn3v11wLcXVKpj/hZpv2hAwmn6aX3IjEnS
OIG0l4J7qtmzXh+chCqrg5Dza8tvIKlB3ACkFr9+nUP6jz6W1A/vYAC24iPm
sYvI+/00AS/LDAEjZAQzCA4Z04wMyzQET5J53aAFLHRVnRP+Q2sEwYa5Y6II
jmQuAScxIxB3MDuFReaL/sloteNRx2BuJru5ahILYtRzb3QXj4FR2xt1nh4s
9D8rVlmKNoH5H5f5OruwwH/v3ZW+LBNQu2orOduLhYkTJaPzAe7wko1VbaQP
eR8eNfuEuYOcQzOzyjss3H1vHj047Q5XOCvb+5H1o8/Y//zzD3cYEB0r2fuA
nK8kMeV+5h4wy0qksI6clwKh78+m+HvA8rXs6jlkvuJfHrm/3u0BRZub5xsQ
XEyUQ7XS7gEjx02EJZD523bm1kTJDCL/pBK1uCH4RqX7139zHvBuw/fCaaQ/
vixhxP5oeYLuz/EdbgQn+h7pokfkHVa9sUYzZD9oYj5/dcHCE+ZWdMefIFjp
5PLUdydkPs+2cREh+4dg2w+WzDpPUH1EKpb5n3io1y+rM554wvPAt5czkHKy
otmYxG5PaA1uriFCxmeJfvBN4DtP8CMVCahGxrfC/OrpQVkv+Fi9MWCI4PI/
I3yRfF5gNhryng0ZbzOj8KKLGl4Qe1/+ZCyCTWOEf1w38QLFGwl1ech8F3w7
ql720AvGyle0jiD4wfvQnuqbXkCnkf56CsFxfNdsX5cj6yWip/MoMv+VT3fn
2LZ7gVFm8MwIMv+DzwgzqPN4w7pfoXY8grszCFEa5Mj8zZWS2EVwmndNv6+I
N0R4TsQZIevhJN59cRDrDbLjHec8kPluYt56K+ymNxBdjhwWR3Cvyc0W6khv
OOpIQRmK4DbmscVjmd6QFSygVopgP+pnVH/KvaHZ5CPeDJnvewLI9kDhAy+m
qx/IItjm2p1koTVv6DrRbGOLYO57JlRn6XzAeXnwYxCCFRlOZH0W9QH3yWya
/8QDscjflxaK9oEGw3CXe/+JD1rewUQj55eal3pOBLM65CjH0pULqEJa4B1B
JgSXLn0RZ+hThVTBGUEfBK9GdaeWm6jCWlrtXVtGdZjKaKmgReS83iH13SEG
deDLWw8Kj1EHB9OUHW2k/CWeTXYFGYeT92pFntGpg6WjKN+JsCPwJNrHixnB
0z6WF8pUjoKR1MLQQwSHaJLpUGcdgc/6TCXXkfMxcLA92p0ZYJVf/W0zlTqc
SyqjjgoBEE6ZLYlEyp/ckY75xg8g/sTcrwk5D2/v/Fq89lUb5m5LdtSQqYOo
Uob3jKUOXI4Jii5Dym98CSBLXtOG6sRaZn7kfJTtEEuoe64LXOS83O+I1GE+
272pU0kPUqtImbmQcjFzkVrsC10oNHpY9YxFHTazJDYdHiqBq7zk1B3kvL8f
IlcSrKsM2PLktAUmdchL5ruvY6wG3HeqygqR/lheYGAvWFEHr5jthK/I+c+U
q8Cjf/MosEirNGci7ZEifsewlgnQ4FUWlY3U91GHgha1nw50fB1rTUO+n3ch
es8GrwzjjT4000j/+7qWTUqFqYAlE9H76wgOrC8RNt1QgWAHy/oRpL+5L3hJ
6vAh+27Me44ABJ8k8qXrfIiFgudmPnbI9+Zdvh2vadME8fRt38H/9D+VLb+H
7RHoWZOwtqJRB35RVydtDxzEDt9+mo/071+/RrISMoBCcn+JKgoEb9pn98Ui
/Ssh5NOL9OePpz8DT3/UhhIe/I4FqTrcSQ44LnhcF2JqqAVEkP6TF/Ixk2jW
hTJr2cwBFnX0XjypZOz8HpM6yvfy9rW9VzODOurPunX+TtgfWnXUn7RRNP5F
MZU66u/5YFkjo4hMHfXPnLzIwPoWGb99f8t7ITeG+dww8G3Lf+1ejRJcSnv+
r9cOAwL8meqmHcqwmev5/SQOA7eKzhQ3jarBd8tmwbtHEXmdu012hA4Djx0J
2eM8GKCKGFFpAA14HLVeM+6PnIcf7F20bI+D/1aH5IQtFnDmTNxEn47Ddf8/
KYcR+fsclnqsJtMZLmU3Ktc7Y+EOq7rpzEkXcBl2+hzshwVnU4FU1qcu0Boe
Qmr4Tw34jEVk8rBeQHGyQMaeGQNCl1pUXtR5QYE3nuS4IAbGciVjMpS8YcK5
N7UAkV8Dcrh9bUq9If7y8Z4aOQyc7JdUk0bWt45SVO78VeR84Qkri/YzA3Wv
5xw1Ywf80+G7SU+HWg/4o0lTyBJkBg74n/G/89udxg74m/f5MyVGnemjz3qA
3F1v6R9CGHR8aIOUXNvpsDCNL2FYzjQHJ01VcQ32/fsoc0ibt4qKReT36pTb
fibpBJQP/R3pzle5iwQ45SUUsCOJRf0fPDSW56bisSif+dv86JDvf9Sg9d6N
unAFL4hciLlx868aGh9ZLdPpXcV4wGcc3FM3Hst/wEd8y/65h5rEAZ9wKg21
72/ZAz5gfSHf2Vn5Az7flGSPwXPHhFH7/C32YoYOfWGY4+C+imMgAtP3K0f0
e4RQe/0Zb6WeuMdCoEsuWUmrzQkv7szGPdZXQe33b5JzmeRABVgY71zVjxWB
z/KUO5sFsqg9/8LtUO75PFloZ0zxph+RBKpGZRVZLhW0nEt02fgNowpYWI5o
/luSAsnZhvBcUhXw/5TnLZgig96ncwY0bzOYq6L+BSUVBs6T7VjInRnkEWNW
RvVNLcsO4w5iZaD3jJH5z7zd93ewfe0n+bQBh/qT5JiH5diK6KD+AtFPLq8u
zGij/9dE+o0lOV0b9b/4rT1z+5+9LjxPAbsJBTXUn1leZWgnk18NPPwKcIHZ
umAkrPD+3B9VkCF7g8nlPeCLWxeZtnDp1Ufv+z+bugSn2Oqj7TGwlMS8ajdE
63erXPnVwzJDtH705q/TTG4ZovX7UZDOJBtieJDfOPa8510LQ9TfJF1ZI7dd
whD1l2ur0FIr3jGAz3+bf+/8UkH9n19/3XULQPbVjO5ci+RDhqj/RV80T/sN
ExPUH+F+ZesD8RpjtL5aZI+sQ4jwaH0JIg50M5R4tL6f2nzJohjwaH31g/X6
qFnxaH0vHrcQP8KOR+tbL/3hTyUbHq1vtmWx0jYTHh0/ZvkEhQvUeNT/5Hkp
b2buX1PUnyRx7Yl61HdTtL8DErNEKEZN0f62ar8+9qnOFPVfuJrQfEX/uina
nrww78ABMQLantGmmQ9BmAN/ONP6OzjhYwS0PQ5bvRPTDgT0ewpssUeWdwio
P9zsWw+lxxQW6Pw5lXiO2pndAvXfqv0w8SRfxALt75jcEdF3chZof7e+uc66
p2aB+kvxPsF8StSwQOu75hN10+6LJVpfloSWN4WHrND+q7TRvH+nygrtv5sJ
YUw/J6zQ/rvac+GdEKk1Wn/G0VPkV19Yo9/3/P1Yp2jYBq3f1gQmLaXLBh0/
F/8gW5tsW7R+pXxkr7DRtuj3Q49nV7y7bYf2/3u+qmO4S/ZofQtDhbPJCA5o
fzWQSwz64B3Q75OrCvNKKDii9Z973l9Oqe2EjvfgX4p7MQIH/N00o24KA4PI
efPBio//z0G+5BtXd20UJZD9xEhWrPePC7jZ9XVH8qui/hgRjCfLxTGqENqk
65Dj7QYrCpvOD6fkUf8K8ZOxBdo8CiBxpjx9+70bxHx6UKwhpoba77SsUjgM
VJFzNebRk5Bed7ClEFKsp+ZA7XMiNSmXXt7ngFm6lrjmbE/YsViybl05yG98
g4rM+fWGEtAz+iclX/MEHc38ihxyZZgUizLLLvOEv+f769lllVH7Xj6tkd13
NWX4HjW1dIrOC8SWh9VelfKg9qfV5NZB8g0eiGUmnV2N9QJv41Rns7/SaHk9
cRn7HwEZYEzJbG5O8gLa04ns01oCqL1ovWe3vdNWAAzpWPbq5ryBcmTkYamv
AAxmJhnkbnhD6M3277r5Aqi9SFHjxh3WEgG4fHqeOsPdB26P2/pd5FBH7YPG
Px5WEbGpo/tzsWJL+zIiD+3b+wopmlzlEHltP/5l6+fAl0JE/tmPL7nq+vie
7CF1dL9ljtRUKdrAwqiAY4NZsD7Qy35Ib1nCgn16P68ZIPvjAnkj9WcsnH13
04yY+hgcftcV0oOc/0Ivp80d94zBkd728/AbLKTuXr2b1W6M8qNjxv/IlncS
YJnZTFl5QQ3N33F/Z+pDY5carC3ZxJ1tIcAVydg2KkS/NRx59rqf4A7fyD5r
Xu9E9EcCGdOAhjuQMOWx9gxhgbi5tSS+3R34GPgYbiD/18thb/+i1h0aayJY
lhF9Wf1is9GGsgcQxWxfS0ew3A/YHZT3AIIRbYsNUv+vEjsG74s8wJOC4brY
Vyz0DMz5kgl5AjV9ZtX6MhbOl94Tasr0BEwsPfkkou8n7o7aUDN6wcZ6gck2
0j//Csgb/1z2gsOJDo/tEH1N48TPMzl/vCCjtPcJPaJvtY/YZK+e84aUqhFa
YUQ/Egq+nflz0Rs08OyqWQgeaZI2bHL1gWUPx3pmRL8LbvokoZWiBylKjUnc
iPzpkyB8M+K0HnAdDSEXR/CI2gMlRgRzV9ynePXhgD/6Qu9XcO8+4I82I2Wc
se074I8+KjbR8evdAX/02IZ6+drUAX+0xPJevq+9MDCmP36bXHkfN3Dyqq2R
iTDUNV07QmG4i7t68fpc0BF5VJ4hGTKbztSVB+xNryXQ/IKbTExMNFaUB81Q
Lb9xWgowjFBwEA9SQZ93NTQWnT2jAm1GE2ccv7Xh+rqcWPyQ8jOE41U693Zx
BOo8FfwpFRA4cU7qGDMdlIj1ZZEh5WfnY/d42f7h3K7/rE3LxKDfM5V0jjx9
FwOCR8NwhPFpXKbJuaeyCE61C6b607SFe68T/34Ged7tENsPuVoq6Ouy+1GS
hYEaTq/q0hASyHGMeHb+rxAsj+i1vnFnAp1jNvGOK0KQUK2obDXPDH33M0lJ
9+RQ+Ww2oFzmDqs81Gh6aWQyMgMVRcrHEEZ5IDUfJlHqZYZPcQ8mR17LgW+q
t+OV3zwg/5f/d9KyHExirfdIjnHChZPUj3JuYdDvaX1dHlm4gwE+gu9KQwQj
cEZ5CkdnYOBO7t2pdmtWSK6S8/idhoHSY/bvhT7xgK9AMYX4bQzQtpEdHy3h
gAneE+7VliowKJD99v51fviZ3vVJ0FgFhsPl/YLihcAMaz1x5xoGlR+FZN7m
+t7EwI/+CYXnr/nBr+3l6rHrGOBsePag+bkQdGQHmjsmIfKvJ53q+9ticM2h
cbMEeX9J71tW9bowfAX6KYUfsrCoaqQ1b34Y2hviC9vFVaD5aNzS3anDwI8t
sjCKxaDy5s13lsVrlzHQ4YzLGgsWhzLBmx+5L2LgbwsTTUSIJHCePONzJgwD
EaLiLuAuC1+7pR8rIu/b4+KyytYk4YUtT3L3pDLqn6KX4hcR2aoMQtT2p4aG
FYG15MbttduUwDZ7+6rPP1WgJfZcx/nTwHT8039Cl1XR8y08YYgLh7w3lvRl
aOgEC1wiHSinPq4Mave4ValO9OCmeN7exP9H7+7sr6FSGsatfPa0YtrCouen
p+Zc4qWXGFD7cDnrRPhf3O5pzxuHPTHAXf7RlQiUYW+3idMnWQ2yui5X6yDn
h2zHD58jiN6wLx95sff909TVBPkrN0682RMD0qtbw6cbNMClX+vnqXA+mKwR
33x+CNDz3P9l0apxlBYM49PDVXwFwVVIN0CKHQdtcwX6rETCMDU/etqbVgvs
0rzTwvqFgOHf0MuHilpALbzyXGxEDd3f2+o/Yx1/qMGr18kinYFH4dFnXRho
R/TDw7w/omQAbuVsXRY+s44L+I4b/HZUB5wTcDj7mm2cmPqbhjwpHWDzYLQq
lCGBhzXZ5nc3tKHOuzbQOJ4Edt8v7k6vaUM5PYRJplFBgXrnJbWn2mh/uxf6
fH6uqQ2tgV/begMYIWfcMUHcVxusKFjiJEtYgJ/3fU8LnzYqjwpo8HmzjgFc
p64luNqzwR+lqzOamwDGqw82dK+zQVObv2vLCsCdbHK5QQwnWPJdeCj2GMD7
pN8zOVIOEMHXsbW+BBig4QvZ/SEDm+QG56Xv68JflXnmx45q8DVMvmYzUQe0
Ui3ureupQV2+D4vDtg7o8ViSPY0WhTSLUiaXHX1wseXETCqJQdemumT4iD4w
XLGqiZ0UB0ru8c2UKH1U/pk6ZYg7+VoP4nmTzI9flQBFJgqZIWZ9mIzxtCqn
kIKpIws9tx/rQV5pjgntISkg03lT1VykB9n3Q4/V7z7GvcGHBDH1G8KukRZ+
p+IDzj51PIer0xBct8QTc1+u4wLD4/5W1BkCU3enxOfX27i3vJ1F2EpDWMhJ
EngTRQx6bYtaPTmG8NW9/tJbCVK4d7fL5lmmIRzJ3OPrlaGG+WMvijMuGIKe
ScEdv3FqSDl3nEEz2hDW875P2mswQaAqJsHLGdFX2onCFv+wQlSv74U+rCGw
6z57YV/LCUnvonab6A1ReVDQ5ZbHpRYDeBkbn0T7jhfOM1QLb40ZgL9d5gmP
XQE4tFDQe7TIAJ2/A0Z3HI6EG4CSoXISd48gzCdoid5JMYDvizlikX+EYEgy
4biDuwHgF/8xunQIQcGIIMHupAGsi/UnTaipQuog0yWVAAOQHae+wSqnCkZn
fieSxBug8SjltyjshbuMgNX+gSBOVgWwOflU/O5GYPZ58cQzGwW4iw09ezLR
BOTH1qNmGhGsy1DH6GACLS8YWG/GKULgp1+CvN+NwY2d2zde/RWOxpGOueiP
KYhwxSSwPX6L+3yu3CcE0Xeu077/6Z2ygbu4+K/SiRwPUtVxnX9Nt3Cyv3cG
T1Hg4QuWYMc0RAwG8UMLgXR4eBsSe/bzKgkoia0EJ9Lj4bblJdPhWSrQzJNa
zGHGg/vflge/5Wmg+UXl5FUWPLwsumstTcQEZ+gd/91F9LHY0S7hriomKCGi
SFRE9DWeeFGCKCsbOGoXZZEh+O6on05qDxu84O+iEkNw/Dmz8Wk5Lmh6Y/nV
G/ke5vtLq7gRLuiytEs/hODRc6ORTwh80Poo0FkMqV8vI+fZ3Pd8cKg2aNeJ
Fnm/qc2Do1UQDC53UySQ4OFC/2qUw7IgTJw/y1JIjIfLz1lem7wXhoZxFq7k
H6bw+5iJesUXYVj+OcOhheCmn7xZShOiMEp3qiJryhSmctbnR7rEgetul1pX
uyl8lznr7lQsAZyliVkF9w/yKfyrDhN7bG8KFVQLPjtXpOCqd0e93XlTqBbv
SCe1kQHXimH5JW3Tg3h/hb969Wym0C+xzT01KwMLQwMaz+VMwSBDq2uEWw4c
oCrlJ7Ep5OVMLDzgkoPx6cFmGRJTUJz0zLqx144L9VUyuiFAgNPM7GVXD23i
PL9fzLqiRICgxFejtjvEICZsEV2vSwDK5IjaE6MkkPH4aHyNPgFOZB5PLb9O
BaSva4MVrQjAv6kYJF9CA+dnLjxYsyOg+xf5252s8Bjk+9aHbWnPs8KPj1OV
HecJoPn9Z0K6LjtQKkb6ZUYT4Iz5ezO8JCcQMTYVv79EgK3uk+JZxezgMz58
POQCAdUn8zkv2lrcIEBfMGGG6iMn5K1tZgsnEwBXUsNGzMANT5x1DQWvE0Bu
IoLh6SYP5Lxsfu6dQQCDn11xNmw8UC/2pL87jYCu3y31QkOeBwR4d5Ji67wx
HxCFmgy6ZROApPPiK9dJPpgeiYguyUXaz8NtwNgmAG6diuNrhQQQz8cOO18Q
AGurHMLKIwK6vr9nK4y+rCYA5xg3zfe3giCRduaCQgUB6F6m8d7eFAJ+daIM
ykYCqj/aX7v3xKSLAFeftvIoNArDEd/qo+GtBGjs/xVMKykKd7Ypf671E9Dz
kqDxRCt1lADFTZxrdXmiENIWHV0wSIBVnrcPLjqJw0IUQdZ7moDquy/6k2ZD
/8NvVDAQUXBZHOQlyX7mzRCgjfUD9cJ1CeBI9WR3XSNA+s8lrpFWKdCMOcVR
SWwBT/CuSSIrMtDS/evDWyYLWPDa0BnglIdcH4UlgqAFTP1Lowm/qgCvjpWG
tkpbgOaLDO3QPAVYF7Zr75axgPLjCuQblxXBvrHY75KKBWSlWnbulisCx9kP
JtRqFsCXQJ8ddlkJkl6s4B+rW4DD7h86w0YlqLqnZn1XwwLqGFkKJ9pbcPmH
aLIiJiyh9ffW0CPMJm7URjoas2cJbmeYximebOKYE6RSuP5YovYQnexX320N
rOBi7d88/2RKeHijzy5L1Qp6zL+cTCGnhQWMBemOrhXw2sxHNmcwgFLdJ9kv
FlYgWEkU/ciMDq713Io8fcwKPa+jjuxWsp+wAk7c7PtHNEygRX7JosjZCoj8
rIrPpDFBGnXXNJ2HFbz4J11NfZYFqj0q7O3OWqHzv3TVvI0jxQpkOaf8G/jY
oC5WbObQRSt4Z7xuVmnICYckMyrrcqzg+/LNLrwkHyx8TvTu7rcCqhSrs9mV
glD/vuZv1JYVYJrrOC/QCoE502Qn0R8rdD5gPnrvhTlZw9eLJ8U234iCim0r
vaOZNfBORciO7YlCUpH2jIiFNeRm/iUS5hSH5i4jSip/a3R+LA886ZZPsQZr
Zf/rG+XisKh/y38u3BooJX2uMDyVgDWJn1nipdbwslTnc8bpPhzHlUifnS4b
qPx4UarixzvcL/VXT07026D70eQGuZ8IxgaO7p2wzHgmA3Xar0tu89rANzfv
kVfHZEGAJF/klKwN/OakxzkLysFWlfRlSiMb1B6l3/pe1j3CBlKWRwt0PstB
aCJLYZ2bDbSyMFx1vKwAPHFEgZVlB/kt3Lu+uYOyLehNf7+av04MKatLnkKi
tnDHw1/T5xEJ6NI7hppK2EIXd/eIjRAFhD7etPiha4vOl4WPJ/mMfWxhhE+R
6pszFaSvtbWPEWxhdH02om2IEdiPDq5FJdqi+4/T+RppDyY7iMsQ67q3yAnM
8heqiH7ZwrX1/ge8U1zAQ9O6ykhhB+rL5kcPlfPAdCPD+piwHbrf6PzeHlAn
2MFkx6qyKxsfdL46XV6LtQPzdwKTE2WCUKZuwPU2xg4dX64dc/ciOXvYdbyG
He8ThRuFIXM0bPaQzftAIqRbHOjIeBXnfOxRe5lbK7VVA70D2IXTC/6k6MdV
bKdebdu1B6eQ0lNxWWu4oWtVeFsFB7T9nwaqd459coC/DzqMrXupYFhT8xa+
xwFSoWKg/xs1KJ48Qnd3yAEYFU4mN4wxwGun1+XSRI5of5iU/naUn3EE9rac
CsmLXLDBNlYf1+MIN6MuRGvHc8GPOEvhpwg+qt9q1rbGC2Rkrj+mOJxQe57D
0wyqxS+O8Lc6HPs2QAEuO1UsFj90hMexHDnh2QqQ8Zr2zKEXjkCgpQznbMOg
8aEMZ9wbPPMxoKmWpiJV5Qj3//0SJa/AQGep3NsjQ45AtThFM/sZA/iHch+e
eDgdxAOSLd3if+0MD5eONtXmd+PumujgWSud0fmU9tXNZeaWCww0js+sBhHD
XJTNbmigC5itkX8xfUYCHf9oL3TEuKD7g7KSgZ5HpCuwhR//FxzJCHSuk95B
Oq5A7jC9457HBIY+x5hdvFzR/jrv8t3ws4EbkHodMsec5AK2R48OnVJyg+o2
Y7ov06qof94mQemOf6cq3KL88EaUyR3VtwQYnPmoC9zBL5v6vJjbBs5SOZsw
l+QOqxkPscJZm7jaOR7HrevucMxDXS2MBtFntrJVDl9wR9Z5+9jjd4qofx93
XCKjfakiWBvFs5b9cQett66DqjfUUH+/ay3KotWRakDIV6vfdfcAK+63p0uu
qcG2ZGnPkRQP0PhEosiQpwY8p2TeNrd6wMO0B91VGWpAd9wu8muRB0zd0lNL
95NE/QXt0s8/KGOWBLrbbl+7lz1gYvTYpdP5Smi5miN11dJFJThOSzLTPOsB
vDsd9Cw3laB1/vKOz44HaN0G5eQ2JWDW7iur1PAEycIvuQH1auj7TaufH3wq
V4O9cJP5GyseUDIWNG5WqQbQUmzW9sMDHCdNjWw61BD9snPpqpIndH8JWXIZ
V0Ptn4yaqzQXX6tBNrN0T52DJ5RubIwYf1GDL89v57vVe8KlOirnNDNp1P45
0fqsxYBDGuIefqBWmvAE35gwzwB+ZTDMcyKPmfQEgdKj+Y821NDnqQKX3Hy+
qoGk16uC7E5PRB6NkbkzzQ2wt6VMrOUFtNNCzERN0jCnd+nlLQQPvZKpJbqs
jPrneVAXDuNClYGoaWOxt8oLNG1/K1rEKYN1Ke5J5qgXMPkN2TfcQMq5tk7N
UXuDr86zMZOrylCkST55e9sLigSfhWaE8aP+e2byA46urPzAsqlMWynnDeKG
2Z2z32TQcrajmypxPTKgerI42ELaG9QFJ2pap2Ug/egm05KRN2z2DLIVEMuC
Uasr9XikNzDGGd0Q3ZWB7t8TfPVnvMEhp/sU/wNl9HsPs3cO1d9TBrNHQ4Ot
//HPeP3+ml2OMlSRBYTs4bxhLW4n7UGRMry8u9liE+4NlSM2G/K/+MGdwzDe
NM8bmuxmF7xkZFH7MD3DwOUafln4LqmAY630hsNWr2lfachC05crTzK2vCFv
M8+gqEYZfb6+Z+F5XaUycJz5bf221Bt4j2GFRRuVYaKdw4yw7Q3Je4+Zz94U
gKPvZrJ/i/lA1N0+3LapLGpfTrlAtNigLwtfvXeWJnh9ILer7umcuSxs3V0K
5Q3yga94xkdTLcro8xY/vkvINyvDYGkLiRqfD4SkZHMYtSLtj/ZqzQ/0AaX8
tahr9sIHeUT+J3+bTH/sB+Y+BtB7F35L9pQKGm+Um/Ex/Axq36ODFUq+OdYO
OTT+6ENMmi8mDYPiPXUy7keJGDQeae6SE3dAGAaNR9I/E7D8nZ0dPIujozRp
lND8Yv3vrV4NuCoB2fkjEz80Of7H/q2I5jNf11Yge7mrhMYjK82U37xOqgam
XceJMh3o4e2wufttYlUwyT39jx6HyFeKBdz4URXAF95+PRKpDL3aP42rrqmA
VKvVi/7H8ziMYBnD9wwsDDx58XO4aAlXEZs3HBqEhQXtY3ZyuofhtksYJtpW
HRxEb9NcWhVH78P385U9Gjk5zVipDl8sh2qiGg7/t79fPxaatm5ldOBE4PS7
G8tOIkfRfKh2nSmOFaeOovHqv5aFmBaFAaarrZiSmPn++3dmgKFuzEaEETfs
9MhdsTwFwMS+RdRtwYX6Q+zngxe5VZ1sHwewrCKh2UAlAK2FGqbX7+FQez6L
bJVy5U044EfqajeQ0dGBV3MWQ2njv3GZExTVctw6aHz5eIFRNhupDrC7TZ+X
oyeH1Q/pnUND2pA4+8TP5B85mN5envv6Uhv8X54MHKSng3Nvidc3r2sD9SQN
JW2yGvwRyO5vuquNxivXtH4cHe/WhedEBfLThf+5b/mPX7gumMWrrl+Il4aZ
CIfmAmk9NH/fYgJNMKW1HrD/u9es/VAWhPVkPHKsdFH+qPwUW9vzu/pQcEUq
5lC/GHwb/zAVXqcPNern3XdPiaP5xFT3nCJnnyDjF3U/ictUH26RPbW/nqkK
R6wm8SH++rBazPGSpUoV5dPaz8/7ZKJYbktCH46kOA4fvvAZxzv3kdH3hSHa
f3UrW/86Ggyhg+xjSo3jb5w0c2zBWLEh2n9JAWs8efmGIFRz5tP9ITKgaaTI
8k41ROdrfYd6JdllQ9gqLq4avk4PemtnVTUDDSEii2nrDp4BzVeeoMfRd4OP
BRat5uqaTQwh3C+M51MdC5T33uoN1zcEngCZPY337PA2V/h8pKghkLdcfquk
zgmKrvPnj7AaAvfcTXuOa9xAQqsvG7pjAI9LyL+y1aqA8Ta1t/8FQxhpii/6
Ha2C5l/cz9+X9IllYi/dEOUHcXP+LZXOZgiiCXQF11pV0Prt81Pdc+gXm08y
gSuvFa44USlCe3ed7W8FE2gTf5Q1hVVE85s/f+cVN/NZET54B+w6VhjDk9f3
w1WYFnDxT1+zK5Pg0f49y355YPQQHiQFiP4M3d7FeUmUf+CjxqP9O8meddaL
Fg+BvyQKCBNksPqy0cmQEY/2L6P1VxFyZjw09Cmxd67Rga9qsrYfK/6A729U
+Mo5NjxEZA8UulOxQOpzyQhJdjwa728jdVbIBsEbNXHmGYIcUGNUmSeAPL/P
n/b84/tCfeR7nKNRe5I4HnDY6svpRP5/fz1jKVI8O+jxIDLjX33bRwDGZKT6
AinxKN+Wg6ztnDIZHkgzbxO5vhIC5R1mLr1dU/QegEnE6fzotinIs02rqn0U
gfySM+dzvpqChVdohdKyCLDJdd8nR/AhEa72c2/E4NLeC2KKIVOg3A54tcgq
DvhqH/3eV6YQHVHVp9h4GD63E/2trDKFNx0Y94dGEjD19bbXg8emEHS13F88
SxJuZZgknL32/8k3X9p5fnXRDEp5738vuYj97/yDHWZQNdcoZ7+Jgdn/ug82
B0678QUyr3nckptUF60kAdiXPglyHP+Gi73R0swoTYCEI5wbEzZ7uKiu5MKL
mgR0/CQPHRZXAQJ8qA9S5ewgA8+wHzw/TAjo+CU+vCG4QSAAmXRIRfYjDAgY
BhcbixNgTXnamaIXA8L/db1kjuYLfHd4qqeGkQBOMnzvvlBi4Bb5iDM+mwBx
tyS/PHwsCXP+becP/yLAC6u2u8G2UlDrbvNV5y8ByC9wJLqMScN4CXPpdyoL
0DBlzJnSlgHBNw+7y2gt4MeYIBnxITmI+EA9c5zLAoLMdx6ryskBaSnbJ3Vu
C6Cro5TvpleA5yLHdv3FLdD18KyuMSNB0gJqC3o83lAqQmADw3K0ggXKrzFN
9EXZUdkCdvroBVnJlYB1nv7TY4wF6id3F9+5HqJuAQUa39suUCLn+aW8VVkN
C5Qv4oou0d3XSPkbppT3ehfmcZHHP5gJLFmCSLAk9VGKb7heH2yQ14olSAqZ
cMb0/cAR/kv+s4RPxBXjDXXcsHjkor1djRWEKst/lzrMC0kfdtq+vLACOuLp
jzdzBWD9rxLD4KwVZI2xRro/FAB3VYUB8jkrdP6yFoc5KqxYweKntDKLKgEw
/S/50AqVIzacqSSLV+zBPKjgVmt1EW4/fyavYglX1/8r68rjoVzft68lypoo
FaeQaOwzjCFyWRrZwzCWYTZJkVOhyHJEJWUvHYpsUXTSgnYpWiyJkoo6ISlt
U8lSqH46fXr/6Pfn8y7/PO973/d1PfdyZZkQ+km//K2MwMUu/xMH8xtu95ft
NyTyn7/0PuMz1ll4vOMCeWEzDLZRiXzo7Rti9pbtWsR8j1/6spFRozlXB3nI
scyYGR1JJu7bhEs29ZdRiXVPwqlLUi9JxHytX/GHfXD1unn3+MQ8IgXvAqUm
4UDcyV173+MLlai3v9QmejYsgkLUoxlN/WXaWadD1KM9Uhyo6c6hEOuHlKc9
e+V0ifq0X/rcM5VEh/UK1iAmLWTXQl9p7LblRUay3Ah/deSj9vBFvhsSzHdE
yK+btAzznj/LYBaDsKflD5YVZCkwcHuuEcsqXRUic9TLnMQ9CX9yc+pmyiYl
T3y1m2g1sFOHdQ1PbFLbE34uW+YlipAgeVjn1Is7nrjRbm7nOoOEPvGhQP12
T2KeyVaLELeZ/3oiR1djbHAWidCv5Siar3Gxf2757YKT26xuL8J/r5LY1ljw
2gsLFKVacxrGLfm+vaKyQkxIbvJdbPjNAMkKek8z7noR9vBxocH4LoEXZKoL
Jt/UTceLMX7IQjkmTm5bs/a1EhlX/zMrJurohecYjDnYJ5vVa17BJPx1aNXU
WvJ5Jv5ccFxo9wwKtiwMszZMY4I+K+uYog4FGV+LrjXmMwn7yYqkR1jUMmGY
ntZ2BhRCb1e0ahe/5REFX5JfhYS9ZWLQ9M0Lw1pVMC8mOOiXeBP7yZdb5Hb2
gjeaXvZXd1mrQ76uwNmnxxvf5TW9ZZs0QdrynvEy24eY78g5aV3kUe2DiPFL
9frmy8DsexqV+sAHjvkFl640LyP0ZWvn9PbPk52y1P0a1d3G9sWo92Tu6Z4p
y/gGurcy35f43mPJSrcZ4b7Yvk4441THV8tf+r/dlJAMjpQOFh3dfrUy2JfA
Xzy19q7tu3wRs2hJEmWtLqIiJq6cOeeL+qaQWW+/6xL6tV7fr5W3ic1Bg0zu
JSsLP3Q52M2NypwDzqJja1VW+RH7PWr0xC7cxw+hLwL3NMgqEHrDT4VW7ZnJ
N4F1xJNZu0h+xPzN4deVb58z/FBzYqNF7xYT4vm7Ct1+XqsWoTunJSbNjUX4
l7wFS8VPR7BQcfv77glJVdz1HImvO8gC16PmgU+8Kkp+/GVnWFgS/Tjx8E11
sFREfNOp/gQ+jFSznV3u749XQkHa6Uoa6G5ZbXYgxZ84z8o8ctAhqNAfIm41
16KCNQj9XV5Cgq7Kq2XwD1jmLDkcAJst11IDZpIwOj9e4/5UAGEPp12Wx3Zo
seFhl6pyR4YExR/+41sAQtY9t6DrauMN/+Kd7EA2kU8JjHrvlrubDSdGW4gj
U5uod03ckF1t426I2oanxRWnuGjT7LvhPs1z/sNXrVzcJQ1qDvCpOLbP/9FM
Eo+YP3tvpfc9PyceJvV06gc2UH/yCvBg32MsOGOvBaEka6vNR3jE/5ewQ0fC
5CwPivLqgX7T61/9Sz8blzSxcX9hp9QeHkoGj39qcSRj59sVmuLFPCIe+WxL
27tr+vlhtc60m/5k4v0Rrcx+jW0kZJks3vd9Fx8s+urrfVUkon/JzVDPeTVn
mm9e2g2fjYGIdHxTErueQvQfHZs8qRCZogO3uHO3018Eolz08OaOUh2i3+hX
PbJvp7WWebQ9qLkFrrtu0wg8aX38cwz/Fu0nD/Pk4uLdct3YezRi/6gbO80f
PqYR+yP0R0vjvP+ZIuAzVlKptshZaKhnLGSKK1lv/yoLs0XxH+puAp4R3gwo
nA+6qIizPgI7Q+dFEJM8cEZ+lSY2L3FfGZCgB+EqWcGbcVUcejK+2ExiIRZ0
tukFOOjhfcX+Yt5nCu77slg7h3RxI+7d47F4HQxXnHwus8YAje7z1pcf1kZ5
5zi3Oo6Mj/QLJyT+NMHrA4L9n4MMMLLfrZ4eIob6D6lLX8ZTcVCb/aFwGp8d
qrJc2EuhIqEw/MbwVi2oN946/eSBCW6ONbHUvxli2HITaH0WSJfz0FB2WAzN
pXZDQVqWcL3wZ2rzpAHkrCdTY1sBnwPxQVHcPsvo4nSnewHWONngL/XRSg7N
n2+Jfl9vhbKAsX5VNz2wph62zBezgU9mqpTx6HR8/ifhnLiFLdznJ6+Zm6CO
U8drs/hL6PCuDO8ZjdSCoP/Y3gqllTiyepBVxlZGrzaN1fiUDp0q54dGw2QM
zZkhEvHAHllL5Dmkdn3sfqViUl/riG8tmzZvBBleSTc0ToQ6YC97rDdwJwlK
h198H4t0gp8+j7siSh6c53WzJDe4odddYYq9jor6buf+/l43WJwOk3zVJ4p/
NFRyzixloDTmeM2JI0p4raB+aKSIgX12Ay2vKrVR/954SuSrJxJOaM/OzJ+L
klj/I/YPmdgk5ZakH0VGMSnYP9uDieygZzTVaT5klWfeWmTjDRuX9s/N84yh
LCS9KaXUG2yBh0ToUWOQI8ISA6R9IJN5z2+IRIXMghIvtUQfBLdmHgqvEUVr
6LvudXm+qMs1/5R0jARv4U0vq1V8kTP7ivaSYiqesKTDOoV9of3s1GKzmSY4
KzlsgExf6D0b3VCZLIePYk2arZJ+mHmrWZKaMRfr9jfqV+/yw+RU9YjseT2w
L4lFUafvy8cX1q78pg859jXKTv40ntp67Z+RUDU057UfFXrJwh4GJ71kzoSl
nEaFwg6TAAQfV//iWaqJGHpRxgezAPw1Q3p7f5c0Or0DC+UU2agsP25u8FgL
lOomm9q8AJCrrqZU9M5Fj7TCkPQMDvbO3VhVsMcI54XXZ7hkstE3IPMmkrEY
gnzu6fUNHGgeq1QRbFVFBXu2Mn+Mg9CjlTF7thujOPpL9akLHFhtnrh2vm7Q
Uuabk/VmNhdDFfedXmepIZ3BuB+nw4XpfMmbL4vVkRfHsH4UyEVQGtdxf4oB
Ji8Hb3q6iAuLKxqpNh8NMBjpNasxiAtZm5X5ukJUZO/oNrkTwoV2oaqAd3QJ
fMJyhDMLubjPO6vWXawBkYCi6IYnXFgVbVNozVwKxcIEp1RlHpTMlivu/m6I
DaLyvFZnHsQ/R43va1uGuCL3vXQaH3EuNhUd5PmgSqyRkR3kw//CAqWJIwvQ
v/Z2xLhBIGxZy6+RjmhjbdLwbUn9aTxYZST9ar4KwhNuOK7uCsSQ4yFzmSd/
YDhb3/xm2hpCz91q5Zk4spE7gX+3rL7z+NA03zih2DtDwFBFi6uh9So7FbgG
dHW0py+GsHBK6nKKOiQPdfTY2KigJywtMWSUhHpx/QFlui601d8sNF+hg+ow
2onJchIiB5o/uoQa4XD7+47ETjJGx/Nr9iabwsoxIDwujIwvn9Ps7JqW492d
KeHkT1TsGSv+MOFnge6jumVJiYY4v7ZsdH+7JRzGttaV5utD4UDNXfhY43Vr
bmDTAQrkrSIzYrXskazvUWwgMEFYYcH2uCQWVPxcHLLqKAhPKd1atjkApdFh
f715boTIDwL32YocrOCNnH/upA9GSdbXLwc5yOXn2rXJnLA8tea6XJEhFyVa
NcE1HxRx+o9Xrq1MPmp3xvd7t5NRqaVjLFjNh1NIl83FPBp6/utPdybOK84+
vf7OVccdUZPLO0ozaZD7cf0VGyP1Lu8crhtiQuWT81QqC03mu1NoHWQ0C296
Ib3ZHztcHik+dqDAmDT0rkngj9t/D5REMnRR06pvw1bloDgv5Uq06x8Io7Ns
kzM5SOPdCqj30sO+pVOCOywOvsxwLb1QLAJ1R5u845+m+Um6eAlzjRRcVFeV
ZHF4aHCKTaoO10QDgrZIsnnIZJ5bYGIljwdXLp/sesBDa0NLfZGGAv69Xlox
oMj/GRd1jNGXbc6sW+SOw580MpyraD/rb9854W8nx1tW+TTQf+BvfQ4+vK1J
6i6n/eQt6zl4/mRLdvIpGhp/nP+WcRC4otc28ALtJy/q46DvGDe4oo6GdT1F
pJ6vHLRZxzK055jCXrUv5sMZClJvxWSYSJnCNriSvnacCnKBCJk8e3pNo55P
55igySplNnOmKUTM/3ff7LgZhK8UVVyXMYXH5ShGhMxymAznht4TM8WDw6Xl
tZwVKLSWmHdX0hRKj8TU/rm8ApymZ3qp0/H3zIXIrtlSVhg57whImKJ3x0b9
EmMrbCv5V81/iobXvX9+HRmyhqz4Fs4nEVOck943oiltg0VZcnnBYVogyX6a
MnvvhrMnKs3esLRwj23imFjqCeEUe9OLpgZo3haoZfe3F+yS3aWnROVAT0p5
0RzLhPbqiRQftcVIcd8vYIV646JUq+Ca01IcsqI8inX3QX5EtnmXzgfLhiOL
Dx/Q88VVf6+33SHKsOGqZVhLspD6oFn0JMUQ1u5R8yWWsHDOvqzjrTMZWVLx
70ymWMg1e19Hl3tn+ffdW8oVw/4YcR1NcuEtxWO3/G9Off54mxoToceQwM7B
xw/TmgKQGL1G7SBdARP5clplZ9loDi2jR9N10ORzuVHtLhvivALa5+cL8X2j
r24Gh4OPtvyjVnLfLBPUnwr8rnLR/W2J8sRcCcRWqpfMWMYD7dDBZzIr5aB2
42Zq+EHe/6uf/L2/5/d5Vb+fF/2uP/h7/vx3faXf9Yt+z2/+bu//B7QsTrM=

    "], {{
      {RGBColor[0.148, 0.33, 0.54], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNVslOVFEQLRu6Hw3N+ISmaZrZiHFAw2A3hAQ1JkRlasAQEwyaIAIRo9Et
MiSujUaRjThEXThs1LjQ33DpD7jxA0yMdTyH0IvKrXtv3apzq07d91qv3syv
RMzsq0uRy8GoGeZpl7KEWdxl2/VT5WanXTZdv1FP/UNoViKbp75+ppx2IzGu
lWp9SOs4iz3MlxAvQR3rq0bbLZdZt8kF1HFuqMBnifCsGfV7Pna47aO42bLr
Ta4/dH3S9Y8hMa043iBBn/Adcf2sr3cF9IG48IN1rE27zVRsLw5wbvi4aLxT
NuCZu/XUv3mcHZdBP7NVZ3bYc3jFpUH5nFNOu417PT5m3PaH6/tc74xSh+1l
x348YHxgxByYduqI65bHPCGMwIRz6Rj9pOUT/tKK1SAbxAOOAZ+fdr3fx5k4
84V5dUD8bcbcDbueN8YGBuCJ17BWh2qZa9QEdaxymxz2Xf9TSl+YX4qzNvC1
bvSBfLYH3MN6RQ3zfMR9ZgJiAp4+X2tEnpT3MZdxCfZOGmNjPmG8T4tLq0vO
pVnzBeB0GXXJgh/ag79e+ZqQv6xsUSfUqDPgHZfFNWDfVk6mdCdgjKh3JhW7
X3GKXaKKk5Zts9b8+P/8ZnUGuAPEEe6Y5m1ai6s/VsVV8B34llXntDC3K9/A
Upwgdzdtr9+Qy66k2a8ys2NJ2kTF71iC803ZFmsdnAY3nvjY4md++tnmJOsO
PSf+wOegODgnPl9X7pFv+LqueqKnEWNJ+z3KU6rSrL6S986qX3HvZdUpr1pl
lONrLhdUt3XVGzHWtLegfM1rnhHf0QczKfIzUkNs0wU8RQ+i1s9SPPMy5LlJ
1TeneufFlxHhGBZf8ppfU+ydFGvzJiRnl5SHCd1tSTlaFP6GSuYC+exRjhDj
bUjMwH6/hv322OsS8/UHzokDtcxfvzg1r/uvimv5Ar5j3O2n8YKeGFO8UWHZ
7aEF3aelIAdRcbpJ/O4r4Huv6ppRPOzhXQRfu8XrNuHM6e2Ji/st8htoH/Ni
xYG/iOKlxRnkCzXdfXPTss0qdrPwYt4pbsK2SP4ahQW5QzzkPVW5t5aS/37N
B8QXvAXgzLkkvx/nk/RXJLzI30YBN9fFzeqQ39cJt68I2XsjSeZ3TTW7mOL7
/Lfa7EVIHoKPn0N+A774+C7kO/Dex08heTvrNq9D8g28w/cJvfTdx1chfcI3
+Ax90vZ6GPfFewD/wH1b3xvEhF/4L3He/d7PuO/EO2AbEP879C4draU9cGXL
+VZU6fvcrrjP69jjdzzOaJLf6bEkex7r+Af4B+O5rBk=
          "]], PolygonBox[CompressedData["
1:eJwlkksrhHEUxk/TeF/vzDvD+DPvUG6hRrnuTLJANu6UkmIxWTIu8QmUlJLc
yoJxCRvs7HwVX8CCrVLyO53Fqec558z/PM/zTmtxY74UE5E8FafenciAL5II
RarBlTUiffCVQOQI/EJvJCUyTK3lRGL02pkvMT8E79Bb9uyNXfBPRiQD/k2I
7DP/gzfBF9k/gHfViVyK3egGv/F+P7iC+ynwXCSSDG0nzf4kPA73qDTzZvhH
knvoWeVeD/wzaTf1ts/OSWA3751pVK1t8AdnntTbGL/fzJkm1dbI/JZ5B5qO
4YPcv4Z3wvfEMlhnP0HvNLAMnsBTkWnTnYC3LrIiQ55p6o0sU802oGYj86he
1ZN6O2O/4JmnFvgM5YeW6Q2zR2fa1ZN6u6oXaaiyG2VnGlWr9nS2hcYFzzLd
Bt8586aePGcaVItmnIF/1eKB/Tw73+ASvxlNWU9n+s3122vvlf1nZ7uagWYx
wXux0G6Ws5apZqu9cfVLJgXfPE3Dz7P231DP6v0f7lJCwQ==
          "]]}]}, 
      {RGBColor[0.6932942829180384, 0.5473558182779048, 0.41151390397150467`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmOtzlVcVxre1PWkCOSfnvEneg5QS7jDVVml1RgcLqC0CgVCSEEgoUARa
UUIJ9TbeZ1ou4vjBqe0YpJS7pOr0QilgKaPO0ALKpX9Aq1WsM2h11A9WEV0/
nucMzGTP3tl7v2uvvdbzrLX2GbNy/cL+G1JK59+T0nujv7MupcWFlLbFeHUx
pTXRzsf4QY8vxPhjseeH9SktL2huted/E21djH8d/eZou6I9HW1bJaXPR39D
RbL3xPg70bZE2+19/UV9+8cYr4j+gWgrYu+Y4Sl1Nab0p5hfW9D4XFLf7fnJ
pZQmRXsuxotiz/gYb4/x0Wg7rUNPWfM/ivGygr5h/+mkb89EPz/ktTfq3B7L
58zlRem5Nem+2OJzMf9iki5no73g+3P3I7bdS9xthGz6Uqb7cc+LtiH2e946
HvV3rK+P9kisnQy9xkU7FPO9MXfzMJ2zI0n2Ye4b9+ouS5fbQuaT9fLd+mjd
rEc7Zhtg5xMh778NITfGjZns9WL0XSFjbKw9FvNPWRfOOOT7cbevVlO6L2zy
q9i/NXy5JM76S7P07bfvVsbcwtizqiBbzrU9G4dLD3RY0Cg5r8f4NfvutHU8
ZlssDX36yvJLQ9z7VPTPJsleYPnjbZ/t1pMxdri/LP9i27ujLcb/0aZHW+L/
p9k22OhTIas3+pnRZiSNlxiH+B680q8wDkaF7FujzY7vHg2b9IU+T4Y92ota
W5eMX3/LXubhwMKYGx3jjeYIe/vBXszPizY/ZH46+llFraHjw/Ynd9jg/7nD
gP9vK0nmnILkD1j/94XNe8F04GJkjJfGeH6d9ET2pmh/Df/1hc/eadYadxko
iJ/cGcwfD9n/DszEXxoZ41uifbKg8zgXe32gRTHh/S3y1e+jvWV+/cH/V0KH
Dvsdv1702qjhwk4tflw0j/Ax+8EDdgGfjxr35809ONplnhIr3jZe0avNdoYv
Y0rCNXfibviFe3CfriR7MwYPd4UdBuu1B6x1GG/of+E6fp83R6bG/idif09B
uLochvp4kr5jrPMu+3uLcb7J/+/23Fb3/fb1shHSo6EiThND4HVnnNtRkI+X
1ovz/N+ei8tw+kAmezVEf2+TeMIafG2rE95H2ofcd0K0oFgabj+dus5vp+2r
OUV9B0e465Q63feeJt2T8/a3Km5tCU5Mr5PN4DP2w3b4kbh5T51sx/nVOtkM
veaYh6PMLTC6J9O4LhOONxSk47sN0nl8tIOZvt0e53fEno0FYQg8g2Xu0ZYL
w4+3au2MMQbewB34m9WkuLHMeQ1d0XNPq8bfjnsNlRW3icOvZMoZX4n5f5UV
U2+Pc3aM0L2eivWPBB/mcd9MeqP/W8YvmD3nOEOMBAvHjHts9a2q8P2N6L8W
rTPGX49+QS4dm0LmQzEeG7Zdk4sHcOCcOQUP4MObYag3osX10v6y/AYnJkeL
o1NcOU20/xvhSL2wR65eUy/9N7gmWOzYgA/X2j6T/B2yiL3EbmJ6v/MY9j5V
Uqwnlt+RKwc9EXbdlykuUiO8UpJfx5tD9PDobvsZnPaNEOZvqgj3t5kX073O
PXZl4vQW6o6qsPrTmPtyVTnpi9HfWFFsmNQie7AHnv4vdP8EcmJ+Zi5cpoqw
Qc4mp8ApOE8tcWvIbQvDrc7FUWyHjYoV7b8PX+WKxcujX5ErFj+QK9dMtP3g
FmfV8tAk+4fY+7Lt8uew3aVoU+wHfLTH9+S+V8qKS8SnWj0GTsmN5NIXjHn8
sdG8OOv1Wi1DX4uvhx3frjTIX/A0qyh+fyjsc2Pc/behz9hc2FxVL1yUhov/
YLkp9v88+jtif3Psb4q17lx5CWzBafQYMK/JUX3OU+g43+ubq+L2hZDxmRHC
ZEtFuGT8nySsseei5SEbmftaJWtTyKhWVDNObREnJhv/eUVceTB0K2SKTbsz
xWXiMTm322NiNJgBL/DoHefQ/qq49jv7iFoLTINl7PSmOXg4E1aoDd/wPPs/
mMvHU6Ovrwhj83J9w76SY+Y06zLZ81fxEPuaw7bVkF0fc/c2qi4aqGq8IfrV
0T4a4x2ZsAmma7UwY7D9s0xcgDfkxG7fF5mvllSDwuHXXLM9HPsGo/9eRTGa
WL0/+mHDxHn2TjL3qbfpT3mMf8AAPgTX3B3ukWsueQxmOfOQdWA8aN7C3x/H
