Particle.cpp
1 |
#include "Particle.h" |
---|---|
2 |
#include <sstream> |
3 |
#include <string> |
4 |
|
5 |
/////////////////////////////////////////////////////////
|
6 |
//
|
7 |
// Particle
|
8 |
//
|
9 |
// This class enables you to set
|
10 |
// a mass and an impulse of a particle,
|
11 |
// change values and get them back.
|
12 |
// fA and fZ variables are still ambiguous
|
13 |
// and need to be discussed.
|
14 |
// Each particle also stores information about its energy states
|
15 |
//
|
16 |
////////////////////////////////////////////////////////
|
17 |
|
18 |
ExcitationState::ExcitationState() { |
19 |
//Default constructor
|
20 |
fMean = 0.;
|
21 |
fWidth = 0.1; |
22 |
fShape = "gauss";
|
23 |
fStrength = 1;
|
24 |
} |
25 |
; |
26 |
|
27 |
ExcitationState::ExcitationState(Double_t mean, Double_t width, TString shape, |
28 |
Int_t strength) : |
29 |
fMean(mean), fWidth(width), fShape(shape), fStrength(strength) { |
30 |
//Constructor initializing all necessary variables for exc. state
|
31 |
} |
32 |
|
33 |
TString ExcitationState::CreateConfigString() { |
34 |
ConfigDictionary CD; |
35 |
CD.SetDouble("mean", fMean);
|
36 |
CD.SetDouble("width", fWidth);
|
37 |
CD.SetString("shape", fShape.Data());
|
38 |
CD.SetInt("strength", fStrength);
|
39 |
return TString(CD.ToString().c_str());
|
40 |
} |
41 |
; |
42 |
|
43 |
int ExcitationState::ReadConfigString(TString cs) {
|
44 |
ConfigDictionary CD(cs.Data()); |
45 |
try {
|
46 |
fMean = CD.GetDouble("mean");
|
47 |
fWidth = CD.GetDouble("width");
|
48 |
fShape = CD.GetString("shape").c_str();
|
49 |
fStrength = CD.GetInt("strength");
|
50 |
return SUCCESS;
|
51 |
} catch (std::string & e) { |
52 |
Error("ExcitationState::ReadConfigString",
|
53 |
"Couldn't find parameter: %s", e.c_str());
|
54 |
return NOTFOUND;
|
55 |
} |
56 |
if (fWidth <= 0.) { |
57 |
Error("ExcitationState::ReadConfigString", "Width parameter <= 0!"); |
58 |
return FAILURE;
|
59 |
} |
60 |
if (fMean <= 0.) { |
61 |
Error("ExcitationState::ReadConfigString", "Mean parameter <= 0!"); |
62 |
return FAILURE;
|
63 |
} |
64 |
if (fStrength <= 0) { |
65 |
Error("ExcitationState::ReadConfigString", "Strength parameter <= 0!"); |
66 |
return FAILURE;
|
67 |
} |
68 |
|
69 |
return SUCCESS;
|
70 |
} |
71 |
; |
72 |
|
73 |
/////////////////////////////////////////////////////////////////////////////////////////
|
74 |
/////////////////////////////////////////////////////////////////////////////////////////
|
75 |
/////////////////////////////////////////////////////////////////////////////////////////
|
76 |
|
77 |
ClassImp(Particle); |
78 |
|
79 |
Int_t Particle::numberOfParticles = 0;
|
80 |
|
81 |
Particle::Particle() { |
82 |
// default constructor
|
83 |
// set Z = 0, A = 0
|
84 |
Reset(); |
85 |
fZ = 0;
|
86 |
fA = 0;
