(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 237588, 4905] NotebookOptionsPosition[ 230361, 4797] NotebookOutlinePosition[ 230831, 4815] CellTagsIndexPosition[ 230788, 4812] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\ \:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}], ",", " ", RowBox[{ "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", "\:0441\:0432\:044f\:0437\:0438", " ", "\:0438", " ", "\:043c\:0430\:0441\:0441", " ", "\:0447\:0430\:0441\:0442\:0438\:0446"}]}], "*)"}], " ", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"m1", "=", "938.2723"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"m2", "=", "939.5656"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Eb1", "=", "2.224"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Eb2", "=", "1.296"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Eb3", "=", "7.77"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"m", "=", FractionBox[ RowBox[{"m1", " ", "m2"}], RowBox[{"m1", "+", "m2"}]]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"j", "=", "197.327"}], ";"}]}]}]], "Input", CellChangeTimes->{{3.8418280761221857`*^9, 3.8418280761422033`*^9}, 3.841862171517088*^9, {3.8419262080807543`*^9, 3.841926219260518*^9}, { 3.841928038092181*^9, 3.8419280541030884`*^9}, {3.841928487899782*^9, 3.841928488076267*^9}, {3.8420066140269156`*^9, 3.8420066793455715`*^9}, { 3.8420171976184487`*^9, 3.8420172488882537`*^9}, {3.8424381617095547`*^9, 3.842438201338784*^9}, {3.8424382660884786`*^9, 3.8424382663017025`*^9}, { 3.842439900950303*^9, 3.842439905584711*^9}, {3.842440130144476*^9, 3.8424401408080816`*^9}, {3.8431287176062517`*^9, 3.8431287369491*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"03437ec1-8e8d-4132-9ebd-bd698daabc4f"], Cell[BoxData[ RowBox[{ RowBox[{"Psi", "[", RowBox[{"r_", ",", " ", "q_", ",", " ", "k_"}], "]"}], ":=", RowBox[{"n", "*", RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "k"}], " ", "r"}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, { 3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 3.8415122060456753`*^9}, {3.841926409979779*^9, 3.8419264177339487`*^9}, { 3.8419276456625643`*^9, 3.8419276518377705`*^9}, {3.841928494442438*^9, 3.841928503957432*^9}, {3.841928615751482*^9, 3.841928632201804*^9}, { 3.842033422958788*^9, 3.842033423943757*^9}, {3.842437713760228*^9, 3.842437735679245*^9}, {3.842438434224802*^9, 3.8424384347359476`*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"6a7dc0c6-be0c-48fb-a1d8-5e115c4bba2c"], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ "\:041f\:043e\:0438\:0441\:043a", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043e\:0447\:043d\:043e\ \:0433\:043e", " ", "\:043a\:043e\:044d\:0444\:0444\:0438\:0446\:0438\:0435\:043d\:0442\:0430\ "}], ",", " ", RowBox[{ "\:043f\:043e\:0434\:0441\:0442\:0430\:043d\:043e\:0432\:043a\:0430", " ", "\:0432", " ", "\:0412\:0424"}]}], "*)"}]], "Input", CellChangeTimes->{{3.8431287647436237`*^9, 3.843128807073161*^9}, 3.843128990348751*^9, {3.8476878131431694`*^9, 