Wd+tKBf+LfywqaI4TDxG35PWmfgLTsAO88jCPnCFumCnOc+ZD1UV4/A59RX5
kHtw39lF1WeznW/IO4Ot4skOyxqXCwM3ZarZajEMP10y5shD5KMftKrGm+Z9
4BJ8frOq/E1e/UmmGn+HOUluuWI+kmP4f0J811fUO4H8xHuHtwE1MfmfmEW8
AlOMF7meIn9T84OB+8vX3kLEC2IFuYWcgk70Y11jraqqHhydq8anvid/rYr/
R8d4VKZYgt7oTE5APhg7YN3Qhzx1q+s/+lGWz3qP9zzjnPK8Y9QY57bOst4t
6H9LJv5Tg5y1XOIfd2QPddi+6PdGW1iWn+jxO2udnsNei/yewhZL/Qb5bC4b
ED+Q0+lzuct+v8GGmRu8U9p8r7et/5DfM9T4Q6Vrb4UhvwvA1MGSOEesPeG4
8YWw85yw7yNVyWf8nDlx0m9DZOLH+a7rDrqmXZIrVhOzx5kLYJ7+VY/BRo9x
gg/xJfGafNXu+glcgmNwCq6JIVPsr9H2HZyBO3fmylXkLOozenIYWAHvx53L
yIG1GA//id/URawRM+HwZY/J/fQnPL/GNc/aXLEEu2CTnvg/482Ti7uLrPc/
m5WbHq+ofuaNROwgzhG3ieMdrm8GzBHiO9iDT/Bq0Dbv9bjzOhxRyz+drmEJ
niKT+nWz1/EJPu6yr2d7TDwg3s20H3kHgocZLbLJh1uUO/HJl6q6F7Gplpeu
fzdsSdfelOCIOWIBOhNHZ/ttuc5xbZtlHfQ7aJaxOc86bLD9eGtis06/LcHn
Zcef8Y5tYITcTP5dmcv3E7y+zbL4lhpzotew3ybbrcucwn7/aNbvCN+vCDPv
1n6vSKqLat9P99m8N+D+63H+Xc6h5FJ83uO3Ibp3+e3U6/vwRqamp7Y/k0k/
7so870f29Nov8PUx+wtfEcO7bJON1qv2+8Gg88LNmXSdYV3h6DzLmVuU3+HM
kH8faPc5ex1bFjpeYaM8k568RbDTPuMPzhb928pez/Mtc6yBmzm5MEuuXmyb
Tfd+zkM+vGn2+5a3WuYxPf8TR4567YhxNeSYzFkl68A7hhhCLuhz3AN79M94
P/H1gGNmk/VHTzi33zGfOhL/4btux1h4tdRy+jx3wPufzfQW4H1QzlTX8E76
e7N0Op5JJ2xy9XfJVsWNjlzv0wX+XYK6FezxBltX9Vs3+PeLTGu/JCfnivGN
Fd213TFzp3Mx778m6/ByJgzNMD52tqr2mBsybm/R7wyVTFiY6zf2kUy1Pb8B
LLGv+L7o3+t46xeNQXBH7XU1PkX/f4Fxj+g=
          "]], PolygonBox[CompressedData["
1:eJwtlNdvz2EUxk9EVf3a/vi9bb9fq9qKi8aKmXAjZmK1VLUUrVZrj9h7JFYk
EonQBqFordgxEyMxrrjiH8ANLgjBDWJ8HsfFSc55n/es9zznLaxbUba8jZk1
IG2RtJRZ73Sz2Rlm+9GLc80a0QdyloHdiMzHrsoy2xmbdcAeDFbD2QH01jyz
Ve3MZoHvAj/IWR3YCO48CmYfc8xmYo/hTiv2705m5eQdn21W0dnsMmfF6Z5z
Gf5DyP8TfDJnQ9EPEa8ebBrxt8SeU7kHgd/G9yKyi/uzOPtErtPYo8nVLWl2
gvi5KY+lHtTL5xzvtZQ7V7l7mPp/dDDrSYw94G2Qpegl1DcD/yR3mjL8ja6h
76aG2dTSNdNsbmR2g7MaYh3hTl/qrY0cW83ZGWKv5/494k3CZwN6BfhYYi0B
j/Ddxtl0sErkGXYlOSeSexQ+f3irdbH7liAPwcvxzyZ+RyQHuz31HlX/+MzB
dxP3p3C3DHkqHJlArgJyjoy8J/VWwtm54D7yVQ/q5QEyF71WZ2CTI+dCBWfZ
wWem2Y3HbsF+HryXBZzVglUh5eirxS9quxXc9xj2TfRLwXNrZprdS2QN9gp8
6vGdR758eitA8sEeB+dSEjugV4EH9Jf4z0SfHvlb6I07kq8I+3UCHfs771eH
XZruObrhvxi7iPvvwReh1yBdMp3D4nJD5LnfgUfEK8VOEO+aOBE5Z8Qd9ahe
Czl7lfCcbcH2xD575dyLPhE8I+EzmoDeSI5f8O030oRuKZ+NdmQf+lTuDMeu
JkYn4g3E/oB/MVcHoN8Jzn1xUty8h1xXbOa9lnzN1JSfdA6fATuJXZB0DlzA
7gVH43TfkXbYy2PfHe3gleCcEXe0w1/ZlUGRc1E1DEZPA3+T8J7Ve7/Id0c9
9Y98RpqVOCqu9kCA/u1YAfr22N9enN8R+5+iv0UzqAZfE3svevOTvM9K7HFZ
/obNef93JMv/hG/U15Tyv0c7qd18Aj41y3dAuzAg17mis82xc1BcVMxVsf8R
+iv0J51S7cRrQT9K/H749sn13dZMssHuB5+N3lxvL86Ku2+x88AXRM4dcWxh
5DukXVJMxdaOaFdeaPTYG2Pfbe3cF/rZGvtfpz9Cf0UqeC36c++inw++W5qp
Zhtj52T6TlRGzilxSzNuDs4ZcWcYMRtir1G19uB+Pdjx4Jhm2hP7bPDdFofE
JdWoWpVjBnj34L7aUe2q/nT97fqz9Hf9BYrtvNc=
          "]]}]}, 
      {RGBColor[0.7979841525395, 0.584147785237524, 0.3499709774208691], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmWmQVdURx+9jecOTGd7Mu/PefSiLyKLMAKKsoqVRYFxSqTImAiozbDOg
xqggjIMMIgxgFAbQsogxgGhwi1qJSVW2QkHMUuWSDzEaNGVS0Xwx7pqkkpRK
/j/7PyUf7tx+5/bp06dP97+7z4xaesNl1/dLkuQq/emvd6eeXXp26nmyIUkW
6fmj6FFZkszKJ8nANEluLyXJ/EKSvNuYJC/r9zdqxKP3YfE9rOeRJOYt9twJ
xfj9nmU+oafNv3m/r/cayd4q+pjo60RvFv0P0U2aO17PY6I31QdPkkuSicWQ
j+zKYPHrW1nvDfUx9x2xvSidLpZuDw1Nkkw6f110h/ZREX2p6HaN/0Y8F4j+
gehFes4W/bTG6sVzvujLxV8sxTjfFw6RPMl+Bt1Ft+pZIn0PJTHO/ll/i/Uf
oLlNmnul5s6TrIbaJFlfTZJnbadH9ZS13h7Zc3JZZyD+ceLfV0mSj2XfJRpf
K/5jkjdS4/Ml57+iS6JPkbyS+C8UvUTjt9XHuhtsp9ttz576sA/08nzYn3P5
URq6fdgY9t3psx8juW/JluP0fkM8reJZIfnT2Ifm3yWeA2no857m/l70JaKX
Do397LCsy2Wb3uN8otffDmhvJclfJPmPae5Yzd2vuQ9pvFHjS7LwlyftJ0+Y
RucfpmGfK8T/yzR0ukn2+Z3o2aIXa7xH88+SnbdmocO6+lj70nzQ25OwTY9t
wli3x+cNCZp5+BM81VzYdbNtu1JymyR/td79czE2IBd8+OjQ3Jd6v2L7s94m
nw/nhG/US/5G0cXB8X2refgND7J5bzT/n/Q8bd/DlzvzEQs75QMHRJ5QCrv1
xRax8a7eLyehxwdJxNpu8X2K35XCjtgTv/tqPuiuJGJ6hXyvS2NDRb8vnc4V
fVF9xAVnsSIfNn9d9I2yV0G6fOh1oAflwq+JryNem7EaPbfozL6i8ed0bt/O
B42eM6XzjGKsy1kiv4H4k60/kQ6z9D5fz39ED9LcFvGNIjaT0Av/RrcLshjP
lWI/n4v/Zr0vqon1wAd8eXpN+P5BPa/aTrvMj5//W/59jfZwn+SMUXxOIoak
e//BocNV+n1STeiGLgtFXyv+jfnwN3x7tXj+1Rj2vFdypmZhzylZ+D08j6aB
adgX/X9l327WmvP17pasRtltvPzuZNsQXAPfXhLvpHJgFFh1VPM/1vOR99R3
JtfnY/w1+9JH/tal/XytTvbR+5yawBzsgR/20zpvi342jfO5uxQ2hg+ey/S+
Wb9zudB3cSHs2qZvc/TMTQJrwXdibZHHWvAx7b9W+7ksizXPtsxWPbM9H7kn
6TkxFz7NvvO5iKlNjk10HGY+4nCEnuG5iJ/h/jZQz0h/wx+XFcJ/vyW/bdA+
yxp/sRgxn4memw8dFiaBuWAdmPe8eFLxVMTTK3stl91eSyPO8l4nsb7gAH42
0HotkIz1+YiNSbk4T9Y93W9kku+aixEvR/R+rhg+1m9w/EYfcsd485CPxhYj
96DzEfOPK8Y4uPCY+cHmpflYo2+syXLIpfgfvgc2v1AMu+Dn6MD67J3xz7DJ
kMDKKyTvPtlhteywvxR2AHc4q458yMRv0AWd4Md+2Bo7r5WMW/T05GMP4O7D
5n/c+qMH5wRmgc2sC1aTe+HBBm/pDK6RfTdkMTbW43ukW6d0e0C6/U08KzgD
8Tyo8R1a8+9pnDn6fC6Zk+WPa8S/XHxv6tvVet+axfrXWQd4XzI/+qxzvsD/
1g2Js2+wvThT6gN0BbvBkhV14Qenaq1r6gIzwM+VxtBd0u1aje8phb93DQnf
Ol38N2m8Q/xzNdai57x82BAecAHZHZbfbnpULmSzxgm5iHtoYn+V12WcMbAX
GvyFhpf3TI8jb7llpt4j/tBWEzpv0ry/pPH7xizy+UuOGWyKn9yZjzNfa52x
DbXUAec3zo0ch+9MsP9wpq3meXNw7H+i6GWsI5nfkcwdstutev9Z699dDZ/6
axr7Y598210N/n2y7STZc2VdyMCmq0TfkQ+7Ih+sv7ca4/eL/5jWzdVGXsAH
59sPu40jZdsWbD1qzH3lOAx+1d8Wu66e4Hh63rGGnV60rdpcO5Azqd16XN9+
bNlgODUftd8LrnPBd3Ixz2HjBLkO+xGX4B6YR7yXayMXUmsfdU1xyHIPeT6+
+IF1n1kbWDpdz9TawNRpeiYbtzJjHtjXh9k5Y/MI499A+zI+zbnjn+SzQcbm
gcZ24oH8eTyOM/8Mr1N1nLHG1Fz4Gn430ljfz3OIeWJ/r85wivEYHc+0jKGu
1xLTYNM81/fo9L7PkLjnfDlnfBj/Zd93Su4yyd9WDVzZlg8diVti4S6Nn6EY
eE/ndqbed2o8J/p7qnNP05nN0N43aXxdFrjTnQWG9eZDX/LsQftQt9ZfPyQw
C5r9s3fwaXs+9sQY35iLPuwdnaiLqCvA4/XmYS5xTczjs2u09kTp0Kn39Vlg
0w1ZnAe+A56PqY18T91Jzqcu6Odze8c+Rk9Fvv+D+8Iu1xw1zt/Y9OYsYq8r
i9qZuZwvcUgckxvXZoF3t2CTLNa+Nota+DbXyFdk4cdX6j1M6w0TvTSLWCaO
yatZGj0Xvdf3C1HnULsgY4Nr7MNp5MUHK1Hrnuvcz7ml/k0O7O96D59tNwb2
4Sz+Qo9HP0VfBf8R583T3E/RV9G+NutpSmI91n2gEv3SmiT674qxFV+nhqUu
p27aUg2s/W4p+qjVnrPL86hvqTkZp99Bd3p21gK7qGmphenV9hfiXFa7tlhj
XAVTG12jsSZ13O1at1V73FoNPIcm97VYrxZj20Hj9xzPa/Ve53oM32c/zBvg
2oL1Z5uX2mZGOfLMK7JhmoQ+E6hJ/P5CnvMe37iHoP4+z/ucY3l9c5BB7UZt
dJXnN/jbSdYF/albp7u/Hes6BRzg3LCL1Poiz2PfXvs9Poj/0MdBv219U9uQ
Ogpcp2a4pxB1PvPxx3rz48/Q9Hc91eDd7Z6lzWfA+XeZbvU5d9penfYBbNnP
9mRel/n2VGJ+If1yDjLKrlHwNfIZ+8aP6DUeLATWIW+h5dPLgkdg0acNkRvp
h36RRn1TSgMb7i8ENvw4DRsW08g35B3y0fRyyJ9WDl/Czz+zrq3Wndp8tnMV
+bFkHva2w779zSzwLE0jbyILn6R/TWpj/5wn8UWtS+yf4/4QLKS2YP4njdF7
/joN3AVPwVLulBbVRc8ywT6OHxcc88Q7MYts6mqwp2IduCe4zj3m3kLIJw+P
zcKP/tcQuZdvjM/Pgr/qO4x9hcjh9ENLnAPwRfIyeZq6/Vmvy70K9OEk6ubD
5iNG8FvOqezYxiepoRa6FgUbuEdq8Pe3zH9OXfSnYOE/NalF7+fTwI9dPity
CjZdbnwH58kjnH+Le0LuM9b4joKn033i5mqcKfdA/IaXeFqWBf9wrbWuGvY5
oxz1D7Y9Zvnz6mIN4mZBXcQOtsaW5KCOQmAc9RDzyj4X8BSa3I99+U69w96Q
d6vWvK0a8jdUA1NaHNNgyF2FwBHyAdjaZH/sO4devzkH7qToh+nj8aftrg2e
qgS9rxoxh/9g059Uwv/2a3xAGmfDnSu5vNf5/aeVyP/0LvgEvtF3jpwh+oAx
A4wD4HSbsZpchO7EM/sYakwktnd6H03GJ2ravcYN8AM++MFV9rDN9Q/59Y78
l70smAGuFB37P08jrvB/7nu6q4F595Six6X3JD5nleOO8Q3fR4KV6DE6Czvv
TV1vOad3uw6a4v6xx7XfI5Wo8ekDVrreJ165j2k9rqbkPdw15yaPUfdd7trv
iUrIpIdgb9QkE92/078R/13uX5Bxg/jmyM5PSc+bsqgLRmiPq0Q3CxdOSQNL
qIvwYernqa6RycPUScRQYxqYBLbRZyATbB5dirr7rHLEB3d/xBM2oF7EDu1Z
yOdumzgDi4ktfPwSy6fXxBbU1wuy6B24P75a9GittwLd09g7NqC2Zb/s+8RS
5GXyMzHHXOKO2CV2OFdsiWzsie2Zh/25F0aHxlLcmzb7Dqvv7gMbc6cG9pwq
HU5OYz7niR2x58xy1KQLXetzhtPdH9Cvr3bPjj9SRyKTfdAbjLTvUBeyHnfZ
+MOwUpxte02cL731KvfX9DvT3E9U3TPg+/dXI0dwN9CWRb7uMVZ8UU8kkVP7
4mNEGmcGti3OIo9Rx2WWBx8xSv4gTre5x5hsP0VP9knN2WS7PVCNc+fOAyyh
1kcWveyN7mfhZQ62Iw9yz0asPV6I/EueH5eGD4Er7BO/xCe5O2f/rDvWeRF8
Iq8ecw05rTb4sRH5iv7zdfv2NPv3IOtN7Z/at4/o/bM0+njurde5X6EveyaN
HN2p/V3sGKhNA+Pom6kxN/N/KPam8S1Z6Eh80D8tdw+G7mdZN3qadvcVF7rf
xW/RlzxBfMA7y/z0HB3u8ehRltmn2NN076vFNQF54VzXnbONq+ROsPKOUtSb
FJr46Ez3zNtLga8DS5GrsRk5qMtYQr+FjtQH5LSOavQh9JH8j4oe/rdp3MO0
+56H3nWKfbTR8YQ/k6+P+R6bWup11wrUMc3ewxznjWbXFkdt6767AH5vzGLv
p6aBPWAFGDPDZ43dxtgXyW//B6FGI5A=
          "]], PolygonBox[CompressedData["
1:eJwllltsVVUQhle1eCznFOlePd0bLdIW2mIbS0VaoRAFNAU0JlqCBQmFthx6
kVAptNzacpVLKQqC0lJ6AZWoRMUXLw/eMOqDl6ioiZpojL6YiDGixgcIfr/z
sJKZ9c/Mmr3WPzM7v6GtZt01zrkBVjprU+Tc/ZnODWY4Ny3p3BfeuTr0Fax9
YEdYrch1Med+ANscOleWcO7Adc69nONcCT5HiHMPNm3Y/oLN42Dd45xrmeBc
J3tzYnbGZuTtrIeQRzhvOr5dxCsn3kF8zhHvLfxnY18P/me2cz3YV8fMZ0dk
MRV7Rppz+YFzW/Gfhn8v/q/gvxObpdiOjzv3DPp28JaY5VRE7DP4z7yBXNC/
QS8nh5OcdZ5veEffDl5H/HrwN9CL8P+ZWJi5QuQ/yKmEeH3ofZx/EX0S+nL0
A+jn8UnhewH9PcnEayfeWPK9MbAzdFYpOZwG20jMEvLPB9+A/Dr4MuUKfgp8
OnsXOf9O9sqRl7BXTbwyYlzOcu5H7HeDbWWvGewRbJaSTw97ed7O0FkN6O+i
Pwye5Ly16LXIy8Frx9mZ57zFUKw88plIvt3cZxb2v3JeF3Ij+FrwLuw/x36I
vU7uu4kzf/KWs3J/FvvX0Ds541b892P/Eu9RQMwKYlextwfsN+6vlvu/C3wU
+1b2poB1oq9BbmMVo+9CP4v/Ld58Z7F2h5aDcjlNjEoe6VVvXEwDXwTewMpN
GKfFbXFMXFPOJ8n9MPmswreC/N8E3xIZ98TZt9EH0DdkGse2hMZ5cb+dvf7I
OCfubUQ/gT7I6sg0Tm/DfjQwTHvCPibmgphxVFxVzan25rE3Htt6fLJ57yvc
3yrk28CHwBeCe/B+VhP6YvQLxDqB3oLeSLzeyDgtbsvmb+72KHgj8nzsPwDL
Rr8XOcXeU4EtyYvY+wS8mPOOZRjH08GG+b4i5PuIOSRZ9Z5hnL8K/ybgM4x+
N/pHyIP4tKK3kM8TkeWs3MW5ZXxPhF4TszduQZ9FvEr4sIK9KuSF7F3l+x14
nHhfe6sd1axqd0xgtSfOirt7Q+OCYjyGvJIV4H8ZmzrkHawK8DtYU731HPUe
5aBcesCbkQ/xfYXg3aFxuQ99iu6Xb76WeOmsQeQx4h+Yx2ayaimws1QTqo3v
vdWeal61H3jrJeppZZz9obe3UM9JIufhvzpmNdKhXJPG5bOsuci5gd2N7lR3
Owmf0Qx7w8+Q+7jjlOqP9Z23nqfep5oN0TO8vV0+9vOJfwY8J241kQu2K7S7
UU2qNkcC47Y4L+6nwB/Et4MYN2N/LLBeoJ78F/y6nr1/43ZHuqt+VjW2l9Bn
41sVmnwT9leyrIepl/3O3gxkF1jvVIx56LeHhs3h/Gb1nsC4JQ6LywlvtS2O
iCtPBtZr52JziXyKwSsT9uZ6e3FQXFQPWRfaHemuVDP/YP8t+ppMu0Pd5X7W
yky7I93V3shmoWryOfQlodWqeny2txmkWaQzd4bWw9TL1KPVq8cG1gs1UzRb
htEfJd561nFiz0xa71cOhyLrcep1mrmHI+uZ6p3yeRo9jn9lzHqWepc4KW4W
sveC6je02aCZNRX5eGC9RDWxB/8C1UfMOJyO/afeal81rFpWTspNM34TtsOR
1YJqZAQ58jY7/u9h4GmBcSuN+L3Io5HVkmbuKeSDkfUmzSTNJnFAXFDP34f9
kLda0oxLYTuQY7HEIXFJHBAX1HPUe77E/oGYvZHeqomYkxPG0VB3G9q/imZi
vuZRjs2+BDaLQ+sp6i3qaS96m3GadaXstYc2czR7FLMZ+X1v3FIP3sZ5NaHF
0hvoLb7y1otVk6rNid5qRTmuxvZ5b2+jnqreWuDtLM389eClSZs9+ofSv9R/
U2MgvQ==
          "]]}]}, 
      {RGBColor[0.9004271600896104, 0.6210679002240261, 0.2913241962777923], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQVeWVx++bVLrL6ff6db9Lv3sxiVHTNCgtiyZRQRCyyGJGGxAUkpQ2
LcreYqJCgyAKjWyyNAiKgMgiu8lUZiZ7NICpVM2Y0RjjNjpTY8wsmUmmBuKM
mamZ88v/39VU9avv3O+e7/vOd/Zzbl8ys3Pywj9JkuQTH0mS+EsGZEnyXl2S
tMR4XfzOBTw6xk+Xk+Sq+P1n4FxVTJIrYv5LhSTZWY2JgJ+IcVY8twZ8V4wb
G4TzZwEPj3VXxu9dzqkkye21STK7f5JcGOOmC5JkTE2SDI75NYE7uilJ/iL2
2hpz34pxUeAsCJzHa7Rfq8+9LMZB8ZsY8GeCvt8FfHWMT6fa9zf94ox60Xw2
zr0z8C6vE40dBa1l7sq4y+CAbyxovNzwL2PdQO8/vKjzgN8oCwbnrbLWQM/C
OHN+0NkTdLYHPC/g7oD/PtVzT54kl8Yd5wX8cNB5ScBzA54TfNheEV/7xfir
VHs9G/Ob4/ko7I1xQJzzizivOcamwJkde78Y4wsx93z8/u9Pk6QU7z6MOxdj
/Hrw7kzMfS3GCaWQU9Dz5VizJvYaF3v+b2OSbInn+wO/Lej/eJ3gqwO+MHBm
BA2zgoaPBfzlgI/GPrsqev/xGDtz7Xl5yOuXQcfUwFkbc4PieVnsPy/geXHP
AcG79QFvjDVfDfz/CLl8Nuj9TPzqCjrzAZ/LHrMDpyvoui2eH4n5W2McV9K9
4AXyRBc7A2dJjfZin0uC/ovjd0PA60L3PhnwtQF/ok53Y//bC8K5I8YjcZ+H
Yv3hGNsL4uvMgvgMPL4gvEvr9P5TdYLHBfxyWecB/7ysd+Bz1xy8gNc0CP5U
wD8ri45rAl4Vv7nxm8f94jfHz91xv/kxrubc4MPqoG1EoU82k2IcGb8s4OsK
2jvzWYOKui/7g3dRwJMLmrvI8y0xvlaW7n8+5PKHeP5iJh3n3YSYr6+TDp0K
Pg+Kd78KeGCMw+L5/YCHx5gbjunk1yH3zqB1buhJU63wRwbd/xTz92ID/YX7
a69tLkjuA7DBRsmuiF1m2vcPMXc44Klxn2MxXpZp7eBMsoFO6McOBphm9AL9
KJpuxtOJ5rkLOjOqVnfj/dBYOyR+bwU8rCzfhF+aUyP4xUTvwcPG3k6l/3fF
XWbW693bgfOO17P2RcNnYrwlaO8OuhagA4H/aPwOsXfY4nvxuxqbj7kJDX36
Cwwf7s7Fp9a4bxkfh2yRaezZ5n0/GvdYwlrbGLZ2Q+DPDbgj4OsDnhPwxICv
yYTbZfyb6/0c8Ktl8REeDk1F4+mq9Ardzaw7axukS+sbBWNTS0uKAfg9dHF1
zI9Chxu0Fp1fG/iPNurdoNh/U+z/UKZ91vHO+zJOMX6313I28HX2yfhZ/PKb
ZcGciy7joyeaP5OLsp0pRT3Dq4UFyQNZHMqEMyyVfjFPvDkS89MCvjKVjWKr
2NvRTO+JS9g3do79v1IWjL2/VBY+9sWe03wue081jC+B1+gvtgbNLY5dr5cV
gwbZNic6RjF/o2Ppm75v7/1nOfYRh1jX5vtyd+Lu+uDb3QXF1REl2SX7veE9
2+qlD+gC/vgfQyeHBM6STHd6InRnaSa92JXLJ+Gb5nlEp1dZt3nm3FWM8dsZ
Mv5kKr1+NZX/5t09gdM/lc/+mxg3xr4H4uxrmhRn9ge8It79KJWtDmvSfqxd
FGu/F88d8f67Md4bOno6aF5UFd3AX6lRHCQPIbaddjxsD7g78EYH3vdjbW28
r6mTLbD3I97/TFnzdySyD2wMG8FWiaGc/T+Nyiumhh9YVxFuoaK1nMeaHzbJ
j/ygSXa/xvwZyT1jPJDLpl6yzjxKjoUexjgk7n4w1p6qSl+RK7y/IuYPxPyP
q9JL1uLjl5SUuyDTjUHbhkbJ/oGS8hV0CXtdZ5slFgBz/uh4P6oomsYWBI+J
cWat6CH3GhE0Hwq5XNsk/3fwAvkjYhOyIz7NrxUOeQR+67d1ihUTDE/0+DvD
nMPZ063bGxqks2M8Dz2tqfTor6qau974bbZjbOpE7NUTv22J8sI1tnXyD3KI
12OPLPCrRfnn3yfy2X+XKO8k/3w3cObWyxejr61F3W1VwAPNF3hCTBjmuPAD
y7caa48l8vfEGuJMb/x5x3O8+8BnMkfsgIZznvvAdPGMr68v6LmhoGdo/8Br
0T/O597QS15LvDjt9+x3Z8x11MvGTnmO80ZmsgvydPJgzikVZHfYHP52oOd4
12A6OBufTv41LX7XFyQH8rLRHm+1/+f9VOc5L9l/Lg89fLAkXZru9WOcw4B7
i9ePOm+/0cabajz2RmfXWm+JFeREU7x+hPEGmXb4hvzJH//LPDhleZB3kH/U
Oa6WC328PmdZzDbv4Bv2jP/AD8An1rH+uOM98kUO8LSXd2ctz2mmnbu1+N7c
a4BH7olM8FH4kdutd9c69nEn8rr3bU+IkDqBeuG90L0rnBeRH13r2ocaaIzP
Q57j43lS7FlMZSvoDrTjw6i38JPjnAeSD2Kn2C3nESOID1vR2/Ar7Y2iveS9
W3zfQX4mxjf7vkNt/+PjNz3W3dYoW+myvfb43cxE/O3lS4v50uznyTXCX0ou
V6eRNWN9Jme3+z17c6eh3ht+/NY5J7QM9b2w43csO3QE+aPnU12LUju+fZ5d
koOsdh7SbPq4I77vUuseNjfTeoBMkBm5LHlw1WeT68JHdJBakLoQHRzj+po6
+2yd7ge9xKKPOk6RT3U7H2PdWN+dmHfCPOVuVesJNRu2/VYquZXM26rxoOdK
5734slH2r+gOtRE10g2OHb052kO1ikHUKyuI1wE/HPDygJ8JeGXAK2sVv8gN
lsHLgFcUVNtR4xEjlsb83hiXx/zigJ9iDpyAdwXcFfB9AT9JbRfwgwHvI28M
eEnAuwNeVlBtTI38ftzxi0WtZ6/xAXf5jJnWBfh5Y1F7QesNRZ3NXtjfeOvh
l4q6D3f7fMD3mw76D8SYzjj3C0XRB63keMQcYs/XYm5HjfIczt8T8IMF6Wa7
9RY7Q4/J0YkVx86LE8dsm9Q2rOOOUzLFlX1V5Y7Mwas253rkBthWj9cij9kF
1ZPbbBOcv71RdkjtP7ao+0Bru/eD53d4hOe3e1zs/dgX+RKnkQMynVQvH4F/
4bxHjEcdu8rP3c4TyRtfNI3oK/nuct9zYlG6gozxN132D3f7TM6b5TNZg62c
dS4xoSh9Qs/GFaUf8H1kUXnJ5hrFH/QbmyFWEDOmnHdneEBO3eq+EDrV43iF
LPHjt57HF9Ys9D7EqE6P4JFLEsPIJ193vcJdX3Oejmxfde6PPCdbhvBnkkf4
d7NlONu0LjDeLT57wXln89zmdax5xf2hXtkychZ51nrnWjd5b3j8t65puFez
a5vxPm+yz19p3F7dutlnUk+87rvN9dwk491kPGqd13xnzr/Je1HDvWkewW94
1tvvuafQl3Pc43vSS+QOra7DXjHd+BVyDc5G5viYm60rd56nO7PO09+7TAP6
12G8BYW+nKJXHtyfXOYi917mWae4wzLzlfXEZGpb+pzU069aBvSI4O/FdX11
I/JocT1IfcU8OPSRfuL6iDoJnUV3yYeHu2eAvx/iEfu+yj0w4g64y43/D6lq
gN257H1lSTZ/KFcuRm91RqN6JvgEeofETvwgNWOT8wPqhfkl5STUhOjF3opy
a3KsT0cu/GbA0wPekKtn3K9Wca/JI7FmU67eG71DeguzS8o51+WKoU9W5D8f
LskvHckFH6jItz9akn/HZ68tyc8P6e3NJOJNh2Ph4pLqImoiar45zpu7SupZ
UEfTT+gyDI3QTGx8PJMf2RHjvlw4T+eqtRd7T/qdrbXi295c83ti/Gmqs6j/
iBHdJcWJk/FuTcCHKroDMLHjn1PdeWOcdSxXvfMvqdasLinu0OteVpJebbUv
w48dz4VzsCIewaujuWp1dOrpmPtGLl49654rekM+RRzcVlIsHJ6qV/IsPfNM
8W9fjP3JB0rKnx/OBf8scL8bcE/Axyuyr72Ocfz2OC7z2+2YvifTeXszPT/l
+L4zU5x+IsanMsWA3TF+P/bfHvufiP1/kyrn2B/z/5oq53gmk16iW+gVvQ36
jTwTt1lLfKevTW47IpP/2OHYfSpXjvJvsd+TmeLHrhi3ZtKznkz07XLuscr9
DPY41y98Q6x9Lda+5P4GfQ5qcvKi52Pv2+rFY2Lu0VSxsS7G7fGuM2jblkt3
mCev3pHL7vdUVFuDQ25I7Dzg/Ao60AVi8QtV5SY/zBVXD/bmYwXFQGQyqkn9
WPqy1M/Qj37h9/Y5H8OfP+Ocin7fH/t+ufwUvohYQA+C/X8c89c3qZdLTxea
9jvf21KRb/pOk2yanBO7pqdOv4D8drJ91jbXVvR2qK8ujL3y4PlXgufP9Nc8
vR/sGLvFZltS9RhXBM70evGXXud97ufQ1zmTqo/bU1FuBQ78p6d12n0t8h/4
Ds/xU/irN9xjwAaRL/a62jZLLxseNseeAyuKTdfFHQdU5F/p5dDXhictFflX
vk/15lWM6Bs5IzjkhzUV0c63EfoZ5BnkGANS9XCWZ/rGQ696csB/nep7EN+F
VmfKabpjPO7eNfXGY5ny1E0xDk7VQ1mXSZbI9N9jbn2mGLAhU5xgHXUNNoAt
HMjEs+nW3eZUvaMHsY9MfPsmvipTf+TrmXvJ7h9enOqbB995iEv4Yvzwd1Ld
he9Xl6T6PnFPpv73Gccz7KDNNebhRu3X49qT/JLah7PaDOOfHi/J1vGLxF18
I7GX2ExcphajD4JObM7ki7dkipMdrtF+nqqW31lRDTitVnUgNT42zju+aeHr
Bzep30KfCHkc6i+cX6SSRYfPwheS9+MLd1fVZ9xTlV232xbuzVTn8/2TuApM
bOW7AvbCdzZ6APSgyFX5JjDHfZ4TZcHQQA1In26s58kD6EOcbNRIvUd9ip4T
X1dm4hXfGzfHuZtKypsfi3FjSXQTY9c4zuIbiA/4B/i93TzHD1ETLbaPxFbw
Twdz5R778UuZZMF3TnIlcjLyMXI8bGqR/Qf7rXTcIG8nbvwol5/H3xOjehyn
1pUUy3rrRWjET2+IufWlvrqQ90vtC7kf/nBrvN9SUo2BP3vI/vWFXDBxBr/I
+xX2u9CAn9uWqVbcnqmPe8i1Lb1eer70begd0KcjVr5rmP7C+JK+uZInUEPz
vQOZIl9g5M643jA6TP8WfSZPBkaf8ZGZe5jka+O9J7X5en9DOeL6bqtxZrjf
sjBT3kX+hY63FOWbF2SC52fKMTY29PVigaGB9dSW1GzzSrJf+tUzfBbvOfew
+zvMzXCN+Zx7Heht1fTDH/oZ8K49kXzQQ+zmyVzf8p6rKiZvtn7uzPXd5WTM
P57re+uJqnKHx6y3vX6WOog8YqtlzQ+5owtP5fru8o2q+ipn3Kv/y1w0HK1I
tvhD5EtP4LTli0/gGxZxDR9/r3sB9ISYpyfE/fr7jl91/vSxVDEJ39BYEe5a
70MvZ62/i307F53HKuJZh/nGN8EO94v4zXT/7TbzHD9J3s43D3IdaOaZHB4/
etj6gFyONPatO9LY19N7zn09+pAv+HtJrx8p2pced6w5aXzmyYHwgfhCfM8J
/0/IA5nymR2W1cvlvpziZdc4f/xOYR27L1Of6eK4+7Gqvr11ZvJzJ+zTxrg+
4Y7P+9sQ+QIx8Li/4XKHk+5zoR+cfX8mWf+3v+nAh+2+e6tzAnR1v33Xs7n1
v7HP/jbaHunVYFfoPDLgPPppz/lcnrFLcIh5X8jU4+F7LDqH7i3LlAsS8+jL
otPo9uKAR2XqZ8zx99sP3Qf8XCb6L0jV8zjn3hH+lDqXmvezmXqcfDdmzVnj
YEvYVFem/eg9kX8Q6z80PNH49MeIJ9QYY52/Ea+IiYzEG/qNj2Ty6Zelik3o
KHkw/+fC+m7HDfw2PnVzLpki2xGOSfRL/zyX3z5cUQ5EbKD2x9eus5/H9212
LY9/Bx8fvyiTD700aPhWrvh1pCLbI5bjj/k2Rexb7ZgMDnGGb4zoba9NMzbb
D7MnNPK/J/jKLveUNji+8N0aHz0wzn0nlU/cEuf/vp/Oog5mHbyDb+jPJvcK
+J+gTveV/h/7L3l3
          "]], PolygonBox[CompressedData["
1:eJwlllls1UUUxgc1tym9t4b7771ziwsCbVkKskb2ggqUoi8UIWGLCEaRrbKv
skkplq0ti6V231twAREpOyIuicuDGmNQUQGNxhiNwbg9+Ps8D5Ocb74zc2bO
nDnndJ9XkL/0NufcZcYdjONx57JTnBscdi4zcO51cH/wEHAWeIJ37h/wfHTH
IzekOzfgTueugq/Af89YmuTcWPT7Ij+LTm/kRRHnvgZ3izo3D35RsnNVyO0J
57bBrWDuR/hj2OvD/oNYkwEexvpfhdn/AeQ6+Ag4lVGP3MH6MtZPRr8SPjvm
XDl75zF3mvVV3ri6kHMX0M+A3wffFXv/dnHuIPxE+Cr4M/AvgnPB1eCz4G3g
RejuA/dmvxrwI/D14IvwdeBHwQ3gS+Cr6MxEfwH293K2Cu7Yo5NzM5j7I825
w+hPQr8G/XPovwTOA9eCz4O/CEy3kTPuYf0uRmbY9ihG/gz+MfgG+GG6K/un
dLK5W+w/i/08+glGV3T3s+YJuALOcxC5B3PbsfU4c8vRvRaYvBi+DL5XYHdd
yNxW+BuByRvh6+EbsLcE21vBreBacB72M3mPCnAfcCE4H/vNrD/H3KGI+agW
3M4dZ7HfFmy0IbcwNxVuB2v6sjYDPAruJvv19uZj+foge5xlr43M9UoxmxuQ
jzCmsb4I3I5ciX4IPolRFbc9tfd0dNrgf06zt88lnorgipgbHbaYVGz+xH3L
sVeYik+I7V/AzeCd4CXpFlOKrUmKWfnL21lHgp8CH4fPR38G+rPRH+vtr9xC
ZxzycMWjs5gegXyCM5aF7Aw7vb2B3qIb/FG4RvYYzP96Bp33A/tT+ls5jBfQ
7+ftb/yAfn/kMPwUdPtxnzzwp+B1IYuRTxRb7Dcl1XTawU3goez/O3t8AF6p
PcMWI8u8nUFn0R/uDt8CTqRYTN6n9ehMCdsbDgLfxUgPWwwqFgcH5nu9USs4
x5sv5IMxyFmKsRR7c739fsYE/WXwaWx14k3movsXOg/BtcYtdrLQWQIeGFis
6Qw6y0TGRmc5Khd5sTfd6fgjnb36oF8Ssj+93ZsP5ctxjGy46rjFzjr2uB39
eGC+z0F/Fdxz3nLTGt7oW7hsb77n2Vxfb2+ut9cZQqy/V+dPMp+ugE8O7C6K
UcXqPPQXptobfQQXRv9GZ2wwSpH3seZh1lbAn0L/VQztjJiPyuA6lEPgiph7
Ba4naxZjbxR8IXw9Y7PyCTr92f8w+i7FfFqM7ofMFYQsBhQLteyxPmI1QLWg
BbwpYjHajPwe+tecxaRi82LC9t6CjUvI3yne0F/LqAFXJcxXk4m/Ouz9Tc5N
S7I3z1RtYG51kt1xr7c76q6FrDnK2pcZO5DHw5fAn1SODlnNaINripqudKSb
E7NcsFw1CPkt6aC/FXwZuQX9F9AtZhwDv8N5F4SshqmW1ct/yVbDbioeEnYX
1STVJuV05Xb9Af2FBm93l4370R+NzWXYL2BuDHK73hD9EsabrH2DsTdiNaCc
tV2iVjufJAbmYj8jamt1Bp1FNUu1a7/qGWuPRk0+wDgj/0QtNyrHKtdqTpxq
VLU3m7KtGlPhreao9uhMJ+GOsL40YjVUtTQtarlAManY3OOtNisn9gssByoX
Kscr1zd6861y5AD40oTV+uHwlfDNUYtNxaxitw28J2I+kC9UY1VrNXcCPASf
/Yn9GeBt4PMJq62K4QvIWVF7W9Ug1aJjgeU61fwC+I8DW6scNIezHUZnAdw0
dD4PrOdQ76Ga+A14NzoPhi2mFFubvfU6G9jjemA9hnqNMehfDCyGFcuqQZXY
K/aWO2aqBsKd5vzz2esK/3dl3GqEakU7d+oIrGardqtH6Kra5O2vKic9j5zv
TVc9zlTkTd56Mf0p/a0a1kzCVk/4cvauBueCu4MPJSzHKdfpzrr70JjdXT6V
bw8krBdogu8ZWM+h3kMxcApueMx6D+Ws/3NXusWmcsS76Ccxd527zVF/ErU3
1lvfg/0S1o/0VluVY0Z5y6HKpao5qj0r4uYb5TjlulJvf1s5TLlstbe7TGTP
VchPs2YNa0vhv8L+bG+9jXKQclFjwnyvHNWUsB5FvYp6VvWuA2P2dvrjMfWz
8Lsj1uMd8lbjVev1Z3txnrMxy/V6wzMx63HU6yhGdqFf4O2uw9Bf6i1GFCvK
mXUJ6yHVS+4CHwe3Rk2WTdlWTVNtUw56DbwM/HZn86l8u95bL6U3Xof8W5r5
Wj2FeouOmNWG2aoHyGu9xYJiYA3y3VE7m3wm341ApznZaoJqg3woX2puZMxi
QLGgnuzLwHKicqN64gPebMiWzrg8bj2Oeh310Oql/wMci52W
          "]]}]}, 
      {RGBColor[0.9171507814348918, 0.6628769535872296, 0.3431674224481647], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxdm3m4VcWVxe9VefDe48Gdz0XTnY4mQVFmBBEBAZl8DCLGDGoabNOdRFES
UP/o1iiadkQUZXaIIgiogIgoM0SZZxk1YlABAXEiztGk94+13qdf/3G+qlun
Tg27du299qq6P7jyuouvPSGVSh05KZU6MdLfNEylfhvP/nQqdWplKnVaPO/E
u24VqdQPI18bdc6t1DvKe0d508hfFeU/ivTH8eyP8mb19LtNlPeL9Cfx5KPN
Zkkqdag6lToz0vPi2x+4Du2RbxL5LpG2iOfdaKdFPeVvivLBUb955MdH/rxI
T4/nQNQ5q57ytR7DD93mGfXULm3yvqnr0F5Lt9+pUt8w5tcyqdSeeG6McVbk
oq/6qdTl8fGTUTY1nlyUD6nRb/Izi6lUsSqVOhppbaXqfBntL47fbaN8SVFl
1P/vCqXTnB9aozzttQ55vNE4lXoi2mwfZZdGWwPjmRv1psfv19JKn4rnWOTH
1Fee96QzXI7czqmUjO5ppG8o/1kD1eG7tu7rrrTk3cqyQj5nWJ6bo37jyN8f
de6Ob56NflZFfm8h5hzpukjLsX6ro60mkZ4Qz7zI7w2Z1U/UX0Wkfy+lUoej
ve1Rfnno1Lr49u147oqx3Rvtro38L6LunGh/TeRXR74m+v1l5NdEe7eGDBvG
7z83UNozytdHvlGl1qhJSfmTE8nslfjmrCi/J9qeHW2ujvwpJc3llETr3ty6
tKpa9c8OHSlUafy0jayXx7Mins5R98x4DsYcXnfZynia11M5Ot8v+mnmNik7
y/XJN3OdO2M8z0S9V+LbfPT1XLXmmov83GrN76sY56H47tWQVTpRnb9EPpWo
zmuR/7qkfboj8t9E/r3I78xpHVZ5Lv+M8vejfHeU/yPyRyO/K/Jr4/1tVZLv
hFj/z6L84xjPh/F8GvmPIu0Udd6Odw+llb7jfEeXP8v8o80+8fvxGNeKyPeK
/GORXx75CyL/SORvCZ1uFflhMe/zo7+u3rNfR9mp9SUzUmwH8mnqMmTI+gx2
nr3HHpyXlyz7uf7H0U5SXzZpT+yxPjGvn0b/v4+nVeRfirLPos733MePYv7D
I393jO1ozOP9eCbFXC4Nub8YY32U/VSp8Y6L+o9EOj/Kl0W+IzKIdETU7x1t
fhS/50e+r/NTIn9T6PbzUf9h1rkcezjevcRaxfv34pkYdbpXK9+tWg/vnovy
HtUa0zzWIeY5IdrYEvN+PcY8KOZyMOZyKN4fjmcCeyfReJpF3Z7+dpLbOeK+
zq9W/a6R7klrrXenpUdtG0nf0K92jaSH68M2rMtIL86O8jcjfTrqV0V6b9T5
Kr6vjXENr5B9q439n42xTSvKpiJj7Oo58e1b8U0H25i9tjNtqpXHznVw+2PT
GhO6tyut8n1R/kxa8vurx0IZbT5oPdznPD6kVF8+BN394iTpMm3/1e0PbCJb
dmIifaEutm5wE+2V4bFGo2P8S6NO+wrpSzfPBXm0d9vjKqWj6OUAvg2ZHCnK
ZpDHboyzf0LP+0f52Pj+xfj2gazyj6b9O/IvpVX2oMuRc4cK7ceXC8qfkNe3
92f1Tbto8/6M7PeAan3b3/u+R4xhZYxhTEZ17o527ovvJkU790S+te08/vqt
GF+fyO+LdEG82xrPlrR0enM8m+J5plJ2GRvdNNrrFW0NirLHqpTHTpH2dn5W
WrbtZdtObCh693SF7CY28xcN5Uuwywvj9/Z4Xk1LFqTb4llqndhlWW3z+Ja5
Pd7dEmv2x2jnw5DPZQ1l6/Ef2ObX3feieHa4D/R4lceHbq3271cT7dvtke6I
5+bI74x0azz/E/ltiXzrdPvZVpFeEjLoWyn7gp1ZGOn5Ue/zWIOuiWwaefbD
kIbydevs7/B/b0V+dlp+D3/3vOW9Ma39T7ohLTvZpUbtzcXnuZ0XvFas07Nu
g/nM8Xva7RRyGYGvjfEsjt87LYuOUX5dlK+O8smhb0Pi2RJrPDjkOTPm8ptI
pzTWu61R3j9+T4vyX5XkO/GhJ2PjS9KDfy/J7+J/y5F/M+SzrYG+pS558MOs
ovLvF7W/jlVrj81OpBNz8G+J1vK5SDvEOK+O/MuJfP6qBvL7vaOPx6PfoZE2
j3eH8fWRvpqRDQMzLLHuMOcLo97UqP8fJdlR/O4qY4dNDYQfwHvkN8azM/Ib
Ir0hyt+I/F8yKt+d0f6m/qgq+VF8KO9f9zeXVAlDrGsgO8PYsDXUW+exURd5
j3H7my2fHRnVWeu+dmWUJ2VMayJ/UczhqWj/vyL9qW3Vl7Hvtvr9FWntb/Y5
uBt/id/8uCBZYBc/iKddvLvIOLxt5PtH/quwA+2wKxn97pARBr3Iun6J61yY
lTwHV2rvowOD3NaASuHhsVnlz3LZQOebG5diG9vTR6VwPT69vbHTccxufN49
0h7xrI18r0r1id26yG3SZ6v4/oLIz4nyjm4fPN8nKz25uFLYY5DrfGm7x1x4
wOuUtYi5No+nN/LLaJ9fWKmnb+W39rKvv21TT+/echv9PJ7W9dQGYz4z2miW
0fgu8FwYQ3/Xpx3kVetv+a6Xv+3pPO3z3cUur3u3JiXb3dN1PjN2wzZ2sDzB
n+jDubb5vWOffBM62SuRHyMPlsI+vh/PUdva9+I5khYuxq/gU8CxnY1lb6kS
Lmdf7rBOvW/7fdTfb3Ubh+MZGfv4Xdur4ZE/aHt3TeQP2N792rEmdu+qyL9j
e9fe/TKXT+3bd9n+0fYh9Dnen10pPE78QkzY1PEccR06darl8APrCLrSsp7k
2N2ypY12jn3QwbaViinbWieJDZu6DvgTPQbTjnN6vte3m/O8p68u1sk2Hg/t
tHA5e2K2v+fbOR4PZe08F8bDWLu5zdMz8sf8Bnt+bPw5uyzstdB4/MPGwob4
2ydqFL91zwvHnRjpx3nFJM8m8p9P1sgvry+r/pzAns+Vhf2fyslOT61Re22q
NE7k91G0c0eU3VGSvl9sXWc/DbYe12F95IauLK2QruDfPnc8wO8lFdKfOWXh
u+nR78ayxjY38huij8VRZ1eUtauS/u8zD9DO697J68W6E1sTY9fF2lc6vzrs
w5p4ljeQXrSybmzK6h3lG7D9zo91+Zkxpgf9LWXXRnvD4uke5S2qle+RVt1V
rj8vxnpevFtcUhltXpCWXrf3nmJscADZKB/RSPWoU5tRH3fEmJtUqw42gzY2
eWzsieUV2of4z2k1Wk/q34QNwu/EGOZF+fyc2qecsRGrUM56TIh0Yo10aXlZ
v5eVFedNcPknjk02hs6MjHZuzqg94qPZ8fze2AveAaxG3ED+mPHP3Y75sYfo
CnpyLNq8L8o2l4UJ8J3g8z80Ups3e7w3ey7Mk5gMPVoZ30yKsa2I9MJq5R+O
8sVlxUPPxHw71cgX0+6CkuKQe2P8b+Tksw8HJulcI0xSFyuS4oPA2I/UCJ8v
LCuuejq+e7GsOGxWTntxkPf8FPqP55F493JZv/8cab9q5SlfGr8ng93i2+cj
Py7yM3Ia+2SPH9xAXANn9ULUGR9lM3OSJTIlRpgR5XdGOjWnuPUPNYpdl8Qc
u7BmMcdFkT+XOCGRb/+JfQ+6iE6OS7QG3et8U5R90ljjHFnSPl8U8llaUjw5
KerXug5xwxexdpOJVY2Xn0NP6ktnsEvEytQ/1ljzAg+gd+jw/LLGyXhp71P3
u6Qs+wWv0NffgnlJ/+Z2Tq6WfqMP2JeetuEvxjiGxjgWgyUTxaqnxBjXRVsL
I/9qtL0kyn8VdVZEuip+PxpjXh1p1xr5xLoYjxRMgp/hW3zNrOhnRo30dVt8
MzPyd0Xby9wmba8qiedZG++3llV/S1n+cFGF2psX9a6I+gsS6QZzR05Hq9Qm
HF0fYxPs27Sy1vfJsuQ7t0a2clFZfAu8C1wDMfOYaHN9SX3tKMueYjPp/3/r