|
87 |
numberOfParticles++; |
88 |
std::stringstream ss; |
89 |
ss << "unnamed particle no. ";
|
90 |
ss << numberOfParticles; |
91 |
SetName(ss.str().c_str()); |
92 |
|
93 |
// cout << "kjadbhfkjasdf" << endl;
|
94 |
|
95 |
} |
96 |
; |
97 |
|
98 |
Particle::Particle(const char *name, Double_t mass, Int_t A, Int_t Z, |
99 |
Bool_t obs) { |
100 |
//name: name of the object
|
101 |
//mass: rest-mass of the object, in MeV
|
102 |
//A: mass number, number of nucleons
|
103 |
//Z: charge, equals number in periodic table
|
104 |
//set total energy equal to the mass of the particle
|
105 |
|
106 |
fName = name; |
107 |
fMass = mass; |
108 |
fGroundStateMass = mass; |
109 |
Info("Particle::Particle", "Ground state mass was set to %f", |
110 |
fGroundStateMass); |
111 |
fA = A; |
112 |
fZ = Z; |
113 |
fObservable = obs; |
114 |
fImpulse.SetE(mass); |
115 |
|
116 |
} |
117 |
|
118 |
Particle::Particle(TString cs) { |
119 |
//config constructor
|
120 |
ReadConfigString(cs); |
121 |
CreateStateMassFunctions(); |
122 |
} |
123 |
|
124 |
Particle::~Particle() { |
125 |
//destructor
|
126 |
for (UInt_t i = 0; i < fState.size(); i++) { |
127 |
delete fState[i];
|
128 |
// Info("DetManager::~DetManager", "Detector %s deleting", det->GetName());
|
129 |
// delete det;
|
130 |
} |
131 |
fState.clear(); |
132 |
|
133 |
} |
134 |
|
135 |
//public functions
|
136 |
|
137 |
//_____________________________________________________________________________
|
138 |
void Particle::AddExcitationState(ExcitationState exstate) {
|
139 |
//add new excitation states to the particle
|
140 |
fExcitationStates.push_back(exstate); |
141 |
} |
142 |
|
143 |
//_____________________________________________________________________________
|
144 |
void Particle::ClearExcitationStates() {
|
145 |
//clear excitation states
|
146 |
fExcitationStates.clear(); |
147 |
} |
148 |
|
149 |
//_____________________________________________________________________________
|
150 |
Int_t Particle::GetNumberOfExStates() { |
151 |
//return number of excitation states
|
152 |
return fExcitationStates.size();
|
153 |
} |
154 |
|
155 |
//_____________________________________________________________________________
|
156 |
ExcitationState Particle::GetExcitationState(Int_t index) { |
157 |
//return "index"th excitation state
|
158 |
return fExcitationStates[index];
|
159 |
} |
160 |
|
161 |
void Particle::Reset() {
|
162 |
// Set mass and impulse of particle as zero value
|
163 |
|
164 |
fMass = 0.;
|
165 |
fGroundStateMass = 0.;
|
166 |
fImpulse.SetPxPyPzE(0., 0., 0., 0.); |
167 |
return;
|
168 |
} |
169 |
|
170 |
int Particle::CopyValues(Particle * other) {
|
171 |
//Copies kinetic energy and direction angles from other particle
|
172 |
//Dont check if other == null to increase speed, be careful!