3.8476878141054096`*^9}}, CellLabel->"",ExpressionUUID->"11c14549-6598-4f7a-b43d-46f1014014f5"], Cell[BoxData[ RowBox[{ RowBox[{"A", "=", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"Psi", "[", RowBox[{"r", ",", " ", "q", ",", " ", "k"}], "]"}], "2"], ",", RowBox[{"{", RowBox[{"r", ",", " ", "0", ",", " ", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, { 3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 3.8415122060456753`*^9}, {3.8418621836152816`*^9, 3.841862185815211*^9}, 3.841926746792386*^9, 3.841926895943141*^9, 3.8419270140918956`*^9, 3.841927076075403*^9, 3.841927522717456*^9, 3.842017257041871*^9, { 3.842437744800707*^9, 3.8424377549466815`*^9}, 3.842437979416876*^9, { 3.8424380555912037`*^9, 3.8424380602688913`*^9}, {3.842438441710887*^9, 3.842438441851587*^9}, {3.8431288152995477`*^9, 3.843128817453047*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"e1e79645-e32e-4b68-b5df-7ab484da6ba0"], Cell[BoxData[ RowBox[{ RowBox[{"K", "=", RowBox[{"Simplify", "[", RowBox[{"Solve", "[", RowBox[{ RowBox[{"A", "\[Equal]", "1"}], ",", " ", "n"}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.84142616113337*^9, 3.841426178836554*^9}, { 3.8414262777345657`*^9, 3.841426284352947*^9}, {3.8414263330417156`*^9, 3.841426370919484*^9}, {3.84142642169523*^9, 3.841426426745703*^9}, { 3.841426931233382*^9, 3.8414269316640887`*^9}, {3.8414270180161147`*^9, 3.8414270221548047`*^9}, 3.84148513535236*^9, {3.8415125163491974`*^9, 3.8415125198006496`*^9}, 3.8418622677252283`*^9, 3.8419265653233194`*^9, 3.8419269042440987`*^9, 3.8419269748002605`*^9, 3.841927041659233*^9, 3.8419270882586594`*^9, {3.8419276967204638`*^9, 3.841927700771744*^9}, 3.8419286997488294`*^9, 3.842017348039254*^9, 3.842438082303847*^9, { 3.8424397967035007`*^9, 3.842439821268721*^9}, 3.843128823099741*^9}, CellLabel->"In[17]:=",ExpressionUUID->"7db9fcbd-2e07-4390-89f8-64abec23f5fc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"K", "[", RowBox[{"[", "2", "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.8686038940314617`*^9, 3.868603894543469*^9}}, CellLabel->"In[18]:=",ExpressionUUID->"67a1328d-5221-4305-a01d-e50843cef26e"], Cell[BoxData[ RowBox[{"n", "\[Rule]", FractionBox[ SqrtBox["2"], SqrtBox[ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "-", "q"}], ")"}], "2"], RowBox[{"k", " ", "q", " ", RowBox[{"(", RowBox[{"k", "+", "q"}], ")"}]}]]]]}]], "Output", CellChangeTimes->{3.868603894970817*^9, 3.869625980413628*^9}, CellLabel->"Out[18]=",ExpressionUUID->"2421d1b5-e428-4ca5-a582-2db7153aba37"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Psi1", "[", RowBox[{"r_", ",", "q_", ",", "k_"}], "]"}], "=", RowBox[{ RowBox[{"Psi", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}], "/.", RowBox[{ RowBox[{"K", "[", RowBox[{"[", "2", "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.8424384039736495`*^9, 3.842438428725119*^9}, { 3.8424385151885943`*^9, 3.842438546087465*^9}, {3.842438772860559*^9, 3.842438800554349*^9}, {3.8424399202820253`*^9, 3.8424399613286667`*^9}, { 3.8424399927962785`*^9, 