Kx4jFjseC1UoXiMWetbc1LWVqjfLdnKTbdnD9h34EOKernV+Kvq8vUbx5rNl
xdzTQifXRb0L8Cvmb5ApvrJQEoYuRjoxqxiEvjIlYYsscUROfdHnnrLm+3yU
/Yl9EHUfR/9jnjOI5aPOQq8764/d7+YYH5vOXmIfTSOWI4aL+gvK0mf0+qWy
eJllJdkQdAy9I66aY/6QmJL4D9s232vHGuJr8bkPRP6xtMbDGD+PPiZh0xJx
v2A8dJ62ZptHJaZnPHz3WdSfGPU3Rf3rKrX+9Nc85nwXfFKifT/aPMxo2wHs
Kni1TUY8YP+sfpNf30Tle4vCnOz/fsa04Fuw7MCscP9Rf9svq3eUD8jqmzFZ
8Qj3wX+nlT4Z6YlFYaNDEV80LgpTvRf56qIw6JGC+HWwDji/flEY63CUr42x
tSS+KorLGOO24U3PNJbr5RiTWBN8Tn14T3D1WRlxyqPMZRL73fIdnrg2q2+o
f1FB8dLc6HNorO2VjcUd3Gy/BafXxDz2JU2Ew8Eu2BXaIebh94CCuMKBBeEa
YgCwd9+sxsR4wD7EANii1U00zteK8g/EKthYYiniLvA/GBvOGh4K20xsRizA
uM415wiv2c149cfGtcR38IeHzAd2dR6eAMz3QWPxCtjXdyPfOdKBjuWJ6eF2
dtWI37nYcSXxZW9/i3+aWZavxGeyN9gjU/CbZfGiL+RU90PXhz9dUCMs8mZZ
+QU5yRc+dWSk30T5zih/Lieu5YUa8azYMPhY+EvOH0439p7mcxNwD3PY31j+
8mBjzQu/eJrxPec8b+SFlU6L9J8FxcLvRron+hsQc3ynKH0eY34MfHVhRrit
r7kFOIZ+5g3gD5DtQffVyWOAv8Gvwo3DRyJH5oW94P0Bj7Ozv4WbebxS/Cn4
8yfmWwbbD1Oftj8vaD5vF7T+HY2pvixILvsLwl3XN5Lv62G8CFYEH410OT55
sbE0dmWh/Q42aZF9AfVvMn670N/SXtuixtou0m5F6Ur3ouzurY1ke8FmtzTS
2OAX+Q3HCF77g8vxU0uM88F94D+4r6axFiPj3TVwqHn51DVlYdGlxnXwZNSH
yyK2hZMmviX2OSMjvrGV9wF2Hg7ydJezX053fDTEXBbnVaRTnIefmmzuq411
rdZ7Ge4AbNrOdoiYZWJjjQHcBS870XnSSY3Fw8CfT3R+rX3f5Yl4Y7AFeIIx
gRfBiowZDoXfyHVUI+E5+PFbnUem2Kl709oDf2+kGAH8Qx4MBG9cbe4YPf66
keKRoeb3mC/zJD8jLXt/tm3+FSXJi/OTv9teHywo5qj1vviiILvzjnUPXbnD
fZFHZ0hrXU6/l2bk0+lzqP37VwXZ9wMFYQzqYIevdB3GubIgHn5K6MbGJhrn
X2NsZ4TOjIq6w5pI3hM9XziwL8x9YH+wPcRD2JRljona2/+A5WZ7TyHTZtHm
bZz5xBp1TIT/z0kUs2Nrx5trggeDbxoUa3VRVr/xvVXWAWRPHr/cslryJxbc
HGM9J+q+FeOfW5a9AI/DrVHO+RxtdnB+VvT909D7pxPhfNomhuqa154F0zEf
OBf4PDhLuEs4ydvra3+CPdg/212P/Q+nAzcDRwn/CPf4oduAS7kxxrDXPOaE
rDAZ67UhxnFDjOe8vPRwWlp+Hz4H/gU8DOaf4n2Ljk53PdaddtC3LnnZHzD4
+XnZJeJ47BHtwBVhj+vwxac+p/rIex8ZIAs4eOQCBpsJHx3ynFUSpwS3BMcE
X7rbMrkhq9/k4VD3mKet41XhTI9aNsiL96+Z7z3icSG79eZk+W6NOWL4Yfha
eNtfuq895mrhteC3DnqvDTSO6paXPdxY0vkUZ12cS+yzD+Fc4m37AXh9YqWx
5hDwFegeesKZ0QM+D+JsjHOXB9LaH+DJR73fkT1rTT2wJjgT7uKheFY0UJ72
4WaJyfFha4wn+xsHri/IVq6JdHxW5ytPpbVvZhi7woU8aC7i+vh9GfY7rXX5
nfk+0t87f4Pfw1df31A6xtrBK9zYUHpF/eH/jzdEpiPcJuVrE7V5bsh1+3fW
Z4t1lO/QwQnWQ/oa6faR5SDLkz6vd/lI52mfs0uwKfcx7kurDeaObcZG4weR
/dleR842wUvH71QU5TsqIh0W7V1rrpPzPOzWlEj/tShecFtOZ5XEbsRO3y/K
r/2joHslm302ccT4iPPizlFnBrFNUeNjnOwdYrG2HgN++Gb75YM+BwaH/FtR
/u6ESEeV5evx+WBkzkGxqZwf0hYY6daSbM2qGM+oks5x1hbk/+kD/498wHes
P34d/34kr/7Bf9gGzp2GWQdGp1U+0nZpjPWCmIP9gm9CHsgW3e7eUONhXuf4
/Hhsnd2rlO075HN1MDD9Ix/GBufHHMFd7EP6AGufZqz4UFn8Mzz0AdtDznU4
lyF9w3nW4Q3bB8659rocvhreGv6ad3+xnfnIceR8j4exIE/s/SD7keNnLFnF
ANvcLm3uN2YHZ35gHgU8f9ScLueELXLCUz2KOgPabpvGuGhnq+09v7EH6Gtr
6zPxOLiEmBx/hS9vYa4FHgK+hZhggNcCfgZuCM5nuO9JgOk5G3jINgTdp31w
C23iC8EhnIHC5cPpg6vAV8RJcFXcD8FeoNPIcL3tB2PBRvC+petMsF9aaT0b
43053nt8pfcov9mnu8vCwXBUO8vCvsTlLzeQvLA/nAVuyehscbjvfaCXbXIa
79JEdyyIww7mhS/AFvhhcAeYA18K1gC/4nux8fSL78U+cs7N+TaxznzHO8Sr
nFm+Eum2jPL4Ee6hLPBdFLi0uebTrs9qfbd+5xvmcTjGdFvUmQXH6HtZ3M+q
5/tX3MMipseev1fnOzI6V59e1h2dp8riOPEf+I7pifJgLvwJtp55cB8FG/2J
8QhxBT4cf45s8ZnE2NiRQQX5fOpjVxn/Ns9xe1nfwnlwH41xwmOAIab4HOBM
y5x7LpfbNrDmrazzzydat81eO9rhnB7epHVOZ+4vJeLwN1tW8AKbMvJ9xBxw
ePA6+DlkRFzO+e16Y4SRcPVuf43PhNGZqS7H35Fucp219qP4UL6lX/rnTtA8
3wsiPoSbhwdCl+HZ0Fu4N85i4N84R+E85U5ixETyB6vS3hav/33mhxg/HB4c
ETze8Zg1K96Ds5onfF6zrqz2OfO5zLLE9sJ9gsX/6DsZ1IWbwrdjW8GTnCc8
6TMFuMM7LLeDnANWaQ7cA2LdiX3gGPpZ3zJV4kzYKxMTxdDw2fgY7tZQf6rx
A+sCz0g8CuZh/dmT7EfiXWIP7PWBvOLLJ0Imjybi+eH7H0p0VsWZFbEa7YMh
v5+THboDbjaRLz4n2tiXV/kj8X58onj9OB9fIduEnC4uSD/ZT3Cc2HFs+A7b
W/QZ3Ao/hp+FU9lpXuW4X8yqPm1eZpmzp8Bj7LXj93qc3+y1RVeR+yLbDnSO
GIsY/+FEZxCcRUxOxP1wFkE/Y9wX49phPHRnIvs5vySMPcY8HvaVNtlb8GS1
5rjGJjp34/yNuxLYKcaELNfXrVdGvhRuGg4RnvqtlLj2fT5jh/Ml/iUO5kyp
f0OdH/EdHAh1NvksjDUfliimnRHj3J1XjDsp1uXkvNqFy78nkW/h3ONPiTgn
zlKwf+ADsEGTnL69JtH8rvAc70+EF+Cn0aMR5jpom3Eybu4Kcg7E2Q97qNb7
iD0+9TuYeaqxLv50sdeJebDXWSNiU2SFDr7sexmUr7BvYr8TT4Lv4fo4LxrY
UGcfnP8MaKgzjisSyWpLXnE+/DH7YlxZ8fmDZfG5cMtwiaxzC/tK7kZy7sWZ
1xjvd+zXqUXFwlWR3ljS/r2h9O29LjhKfDM8GDzmiqL2/PJIf1tSXNyoqBid
vc2+Ju4h/iHOggfta/5kdUGYift3f050n7x9Xj5+iO8Bc+7EGRPnCMR53PHi
7hhrcnaV1qV1XnsG/h7eFRsH98q9WWw66wJnf8x4i3Onj4yZ4CY/MGa6tiTe
dUBJ68b6gYWGldRebUlr+Se/4x4amJqYl3uUh4yh8Z+P2acfqNIdb87Bl7g9
vuFeHr62v3nNo8bu15XE8Q4qaW8/5v44//nE2It9iP4x17p7EmBT7o0eMcaF
L9zvWBE5tbOs4MbgvuB0fum7xNwpHuI72NzFrrtjwTpc5fvD3CNmPeDd8GOX
e5yM9zLLDfn9wrJCZlf6HjL3kcFR2AtsxUrfaWZd8Kn4A77/te8kczf5ZyXp
2tWR/qfvJ//DcQYxDziaM5bLfX+OO8s7fLeK+6qjbJsou8Tl26t0x4uxvFdU
W8Qu3HW9xbryQE661jDSYzmNgbFwbnCrv+UssZ3X9H3fWyPu4X4lHDLz+zSn
OSGbpKTxlSLNl9ROjjPNnGSFzD7LSZ7I9W857a2fl3R2cZvHzwP+wG5f41iJ
eIRYDNt9/M5nVrj8+DluVrJFxhuNNbBLa3xXgdgejv0R82LoRW/zjRckul/Y
M5F+L7O+oxPET+BxcAw8RN1dRVLiR+5LPmx+bZ3L+GaDv5tn+0ZMQ1xQd6+R
+AVeD9vxYk64aaPxGHhgqXFC3X0g2iOWIh4jjuE/Kb+2TKbZTjDuV3xHib7A
R6vss/b6W+Kpa0qSeZ+S2viN7xuBTcDa9Escs9L2hHXOea0ZJ7oDxgOnb7Of
3mBciW2/2m0ytm3G6bzD195jG0KMMt5cBDgP7uA4b+BYrY6zIabBZhPDjPbv
ZW6jbt6kcG3wBm/6jjT3o/eZV+Jc4m3zStxv5nzpkpL0erV1+/qS8qW8fNN0
9wmPAffR2mdHBx2L8v5ej4n+7/FvOLIXbQ+nWo+whfBnC/yOmA+/gA2qu++L
/dth/4k9hq8hVib2BB8/Y/1bZTnxe5P1iHrwx0N9lne17UnPkjjNJR7HFrfH
ODon8vFdEnGfi12PfXaNeYntHhdj2u02kH37RD61Q6QnJbJRM/3/njaW58+t
Y+ja6JzOuuvnFN/D37Ef2uWF9VeX5POP3y9JC4OCRcGqLfN692QiP0Id8CEY
ivPpKelv/3vA3PAvnJ+Bg7k30dN5fHgfy5z919McAncz8I2T09/+94D34Ebi
NDDtokTxL3EwssOPsY5t84o3uOOQM08FX8UZFr4I/J0p6izu45z8/FDbcNay
kzkN9PNc1y+Yj4KXwsdxzgjGZU49nMe/M3dwEfclap3Hb/azDJFFrTmKScaB
4EF0p4P5VbBVP39bMkcHVzfauo+O35eIczo9J44ZXMqZ2gjrPjrP2Qvl9EE8
RDxJTAQXQ3xKnMrZGrgNzDbS+5jv2XMHrDP1rSe/KymOAo+Bt7jXjl73L8hX
4bNG2Ldst5/aYy4KrqlrUTxYF2SZFx4enQj/9PJaM2bOkBjT3SXdNWmZ0z4i
BiQe5S4RGPvHOcm7r/WNWIuY64c56VBv81pgrT6uQ0zK3QXi0u8VdW9xS9T/
l6Lub27NqZ+DjhnvdJy70hzmEu/J5nnp+hO+C8E4x/jsB17ig3jfIq+1nBp1
ysa0YFv2Sn/rw0OOK8/yuq6w7dxlvApXD446fg8K/Umkp/AH+33eWizKR400
vk8VdX/zlEgvNR7+rc/GwWXEY2CrX/kO6zs+O8sXhSHPd50DPgtLovwkywqZ
NbCskBm2l/N7YmbOhW43577Z48EfYVOwLdh3zg/hpuFC2WOdzffSZ1e3Q3ud
Pd+DPu9rUpTPYu/jtxqal4afxq93M+fMvQ3ub9Qr6u4Pd4DQXe5/cA8kXdRZ
O2fu3xSEUcAq4J6Ti7qDvCknPwWHS5z5ts+7s0XZiSGW2ymW8+ac9m1Hn4lg
Mzr6W+bW1Xzv8kT+vG1Od1C4i1ITbXxdUL/0z5pcZb/P3RTuqFQWhTGv8P8y
/g8/5opt
          "]], PolygonBox[CompressedData["
1:eJwlmGeYldURx98F9i5baO/e97534VMeExN622WlFxEIZRGikicJSSBRAwRQ
FP2SQsCEEtEgIFUNUnaXDlKk913aLihNaRZ6MU/EKDZMfv/8P8xzZ94pZ86c
OTNz7veGjx08pkYQBA0zgqAWvzvTQTCnThD0yQ2CPakguJkfBM9mBcELfFsB
760wCNaCrwPeh64ElmcHwWRk/o3sVWBWIgg61AuC0oIguA09H9l5wB5k20CX
wZ+EfHkcBGew9wkLP1A/CKqRX8G3IXmWKQPfgA8t8aUVsBH8/SgImiHbFDiA
/O60bfeFvxf+HnRGoD8KKGatBnybkBMEbesGwWV0P4q8VjFQhX4EfyL8QvjX
4O1G/3F0LxOPXeD7sf8a9kuwvx/ZT5NB0BzfZxOr6fi+BngT/mLgCLLb0BmG
/iX0t4Lfwoe5dRzTXfBLgQngo7GxGPwgsJK9ToE+BN4I+aeg+0EPRf8T6IXI
LwD2wV/HeqfATwPfQR/Fp+0Jn8l70AuQL4bOJf4L2V81/J3QG+Cfh18FvQN6
PfRZ6BD6L+y/kv3dxfYxvpXV8ZkWYesh+K0yg+ANZHqBnyNGLYldC6AS+1P5
Vo78bfjTwD9D5+Usf3sHW5uwuQl8M/CB8oX4Ha8ND1iOrRQ6k9A9yPpfIrsx
tK8bgQvI74t9lleIZyG8ar69lGUfj4MfQ39XwmtchN6L/a/Ip3nsfwf+nUDn
Ri3nTAV0Jfaext4zQEd8PaecRveP0O/G9lG+PoZ/Jdiqgl4K/XP4a5WPoWMn
HenqDugu/AH+cfjLoSdBT8XfJchWQL8O/Vd8noCvJ/l2s5ZjeBB//oUPE7Oc
Y8q1CmRWJZxTh7WftM++P/HZl/KZ6+xXcj7did+72LuOvcbY26/zgD8MfgPW
P4PtNfj0M3xbjc1K9A8CaxLOoXvIDkjat+HEaw3662LvVTKS3RP5bq+A3h35
THQ2f0LmZOycV+7/fw3oTcBQ8I9ZfyP4IeyXgy/A/k7st8Kn0oT3vAz+Wvxf
UscxVqwP8208+s8DnZGdybcx8Hpg48N870F7kc5ReMXIf0psuvOtCPw09m4T
jyLicbTAd153fy0yAfxl0CH5VgK8h2wpdD74IOAs9NMp3+1W0OPAy+AnwR8B
zsPvETn2L+L/o0nXDNWOddjPwP5O6CJke+o+42+Cbz+t7Tuhu9EM+gayHfH/
SfxfFLvWzmd//wTPR/9+7DfhzoXgseoddHPoFHgENIZuBp0En4lOB/Rnov8K
eIHuJ/wW8NPgO+Rfjn2Sb28g0wv5eci/Dv4a0BN6LvRC8AbI3Id+Y/Tray2+
dUrY5+bgv4i9N9WohuznpvbL/tfDrwHvfmI0BVsT+TaK+H8fehz0BOiRqu+h
1+qB/Ntp3xHdlTbQ5WnXeNV61chl0KtCx0Y+b9d9C32WOkOd5bt824Ivc/Hp
hHoR/DnId0Nmk2pr6L1qj1uhz4U+K525zn5y7NxSj5kCPgN4APwVvv0j9p3T
3SshH1uod0E3hG4kf8H3kwOHazsGJezvZXTawZuB/kvg02U/zzXhBvqNWL8J
vPHIP4H8i7H3rpj9HbwQnxYR/+Gq58gvT3kt6Uj3POs9iO4BvsXI94Wuz152
4MOepHugeuEA1myO/mydH/Qs9GeBL4gde8VoPvi82LF6FXqu9o7OGHRHA/uh
uwJ34XfBn5HE77ZykPWqWO8WeCf4vROW6Rb7Duou3oFuD74qdm9TTSvMdw1X
LdcaB7RebNnO2B+h84KemuWe2Bb5B6H7g99DpnfsmqDaMAeZz8F7xeZ1RX+U
+mFsnnKiC/wdsXuxevpO8Lahe/tI6L06q3zjmhk0OxwD5me5p3aH93bsWqae
vgX8LeCjDNe4DeBbiUEbzRfANvCq2Lm4Ff2u6FcrxtDboLtBN4W+nus7pbu1
NHSuKWdW4n8HZMbluUepV3WCfi7PNVG1cUvk2rSaGjUD3Sc579Ic17wnwLPh
F5M/V6Frg49Qf87xjPU7ycaevVSDW2P7HjnTGvlL8L9NegbQLKCZqX7KPVm9
WTNSEnoO+l2gZ+Pzq/KfNRrkuOeq9xYhfzXDezgIvw789ti/Bj8PPEP1GPqy
hk3wYdhclOMe/WvwLuh8keucUm61w961DMfgCPRDwLe5zgnlxq9Snk3UA38J
/htgcY577HDwx4Gl0Legfws+BOgD3ZL69hj4I9zBCuwVQf8EPFP1DP+uIF8L
vDz03dCeN3A+y0LXWtWI1ZrnQt8t1eC1adc41bp5+HeN+A5ijcJMn9HglGui
amM5/OvwS/jWNtM+DgRvir0XsjwDL2d//fjWJtN76g/eCZ/Ksj2T/zD0GlpL
3zpHrimqLZP5dh5eTeBr9jKdb2MLvKbWLke+K/I/AmZne6ZNhJ6JNRs/zLeP
4c1K25Z68Gzw63w7meOZLU65BqkWKYZp8CvwT+R4psyH/xxQCX4VaKZcSnr2
q4f9Rop/yrFXjj4KfiDp2lIXfkHKM6xmWe3homYF1hiY55lYs/GuyLOJ1nhe
+RN5b4qhYtkRuhT6KegfQK8GxmR7JjuQ9kyi2UQz6WHWHgM9ra7veAvNesDY
bM+cd1jvmZTvnu78s+AfRJ41CoEj6G7Weee65jdD/oLqA7zWwCH4p0Lnor4d
LvCZ6GzusF5x6DeB3gZ/1kyU9gyrWVYz/T78O5bvt4F6xET4b8au9Xpj6K2x
JG1d7Vl774M/rTN9x36suxG7l+lNpreZ3nR628ln+a6ZRrONYqBYfNOAuSPL
NasJun9D5gq2KoDx4PexxnTWGkL8Hk56BtUsqjs2FH4FOmPzXBNUG1L51tVM
otnkauTZSzmj3NEbS28tnXFLZE+nXTtVk8+kXeNV65Wzyt0TsWd3vXH01jmZ
du1VzT0F/k7s2VxvHr19dAY6i77oX0T/UOy3gGqMas1ZvvXM9pvnTugZTbOa
Zsx2sc9YZz0AmQ+RPQ/0znaMPwvdI9UrVaN6Iv/72LO4ZobR4C1Dv5WUU8qt
stC1VD16fdp3TndPNeOL0GtoLdWIz6EHJv02Uc9X778QevbSjKpZdVDSZ6Ga
3C/pPWqvqiH/Cd1j1WtVYzvjT02gurZ7eq3YbwC9BTSz99dbLXQv0Qz6ddIz
iWYTvTH01qgK3Ts0M96Fn0757mom0myk/wD0X4BmwCvobo/cK5VDyiXVBNUG
3UndzRuRZ23VGNWaS5Fndc08mn02h551lHPKPd0Z3R3N2INVW0L3Gs3A30BP
i3339Z9EU9ZvmHLt0Z4r4Cciz9aq+Vng3yU9e6sn/lf3LXQv0Mz9FXSNyLO3
elhN8LqRe4l6XD3wnMizt3pwbuT/KPRfhXJKuaU3s97OyhnlTnXoXqiZ/0vs
n4r9ttKbVm9bzWCaxXSH2uP//wCzOZsc
          "]]}]}, 
      {RGBColor[0.9338744027801732, 0.704686006950433, 0.39501064861853696`], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnHeclNX1xmcH3mV3ZtvMzrwzY0EJ0ZjYxUK1a2wgHRs2sMWaZk/URFDU
JLbEWFH0lxiUogK22LBiQUABQVCMXWNXQBT4Pd99zn7MH/dzz965731vOfeU
55x3exx7+tDTsplMZmR9JtNF9Qj90U+lv0ovtbV0y2R+KbpZdatKQW2PFDKZ
R1V+pPZLE/fZU3WXxL/Rfn3BNGPdUPDfPUTPq2UyU9T/+/ZMZproEQ2ZzMCS
2loymbtVPlGfPzf6fTnRL9S7/0ExzqMx1p169l21V/Rsu97bTZP/VH165zKZ
sv7uo7/napzzNf6ybi78Tr/5TZnMcv39lsauVF0fr/kUE/dZmPXYtG+q/ve0
en6vdvMc+Z1+x5U9/i81h0H6e6p+H6h6z2Imc4LqLyuZzK6iDxD9oeh39K5/
qs93etcpJY/XqrpZazlO44wW3Vf9f6b+Sytum6U+F+vvP6m+UmVNXSZzn+Z1
NXso+ts6/0b7ZWkm87HWP0H1DPW5Ru1r1X6v6Kt4r+iTNOajoidqzPFZ0+NU
l2v+7WjN4Tn1v1Pt26q9i9qPUvshJdf/6ub1bJ81vZ3qZ+u9rm1Ez1f/maLX
aY0nZz3/X6h+ud7tJ4kuJd5XzuIm7eeNKk9389neEPyztqtpeGatfp9ecNuT
msejmscjek9frTXVWEM1zl3qMznO6LFmnz1nvDzOvpM/oOExznZ5tFer5oma
6qFF/z5WZ7ur1nC22l/UWTykMkb0w6ofUzlB9OOqD1T/B9X/8LLHZDzWdoXO
YFvN7361P5czP9F+f6PP9eLYm7EN3p+lmvMSlSPjfE5s8Ln0CX7YV+O8p9/f
bfYz8NrRDea3DaoePy35Wc6V891Fz/bWnE7XXu0ePHlQ2efGezi7L7XGr+CR
ot/5Sr3fu5vaz9EaX9Iab9ffE1QuU6npHC5VfZvK3upzqfq8pT6Tsm6n33v6
+y9qf1/1vupzheh3RN+m87lV5QW9v7/2pKKzO1l78rn6TNS6ntU6+obsQG4s
ST2fgua/v/pco3E+1jg3aIxL9PutcZ7cQc5seIN5A7kxU/2OUv9ZqvfQs+eJ
fll0RuVgvfsd7UOd6KGi3y+bn3h2tvZwR/U/VP2n6PeBom8W/bXo3UWfK3qu
6MUqF4p+TXUvtR8i+m7Rg7SPr+j9R2rM2zS3IzRmm/4+TeMfLnqExu+nPluq
7U31X6k9uFploMpXKn9ROUClID45VP0PFv2NylUqB6msUrlGZVBi3h8Y/F+O
35F73bVn4xPL5E9UJqjsxZ3TmCtUn63ytcqVKgeqzNMe9FM9u85nMijOpT3m
Ak8jG/cP+fiF6j+p7Mc8o0Ymfqn6z9GvFGPD85+rvkLl5yptUf9b/VtU75OY
r1pV75uY1z6lLX77TOXy+O09ld8nnuvXkgX9Vb+uOb+v+oLEf69WuTbxvmVV
dlPZHPmr+iKVXRmn4L1iz7qp7E4/ZH7Bc2buh2hPFunvPqJHiF4ourfoxar7
qv5S71+k9ktUDuV3lXEqI1U+0u9/iHd/rHJxvOMDlQtVBrAPOosFDR7rHZXz
E7/rXZXfJW7/j8q5KruovK1yXuI5XBrniV5e1dXjfV1nPYzO5tzfUjlHZWeV
/6pcorKHyvddvQfNenZctB0ierrm/abos4KP0uClMWr/VGsezrx1H8/R3znV
v1e9Su1HMYb+Pl9/N6vuo3Km6G6qz1O9Un2OgOdEfyP6cNG/Ff216MNE3y36
ddW/5gy1J5NUn6ryK7V/pT6Hit5JY/1af3dNfQ5vxz5wPu/EvnEu78a+zdYe
TES3al1P645dK3pH3bnZFevEXqKfUJ9bRbeoTyHru8o9nVnv/uu0n29VPc63
ut/P6dm/it5Jz07RXJbpPb9RmVXv9vXqf7/ov4nOYLdUTO9c9L1HR69Qn6l6
djl7oHKX6KWsVeVo0Z9oDcNEjxb9X9FDRZ8u+kvRh4g+SfTnokcmvvfcVe7+
T7Uvv9Bv30nmvIb+VzlSZYnK5SrHqByv8pmeHaFnNlP/E/T3avU/RfUXah+l
9vcLHpezR3chB6rwbcE077tIZ7SYean8UfQS+BB+F/2a6jNUpunZN1SfqbK9
3nWG/q5TvbXKqaLX6b0LQ7bVVD4smOZdF2qcRapP4+6ofYjqDVQ+Ej04+i9p
ME078vvVgu/Iuq7WAcj/QZKzDchYnWFV57KVSiPzVts2os9QPSrokapT1Vuq
JLxD9dYqOdEt8ewA9clHnx+LblO9Xf0PY2wbY+6oeqd6382y6p+pdE18J7mb
TapbY/xd1WeH6L+9yjDpiL2l24arHlqy7kaHc26cX3c9+3i92/MhP3eMd83V
3h6bl+4R3z0neqToe0S/JPpo0fNFvyx6rOiFop8VPVz0tIp1Ejy6Z9nz6RVj
MifGRz5vF2tkvQv07DOi39bertDz46X73kD3tUkGy1Z+QL8tTG27d9VallY9
B+bylfrdqP5fqL5aa72qxWN9pL+vUvsHFdsl2KDYnwPDB8D+77QjsSFf05hH
aswXNeYbVa+L9S2reh/YD/Z6hziXCbEe1sJ+7xBr3DbOsbPv9tG/Mc6uZ9Zy
BHnRISvqfQbsf7Fsfm1X/brm/QfNf4nqean7r6hapiCPGKOtbBlXUF0q+y6V
Vadl35+K6lrWsgQZclPNftCNkj+VrG155FI165p+3bTn9SpHac2NqhtUjsnb
N0jhwRiPcTufo+4cj5p+61psZ2Nj8zfP8/tkjfcvlX461/Uq61RGafw/q+9f
Wiw3eceVokuqL2ryb8hUZC3ylHHwoTrsc7UnGq+rymiN80bRa2StdWrLqBya
9/uYM/vQRW1ZlcPztpnxK7CfsYPhB/hi2/BD8EHwc5gT88E/auesVHroHm1a
sA/HXPAZsNWQ0/As78KO5HfsHOQ6Mp3966qzOUdnlKj+Xvflt6LXqq6WLQdr
qkeWbXcfoDU1iD5P7Y2qMypnia5TPbXFvuQnMZ8psSfUU8N/mal1zsj7nhfr
LdeQaavrvA72Nqf9GKM9GqN+H0k2/AQeVvs3deY1eHVlnfmPv58t2+Z+rmxf
kb1hX85N3c7v2AbYBdgS6EB0WweftZg/huEfpN7nd8Xbz1a8P33bLSd7hkxj
LlvEfKj5m3FZy+bsp97zj2a343sgSzertx2CbPxxve0x2jeIu9kYspjxj0vc
H/lciDHZH2RqLfqMTTxOfeIxuoddVB/ylz5JjDkg5vnTmHNOdQ/4Qb+PSbwu
+uajfTP1aVb9o3rblg3gBLEu7O7usZbGaEdfNEX/utBTxZAtm8cZM3/OvD1k
Czojjbkhh8rRn/dWYg6vFWwTYw+jl9J41/U6q7+32HdCr+JHoFvn54y3fKX3
DxbvNqpvT2wGncXiZvsq99Tcf1jJa6/EHrLGUuxJY+hIdAF72xbrZf2FmD/9
2mM/mwM3Yo252P/dgm6LcbrHWTMO+rYaa8cmx1fBLm9I3I6+bo/58C5wJ/YH
zOqdgv2oA8KeWRm2Ejb/N2HbYnt2qbf9iQ3brd52LLZqUm97FZurrt52F3Zr
13rbrtik2XrbpdhNmXrbTqy9Mc6IM2+Is0B3r0tsd2G7rU9sv8EHW8S9yAXv
0bYm8Bpk2Nqq9Tj6/HmwCdHPpD/YmpmQ4TPjnj5V8Z3t3e6/Z4XserFqXY/O
Hyi5cVCb7x/82BQ8jLyfEbL6iYrH3Lnd8wBv4vfnK5aT/dvtWzXF/EuxXs4C
G/b7xHbs0oJ9HvyTJQX7afhobxXsE+IHLivYX8JXertgH3L/sPe+TWznYX/i
92KD/qdg/3O/sA/XJLYRsSHx/eD31wv29/Bzlhfsg+F/rSjYn8SXzMR95ozY
+1zwauc93yzuYGP06RF9aOc+NMe+4RutTewfnZLYd90nzrc5+r9ZsB+Oz4Zd
/11i2/6Ngn0zfDB0KXoTrKeicxqmu/qB7ma76MHgR2XbvcVG78nsom3/0UXb
62Bh+GvY1WAH7AM+8s45+/W75EzjLyMD8D/xlX6vehu1LwgbH7sf339BzjRy
A7sfHcH7Zmoem7FOvffDnMdlTHxpsFf8/W8lO36lcV8uGhMCMwKv+b/E7fgO
a9Tn16LnqU+fnJ9l/v/Ub79ptE9xi/ZjQz17M/oy5370uUdz6MGd1rPTRG8C
X4j+R+Ix8UFmqP3H7LfaZ4nenPtXtH39ZM5YSGtgsKeWjAWCGYInbZWzrp9X
MI6DjTCkaL/nbNal9lzJONaJgV33CLuCgo0BHtKlZBk8ot1t9EHXFyr26zI6
2y5lj5lVfabqn6l9bsFY7EONxvPu0289uROaw72if8SdEJ1v9DrAc6arfVPV
76j9DLVtlgs/WvRPct7z80VvLXp+wXv805z3ua1iP3BtzGXLnNd4bqP3gn34
pejNc/bLviv5+flFzxdbiDlPLdtHWaH2BSE3OYP5IXNZw7yQoazh5ZCznOWc
uBsbqp4bspX1PJ9YpmykOlsxFvOR3vNiYtnK+15IfA83Vv1SyFl44rmQEfiJ
z4ZMwX98LOQI2NUrIffh6VdDH8Ar9+k9++eMSzwZ+gMefyr0Cnfu6ZBN3I9n
QgZxXx4NGQfWtbP44b688aQnEusncLXZiXUbWNPjIfvA2LgvYKngq+Df0wMP
/4fW/Knu8xLt7eqSz2Ou6DsS05zLqpLP/iW1b1DwvWOcReKlSs5rp43fwE65
VxtEH+oNo53zPyv4HF/8zDjf9SXT61Tfrmcnhf08GR8GG1LtmwSPP6wytWjZ
sxUxkJLtx4NVH1iynz6kZNwZG3Bb1f/UOJ9pja+LvlP056KXF42TMT6Y2+2J
1whvI7/4jfal2Dg5n/UJcTe5o5wxdxG8ER0DLtct9oG1IpfAkzvjIS/I/jkI
LKxs7A05DLYA1sQZfqF3zVGfA8Fx1OewwP+Yw7NqPwB5iE1V9Hlxbkeo7fCc
eRusAsyCdb5SMBZNv5f07EDRb6n/0qJ/Zz/ABRkfjGt8znOAfqpoOX0s8r9i
PK41Nc+xVnBUZOEWOctD9u+wmOeowClZy8U53ynwtGVF7zl7D9Y4MtrB3OjD
b320Vw/ljQuCL6KbwBj/lniNQ+Iej471PlrzGc3RWVyaczu676jAqDaK+310
0NclbqfPZTm3Y0v8PTGOBd1SMR6ySvPsrfk8mHe/YwPrQg7sovYH8n4fsmFM
tD+p+bRrX97SfJ6u+Y4vKXve8BD8c73K2Jx1+ptFyxhk2+ya+7xSMq8tif5P
1EwvUPtjNevgl0Q/XvPdmxsxK+Ka2MDob9q5j1fkPDfexR1dGO3Y5djn9+v9
G2n+D4VMwNe8InC3/cqOxRFjJP5EHGpg0XG66Y2O8xDvIe5DTJIYEvYFMcaO
2GKj/Wn4hXvLnYVf/hA6FL1xUehr7nv3gu88WD38BZZSrBir7SLeqy85jje2
ZLzl9pBl6L5NQiei006MGNcm4Y8jL/YoGx9dVzUWNaXRmGl7xXhxvcYvV4wp
N4kuVYwpN6bWSxeGDATbAbMCx2mpOd6WKTkGsndizGwn6eN79PvLVevAP4a9
gc4f32g7ZeOC9509GRPrYn2sZ6OQmezFxtHn3LLv4/FFt3WPM2NeEwLTZF8v
D5x0UsgknsXOQRY/GGNvHM+y95cF3vo71Zc22j5anDMPw7Po+QtCHoI3XNJo
OwidfHGj5WVr2XZei+puZev1+rLncW7YOeDQ9MEOzJdtK+QCtxjXaD2Dnfi7
6IMdwfuwJZaEbTE/5BlyDZmA/U3MBV8B+/uPif2+XeV/3K27OVN9+4u+K299
21f0ZHDLnNfx61gL6/5NrJ25/DLmQ8zhtsT6enc9O0XP3p9zjOLWxDqdPTgj
9oGz/VWc797qP039H4695F6zn9jXiwJfxnfYPfTFblFvHv44fgH+AT4qfim+
J/7KXxM/2y/8UtrBD1oCQ8BPzwfdP/vDGPjZzeFrg1u0Bk0s6L7EPjuxrxmJ
7XriXTMTx386YmiJ7yU+xoTgc/wr4m7oQOIntyS2wfB/iKmhK/CNiT9iwxAT
uCGx7YQvQJwRewbM/qbEdhpxhhsT22b4GMTakFf4Y8QEsWHwsYlXYiPhtxNn
xHZCn05PrEfQa/cm1kd76iym6iwezFnv3JNYN2HXTk2sH9E10xLrRWJosxLj
Vfj5xEyxo3rGnmMv4UMSi8TWIh41MbEtSizi5sT251ZxLuAZ4DCFwHB4Hoym
Z9zRSSHLuJuT4s5Ob7VMxM6Y1uo7/HTINJ5ZGPYVcoK7PEprHNtqGwh/kHNq
Vnk4MWaED3hcq+0i3n1g7Bn+1JLAlpdXLHN4PzITP3fX2IfOmOjs8O/6Bs9U
KvYTlpWcv/N4rBP85Luu9nkHxBjgfmBK/eLZ/sFf+Hd7BU+BmePL94/34eMP
iH5PhI2HrYf+RI+iO/GL94nnH0rs97LeEXF3wHMonANYEDYvti9YNL75FoGN
/Dx4mf39UdwX2sEQdgs5U4q14d9vGveUM+0R9472XaMv2AV2emdcer/gX84O
/6Azvo3cQg7kE+OObYE9bhc0+OTWcWdzsVbuIvpx3xj79uBJ+BFsGXt//3gf
8ZYdYhwwin3jeXyFA5If4vDwOLH442JOzAdbCZsJ2wm5g/zBJgFn4p6OjDnz
DNjab0MWzg3sinsNfvVgnAtjgntxR8C+wK6QCeBXYC3YechJMA/OF7sFvAf7
DNsMbAw5Az4GzsHchsZdJ0bLfUeGwUPwD/cbfcEdPyvkOn7HeSH70SnIDGxQ
5AayAVsc+YAM4A7Auw8kltfIaOQlfAwPIyPhUfgT+YH9jQy5P/gmG3vJ/qCb
wAWRFWCDYIHoF/BAdBW2PTFf5BQ+AvFN9A2+APFc7s3v417kwy//NOLzF8Yd
g//HxdnBUxcHzX26IO4Rd2N8nNdx0R8aXYWPQIx+cNjfrIW7jp5gvawf7Bs9
hR4ZG+tCv4DnduBa9daP4Jk9ox08/N+JZRNyCVuJe8udxf9AXnN254T+xGYY
GfKas3gkeBe+xWdC1nNezZJpTSr3hu2ADsd+aFVbi8qMnO3Z88Om5XzIe9gl
+II8BmyJ2ep3Z845CuA3k3POZXlc9R05x9QfRe/nnE8A74MjoKfw+eAP9uYx
/T4p5/j9E6r/kXOs+pGc7R/sIGy0c8NO436AU6D7sGXgG3gGeUgeBnuF38O9
2DDO88E4U+y+M8P2w447O2w5eAqsAbuFuwI+0jPuE7gGMpP7B1aCnoIfwVPQ
X5wbmAW2Db4O9w6/Bv3PGbD/6HwwDmQXuh2cAv2OTga/QC+jt8FE0N3kjbAW
ZDs6HywDvY9uuiTWWNBZtanM0jsrqlOVf4suqy6pPIQdpbpI/DfnWMv4eBaZ
BBaDXEJXg30gy5j7CzH/8fG+5njnv4PGpgAfKUY7fbgfyKqHYp+5Hw9FO7IK
DAgbBtkDfoRsxN4Bl0EWc1Zz4rywEcBlkLHYKWA96F2w0q9D9zWVzbvNZcc5
iVlvnXVMkthk16zv7fs59wdfh0afPp+3347PvlXgIWfKZxlUs+/9VMlx0GyM
80LefjIyk3t3STw7J+/++OOHR/+Ns76D46L9StkIO6jtQBWSei8NfIPc1B1V
dso6f4W45jMVxw6JF3dT+8Hx+85Z56wQE51TsWzADkU+rGl3rP7nqmup3/t0
yXx4efjm5EKcHvqcODPzIVd0eMzp1Kxj+r1iTpukfnZJyTlD2GoNqePy6ENi
8de1ON5L3PeUwGnIUZyVd74rdsypsVZ+g5f3DP5hb4k1d886Rg6d4Jelznt7
pur4KeOAQ+ETj42829GBsZ8TORTdIs4+Jxd4dBf7mfi6zLM58qBaUudI4Yfk
U+voCXGmG6Y+0+e03o1Tty8W/WLeeAd7CO98ELz0Ut4YAXr2iLz5jfNnjyfE
GWNHnR77S54TsdsnK5b9Hb5L1rFBfI4Bcc4HB1+Qa0G8nzyArpFnlaTmg8HR
ry5yeLKqd9HfQ+K3XnGW5Gb0Vhkav8GHnTnC1zaZH3eI8x4Uz6yRnPhO5c06
YzDkgYG1ItOR7SerHkEeQ6tj+CNStw8nx6zNPiJ5U8TEvlWfIXnr5Gmhl1e3
uv2NOuvnqaGjiYPx3mF556iS50yuCe9aE/MZFjTxdnT+lND7x8R92TRrfOXI
yIfuo7+HxfrJKyDXgbgC+e/4I/iC5LSS20o+85TOPvB/1s+zf92jZo83iP1i
jzeKe8m58e6+8czG0ZffyuGP4lNuGH15nrxaeAm8g7PoFedVC1t1VJwZd+sX
ca7U5Nj0C94aHms7JfrdonFODN64Rmu5ockY072NzkkmNxmZfFzI52Fx73m+
Gv4W8gHbn/H7x5qGxz6ij9HLJyWe+4dxF8j3SSJvZE3Z+XA/SY09gUH1Sh1T
IbaybWrMCOxol9T+DzbZ22XjR+BIu6XGj8CR+hFXbXeOOjnstzU7B3h5ndf1
ZrPX1hq5j3upfrrsuNszZesEdAP5J+BN4E5D1L6+6tj6A+SJ604eqzEfqDiP
g1wZcjnIRQY3KaTORQYfLqfWG8QPwHzRCWCa4JlrI29vS/WZWjGPv1A1Hgou
2jO1LAEbBRdFfoDbgjP+p+q8ZfKXu9W8rvraD/n9+5eN0X3SbJxuS/1WT1yy
5vgY9PnxnQAxqlFlf/9A209rlp/vRY46uWCTI3fobrVNUemSdZ7Xlf8jF6CR
FU+WHeN7quycI56tyxoL5NsH8EDG4jfuB+8gH54coBlaz5Ea576K+0ITR5/a
6PwGchvqas6xf7Do+7s08u0ptCMHHi87pvmE6ukVy4OXqs55+lfMJ1/zex/W
OKWa96q9Zh+dMyW3e1nFNbneS6rWOfcV/d3G8U2OtX9TtMxaUfb3B3y3QBzy
0Yr7PKK6X7tj/eTagI2Ckd6j59a2+7sYvqf5umgZ94bG+bJoebpU9OjUcvKp
mtcPH5KLhtx7pNmy74Oq6fdV92l3zgB5BOTmfBQ6sZTaHl9dtP4j3wy5Rd2R
f5a1DqY/eMIx0Yd2MA+wD3z5lUX7L/8p+xsYvhl5V+/apd35BuQdrKrznWgL
nYZ8QFZ8VbQsXlZ2Tie5nbPUNqDdOQnkJkxrdp4/dtS8ivecvSfPaVyT79zy
qu2dmUXzI/n88ORdzf7eISt6QcVzf73q8+Rcwc35hob7Sz7EXu3O8SPX79WK
x2RsnuHZGcWwNcLeeFt9Ltez++i5y5pMb5W1Tp/a7DkvrppeVPV3FeOjD23T
os+4aIe3yOGa0OT1MSY0dim/j4tn+fbismj/edhv5G9OiHb67NfunC5yu+Bz
cvzQIQenlsODUueHzw7/i3vNPST/hO9jDsn7XuArgRWCJ5B7hk7mPAerPlhl
WZ2//wA7AzdDb6BDTvwf3YMuQu+ij9H75L9Acw/RO4NDN71btE9GLgB2LLlw
PUJvsgbmj2+FPQMWQfwZXYCfBcYM1nxn4nw55sZ8+YZjcMzz7aJ9R+Lq+JLg
nmAprHVUrBd9QG4q9gzxamTypmGTsHZ0x6pWjwmN34d9CJ6A3kRPYg/t1WY8
Gv8eHBQ89O7EunZI6N492twO9nBa6MoRoVOHht4cFTKcb7bAwsHE74rzGhSy
i9g7uhK/crc29wHD2Cby1PlOBd8Tew/859QYm/fx/j1ibthWrBPdg54cGmvE
thoe50X+JnzCmdA2LPqvChtrdeSXMj/mRn4p+5sNucGZcs/BFMcG3ZF/FLz3
YdHnSX4EMX/sAfw+zrZPnO9bRbeRJ0LMgdjD5MRjk0PJmOQpYAPgX7Mfu8W+
kVPckWep+oiSY2Z8q7e21XyJLG4ITJEcIb5jAwsGBx4eNg02FN9l8X0W3ywe
VDI+y7ePHxf9TnJV8PHxfcCd+rU5LkJMZHjJ+Xjk5R0VOpdv9chZwIYBB8Cm
agjbHpsrFzb/J0X/Ts4O6x4Qay8GJgq+TRu/gW/VwjbD1wNnwH8BI2pLjcGs
KhrnZo3EznOBv24Wd3fnsEfXhR21quLvPNFTn1bMy/zeO3iqT+zR0Gjjb2JB
rP1fiXMxsLXASXoX/b3GIo3zWdFt5PXQt1/058z7hm/wftE8Tr4Mec3rAtcn
x+qikOfkr4HldORwtjl/GjlOPO2CnL9FwVbiGxD0JjnF5Blj490ecgxsH/9p
u/gNewNdS170sZGTjT6cELIWWX1l4AelkOfIcnQTMgBZMCVxbGrvoIkLHB+x
AXyRxwK/wvacE37ooSG3uTvP1Xyerxbdtj7akUPII+Tda3ljbyck9o0eDwzt
mZr57pWiZRh+FPd1QPAIftC+qXG2fVJjbdDHJ8bBiE2CDzO/STH+rqllXka8
sHNqHl9XtO0HRoCc6BV1h/zO+XsqsI39U4+zn+q+qflxPTZV3ljUifj6qfM3
69ptR1ZiXPId+EYLHGVYrAX50y/uFv7m4ryxSeaPbYKeA1/FZoKPFhT9vQp6
bX3Z+Vbgj/ip+KbIghXxDe73QaMjwSp/kTivje8/ieO8WLP8XlS0/OBZdBvx
anBW4gVDUz87JLUsXB/59q/njbEx5vM1y+yFRfvN4J6vhzy/P/xc/GDwTXyp
Dv3Wah23LG/cDv+a74/APcE859asfxZrzKV5Y3j4X3uEzsGnZgz4Z3no9pVB
7xW6i30bHzoJvfFN2XGglWV/a0R88dvyD+fN+R8beSzEzzm37eMuwYt3xPmC
h4Cp4cPyfQDfCWCzHZY3De8jO7BJ8Y8PSv3sgan9YnxwZB3fF+OT44uTd4af
iA2Bfw2mgj9NXizvArvDhmBsfkeGcA+RI9iJh4We4v3QzIc7Sp/GmNuh0Qdd
g/7CBmbsgbEWZCHvxO//Z7PbeT824eExJvbpEUF3YgSsk3xQYgDvlS1DWTf2
z+ap7ZQ1Rfv/3KdOPICatfwstY32nfpsk1rPf4+8TB3n+RbbSvSf4CvpnB1S
21Bri5bxG8W8+d4Mu+j7svN5+PYMrIsz51kwK3Jy+A4NjJA1ZeLssP2xRZGl
6DfyTcGcwRuT0ClpYBroVnw0/DN4A8wFPjkgzocxmRP+DHYscpjcWeIQH5aN
85H7TnxkbOCZyPyzU8vPk9sdu5kXfcAb4WEwxgPK9v8PLPt7DHL0O/LzAwvs
HnoQGwDfh7vLXeWeNoV+JM5YH3pgk9A12BScGbITGXR84F7cT+5mQ+jofPAP
vMP5Yo9zP08K+YocR8ZWI85LvBccHvsPG4Y4CzoV/fjn+F6nELqqHLoL/YYv
0xq6qRw6Dj2G3sMX4z4hc7mPxAKwpSaHTEe27x54MDh17+A/+HCL4CNwzOHB
W/DYj1PzH3y4VWpZTnyB8Rm70PpDG3SH3dLqtbEu5BN/nxS6BJ3SO7VuQEf0
T82v8O2O4e+gb9G7+LH4s2lq/YtORjdzB7gL26W2dbB5ioHXguODw18UfiQ6
G9wa3BbMFhwX7B6Ml5gIdjx2Mr4ueoX8PuIm6HV0+sdl67n/lh2zQDayL59F
vuDnqr+Ie/Wl6jnyCW8Fo1D9dNVxBPIr0em0Lw+cArt7etFtt0U7sgW5gi//
Vdl38mvV12ktf20yHnht0GAyk5vtDyO7FlaN3byq+hO+aQXbbbffhv82KOob
AwM8qN0+Ed//Md7fYkxswOviXWBV6OFpRX9XBD6Ajb932fbTPmXH8Llr4Ar5
inP8cqqbK84/bKoYz4ImfrS0ZJxrU74xbHdsoL5i7Iz8W2KUXSumu1Qcl8QP
xEcAUwBbIH8TDAUshRxPcBnwGXJCwVPAVcgZ5Pus+2Nu/I8BcAGwpvlVv5f3
8/us6NNYcS5iQ8V4HGshJgWWRztxKNY6M/pzX1sjNkqMFJr72/k39525N0dc
FbsD+wN/+cqYC9+RTIrv3MjRZY73xXcla8LuwP+6Of4nA7lnd7TYrqX/6sDI
sf2wc+mDrUt9W/Sn7x2RA7MyMPiV4U/jV+NH8x3S9RG/mVc1L86tOj/u9hiz
MwcX2wHfAj/q1mi7MXJzyaNnLGQybTdEn+6RL9e51knxPR0424z4boXnrotn
vwm8CNwIOcd+0If/53FNPHNti/1z+Jn62vDV4XP+hufRXVcF3kt9ddj0/I+Q
q2Ov+b8b6Iwu7Y4vgY9xvsjTleEHo2eY28lR/z32ChnN753f/K2u++FbRmrO
F4wOOwX9guxmz1fGt338ztrYq5tiD7mP18Yd3DDywG+Obyxuif18ueT8N3JX
Z0fe6v+VHY8jttf5zRfxNeJzL5acs0reK3YlcWH016sl59SRM0t8GJmIPOR3
5GCnj1OJOPLzJecJky+Mncsz6FD0WHvElLE5RofOBecjHgAmhqwtRwyattHR
Tt4Bd4Q7zj3hb/QsmFxHLCHreNoR0X9+yXm85PNmI87AO4n9HRX9MxF/w95A
dvFtJPbeWaljxo+VLc/Wxbe0+F+HBh6FHbsq8qzAkrHrsc8mtnj/H4z7dXPc
i7Xx3SXjY1euDRpMAmwC7KLj/+K02LftjHFiY6woOa+RfGd8UHzRbmE7HhO2
B20dWG3Yj9gk2BiMPSb6g+8eHX2Y48TIcwOzvyrifK0VYy/EZF4rOfbQPXVs