|
173 |
fImpulse.SetPxPyPzE(other->GetPx(), other->GetPy(), other->GetPz(), |
174 |
other->GetE()); |
175 |
return SUCCESS;
|
176 |
} |
177 |
|
178 |
void Particle::SetMPxPyPz(Double_t m, Double_t px, Double_t py, Double_t pz) {
|
179 |
// m: set mass in the MeV
|
180 |
// px: x cordinate of impulse
|
181 |
// py: y cordinate of impulse
|
182 |
// pz: z cordinate of impulse
|
183 |
|
184 |
fImpulse.SetPx(px); |
185 |
fImpulse.SetPy(py); |
186 |
fImpulse.SetPz(pz); |
187 |
fImpulse.SetE(CalcT(m, px, py, pz) + m); |
188 |
fMass = m; |
189 |
} |
190 |
|
191 |
void Particle::SetMTNxNyNz(Double_t m, Double_t T, Double_t nx, Double_t ny,
|
192 |
Double_t nz) { |
193 |
// m: set mass in MeV
|
194 |
// T: set kinetic energy in MeV
|
195 |
// set direction vector of impulse with (nx,ny,nz) components
|
196 |
//todo: function restored, check if it works properly
|
197 |
|
198 |
fMass = m; |
199 |
TVector3 vect(nx, ny, nz); |
200 |
vect.SetMag(CalcP(m, T)); |
201 |
fImpulse.SetVectMag(vect, m); |
202 |
fImpulse.SetE(Sqrt(vect.Mag2() + m * m)); |
203 |
|
204 |
return;
|
205 |
} |
206 |
; |
207 |
|
208 |
void Particle::SetMTDir(Double_t m, Double_t T, TVector3 dir) {
|
209 |
// dir: set direction vector of impulse
|
210 |
// m: set mass in MeV
|
211 |
// T: set kinetic energy in MeV
|
212 |
// imp: need to use TVector3 dir(dir(0),dir(1),dir(2))
|
213 |
// where dir(0), dir(1), dir(2) are coordinates of direction vector of impulse
|
214 |
|
215 |
Double_t p = CalcP(m, T); // impulse magnitude
|
216 |
fMass = m; |
217 |
fImpulse.SetE(T + m); |
218 |
fImpulse.SetPx(dir.Unit().x() * p); |
219 |
fImpulse.SetPy(dir.Unit().y() * p); |
220 |
fImpulse.SetPz(dir.Unit().z() * p); |
221 |
} |
222 |
|
223 |
void Particle::SetP(TVector3 P) {
|
224 |
// set impulse of the particle
|
225 |
fImpulse.SetXYZM(P(0), P(1), P(2), fMass); |
226 |
} |
227 |
|
228 |
void Particle::SetPx(Double_t px) {
|
229 |
// set cartesian x coordinate of impulse in MeV
|
230 |
fImpulse.SetPx(px); |
231 |
//fImpulse.SetE(0.);
|
232 |
fImpulse.SetE(Sqrt(fMass * fMass + fImpulse.Mag() * fImpulse.Mag())); |
233 |
return;
|
234 |
} |
235 |
; |
236 |
|
237 |
void Particle::SetPy(Double_t py) {
|
238 |
// set cartesian y coordinate of impulse in MeV
|
239 |
fImpulse.SetPy(py); |
240 |
//fImpulse.SetE(0.);
|
241 |
fImpulse.SetE(Sqrt(fMass * fMass + fImpulse.Mag() * fImpulse.Mag())); |
242 |
} |
243 |
; |
244 |
void Particle::SetPz(Double_t pz) {
|
245 |
// set cartesian z coordinate of impulse in MeV
|
246 |
fImpulse.SetPz(pz); |
247 |
fImpulse.SetE(0.);
|
248 |
fImpulse.SetE(Sqrt(fMass * fMass + fImpulse.Mag() * fImpulse.Mag())); |
249 |
} |
250 |
; |
251 |
void Particle::SetE(Double_t E) {
|
252 |
// set total energy in MeV
|
253 |
fImpulse.SetE(E); |
254 |
} |
255 |
; |
256 |
|
257 |
void Particle::SetObservable(Bool_t obs) {
|
258 |
//whether object is observable or not
|
259 |
fObservable = obs; |
260 |
} |
261 |
; |
262 |
|
263 |
void Particle::SetMass(Double_t mass) {
|
264 |
// Set particle mass.