3.8424400638808756`*^9}, 3.8431288282508316`*^9}, CellLabel->"In[19]:=",ExpressionUUID->"9caa66a9-5aac-4de1-bb03-8033da0edc88"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{"Psi1", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}]}]], "Input", CellChangeTimes->{{3.868603797366624*^9, 3.868603803371442*^9}}, CellLabel->"In[20]:=",ExpressionUUID->"52cfbebd-057f-4c95-bdc8-b59dedf6cbed"], Cell[BoxData[ FractionBox[ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "k"}], " ", "r"}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}], SqrtBox[ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "-", "q"}], ")"}], "2"], RowBox[{"k", " ", "q", " ", RowBox[{"(", RowBox[{"k", "+", "q"}], ")"}]}]]]]], "Output", CellChangeTimes->{3.868603804569292*^9, 3.869625983373563*^9}, CellLabel->"Out[20]=",ExpressionUUID->"cfba0267-a092-4ef6-8c42-92733cb13d89"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", "\:0434\:043b\:044f", " ", "Eb"}], "=", RowBox[{"2.224", " ", RowBox[{ "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", RowBox[{ "\:0432", " ", "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", "\:0431\:0443\:0434\:0435\:043c", " ", "\:0438\:0441\:043a\:0430\:0442\:044c", " ", "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\ ", " ", "q"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "238", ",", "238.4"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.841426186760852*^9, 3.841426194987237*^9}, 3.841426235567309*^9, {3.8414272721292486`*^9, 3.8414272771345644`*^9}, { 3.841427331043933*^9, 3.84142744059406*^9}, {3.8414276703149347`*^9, 3.8414277167910213`*^9}, {3.841427762538426*^9, 3.841427763378219*^9}, { 3.841427991721037*^9, 3.8414279919260397`*^9}, {3.841428129728818*^9, 3.841428130747701*^9}, {3.8414282143306217`*^9, 3.841428217697406*^9}, { 3.8414283871205826`*^9, 3.841428419843808*^9}, {3.841428486663429*^9, 3.841428557797946*^9}, {3.8414286124453373`*^9, 3.841428618859884*^9}, { 3.841428653223057*^9, 3.841428683650543*^9}, {3.8414287250655603`*^9, 3.841428726764765*^9}, {3.841428961621318*^9, 3.8414289632587185`*^9}, { 3.8414293474807277`*^9, 3.841429348553874*^9}, {3.8414293964972286`*^9, 3.8414294051683545`*^9}, {3.841429441392866*^9, 3.841429444525548*^9}, { 3.841429514978922*^9, 3.841429519625922*^9}, {3.8414295752486134`*^9, 3.84142957830805*^9}, {3.841429618772784*^9, 3.841429621688943*^9}, { 3.841429671140091*^9, 3.841429677643608*^9}, {3.841429725281893*^9, 3.84142973132315*^9}, {3.841429794250433*^9, 3.8414297989424906`*^9}, { 3.8414298426616917`*^9, 3.841429847387005*^9}, {3.841429893675215*^9, 3.8414298981449738`*^9}, {3.841429937323591*^9, 3.8414299456963725`*^9}, { 3.8414300032085257`*^9, 3.841430007293438*^9}, {3.841430056931363*^9, 3.841430061156352*^9}, {3.841430095216503*^9, 3.841430099493352*^9}, { 3.841430228009698*^9, 3.8414302348136067`*^9}, {3.841430286848734*^9, 3.841430293178632*^9}, {3.8414304278618417`*^9, 3.8414304335866623`*^9}, { 3.841501077439352*^9, 3.8415011289714375`*^9}, 3.8419263466938095`*^9, { 