m5h1FZs0tb8xKrXf833IoFeq1jcLVC+KHPGN+E499ZkfF37Q5NBHfEuDLOB/
w4Ax3NZkPJBYKHgxcdjB7Y4JLE4dHz0tfsOWxRYZp/YTU/PdSaonaoxbI6a1
smJ6kMY4OrXMPSa1jDo1xgL7Wh3yDn9oZfjU6MAbYhywyolBD46/0ZnEs+AD
7P+bQ2/SB9sf2Uj7NbG36M1nSo4DbUAcOTUfH5V63RNj7ceG/TQm1nJLtOOD
3B0xl+NT348TUmN0a0K+I0OwDeDJXmEH4Jf9P9pTqV0=
          "]], PolygonBox[CompressedData["
1:eJwlmHeUVUUSxu8MTOBNAO579943gIhZQcwSFCOYQJAcRMVVRMyoK4KyihmB
Xde4Z4/uAfa4q0vOyYCgjGQY0gwDEiSDIEmMyP4+vz/q3Kqu6urqvtXVVXXa
PY91fjQ3CILHc4KgJt/dSRC8URwEi/KDYG0cBMuAu4qC4FnGrksHwftlQXCy
NAi6FAbB/EwQ9IQ/PhUEtwBHwiBYDN0T+UHIX418L+gJ8NoCR+Evhb4D/jPw
r4XfFXosvC+BAeBLgNvhD4Z/Dfyp2DMVW+6Cng5+HusPYe18bGgCfhvQDPxV
5pdjz2rWmAI+Fh2/oKs18Bx0n7wguB58Cjq6w9vCfieD/xwFwf3wT4W/jbkJ
OnYWsH/G+rN+KfznagXBZ9APMr8m6y3FnruxIQ98Ejq6om8z+iaC92POtnzr
qJcNgk7Mn8X8lznkm9C/D/1N0TWEsSJ4/Rh7qEYQXMjYSPRXMfZEnvdwJ3Qn
1mjB/oZDVzG3M3RL6JHQ1dCNy3wWK9D3IHNvACaCj2H97vA7wm8Ofxjy66HL
0dkZe3txnpfp/OG3gd+IOWXY3wX+piL/k27gC4GO0D2RvxT5EPn+7P1ASRBk
wBsyZzn8vyJ/GrJtgEro0dA3gjeIvfZSxhogW459V0B3Zs8L2PsaYBr0OPi/
Insh8Bh0T87gAvD2QDW8/zJ2G/hNOiPof8vnwLewpxDbN2BTBXhbxjbA/xD+
reA7GTsX/ElkfgE/yPq9oe8AvgffztjZ4I/D/wl8L3A+9DPQBfArsPlu9OXx
/1aBb4ZfF9461lsGnmWNl5FfjEw9+PVi++IS6PrQ3yBTB/luyN8KvgidrVL+
51+x9xtin9XnGgPPBQaAn87+d4c+M53d64ydAm8ddF/oAuxZm/if69/P43/s
x9+6Qc+FfoD1+rDeSv5RhzpBMBuf/IH/14WxXoXeg/Zyc+yznAc8DP4U8h/g
Dwvxn3vh5zH2JLwzsGcv9uSz5kzWnyUbwDvE/jfzgUfBF7B+C/CWutPgk9HX
r3YQ1MLejujbzlgRax8k2FSF9jn5nsay4KcAy9A9Qncy9hnqLF+Dri9fBDZC
fywfAm8X+19/ATyi+xKbtwB4DHwN8+9BPp/1V4N3ZP2ZrHUfZ3BHxv9M/+4V
5MsUyxL7+ibuc1Ps+x2Zgci/DpzK3PrAK+BPAwH4OYo5KZ9pV/BdjHWUb7G/
aubXhX4e2bMY+xb+4Ni+Lx94BvxQZF+sz/mOA1/OnAGKF0A96O/5ZxXwVwFD
kb8GeFb+i/zV4MeR6QvdEHoLc69kbBB0b+grwFeE9m3ZLNvr8j/W5PsO6y6v
Z7+j+dfzGWvNWo9g41roifjAEPjfMf/MPOvMIFsXnbeBN2OsDvhedHaBPsR+
NyG7KON/tR54EX6k/YI3Rz4TO6YqtspH5CuVGft2FfAS/BaK/8gOlA+Bf8ma
72DPDOxrztyHgMUpx5CFzD8G3KO7wZwJip3Y/A6238//vhZ7NmTsSxuAl9F3
BJk+4A2QHw8+APk3kG+MfEvkT2dsJGf1kvwRfB3zK1OOGYod2pP2djtwAPqr
yL5+ABgBbzH2voe9s7D3SmxtDX8Cunpz3heEtkG2yOajkfesvcumw9DlzH+X
+TOZ35L5RfAHwzsLew8wP43M0FqOWYpdhbHPSv9oP/wPmFOb+SXAZuhc6L8h
/znrf4n84+z3LfZbjv5f4J2GvhHwXwRi8N+AB9HXCH3bmf808mOQX4q++5n/
HfwespX//T/wBsCrzB0M1Izss/Ldp4DfkD8H+x5Avjv6zlZ8gz8I3nCgEfiq
0LH5NeAU6Itix37FwIvl66w/rtQ++TD6DiP/fMp3qg7ylyLzhO4fcy4Bvzb2
3RjC2HW6/8ypZu9p5LeC50eO7dqz9t4EmYeR7cGcxoonjE2FN5H1eiF/EvoR
vW3wd7L2K7HfOt25H3R3oSeDtweOw/8z9v6z1HesBvN7w5+kt0jy8G+Hngje
DjgGnYqcC8jn5HsrE+dak4jnP6V9JjqbZ4FC8IHoH4X+OfhrO+a3in3X5SNX
gR8M7SuKERG6VkI/Ucv/SP+qQjaCDwMaQs8Dmul+KoaC7wn99uhMQ+YPVEzP
sczT4PtCvwVPQafhXxb77PVGXA7eFx0Hcp2j3QfePLas7nQz8NLY/+Zs6O/R
NYj9fKjzYk4H6J/Z8yjOfihn8C3v2aHQssrhYtbbz5lekHJOVjtyjFKs0pqd
Q8doxWrdkTDyHrXXvwDF4AszjvXrgBdi+6B88QUgA75DPpvymf0MPkcxhH9R
DeSy1lroGfDH82b8FjvHVK45lbG7FBszzo0LtR/wMvZQUeycMAGfGZqnN3wz
9LTQuYVy7CroyaFzU+WUy6CnQG/Ncc56Avp6zueLfN9x3fVJoXNP5XRLxI8c
azTnOvAZoXMFvYGb4E8P/RYqp6mGHqYYju17gNfAb1F8ZH5bZG7WXY+cS4yC
7q77xvy3FQvY0zz+x4XQR1lrP/OHxz4Tnc1MxTjwraHfpn7Qpch/zZqjOMsp
7OFy7P8m9NvRDX4u/BWJa4MJyPyoXDry3foEWMH5V8gfmVsJ/yS6LmL+3wsc
YxVrT+q+sf6nyt/BW8E/H9tHoHM7ui+GfhP5PtAzoD8B7gWfhs5Zytci381Z
yuFYb0Pk2kY5ajn0ItYcXeKcWLnxGbH31o09ng5+CfrfKrDOuejbEvnuzwGW
MX971rH3I2R2gIex31LlDGmdV9Zvse7ANvAt6GiC/a+ibyt4HjCDtVsg0xn/
2hg619AbmwPvIDChwDXKrZzf3sT/8k3m7wNvlXYuqDdqKXQc+23WG57EzumU
22kNrXVm7L2pRjpL+XRi279Gx83oOj927FSMbCr/Z2yMzhaZk+AdgNHQo4Af
mNsae/vneuw49AnVh6w1WzEV/DPVUMU+Q53lp9DT8z32Ofi2jGO53mS9zaoZ
VDtMh74bvCTyXVeMUKyYrfyv2P9c/74t9rwH/S7wneIJ8DZ4O2y6Bv6PiW1f
yZodkZ2WuPaUj8nXJiSuncbgA4fhVyfOHV5kbCP4kcS5x/vQRxP7lHxLNsxJ
vIbWkg0HoNuh4x/F/mcnwB+I7buqwVSL1Yoc+1Uzqnb8Xe8HvLnQ/cDPjf22
6s0+T76Udq6kO7oA/S3SziWUQy2EviLt3EQ5xiLob0PXvnqjayeuUVWr6g3T
W9Y29N1XTaDaYHni2nwc+z+OrhvSvlvDFa/h9YkdC1UDqhZUTqTcSDnbIOU+
oXN/5ZCBzir2XpTTK7fPiZxbN1FMYr9/iv1vVfOp9lPOpdwrBsaC3xfbd1Qj
qlbMi5yLqIZTLXdv7FikmlC14ftp50bKiZQbncg4V2mMzG7l78B5Kb+Rv2ac
kys3n838WtjbQ/6Wco2uWr0q8VulmKTYpDdbb/dEoDLrnoF6B5rTPXZOodxC
Oapy1fVZy6onot6IYp5i33hgHbx9kWOjaswOyM9MHLvUE1FvRDWjakf1YNSL
UQ2nWk49F/Ve9I/0r8YCa9C3LnRs053T3VPNqNpRb1QW/JvEvqyYswl8bda2
qCej3szs0LG3CgiwZzf8z0rcM9qFfDEwt8g9CvUqlJMrN9dYCbxdyH9c4Dl7
wBvG7m2o5lPttzprW9VDUi9JPSH1htSj6IK+xaq3Cl1Tq7ZWTaXaSjXTj+Cr
VJOnnPOtzfjN1ts9Gf5NkXta6m3pTc+Bly5zL0M1s2rnFcxZX+iegnoL5VnX
XsqBFmbtI/IV1YQnM/ZR+apy2hqRa07VnsoJlRvOj5xb6Y3VW6uekXpHW1iz
APzrjH1Ze1qScQ2rWlY5onJF1dSqrZVDKpfUmevs1eNpg+6lzElStnkleDH8
XSWucVXrVsaOZTsZK4L3SWhcMpLNL7MtynnbIl+Y2NfVM1LvqDL026s3VW+r
zlBnqRyhB+ut4Ew+KnEOcARfW5n1266xVeDLEvcCc/CnY/DbZ9wLUU2r2nZW
6N6AeorqLR5D/l/FfiP0VnRCvmuhewjqJZRFrs10R3VXk8i1i3o86vUoh1Eu
oxzjUNo9MPXCVOOp1rsKnU1zXQOpFlINo1pmGvurydo1EuPqKaq3qBpRteIc
xooSx3zFfuUAi9lfo9i9OPXA1AvbmfXbKB+Xr2+M3PtUzrgIfTXSfruVw/2R
yyXOpfTG6a1bHzpXUIxXrG8fOtdXDaZarFPoXFk1kWqjKHLuqpxVuevqjHth
ugO6C4rJis0jgRtZL5V4L+opqre4I3Stpxqojt6ryL1I9TTU29gVuvZRT64u
/P9EriX1T9rB35FYt85UZ9s3496RahTVKpsT5y7DgDasvzzj3pl8Vr67LTFP
OZpytddj55LqMVVwfv0zrj1VI6hWkA/Jl9TTUm9LOYVyC+Ucyj30putt15uq
t/XOjHs96sGWIr8ncS6kN/8W+IcTv9XyufZp1wSqDVTj7mev/wffpVuD
          "]]}]}, 
      {RGBColor[0.9505980241254547, 0.7464950603136367, 0.44685387478890937`],
        EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNm3e8lMW5x5c9bXfPOcv2c1aKMWKqN4kaMYkKKNiisSU3XqyxoBRjuRcF
UbCguZ80TVRABE0UYscCKBpNMKIGBWnWK9J7kSogoHKf7/n9zkf/eD8zO+/M
vDPPPPX3zB5w0ZVnXpFMJBKH1yUSNVEe25pI7K1PJH5TTCSW5xKJFfEsTSUS
/fKJxLh4Lo7Ov2tMJBY1JRKnxoCh0bY0+sytUbnM9ctjzP3xbnpDIrE4pfaP
UppvufsMiPf38cScfQqJxOAod7ckEgvi+3+PcdfG733Rdyffr4331UTiH9F+
QkElY6dFuTDeL4l+c2LOz6PcFb8vif5DY/yL8X5IUmsZ5PX8Mda/OtZ/c/Rf
UNW3OpQ0X9u8Sa2V/TD3ifG9P0OkoM0b8f6KaHs6fr8e9auiviDq/0onEldG
/c2oXx9zXhv1M2LczGgfEvWN0T67Qe3Uzwj6PhRr2Bv7vTuTSMyPNe0XfXc1
x36b9Y0hVc3/s5jnlXh3tb+VjXUm4/fTscfHG3Quj7GumGf/eHakdC7QGbpM
iHcj41szgq4Loj443s+Keb6I73zerN/rot+aKBMx579j7muiviqp8W3zcIY+
P85ufZQb4ukQ/WtYT150h4YDfC7QG7o/H/O0Bu3qY9yGKOfGWubFs3/8vjr2
+FD0PTr22LVG72ivzapeF/W1MealWOfqKNMx3xfxnTHx3Yao74v66KgfG994
MObpHeWQoMHX4+kQ+zgvpfZvR/vyqK82P3dO6z3zNOZVT8RzVVVjfhn88Fq9
1nZ8jK3Na5+fxru3o88r0V4bffaLNS2IdV4a53ldvF8T86/MqVxLPfq/V6/+
dyXV1vYu9jUs+m/MifZzYo7Z8SCEs1zfF/1XpTSG/rTNcp81SdVXR7kg1n1T
9NuvRt/jbFak9DA3Z7oqp70zD/tf5TPlHBaY5oPi94xY55NJ7WWV+9+Y0vr4
LmPa9hf1UUn1vzv55Z5XmN4TfBYfBK1GRtt1Qat1DaqzTtayymdRSou34KuB
phdz3htn+E7IRZd4f2Hwx2Xx/rpyIvFJjNsO/7G/6HtHlAPj3ebovyyt3/OR
Z9Yb5d86JhIT4/kg2p+McZPi6Rm/L4vn7WgbGf3+GvW/xPNO/B4b374xnpvi
2RzyOTb2vqVF7+/3GOabEM/7Ub/XfW9O6j1t42POblFOguc4u1jHrVEuLolm
0A46I0OrU5Kj+2P978V+909Lv25rkI7dkdOeN0a/lnj3MTSM/luj7fq86v2D
PvdG31vK4il4izk3u88m8yP8BI/w3fW5L/llnc/ulODje+Lbm1ok65wLZ3RP
rO3tRsnN1ljXb6Pth/G98dH+brR3TYsHmAPeODHmuT3mWRXzlNPmY5/7cteT
Qas1Idf/0yhaomufjfaPYsytMXZRlE/Hty6K9rODVl08V9dK2IP4bud41qW0
N3ihGvs9K+h7UvQ9IejQNfpXov/Xov8W9mu6dW4Rz3WO9mXx/aXN+kZD8Ori
qNdVNW6dz+X9qmRgcMy9okF1ZOHO+P68WHs1+t4e9TmNOp/vRv+60F/fjvKf
8fvXKenAswqS6QFl6cXL3X5NVfWfFnRem6yLL4jv3R/v/zP6b4t1bW2WfCy1
XodeDwfdFqVkr3oHzW8Mur0X+5ta1RmNLMn2LrX9pb7YsnZtQbx5e1myuNI6
YYlL7Ol7sf5bfdajY48LYo+dom1DrGV9PJfGuz9F+9xob4U3c6LbWusS1oss
nx5rezDWtivWdrzt6S/iu6VY58aYpxDlubHWkfQty24zN7abs4MuzLkixv8t
3h0VczQHDZtsA16tV/tx0b9vUTrkwzjf0fH7uSbJ27Qm1Z+K+q+iz8Los6gi
WkNz+Af7/0STfADODRvPGSFDW302vyjKR/mgIv/kC+Qz+u7E94hnS9QfiTke
bpIP81iTflP/PNb/aNTPLGo/m33WD7vPNUn5I4+5PzL/ifn7uvg9qUl+DfqP
7232tx712Pn2S/ATkOmNnp/vQEf4/4a8xjLHubGOD2IvC2Mv23LaI334Hu8P
jfoLTaIddEP3bHOfTe5P3+fc50nT+XnXZzZoPGOvrYqml5TEJxvtP1B+7POF
dz52+2c5+TLQFvpv9nfPS4pe50bZ0KpvnV2UfG/xPE82iVZ3mmb8hueedp12
5BfZ3ZaS/Tu5o3wQylPi+VGNyp/Fs6JeJb/p2yPGzsrIz0Q+3k3Lvh3h8YxF
LpCJTay/pH5TggbDg9Zvxbvbi7Jn2LV+wc/PxrjFoTc24Xd0lLwi4/iH+Ib4
wd+MeWqinBbjFmWlL5FTbMVC62Z0Mvq4Pi171yvmuiUpHY7+xn86NqM14Dth
Z7Gx+JRTgzaTm+SrPOM6tKJ8xu3D/A5+hJfgz8Nq5eNMdZ9d5k/aa+OMpkT7
WUXNM8VzwjvbbNeg0Q7X+4cuyUb9sigT2IXQD7+O+vUV0fy3Mc/n8bwZdDq5
qO/v8Ld6xfvZ8QyHzyuq/64o3YXe2pOSrkfnz47xz6TlQ+M/b01p3cyDXH0a
9ZOj3td6uxz7+O84vwvjXd+SyqfQU/EulZc/uhf+DRl/Itp7xrg36lW/JCkf
mfesjbV8HvURtfJpGf9ZSnZ7vfl/te00Nprz3Wp/YHZSfjw+/NCq4oL+JdEC
mmyM738n1rol6DykqPezrROmwB/R/la9fHzmwc/f3qL2bVFucKxCnFKf1zpZ
G3EGtCIGpN7PcQc0YF58oDaaRr0vdq0oXj401nZxSracGC9T1e9zov1g6Mx3
o98hrar/oFWxysTo38fxDroe/xzdutt6D598j2k4OM73gIzWek5S3zrbftxT
Xts7wQ9XBB+tadH+pzbIZ9vZonrvOK+rY46vxbMbe+/1H9Qq+aONOLRDXvVP
rZuRAXTlgVXRdFBJvLM9Jf7BFyCeeTe+8WKz/KITkoot/tik+GJorG1D/P59
lH2KsmeLY10nFcVDa6N+eI14AFsMbf63Sf3QMfAufDsI2c/o9/oYc2f0WRfl
6nhOjO+sib10qJEfgw+TjfYXgyZLY+9LWzTnkhbFE/TBV8fPog/6dXJV74bE
Hp9D/8TzYYP4gm+x1i7R/6VGyTR6k32hD9F/67z+4chCTnRCj09o0rl1qiqO
vjTmfyapeJtYGxv7uWk6sUn9sXfE0BNdv6GqWPvXJb2nHX77WVHnvbVFczMn
cfpp0T4n2ndEe8cWrXl5QTqatd4Q8xxfVBy4vEV2EnuGLetUo71AH775ruWl
tao46qIY+05V/RuivicnO3NKrb6JTm7jPfMPZwc9oAt98EGGNsoPqemoOr4g
+gM9g97G37wjI5+zmpFfh814jhg43k1LKmYmdl4V5eWNqsMHN8UcGessZAY5
R46Q85T11E3WS8TIgxvlp2NH8OMGu77Bcf3AstY4xGtmvjrPmXSdOSnrrev2
WIaRo3FJzT8+yoODXtlo+0bMPTDa/t4secEP+MI8MAJ9kBdP1IJHJKW3ajiX
pH53jnr3GsnNo1Xp0K4lxYzEi2fU6Bx5D08uw5cgHnD5QjzfAjdoVX13UVhB
Jv8l/pCx/0nZaB210L4zthndgQ5BF2Lbsdlv1WhPL3pfK1v1e0WUlzbq23yX
+Ag64xMfEnNPjXHjamS/06bhiHh3ZaP0XI/YW3figFbpGM6b+WtivtebpWuP
jj6HUEafqxo1th/+cDyDon5hUvHfVW7nN7b3oqR0J3X4p5DT/NTBRWp91ugI
+BE/bVfMc1BKuv294I8TgkffL8umMxdx2l1R3tmoOGRPUToRTGi/jOJEYk9i
kTX2c96O8ceBC5S1FnwD1oYehVfQpbmc6uydNQ5yfX5FvsUHIctvxvie+HBl
rXNGs9YKv6d9vmBCja4T03OexPXvlIQlzIsyCT6VFM/Ni7l6g+Wxx6owp+dD
n3wUcy9qlq2kzprZe7Kq8oXo81aMOYYYsizaE4fiV9D3I4+tc3xaWxU+BU51
HDFUTmPo/1i8SyI7JWFnyAR66RT7sOhhZIi4pd2WIUfUKTtYHm+IMdOjPjzK
S6J8Oa+2zjGuU05nhuwljPu94T74BvgF/8prHD7rPsdHL7udPujCPY6VwAmn
xjMwnimuE3O9ZkwDbAMaQ2tsF75tOp43Ys3TbH/AwcCswa53Bm/f5jp4NjZm
r/UGdruD9wvPsQ94a0fQ8cOg/23BI/92XEx8jJ75wrSaWxI+NKskDAheADua
6/NnjcNijgPjqYv1FfPywVnnLeYd5DeP3o32mdHeEvWKf+NzcV74afjjdcZ4
oTlygt6AzjPzOhtw7D80ikbzrf/Qe/NcsqZcXvPUej2FvOrrrCuhKfHiFNMc
XBEaJ0xr9CM27k+x5w6x524lxTojbcsZ39n9xuSEqfcH2zdt2PfpNdK3tO1t
UDu/+X4XjwfL5Nt89xeOcYh1OhjrhLb0PcI6nRiLelf7EviE2M35aeEz+C61
ft8+7gyv5TPzA/3BmOmDrAyPc+uWEW+BYU+Op388rej5aFteqzpnlkqLxrXe
B7RnDn638zFnQq7kt42K8cp5zc3Y00wPaAUPzzLee2VJ/JwvaY2fWXbgXeSN
eJM4D2wHXxC/g+8i48TKn3lf0GOP6894L9hl9sNvfITupgdrwW4/4z6r6kUr
dMXdOcUc2MiO5p2atGwJeh3MZIaxWTDa3fbpNhsTAH/BX9ruNvCE/hn5iB87
5ttk3/WXRcXnyZDZZ5PyCfAH8APHYJeS4rlOttfdzTvt59vF582+d1u3vFKW
3utfVHzwcqPsJz7laM+Lf7WpWTSYbPpApxfTwuXIGR1uHu9sTOBk4wDzyFPE
0xz9piaFBbPuKUnhyPzeUS96QSt02yDLWiXs0Iz45paC8hX/alQM3s+68yLL
8kDzUjn6v4JfHf1LLeq/sSDbTtx0sNfK/Ph+R7ba1pfE13wLPibGJT7YYiyH
cyDunmwas+5B1sfMA00GmDc+rdecnCM5Hto5o2fNW/AVvlsbPYI+fXPKMSBn
4BtZt2NvE5kvbe5N9kWJvaY3yjf8Xqts8/dbhV+S0wKbhO8YR17jx63yb34S
ZT5o8k98iYLed3OfQovmXFuQrqcd/Y7fcmNe/ul6Y+ZgZnVux5/JeG34ANiB
EfY5yXWQIwHHxgaOsE1Z7nWCr65yH3BV4teb88IrO7qObh9Rlr0+qCS9MtL2
gDwee8F+drGOqTUPdrDeRpffkpc96ew2+pXcjt3p6nHoiFzQ4R8x58qCbBS8
hH3aFPU349neINmnRP6JI+mPrSZfyjrR75QdXCfXgk5v0+9xvv07SnfPDJn4
d1b90MUdbEf6O+/CmIUtykt+GGWxRbK5PtZ2vX0O/A38hX72GQ6tCMc5rCL7
hx0EV/leRRjZ9ytqe8P9j60op9I7yu4V4V9HRLkreGVb1P9YES8jn/Bzj4qw
s55R/qQiXOzIiuzPW/HMSXr+en33tDjXHh2FuYA7Eyfif47NyTZDn6XEyfit
2LKq/F5wiCXOT80piceIG4gjwG6Y76dF8fXBXh86BluP/8D3Z3qPHxfkczQa
P1hlH2+t14tvcuRXznad2+Z5nffkNO/RGZ0lsdHXK8pnHBjlNyrCMb9ZUe6K
HNbPo9xckL3MVr70OdBRB1SUOyH3QiyCvgADKdlm4uewlnW2MS/7vDjPDZ4D
/+c7FeGz341yRlp5c/yjgvkdG7Tb8TL2hhieuPrUonAfcCgwKPIHYPVg6eh8
Ynjs0egYMyon27yqoNz5vrJ4ljbscodWYcX7wIey4oHVHotdxy7WOQ4jtl1R
EP7yWcyzrCA7t7ssP7S7sSD8+H7W7T1a1U7cBg4HrgcWN8D2Z7zjI3A8fL8m
7/upWuVUyHGAtd5UFJ2PivmWFJQb2xnfrbQqZ1xqVY6ffAeYIbgiZwTGiJ6r
sw7cv6L8Gnk2cLdXzdf0qbE+xNenLxgmcUKN/X+wB3Jq6D2wEmThuKJwN7AX
sI59rYq/iMPIDYPx8Z11BeF3dciaMbhk1B8Nmj+S1bq7VJyzA58sKMefirbG
qmLk96O+p0WYz6ctih3ZC/r5dGPg7bgLv8EuwP53GJN5vCwMZUtZcTq2Cjt1
dFa6BT081XjXKvsOT9u3Yf89nAvAvjGWmJ8cFTmpZbGeIfHNB5w/5nnAeWLu
PRDzrow+D7odvcDa7vJdDtoedP6aMeRKiUXxE1kPPDk0p5xB27ussDnW+R8V
zXNwRTahYLswxn4Ve+iVla7D98D+T/a7sfZjJtuPmerfx2SlJ7EdxCnjHO8c
XVH9qCh7ZKWrseNHZSXL2JFD4t2oqP+gItzyz8YqkafRlkfi8h7G8J9zHon8
HRjsKGOzxGF/cS4e2v7FdKP8q+tgAAOMCTxrvYdOfCEnvwRMFj+d+Ge+/Sz0
GD7PQsfcyCn8cFhe2M2hedXhjameD73A/RNwTDBMePr8pPJUyM8F/j3FfZHz
h7PCIKHzy2nd9wGXnOz3yOkb6Evjxs9Zx7IH2urcTv73EeeAyTeQa9jQojbe
YXt+1CobMrwoPpnodvhpovmQ8m9uH2d6sT/meMjt0JK9HG8asgawv3xOWAxY
0QT3BwPDp8a3Brd8yOsBn+yYEybThjnF75fSyhXvcDyBLf5x8MfYOOsfVZQr
GWNsH/5ARxNvXF6SXeC+VV1J+Sfu5oC9Mu/ZZWEVxM/oz5qS8rvcI+Ob25xP
b79PdkZZ98DIv34RNDwmvn1ffLdXRT7LePPbsJLiX+623Od27CL2ZLTjJXIJ
5BQ+iXk2lXU+75aEXdznGPOyku53cc8L3urkdZKvHJVVnrdPRjofrGBrWfcx
RhrHIj8GTrgoI/uFrhid1VhynfAU9g4ZP9DySvwGPneH469a060ueKQpJ/yR
OcFFWA+Y28UlxUHcUzgyK3+AmO2TjGQVOQXjButOxTzHZuV3EWtAX+4tYKtm
OBYjJsPfxY8Er7q1pHiWOwtdSsJpwWvxocbaP8Gm90L3xLO5Wbx1v+XtGMsf
8tbb8neu2/jdMyvfj7iP/OdY3w07332R0W9XpIu+VdF53ue7QAOMa+APcPbo
bnCcCzyuHW+Ep5EPcNG8+ZszJu7C78GeI1PY9JdMF3ieWJO4E/lGNxetnytV
0e0fBe2VuA69dHhFsvDDinKw5GLxAThz7kzAM+hizrvWd9yILfEvJzlnS+4V
WSIexnd5Pq27Fm13JRv1vWnWWwMsp+DPh1rvvZ6WP4HPcmpZORbub66s6MxW
VRQT4R9gG7kLhq3nLLgn8mfnxYlH4RX45PmscBAwkLXNuhcE7o3NwBZio8Ei
uhuv4M7Rfc5zX1MS5sM9nU4Z+TfkTMFUptk+7v0KjnK6sQMwA769v7GdtRX5
W+sq4m/WCC6xNaNx2PekbR6x21bjAsh7tqR7kxeXdS7QGFpzPnf7jLjjOcq5
fO4N3eX7B+S6kWfw4u7GXJh3f/sdrPtu+6t8CxntF883k2rjHTRBPmhHHsgP
vmr/Ct6Y5PsP0ON5Y6bIFXEF+OGJZeXCT4ryl2VhH2dFmS7pbut5ZeHNT6V1
v+8c53RPKysPPiWtPOuZZfHTz6NMWSeQB+Me3zjfM2B96C7ks6mqc36xIL0+
07qd+1vtGDkxJO+QQWzlLt+P7VMWzcDaq1Xdm/1nQXHFEcaviHHxV9B9r5UV
Aw0KO9jSKlyi2qq4Ex2BfthsPx0btNMYEm341vjYNxfFD3sd14Ar4Ovg55C/
gm+R8U8dU9JnhXGINY6ptxl7YU1djQ+D5eCHwV/gIpOMX5A34FzwRbpY74LV
/LQsvL++Kh6Bp8AfrrevBM+16zuwC+5acf7cZUaOkWd8yHafhjrjGH+Dxw/z
76lp3ZPj3gS+D/4QeoA7lNylxF8gDn4i6kd3lG+Ff4BvcHpVsUHK2Az+9E7T
apL9cHJQj+eUb6J8wvVJZcnzJ2XhEPiR0I7vL/E9mdFe73D7VsTqyPsa423Q
HbnAfhAPTrVfjI/FPbOR5kH8XnJp5NGS9gG4G/5qQbHxzLL013m2LRuMgfGN
9rsgJ5eVByc+JzZvLil24a4ZcjbPsjbG6x1h23WO17fV91+Ym/s54AHEetDp
SdPqgKrubE8vyPdc6z2Toyf3xt0nzgA6Mv8TZeXStpUlo1N8XwP6LXYu8jDr
dniBXFIxpzNBxpApfAj4Gz+MGJCY5jXHhvucQyeXjj6AV7h7wT3BMb5zw73R
sb57BC4ILcAxzqgqTssEb5xZld5uivpTJfF/j6psLbxKf/zNF+y3c8/xUutA
7NEXvsfOXUn8gmJVsR50g0/xi980bkM/aMjZcK/hJ1nRjnto0A/eAWNM+Hxf
KQhDed3+JHTCL0JOu2S1Vnxx1gXOxj0C/CRktVdVfXpWZYfb5DstO9PZeTRi
gcn2+fGzuDMKPvyw7zXAb9ONdQ23XGKTL7R8UhKnTPB9B/ipb1lx0ykF3V/m
Tg6YCOeDHD/tOzvE5sTonDl8Af+Dub1sDPoC27Gh5n3wlGvddoHXcb7f8w6f
d47jfeT4cesEeBn8An7+A/dxgxaXFuTL4tO+XxIWha9FzggagZkybg52MKOx
yOJmY1Xc5cAeEDdxPpuMc3EHnPnBIedGuStj/zkj3A/dzT3E6WnFftvdjn3H
ztMPvU3bVrePMVYGpve45QP5Ym9tOdKkaDbduGU2zntd8Nh5Jfkz1MHLiRu4
rw8Wig++0H44d2rIXYGVgiG3573hD3htjfUtcTi0vbWiO9X/V9J9Yvwm7qlh
0/pa9+JnfeT4Gt6kHRwe//a/copZ+rtOfAMfMD9xP7Z6meN67nYw33eq8rmW
O365wvfz2vPw1E8yL5xv/oCHrjd/4m/c4/P9lfn4uq/wMb9vNj4Or7T9lyIl
+4nftNixP7pkqX14zp4Ymlj6jrJkEf2B7lnimBGbvNb0x+da5FgJ+wpdkXPu
Qu7I6F4NvjB3m8ENWU+zsfq2nENG40Y6D4jfCB4Jvgm2We88a1ueLCX6gnXz
Dlx/Wa1oV7afz7iysVHOob9jSe7BotPRR+h/7CV2lj7jjaFz/tjHld4j+8P3
YI4BnmeWc9ZvlbQOxo10LrLkNQyrCP+/riKZxZZjf9GP4G/oJXRpT99ZIrbD
Z8Z3vrEiGbu3qHGn2XYfn1E7cgd/47tg2+Av5hlnXYb8IEfgzcSl6GFkmPWA
EaOzmRf5IhaeYz0woqL63f7u0e7Deh81tsK9LDAUdHNzi2iFT9HYIpuIbTy1
oPuR3KM8uSC9wD3lC40hcJ+Lc271WYPvbbId61eSDurku/bclScvSZxPvL8s
yi3N8qWJ3+CjrHmpY1U89lJ88zdlzXlbWfYh63wAd1c/cXyNfcBOwOvcgd1u
vcQZtJp/BpZ0/5B7iNDhYZ9dzjLFd3sV5Ktwj7U9F1XjnHSLeTjdIiwUTHSe
77os8J5ob/sfQUo0RE8xR848f21Juox7gmcWdAbcy0Pux1p/8h8V/KDLC1rj
Iz4vcrTgAy0xx9mOL7griq5Hp8O/Q2yH0C9558qvKsmmYd/wo9jD8eY97hxR
R+5uMc8jrx+U5Hvgg+yzv4Xso+9yphV24zjPA40Y117vYz5Exwy2nkEnDbFe
4h7Qse6DHh1mXcp8fTwnNq23+7xXkp+Mv4w84I/iJ3InqJfXdlBFNqNbRboU
PYpfRHxEbHSzsQowC94NdH6feAiZH+C28X5P23jjHGAbH5bkg+GLPfAVvJnc
Ri/z4acZ0RR6TvAdfHwUzr5gXkI2WNdU+258j/gC/XqM94JdGmTbxL0bchbo
vO1l6TXsG/4tGCS4CTHsaGMc4KDgJWAUm42tgbGBC20xVgKGsdl1MMNRjpHn
ej7Gk4sH/wX3JR5Axtox2in+NncaNxprwv5cbRvUzfgWcoMfAY6HLwGvwX/Q
p+D/tuSrsinYE/iX9bAWzgycG4wE2pL7xs8GNyGOJ27Bv8WfIM4hPuMcOA9o
ONw8wrsDjG+B52CPwaC4m4ePDK7Xz3hhc05xN35Hf/seA4ypwCuNOfUjLmEM
v6lTMg/YIPE/8xB7X+Y+tC+zzUNO8alvd0yCr4R/iW/JHI1eD//xmmhsiPmY
l7VdbhwNDA08H3wf3C1V1b39vxeU8+F+JHaRu28l+2TgE+BNzNWvLP1/SVn2
kf4jfabg0kO8LsYSS4PDNHv/0K9gGnauCgMBC/m986yvloWZg6eDef+4IHzk
Kt/HJ2dJvhJ9THwCVgavE/8T+3erCi8CN3rI84CxP+D9kr/ARwEDAv8B5+a/
xNzzwU8ves3wHf8NJmc6yOvGn8K/Jw4gHsBfG26fjZjiPPvwYJZgl9yNZN9Z
nyn4zQb/t2t5RbmZFRXllaYaT0NGqM/2dzt6nhvtP6K/brNd2+h7vDljpAPc
Hx8QWYLv4fn/B4YrG0A=
          "]], PolygonBox[CompressedData["
1:eJwtmHeU1dURx3/swu7btwV8+ytviYggUcFuEqMgK4YiICDFWLAkgqBRmgZE
sWACxiMnIiIxQsSTY9SDiUERAiggZQUVKcsCK1KkdwVcytLJ53u+/jHnzdwp
d+7vzsydeU36DO45KCcIgtZ1gqAuv3syQTC/MAguTAfBx1EQbMkGweziIOjP
WmUcBMtYawPvZmA5+Hb4n8J/BH4V/KeApfAOAPdha10SBA/Du5RNvgGfVBoE
K+F1ANZGBuG3ANXgp+DPKbbNHdiuYq0dvPbAavCGZUFQC29BQRDcC90N+RV5
QTAjPwiOYX8s9HJkfwOshN8/DILBqSBYiPz56O7Ap3n4cwH8j+AfgF4EfRH0
/6Dz8X8L+ETgBvAR6LxfEgQb2KMYWy2g83KDoB5rl4HnAhvxpxPnuxP+N+gM
xd7bRUHQHV8myL+0z6CzvIj8l+jWwadxoX2Ur22BSvDdnLkjtuZicw/4GOQr
kS9GfiLyEfRBeG8h8zvoDey3Dt+OsVYG77OMcX0jfas/Aq+j/yryHTK+I93V
y/h3C77tYu0z6MbsPy3yHtrrAN/rL9BfAHvzfKcj0C3A3lZsz4DfFd589M9A
nwWawnsemM1+5/Q94DWA3g9vNvI9kS8ts+/fsxaCr8NmFfb3QdeHDth/Fne5
F7oEui78zez9d+BX4CexuRJ/x0FfDD03Y13tob3qAt+BD0FmLfw86P45XssH
P4V8Jbzx6LeAfyRx7CzHh658jy3w58A/H/5U/D0EXQHdDHom9FlgE/hrwBXo
fwp/S7G/ib7NaehVyE+AfyX8NLAV/B9Aa/D7Qp9tD1CM/K9ZewPeTXyzvNg+
y/c3uJ8u+HOK/TbCfxVoDm8v8Br8XcTgF+x1AlgBPRZ+U3iPYT8fW1/xvfuh
W62czbOPqTLvqb1H8U3u1V3D34buZOU0+FnsrS60T9dBfw+9ELop9IzId6y7
XoL9PtATgABeBWsHidcT+PxJsWvGVuhNsXNHMdKkzDVEtWQk52uL7HlljoUn
WfsWXmfWliL/AXfyA3czEv5MzrMeejD+nlEMI/s6e16L/EvIfw1eDnyFL3ch
s6nYOancHAN/Wdo1S7VrG/pz0W8E/SF0r8ixOQf796NbD58XgVfjw93o7kN+
AfJNkJ8eeQ/tdROwFHwce2zGv+Xcx+MZ1zjVOn2DbdhK4NeAz2WPu5CvhL6t
gc94Bvvz0Pmx2DKSTfBhu2KxfhBMge4FPRrbf4CeBj0A+Um5rgmqDT2x8T7f
cgpwmr1/C/0B+DzOkItuL+h/Q38KnQPdHv1hOdY5g3x7fLqPfG/OWjvw5mWu
bYohxdKtrD2Qcg51Br+WtQN5PrPOfgIbQ+G9g72T4P2w/1Cua5xq3XLk16A/
Gf/nQx9PLPse0APftuq+4E+BXwF/NfRM9N+FXlTmM+lsOoPOsgl6NHgFPnwL
PifjWFbNLUT+k4xr8SDoOtBV2FuH/bext1D1mjv5GP0ZwF3YO4eNqeAfAXdA
z874W+jNOofsbZy5b8pn7KZaDX8633I699kFujfwKPyp8O8GvwP+zhzHrGJ3
SOjYVU1UbewR+W5U41TrvoRunXaNVa3djD8v4ss78Fthqwb6zSLvqb1/TFyr
tHYYvEZvIvpb8eHHyDVdtf095E+CH2HtZ/B3wj8c2aZs6xtuRH89MAr8X6y1
VPxGfouPq8aRX9/B/zzPPm0BP5s4llSzb8f+EtmUfejF4DdjYxr8icgfTHzn
unvF8DLOewiZsrTv/CD4isi9xFFgHPt9HTm3jgCvxL5j3bV83AC+AhuTsfVP
bC7A9prIvUEtMB75l4Ea8MPAWPBVkd/WY6qhqm/4/Gfupzs5uAr9TvCnFbhm
qHacht8vxzmqXC1B59m0a6RqZR19E/C/AdeAd+W8QzjLfGzcg60Ua8PT7iHU
S3SGPwD+HPh3wC9UT5H2m6C3IUc1O22bsv1t6LuKkG8MfQ6dQWm/OXp7TiXO
HeWwcrme+o2030i9lT1YewL9CvTvR/581kLw71irxvYFsW1vg14H/RQwCnwt
a4OR747+0hz3POp92iL/lvop6Pqxa5JqU2PuIJYu8BL6G9Afhv7+xLX7K+6s
U6lrlmpXLjK3IzsUGAm+CvmByNcm7pV0J7qbC9kjhrcLmfXIroYeoPcNmY7w
c7LO1fHId8LXPYn3Gs/aPvADid9O3aHu8lDiWNQbqLdQMaXY0pvwTOyYUeyo
Jx0ZOwYVi+ohnwU/xn6n8hxTtVnHkGJJPd1zsXtc9brKgUXgfYCDaef05+Bl
6FQWuWfMgvdn7ZDunzOO4PyzIn8brf01dswqdvWmPa3eAf/fzXcOtuM8OxLn
9mLoDtAtsZlL7B6Fvh78tOpR2j2DeocXsLFe9UV3xPccG7l3+C/0K+AngIfh
b1DOgx8D+qWtcxS8KPFdqIYUg6cTx45qTiH4VexZy/lq2P8K8G9C1yLFXCN9
n8i9t2JKsZVKHIuqAQXgfdVjFrhmqnbuTXyX/+GM5RnXJNWmD5HpELmGq5ar
Bqxir6ti91qtic8A/MbYvdYa1W90GyJTXeAYHQ1+fezeXj2Oep1HWRuWsg/N
sN0mdi+0Fn7A9/1l7N5TPYd6j7ac8bqUY+IF+MPRfx66Cv0odE+s3lhvRm/o
q2PXCvWE6g0/V47k+42viDyDaBbRnW3PuAdXL66c35mxTdlWjo4IPZNpNlPN
2J1xT6LeRDVgb8Y9mXoznemR0D2relfVsIMZ55xyTz4/Ab++3qAC14wBoWNS
sakYVizvVE0tdM+xOOMcV67XcIZGyD8Yudccjn5P+HdGrnWHiMnfhz/1jGnX
xP3wL4rdq7bkvmr19vE9r0H3ON/jeb7n7sRvt2agXeA7s56FVANUCw5DLyl2
zN+QdU+l3kpv8APsdzFrJSn3KENLPSNqVtQM2C90jVatHgh9K/6sj93rqQeL
uf/2pc4t5dz2xD2hekPNUJql8qA/K3BN7wueBhYV+A14KHTNVe19DLob9m/C
/pvqrdEvit0zqHdQT9VGfGw2KnEPrV5aPbR6aeXUleAhsAx8hWoavj1b6lzX
N2sF75LYs1ArbJxE/7LYs82N0GegL409O2hm0uxUXubc155twJupJqY9Q2iW
+FOp70IxXo79y2PPOpqZNDvpTnW3mkE1i2pm1uysN+0H+M+oX00555R7w1WD
izyz7MFWs9Czbw7wHLoDQ8eOYlCx+Lhm0iLH3A7NH1nPorrTy0P3bOrd1KPX
C10TVBvUw97A/l0y7sVmI5OP7j2aR8C/RD6FfO9S82apJsN/tNS9i3LySfZL
ZS2rmfreUtdM1U69SU1i9/jq9XWmFlnXKNUq9RAdI/es6l3Vc64J3aOoV1EP
vFJve+K3TP9x6L8O9bzqfdXzbgldQ1VLjyNzDfjVWeOKecV+deLZ6RLOeD17
XxA6FzexNgh7D4eOPcWkYlM9jnod/UdyDv6DoWNfMaxY1puvt1939rTyJ/Td
6A50F6048yTNT8RLAfgvYs9e5dC5sWc2zW6aOTR7qEdQr6CZOcbXKOv/AhTD
cdYzl2YvvTlbM7Yp25oxQ+TrYKO68KeeA952YEyhZ4qKjGuyarNyqjx2Tim3
9B9OlLjmq/bL55axZ2rN1prhShPnkHJJPcgwztofuqrIb3SSdUwoNhQzip0g
6/9ONCPUAb+TtelFniE0S+g/Av1XoDdzc8ZvkN4i/adyXuIcVC7qP6cGib+Z
vp3+Y8skzlnlrmbS+ol7GvU22qNu1nequ9U32Ba751LvJZ8bZl1DVUv1n0VJ
4jdcb7ly+ufI/x8NpQpv
          "]]}]}, 
      {RGBColor[0.9673216454707361, 0.7883041136768401, 0.4986971009592816], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmUlNWZhsuqlq6296q/qv8ywiQGdUYRGpOMGicakyCLK5DFoIkCCnMU
aHCX3cQZJ0aQACoQEpczoEZAQRFBFLBZAmjUcYmCLG5BmCQ4xyWCKPM9vG8f
Pafvufe/dff7Le/33v7akLYBo7KZTObhXCYTf5mV1ZlMqSmTmRaVY2szmRsj
LYhy/8ZMZlY0mBTpmlImc1bklxYymacbMpn2Bn0vrVMf2q+KutWR9sZ4A6Lv
XztlMrOjzYRId0W6M9K5+UymOn5fV5XJTMxpfH7rF/X5qF8U9dNivNsjLYr6
86K+Luo3RH3/KNdGeXuUd3XSGnrnlK/1eh6NfEmkj2I96+tUfiOrNk+7/fLI
V0RqjvK+rL4/ify4Zu3hxJz6MdZr1drTKo/Pul5r0Npof2yzxqXudde3Rl2P
SFvi+7FG/cZZM+eTnndOnPcdkY+PtL9aZzws0ptl7e1bFe2JdfPdN/aei3YL
Yu/lKL8fdc9G+4eiXT6+j08ymamxtll5nfuvozw1yu9F+buRZ6Lv+Oib1mcy
Z8T3waifGW3u91hdo76X5+jl32dE+4NxhifE94fxvbsm7or7izStonWcFPOe
FXlV9Lsj2l9ueeFut0f72+K3T+K3PvE9JNLgSH0jDfV3v0iX+XtyjDku2o+O
Mc/OaSx+O79R+xjmPpzZOGSjUW3Ocf8J/u2dmHc6e6hW/4n+7a1OuoOC72K5
y3/M6a42Rv4IdxVpa8jDvMjnR3o+xnkmq/o1kQ8LXdgUcwyPfE2d2q3O6oxK
cQbdq9SP+tejfka0WxzrWRr7uiTKa6PvpZG3hQx8HP0/inR8/H4gp/4tkT6L
8ueRylWq53tbJ62PtbVW6TfaDonUJ1LfSO9Eu02RNkdal5Uur4/85GbVvx3p
qoLujjs8Kq99vxXpt7UaZ7DH6lGlebIhG4dFSqPcHHlTpH5RnlWrNvT5aezn
qdjXoMjz8Xt1pJ5Rf0+T1km7p2L/K2K+fhWdBWfSK8q/L6me35dx17HH/4u9
vleWbF5fDB1m3w26qw9i7KpotzD29UmUD4/yxiifGns8JdKuBiX22nF2lN+x
bm61Po6vVd9xtTprfn830sEYs1PUvxNjTq5VeVKt+rGOJNb6aU5zMD72j/Vw
1htjL5/Hmn9VlL5xN0MjjfO58p3EPl+IsxoRbU/Pq35sleSL+92SVb7Y5Xd9
n+j77gadD/OT7/ZZXRVzHxZrGBP5W/UqX+0zoR33e1pea2M93WINa6LdX9M4
E+s3cvu3+H4m6v8eef0RupeONY7zOhljvPfF98wq2Qp+v8PfVTHGBssAex7v
3xdWyZavr5LNWOQ+GdsP2g1K5SNmFGXvaIu/yNsP0GdAKls1Jdp8M9X6xxd1
1y3WDfrsqJK/wIfs9NyDU/mR2UXJaV/LedURkkl0EbnlPEqef6fHml0rue/t
OVot2z2sM+gC+swakCn0ptV62jOVvp+Y6rw4iwU+r0X+PmCdZ96vVSR/20IP
3oi0JfbYOeoK0X9DjNMU+fay7MIxUT8g1vyDuPdX4ruBe4w2dZGvyqrv05GX
K5LXLdFvseUKu1CpSB+2Rv0jrsMudIr+f46+g+KsBsb4ZzXqe7Fllblzqeb8
SbT5Q8zxcpQfivxASybzYpQHFOXjmY+x8xXJ66sx1z+i3Y5o83Hkm0JWX4jy
VLBHzPW9RvXv3ix9vdN4YYnHaoxxrsMfxzj/Gbo0N+5tdsh1TV5twB7o7Bbb
jd8l0t2ekc+tlb27tEp96HtrRbZtiO9yUKzhyljDzlhDVexxTchM37CdY6Pd
i1G+oKC9Us9+8Qk35IUZwFSrq3UeTYnOaUicwz3N6vt21N8d5ZGR1lbrfp6r
1h3dG3VjIr0U33ti3qfiHo+IfGBB/qQ+lb/BL3G3r1TUtzYRbgH3gH+2ZXW+
nO2oRvnUkyJdHe2Hxzp/Hu1HR/2eavnQRRXZgn+L+q8mwh0jY83bs8JHjPVZ
3OlyMEKsZW6s8Ql0MOp75jQ+/pyx2T94kjbDIy2J7wezqudMuGfGmepz2IBu
R7k6Vfmcgs6qDb8V38uaZYMPGK+BoVjTW9W6nzS+n4/znxBz76yWDef8PmPv
0fdT2maF94o5+X3qSpEnOeEyMAEYYX9WdbRjvnJO7ZbjO2LMliiPblY946eJ
+g2Pszo66ru5b/eccA+Yk7atkXrk1L+nv9/Mah3MucPrY187XbfPa+zh8V6K
Pd4Ue9wV6zimWVg18e99PV+r74HvVca9YNcR+LRqycAVjVoD59bHNhob/16d
bAL6c1oieUAu7kyE/ZZVJFfIGLgamUa2sUNgIWwOMkrON/5rrespY7foi0we
Fnf9cJQzkf8t+s+J+/17WXgZnI3ODyzKBmBL5oY+/rZJv/UvSoY+aZF/xk7i
r1fXqYx+bazTfB97vRusF+gl86K7FxZlu7BhPy6q7mCMuTJ+f7JO+jgvq/J/
W96eq5PMXVSULcRGotPMzbzlVG1KkV9SlG5jv3dUa02sBxzJ+aDHlxVlA3eU
bQM8L7KHzCNj2GZwyh+z8o0L7N9OS+VrJxQlf8jhzhinS5xT5ybZuMuLWm8S
be9rkg/Dt2EDG+vly8BzTfaF4LcjjPHOTNXm5hjj9FT1NxUlL7Qf6rzZZc5+