|
265 |
// Impulse and Kinetic energy are remained
|
266 |
Double_t T = GetT(); |
267 |
fMass = mass; |
268 |
fImpulse.SetE(T + mass); |
269 |
} |
270 |
|
271 |
void Particle::SetT(Double_t T) {
|
272 |
//set kinetic energy in MeV
|
273 |
//NB! impulse should be nonzero else you'll receive message "zero vector can't be stretched"
|
274 |
|
275 |
if (T <= 0) |
276 |
fImpulse = TLorentzVector(0, 0, 0, fMass); |
277 |
else {
|
278 |
fImpulse.SetRho(CalcP(fMass, T)); |
279 |
fImpulse.SetE(fMass + T); |
280 |
} |
281 |
} |
282 |
|
283 |
void Particle::SetImpulse(TLorentzVector *P) {
|
284 |
//set TLorenzVector
|
285 |
fImpulse.SetPx(P->Px()*1000.); |
286 |
fImpulse.SetPy(P->Py()*1000.); |
287 |
fImpulse.SetPz(P->Pz()*1000.); |
288 |
fImpulse.SetE(P->E()*1000.); |
289 |
} |
290 |
|
291 |
void Particle::SetTPhiTheta(Double_t T, Double_t phi, Double_t theta) {
|
292 |
//change kinetic energy and direction
|
293 |
//T: kinetic energy in MeV
|
294 |
//phi: azimuthal angle of impulse in rad
|
295 |
//theta: polar angle of impulse in rad
|
296 |
//NB! impulse should be nonzero else you'll receive message "zero vector can't be stretched"
|
297 |
|
298 |
fImpulse.SetRho(CalcP(fMass, T)); |
299 |
fImpulse.SetE(fMass + T); |
300 |
fImpulse.SetPhi(phi); |
301 |
fImpulse.SetTheta(theta); |
302 |
} |
303 |
; |
304 |
|
305 |
void Particle::Print(Option_t * option){
|
306 |
// Print values:
|
307 |
// particle name, whether particle is observable,
|
308 |
// mass number and charge (in units of electron charge) of the particle,
|
309 |
// rest-mass and total energy in MeV, kinetic energy in MeV,
|
310 |
// coordinates of impulse and value of impulse in MeV,
|
311 |
// phi and theta angles in rad
|
312 |
if (option != NULL) { |
313 |
//just checking
|
314 |
} |
315 |
cout << "Name: " << fName;
|
316 |
if (fObservable == 0) |
317 |
cout << " is not observable" << endl;
|
318 |
else
|
319 |
cout << " is observable" << endl;
|
320 |
cout << "A, Z = " << fA << ", " << fZ << endl << "Mass = " << fMass << endl |
321 |
<< "Energy = " << fImpulse.E() << endl << "Kinetic Energy = " |
322 |
<< GetT() << endl << "Impulse (Px;Py;Pz) = " << "(" << fImpulse.Px() |
323 |
<< " " << fImpulse.Py() << " " << fImpulse.Pz() << ")" << endl |
324 |
<< "P = " << fImpulse.Rho() << endl << "Phi = " << fImpulse.Phi() |
325 |
<< endl << "Theta = " << fImpulse.Theta() << endl;
|
326 |
} |
327 |
; |
328 |
|
329 |
TString Particle::CreateConfigString() { |
330 |
//Creates string containing config info about particle
|
331 |
//so it can be saved to file or used anywhere else (gui?)
|
332 |
//It saves direction of impulse as phi and theta angles
|
333 |
//Its format looks like: (for example proton) #mass is stored in MeV I presume?
|
334 |
//"name"="proton" "mass"="938" "observable"="true" "a_number"="1" "z_number"="1" "phi"="0.0" "theta"="0.0"
|
335 |
|
336 |
ConfigDictionary CD; |
337 |
CD.SetString("name", GetName());
|
338 |
CD.SetDouble("mass", GetM());
|
339 |
CD.SetBool("observable", fObservable);
|
340 |
CD.SetInt("a_number", GetA());
|
341 |
CD.SetInt("z_number", GetZ());
|
342 |
CD.SetDouble("phi", GetPhi());
|
343 |
CD.SetDouble("theta", GetTheta());
|
344 |
CD.SetDouble("k_energy", GetT()); //kinetic energy = GetT() |
345 |
CD.SetInt("exNumber", GetNumberOfExStates());
|
346 |
TString ret(CD.ToString()); |
347 |
|
348 |
return ret;
|
349 |
} |
350 |
|
351 |
void Particle::ReadConfigString(TString conf) {
|
352 |
//conf - string formatted as list of "key=value" pairs
|
353 |
//Reads and sets parameters from config string
|
354 |
//Parameters for impulse direction are phi and theta angles
|
355 |
|
356 |
ConfigDictionary CD(conf.Data()); |
357 |
try {
|
358 |
SetName(CD.GetString("name").c_str());
|
359 |
SetMass(CD.GetDouble("mass"));
|
360 |
fGroundStateMass = GetM(); |
361 |
Info("Particle::ReadConfigString", "Ground state mass was set to %f", |
362 |
fGroundStateMass); |
363 |
SetObservable(CD.GetBool("observable"));
|
364 |
SetA(CD.GetInt("a_number"));
|
365 |
SetZ(CD.GetInt("z_number"));
|
366 |
SetPz(1.);
|
367 |
SetTPhiTheta(CD.GetDouble("k_energy"), CD.GetDouble("phi"), |
368 |
CD.GetDouble("theta"));
|
369 |
} catch (...) {
|
370 |
Error("Particle::ReadConfigString", "Couldn't find all parameters!"); |
371 |
return;
|
372 |
} |
373 |
} |
374 |
|
375 |
TVector3 Particle::GetBoost() { |
376 |
// return vector beta (impulse components divided by the time component)
|
377 |
return fImpulse.BoostVector();
|
378 |
} |
379 |
; |
380 |
|
381 |
void Particle::BoostTransform(TVector3 beta) {
|
382 |
//perform a boost transformation
|
383 |
//to correct working,we input (-beta), see TLorentzVector documentation
|
384 |
//this bug will be corrected soon
|
385 |
fImpulse.Boost(-beta); |
386 |
return;
|
387 |
} |
388 |
; |
389 |
|
390 |
void Particle::CreateStatesWeigthsHist() {
|
391 |
|
392 |
fStatesWeigths.SetBins(GetNumberOfExStates(), 0, GetNumberOfExStates());
|
393 |
// fStatesWeigths.SetBins(8, 1, 8+1);
|
394 |
|
395 |
for (Int_t i = 0; i < GetNumberOfExStates(); i++) { |
396 |
// cout << "\t\tjhagvdjhavsdasvd" << endl;
|
397 |
// cout << i << endl;
|
398 |
// cout << GetExcitationState(i).GetStrength() << endl;
|
399 |
// cout << fStatesWeigths.GetNbinsX() << endl;
|
400 |
fStatesWeigths.AddBinContent(i + 1,
|
401 |
GetExcitationState(i).GetStrength()); |
402 |
} |
403 |
} |
404 |
|
405 |
void Particle::DrawWeigths() {
|
406 |
fStatesWeigths.Draw(); |
407 |
return;
|
408 |
} |
409 |
|
410 |
void Particle::DrawMassDistribution(Int_t i, Option_t *option) {
|
411 |
//"i" is number of excitation state
|
412 |
//"option" is draw option in TF1
|
413 |
if (fState.empty()) {
|
414 |
Error("Particle::DrawMassDistribution",
|
415 |
"There are no defined states for particle %s", GetName());
|
416 |
return;
|
417 |
} |
418 |
|
419 |
if (i > (Int_t) fState.size()) {
|
420 |
Error("Particle::DrawMassDistribution", "Maximum possible index is %d", |
421 |
(Int_t) (fState.size())); |
422 |
return;
|
423 |
} |
424 |
|
425 |
fState[i]->Draw(option); |
426 |
return;
|
427 |
} |
428 |
|
429 |
void Particle::CreateStateMassFunctions() {
|
430 |
//method creates TF1 function for each state as defined e.g.