ks+f+WcZUzLvvf5eUaf9sBfulHiPWAgsRj1YDjyFnwLjoSPsHf1FRmbb/64v
KN66MvKNBdnySc7ZN/K8N+7yquh3ZkFnMtd990f9vFjHvhbZMMrI0xG2tz8r
SgYoP5XVnaz0vcw07gHPdAmd+EqDfP380JH52M/QkV6JYraLUsVWf3J81SXa
HtWgfmDXffWyb9itfIPkoGv0PyzKVybyKbkG+ZUdUS5HeUqUT6uo/O3I/7mi
NsdFnmlQX2zf3pj7YKxrZvjGD1Lh99bIny0Jb90ae/xHfG+KNXwc+dv1wo7g
xg4ceVtWuGxc1Rfx42bHkO1NimHYf01F/VYUJCMbLT+9E8X8Q1LFlGOrvogr
19UrtizWaw3gU2LGYoPixkXGRsx/SkX1J0f+1UgHov0/RX50RXq/qiAZ4UyR
kw8j/6hevvXIimTq6YL2+E69/BFxGONcldc90HejdX2l7/2o6Ls/6ofFPp4v
CbNOLar9ft/dQu+JtTZV5PdWxlwtFcnvUwXFBsQtxGLfjPrm2Ms3In+5RuVf
xBpa47ueGLMgG19vf4TNb2hQHT6upkHy0q0imVldkL/L+N7ZO3MttP3gN2wI
dR/6TLjbt30O9KMN5whmrzFuJ1Ubv+6vkewit31dz/2CrR4xVoTr2Or4COx2
ZqP8+/1ZlR/IClc+0oEFjfFuj/qRjfJPFWM2xsL+v+YyY/L7SPuwPTXCbGA9
4hviRmKcznmViYmY4y5jRmw82BicRv59l7HfYNoN9rm9GmVvflIQFwEncUOi
+zkJ3BrliVHuDj+T1TjE2YzRy+PsrpMffTQn3/U9n8PU6DsDHiD6LjFWhze7
tSS7gf3Y7LPB/4KxwEiftgh3gjOzqX6bZXwLrgPDnWP8NcrlMa7/Rk48yXWR
zs2pbowxH+k6t+dM2xqFDai73u1vijXdEmvbEmu+pEltGHNKIo5lG/FIIt9W
jLVNi/LMqL+lorajPGZb1I+N+kkV4dRDeDUVVwSHA7cDT3OZv+GY4HLwC+D/
uyw3YG587c9K4nSGus/OGs0Llwa3NuFL8QLjMg+cJJzmZPZbFk92lWOTCW4H
tqAfsvfjgtY8NOb6l0Q8G3wb4ww0v9nTWIo9nmobi60dVRRn1SX6bSiIa9td
lu/qVC//C69SZV2bXpRfJ/ZlTYx9bCIZQpa483UFcXzvluUzd9XpfNoL4vve
Lkt+aA9XAHYHw8MpUrfb9bOKin+Jg/FJlXrZZmx2wXqNPy/apxfs36nHNuTr
v7ANedf3SzVO38j/p6RYfWZR8fZCx7evlBSHz/H86xyb7zCW6Yiz13+JI1jg
/nu8fs4D3mKPy9imw7yexxyfgiv+K5GfPLUieT7Pck4OnzjMcnaeyxe4Hpmf
bJm/uqR7HmCZucI2irvu73p08CLHidguctqBq8FcV7o8y31oD89wTIO4hsmu
Rz7Z3//6jm4syoYtirV0tx/fa/livy3Os977DW5/Qip/DAcBJiGHc6Af+7vA
XGrvitZwVuTnxT6Xhv6cX5JPB58wX4u5DPqeVVBcR+yID2BseCk4mBm+J/gz
6uFgdhrTEDPiu+obvohbyIm/bk5kg45M5AexscROcGPY2GbHXCsifQ4GLovL
vr0s+eJtADmZVFZ5euTXJbqHkebhaH+Ie0pkt9pK8p95+1B4euwLtgUsw/7Z
O36TmBMc2918PjaBt41bvM76RLYIPuDZGvkL1omtpA1yNMbrH+3Ycbn3gh3E
tmBjiPfHuu9zNYoxaEu/5e57cSocBZ66uCgMnU8VM+J/1jsuAHNyF49Hn6WR
RjRLLx5tkn/6aVFvNoenX3D93B/4tGKMOqEsTn9a5D9KNSZ49tpEMk08AQ7q
Z4yGLrM2dPgM84XgPHAiHGLHe8MZrgeX0wacPrGscX5Tlr0BA2JzBhcVNzam
ksd248yzHTujg/ij0fYx48rqO7Wse3vCd9fm8iifI+dJ/D3L2AF9XNwkf4wv
Jn7mvYKYHfuKzcfGfr1Zd9/Nvpm+2J+Bxvc/TOXPGQdMkPc7CX3Bfos9/hS/
h/AOMt5+jrcMOI+7zQW9WpE/LRh37PK8P7f/xVfDL1CPHnVOZLeuLTmOrFaM
eb39PjoGXkGnro62FxYUBzen5hqqpacTzZ2gd8gfcojtAq+AW243fuFdhTVP
tb/Ffg5N9T7XN9FbYtnvidj7AXnZdTDgw03CgejFvdaFQYlih3Nj/YMT4dYL
S+I34D7gPeD5GPPaWiXGATeSP+Ly5Ynw+8XR94chPw9hAwM7/cj7/feS3o8O
+vzRB/QCvIf9ZS/YY3TxXvNv3CV3h45dXBCPwlvoFYnw8pCSeDhiiFXGlgN8
14cnwp1wDOebuxtcEj9IPMc7DnEYunaI+85pfWAaOLe11m3sJXEAdw3/Mddv
h2CAueZD4J3ggeCDiJ3w+70tI8hKN2Mb+oNv4Is4W3gpuJFt5gmR86PNK5F/
3XwW9q/VNhCZ2f4lvmqHsTNtu1pP6ozx4Cbnwwc1Kw64xzxAd8cOPWx7l/it
9Q3zYW+ar2ONx3hv7ehHs/jGrn6rZa79np8+rd5TB8dGntpHj7Bv5o2I9zDe
hIg1Wv1We7Lfj4gjWC98NLidfLPnhSPY5HK762lbNAZGd9Ehzgg9Yt37vSdi
H+YgVuLt6BSvgfjlVL9b4ZPQYfQRTAqWHe97n+O7m2MeDBno6jvivsYmsg2l
RDwL/EtvcyGU4WGY81TvkXvgPni74Pcubs+e2r3HYS5zh+CINvtH1rfNcrDZ
Z8U5wDu2+uzBPpw7Z55YnpDFNttj7neE2+Cz+1ou6Y/NXuZ26Cm+jNiKNzLe
YtEd+CJiduJ+4vA2jwmvBr92iHs0/8xeyNkPnAYyAr/2meUXP7nTcRzvHGDI
kfaf680BDvM5YKNHuj6bKMaDpySWHu7xuW/WzhycwyDv8XFz/uwFWWcv7Z5/
qddA/rjbYCfgV9kveBX/B47lHNE9ZOt849tzrdPMzbxvlYX1iEU63uAH275w
1h1v7/08Lu9OyANvT9ihPm6Hz8H3gJ/gz7qYVxzpdbJ2Ytz+tsPbvKe1PoNl
Pod5fkuH83zC3D4+GjuLP/jMfmG0y8RlYC9kHl3vajnH1sKprvI9jrZPX+F3
E3zK6/6fjMTvHGDXgWF7v1sRnji9It4Q/vDmkvz5XPt0uEe4Evw2b9r45rXm
/bfaJyJzj1pOyB9zmbhtlnHFmILenX5Vkp+/y76edybmGlEQn079HYlk4Q3L
drv1CXnjvMjvtx3t4FQ4v3t8hnBaYHhkkHNeYx4en4pvhZ/LJ+I74K3xxYwx
1T4Un/qAZRxZR4Z/bbmH9wbn3uO3mHbfMWvFl8IDIFe86/NevDIRvlthjPeJ
eTJ0k7dV4h7erzk3zvGQ/zVv+7uSfCRr573rVceMxI4vmH+Dh3vJMSaxJv4e
vw/Pt8prnm/52+61cjbwvJwP3ARcweUx/rs1wjTcC1wGe7ktERaY6fjshoLW
O70kbheuZl6i/03g/2eIg9bZjmy3/mKzdlqvqcdW8L8W9EUmNjk+4f8F4CmR
M2QM/LjYGBJse4n1Dh94rOUfu32ffWib24CB4Rbu6+DcjZuwp8QlyC168YBt
zhrL0BrLF9gKjDXN94ovRg7/0sE1+H8x2CvxKWthTcxxot+1e6TyZ8R/vGMT
ixKTEsuekipW/Xbk+2p0DpwHb1PHehzK5L3tJ/FR+Eo4Debt+N8W8g6/ucv/
CwHmXOk3xg6d6ZAFcnh7bBRYEdkfbiyBvPMexLsP75LYieU1Ggu+7RW/ZQ8o
6Wzgd5/xOT5oGaPfQ186U34Dv4Jj4YDb3fYPTmttH580x4x+cefYm3X2U3Pt
s5CDtR7/Qfdjfu74XvvuD8zprrd/3OK1oNOcC/2QfcZE/rFn2AH8Cxw49hS7
zDsaPDCxL+3BOqyB91Z8DfgTPvJFv9GD/+Hd0JV5thfYDfSJ/8HCNmDb0LFx
jk/wUb9MJG8l250p5v3xUfgrxiWmmO43D2wLuviXGunjc36/4B0D240NH13Q
ec7zXeOb7rYP7el3/9+bw+P/2LDH+BT+hw+5W2ucgzywbvwfa8aWwzXjHyaW
tIauidY1xXbvqEQ49BeJ9gD+7m3ZPcr6DufHWyo6i//5irn0k/3/N7y18h4C
N8SbCAlbiS++pii+69hUenW87WfvVO8xfSL/Vqo3lX9NpU/H2VbwfzEneBxs
VRfbq+NT/Q8Y/ws2uShe7zup+HPWjO7BRdEGfWe9YD/4oL1l4YD3y+LaO7s9
/zeEbvP9H0Xxht9PpU/oGDrF/3zwvx/vtwhrPWZeYpo5hz+VJEe8PyFLtKXM
Gx7xHDYKjDGjrLjyzyVxB3AIL5bEAcEFvVxSP8ai7+0lvWFMLek8OOfjzSXB
EW0uiTuAQ5gS+dkVcRf3lcQZYYNvTMRhUI9/43+sWN/V1nlkGV27zjEq6+Qs
OJNDZ+r3FvZVMla/PtH7HJj6jIriSeJK3rUYnz7sg9ictx9ii+9UNOaUkuzZ
w7ZpxLfEucT3PSri0fhfM+w/vNJWc1dwbcR0cGRg0msSycahN5684l/4LPzF
keboxpuL4C2KmPL/ATQUYNA=
          "]], PolygonBox[CompressedData["
1:eJwll3mQz3UYxz92l/2tvezv+/39fL8TYhyVUe6QI13rKGStjHUTJXIfi103
RewalGPwRzM0XYxkJkIUYeWKspQYN7lqkKPo9Z7nj8/M83yf63M8z/t5vtX6
D88ZluCcK2UlsWr7zkUizl1Mc26051zZwLmN0F+glISsLXyQ7tyjcs5lQ0dY
m5HvQZ6MfARrEvY/pTiXBX0V+Q70NyQ6NyuGbejcLfgv0e+HfDExIsnOtcdm
cty5BxWd2wR/CP+dkTVG/yL0POTPQg/Ax0ToI+hkYF8T/5eJf4U1Bv1c+Br4
T0SeA32d9T18ZWzqQJ8gxsRUO1N39G/Cr4Dvy+H3Rp2rgM5uZHtZA5C30Bmx
T2FNhW9AzDi+/kQ+Fv4i9guwX8v5fsQ+j/1t5ey30e+P7knkU5FvR78v+lfh
l8EvZ12DLkZnEf7OY1MdujpndBnOneN+3oHPJP5ObE/A5+K/JvKT3Ec+NrWg
03S+NNPph/+f+da5gnOH0UnA/jwxioh1Ff4cdCf2t5FY59hfD+Q5nunqzv/j
7stjfxbZaOLlIf8Nm4JUe+Oe6BawbqFfj/hNiN3CN7ocNlOQXY/b2dpwn5PY
71H8dWE/x7CJoPuQGJ/jqxj/ZeBHsyZjf4g91UU3QfnCXo6i/wb+jvAtB/tf
4Mui24v9H0ZewkqBfwz5PWLvxd9A+MvEX0z8m+hfgn4Rf1nIo6xZ+BvvmUxv
WFu5w9qK7VblEPRc5A7frZEXYP8333Yp35E3DiyHlEt/6Q3QPcB+siNmsx/6
LvJ96VYjbaDn46M58hL4f+Bbssfd0Ems5vB3ApN5rNn42xez2A/xXwL9FquE
uynF/zBsh8bsrrLItzzudzDfDiJbQ85MCC1HlCvr4Qvh7+P/QLrVRBdoj3UK
/VP4f5N4o/H3HvFu8K0Svlqx9qJbntUK3Zu81yjucxQ+b0D3RX9nisVUbO1J
e9tAvMnE64FNO/wl822hZzmh3FDOK/frCT/IjTvcZ/3Aaki1pBpWLc/Ax3Z8
ZXO+npylCP44vI/PlcSaBb8zwzChqm8xFfs2++saNUwSNoXEbB8YhgnLVKMX
iH+M/efgK439/apcihn2JAlzoKd5dnbVvGp/JnxmumHEDex9vp3G/358xgN7
M72dcky51p/VAX+p+FuKrNCzt05gNUV2lBgdI4Z5R2JWI6oVxXgB+TTO8y3n
OUOMwLc31lvrm2TPseLQp3iDar7VsGpZNavaVU2oNu7DV4If5ButGlGtVGGN
Iv6/8FVDw1BhaRl81oAf4hstDBIWCXOFvR5809AwR9iTCP9kaBgnrBOmC9uf
CE2mnB3E+U7FLdcifKuD7GntEfog8iHId3C+dPgMVn1kp+N2dn2rB9+QlQV9
FP2QWI+HtnflYJ+Y2cj2CPww+Abw0yNm0wi6GWt+xO6sOXST0M7yB/r56FfB
5yXivZ7p3KfI+kYt95RjyrXpvtWGclK5KcwSdgljhbXZrJrIkso7twR/65BX
gb+P/2L455E/wl8lvrWGfoW1PmI2bULrqeqtwjhh3Qz4DuiPZz9fh9ZT1VuF
ocLStb5hz2XsF8OP1/uzv3fR/wo+lRzaD38CnT7k3irfaud39IuRF8BfQT4S
/Q16T996Qxf4z+DHwIfCFmE2/AT4hvC94UtDwxRhi3pQBWTtAqs1YYywZgvf
NhMvnft4Fd1lntVCZ74NQD7HM2wTJk7irfupxqE/oL5+iFoMxdKZJuJrNWsN
8nvcZ0tk49D5JGIYvxt6HvKF8OeQF8bsDnQXOsM4ZC+j802y9byOyF+D351s
Pbo7/Nm4xVYOnIEuZY1LtR6V69kd6a50B5Pwl6IzItvG6u3ZHemuhAljkc/B
555E2/Nc6LbE2068TcTLhV/kGTYKI3oG9sZ6a73JTOy7edbr1AOTkL+N/dKI
9fBd0Nui1uvUk0Nst0ZtltJMExc+BIY1wthm0N9FbZbQDFIN+eao9XZhegS+
yDPsUw8r5OxbkC9IsDvIVP0H1vvU8xtB1w0Mu5XTzwRWM6od5Wxl9j8Q+8X4
Os15J3DeD/m2BP4y/DT4ochXwF+Bnw6f59lsoDdJVr/0bHZTD+ka2Myo2VE2
s6Erh5bbwjBhmXJWuTsVnZrEeimwXq8epl7WMrDZTT1XvdfBr0uzN9HbCDOE
HcKMfORd1HMjdgc5McMoYZVmlFHIB8PvT7EZt1vUZjbNbjrjR75hgLBAM4Nm
B92B7kI5rlwXhgnL1HOn+YbhwnLl8HzfMEnYJMx6X7kN/yDRMGMR9MqYzaqq
sVUxq2nVtnJuJP5jgfWmM5yve9RmWM2y6vke/j6OWW1qRtGskhVY79TMGw0M
U4Qtipmv2owZlqnmVHuqMdWaZtYi/M2PWW1qxr4WWI4r13WH2VGbeTX7amZL
R79WYLO6/gnq+FZDqiVhVprmj9CwUhgqLN0etd6hnqHeoTPpbHoDvUUvz2Y3
1aRqc7lnvV09dgr5nM634wk2I2cENiNpVtK3TlHLQeWiaky1VoOYF1Ishxf4
llPKLX2bHLMcVi7rH+kp3/5x9K+jf5Lh0I8q2uyqHCtDvHvwq9MMg4RFdyva
v42+3YceEbV/B804mnX+Byv65gc=
          "]]}]}, 
      {RGBColor[0.9840452668160174, 0.8301131670400435, 0.5505403271296538], 
       EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmgmQldWVx7/idYTufv3e67e037MSpRuRpZtMFhozBCPQgGgyk0wGJka7
GxKsWJmxjKFtlig4iBg0YWlwyWYqOpkSAadSMxGJgYmsRo2OFRREkEUimSQY
FTAqmTjz/3n+r5gqLve8+51777nnnv1265e/9vnrByVJ0pFJEv1LmvTfCLWL
1KZXk+SRIUnys3KSLCwmyci6JPluJUk+o/EtGv+Fxj8+JHD4duacJHlU8CzB
S4R/o/ofCb8qvP8eLFzNu0fff1ufJB9Q3zUk1gFvkfC+oT2/Ldy5gicI7mVP
ff+J2lv6vUTjd6m/WzizBL8owi/Qmv8kuKDxMYLHqhVySfIx9UvUjmvfq7TO
A80BjxbelwpJ0p8PmgapTdH6K0XDOYKnC35QcFU4+wcHPxZq7On6+H299mrX
2Ee19lcEnxYNIwQ/q2/7df69+t0n/F3Cf25w7NundlRwu+hu0LfvqB+mlghe
xXnLQT/n2K+1lml8kcbe0pw7BV+ib5/QeFHnGqe+QeOf0fjjonN2miSfEzxd
+EP17c9NSXK++ve0/wbz7UA11lkmnOVqszW2QHuN1PggrXmR+lni0Rc0Pl/j
S9UeFHy9xvZrneWaO1W/TwwO2toyMfaSvr2hsTat+Rf131J/s+bO1fdrNfcC
n+Gb5ViX9ecUY29ouFj7turbu8IZL3hBOXgLj68uhgwgC19M47zT9P0y4V0o
mqeqP51Nko0aPyO818T77wt+WPAw0wqdS6tB663luOcu33V/XcDIXofWa1cb
r9/PiH/5hsCdpH071d8kWh6TvIwVPFn4f8qEXMLbzRofJThfF7I/3vK/U+tk
GuLbLwUPaYj5/B5p/FF1oT/oztvnxF7T6uJ8w2j6vVt7ZNU/oX6VznK/4B+W
425bTQM8GGY+wIOs+XBjJvSsLxN6B7xC8GPVmP+w1vliJu7uSvVPa8+nciGj
m6yrdwlnVDn0Dv1DBw6p5TJxno+bJ3MsP61p6Mx+4yyuhv5crzX2auygznlS
OvIV6deifNw994McTbXOc+/na51PZUJ+kP/eTODMUv+65terH6L2Sa1fEc1/
XY3vbxtnWTXg2Vpvmfa5LR/69obmNmRiPnRk1TdmQmfRV2zKZfnYA13+L91d
a1PYhTcHBc5J93sNc6Z9gk8JXlQNeIb2PbcQeMyjsU+D7Qn8wXYsrMbeXxV/
HoEnjUHjcZ3p1VzcMff5I8vAqfqQAWDsLbKGzGxTO6D2ktrUuhjvVduudtDf
xjYFvEOtR22+2jy1bvfoxPPSqVbztst4fJ8p2q4QXw5pzwdE4/2NoTszND49
H7avS3N61LrV2k3HFOjIh3xP8z6r1VZ5P3r0EZ3bYv2ErgHjtTQFvECtvSlo
X18Xto+z7le7VLLyrtZfWtL++di3Q+2U+HdS7WrBo01LV40mn+0KzT1X605T
P0l0X612ldqlmdAN9OLyfPjEnOUG+9Lmu7zQvxtyYeNHYRvUJmdivX31YTOx
RyM8NlFti/BfzIasIxfDvRYNub/EPniiaRnu/lMeu8r0ZY033DqyABuO7ufj
LqaYlm6fbZv2PZQNXf25/NKyxri3LYXQn17jzlPr95x+25K5zbEWZ3xU+Esb
46w9grvV8rmgC1xszi79fiUb/mBlNWT4BulFbxo+7N5S3DH3+ZDam8J9V7hH
MmE7f2JbOb457CV293AmcN5RO+T+bbdm4RTq4ntJfbEuxtp9/+DWxoqWEb4d
zMTa2FLsKHOxpQXPw05/RPpZ1LcfqF/SGHxH37+m82wTvFy2caASdnWjcPo1
fkDj39bYPxbDn+JXD4oPq4VzBzFRfdjYFbbBjF9pm3237Ta2Fp1D9g5VY3xA
c68pBl/xtyvLETsRQ6FL6+oihvmD+P/7XPiXl80jzvmXbJydcx7jjnJB645M
4MGPic1h1zl7zcZx3lW+K/Zoa4q7G/DYDtubnb4b1lrnMezTF9KIsQZKQd82
6/HHNH5K69+k8V2+Y+b/i851ns47Vv3GTPhCvuNLH7Hv2VAOGzlO/fpM7M05
xor+7eofUtur872Qi3v6vu+R+6wMCVl7wmsf8d5Z+118aH0atq1HtG3w/jtt
5+ZbT45q7SO5oBXbXLF9Bpc5Gz1nvX/jY/89H352t78/7DW7rLNbC6GT6HG3
dbjLOn+pbcAzXmdlJnSa8Suts5M856TGr9M6R20zJvob8S9xMD4XGdiUD37h
k6/V+M35gOcUwkf/Rz74CO/g7XrzGb7CY+aCe43xy7n4vVDje3Ixn7l7Da/L
hHwSP6HbxOw9tiFHTA/8hAZiBeR7seBb7MeJ1/oL4R/ucSxNTL3C8SRx5ZO5
sF3whzMxn3Phv9oK4cNaCwHjI4hniPPwJeg4OQCxzBrbVc6C32Yc342vxsfX
4gJg4gfiYmIP7OmA5YT5I5tDXlZlwudA/0Lte24u7gj7R5xCvEK8NcNxCzDn
A14r+D3h9Qm/XBdxIjA6vdryyH6vOH44YLnebTkn/oTn6Bv+kfNOdr5zns+1
2DIAz/E3+CT8yxbnMuRQ2BRsC/aB7/jC9+MbjQ3ORz5zW2PA+An8zM89l36L
Ye57SD7iftbGx+BfiIeIi2ZXYow5XZmzdh89vb0x5rI2sj7XOBPUf7I56EPG
TuTivMSgxF7XVsL/4pPx3fhhzoDPxYf3mQZo5zzQz5qshaxuLoT/Iy4Y7nPX
/DA9MnPCe8OnER7DhhOroiPox3KtW681vtkY+SLxJHI0uTnuhns5nQsY+URW
iWeIx9gTuTvpePYNx5jgMgcZhha+Y7cXa4/U8WWpHD5lTinogIbZ5v8Dvpfj
zl3hB/PO9VziQ2Ig4h964mT2zpbDTvZqzU2FiGWJo/t819wNMo49qvn5w5bN
YV6Lc2DL8T/4YnJu/B86h+962XePDzvo3/BqUnPwBflFjtHdNBd6VXHeQ0yC
nwWv1fpOnrWrcFaHdlmnul0fwA5D83bbz0W2HwttE262PhIXb7Y8wCPOvm9Q
0MBc6EBewMlngi/gwLc5zoNYk7FNnovt32r7jA/gN7HZEtdSqKkgV+w50jQA
I2ObHJOzDncCTC7zunMb9mXsMo9jp7Z4L8691X5nVj5i9zHiyWv1Eb/hG3s8
TjyP/qHD6CBrbvK9ozOP+ryseaP5Oc92ELs8qjngVR7jN7YaWUttS3+Vi/FV
xh9tnOdz4VfwKfhBxsEdI7vaobahLvwp+/ZarrCHB80zaINv2Mx2r9/ZHL4N
v9br85O3UB94ohA+Z6tlY6p9X0dz+D/WAMav4ePGNJ/9PsbjrN3puITxds/F
Vnd63/XGYxz/8IR9RM1Xofv4xmOON162Hya+QMbx8fh/4owByyk8J4aAH/CI
s64zzZz/fRqyMbfPNKz2fPQF/SJvquUD3Zb9xZZ/cgrydHzFLR7Hd0y0bmLH
yAWIcYlfZubDt+HX8IvcDzk7dgh7hD28tTH0GV2eb9rBO94StZ6+UsjbDOsL
8j/T8oY8osPI20bzYK3lkHH0h7jpGdc6GOvx+Bb7mrk1G2zbAs3/kI+9NzsX
Zq/bfJa13guYWI4YC/2s5YL0+JSJ9hMjfO87bMsO+Q6JGfFb+C/yj8Mew3/X
8kDmY7+vsL6/z2Pzmdy3x7rJGhOcO0H7zP8XV8w0neQ33BN+nHUm+q7xXRPs
Q6+1jeJOkbtxzUH7ePtZ1h/jfckrsNV8+5N1apxlHtzxPhd3vMD3jl4ed6zC
vXPn+CzyP+qY+ALqcdQIulzDwc7i71iDtbCfT2Uj5uBeyLtYb34xYgLsE/Jw
u2MRfNyebPwGHutc48fq76Suq33vUP9DtQbte18l6nvA1Pj+phr0/Fjj91bC
b0yrRi3uf+sjjyQXYB180NpKjK+phC+GfuSWmJN8hlwGWwo9xELEHpyFOGp1
KfIm8qcdroPsdN9h+LmmsH3YPcY+7PFtzgXJw2Zq/nCNrygFXrvzN+IQeMhd
HBVPDmcjj0D/uA9iQuQXm44M/yIbZ4B+aFxqnmOzGcdud1Tj2+GWWO+Q19yV
jTVPufbGXRMb3VOKmgC1gcurwZMfVGLeYdcrcpxfcFMasRIweemXStFn06i9
sQfrF/X7l4Kb04hL8IXkc8Q96E9B8NN+p+C9gjyA3IDYAF9HrY2Yeb1rUQOu
BxRcQ0CWkfWCY+GC82Xi6z845iy5HkE9gTt80Dlvs/WkVpOgB4/4nNoHdY/X
WsL/nGgJGvEB1Mw+yPl1rq+WIm4iJqNe90I24DaPveBa3j7DjBPXIffI/MFs
3P0sz91rfPjQ6vyI2tU+z8X+cB/YeeIyeAsf7yxH7YLaBnE08XQtrt7vGtcB
w8TY9C8aJk+CDmjgjeKAxzk/9gPbMqwp5HaDa0Vthj9bjByBGuqTgu+jdipe
rSmFLlwtPs0sRsxPHXq34AHh/FY415TCXpSEUyiH3FC7TcvBI96O/lbfhmqd
z6ah89QgqauSfyVNYfPIP8nl1tSF7FSaQn5uLUUMTm0Sm0h+Bv4tpbjTCdrn
4jTWuVljnWnYkJNp4L5n/AHvwfo3VKKe+HVsSDnuhvei28vmXTXeeIDnCWdW
KXS1UWt2F6POznvIn9Ooa/+P+jXlqClRW7rD93iT5q4tR22KdwBq2fAnL/yv
F8Ou8Rbx+TTuZob6BcWwfXdp/Dvad5zGv5xGLYyaGG8Ob6TxLvIm9Z6W4Nfp
lqi9wsPp6semcfZx6k+n8XbyVhrnb3MtmDgMnnAfS83nSeWoM61zLeqAbR9j
nU1R+8YeUv8GfrkuasCsMd+1q4csX9DeafyxhsH/dVN822kb2245fMk6vc00
DvP4xeXwX1N09r/3Gc5wF2nY57Wls3uwP/aPdfabzu2m6+/SeIP4nPqpacjY
8lLQdbFp430CHN4zj2UjnutzXHfMNdhXDTNO/xuPf6MUtoo63FWeQ5x2WRqx
5ztp5EjIJfZsThr7flfzLkxjnRtKIUeven3k6KhtPrEacdPoctg48r8z7k8a
PmWYPOsm07O5HLkTeOSJfD9t/K25yOEnOG7EjpHDbs9FPIq/IHbud9yO3WIc
24UP/7Df+7C1rbmINX5ajn5SNfw3Z+a8+O2L/B73aX0bw97lyAuA4RF7dRge
57fazmrQBQxtl+h3VfC/am5XNfadXI23ZHz+tmLkoH3OSaGxw3SOd80LeYWW
C00P+MDYDuIaYl/iHPzVPMs2cr3KPgz9WOnfyMpKxwfwCR1Er97xvT9QCfvH
myjx14DXgwbiZWp2xMy1t5x5tl/QQkz0VzpXlty6HHN6bT+J4fpNx++F/59a
/3f2aY83hQ+6vxLvQY9r7kjXyv9ZY6+lISMrBC8ohdx0pEELZ293PEgesdC5
BrJHrEvdZY5rL+Qv5AXgkF+Q69TqZ/TkSHc5nvs31xKpH5BjjXQOSj7E3zLc
7RoDvoX3V/a7IA0/96E0/BKxI+91Q83LQf5bg0GOCXjfPsf632lcYvi2NOKf
oeo/Uo348EhLvPljL7AVjbngM7WaBc53Bhznb3TuQx3iOtcizstFbYK4lHFg
eEpfNQyvqFVRSwWPeegg8ex5nsv3smV7seuy7MXfW+BDr6vEuwh19xs1dq//
/oG/g4BGaKvlqfS1vJO+llOv812Qd/zGOe/7PK6PWgQ5HDkt7ysX+e8Zhqt/
rBxvBPwNC/EpdTxi1325yM+hibwcmD2oOZOvk6cwts+1hfvKEQvyflV7K+Xd
EBtJToudPOE4Dd8+xnWAF7zeEe/1wXL8LUVfJfKhTudQ/G0B9/3HlsiDXnGN
Apxjpoc1jnodeHDMuRK5Hu9XxBdTHJvym7+DIW94vBi2BH+K7W6vO/v2xRlq
b6HYxe3O4bGp2FZqo+gV+vXHNOI1vhHX9Xpe7Z2ZHll9vSXk9rZS5DPEwuSk
36vEXXAn1FV6XFOi9nzKtcoO04W9pb5xxGcnBu22fSEP7/Id7M4F//Ff5Kyj
fZ6h5Ygpef/fY9ngfrn/RusIvvfX9uNn7JcvV/9sLuQJWaJ/1vUBYs/n7NPJ
XZCx066p8vc25Dv4/DbHafPNX/h0vv8m50PV8JnP21+Pdr3rV65dsR82hbeR
PaYZeqGbu+TN6Enj0D9le8T8PaaZ/nnDfH/aOPzdDPZlVhr2FLvK33D1ey1s
GvWQp7w+fN3tes3/Ab/BECQ=
          "]], PolygonBox[CompressedData["
1:eJwllnuQzmUUx5/BbO9ebe/7e/V7XWJdily6sFQ0k0qiRC6laHbJEJV7hQrt
oCVbdjeLXCZS/VGZmsmoGULFVCY1hc0l2kmYxkpZY6TU59v3jzNzznMuzznn
OZenaOyUoZMbhRA+BJoAP2VCGF8YwsUrQqiIQpgP9GscwhjODsH7uVkIi3JD
+CEvhAmpECYmkYO/pyCEcvgzoXdC10FXQi9Ih1CfHcLqRAhPwDuG/gL0v0Z/
HPoTOJuO/HHo9nEIa5HPyQlhC/Lz4K1Cpld+CMXAGPgr8ScH3l7sL8Z+LnQt
AQzHv/3Qa9BPoP8l8g3IV6PfDbwL8Aj04/D34M9sbIzA/rPAYe4/gb1q9Kch
/yu+LIdfhe3+wPf5tjEa/a3QXZHtAgxE/knsnSBXdUCkXAHfIdsBGIH8S9Dn
4X2G/ALkS7nvAvQhfJiJ7nLOTsPrSPJnw5vN/Q3c/yfQGf156J9GfhsyZcje
CH0O3Tfwby14BTbq8D8D/zb4Szmb09hvqLcchY2u+fZJvlVGju0kNuahuxG6
OfRx9KsyfmO99SnufBHeAGBfvt/gMWxNxsd3sL8P+aXIbsRGU/L9DfyL8Dch
/17CMSiWOt67nPc+Av0U9Fz0RxFrWv4g3wcbMbaaA2/rPs6q4F8FfyD4Os7W
JxyzYt/AfbOb+A3uRbcpMrX4eiQLv7G/DZluBa6hdWnHqFhrsFEN72PlL8s5
V+7vBiLstYfuD94X+ADZIug7wY/g/1z8347/JdivSPlt2wFDuftl7P3D/buR
X5RxTag25IN82QxcA/4vPlTjSw3QGN++QP8s+ndkfJfOxFsJ3VDgHClXyoly
04D+EvjlKeduAz6dw7e+8C9mWUe6j8I/CL0Xn3Kwn4TflPcawZsegD8Mmwfg
7cLeGOz1hF9EvO8CldCD0GkEv4g7HtBbpO273nQWumuQT4LXcl8F9o7iQxm+
7CI/Y7n7Ovj13P9gU2zC7wN9AboEehP04rRj0ZtOw96Q2Hd9C1wC763+0iBS
zUH3y/htlEPl8lUgaDZgbzO851OWvcz9PZBfDv814l0If0vGPaZeK0dnNPeV
RcYPctYS/HZ0eiScw7KUY1AsqqlC+KnYs0o5VC5PEm9lrmM80cw9o97RDHka
+yvQz0F3CDZL0W1o5reaSUx74OfGriXNLM2us/DXwv8Le7+D34W9y9muwY8i
97x6vw/2R6E/jXhqsz0TNBuGx65F9cyw2DlWrpVD5VJvoLdQTjpFnlGaVXnY
vD7jGa5ZrhkWwxuMjTb5rgHVgma2Zrdi3g3eM3au1TPF4JXoZyF7HzIPQ58B
zuV5JtWD3xO7l9Wz/cHn4/+pbO8M7Y4Zab+Fdox2jWakZuVD0CXwn4O/LOEe
awv/GeglCc/U1tC3IJ9GvhT5cuiboAuhO0PPgi6J7ZvepAZfu0N3SngGzEl5
5mv2/98DyI+UzwnHtAz+Gd6kOOEargf/I3bvyoZsnY+9a1RDqqVu2knYK+T+
6dibkPauaeC9x6c9MzU71UOrI/eQekk7c0rSO1O7UzP5Tfil6MwA/xH9krRn
jGaNduY45P+O3TvyWb5rB2sXa0euiLwjtSs1sychP5GYDvA++4EWsXtIvaSd
8UrkmaDZoDsHI98BfqMC97h6fWrSu0c7Xbu9BTo78m2zZeyZo9nzKWe/gX+i
GZjwTh6ArVVp7zqdvQ6+I+lc6U/QBf5bkXeZdoJ2w/uRZ5N6ohd4MWfJAu8U
7Zai2LVyjPvbxv4j6K/QE1hJrNvR2ZrwjhqEbl7sXfE58gXgL8BfmHBPTcWf
/Ng8zUjNSv0Z9HfQDq1Kecdp16lH7o89YzRrNJNqIu9s7W71wKyU/zD6y6jH
v1Lu0p4F8mk9eK+Ma1cx3az/BDqH81zji9QPKc8G1WBfbM+I3LuqMdXa1bFn
w0F0WoPvTLr29Ue7AX47zn7J859Gf5srVa/gR4lvJLKtM66tS4oJvFXGuHae
dt+1GdeuaqCjegv9o1m2kQSfmvLfTXforu4Z/x3Ugz3A28R+mzpgCrK3Zvy3
VM/2zvhMPPX4ksh/BP0V9Edqo1keeXdrZnSMXLOq3VpgUsp/Pv39tPPy4LeK
nQvlULkcG7sW9IfTX047ULtQMaQi25At1cDcyDlRbvRH1F/xP9dFkcM=
          "]]}]}, 
      {RGBColor[1., 0.8724604421161561, 0.6046133289677929], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmGmM1dUZxv861+Fehrlc7v3P5N7QOqwzaIIsJjWiw8iWtGntpsNi02hM
TcXITm3FVpFWdhe0bqgMzKJoo7bYtM7GaGKMafvFDZS0qV3SD+rIIrJUbPr8
eJ8b/HDuOff8z/Ked3ne55zxN674/vLzkyT5un5qVHdkk6Sk8or+/C5NkhfU
/kclSX6j9nNqP6T2MX17T+V9lT+qf5/6B9R/aTlJPh+VJEdV788kSUt9kgyp
nqL6Yrfpm+L2tlKSnDciSb6p8Reqr0nlafWfzCfJZtV7VDoz0d6ist3j52vP
LvdtVZmWj/nb1e7JRJt1vq1171V9WvXtxSR5SXI+LDkvsgyMWahvzWrfr7Wb
GSv5W1z/123qM25/7v682k9Ijl1ac7vWXFpIkrtHqy2drFe9QaWnJvbgzMj1
S/czpqMuSVL1X4vMdSHDbrUv15qXaM3nteajaj+u9ma1r5Kc9Rrzmeou9Xer
f4f655djnU2l2J+9t2n9T1TeUXlX5VmNf1bjezV+jfZYonKdykZ9W6Tx96je
JRna1becM5ZD7u+qnqe5czX3W2pfLD1PUZmm/6v0fZHKYusXPXc3JMlMfZ+u
0poNm79pW/9A+t+ovg2S4Yj2O6ByUGW0+hZLhg61r9eYbfr/q0rIRf+umqgX
ecylWu9tlfe05o80fofGb9T4Jsn511yS3CYZ3pAtbiuEXyAHNb7RlA2dDKt8
Az9Qf6/mjRoZcjO2dmSckzNyVsbM0dzVPiu6+7QxSb6olV2k86u1zgyNGUrD
F1dmQjf45gr/36dvL2q9/krIhn7Q1+uF2IP16Zvh/gka/0+d5Q6dZZTOmq8P
e83Jhn02qcwbE+sTG/3Szal8xEZdfcy5zrLWuY1e/6Y1T2jMLZL735J/rOx2
h+auU1kpnVyrslxlmcqVxEYmfOITzemTrFeo/4j2OZwPv109OvqZt6Um1tmq
ekh9t6u9UO0Z9WEz7HVDOdqPav/F5YjDM+UY+zOVdo3/T238b7cs9K/wOtPt
Sx/WhtzIzP79lm3N6Ggj1yPy5w61H66LNfYXYh30gV6uykQfsiLn8RGxd7vX
5MycCz/CZthltn0Av99ViPXHZyKWiZ9l2EK2u0y6blPd6rHoETmYM0HtNtuG
tZ4qRP94r/mUx2Cn/ZZtr+ZOk9y96n+1EGdfpf4flqP/Yenzmpo4NzJjW3Qx
S+3BTGBldyZ0Qz+66h0dtkRW7Hmlbf2M9upT/bbKgPGX+fu9BjjW/yVs/qg2
cAfMQecX1MdZwNcWY2y3MRE8XFIOXNhRivWImW1gZD5sg12662J95LhTMX65
ZHysEnpETvR6MBNnQy78YoZ97IDl5ttM9w95/HSPGXKbueDTTI9512dj/jve
v9+2arPPoL/V1i2+Qc660PjOOcCZo8Y2cuTaQsQjZ6t3bM6x7Wd73UU+E/8Z
Dy4w5rDxG6zcZlwBh4alq09UZoEFwoiX8f1i+PChUeHH+Nuwx+yU/j5W7Ndl
Y5+JKpPYc0y00Sn54fNcYORsf5+scmsp1vtqOWKcGCLuyB23GitWFyInkjPB
439pnf9JllWl8I+JmjtB5QN9H6/6zIhoE8ebHeesOzWNfLAzDTwD18C6NsfU
Vap3NgRGP94QZyL/ci5y5gXqn6r6Tc19Kx9rPdEQOvi58z9zwXb8H/1coW/j
ChHDYFpvNvIBuQDucyYX+eJPxYjv9cVYmz3Qe0dD9G9Q/8ejop88tach1tmt
epLWn1gIvyZ+XykEVqKnTDZ0dVdD8IId5COtd5++1xsfcpnAhOM10f+p8zY2
YC/sVJeJeadywdPGquy2nTYhj2v0jW1Heg4yD4+Ks+Az7INOmMs31sdHcp7z
gPa9f3TIAlc8lgu+iN6zmYh91mNub03ICk88pNLp/fGjTnDHYzbZj/CDpnL4
8IXl4GOcCT08mIYv4VNwoo+079P4TSn8aJzGT9GYWn37tXnZ0VzwWOKWteBv
Xer/TP1l1T3Z0Be6gk+dzIWczdngTyMyIeOw5dyr/hMa87b50mf5sH2bY4U9
0A06mpANLCBe4Vxv2h/R54B10VUTfBBeiNzMacrHefemsd8HldBxt3k5uhyq
iXPdUozY3lIJLtDuXLO0GDpaL586Ia7ytGQ92Rh4f9SY/5axHpz/SzH+36O6
uRD5hlwDrz9/ZOhhgbBi/pjg5m1jYi38BF5z3sjQ2SMNwYvnVgKzOOegcXC/
5QbP+v0NG/TVhD5f077j8jEfHYAl6OFIOfpYGx64xJzweDkw8smGwNpB77En
DRu/XAnutdD4uqIY/npvJfYCs9jnJ8XwgwcrwQ37LB8YQU7Cd8BjcJn/E/Ih
J7ZCrz3WFXqbXAidEu/0w+eRifzX43X32PZgTlMh/Ig9d/vbZOMEuefPkq1L
7eOy3RvFwLF1qi9LY//n04gz5uKf+CPrwRE7zCuIaWwF3mGvIctC7Ay7H3+g
zdgrPJdcTizD/cFhuGWXY3erz0RN3ufus8F3DzACfk8OPJ0PHN9t/CCf8Q0s
xI/I8XBa5EZm6hOOKfz0iHlmnXMq984dsvcXioev+T5KGyxin9PmwPgq/8kd
6Bh+0+7YvM/YBa4cMz4NOhY5E749e0zMAc/AAeSGp79uH1jvXAD2T3LeJq9y
j2V/7qlVTgAGwOXJi3C2krEGnGkxB2HcsmJgMPkc/nujuR+5bZfv4+BZh9vg
H7GPHbkDwMXQ598rga0dacQX7V7r56RtwX2VNZcXg4Mhw6C5zQ3m0tyluDMg
A9jCfYZ9iKmt/r/a54Ob9Njv8V3sS5u9uCeRU8FA7izYBFsjy0SPgc/eVAj9
dFmWAa/Z7fhiT2Tt8jnhZcQIeEy8gyHch9Ht2mLoY8DjqjLtqcrqtbZ4vU77
7Ej7KXhG7q/mAfwADCQPwpkm2JeIwXr7NfMYh9/gP3Aq+Mg+58ac5zP3Guc7
+BNciPwFp4Lvw/vhQr9PA2vmVwILmzPn+MB479VqXyVmqVu9L7FS53xNjMIv
iFNyzONVn6lEm1zxUBrcAw6yNQ15yKvVOK/GfdeXcnjnlzjFHuPXMccVe29w
TgNrvlcOnnx1OXgL+H2PeQVxg8wbvQb5kRhlHWKTuxu8gHvZ/jTwYm4abwnv
5eKeBh43GZPBcfC8W2M2lIJz83bC3Ztc9VIaNsW2w45/8j+Y8KJtjq3JBU32
K95N4MfPpcFzyR3kpEtsW+yxrhRvQ7yBHW0MPnmsMew01WuyRpP3PdUYefZ0
Y/gp9xbuH10Ngbm8uzxQijsyd2ViqNVxtKAcdyLuRh82BlZ/1Bi5DXx4Mo3Y
4A5Dfmcf8hI5nrvazYWwNzZa6vbdboPh4D0yEKvvG7PAK/rmuJ83CWTgbQHM
Brv5xjtG9d1lZUNgyS/SsMlYr9PvsyIf/PpZ66TVnIkzwnvgP8+kobO9tgVn
aXae5S2SHPDTYrxRErO/TWOf52zTdc6b3AOITfIBOYU8SbvdOWKc+7HbOOfl
VcYLsAdu2JM9xw9fsMy8C3KvaDHOkL/BK/qmuZ878SX2E7Cq7LPAUfjfmcZ9
btjcjFzT4jeoPvMkMPxqx9F3ypEXhpzH4Wgv2sfwtX1ur3FOmVKO91n6/5CG
jM2Wc14l4mdOJXTKtz7jSZuxBZ/odq6/z/y/3jh90L57l2NyVUNwNLgafBfO
CO6TOzamcZfkTnnQHOGI8wtjyAv4FDkDvzrg74cdo8TqIeeyBeai3OMPOofx
RsD8OWm8n6LzWWlgUK1xD73C5biPw8k/9t2He/la37vBtgHztS7zgwHjHH1V
vtZn3oW8+OzZWBgRmH72jlyJvL8tDQ58zGd+37jDf+x5m9+XbvLbDvj7rs8N
VqHDBc6dN/uduXqvpl5ZincfsBCc5J0PGZCFHE5NHicu2QtuQo45UZUzG3OJ
1a9ozWG1x6bBm1c55y92vuc/b7jMwea8n5G3zr7fZcKW2HGh5/Gf91zk2JTG
3avTMQCuX2tsZ//jlh+7zrfPvGMdEGvzfAdBD7zjE2Mva82LynFHaylH3iBX
ch/jPWOvMZf8AG6TS4fMq+BR4NUbfiuGT9XZT7hT8f8xrf9IKd6Iri9H3r7G
cmPbs+8cNcHX4G3493LnSHIjsnCH4I5InL1WOCfLa84jrME7APG1wrl2s/nB
RufKZV6P/9wp8CdiCH951e8J3BV6HT9HfE87bBxBBrBo0PMOmBe8Yt6FzXk3
5F2r1XEPVyG3cC8AQxnLHHgBb2DogfHIjh8i/2Sfdbb5xyTzHuRjPnOpX/W+
6GzI/lNnu03yePSw0rGHvMTEEucHfHGa34umOsaHqrrJhS/hUzf4zZOzdfv7
YM25uzQ+MKkcZ/hxMeKbfap3QWqwencafgu/vjON9XhHz5mTked5T6d/aSne
Wvv8Fj3kmMdm/wdxgsdX
          "]], PolygonBox[CompressedData["
1:eJwllVtslVUQhQdaasGeU3K6z8nfRAUaoy0mXIqK4IO2VoMJXmMwxAgENV4S
bkYhIhClimg1tiqUFkLBFiyINzAImKiPRn0RX7ygMWp8sKIW2wK2JH4r62GS
Wf9c9uw9a+aftnzV3SvHR8R6pBw5kiLeq4wYPyniOvSnixG/TIxYUxbxInh1
TcRABb74XJ5FfMa3xnxEFf578e0GV2M7ybe22oiFyKy8feT7KPG/EX/6oohL
iH8VfEUuYt/FEcOliE3gCeDt4D/ASwoRQ/h+Sw2Pk3+Ib73YLpDjX/T55JxR
6RjFLiHnbPRG5QCf4vyHJpML/5fwbSXfnnKfuQjfF/jWRvwp8k9JrkG17EdG
0C/F53div6/Cjn4nsp/4KcTfhb6RfPeAE7gFvJ3z/uKuc8n5MflOgNurqZv3
OwSemrmWn8lXh95KjXliq5AbMov0HLIZ273gevQGpB28tcZ3n0f+m1V/jc/u
od5B6p2WOfcYb/YAtd2YXMsgNXVSSz32Y9RyGp8G9A7ip+d8hs7aQMz8ct9B
d1mL/W983yTHHnL9xLdHJpsDr4kf2Mew/4c0Zhbpo8h6bEsz9+Jr5Bb8L8v8
luqpentl5lp0hs7aiM/11LeMM76rNYfEJdW8Qr0rmmvHqedZ8DX4j9G7d8Ef
oC8kXzP6OPK3ke9avl3AfpBvb6v/xP8J7gY/VnBP1Bv5dGBbh/w40ZxYin1d
wbHn+PYytibqmUo9dciHxHZyxpycOSfutdTaVkfMXOyHwIurPRMzwXdk5s4r
vPHtmd9Eb6MeLAYvAH+Tc85lme+ou4rzX6I/J0zsTOz3Y2+nplFqO4DPAWK3
gs+Ae8Cr8J3Ft0HwbvBOcR37MLgXvBc8BxkB94P70d9PfstxvPE2fK8Gn8Xe
pxqSd4J2w2HwR+g78JkwyTM4D9zMffPlfqObap1DubRTDmN/K/ks1azaT4Cn
41uBT3fRM65Z34LPfdR/FfYBcBe4M7kH6sU+8JPYd6knnNdAjls573iyXo8s
APckc1d31t03IL+q13x7kPijyXfRHXQXzYxmRxwQF97AXoG9lR4eJd8TBb+F
3lhv3Vd0L2dz3m3Ynym6VsXU6+zkt9Yb6621Q7VLtZO0m54HLwIvB/8AHss8
69oxo+jdfDuf987S7uoCj4CbyPlJ8kxrtrWDtIuakneDdop2y5mSd8MK7F9g
Hyh5t2rGPwd36E3LPNOa7bVF70LVpNoOJnNLM6ZZa04+WzPWi+8x8JFK7wDt
ghng3WXmvLi/K5mL4qC4eLbk3SoOi8u6s+6uHbtFXM28O8Shf9BXFsxdzaxm
9+GC/z3qoXqpnqg3usPrxL+TPHvaudq9nyb3Rv8g/YvWFM0t7ZjV6DuSd4E4
Jq5tq/Fs9VPjOWodzryLxbGhzDtJu0n/sE349yVzUTOiWTlfcuxJ/L+i1rZk
rukfWpfMSXFTnBf3NxfcG/VUvW1J3l3quXrfVfRs6I2fwvd/SQcfSw==
          "]]}]}, 
      {RGBColor[1., 0.95, 0.75], EdgeForm[None], 
       GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNlstP3FUUx2/KbygP6+DMdDpDodQVutGkynQwXRjTxEUtFEhc0MeiiwqD
1HbjSqXQMmiHRkuFAgVadaE1LuRRICFx3bRUwf/CYqyatNbEheeb85mUxcm9
v3vP43ue9/fi6Q86z+4IITw1qjDaG4XQYvS6UWl3CL/a4c1UCC9UhfCoOoQV
+z5k+zWjovG8ZndZ239t64JRpZ2Nm9yk0X7bL9vZkt3vrAnhQJXfiedHO5/K
up6hRAhfpdyWbH5h9Lvtv7WzvFGz8SzaumxrtenpMvn/KkNYte/3I9erO51/
Gg+hr8516f4QPBv2XWf7TVufpEOI7Qzhsa3jxj8Rd6y3U25X9ocjl5WP8nu2
yn2fyLqtjxKO/fka53lS6X622n7M9J03DFfjLvdntdsW9jw4W8zWftt/b+vL
mRD+eC6ElzKO/7O4x3TW+C4aXYr8THfyq990l+DRetloy85HbT1b5z58nHBb
1w1vJzGS3Shy/ljk+K4ZNUWO/QD41032dm0I/1p8itjdIn57iOE1fFQuS1n3
c9p8OVfn/ss32RnFVnfcY604X+FcOIVPON9M+dkVZEv4cnmbn8IwQn6L3JfQ
84vpvaN6I/7nwHY44/oVD8kWqA3hrSOn67tCaNjleawwajRqMNrBqp4YBVeM
+CmOwvOwwveS+63CV8ndMBo0GjL6jh5Rryh+yvUjq5dX6asfLAYfJv2sOeP+
Kebl2Eu2HH/VsTArd/six7MBDtmfwabqpt582mt00/Zz1JHqOk8+lGvZkOwm
OjbYS64R2Qb0KD6fJL3W38AXYRZ/f8JjqlpQnrupqxO2Hifv3exlV/13xPhX
bf+u+fy27S8m3PcR6ryUdNvvZNyOzmVrOuv8hw1DtelpV01G3u+1Nd63wi4e
4T+ZcVuXEh5rxfwVk/1mt/fvW7ZfY76ov4vETrG6Vet6NW/Eu04cpowGjC5E
7pP8VFymOVPuR8ihMN9KuQ/Kcx596kf1mfDLD8W/SJ1fr/WelM4j3CtW8kmx
k18FYiW9mjF7qOlV8i2eL+lx9YLm6Dh5aaRmVbuaD5qRfUanY8Zr+k7GvL4i
akx4xdO1rTckP88c0zyTXJPRqZiv+r4X+RxboTdj+FGuyVXucugVroOs+6hV
rcLcztuU29Zvilkb71ULulQLG9IHBvmkWaU4qG9a6GnZk5/CO08eu6nVZXRo
rjxMex5U+9IlmfuR15Ny80/aZ494fzZaNHqgOaq5ytkD6uKM0XvYzoF5A3sr
1I3ue6Ahzp6mvQbGk56nYfp5E7lVzvrIZYF7zQH1wzDnvZwNgUv4hF26N9Fz
BqwD6Cig9xiYlZ8V3uU8eT9FXNTDqlH16AIxUKx+Svl7qTdf/A3Uht4c1V8r
mHrAWM79QeIxCKYFcjaPH73gU25V683MgDXefr0Ro7yRmmH19O9j/gE+T7r9
PBikfzLy/hbv3LZYz1HL+pdZ5r3sIDYFYqn+v4H8Ivo68COPjzPw3GGdAb+w
NyE3ha4VbMq23rp+3vcJ3lPJ3Ev4nPrbfGpNef3q/+sosVM+z/MuV1JrM+iN
iLX6bYz+UL/fTfgM2kr7/VXmhnp9DB7Jqv80r44Rg17ys0Dec9RNuXe1thGP
Du6E8Wj0rI/b+F4nfuV+WiTG5RmRI1fimcenZeI6SGynoSXkL/A9Ra21gWmA
s0ny1Ak+zQN9N1Fvs9hpx9eyjh78KOd1iZzV84YW8FU6j/NWqN7+SvtsHaGv
O6Jn81hrF3bakf8fdkJyUw==
          "]], PolygonBox[CompressedData["
1:eJwlkstL1VEUhRdp6vWRpsdf95KCjkwwmloTowQHBoGDRjZpGFwVmokDEeIi
Kk16gCI+GpRB0EP0xo3GEo36B7Rpha+BGjTwW+zBhr3O2Xuftdc63Y/GR8Yu
SOojqol7eamjSfpB3E3S01bpfp200cAZ+Xyb1MndVWKY2l8FaaJF6qLmI/VL
7VJtvbQJnqT+FmcnNdJos/Se2hL9/8H93A/SP01NmXyV+d/Jt6jvgshL6r9S
vw4ucD8LLoPfpXhrAfwF/BncA34OroD3iGJL9Lzlbsoz64KTuc2AK+AG8Ap4
hZqfVdJjenYLwdncX8Fnh/wZfC/WSkOcPYDvC3AOPAx+CL6dYpcc8wbIF4ll
8EFOuk4+mKLXmlk7a2btrPFcW3A29xp2/uRduD9An/1GqTcfHtiLS8x/Dd87
KXLv8C2FptbWmt1M8abfvsz9jRSczM0aVFLs7N2tubUvgQ9zwbkIPs1iN+98
Qn6chTf27Ij8DTP+VoXG1vpaPrheoedJa3hkr6zpWgqP7JV7NlJ4am/t2Tb4
XxZ/y5qeZTHDs8zJ3P5k4YX/0O8sPLJX1miV/g8ptPMf9F88B+zJZtI=
          "]]}]}}, {{}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVzjkvhFEchfG/r2ALpQrFUIgEDWG6USkkimn0KCQKQcSSKV4JzRhGMZbC
EhJLYglRi/gOM1oqEobOT/HkyTn33Pu+LeNTI5M1ETGG1dqIF/w2RvwgXxeR
bYpY0VXlb3xhXT+qX9YXmyPS9RFruowu4WEe0h00RAzyI7btluxLukV+xqe3
PpBzJ+3OvK5gN2Dfj3tsynP6Hfdm+Qnv7rxhwb0+mzObXt6yueYH+YZ7cPX/
jnzJeefn/CpfcDdOcCcf84bzQ67IR9yFfdzKe5w4L3FZ3uUZ32/13+1ow7R/
y9lMcGJTtEmhE6dyB/8BC/k7rQ==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz89LE2Acx/HHfyE1krS55SHoEiZ1zNkPJqRZl5RgEwvEEZuKNmo1TfNn
Bc3pzPSguFt1i9Bd9N5fEIV/Q1Edog6+dnjzfr6f5/N94IkOZe9k6kIIGzjd
EELzqRBG6p05zQXZ16YQnvFoYwhjmHKekd07EcK4Ocln9CNowUN78zrfdOb4
kU6EF/BCltLPye5zVD+GVmTtLet811nivE6MX2Je9kD/qWyY2/RH9c/yGK/o
HOkUeUqnxJ/Nq3wO07IRe4uydfN5vMWSOS2fdZ/hV+ZN+QVs4bU5W9tzP8FF
8668AxWsmCdre+5zXDK/l19CUfaBq7KPfBnXnD9xnK+iC2W9H/7xExfxxH/a
Oc97ums6j729ofcOVVlCts/dvCX7rf8HnZixd4VnOV77p07B/nXZouzXSX18
kT3Htv0dHOre1D3gHq7I/trpxS304Db68A//0Y833rzLRR7gG/ZTXDYneZ0H
OSE/Bi5oWIA=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0klIVWEYxvGvZWlWXguFBiWatbIcGmzRQk1bBKYgZuq9RRbWbbgtrjSY
ZVCRCg4NC10EtQncSZuC2ggtWtYiGjeFkRatolW/b/Hnf97nPO93zrncktTZ
pvSCEMIbNBSEcKwwhIeJEJL8gFNcL2/nUXMbj/ARrpW38KC5iZtxGP/QgEbU
4UA8A3/xaHkIB4tCeG63kV/wpGwCffkhvMbvFSH8woBz99u5JJs3z+En+uQ1
9qbs7+VqncuyCq5CJf7gvjPrdOpRi2ndUdkIss4ck03Jeu1u0c9yKc9jLn6X
3j6dxzo1/ITvyG7jvP1h2aSsHBMYMp+TD7jfwzP47n2/IePszTpPdTZxv844
PzPf47UYxrR5iK+4f5c/mge5BHvi92I3bpmzOtWud6EKlfjqWWc8q9j9m+Yu
73BRr51vmK/LVyIju8bvZf1chJ2uK7ADWXNap9z1K7vb+Yuzu51dGN/f3CY/
rVNg3mbO8Fa+wD3yMtcvdUr5s93jdhN+13z338kS8f8mWxozLEOr/km7LXxV
J63TbT6BDeaNWI91+OTMVNyPv5e52c4SZyRluZyHxfE/KU/aP8S9eqf0u8yd
WGMuxmqswgdndtrPsZej91aWyx2yhbKjvIh/YBb/AfOVar4=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwVz9dLl2EYxvHH0tSgraY2wEoPon3U0nYUNFXcRRpGU8McWK6GRkJm5Un9
B3USVEfROIiIdqmpFJ00oCCwCNrr8zv48n2v67nv533ftLLK7IqoEMJnLBsb
wuD4ED6hLymEuJQQrunieX1iCEUJIQz3XMwb5Q1Y6fyH+Z/4js3jQvjFq/R/
OFv+zTk8xF63/Sj+q8vVDXjPKN1186M525052GrmgLxanyuv4ZBsF//s5kXu
87xWH8358lAu4Bi7PXajOUZXqHvhPUm6G+bHc4E7S50ney7jIrkQ65zH2imy
M4yLOc55r7lYjtOV6F66L0V303wql9gtdz7B8w6eyPG8Rb/JzEF5hLzN7iu7
afIt/ZTI+83sdjbV8x6exiN5uz7PTLNcKY/BfrTI+fpdkW/mRN+UhASUu7/G
TL+Zat5nppYvy3WciIMYkOu50vkhviI3cCqO4ap8lGucT+IL8mSucP9r3/8G
t727FPWRf+fjZjoj348mXTpf1GVwlb23dt7hjtmdOGJmL7ebOWemTW7FR/8x
Q87ganvpXMPzdJ1mq+xM19Xp3rvvA+7qatFh/xQumc0yuxRL0KUbtDMLszET
czEHX7AACzEfje5dxJnuyOQWeTEf5izO0q/gVnk5t/FX/oaTvqUDh3BCf897
7+NB5Lt0DWjXP5Qf4TE6dY2RPf0T+Sme4bSuCV36brkHvTija8Z5/XO5D/04
q/sPLkqB4g==
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV1OlzjlcYx/FDCEKSyoqxtmptS1v7XltIUIm1g7Zj62I3tqp3eMUfYga1
tmX6om0sNUNbsUVsSSSREKJ2iUT6OS+++Z7rd133Ofdz38+TXkvXFaxtEUL4
zp8RaSFcyw5hUnoIF7NCKOsUQjnq1Xe5WO86ivSa1SfMh84hTM4MYQrmZ4Sw
Xj1SPlU9im+Yv4kS3MYtjJaXchnuYLL9y3mMvIKnxPN4KlfyWPkG+zaoc3DJ
+RXOr8QbdZWZaXxZXiW7hxpUx7VeNa7otbDHSXu15Bz3t8D9Jlgv5OnqaRin
f9/8A9Rgun1rebz8EeeqH3IeN8Xn5PpGrpPN4KvOaSVrjTZIRK598/CFczaq
J9hrhnoiP3XdMzzBTNc/j89f/pJnqV/w59yMIte+5Vey2VzsrPay38x34Nn2
XOyMZOslnMKB8+U5ZjapE9TzXFvi2o7qNGQgHfPMfaWfaf01L4jvFLmu3Sxb
JkvEcmxR58kX6c/krepv5En4FtvUs+Rf6ufzj+rV8lSswQ51gXy5/gpskPWX
DcQAfC+r9f46oTOysdJ9d+Ess/vMZMezZIVmT+E09vhc27BKfkZ9FoXOWYIf
5Nvxl+xcnJctxXbrlbxX71frvvadiyPOmMN3cAG/q//m8/gXf6j/4VIU4U/1
Jb6IKyhUX+YynLIu56uoc8Zj/If9aOd9to3v1Mw1/a7uo6u6Gxerd/ITc09x
AO31kpBv/rp+d/1u6h5cot7Fz8w9x0Ek63VAgfkb+j31u6t78U31bn5h7iVK
PYefuIxTzLyyfk//XdTLevP7eC2vR7nsEN/lVPMN8fnp90GDrB/3xxt5Iypk
h7mS3zHfZD1Qf0CckX3AH+KtvBlVsiN8jzuaD3qD8BEaZYP54/jbRktUy46a
r+E08wmyT/EJmmRDeGj8jaI17suOmX/A6eYTZcMxLN6DbASPRBu0Ra3suPmH
nGG+nWw0RsX/ibIxPBZJ8beJR7KfzddxZnwPsvEYh+A7OoE/QzJS8NjcL/G7
wVnmU2WTMDF+RvP/A86Y1Fo=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV08d7VkUcxfEJQVBskF6woFsVlWYXsFMCBFCx0SxgSVzpxoW6sfwLsAWF
Rwm9qJRAeiWECGn0IqiPUhMpwc9v8X3PPWfO3Jl737mjFpWXlmWklL7w82BW
Sj/lpzQmO6XqvJTqClKqxzn+Z/lYWiNvkFXoNtI18grUypv4tfLmUNk61Mmv
8+vkA3RSbkqTMTcnpbLClB6SP8c/TDfob8R6bMYmPCLfSrdhC37FL3hUvp3u
wG/YhZ2xd/luOt5eK+kEuif2Lq+mj/FV9PF4FjpOXkef4Gvpk7Q+5sfz0af4
Bvo0vYRWe75Im2TPRNfz7fNc7bjMN8ufjTny/bIO9PEt8om0Uf677AD6437y
SXE/+UHZBut20r3yNjTLu/iN8m66T9aOFnkPv0neS/fLOtAqP8Rvlh+mJd7z
DExBJZbZ/xZj93vnM/m1/Cw6FStku+l22R46yL6WYTl/yJzlricjE+WyCbJS
vZusOxRDcMFYm3W/s4/vMVpnPc7HO4jnQivGxfum/9Jv9L5FpfV3YSc+5z/D
A+auif9OtwZfyv4xZ7p1K+xhGu1FPXbwDbQWq93jb3wd55gvpsX2V0Rr4p3o
ZvKDsUrvL/yJr4xXGy+kRcYKaBVfon/W+CBZr/386LqHnqF/IF8vD/2yHJqL
0/IM/W7ZD6676Cl6EtnGs9AnG05H4IQ86XfKVro+SI/HOtbPj72gEHPsZTY+
NWcO5mI2lmIJbuCAuS06R81vpsfoZdlbxsoxC6WYiQ/wPgbibOo06R/Wb6RH
6CXZm8bKUIIZmI738G583+jQadDv1a+P80Ivyt4w9gmmYhqmYDEW4Vp8I/H9
6Xfr19IeekE2z9jHeBmv4CUsxAJcRbtOjX6nfjXtoudlrxv7CC/gRTyP+XgH
V+Jb1anSfzu+N3Neo6/iQ9zB3xnnwPu+nd6Gu9FmzlXZqTgXfAHuwzDcirPy
W+jNuAt79a/ITsb/xudhFIZgKM7EN0MHYyRa9f+TnUAun4N746whM86XPCPO
BorRot8vO45sPgv3YIC/gdO4jmsoiv9fv8/1MYzgh+Oc7H9ev/di
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0rdTlFEUhvFro42NCUUKxzEhwRxHgjOm3lZsLHQEwTH9AxZmVARUVEzA
wu6CAQm77C6IUGhlqc5Y2JjDjLWNv1s88+557rnnfN/uLj10fH/TjBDCB/yb
E0LZwhDKsRqVqMCRRSFskVuxGduxDUf5almDKuxELer53XIPdmEf9qKBL10Q
wsy5IdQVhzA4L4S/80NoVs/CiaIQTiKjJ4sWbjZOcacxxuWQxzn1GRSZUVCP
443P3ea+lnX2LZYHZIk8KN/Ks55ho95NeK++qH4nO+wpxjF9jegzO4kUSvjD
5n7Utwxt7rSjFZ/Unc6X4Lx7FzDkzjASznvRhR50Y4e9K/Reit9z3C/L5Bf0
2vFZPna+HPXqr+pqd6qwKj4f94NLmzVqR4XPzWZ8l6m4Q09Sjji7wl+O7xKf
gV+JBve/6a01rwblXEpPOvZhg7NkfCa+V65X98h1MhH/F3yjGX/U0+ZO27M2
fu/Ofssp7hWm+DXqLv6XnORexjO+Mr4j/1NOcOOY5B9xD1FQD9iTj3f4B9x9
5NT9/Jic4Du5e8iq03wmzuLvcncwqk7xI7LAd3C3MaxO8kMyz9/ibuKFuo8f
lDm+nWvD8/g78s/kGN/K3cBTdYJ/IrN8C3cdA/H35vtlhr/GXUUp9x99soj4

        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0UtQjXEYx/GnadVkkwo1pEMXsmmnsrPKNmNhZ5pxGzMdJHKNFDMVwuBU
p8vJYMYlYsWGTdnEhsxgMGjZNguTGZ938Z3f+3yf5//833PeVGu6pS0vIqbw
tyiienVEDaqwCbXYt0ZdGrGsv6ssYqI4YrEk4vLKiH9ck5ltyKyKGEIfn4ft
XIHZLDeKMeTzu+14yBei2cwKuUNOy7S76ty1Ba/U7eqXctC5QrSY24mcXZN4
ozdp32tZ70ypnMVdbkbedKYIe9Rv1WV4h3vqOXlLrwSt6vfq9fiID8jwS37n
J8/39eflVneU83vVX9VXvd8D71Hp+ZD36lf3YdjMH2e/8APqz/KKbHC+Qq/d
7DEcwQa9o3Idf8DeH+obZh/bm/J8WO+7vM5lzQzKR3ppvg3X1CP8Wux3/pvZ
Jvc0YiPXa+YSLmKzXk9yJ9+dfGP1+eQ7ywsyxR+0YyH5X+194Z4az116v2WO
m8Bzvlp9jv8lx7kxTPNV6rP8TznK5ezMymd6Z/jTGEn28MPyKX+KO4kh9Tif
kVN8J3cCd5L9/G35hD/OdaCS+w8ngmZI
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData["
1:eJwV0Dtrk2EYxvFbSEC6RHMWVIhCu/WQqnP9CqJGIyTNqVqHduvJU0tjqyAI
IgqKoBhFJztVF4VqJ12q30OQ1sXJ/jL8uZ7rug/P876l5uy5mQMR0cW/wxEn
ChGJTESJJulJ+oJ2ihFjzmWM4hTGcU0+mIv4b7ZyJKKn93c24n7aQpzVc1D2
LB/xHO+dX+p7R4fMJfRU+Q/8H3MP+CSuyDZkKXzEK36TPlQbQI3/xKcxbE9K
Vpd95nftWfSuL85zdAHzGNF3SN8Fb8qqnacZ+hVbeKS2Z3bbeUn/N3qj/93m
MmqX9VdRQVHtEk3LG+79wa/ofe0bC84X1W7xN/FYz197v8tv88u4g7K9RbVp
vdcx1f+fuIqCvEOPm2nRY7RN8/K2+37x9+x4676jzk21n3RdtoY38oZsEnf5
p+a6tCevy2pY5Z/Ic2jZuWP+jDedxgT2ASSrRIE=
        "]]}, 
      {GrayLevel[0], Opacity[0.5], CapForm["Butt"], 
       LineBox[{4621, 5966, 5967, 5792, 6260, 6261, 5051, 5052, 4880, 5968, 
        4881, 5969, 4622, 5420, 5421, 5043, 6493, 4616, 4750, 6256, 5962, 
        5963, 5791, 6257, 6258, 5044, 5045, 4877, 5964, 4878, 5965, 4617, 
        5417, 6253, 5037, 6252, 5038, 6254, 5358, 5359, 5035, 5036, 4874, 
        5031, 6488, 4610, 4747, 5029, 6559, 5030, 4871, 5027, 6486, 4606, 
        4744, 5025, 6558, 5026, 4870, 5413, 5022, 6557, 5023, 5783, 5782, 
        5935, 5934, 4600, 4742, 5781, 5780, 5920, 5919, 6244}]}, {}, {}}, {
      InsetBox["190", 6626], InsetBox["228", 6627], InsetBox["266", 6628], 
      InsetBox["304", 6629], InsetBox["342", 6630], InsetBox["380", 6631], 
      InsetBox["418", 6632], InsetBox["456", 6633], InsetBox["494", 6634], 
      InsetBox["532", 6635]}}], {}},
  AspectRatio->1,
  AxesLabel->{None, None},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> 
    True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.882869979564643*^9, 3.882870087392771*^9, 3.88287012026623*^9, 
   3.882871733235313*^9, 3.882871867785903*^9, 3.882872068011827*^9, 
   3.8828721340849133`*^9, 3.882873124245867*^9, 3.882875875509193*^9, 
   3.88287598388307*^9, 3.882876148868762*^9, 3.8831058583251553`*^9, 
   3.883109999440978*^9, 3.883110213948126*^9, {3.88311031859422*^9, 
   3.883110324508835*^9}, 3.8831104697436*^9, 3.8831107648170757`*^9, 
   3.883468959415133*^9, 3.883473337363904*^9, 3.883479392409144*^9, 
   3.883479645899507*^9, 3.883553848972858*^9, 3.883646082440133*^9, 
   3.883646566434946*^9},
 CellLabel->
  "Out[115]=",ExpressionUUID->"5a40e7d1-446e-457a-9279-37c87371dec5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"q1", "[", 
      RowBox[{"1", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"2", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"10", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q1", "[", 
      RowBox[{"15", ",", "thetaCM"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", 
     RowBox[{"Pi", " ", 
      RowBox[{"45", "/", "180"}]}]}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882870163893723*^9, 3.882870255681621*^9}, 
   3.8831102234139643`*^9, {3.8831104739905663`*^9, 3.883110478122541*^9}, {
   3.883553873185985*^9, 3.883553873641539*^9}},
 CellLabel->
  "In[116]:=",ExpressionUUID->"810cff79-47ba-476e-87f6-c3e7e8c9c39c"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVkXk41Ykeh4VbKPfSOcc6ZEl18VATg6jv17lCGGMZjC0chMPP3lgbW5Zs
Yw8xDoVKDBEZQpqTJWRP1mw5p4XIlay3+8fneZ/3r/ePjzTNx8yVk4ODw+fb
/k+uVr6+eVXTCxZO/+6uDSehHLtFUzJTGSLL/mVteI2EW9XKLq8zALjKB2cE
I0hYswEjglV6kJXWcPhQNAkXye6b9Rk/wXL0aXP5OBImi3byVzWZw5OT1huh
SSQsO2VXxFFlBaR7t/e/pJOwTe3TaXOGLXSV1ekw8kg4rnu9vTTDAWi2Xm7+
Jd968kfkw9udQG1E7JXXAxLGfz/qX9rkDB4DkwMpDSQkn2M09dW5wla05JWh
ZyQs1qZzb1a6wVNT7UDNARIqXVL5UbrcAyw8nKqfzZCwyWQv24DhCUIdanc8
Vkg44pBxsjDDB2TzPgtyHyVjzVkl9XmmLyxb3pxaO07GILXMyaB2P1iof8qz
rk5GbrCXK24KgMIPR+qkXMjYTW3vUn0cCOEHp+IvhpExXfekd3fdVVBck3Hz
ySSjpPFq/efKINCR4n/77DkZF0wtbRPuB8Oi6BvZpVkyVlg07X9XHgJqP69W
cuyRUd0+Vl+XEQbuLQWahzQoaOYlOp6bEQHUy0IK640UPKIOrTl6kZAjlCln
N0nBT41+grPMSODVoPbn71Ow/snoo6vtUVBU8/D7ZH0h/A+TsfdHUwzQf9Oe
fjkvhPbDKmmrlfHAndjlGKwlgmjpNqepmAAv0nr5g+kieHwsTyXufgJsSJMH
BfNE8N3E3phY+Q1Y5YkXPbgpgkHzndI6jCRY7N6/kNMsiulrdrU5Gb/DeG2v
zQN7cUyh5Gu18afBSljkfXquOA7WxB5TNUsDfpVw97IhcbR9Z7coOfHNJfvH
bhh+h962h/3WPqTDp6bEq1UogVnn3RPyBLJg4b3c72IXjuHMAZmGJatcyOpo
DBBukkZNpgEfNYABmUHZHAd0TqBvqLFTre9dqEiqbncxUkbisWsqp2w1vPNL
VHXUVMFh1iXeclodvNflUVTV08BE5Q2OeuvHEMRHN975xwX0U+jMbittBue2
VqkvN7Vxy9mzasq7DYoFbF6HyOgg7YmlSdqVdghxjr1BidZF59XhtraEv8HC
aYDbm3IJk083+JTFPYfsGJvCU9cMkbOtQe16aCdU8GWbdY79iILyhn0zud0g
HNkp3H3WBPWLqLc/ZfRAQVce85SrKQqv9OhGNPRBsAdk7vxphvkdfx3g8ugH
Le4vgjfWzVFLQntfymUAlBIMZb/KWKDCG4GFa4GDsNW7K15Ht8TKu0fdH/kP
gaLb9SOGBVYYPm0/pBA3DHErq7P/XPoF/bTUDf/IGoH3R+sc3BRscKtIh/Y+
bRTWd4Pzb1nbYr9vvmNQySvYMi7hHGTYoYaezN5U8Rj0imTKLAzYY9dFjbtY
8Bpy4x6UJe5cxtKaPI25inGgfs1t4ZJyRIqsIv3yvQmgnfbqqat3xMEDPNGi
zZMw6sun2mrthI94Asr6u6bAOI4Yi/nqhIoUATqNOQ0pjD5vaioNV1I3yGdH
Z0AsVsFEW9kZZePjlX3ob+DL7p3k80xnnLOZGKcuvYHkidudW1YuqL849PWR
9yxw2DQ6Tm+4YLC/q7vQx1ko4gms70p0ReP6WwZCv85BbfWE6HP5K7i8Qw/n
2piDc0q8Ri9br2Dxq6g674B5oHwuFMs2dcMt9/OOIdvzUON/Ue6nFTeU2E23
9QtdgJmfozxlo93xrV5SNw/3IugeLj03LOWBz070gGTSInApcRqcbvZAOk8Z
tzTvW0hwkKXWG9GxgXH8/LP0t/DSLOrXTRYd+zS1mGaCS3Ao99EZr1BP3KTf
MndMXYK/m2Wc8nm8sNOkyIJfiAWJMcwXziVeSNPQKi/PYsFHI4tx3zMEenzs
/e9kDgsUve7kLZ8l0LfYQedoHguoimQTrx8IjOCNmQ0vZIHVb2YlbprEt6u6
xM3KWJC8oTJpf5HA0RCrtJ0GFqSXLt7RtybQ4C//ENMJFrRI5V8XjiLQ1Ju7
M26KBb0pUSeyYgj8RSZHqHmGBfISfq0CcQS6JTbWnlhgwXCm6yhvEoHXbTiW
tz+wgC8kNXc7i8CWrRRa2R4LNpdViKm7BDKrjtVMcLDBuoMaYV1BYA+tZl+A
iw3MeKOEkUoCJ7qHC8IOsSH3oUlE70MCN/PFX5kIsEHB+OCBJ80E7htXysUd
ZUMN93S3eiuBB7kgsInMBvv4iqS6pwSSPWmCJ0TZED5/fK3iOYHix9YdbMXZ
IPnDy5snuwiUGYqtSpNgg66el8rtFwTKxwvvMo+xIcd8u0Oyj8AzmvcMt6XZ
8OfNMLP8fgL/B1JKPS0=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVkXk01AsfxokWlduMN90rNy7yG4yL24ao7zdZihISZQmDMPysyRKNyq40
hhSJUVniclIYN5RXTZZcZKtMsmSZkTaVJPF6/3jOcz5/fc5zHiVGgI3nMjEx
seil/L8lHq5uf7Pdevekn+dlmTwCVUUPDBTStcFd8VLKliWeu6Pt8ZID8LCx
g8lZ4ooZ6KWWmwHz4pz2Fi6BY+u9Z6s5h8AllN9LzSfwglyzdHntYbhAabX9
6waBhWpOeWLl9pD+b/xN9k0CG3Q/6hzmOoJmnGu1dgGB/aaxjQUcFzDxuMX6
pWjJp7FWI6rRDf7WTP6geZvAhC19wQW17mDRtuNLcimB63dya9srPUHZ/GGE
WjmB+XuYkrNlXkCs1GQuryBQa/+2g0pFPsC3iSpTqiSw1mrhsjnXFyysStSj
eQT2unBo1zkBoF6U4PDpwdKerVp6b/iBYC3Qeyb1iMAw3fRXYY1BwPHslXRr
IlASnFXza0MgksqiPu0ksNWosWV7zUmoHyCuD/QSmGZK82+tDIVM1g9zLQGB
Cpafqj+XhYH9vnXHk8YJHLW2c0wsCQdndWOv9CkCS4/ULv5eFAHPg/P6+6cJ
1HOO22fKPQ2/bU3fpiRGQxs/uf6rHBas2vGtJW4TDdfqwcNMsxg4o6ljEqpK
w4//BFGH+THwmT3pw/2ThtX1fVWhjWdBOtr1bvFuGu7lcxdya8+D6b5byyLd
aUiYdVuJ9GPBue7BFSBpuLpl+c2tNbGgs4ao2R1Gw842pllzZRxEvxsNEabQ
0LlnG/tTWQK4mNxOHObREO28Rgw0E8HRSWeL7yMabn6RtS2+JBGSo1J+0jto
OClYeLGxKAk+hjfdtZ6gYdibZiVjbgps+hAbsXmjGqZNO93L5FyClroe05wk
Nbwom23YIM2GY3XWXRVZathVEae43YYNPbX1j8VL1NBx0mlMQcCG9PNe6w49
VUN/xzVB01NpINXVzOJQ1DFjl3diFiUDKp19d9sVqOOguDJvwv4q1AxuzMz9
ooGbc6WznXKuwgy7T15xDR29d36PejZ0FXLmdS8/VaLjdHCnUa1PFjiodZcW
HqKj5OiZ9tTT2WBzZ1vysTI6ajwRjG3Py4GgIAPbI4GaaMA3X20UwgXL/OCA
caoWUnoKO3TTuXAlv8D9EF0LR0eWXf7zHhd2iYvedxtrYapYraLcZy5oq5dU
aoVr4YgBffvH4Hxw4FrFqwxpYeLdNa65wTfgS9vbjM5KbezLa6uaC7oFep0R
nnyeDgZGWrrdCyyGmJNvB09d2oJkjWfqMpU7EJtkV887vQN7hPulihiVMLv2
8L3TKwwwWXtGrPpYDUgXMSjTvoBB9ObLDQV1oCC6iHtVjXDO3bd8wL8BTOYl
XObSjJFRb2fFPtEIfs+gdHe/Kbp/6mloSHwMM7fmB/j2+/GCDi+gMP4J2FoO
BmaUWeCyBp5ubGQzlEaE/GR8P4hUDYv2wautQL0xoWtmaIX78oxufuS0gcrk
UPj7E9b464c2UxavHUabXjr8KLHB7Kb74hI+nWDEmthqITqMhpv2LP7h8Qy+
TqXN6MkcQfoQZTT6ZBe0fJ6yNLK1w7JiGe+q4G6YCO1Qb4yxx6jXzt30+B7Q
aXL0031yFIMM9SxyM3qhx2ftjcTlDjiXZ8x4y+6Dz7USMjrajtgZmO0aduM5
dCR2yWYHOaG+mfLCQP4LcDnzx9TBXGdsMdEvxpyXoOc/9u3R4+NYUJGlP1La
D2i7PG9c3BVlVTSZx28LIC2j4ZfUTFfsEl91Tq7uFfzWYU4hdd2walVIYWfL
AByof5Iq1+uGmrIUJoP/Gir5x1hvvRj4IXVm/da+QZBuibkgWOGOKgkJ2gHM
IXD+SSWns91xxEHQbzQxBGY7eIEv6R64b6z7e5X/MPT/h5fzuNkDw4M9vTe8
G4bVSV+9Xzt4omX1NfMNp0bAZz/LdmLWE9/PM6MkZkZgzPjhfeULJzD/+dlK
/5A3EMUNF9B+98I5712uET/egHW7esIizws3/UxzDIocBSO+ZIjsfm8cN0tp
XSU5BtzgmYvjY974iGgDhZQxOLqTdz6A5YPMVYWSSlLj0CE7tc7kFybyuJt3
PUobB5uCK4KqYia2GxjybagTUDT7X/1IPV+cZV477Jo6AVIDG10l+b7YbJV3
RHqDEFKVNelSzn7I0DcsKsoQwsoMh4rgST/0effv11eZQug5G6QqmvLDwHwX
Y5ksIeh+HWC7fPBDltT54ajrQtA2qTx44Ivf0lUt8jaFQpgJRRfVBT/si7Bn
z/OEwL9EDPdSSTS/HxxhLRDCnqRCBx19Eq39JZvjB4TwjZzgFRiQeFQ5c0Pd
oBDmCz3Wyu8m0Sv5n3vEqBDcPlGuLd9LYqyD2PsfU0KoEm481H+AxAdzFxmF
C0JwPmNMPedKIr9csUIgJoJ85tTwDIPENkbFIkVCBMnyj2/7epIoaO3JOb1S
BCrFiwpHmCTOZss/t6KIQCI8LY92ksRFyzLVeBkRVGTkq+ecInGFBJysXS8C
Vx1BCSWCxPW+DCohJwL3xibO92gS5RW/uDjKi4BDi/hOxpCo3B1Xzt4kApbI
yn7kHIkaCb/+5CuKoBAs/7aLI/Evg9sWP5REkOIWONuaQOL/ALzGrJw=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV03s41NkfB3C3VaRflFhZRCVh025Z5PL5LCKUfEfSmhHG3beGGWyElPuW
NIRFLSN3/UbkWlJiCckqYl3KPTNdULuVqOy3P85zntdzzvOc533O+6gzA2ne
YiIiIlnU+DqL35XumdInzJ5v7VaN0Cdwm/COseolPVDSfFn81UuVel5DaQCP
O80ginLVe3giV2ENAy3ts9GUZ+T9FuvSDoEfN4YXSzlZqWNtRaMjOJxm+ydR
LtZi5IlUOMNoYZp5CuVmg4Vdjjw6PBFM62RQHraKaylKc4OMZZ9tf3w9T1tG
O7LFA966KOoVU078cYBT1OgJh4l/91dSlt/La+yp8Yaid8ucRsr5PwdILPJ9
wU1Hl3+f8k6bPQfVS/wh5mrMh37KjQ5fMmx5JJQPfiKonPjELW37H2mBoHmC
MBD/icqze6fhVFsQJLdta5GnfNLg0ujJFjas65Zz3U5ZAly35TcGg0GuRush
yl3mLZ36DSHwsB1SvCmnWm1nddWEQqizt38kZVX7N3X/8E/Cpp8aDvEpTxNH
6EnlYeBnNepyn/I1p8aV70rCwd/ifegkZUPX+P1WvAhQOfxhRNmAQNpxpeGs
tGi4+Feqz2XKMoZwN9P6DPRe61poorxwky030XYGCia7zk1QrmsaqA1tOQu6
dpJzOoYEWrTxvuQ2xsIBO17QQ8qa1n0OQqM4SCo6ELZIWbrzm4LdDXGAYvEX
txoR2NsdYN1REw8qh8JeRVN27d/DfcNPhPZXwW4WewnEI76TxrpJQA9NnvyV
8ta/s/cklCeBzIIg5BrlFyNf/t5U8hs4Ley7r2hM3d9Uh7ol7zzcjWKpf6ac
+pZRnZl2EQoY9/OXTAm8sDHHpHktF4KeWExamhH4uCpeTZ/GhZdjt9y5lOkv
GDOqI1xoeOCkqAMEsuhr2G9fpYL8MN0/EAlMN/VLypZNh9zACu5uCwKHhhzJ
/zmlg/BOYGkqZdVfwT42Ox281ot+XqBcUqEgf0IjA37vBUa1JYG31NrycE8m
DGv3LVhZETgmqlE/65wF1XG8Y2U2VL7ctTmMK1lgPbRiqGxLoN/ej5GPxrPA
cLrZPoXyW06veaN/Nqz4i+uG2VH9mD7dkxKRAxmjt8pdDhKo3T4yo593BWxE
8/NdCAKN22ylzYN5kMFm8ve5ECjbX/yXwSUeeEqJcvspT0+KZXxfzYNvr7Ni
vOgEpog0qin9w4PadXaZiQwCJ4119Bc4+bDKVOrk8DECk26scc/lXIXdf0lJ
VHsSOJDXXbvELoTWH9ae3smi+lWhFbGQWghbPt7TGKN8pikOn1cVQuGt5D5u
IIE7RkwePHpTCOv1Jo5+CCIwUoE/XsouglHH2bneYAK3XLiwxpldDCdUZrTr
wgkMOmXvUR1UCj7cO6+tEwi0ZZmUruaWgl3FStXGRGo/U3ve9XopjF24HjxN
ecBGMmr1XCloQfdc3G8EmirdyXIly8BBUrL5UTLVv4bve1f5lEOAh29FziUC
i97JAIP+f0gze3ZDkE/giQbvFLEtlVAQLl52/N7X/0xsFt1TCS6y9F8utlD9
HzK5sWJZCSO8TVrVrQSGLG8Y+ORTCSGCebUvbQSeMmtR+VBeCe+amjj5XQQm
/KnKf/ljFWw61cBR6SeQ1zv4oN/8BpiO3jMXzhLYL7CRKmHWQF25wXjLehrO
Z2vti+XUwGmzPNggT0Npu1Vn3WJqQExs73mvjTRE/p+LildrwNJD/7nUtzS8
xgZB0kQN2DwIKXJToWHM0p77Ae61YB1D32SgRUM9mc3xO4/VgT52e6ab0fCc
3nuRul8aICmR4/fpBA3ZOh0ZzUW3oTb4plnCOA2XPMmKp6xmOBbl3tTk5ojM
piMOXJ8WmJNp/ZA16Yieb/qbm5P+hIxq2Vc1kYcxeVd9YHFCOxxvnj+4QdEJ
xZrrDeJOdYB2szDao94J5bTtesayukDsLv8Nh3UE9+eZFyykdUOCbr/TGnVn
VJzvtoqu7wELbtEBmxfOmHP/lqi4fy/8oGe9ua/uKJqo/Lyy2esRtF5f9NeL
+AV1xmWno0IeQ6yBtFaZkwvyS9f71XL6IM6xpNpYk46Rz1z7dBL6IVT3pH2n
DAPZJoZ2uelPYFC66dC+fxi4lGfJfMkdAIZXylDWQ1fsDcpxP3l1EKyI9t3n
mo6hkbXGl6f5f0N1cPRHG54bdu4zKsUrQ2CXzhgIRHcsqso2mrw2DJbWEyW+
je64cYtuwLGyESDMpb9T0/PAx6KrY5Ruj0JZpFF8GN8Da1cHF/d2PgVdnFvr
os1E3Y2yAcy2ZzBmQd91Oo+J8ynv5XcPjEHEskXdDjVP3JKYqBcYMA78228z
n2Z64qTLyLD57Dgs5yY9LJDxwv0zfR9rWROgf6TQfTjZC8M43n4KrydgsXzD
5l4Jb7Svu2yr8OskfN585MOORG+c+xQQKf5+EtL1ftNQE/XB/MGzNazgKSg6
63jvWZgPLvmZuocvT0H/s/bwl0s+qPI5lc4+NQ3lkoOvfUN88bn1+a7VEjPg
nfMuWWPRF1s1u0H1/AzYpGwUPRvuhwGriyXUpZ6DPCdp3a63fljP22ramvoc
9BKGjCRC/bHH2KSNJjcL0qZ3122a98fFgMuO7imzsOPb9thanwDscMhzWqsg
gNKLqQ0MQQAyjUxKStIFsKtEtfYnDxL9Xz98N5opgG+6u8RoniQG5btZrs8W
QOX7iIMnvEmMloqdiPxDADuGZoYK/EnqqTqVacUCkLUt6JHlkDgQ7sz9VC+A
7U/VNV/EkGh7ixNOjAjggZT2mZxCEgmWREfCUwG4KQ8H1BaTeFQjU+H2mABm
HzjSektJ9D13s1pzmlqvu6IoyScxzkVkbvmVAH6PIiLYtSTeWbrALP4iAGVO
RZF1O4ltFWpVIyJCWBOkwmB2kNjNrFqRFReCwgvDdVFdJI509V+JWCWEcgUW
eaOHxMUc5UEHWSHYtOYufzdI4oo9f1vCeiFIy8HvBkMkSopDSKO8EPjHo/Ro
IyTKk0w5TSUhHFZ56JQ4RqKy2r9udGUhqI8MT+VPkKjRF1/BVRGCW1g06/YU
idqJip/b1IRwVPvmu4EZEn8wLrNbVhdCpWZC+JtZEv8DxqNqBg==
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81WkXAHBhJC1DI0bGUqSioUGlsZwnlTXGMqnhZ7sI91fi2nOL7BMZ
W0JyKVtxr+1aosVLt7HckSJ72bl3klBjQtN9n/54Ps/n+9c55znnPLsoF+28
hIWEhG7j8/UWeSLRPXXI1uj5w78ZT4wItIf/WF8xQwsKibdTX71WpeU5lA7w
/gavsgW7egVeSbFMIZCYFGnFnpH2+VSf/gvU3Roca8NOlmvfymq2B/EjXcef
YZfsIxhCrDOQtalJqwO75cjiQfsCJ7CaLbrLxR42iW0tTneF1ZtJjJ6v8dS3
qNNb3WH/xAWVV9gJ2v204mYPMKNbag1jS/9c0NzN9oIYedW2MezCY1TRT0xv
mPH5980Mtqa5rtWuUl/QF+NEz2M323y5YVFAwk/Xk1kfsF+5pu+9nX4R0m9s
zBcBXI+Opt4Uxx8cdzW5b8EOPZIxGtoaAEHlnswd2KLgvKewORAsgxmj+7E7
jVs7DjUGwexlzRZd7DSTvX6d7GDIlqnVQNiK1kv1H5ihsKKVm3sWe9rWwSnx
fhhI6a3f9sIuP90s+KE0HHaOWe8PxNZzjjMzKYiAgcedA39g252XG85Oj4ST
79YznmNv0YMnWaZR4Gg91D+OvfggQGqCEwUpU4WFy9j1j/rrgluvQvlvi92y
iEDHOQVf8ptjID2EkuiDrWbaa8M/GgsNteESV7AlOr65q9MYC1aVNOlM7B4u
1bSdHQejSaIt/8N27tNNXWImwL7GqGCVYwRCDt6T+gcSIU9w5bAhtupgjm78
/US4GWcfeQb775EvgztLfwe75bCy69ihU+27ThQkwQ+bE84KGeP3WSZqs9L/
gI/eKpoC7Os7cg1atqbC746H7VWPE+hldZzSIbtUkDn8l6wFttPfxIziSCrs
XY6IvInt57Q5YHk+DU5JpbYfPUGgTEOfxBzJTJDiCkPeSQINDdmT205nQtDz
dccubMUQsI7JyQT9l2Yy69ilLBnpC7tvwJ1fX1AJEwI1KXEYSDcLTvyqn6Rm
SqCxDbsb5s5kw3erJiWDZri+/K25RF42PGrtrZMyJ5DPz6v0F+PZUEQP97TE
Xqb1GDf75sBqmCC/BVt0+kp3SkQu+GpdTayxIJD6s5GZQ4w8eKKduZ99ikD6
HAsJ48ACcMuOiNG0JZBkX8nzIxkFoH3rwS8h2NOTwjd+rC2AA137Sx5jpwg1
K8l9KIDp/1KWbOwINKmvcWiRVghVCwsb6PYESqzZ7JZPuwP9H9ZF508TqJ/B
rVsLKII4NXuajhOeL9a+iMW0IngwWhqRjB31KBbNVhfBEC1t2yz2/hGDrhdL
RTBD2/oilyAQXYY5XhZQDHzfbe0SLgRSuX5985mAEjBbNwkXdSeQ/yVr91r/
MtDIinni4k0gCz+DMvHUMnBoahp6hq1CUX/vXFkGxvZhoVo+OB9zscviC2XQ
leVnKOxLIEO5x9nO5D1gsW8tM6l4/hp/7Nl47j5cFER/VvAjUPE/eOucKkDj
oZu7WzCBrvDX4qovVQC38fvxQeyzr3lcsdwKCBNNmLANwfvAeepYPVgBFcXU
8ydDCUTLpIeIOTChyer3Qu1wPK8688wqGxboS81F77lMoAuNXinCKlUw7s9d
OB/39X+wVd6gWwXJK1K/bojH+zRkUCM4UQVef3xrl4UdtP5d/+dzVdD2TuL7
1gQCXTJqVfj3fhWkLc91Kl8jUPxTReZb7WoIXDFrW0shUEHPQFefcQ0o5Byo
U84hUB/PfFMphQ2Kj3N0tCsJ9D5n38kYGhtGhRoFY9gSlhuvukazQdbDzzql
CufLfPpJ9g4bVO9EBM5X4/4FAC9xgg3d7oJhFptA0Wu6f1Ld6kDqzAuZU00E
0tqiHKfpUg/XjMJX5zgEuqa1IlT/WyOUbxPacfcNgQI02m+0FD+EztUUg+3y
zmjNg2S99muBBYfgICtXZ0R55GCTeq4V5j18kspLnJHHUl9LS+JTUKQfHDz8
2RklH2y4WBL/DNydXHhh9i5IuKXhSOyldliia56vrnRBUuqW3WPZnRD8yyq5
uNMVmTGM7y6mc2H36A618DhXJPueaxLZ0A2iqb0MlsAV5f7ZtEHEtwe2TLdc
2A5uyEDhmEDZ8wV8lGTkdNHdkMa45PTloJeQtxYSdbPVDTHLtvvU0Xoh2lP3
qYmYO6K/ce7ViO+Dj32NF/Xt3FGAgZ5lfuYrUJWoULViuKM1xgnK29R+SGBf