|
431 |
//in configuration file
|
432 |
//
|
433 |
//Two distributions are realized for the present in the code:
|
434 |
//Gauss and Lorentz distributions.
|
435 |
//In future releases other distributions will be added.
|
436 |
//
|
437 |
//In order to optimize the calculation process there exist
|
438 |
//limits of distribution:
|
439 |
//(-3*sigma ; 4*sigma) for Gauss;
|
440 |
//(-3*FWHM ; 4*FWHM) for Lorentz.
|
441 |
//This limits provide 98% of integral area.
|
442 |
|
443 |
CreateStatesWeigthsHist(); |
444 |
|
445 |
TF1 *massSpectrum; |
446 |
massSpectrum = NULL;
|
447 |
Double_t xmin = 0.; //lower and |
448 |
Double_t xmax = 0.; //upper range for each state |
449 |
|
450 |
for (Int_t i = 0; i < GetNumberOfExStates(); i++) { |
451 |
// cout << GetNumberOfExStates()<< " WTF!!!!! " << GetName() << endl;
|
452 |
//gauss distribution of the excited state
|
453 |
if (GetExcitationState(i).GetShape() == "gauss") { |
454 |
|
455 |
const Double_t mean = GetExcitationState(i).GetMean();
|
456 |
const Double_t sigma = GetExcitationState(i).GetWidth() / 2.35; |
457 |
|
458 |
Info( |
459 |
"Particle::CreateStateMassFunctions",
|
460 |
"Creating gauss distribution with mean %f and FWHM of %f MeV",
|
461 |
mean, sigma); |
462 |
|
463 |
// const Double_t mean = GetExcitationState(i).GetMean();
|
464 |
// const Double_t sigma = GetExcitationState(i).GetWidth()/2.35;
|
465 |
xmin = mean - 4 * sigma; // important cuz for high mean and little sigma it doesnt work cuz of fNpx (see TRandom) |
466 |
if (mean - 3 * sigma < 0. || sigma < 0.) { |
467 |
Warning("Particle::CreateStateMassFunctions",
|
468 |
"There is something weird in this state");
|
469 |
xmin = mean - 3 * sigma;
|
470 |
} //if
|
471 |
|
472 |
xmax = mean + 4 * sigma;
|
473 |
Info("Particle::CreateStateMassFunctions",
|
474 |
"Range for this state was set from %f to %f", xmin, xmax);
|
475 |
// (-3*sigma, +4*sigma)
|
476 |
massSpectrum = new TF1("massGauss", "TMath::Gaus(x, [0], [1])", |
477 |
xmin, xmax); |
478 |
massSpectrum->SetParameters(mean, sigma); //1st parameter is mean value
|
479 |
//2nd parameter is sigma
|
480 |
} //if gauss
|
481 |
|
482 |
if (GetExcitationState(i).GetShape() == "lorentzian") { |
483 |
|
484 |
const Double_t mean = GetExcitationState(i).GetMean();
|
485 |
const Double_t fwhm = GetExcitationState(i).GetWidth();
|
486 |
|
487 |
Info( |
488 |
"Particle::CreateStateMassFunctions",
|
489 |
"Creating lorentz distribution with mean %f and FWHM of %f MeV",
|
490 |
mean, fwhm); |
491 |
|
492 |
// const Double_t mean = GetExcitationState(i).GetMean();
|
493 |
// const Double_t sigma = GetExcitationState(i).GetWidth()/2.35;
|
494 |
|
495 |
if (-3 * fwhm < 0.) { |
496 |
Warning("Particle::CreateStateMassFunctions",
|
497 |
"There is something weird in this state");
|
498 |
xmin = mean - 3 * fwhm;
|
499 |
} //if
|
500 |
|
501 |
xmax = mean + 4 * fwhm;
|
502 |
Info("Particle::CreateStateMassFunctions",
|
503 |
"Range for this state was set from %f to %f", xmin, xmax);
|
504 |
// (-3*sigma, +4*sigma)
|
505 |
massSpectrum = new TF1("massLorentz", |
506 |
"TMath::BreitWigner(x, [0], [1])", xmin, xmax);
|
507 |
massSpectrum->SetParameters(mean, fwhm); //1st parameter is mean value
|
508 |
|
509 |
} //if lorentz
|
510 |
|
511 |
if (massSpectrum) {
|
512 |
fState.push_back(massSpectrum); |
513 |
Info("Particle::CreateStateMassFunctions",
|
514 |
"Function %s was created", fState[i]->GetName());
|
515 |
} else {
|
516 |
Warning("Particle::CreateStateMassFunctions",
|
517 |
"Function for e.s. number %d of type %s was not created", i,
|
518 |
GetExcitationState(i).GetShape().Data()); |
519 |
} |
520 |
} |
521 |
|
522 |
return;
|
523 |
} |
524 |
|
525 |
void Particle::GenerateMass() {
|
526 |
//calculate and set mass according to mass distribution functions
|
527 |
|
528 |
if (!GetNumberOfExStates())
|
529 |
return;
|
530 |
|
531 |
//choose state:
|
532 |
Int_t state = (Int_t) fStatesWeigths.GetRandom(); |
533 |
//fixme Vratislav: random mass
|
534 |
//for a few reaction in chain the same random numbers are obtained in each event
|
535 |
//same situation as for angles
|
536 |
Double_t mass = fGroundStateMass + fState[state]->GetRandom(); |
537 |
SetMass(mass); |
538 |
|
539 |
return;
|
540 |
} |
541 |
|
542 |
Bool_t Particle::IsObservable() { |
543 |
//whether particle is observable (1) or not (0)
|
544 |
return fObservable;
|
545 |
/*
|
546 |
if(fObservable==0)
|
547 |
{
|
548 |
cout << fName << " is not observable" << endl;
|
549 |
return fObservable;
|
550 |
}
|
551 |
else
|
552 |
{
|
553 |
cout << fName << " is observable" << endl;
|
554 |
return fObservable;
|
555 |
}*/
|
556 |
} |
557 |
|
558 |
//private functions
|
559 |
Double_t Particle::CalcT(Double_t m, Double_t px, Double_t py, Double_t pz) { |
560 |
// Calculate kinetic energy
|
561 |
TVector3 p(px, py, pz); |
562 |
return (Sqrt(p.Mag2() + m * m) - m);
|
563 |
} |
564 |
; |
565 |
|
566 |
Double_t Particle::CalcP(Double_t m, Double_t T) { |
567 |
// Calculate value of impulse
|
568 |
return (Sqrt(T * T + 2 * T * m)); |
569 |
} |
570 |
; |
571 |
|
572 |
Double_t Particle::CalcE() { |
573 |
return GetE();
|
574 |
} |
575 |
; |
576 |
|
577 |
Bool_t Particle::CheckEnergyConservation() { |
578 |
// Check energy conservation
|
579 |
Double_t ls = Power(fImpulse.Energy(), 2);
|
580 |
Double_t ps = Power(fImpulse.Rho(), 2) + fMass * fMass;
|
581 |
printf("%2.18f\t\n", ls);
|
582 |
printf("%2.18f\t\n", ps);
|
583 |
printf("%2.18f\t\n", TMath::Abs(ls / ps - 1.0)); |
584 |
printf("%2.18f\t\n", 1.0e-15); |
585 |
printf("%f\t%f\n", Power(fImpulse.Rho(), 2), fMass * fMass); |
586 |
|
587 |
if (TMath::Abs(ls / ps - 1.0) < 1.0e-14) { |
588 |
cout << "Energy is conserved" << endl;
|
589 |
return true; |
590 |
} else {
|
591 |
cout << "Energy's not conserved" << endl;
|
592 |
return false; |
593 |
} |
594 |
} |