Ebbiu6Me/1y30DsDkEo3N6rSp6Cjpru/vC4cBG35jZax1yio4+TRMpQ3BOrj
TcvhQxRUXJ1zdLJ8GCpi2dWzBz3QDpUDVJd7I3A7wOWwRKwHerlBPFru4Shk
ZCcrNY95oDrxwJKejtewTZZTb6TviQ7skKRSOG9AbnTKZijNE71PWZHW6R+D
bTvVysWXPJFKQoLWReo4KNg/EhJYeKFJx5Fh47lxaGs8rL23yAuZzfSu1vlN
QLektfbcN+dQGM3LR+bdBOQce6q07n4OWdffspAJmQQXPVdN1rNzaOEzlS6y
Mgkh5WUV4Xu8UeHAVbZf4BQsqk77bI/xRms+hm7h61Ng8eGQgwnfGyn8l+YU
cGkaVgcGHxiZ+6BZ06ROcdEZOGLkN/Ky2ge1qXFBMWkGvuW1fhGT80VU8RLR
XZtm4bl4v2pTuC9qKFA1bEubhbh75x0Fk76oW9+AYyc1B5e6mRMFJ6noE/WW
vVvKHHgM8Bh5JVTUbsM4vVWGByL79CoVJUlEOWpQWprJAwlxR6VuGol83/31
z2gWD1SfK+snBJHIv9D1xPYcHsQa1juiEBJFboqZoN/mQQX3WHFNOIlb1SFv
V8KDmvVk75tRJOoPP5P6uYEHZGFkvnsKiSyaaOG2IzwQ6rRr/XSPRLZ+ou3x
r3nwr1qsXU05ic7uzpJ5OMaDWTmNWZJJIu9rD2rVpnlwu61bdqyKRLGOQgvr
8zyotVUu4jSQ6PHadUrJFx4Y+Ce4ZHBIxGEpVY8I8aEvskPV6k8ScSnVAkkR
PmRQTy+IdZBopLMvL2IjHwz/gaRLXBJ9ypUfsJHkA3Plu3n3XhIJrJl74rfz
QefDWa78KxKJiUBQszQf3iq9rHzVTyJpkiKlJscHJyOHKPNhEskrfXR1kudD
dpfTBZFREu3ujWOlKvBhc8s150evSaSeIPsfR4kPrdRxm9AxEv2kf89yfRcf
Tsk7mv40QaL/A7JGnxM=
       "]]},
     Annotation[#, "Charting`Private`Tag$28076#4"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 4.8717795932537635`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882870181702614*^9, 3.882870257355679*^9}, 
   3.882871735908575*^9, 3.882871868769987*^9, 3.882872071955386*^9, 
   3.882872135541754*^9, 3.882873139044957*^9, 3.883105861177408*^9, {
   3.883110216328271*^9, 3.8831102246314373`*^9}, {3.883110474375854*^9, 
   3.883110478453947*^9}, 3.883473337892284*^9, 3.883479395355332*^9, 
   3.883479647648616*^9, {3.8835538512286053`*^9, 3.883553874034453*^9}, 
   3.883646085840094*^9, 3.883646567631914*^9},
 CellLabel->
  "Out[116]=",ExpressionUUID->"665c9ce6-aabc-4938-9ea3-804267957125"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"q2", "[", 
      RowBox[{"1", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"2", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"10", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"15", ",", "thetaCM"}], "]"}], ",", 
     RowBox[{"q2", "[", 
      RowBox[{"25", ",", "thetaCM"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"thetaCM", ",", "0", ",", 
     RowBox[{"Pi", " ", 
      RowBox[{"45", "/", "180"}]}]}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.882870283332418*^9, 3.882870333228855*^9}, {
   3.882870392731298*^9, 3.882870440219163*^9}, {3.883110242780593*^9, 
   3.883110248889072*^9}, 3.8831104808183107`*^9, {3.8835538798395576`*^9, 
   3.883553880817544*^9}},
 CellLabel->
  "In[117]:=",ExpressionUUID->"7a20b6d1-898d-48d7-a70e-0612fe4c9344"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41OsXAHDblW26yBJuFBdl7Q7KMnXeXEvxu36Wn+leS2m+ljHKzGgV
3XQtqSSEUNasZc0aKYlCiCzRVLbUzM0lucSM+L398T7n+TznPM855znP826j
MV39RISEhDLx+x5FH0n1Tpm57JV6tybY+ZWGtHkPrdSvG8PSmQSVX7D5lca+
o0kAL2x+DfnuqiUYkiu3B7G9yuJk7GkF+nJd0n/h1iGZoe+OU+kglTe5AcrS
HDPBLtzulS1UfhBMvvzxsxl2y+7PO91yPIH62738Xdiv7aJaC5IOw44cfR/z
7/30ZPTCW49A50g71RL7Ink4pKCJgLnJiFgKtoJlTlNvjR98KfJa3Iudu48h
tlwWAM82/pG5D9vogOlv24oCQXj1ZIQNdpPzWopDThD0u1Rn2WMPHU7SzUxi
wnp1fJzT931MjMyn2lkwcMbAyxX79O7rb063skFL+W9/KrYYeGvnNh2HyV1t
hoexu6xbO80aTsA973EegZ1opxvcVXMSHharTdCx1Z3m6xbKToPSm9mI49jv
XaiesXfOQCU1Zkco9l33pvWfikJBW5VCOo9t7h293y4nDERjhGOuYLseVXmd
lnQe5mpmKEXYMubwKNU+AgIcmA/LsT/fZ8tNtEdA0joprA67rnm49mTrBTC5
mFXwFPvX9py1rKZICLgv0sLD1rEfcOZZRIGItLfqArZU5w+3TRqi4HFjX8Uq
dl83w76jJhqKCkXiZJdpyHvQNGG+7CL07I+WtMJG1IBJK4NY+GCaTbHD/nkk
3TTmTizYar+444L9N2dtRLXoEjwyZ5oHYp+e6thmk3MFmsvzNt/ETvziVZ2a
dA0aDIgZyRUauqqYQWkhJYAle3WTKvbLqmgNM9cEoHt8i9DD9vzba1qdkwC2
ArL+f7CDPaXZX2YS4cwUtSUJO3kPPTZdNhnY/z6eMeDT0OioW9BG92Qgk9iM
fdjqp8ApMj0ZbPpDDanYReVKCsc0U6CUkRwZgd2o0Z6NTFNB5EY/cwR7TFiz
/uPBNBh49qd9igDvl0XK8LqVBlq5jqrl2HTLlfD+8TRY5/qQn2F/CemzbgpM
h19Ffch8bLH3f/bGh2VArm88m1ilIb2nnGmz7Fvw1CHxk/U3GrJqd5CyPp4D
izur2szWaUh2sPDF7us5ICO9JuqO/X5SJMWwOgeipOLOn8COF2rSUFnIAaqj
v34N9qSVvtnnkFzQk5hz3yVEoNh70j5ZIXnAkdFatBUm0HB2dy2fnQ83UjVd
k0QJdLd8e9jnxHxwap5Suo8d0RyFPlTlg+FivfI49g4O5Xn/fD40mVzvMRIj
ULhS2XgxuwA68z9KvsDWunpV+iC7EL5apD5RFScQ66zTkWpWMbTFCYzGJAjk
EEwplkgohjzS/CUZSVxP05vzriiGgLJgdUvs4QPi5yRmi6FKS7CQgr1H5WGa
d1AJqAfouDhLEUiqwbBvg/8dEF7Xe/lCmkAFizLg5VkKruvZEysbCfQnjx9d
dbYURodWAo1+JNDvb7nd4hmlcO1Ulj6BLdPe5lE1UgqGnEcePdghyeGnxKll
IKK6g54vSyBkMlNW6VwOihXNe7zlCXSswS9eRKsSVoIet60oEvh/cNkqbFoJ
18L6Iy2VCPR5lHJv3aYSGpkr0WHYJwSbhlf9K6FWN9ptDfvs3tYtX+9UwoOt
5ps2bCZQTJt62SdyFdyV8dPUViVQTt+r54PW9yDaXYpxXZ1Ag9wDkkW0Ghh7
Xfhh93YCzaVvt40MqYGIBNZEJLaU44YLh/+qgbyb84p92KisbVk5rwb2t5IM
Anfg+7GBGztRA/OOHjJZegT6i2/6jOFTC2KHMjPkDQlkLLM12uhQHaQJdEd0
yAS6bLwkVPdHAyz+dFlLQCEQW78jpaXgAdj1PyedP0ggPhFU/ja4BY6amBpE
nyQQrZnqnODfCncexaX9kEIgYn6wpSW2DY7cTl/jNhIobmc9szDmKXgVnSJV
TxBIpKV+d9TZDlCjyQ6NSPkiOT3H3rG0LvDsn/06ZemL9mdb3/6c1A0qy2He
fQxfpDzXbXe+vhfMnDgJ4nm+KONZo7BoYB/Ya5lPMji+iLJl3/pW334IzQp/
VbHJD+mPy74/d+IlKGgm+Ka7+aGyYnl6bcgAJO4smX2d6IfC33kP6McMwiz5
2jGJET/Eppg7ZiUPwS/8zRKJGv6In21D+5QwDEY2vNo4X3/Ux8rwOZ33ClZ/
txGvqPJHFvaaa29zR8C65FpPt8AfddpaFKNbo3BOmqxDtQtABVXpFpN3X0Mv
WXCOnB6AFLUMGIdKOHC/qmLQiRuAXgpL/KXy4A0o7wq3mAY6qpU4XtjX+RbM
ZrJ9im7QkYGiLIPW/g46OPnLQp/oaC5+ScFkeAy6dquEztkFIq2LF42ZjHH4
IYAvp5EViCY9OK+tP46D/pWtFj3/BqL90wMrtcETsHGlyU3rfwx0JsSPrvTP
BFCHVQzNyxnIqe6mg9KpSZA/dWlig1wQml1lhIsuTcIBUkmmS3AQyn11oSb4
+BRU625sLO0KQnz6Hp9QwRREtc+0dhkfRVu+JXqyz76HvsBRzW/xR9EH+ytd
EmLTMH3dWGF16Sh6otMN6lemIX5am/rO+xhiSBSKbZP8AGEVHNdzD4+h+pyf
9zxJ/ABP971x5+oGo14rSrur3EdI5JdmT10ORsuMm24+8R8hcwrm6DPBqMM5
252kxAX5wBHFOioT0SwoRUXJXNhBvr3m1shEgf/0LL5J5UJ7A5TKPWAiVu5h
G/l0LsTTLI+8aGai85KRE+GZXHDtokw4PGbiU3WquRbifM1mC+sOJhoOPZiw
Ws+FjZttbcnDTOTQGBLqwuHCIcKpQfkLE7kEi3XEvOXCm3Abx+EFJvpdM1Xp
wRgXXm4xnk5eZKKAy/erdd5z4erHQUP5FSaK8hCaFcxw4WiJ6CVxIRZ6yL9K
K1zD81+5ISeygYXayzWqOEI8sLi0kDiB3U2rWpcV5UFET4XiYwkW4nQN3grb
wIOoe9a6EVIstJyh9spZlgf8J/khayQWWncq046R5wHn6RDp3UYWEheFE00K
PBDR9yht/pGFFIJocjoqPOgsoS6Ey7GQmsa/hz3VeMCIf37TS56FNAeiyxO2
8MCVftWesomF9C4qf2vX4IFRZsaSmgIL/WJV4ijYxoOZpPliAfb/Ab0wqW0=

       "]]},
     Annotation[#, "Charting`Private`Tag$28139#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hs81OkXB3C3UNhFLlmbO2tJKvxiqfOQS7EpFItE83UdYkZKYiXXIWlc
l4nM5LoyIuNSLmuVUkmKKJI7MxvlsluTit/jj/M6r/dfz+t5nc856qQwZz8h
AQGBIlwbXfivLb1TJk773V7H7aLFEUib126ukm0IwrOVv254tdbQ93UWwLiq
KmvDdR/hpUyNHfydMGWQij0jF8hvzDoCHpIflzecrtQtVdPiApa3XRfTsMt1
TxQL1LjBQvAmnXTsjr2Lu1yYnsAxEMq5gj1sm9hZluUNL3i//nJ14z09Sb2Y
zlNAos9sy8RO2TMYXtZCgPf3PYbZ2HK/MFt6OX5Q5SxwMRebZUkW4bMDQNA6
XjQfe+ch48PqFUEg+sTpAQO75eharj0zGPY/DW0vwn7pnfVTUVYYNPTS3Uo3
/mO003SqiwK+Gbn8CuzIvdlvIjupoGk/9/wmtgh4abNazoCXKtWAg/3YqvOR
SXMEuHArbzVjZ9r+FPqYcxacJQ3IbdgqjkuNK+xIkGEr0R5iTzu5etKqzsOJ
7kvverBvHm9Z/7EiCu5Hm6S8wDb1Sjpoy4yGpr7YgLfYziFKw/lZF0GlK+sJ
H1vSFP7Ks4sDFSunpXXsxTtUmYmuOOgOdj8idolAjW2DDWc7L4F6hQ1HAftA
F3PteksC9J9NUjfF1rHrP8ozS4RnKqmbLbG3PNpUYtScCFcFB362x+7rIdt1
c5Lgjuz+rV7YXgPG9CV2CixauqcmYSPXgEnzHTSQLk83omNrvSowTq6iQcsh
EYVr2P+MrL36oSIVIqvaE+qwI6e61a2ZlyF40EVoAjtz+UR9XtZV8JAtuGwf
T6Ar8gyLDik6aJc/WHDHflGXpGriTIeCWsmsIGzPf07MqIzQQYUYY6Zih3pK
UJfnM2Fs5+WhHuycfYG0AukcoP/mXOmdQKDXr12CvzueA0yZGv0z2CrnwDGh
IAfOD8ovJWNX1CjIndbIhe3Cola3sO+qdhUj4zxQu3fkq1AigcYENZrm3PKB
t6fxeSO21nUpxonCfLhTSJztxQ785XPM8/F8qO6Q8pzFXg7vs2oJKoCD31zm
FZJwPqZjezOiGfB2a5pONLbeg5EZk+JCKM1i8Y8kE8i8y36L1RkmZCRLSejT
CCQ9UP5sbzYTAkNMnh7Enp4UyjWoZ8KEzr1uf+wMgRZVpRUmsGMlQkqwJ831
TRbDWXBfyJBQTSUQ7baEz/XwG8BO4chqpBFosLinYZVaCqmmE6ed03G+anSj
FzNLoeqmt0ckdlxbIpqtK4Xx1R/iCrF/HrF48nypFBRirSLnsGMU2OOV1DJA
/Tvk4q4QSPPKFQk3ajnwMrTFWjMIRLngeKqeUgma3IUHJzMJZB9qUSlOr4Q0
a7vVVGxNkt4Hr1uV8KUqwrcBe/CQ6O/i7yth2cxmVDKLQPuU2vO9gv+E6lC6
Tzv2lmaDPjH/KmAdOFWtn0Ogsv8k4YRnNUggxcOGfxAolreaVHehGq5mNrud
wv5tlNsjyqiGh+6f8rOxJbvue9S9qgbWqs1ffOzwnJhzoq5sMHy0wujKx3k1
mmfXHq0BdfZCehCDQKeb/TKENGth1Xjo8HDRxn1wUhM0roVv6dlfFa/jfXpt
cXvduhaiyPbvjmNHfNk6+NW/Fhy1imgvsC/s79z+qaoWRkTTO3uLCZR8X4X9
bk8duJbs2d3PIhCzb+jJgNVtONZuPCtRTqAB7qHNFSQOqBWaSljcItCHAl2b
hHAO6H0uCU/E3uIgdsk7ngPN1loyT7ER+z5f8QYHlITcV07W4vlRgUub4ICp
7sFfk+oIFL9q/JDs0wDbGGOH39QTyFBSLWnnyUaIayuLqW8mUJrhR4FG92aw
nNTibrpHIKp+d25HWSvM6qTlHX6D7ykRXDMa2gEZDN3CRT6BSG2uR+n+nZDt
9a53XcEXEUsDHR20+0Ay5+fqm/ui9F1NYeXJD0D0emmCqY8vEupo2pt4oRue
lVtGXE7xRTJ6Dr1j+Y/BS8HMJabBFx0stipZzOoBpR3KH1ynfJHihx7bi029
cD6k/KTRNj/EeHhXUDioDx58zykxPOKHLLZbrqv5PoeSQlWOepIf0h+Xnv49
4gXwywp1wzv9ELtSNrAhvB9alGPc/rfmh2LeevXrJw/A3I+f/FiW/ohqYepw
PeclxDFI2f7J/mi12Jr0jj4IXWShNrxBqI/C8Im8MQTDRTHkTVsDkJmdxtoo
6xUYi9xdCfYIQI9szCpR4Ws4vvTHNtsbAaisrsBs8uYwyJ+nyRkvByB5zR3k
k3+OwL/qThP0/YHohaB4vFLrG4DWSqpediBqED9T3vdoFMyO7cr4OheIdshL
k0ldb8HXinst3zQIfcj4KGc0OAZP5ED3amYQ0kxJMQwjj0OfQxl3dSYITXqM
DFvNjYO9AcfmPzMyOjjT/7khdAJY/IJW7zwyOh/uF6iwMAF26vyA9gUycmy8
Zq9wbhKWxmm9rMPB6P1Xcozwx0kIJY8bmVQGI9bQJU7omSk4T67YOi8YglYD
9/lEfZmC7/4+8Hm3bwja/i3Tk3phGipO9it1doSgWbvLj8VFZiDeduzcvPZp
dE+nB1Quz8A5qmaLVNppRBYvF1HfPAvy7ZQVNe5p1MTU2ncvcxZMd8KzZ46h
qNfcostZZg6MO7c1HrgVivjkay4+GXNwtm3O5dh3Yaj7aPFxKQUuCEk7qK+d
DUMkM4uKihwumHo57NsxFIaCFp7+9yaPC7bxWYpjr8IQheVtLVvAhX6v+s+Z
w2Ho4uaEiZgiLui+i3j5aTQMj+qRsnM5F3jejH/uTYehwSg3+tcmLtTE0mhe
y2HI/m54lNMIFzRF3+97IkpBTqEi3cmjXHBzj9IuE6Og3zTyFFrHuLD7Zav0
RXEKCki7U68zzYVDnX7Le7ZQUKKHwPsv81xYGZeZZEhRUPvqFVL5GhdqEwKo
wXIU1FWjWjciwIMl4na2jTwF9ZDq1qWFeSAbde2OqgIFjTweKIwW44F2r6X0
gCIF8RnKQ0eleRArdptroUxB645s7WRZHgxS/v5J8UcKEhWGiBY5HhjvJJGX
sOWCSTI6SjyINnNaLVOhIGXVf709lXlwyLnQLk6VgjT6k2ro23kwfSw830ON
gvRSFL91qfLAr+L5vLE6Be02/9PhizoPtGqbrb/XoKD/A59unis=
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk41dkfB3ChSJoo6SeDVBSm0YQHQ31OMtZfshTKzsjXvVxfa/ZStlLm
WsfuKi4lW9a6RsJtkCRbJOpacu+ULMVIYY4/znOe11+f533O+/nIu/pYuvPz
8fHl4rNxCzwW6Z7QsDiheU72f3GmBFLgNenIpqiCZb+X8oZXKlV/H04GWBS3
cdlw1RIMiJcbwoLoaOOGpySI5brkM2DZuqYbj31Tqn17OcsKrI81cjbMPGyf
z1duA4HWu0uvYzdrzh21YtjBBRWRzBvYrw2iW4qSnWCmNKs0YWOesqhyeIsL
GPU+Hb+JHXds0K+I5QaP/0w8kYgt8SuD1V3jDkNf5pv+wC44SRFcLvMAW86c
WxL2z8bqp+WLPeGXswlHUrBZ5mtpJgwqpJ96Ip2GPeCUfCg32QdavdbdMzfy
qP2sNcEmYTVRqCUb+5JmyptLLb6Qu3ZPLw9bEBwUClj+YJrYWnUHu1OvpUOj
IQAi6FoMJnaSwSFaZ00guBYaVd/FljWbr/tcdgk+NmobVmJPWljbxd8LBlru
3vZq7NJzrPUfi0PA0TDdux5byyHGyIARBtlMB8XH2JZeUq8zki+D9lHlMz3Y
olrwON3wCpxeH/vSjz330Fecw74CyZwjj4ex6/4arA1siYLiwMwnE9in2Iy1
PNY16OwojPiKrWjYZ87TjoYHCoeM1rFFOjbfUWuIBqv7epqb/0+gni6KYXtN
DCTV6V8Tx3boV6fPl8WByCrZq4KNrD3GdX6KB5WFhifHsA8OZarH3ouHM/9m
DGhj/zOyNrS3+Dq4pO2jGmFfmmiX12ckwOdy49Me2EkL9tXpyX9AuuboTCn2
rd1Zus3b6RCp+OJTLXZvVYychiUd1Pc2723GtvvHfkp2hA4+wnmf+7Fpdtt8
Fz4mgVWi3l2+0wRKPU7EZ4qlQvfB2QPO2MPDVtQfzqWCBlT2e2HLBoHZtcxU
uNlCrQzBLi6XlPDenwZ69T3cFOxHcux8pJ4OtfzGDp3Ybzftr5+2yQD6+8Kz
YIbz5W3Pss/JgA9WEzVm2MSvX8NfvsuAFyGSyBF7wa9Hj+WZCY4O519FYAtO
RnYnhmUBMjHY+hhb+enIlEZ+DnA8nEKNzxBIh20ioufPAJ1samKkOYHE+pkv
NFMYILeo9iEJe3KcP+1INQNuKbh5F2En8rHkpD4zwNDqC6cLe1xHRWPOrwBc
awcSZCwIFP9gm3Oe321Iijo6zsYezO+qXfEthODFlbRjVrhf5YfD5pIKofr4
ozwT7Ct/RaP3VYVQJ/WyyxVbaUT32cv5QrCjCWSmYIdLlr0r8S2CpRjq/BL2
gVu3ttn4MiGpqLug7SyByFAzl2qyBGDt7fcwawKZ0HRLhOklMOAiIJeBfcBV
edahogRSNL/+XoM9aLwlQvhTCWwePm8/g31cqinDgXoXmIpjy842uH8NR3qE
Lt6Dot0UrpktgYoWRcHe7j6Y1cvn/naBQJG8lZiqUOwiR62L2Laj3K4tWfch
IuP8v7HYouy2C1VD98H9Rey7dmy/1PCgLdZloCRT6mRmh/uq9rGs0rwcrjdF
iDnbE8i7wT2R/0AlmA5paeY5buwHi32b1CshWL2d9hR7blj3wbp+JRS+MOn5
hB3wbdfg94uVUNGhII6cCBR6okXm33uVsKtV8sYkdmybbNmHY1VwRm2TrYYL
gRg9r5716z0Agwqm/ZIbgfq5xluLXWtgx5jbs0VPAs1mHv7tml8NLB8+K6FA
wflNhaKcrtZA5A561FlsVNa2vOd2DZxgvm+vxi71BW48pwbe0BdEAqgEurqi
/jfFuRZU8vPtvnkRSFV0X8zPjnXAWPt6SIEk0A3VJb668w0QIH1bdSqIQL4q
7WnNRY1wlwUeAXF4n7pRy0dpzSAkORSil0Ug17+szekXW2BIQ11nezmB3Ob7
m5vj20BmYvDCHBvv76P1PszYp8AQGUsMHyMQf3O9ZnRoO4Rk+5czlgkkrmza
/TajEwpC+zMM93gio3y9O3PJXbAWNPHjmoYn2jPbZXC5vhs+n+2zTDjvibL+
frRJwLMHGkxnOBWRnkhX5uT6vt9fgtBlX0XjO55I5Z3YZERALzz/VCa987kn
KivZSdT69cGq3XOV1UVPFD7m0KcS2w+v/L3NHQ5SkK+ulmle6gAsuP3hP21F
QSv5+q4f6INwckBtZj2KgnrILOdLt1+B7cTyUF8tBWkb7l8bLRiCUxzJkelp
Cur4TbsE5QxD8I4jNtf3UlFRVab2eOlrcHq2JVreiop2H/iJ4nh3BMwQfTXw
OhX1bhK+KtX4Bk6mcfTn2VRUK+zP7OkYBUmu4x0Ovxf6abcYxZU9BuSp4BGx
415oNnFJQm3wLajyXT2cGuGFDsTFqfpQ3oGXuleOBMsLjV8Yea03/Q62PZnP
iV32QkZTfV9raRwIy3Or8NX1RsF+7oTkDAfeBGfqz4Z7I7O6bBPJoHH4c1au
XbDNG336TgkXWBqHyLl0K38hGip4FVVD85+A1IeVy1EmNLRCHHcO+TYBWQ+V
NPRSaUhmNcnON3QSHKq27uJ7TUPvDRM6hQWnQH0f4ROj6INaFbtANmEKhp4E
XE7080EUYaag/Nb3cKXyXsXJRz6onnHweGvSe2B8VLK4KEiibh1dtqX4NOQf
NFCnKpFomZJt5Zw4DYYuvTe2mJGo3Tz/3HZJLpT2sim7gkjkqq1bXJzKBeHb
7rZN2STynHm++CadC3OXzJU8ckhEFjjp78zkwsv51PUduSS6vPUaJzyXC0o/
KDS65JH4qzqkLZlcCM/SDtxcQKLBEBv693ouvBVZmDrNJJHJI78QixEu+F3J
qB+vJJEFTbA9dpQLIxJzR29Wkch2f7pk41suuIX7V2g8IJHHjYfVipNc6JBY
ZsVXkyj6At+nbx+5oHanZ6dqHYmaVm65Mte40BsUVRfOIhG7XK5qhI8HP378
EKXYSKIu16p1MQEevI6hWvZgj3T254QJ8UDvSiH/wSb8HlnSr8zFeHBEdDD/
WTOJ1s3KFGJ38sBLriUl8AmJtghAAEuCB8o/NNyUayGRBNVVXFGKB2FvWLf8
W0kkLffFyU6aBzkfnqbJtJFof19MOV2GBzYag7f/xlaO27PKluPBSwtujS+b
RL/o3DX9Js8D2+Fvz6Sfkug/JA+prg==
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#3"]& ], 
    TagBox[
     {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1Hk81PkbAHBXyCIdWLnCKjmyLULo+awUan+uWhJip8jxNTPfIVcW5fwp
91EkRuVIzTBFOWrXzzZSyZGJ5MrkmNm2YttaV+b38cfzel7v/57r9ehQaB6B
EmJiYldxrGXJ3+V63lq473PSpdzathiG9IW/2WgVmIJrfljzmpcaTE8N5wP0
r6ZNrJnzBV5uZDuCzenGbTrY01uCF+7lu8Klp5/OrvmiWpcCu+0I5Ow4ML/m
agPfCjG2FwTF1ybpYrdbzn1/hOkDYo81DfWwXx9M6ajK94dJqar3a14ylDeM
7/gF9M32PfsOO/2HQUZV20nIdBF26GNv2cts62kMhJAj1bzt2JU/hkotsE7D
Q7szYgbYu5zN/6NTEwLfrvc8uBO7zW216BAzDDgNTtWG2C/983dczadBfOLJ
RpO1fsx2Wb3l0sH4ygWKKXa0ZcFodAcJSvFcw93YUuCnX9kWAXsY1PUW2E/t
O55YNEcCP2ZM2xI77+AO6tPGM1C844SbNbaWy/y9T6xoaPIpFNlhT7l7+mTU
xUBMr3MCwr71c5tIoyYWPj1WUt2PbeWX6nSQeRYytQeKnbA9CLXXl/MTYR0Y
9B7FlreC34sdk0CCE6x1DHuuhdw4yU2C2y6t6T7Y9x4ONp3pOAdWw7m1FOz9
XOZqeVsyiOrW6zGwtzsOuAmtU2Bmpd8+ClvuybrrZs0pwJe9FR+H3dcd6tjV
mApLijn7krH9eOa586x0KPmqsVyEjTxP822MM4D9U8i7UuzvXpWYp9VlAOcZ
93MF9p8jq6+21vwXNBXqj9Wtze9tl44D8wIUk8irfW0+f/veLc7PgXmtnyzn
sbOUS23bFXJh114TrwXsF5xUbQuPXCjLYxeJsH3+9J3WGskFi8g8quJSGKL6
fEP+/Vce9Jzi5ZhgF9oFZ5QoFQJv6/e5JPbw8JEwxZ8LIeSxVGkctlYUuCSX
FAKVFt2RjF3DVtkSrlsEmhv20IqxW7W5Fci8GFJXNls9xJ4Q170/63UZ8l2N
05WWcX/lCqW+ZZfBKLM7Th07eO9ifP+by6C5IJO1HftvRp99W0gJpN10VbDD
lppK6Mk+WwqHpjV+DcM27ByZtqgoA2WNc2o92DbcQ3L2EUyY5szur1sJQ0q8
6l7LAibQtQSKzdhTfIkik7tM0InP+4eLnS3Wpq32iQkO5uMb+Nh8GyOLOUYl
7L3mnab+NQxl3PkmoJxxDUrjahgF2IMV3U1L5A3w85BwvLSK74ttcHYu7wZY
H+ME1WInPUxBM5wbUD8oXtmCvXPE9ln//A24apYWOIodr8J6U0tWAXuT8i49
URjSy8r6xoushgi04WETNj3O5Ze79FoYdEvs+yBGoENU21rZ3FpwpEyOSogT
SI9i+NGvvhaiAwYkVLEHnaV/lf1QC9yFwCuAbaf222W/sJvg7GsnysOWazbp
kwmqA9pLMs9GgkBVn+XB1+c27C7ijlVKEihBuJTKibsNJoNZ6i3Yx8YE3dKl
t2FpdYTRhy3PfXSc8+o2rLBlqSJsRmF8lLQnC/hSpcUnpAiEzP5iNbixYdbK
tUFnHYHCmwOzJfQaYNOeNMk2aQL/B/dt4uYNkDP6tX4Ie27Y9o7IoQEeBdPj
/sGOXN48uBLUAH77HEJ2yRAobl+H5r91DRCqUsK+jp32SIv17gcOSF9KHyqQ
JRCzb+gZz/4OyGSNl2fKEYgncF5fQ2kEzbcy0/2KBPpYYnAgmdEIvzMTKz9h
yx2WOed/vhEunfscrbwB18t6tKB6rREC64cZ3ti3SBBkTDaCePMZJh/7/JL5
49CAJqAZXHi9qEQgU/ltqbtO3MP7zeq02UygTNMvYve8m6HDutNf4VsCkUZd
Re1VDwDGezsn9Qi0dDKMPUZthwXv6oSjuwlEeejplhvUAZ+ZR1WSgEAn53nt
7RmPgEkt/lDhRqCL39+nVad1wlZRbSBQCCTRft8yJa4Lkrq2Ppc7Q6CNhod7
Ji4/Bd+Z6ruaFwjkVGF/fS6/G973Uf93oJJAqh+7Dybe74EXtJyGf1sJVPq4
VVwypA9u7Vz8d+wlgWw1fxRtO9UPA+2t+uFzBDJ6ozT1a+QL0BAZePcphiNW
7abgJsYA+N98sOG6cTiKH/cbMErjQZC3z2KySzgiba0Olxe+BI9xReejZDha
qnCgvMsdBJ6DsNiwIBz10UsDoq8NwcZFT1WXlnBk7ai7Olb5CqaiFDthPBw9
OWBdi8qG4fxtU+BIUlEVp8Saf+s1dJSX7akxoSJlPePQEzdHgLwjbSnnSUUv
xGXPqz0YhaNkkLNWMhU1yUZU9z0Zg6TssXM3G6jIWFkplMIdh+6Ew5v3j1LR
x+wvW8wGJ+DJbH1BmzwN6aWnm9JC34BG78EyJRsa4h8feW0/+wauXYnRiA2h
IafpgcUm6iQcdeXxZstoKIYRGKzyfhIKHez1J57TkMu9K4dUovjQNu5+fFWc
jj6shMZLfuFD9seculZ1OqocOtdIjXgLjJhIPsWCjpaC7QJil99C3gP6KZY7
HWl+zfMh46ZgsjzveSJBRzOOF57KSk3DSePeJbFMOvpjezdoXZiGFnGVV4E1
dBQqWy2ls34G1FI//WD6Bx3dZ35n90feDHBynIruTNJRj40t12PjLKyYKsyl
r9LRQuiVIwHZsyBxaoivrk6iLreKnxVUBDDFcu9i7CURxdq2pqZQAC4so3df
vUgU8v7559FiAczZ28aeP0YieqW/w6YSAUQm98jLeJMocX3yZPxVAXxIjXBQ
Ok7iVT1R96gWwIwa87OuL4kGY71yV+4LoE8844RzAIkOtTJi3UcEUJ/bal8a
TCJ3qlRX2pgA18dL0A4h0THdYpUHEwJYd+1w+w3s05ktd7dPCWAx3fVIfSiJ
Uo6LfVj+SwBluhdbHhEk+m0pi1K9KoBTMhOpc3QScdnanBExIRz41k01iiRR
N4UjUpIUQpShAnsZe+Qpr+ysjBAEb4LeSUeQaKFUfchNSQgZ8bFVmmdIJHJh
6adtEsK6BKNfrmNLS0Jk2xYh9Jdv090ZRaItYZSN29WEwOrpvWseTSJ17X/8
fdSFoFydntKKrTuQys7VFEKcScJxFEMiw3TVr1xtIZg537HoxN5tc/Pwso4Q
2GO6Kj/Fkuj/mdSvRw==
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#4"]& ], 
    TagBox[
     {RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwd1Xs4VHkYB3CiGrdcYiRbLpVyCYUQek+W3HY1iNqkUGlQmOGkUJF7oTEh
JEa5F5kalyJmSSFZ5U7K3cxGdNlWLtnf2T/Oc57P8/yec87v/X3f96h4+jue
XiUgIHAHXcRdqF60fczAYZ9Br847YRKObePXmWy+qQPCW4f/90K5zql+JsC5
n3PvCbO/Q7d0mRWc8/IcJTwhS52vZB6EVcf0pwgnKDRLlNU4wbYPXjOEC3Yc
yxEoOwztsz++EeYazuk6sVzhW+LMMuGBA1EN+cwTcOPJftJq4n0a4hphDR7A
oH9fTzh2dw89v+YkfKwWUyEsu5dV0845DckJETqEc/f7CM+XnoGAmcNAWNtG
/3eVQm84P5hEIVxD+Zlqy/KFGy5qJwl3n2Buv8P0h9yv5xMIs/W0jcaaAoAq
p3uPcLDhzXfBDTQYbbSpISwMbttyawIh9EX2LOFW84YWg+ogcN04ILYGOfnA
dr9WDg6BC7g64c32nyu/lgZD/fG/qITHHVxc40ouQNFowjXC951rVn4pvAj6
X0pKCRu5RVsfYIUC8zFpnrDjWYWBdOYVuPDU9s5aZHEjqE+zCof8NPFWwnNP
aNIjTeGwvKQ9T7jyWU8F3hAB7mdSj5CQf21i/cyuiYSUBzx1EWQ1q04K3zgK
pjvLPAiLtqy+p1cdBTcjuzMJd7T5WDVzoqElxEJaFNmtS5/xuTQWZP4sWieG
jLmcGTXRigPLLYEOhLf2ZejHlMRBlFh2KuG/B3/2bSyMB/5ZOVVxon5jzSoW
rOug4XPNToKoz5djj9OYN4AikDgsiZwol2nKlWBAnyMPk0J+y45WMnBkgPbn
kbuEXf8+NrF5kAGbJMt9pZH9XMVoX6aToYtbJbUeOcWMGpchlQKiIUFFZOT+
fiffdc4pQLHkqMoT9T8P9pEZKTDjyMwmXFhGlj2nmgqXdqvf3oD8VKkpB9NP
g+bZPws3In8QVK2aOpwOTg3Z65SI/WVLZB7LSgeL4w13CVP3/gh7M5wOA7pR
RsrIX+gd5jXeGVB/fpSqQuRj/HJ7UmgmHPITGdqCrPFicMIgJwuGfhNYr45s
0mQrah7IgnGn6xX6yFJdBX8Z3mTBWPf2AAMiH6OrUnc+ZoG0+06tPchJAjVK
Cl9ZcDY+sMgQedRE02COngsb5KfZe5HjHom5Z9Pvgg4lkbQfuSenrWKBlgfi
AfHP7Yl8le0InUvOA2dVywcHkcOfRWGT7Dw4+sw7lYKsPmj66s3nPDAonvF1
RA4jlw4X0fLB1HhY3QV5S2Ki2GFaAWia+fPdkANC7D0eBxRBB0Mr2A/Z1s+0
iMQoAhotOcafWO+pMev2sAh4Ug63AojvsVlzifSpCHxih2vpyGYKdeluvsUg
pIttCCbyV72zY61XCZw9JCgVjpz/jzgcc30A3vURQjeRL/MXotkhD6B60WRf
CvKRIV7bmswHwGyjhKQS/dD0/Ci77wHsUrv2/RYyPSXs/BqXUphimKxkEXnV
my4tp5QBffmWQyHyuerTSau2lIP5fa2F2v/ng4OyoH45NO/JuVxH9FO/6aMV
i3LY4FoszEUOWlzfs+RVDu2no+QakUP2NWz6t6QcjG2cbVuQY55vLv24mw3G
fu4CPcisjt5XXeaPYGFOPHsOuYtnI1LoyYHuZrMcDREcm83YYRlJ58Cve7hU
LWRRu7URJ65yIGZrvp42Mlb6fF7+LgckQ9Ne70K+TwNe3AgHkrrIMsbIVxf0
X/q4V0C/S8KQFbKOuHK09vFKYOuYXPZCvqbzXaDyj2pQTN4+WYhM02xO5ebX
wo+kW/esRdE8PelbNuTHBXPpxZIVZM9nLhSGVwMcuk95zxXDsZOfu7jcuOfA
pD3tKBFH81u3yr8g5gVI1E8qZkng2CpulWFUSDO8btQVy16HY9Iadu0f0ltB
pDKv6bUkjlnnmN+bY7bBv4K0yytSOCY/23bgSlU7yLa/2nRSBscyXz4VFPLu
AM8nrXl963HMdNP+FeVTb8Cw4veHtnI4pjksNX4p6C2kOaswv5JxrLRIhlpB
74TjS5PKaRtQPt+7dWrGdIFUgmBo4Ea0P1Mju+yUbmj1MCC7/4L2l2Ph+ZHR
Ay69IuPYZjTPAjLdg+/2Qnxs2G4PZRwztlL9OZTbB1VmroN0VRxrsTQuwrL6
gf1xu1zSVpQ/dobx6P0BUHbi7ptRwzG5LVo+x4sHgWltFm6kjuaTIOmqQu07
IMca/vZKE8cqSIEFHS1DcLvwJZ2qjWNaclI+nk3v4VpVifu0LjrvpO+yej0f
IGrvV5laPdQfsbE6/j7DUGA48tJ/D+rno4MD5lPDcCFHzn6HMarfROePCr8R
0LqkGq9rimMX6Kep5JkR+PbFoFYecMy+8rYt+fwopOy37XUwx7FPSz5hQt9H
4XqEsh7VEv3/eiM4foFjIPE0KifcGtWDauZ+cXEMwt4YJc/a4dim5WRXWsg4
7FjUe29wEMcmra63koQnQEekIqfbEcca1dpg8/UJEJlUrg12wTEfUoGwisgk
VJA+OE7/gWNVrK1mjcmToMF59PCZG461m5g2OUpPgWTuuR/HPXBs3ue2k3vS
FLwxWLi6fArHmik5zhJkHiz1aPctUlHejE0LC1N4QNYjpzSdxTHvmdf/vEvj
gYWbPasHOSD3hIVMBg9smeWlU8hXRCJHwu7wIL3uyyuRczg6qhZFxwL0vOu+
ZHvknouHGUtVPGA5bRzrQbZ9Sr/oMMgDruLLo3w/HHPwE26OGeLB8DuZhAXk
I6pp5NoPPFjLia4T88exM9eePFYb50GQ5bCaNnLUUYFPi9M8eO3qtToQuW4h
0bPgJw8m43N/LCE3lSmxBwX4MBrrZLYuAMfaPNkrUkJ8oCtpXlVCHmztygpd
ywfBWltJc+T5TMVeihQfgiVtDGORV+xLt8XI8KF637aodOQ1QhBUI8uHt9Zq
b4uRZX09pdUU+CCflEZrQ1ZU+nbCVZEPkRmrG4eQVTujyxib+GCjnCE3i6wR
K7/cpMSHGFEHbwEaju0yKbZbVOHDYWxnnTTyfyblVko=
       "]]},
     Annotation[#, "Charting`Private`Tag$28139#5"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 151.72472953585446`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.882870313200821*^9, 3.8828703337793283`*^9}, {
   3.8828704032913523`*^9, 3.882870444426054*^9}, 3.882871737560042*^9, 
   3.882871870421131*^9, 3.882872073896041*^9, 3.882872138682444*^9, 
   3.882873141177374*^9, 3.8831058632850513`*^9, {3.8831102393713703`*^9, 
   3.88311024932015*^9}, 3.883110481063265*^9, 3.883473340117433*^9, 
   3.883479397192685*^9, 3.883479649608984*^9, 3.883553881259975*^9, 
   3.883646088236083*^9, 3.883646569533897*^9},
 CellLabel->
  "Out[117]=",ExpressionUUID->"87302cc8-2b37-427e-ae3f-967f24d3fca9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"K1", "[", "Et", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"Et", ",", 
     RowBox[{"-", "5"}], ",", "50"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8828708703013153`*^9, 3.8828709053868113`*^9}, {
  3.883110255965941*^9, 3.88311027022156*^9}, {3.8831104853921556`*^9, 
  3.8831104857251253`*^9}},
 CellLabel->
  "In[118]:=",ExpressionUUID->"13bdecf0-e0fe-4fe7-bb03-54c065ce665b"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVjGk8lAkAh4eYabGZHLlSUSopcs37vhT/iMq4QjOMIU0UUTEMFcqRVGwH
UYixyy4VMazVyaQUSYdqW61uZ+RIqYxd2354fs/v+fIYCHZ7hcjTaDTud/63
6d6K36en1aXL8t2KPU6JsOuc7OblYXWp1SetLc1ZIlzsdHkc/UJdqnvkqqLt
SRFMbQbG+q6oS8V2sZNGx763zMjsoUhdmh/APDmZ/r0TxeeKB9WkylEHdxbF
i7AiOatozbPZ0qmMoEsPBSL4qo0xGQGq0ovxi1kvV4pAcmcba9Lo0p0On/Z8
bopByUma3+fUycY93U5Zq3kxMMzKm6ff+Laxoaa2K3EsGtHhlTW5UW/tk2pT
+4ISo8H8mx8emz1pn2nom502Kxoe/sbuShI6Mt2/HY7LFmJy3gd34ZAqiKWi
Wfu0hPisay5MXqsBK1I41VgcBVl22cHbI9q47y3vvnluFEr/iH0jZusjXtL3
QK0wEgsMrTubWhZA7lnHobi5kah7lWlkpbsQ6T/2ysdq74beR+bpEUcjGGt3
yqfL7cJ6mTDC+OwSsDr0sOZOBIapvviwAWOwUy+N6qaFY1t7evX4rOUwvJI8
1OKyA79y6RumBKa4rpi6MbA7FLwC39SydSuh3nggMT9lO5zp+hpMkTmWXCy9
avQ+BMMZ72/IzlpgcPF59msqGNO27ikqEkscbi6xNk8VILqvOIbfZQXVDN02
h5ggeF4/svfRuDX2yw7ycw7zoZY2m6fz1RptQ8EDc2L5eOqaZ7Nlyhot1Qo7
Mrfywesql40qsFAvzujzsuNjq+xOInMOC4VHcozZ4/6IpegpHiQLxZezgjt4
/jhbl3K0PYEF1ReRBqL5PAQmKoVrJrOQP+iWCmUeDJyy2AFpLAQY9JtMTfjh
tyc/q3z4iQXGGcZ1x/t+qBqXHlMRsyC/llOtmuCHJvPpLPYNFvxLbvLinvhi
oDK+oFWRgPPq3FHHOC7OmLft2aVEoMwn91ZnIBfr63Q56qoEPOy4U5ucuSi/
dpkZoE2g4c1mT5omF6FtX9JGlxHYzblLqUs46O+PjtTyJCAWaNq/ebcJ/Qsj
nELyCXgLbOznmvvgTNlVQyUxgRGWys56DR+sN1GmVZUQaPrhiu2yr94otzh/
5WsFAduli/7NbvBG6Jp+s8xGApGSBS1bN3ijLzBYt7abwHC6W7kdxwu9efwR
mhmJ4MCJp6edPIHYiSCOJQlW/Sp2xSJP5Hmd6LhAkHAx1NdInOEJV+VbdRyQ
WMpt7spL8kBtgklCxUYSFSKdop4IdyRtnpzpG0Nimyc7bsDIFc9tT+2r3ENi
pskKrepONiy1TYfkE0kQt1c/Kclko/fhlgeVaSTSf/F3nRhxgatDa86M0yTW
rdS5GXphA3SMzhhWXSbRGu3wtnbIGUI5i1MKDd//lkrDz485496LNkVeE4nB
JUeVRGbOSMqd7ldoI3H42juHqnAn9DK2V/G6SFzIOc1JaXcEumkG1a9JhPWU
FZ0IckSeND9LsYeEZJK1d/mYA1z33hdVfyBxnC4u4Cg5oOa99Sr6NIlvduV3
GXMAlTsPKv1nULB++XQGe549QkrC5ksYFEr1BrlMhh20+YXyfCaFVjvLvPp6
WwhJIkaiQaG5vi/iaoIN7mk86qHrUCjf3eIhsKBwoF2hVWJAged2oawrmIW/
zhXZMBZTeCVXoD3ruRUsDpEV/GUUMpbLfArNLJEp6NCvMaUQL/dnTRTfHL12
EccZlhSMkgItZpaaAnp0uQCCQpitS9H5IWPkfRELa2wppC7/J+ORwSJ8fEx1
M0BBfr/QQ/WoFhY10QstHCjoJ/c8FRh8tP8PvnJXzw==
       "]]},
     Annotation[#, "Charting`Private`Tag$28198#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 50}, {0., 345.26943998635636`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8828708873272448`*^9, 3.882870905891152*^9}, 
   3.882871740118313*^9, 3.882871872632328*^9, 3.88287214039114*^9, 
   3.882873144037532*^9, 3.882873467724246*^9, 3.8828736639473057`*^9, 
   3.8828739675576878`*^9, 3.882874555421548*^9, 3.883105865169652*^9, 
   3.883110007000498*^9, {3.883110253678253*^9, 3.883110270678035*^9}, 
   3.883110486084037*^9, 3.883468963591229*^9, 3.883473343001748*^9, 
   3.883479399961771*^9, 3.883479651663865*^9, 3.883553885440947*^9, 
   3.883646090926628*^9, 3.883646571488081*^9},
 CellLabel->
  "Out[118]=",ExpressionUUID->"d9074324-3e7b-49a3-815f-cb3ef58357e9"]
}, Open  ]]
},
WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"7675274c-85db-4940-94c5-d28ab7a06da6"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2336, 54, 174, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2897, 76, 2801, 74, 200, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5723, 154, 2495, 57, 79, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[8221, 213, 9649, 173, 259, "Output",ExpressionUUID->"f6516faf-fd08-47c3-9561-30dd53e915ef"]
}, Open  ]],
Cell[CellGroupData[{
Cell[17907, 391, 2179, 53, 79, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[20089, 446, 1793, 25, 37, "Output",ExpressionUUID->"51ffc0e8-d7b3-4a69-8b95-a2da95048c0c"]
}, Open  ]],
Cell[21897, 474, 420, 10, 42, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[22342, 488, 1091, 29, 58, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[23436, 519, 1275, 18, 37, "Output",ExpressionUUID->"9f221de9-9a31-4103-ad87-9b04df8cd205"]
}, Open  ]],
Cell[CellGroupData[{
Cell[24748, 542, 2053, 50, 116, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[26804, 594, 1296, 18, 37, "Output",ExpressionUUID->"cd99cf10-3007-4621-9734-a1aac73ac167"]
}, Open  ]],
Cell[CellGroupData[{
Cell[28137, 617, 1393, 36, 58, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[29533, 655, 7185, 134, 260, "Output",ExpressionUUID->"a9008b86-55c3-4fc2-adcd-f243b8d12076"]
}, Open  ]],
Cell[36733, 792, 397, 10, 33, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[37155, 806, 1356, 40, 111, "Input",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"],
Cell[38514, 848, 814, 12, 37, "Output",ExpressionUUID->"7d02abab-549e-4f97-9a0a-462a6f073f05"]
}, Open  ]],
Cell[39343, 863, 1579, 45, 111, "Input",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"],
Cell[CellGroupData[{
Cell[40947, 912, 579, 14, 33, "Input",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"],
Cell[41529, 928, 8537, 161, 260, "Output",ExpressionUUID->"8a5edc72-5750-41fe-94b1-2c3cc97f31b6"]
}, Open  ]],
Cell[CellGroupData[{
Cell[50103, 1094, 1406, 33, 116, "Input",ExpressionUUID->"a7903930-b537-4744-afa4-508c0f6775c1"],
Cell[51512, 1129, 22012, 381, 260, "Output",ExpressionUUID->"3a455965-da64-4483-a63f-6e48664099c3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[73561, 1515, 2004, 46, 104, "Input",ExpressionUUID->"41107c73-e600-4079-9938-9536a9f8a8eb"],
Cell[75568, 1563, 27511, 476, 260, "Output",ExpressionUUID->"1f9867dd-5b62-435c-8fd4-b1b0ed99a1e7"]
}, Open  ]],
Cell[103094, 2042, 6884, 198, 339, "Input",ExpressionUUID->"2d742f3b-e2e0-47c6-baf7-86eb7d257d8e"],
Cell[CellGroupData[{
Cell[110003, 2244, 2358, 46, 100, "Input",ExpressionUUID->"c4aefd0e-3506-41fc-bf66-96c712b2ce79"],
Cell[112364, 2292, 1169, 21, 49, "Message",ExpressionUUID->"351a986e-db5e-419d-b044-3ceb4e8e662e"],
Cell[113536, 2315, 223, 4, 37, "Output",ExpressionUUID->"7ec08f6c-592d-4055-ab4e-6bd1d9cc7bda"]
}, Open  ]],
Cell[CellGroupData[{
Cell[113796, 2324, 616, 14, 35, "Input",ExpressionUUID->"ccada756-7348-46c1-b563-ab963b6bc06c"],
Cell[114415, 2340, 294, 5, 37, "Output",ExpressionUUID->"0e719ae2-1b65-4be2-b75f-8339affd0c43"]
}, Open  ]],
Cell[CellGroupData[{
Cell[114746, 2350, 565, 12, 33, "Input",ExpressionUUID->"944ca04b-356e-4d0c-8a5f-3da8872641bc"],
Cell[115314, 2364, 538, 12, 30, "Message",ExpressionUUID->"150f8423-52f7-47f6-9cfe-1ef7d7626481"],
Cell[115855, 2378, 815, 16, 49, "Message",ExpressionUUID->"aaa949a5-4f86-4f27-b5ea-43471ac85dc1"],
Cell[116673, 2396, 38681, 653, 255, "Output",ExpressionUUID->"174b245f-7a18-46a5-b159-f307aa64ff21"]
}, Open  ]],
Cell[CellGroupData[{
Cell[155391, 3054, 2725, 75, 151, "Input",ExpressionUUID->"63a117cb-1305-4d2e-b025-0ad6c987fd15"],
Cell[158119, 3131, 1062, 19, 49, "Message",ExpressionUUID->"9465d3b4-1b38-4ebf-bc22-88bbd52d910a"],
Cell[159184, 3152, 1064, 19, 49, "Message",ExpressionUUID->"0b9eb816-b1b2-4b32-811f-9bb82b64a253"],
Cell[160251, 3173, 1064, 19, 49, "Message",ExpressionUUID->"262fe223-1353-404c-910d-084ec0298319"],
Cell[161318, 3194, 759, 14, 30, "Message",ExpressionUUID->"9cb325aa-ebd5-4549-9d0d-b98022a6d892"],
Cell[162080, 3210, 790, 15, 30, "Message",ExpressionUUID->"fcc0885d-5e57-4972-af78-f4e5710cc5dc"],
Cell[162873, 3227, 787, 15, 30, "Message",ExpressionUUID->"628c3573-0cb3-4ad3-b8db-4bf802d04964"],
Cell[163663, 3244, 787, 15, 30, "Message",ExpressionUUID->"57d5fcf3-4ecc-4dd7-bb38-0a890cb778ec"],
Cell[164453, 3261, 761, 14, 30, "Message",ExpressionUUID->"61acd072-3dbd-4bb8-95d9-4290a58cd457"],
Cell[165217, 3277, 1061, 19, 49, "Message",ExpressionUUID->"f51a6b8a-cf5d-46ea-907b-41fbcd5d7b4a"],
Cell[166281, 3298, 1063, 19, 49, "Message",ExpressionUUID->"85cbb774-40fe-468e-976f-9828d5aa2528"],
Cell[167347, 3319, 1065, 19, 49, "Message",ExpressionUUID->"195eabe9-19ea-4a0f-8747-965163ff2458"],
Cell[168415, 3340, 761, 14, 30, "Message",ExpressionUUID->"18165ac7-cdf8-4e80-8ba3-312f54219eff"],
Cell[169179, 3356, 788, 15, 30, "Message",ExpressionUUID->"79ad0044-cc11-4662-b4d4-ce25bdbd0a14"],
Cell[169970, 3373, 788, 15, 30, "Message",ExpressionUUID->"8b87d834-5b28-4536-a721-633b16197312"],
Cell[170761, 3390, 788, 15, 30, "Message",ExpressionUUID->"59d03b30-6e84-4206-91fe-c6d79842a4ac"],
Cell[171552, 3407, 763, 14, 30, "Message",ExpressionUUID->"e855d257-912f-41d2-b5d1-1bd4b86f686a"],
Cell[172318, 3423, 1065, 19, 49, "Message",ExpressionUUID->"79e9db2d-f110-44ea-a514-e1b9608ca443"],
Cell[173386, 3444, 1065, 19, 49, "Message",ExpressionUUID->"ccdf8f9e-0f69-487c-8b3e-36edddb2a225"],
Cell[174454, 3465, 1064, 19, 49, "Message",ExpressionUUID->"e095782c-b44f-490f-a41e-6ea0cbbcebf0"],
Cell[175521, 3486, 759, 14, 30, "Message",ExpressionUUID->"398615ad-481d-42e3-8e57-61038bf6a356"],
Cell[176283, 3502, 1061, 19, 49, "Message",ExpressionUUID->"be43fab0-915a-484b-8c47-0e1e07aa5f7c"],
Cell[177347, 3523, 1065, 19, 49, "Message",ExpressionUUID->"3a1602a8-6c9f-4ead-b3c0-66fbaeafdfd4"],
Cell[178415, 3544, 1062, 19, 49, "Message",ExpressionUUID->"77c001c0-123c-4e78-b852-e0be646b38e2"],
Cell[179480, 3565, 759, 14, 30, "Message",ExpressionUUID->"e1837700-add2-4091-a5e3-9f5d95e72cfb"],
Cell[180242, 3581, 790, 15, 30, "Message",ExpressionUUID->"9276ac1b-34c8-4c4b-94ce-a1e1e2b03519"],
Cell[181035, 3598, 788, 15, 30, "Message",ExpressionUUID->"3d3c3553-af7b-461e-8a60-628621c8450c"],
Cell[181826, 3615, 788, 15, 30, "Message",ExpressionUUID->"73b8f87d-3637-4454-9e17-076bb769eeb0"],
Cell[182617, 3632, 763, 14, 30, "Message",ExpressionUUID->"e31fb47c-e5b1-45f9-96cd-88f58e454115"],
Cell[183383, 3648, 1064, 19, 49, "Message",ExpressionUUID->"9eb97211-7708-473e-a3d2-4b62c5c32111"],
Cell[184450, 3669, 1065, 19, 49, "Message",ExpressionUUID->"29062eea-5e81-47e2-a691-6ef72caa57f6"],
Cell[185518, 3690, 1066, 19, 49, "Message",ExpressionUUID->"fba75cd9-e413-423a-aed9-2b0162ea30d6"],
Cell[186587, 3711, 759, 14, 30, "Message",ExpressionUUID->"c0d868f6-b64d-4cfb-b967-ed8b09410e7b"],
Cell[187349, 3727, 788, 15, 30, "Message",ExpressionUUID->"2e16603a-e4ff-4fc3-83f0-eb7d860317e7"],
Cell[188140, 3744, 788, 15, 30, "Message",ExpressionUUID->"c60b7153-2d59-480d-9463-28f86f507f11"],
Cell[188931, 3761, 788, 15, 30, "Message",ExpressionUUID->"4073b901-547d-4911-a72b-f7ea754480cb"],
Cell[189722, 3778, 760, 14, 30, "Message",ExpressionUUID->"6b173163-5e87-40a5-ace0-2e3c5c20018e"],
Cell[190485, 3794, 1063, 19, 49, "Message",ExpressionUUID->"86dfa5ca-523b-4938-a582-9cb753857d97"],
Cell[191551, 3815, 1064, 19, 49, "Message",ExpressionUUID->"1a64f4e4-ebea-4533-86c3-868fce33e5f7"],
Cell[192618, 3836, 1065, 19, 49, "Message",ExpressionUUID->"9a224a6b-8830-4cc0-bffe-0a88e274d635"],
Cell[193686, 3857, 761, 14, 30, "Message",ExpressionUUID->"563924c0-2437-4725-ba2d-436e906cb3ef"]
}, Open  ]],
Cell[CellGroupData[{
Cell[194484, 3876, 750, 13, 33, "Input",ExpressionUUID->"763b3918-bc83-44af-84f4-82b8d9fdad84"],
Cell[195237, 3891, 16088, 280, 244, "Output",ExpressionUUID->"2e74f3c4-c33b-4e10-8192-c1ba8f5efbff"]
}, Open  ]],
Cell[CellGroupData[{
Cell[211362, 4176, 2489, 55, 198, "Input",ExpressionUUID->"f395d881-914c-4fc7-9c61-ed68156165b5"],
Cell[213854, 4233, 30583, 560, 78, "Output",ExpressionUUID->"f6260ccb-835b-4576-b72a-def9181f614e"],
Cell[244440, 4795, 30243, 554, 78, "Output",ExpressionUUID->"48efd146-8086-4a53-bb80-4bfac6ca036f"],
Cell[274686, 5351, 30247, 554, 78, "Output",ExpressionUUID->"6648e69d-28db-4459-ad5b-75114b6ce1bf"],
Cell[304936, 5907, 30255, 554, 78, "Output",ExpressionUUID->"796e557f-9d1c-4af2-99dc-9a1e00b85a64"],
Cell[335194, 6463, 30225, 555, 78, "Output",ExpressionUUID->"780d3dab-6e4a-41e2-9ded-d5f760178b6b"],
Cell[365422, 7020, 29857, 546, 78, "Output",ExpressionUUID->"83315f7c-f84a-4d59-ad0c-433212e5c4d4"],
Cell[395282, 7568, 34703, 589, 425, "Output",ExpressionUUID->"1b6220c6-8e5d-466a-a53a-173d2d94d679"]
}, Open  ]],
Cell[430000, 8160, 150, 3, 33, "Input",ExpressionUUID->"4110d7b4-eea5-4a31-bb44-0cfe6630cd3c"],
Cell[CellGroupData[{
Cell[430175, 8167, 892, 21, 37, "Input",ExpressionUUID->"745956bd-cee1-4b9e-be2b-5f3aa5cbb78f"],
Cell[431070, 8190, 917, 13, 37, "Output",ExpressionUUID->"cbaf6ee5-f669-412d-9fb1-b38517626ae8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[432024, 8208, 1007, 19, 50, "Input",ExpressionUUID->"84ddf410-1206-4db4-8163-fea78d05a9fa"],
Cell[433034, 8229, 5644, 111, 265, "Output",ExpressionUUID->"0546d6b0-c065-4599-9d2a-8a70f75e9eb9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[438715, 8345, 2498, 75, 125, "Input",ExpressionUUID->"dbfa69a4-38ff-4a4c-96a5-19b8ca17951b"],
Cell[441216, 8422, 567, 9, 37, "Output",ExpressionUUID->"72abeaf4-4581-44c1-9c9b-599eed9311d1"]
}, Open  ]],
Cell[441798, 8434, 867, 18, 33, "Input",ExpressionUUID->"93967aaa-fb32-46f7-b27c-892da0b16278"],
Cell[CellGroupData[{
Cell[442690, 8456, 476, 10, 33, "Input",ExpressionUUID->"fd99e280-b87a-49dd-a288-5fe39a52e19d"],
Cell[443169, 8468, 841, 14, 37, "Output",ExpressionUUID->"ef908ed1-b737-4b67-a82d-c94882734c36"]
}, Open  ]],
Cell[444025, 8485, 509, 10, 33, "Input",ExpressionUUID->"79a457e4-2694-4aff-b91a-36c1c1457a0a"],
Cell[CellGroupData[{
Cell[444559, 8499, 889, 24, 33, "Input",ExpressionUUID->"21c7637c-3a09-41a5-b3ab-b8f8756d6a35"],
Cell[445451, 8525, 1066, 26, 57, "Output",ExpressionUUID->"a3cf3011-1c8a-4059-b0a2-968dcac48dbe"]
}, Open  ]],
Cell[CellGroupData[{
Cell[446554, 8556, 675, 18, 33, "Input",ExpressionUUID->"2a836ba1-d54a-4276-b9f3-4a104a1093f6"],
Cell[447232, 8576, 1025, 24, 55, "Output",ExpressionUUID->"57db4fec-3f75-4aa5-a0d3-6b15bcde7bf7"]
}, Open  ]],
Cell[448272, 8603, 5564, 150, 179, "Input",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"],
Cell[CellGroupData[{
Cell[453861, 8757, 1785, 54, 108, "Input",ExpressionUUID->"b024508b-6d27-4ffa-ab07-de4ed8a4b834"],
Cell[455649, 8813, 548, 9, 37, "Output",ExpressionUUID->"33da0b6f-6e0e-44b4-bced-a2d79464be09"]
}, Open  ]],
Cell[456212, 8825, 81, 0, 33, "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"],
Cell[CellGroupData[{
Cell[456318, 8829, 603, 12, 33, "Input",ExpressionUUID->"5f437c91-8022-415a-8eed-7828551b0fce"],
Cell[456924, 8843, 5991, 116, 385, "Output",ExpressionUUID->"3374f384-18a6-4832-9703-7157360c30cd"]
}, Open  ]],
Cell[462930, 8962, 388, 8, 33, "Input",ExpressionUUID->"5afa8d22-b29c-4441-90a8-81bd28869b4d"],
Cell[463321, 8972, 1776, 36, 174, "Input",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"],
Cell[465100, 9010, 1406, 42, 111, "Input",ExpressionUUID->"fe2e92bd-99ee-4847-8c87-958f9c8e2ae0"],
Cell[CellGroupData[{
Cell[466531, 9056, 512, 13, 33, "Input",ExpressionUUID->"11a1b2f9-f071-4cbb-8745-8b989c037646"],
Cell[467046, 9071, 18788, 331, 262, "Output",ExpressionUUID->"43514bb0-011a-47ca-9735-bfd24e2ad828"]
}, Open  ]],
Cell[CellGroupData[{
Cell[485871, 9407, 2053, 46, 104, "Input",ExpressionUUID->"e4b1105f-d069-4328-b182-1cb800c3aa9c"],
Cell[487927, 9455, 57001, 961, 262, "Output",ExpressionUUID->"66f47fca-c196-4424-9e64-995d65ef34dc"]
}, Open  ]],
Cell[CellGroupData[{
Cell[544965, 10421, 1242, 31, 100, "Input",ExpressionUUID->"12b6b67b-c03b-421d-97ea-f2051e4c3776"],
Cell[546210, 10454, 780, 14, 49, "Message",ExpressionUUID->"9fc313f5-04b1-4dc2-a9b4-4f402cfe7d69"],
Cell[546993, 10470, 361, 6, 37, "Output",ExpressionUUID->"5b1685c6-3975-4c85-8822-f3f6f6933bc0"]
}, Open  ]],
Cell[CellGroupData[{
Cell[547391, 10481, 565, 12, 33, "Input",ExpressionUUID->"aa907d73-e27d-4992-8b65-eac5ef728757"],
Cell[547959, 10495, 835, 16, 49, "Message",ExpressionUUID->"8ba4b00b-d0a9-4239-a887-42f4ffa1bb33"],
Cell[548797, 10513, 28569, 489, 248, "Output",ExpressionUUID->"513e3685-646c-4220-b262-73de37ab2a48"]
}, Open  ]],
Cell[CellGroupData[{
Cell[577403, 11007, 2548, 73, 151, "Input",ExpressionUUID->"bb3960f3-8cb7-4917-b64f-e3364369e663"],
Cell[579954, 11082, 877, 17, 49, "Message",ExpressionUUID->"1fd2488f-f65c-429a-b7bc-61b484458660"],
Cell[580834, 11101, 882, 17, 49, "Message",ExpressionUUID->"5145dedb-ca24-4c71-b681-a38d9da9ad27"],
Cell[581719, 11120, 879, 17, 49, "Message",ExpressionUUID->"3a69d778-f40b-433f-9474-6acfa535a109"],
Cell[582601, 11139, 576, 12, 30, "Message",ExpressionUUID->"861a067e-d75c-4ba8-b45b-943da7e7dd75"],
Cell[583180, 11153, 605, 13, 30, "Message",ExpressionUUID->"485b92c0-b0bf-48c2-9e32-13c4a1bf436d"],
Cell[583788, 11168, 605, 13, 30, "Message",ExpressionUUID->"e5061ca5-4746-4742-b690-d521551b5365"],
Cell[584396, 11183, 880, 17, 49, "Message",ExpressionUUID->"45848a37-8bc9-4e11-a1a4-ab17a653801e"],
Cell[585279, 11202, 883, 17, 49, "Message",ExpressionUUID->"26436802-1283-4259-b3c9-af9f0e109c0c"],
Cell[586165, 11221, 881, 17, 49, "Message",ExpressionUUID->"f1bc0090-1caf-4ffb-b86d-9dc8dac76da1"],
Cell[587049, 11240, 578, 12, 30, "Message",ExpressionUUID->"f07d3ffa-d82c-4174-b6f9-feffa7a81e4f"],
Cell[587630, 11254, 607, 13, 30, "Message",ExpressionUUID->"dc673e01-48fe-4037-bb63-18d48d34f964"],
Cell[588240, 11269, 880, 17, 49, "Message",ExpressionUUID->"aa0dca82-deed-4ee6-b74b-7a07cdea1db7"],
Cell[589123, 11288, 876, 17, 49, "Message",ExpressionUUID->"2e62e982-2993-4b27-8ac3-7ae02ce9aadc"],
Cell[590002, 11307, 880, 17, 49, "Message",ExpressionUUID->"b3a0b4d4-b829-47aa-994c-3a0b8ff9e009"],
Cell[590885, 11326, 576, 12, 30, "Message",ExpressionUUID->"c70840af-1b4a-4f8c-8a12-30ad7a708907"],
Cell[591464, 11340, 605, 13, 30, "Message",ExpressionUUID->"c44c3679-4d44-4ccc-8fa2-af9e1d48ce56"],
Cell[592072, 11355, 881, 17, 49, "Message",ExpressionUUID->"ba014c87-3df9-441e-9d43-28def78b1280"],
Cell[592956, 11374, 605, 13, 30, "Message",ExpressionUUID->"18d54c91-7a2f-4710-96dd-f4be9ad598c9"],
Cell[593564, 11389, 881, 17, 49, "Message",ExpressionUUID->"33c3dd28-8b74-4f85-aff4-d9163f004cda"],
Cell[594448, 11408, 607, 13, 30, "Message",ExpressionUUID->"e0c7fa00-02d8-403d-8d76-3b4ea66fc594"],
Cell[595058, 11423, 578, 12, 30, "Message",ExpressionUUID->"cf0ae7ca-1208-469b-83ec-62e0fa84d256"],
Cell[595639, 11437, 881, 17, 49, "Message",ExpressionUUID->"fac79be0-23ae-497d-adc3-4f1a65901ef8"],
Cell[596523, 11456, 578, 12, 30, "Message",ExpressionUUID->"4355f6f3-b2a8-413a-8aac-ef0b6cc53b03"],
Cell[597104, 11470, 607, 13, 30, "Message",ExpressionUUID->"04c1d30a-5f0e-4916-b2c4-f278fcc2d058"],
Cell[597714, 11485, 880, 17, 49, "Message",ExpressionUUID->"2cf77875-cc2b-40fc-83b9-2fdb8df619f8"],
Cell[598597, 11504, 605, 13, 30, "Message",ExpressionUUID->"b565f722-3a28-4c41-ba02-25744b537605"],
Cell[599205, 11519, 883, 17, 49, "Message",ExpressionUUID->"bc0f6361-2fce-47e6-8651-f81fcaee8957"],
Cell[600091, 11538, 607, 13, 30, "Message",ExpressionUUID->"06b5ac9a-77eb-4ceb-af66-25be2a5608bf"],
Cell[600701, 11553, 580, 12, 30, "Message",ExpressionUUID->"95cbd156-9b6e-46ce-8b41-90d4fbc69970"],
Cell[601284, 11567, 881, 17, 49, "Message",ExpressionUUID->"41a30751-34dc-4934-ba8d-4d0413602fc9"],
Cell[602168, 11586, 576, 12, 30, "Message",ExpressionUUID->"5f50b422-2d86-4a1d-a691-e0ef74f1e18a"],
Cell[602747, 11600, 882, 17, 49, "Message",ExpressionUUID->"b1f69ab4-fdd5-4b63-ba88-8b03ea57a90d"],
Cell[603632, 11619, 881, 17, 49, "Message",ExpressionUUID->"d2c42262-1da8-4922-b6b4-81b52cb38e3f"],
Cell[604516, 11638, 883, 17, 49, "Message",ExpressionUUID->"b421f684-7f08-4537-bfbc-de2394499507"],
Cell[605402, 11657, 578, 12, 30, "Message",ExpressionUUID->"44603d26-18cd-4971-a91c-293de32c98d9"]
}, Open  ]],
Cell[605995, 11672, 2639, 83, 223, "Input",ExpressionUUID->"d559092d-edc7-4d06-a702-6eff5ba0a662"],
Cell[CellGroupData[{
Cell[608659, 11759, 406, 9, 33, "Input",ExpressionUUID->"6e0c70ae-f2e7-4846-95d3-a013dc639521"],
Cell[609068, 11770, 15652, 273, 248, "Output",ExpressionUUID->"cee7a66a-bdc3-4d20-9412-f1d1eb61afa8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[624757, 12048, 1921, 48, 198, "Input",ExpressionUUID->"d9505bf0-29d1-406a-8f06-1985e55de13f"],
Cell[626681, 12098, 28616, 525, 78, "Output",ExpressionUUID->"69539866-c8d1-4b51-9a4d-5537c1055fd6"],
Cell[655300, 12625, 28510, 523, 78, "Output",ExpressionUUID->"32e96337-ce94-4efe-9a44-955d72d28d49"],
Cell[683813, 13150, 28645, 526, 78, "Output",ExpressionUUID->"4590ae9a-3ba7-4134-b816-2f0e5f773cca"],
Cell[712461, 13678, 29001, 532, 78, "Output",ExpressionUUID->"59e9240f-b1ee-4692-a8a0-f13992d25b1f"],
Cell[741465, 14212, 28955, 531, 78, "Output",ExpressionUUID->"3ad7b5ef-6822-4454-9e12-5bba94de1463"],
Cell[770423, 14745, 28988, 531, 78, "Output",ExpressionUUID->"924545b1-618a-4def-9b37-8ed0ae6f7c94"],
Cell[799414, 15278, 23054, 398, 520, "Output",ExpressionUUID->"deda2472-c2d7-4911-b1ca-7e6a3fb2e825"]
}, Open  ]],
Cell[CellGroupData[{
Cell[822505, 15681, 733, 16, 35, "Input",ExpressionUUID->"73fcd4a8-f07c-4668-a074-8d6edd4e9c5c"],
Cell[823241, 15699, 1188, 18, 37, "Output",ExpressionUUID->"7064fc70-a5ad-4c7a-9a5d-93a2ff93f3b9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[824466, 15722, 840, 16, 57, "Input",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"],
Cell[825309, 15740, 19761, 342, 263, "Output",ExpressionUUID->"031b0b1c-41c3-42ed-9f19-5c3598d9db1e"]
}, Open  ]],
Cell[CellGroupData[{
Cell[845107, 16087, 332, 8, 33, "Input",ExpressionUUID->"cee43495-67e9-47c2-94dc-2d657d1fab18"],
Cell[845442, 16097, 577, 10, 37, "Output",ExpressionUUID->"53ca6d9d-1f32-4d17-a142-6d2901ba5316"]
}, Open  ]],
Cell[846034, 16110, 1890, 61, 79, "Input",ExpressionUUID->"f7780dc9-ccdb-4a12-879b-505da55785a3"],
Cell[CellGroupData[{
Cell[847949, 16175, 379, 9, 33, "Input",ExpressionUUID->"8bb8b6c3-f74e-4505-9b6f-d5978af920f2"],
Cell[848331, 16186, 5182, 104, 250, "Output",ExpressionUUID->"dc4afca3-fa87-4026-a97a-190e7bf07aa4"]
}, Open  ]],
Cell[853528, 16293, 292, 7, 33, "Input",ExpressionUUID->"c6deb938-a60b-48ff-8b90-a74d7ae9e157"],
Cell[853823, 16302, 816, 16, 50, "Input",ExpressionUUID->"6753751b-a669-450c-821a-0e2864446c1a"],
Cell[854642, 16320, 307, 8, 33, "Input",ExpressionUUID->"dc4db538-b681-426a-acc4-ce255c7c1d15"],
Cell[CellGroupData[{
Cell[854974, 16332, 1086, 22, 35, "Input",ExpressionUUID->"c96e0fd9-189c-4e48-b6f8-cbbdb9d07d41"],
Cell[856063, 16356, 135950, 2268, 408, 107879, 1810, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"70f966a0-386d-479b-99b9-954975d6e879"]
}, Open  ]],
Cell[992028, 18627, 5757, 147, 555, "Input",ExpressionUUID->"e57ddf1c-67e2-47a7-9bb7-4c7dc728e854"],
Cell[997788, 18776, 6532, 144, 500, "Input",ExpressionUUID->"7d563751-9dd5-4e27-9845-46f525c48682"],
Cell[1004323, 18922, 5311, 153, 316, "Input",ExpressionUUID->"8d9835d3-d38e-4b8f-aeda-dab1a09c92c0"],
Cell[1009637, 19077, 5010, 149, 342, "Input",ExpressionUUID->"913bc2a8-096a-4da1-b7be-58d029b36d1a"],
Cell[CellGroupData[{
Cell[1014672, 19230, 3763, 68, 124, "Input",ExpressionUUID->"b0bf33f5-97ee-414f-b509-6dfa628674e2"],
Cell[1018438, 19300, 856, 15, 30, "Message",ExpressionUUID->"e87181a6-4d1d-4c03-a3a4-2fbd063a9773"],
Cell[1019297, 19317, 142584, 2423, 558, "Output",ExpressionUUID->"41c8ccca-1c54-40d5-982d-df4c615b40d6"],
Cell[1161884, 21742, 855, 15, 30, "Message",ExpressionUUID->"4cdb19fd-ba9e-4329-9504-2f34f43832ea"],
Cell[1162742, 21759, 853, 15, 30, "Message",ExpressionUUID->"9082b55a-d2f8-4bcb-b369-378708249c31"],
Cell[1163598, 21776, 853, 15, 30, "Message",ExpressionUUID->"1091e660-ceb1-4842-927c-e883b9e4caf2"],
Cell[1164454, 21793, 836, 15, 30, "Message",ExpressionUUID->"7cf2453d-63fc-4018-86a2-2dea1558ed8f"],
Cell[1165293, 21810, 15170, 264, 331, "Output",ExpressionUUID->"a6b3022c-7bf1-4922-8076-35e76d3add3a"]
}, Open  ]],
Cell[1180478, 22077, 131, 3, 33, "Input",ExpressionUUID->"04292cc5-c934-4329-a9c5-85b2278343df"],
Cell[1180612, 22082, 381, 10, 33, "Input",ExpressionUUID->"50a3db6b-50c1-4c63-a4b6-e0a5ab5b7a7c"],
Cell[CellGroupData[{
Cell[1181018, 22096, 964, 21, 50, "Input",ExpressionUUID->"c36da682-78eb-4479-a88a-6d8ffe69fdb8"],
Cell[1181985, 22119, 118916, 1980, 409, "Output",ExpressionUUID->"5d6b7975-54f9-4f76-9afe-74ad694852e3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1300938, 24104, 1076, 23, 50, "Input",ExpressionUUID->"19052f96-5012-4bb8-8d61-ab162fcff6b3"],
Cell[1302017, 24129, 164815, 2741, 409, "Output",ExpressionUUID->"5a40e7d1-446e-457a-9279-37c87371dec5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1466869, 26875, 858, 22, 33, "Input",ExpressionUUID->"810cff79-47ba-476e-87f6-c3e7e8c9c39c"],
Cell[1467730, 26899, 14262, 259, 259, "Output",ExpressionUUID->"665c9ce6-aabc-4938-9ea3-804267957125"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1482029, 27163, 984, 25, 33, "Input",ExpressionUUID->"7a20b6d1-898d-48d7-a70e-0612fe4c9344"],
Cell[1483016, 27190, 18915, 338, 256, "Output",ExpressionUUID->"87302cc8-2b37-427e-ae3f-967f24d3fca9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[1501968, 27533, 447, 11, 33, "Input",ExpressionUUID->"13bdecf0-e0fe-4fe7-bb03-54c065ce665b"],
Cell[1502418, 27546, 4121, 86, 266, "Output",ExpressionUUID->"d9074324-3e7b-49a3-815f-cb3ef58357e9"]
}, Open  ]]
}
]
*)