3.8419271215351887`*^9, 3.841927129893823*^9}, {3.841927279707741*^9, 3.841927282512185*^9}, {3.8419273527382545`*^9, 3.8419273586494093`*^9}, { 3.8419273978051605`*^9, 3.8419274002513933`*^9}, {3.841927452992919*^9, 3.841927453960373*^9}, {3.841927776102415*^9, 3.841927783632065*^9}, { 3.8419278793478727`*^9, 3.8419278795674515`*^9}, {3.841927980569458*^9, 3.8419279850325923`*^9}, {3.841928106073079*^9, 3.841928114845869*^9}, { 3.841928236170072*^9, 3.8419282600440474`*^9}, {3.8419288050703664`*^9, 3.8419288066732883`*^9}, {3.841930737410688*^9, 3.841930740257744*^9}, { 3.8419308009531436`*^9, 3.841930803512135*^9}, {3.841930924777073*^9, 3.841930931239976*^9}, {3.8419310607216372`*^9, 3.8419310612381573`*^9}, { 3.841931206535185*^9, 3.8419312112081795`*^9}, {3.8419312727086554`*^9, 3.8419312754340277`*^9}, {3.841931411810797*^9, 3.8419314192045755`*^9}, { 3.8419317391945534`*^9, 3.841931751405635*^9}, {3.8419318808331027`*^9, 3.8419318848515325`*^9}, {3.841932282064253*^9, 3.841932294082672*^9}, { 3.8419324380319295`*^9, 3.841932448113352*^9}, {3.8419329287763004`*^9, 3.841932933769066*^9}, {3.841934137743878*^9, 3.841934139508807*^9}, { 3.8419342082416077`*^9, 3.8419342115931273`*^9}, {3.8419922000040298`*^9, 3.8419922013937225`*^9}, {3.8419924342216797`*^9, 3.841992438525422*^9}, { 3.84199311956271*^9, 3.841993119772709*^9}, {3.841993305326928*^9, 3.841993319638669*^9}, {3.8419933528035507`*^9, 3.8419933558398294`*^9}, { 3.8419933869828987`*^9, 3.8419933908733406`*^9}, {3.841993423883912*^9, 3.8419934459890666`*^9}, {3.841993477174613*^9, 3.841993487973899*^9}, { 3.8419955763129225`*^9, 3.8419955796245885`*^9}, {3.8420023888580046`*^9, 3.842002396297885*^9}, {3.8420174075606923`*^9, 3.8420174086549425`*^9}, { 3.842017462387191*^9, 3.842017471550541*^9}, {3.8420175023526773`*^9, 3.8420175094095616`*^9}, {3.842017546304228*^9, 3.842017558900095*^9}, { 3.8420176160452394`*^9, 3.842017633902339*^9}, {3.8420897510471034`*^9, 3.8420897516868796`*^9}, {3.8420898148155155`*^9, 3.8420898247457056`*^9}, {3.842438117208927*^9, 3.8424381584235067`*^9}, { 3.8424382140231795`*^9, 3.8424382265617323`*^9}, {3.842438554038668*^9, 3.8424385551531467`*^9}, {3.842438810279594*^9, 3.8424388436955366`*^9}, 3.842439898146412*^9, {3.842440147834546*^9, 3.842440155112587*^9}, { 3.8431289038323483`*^9, 3.843128957140154*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"cde6bbb8-faa1-412f-aa16-d218f4ef9a75"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwd0nsw1WkYB/Bfcot1GUxmJxvGykHJDoUs77FbHZe1xaowKwfjsoeDg7Ml 2++nWtTuqQ5RqrVzpoytVsTSbJ3MQ27nuB5Mchm3JtauJRu5RfY8vz/eeecz z/PO851nXuvolOBYDYqiAtUH74UoTYqqF3Ipyr0/QyAm1O6ALVvQskubgXFi YriUr6GBdnawt4sWE4efLLU00fzQs4NhYhJdfUBPF/0o3t7bT0x6NURmxujs b6Q6HDGpujvCsUJLI2/emswgKZOPg7hoFa+4gZ9BhG2Cj3LR9YsXnnLTyUuL vZxW1jorXS5ppGbgw7p2A+bTaXLaLSKmS90HvkLzo2Y9DVPJaHbVoARdz59q 0U4mjsLCiV60rLAsrSmRzDw/f8f8OeYZ76+VfEfMc881nUDLFsIcs+JJ84Nz R0rQ/AJtyiuWjH1e4DnK1v/t0LKNIUnuFeOfNKrN9c2XmUeRrKL2uWh0drfC Qx5BliJXI+6y9c+Wr14LIws/c/b/zdrO5aHJMRJjHdO6pwn7Pf95V3aUkE8r nghZ8xqdjPxIycU1sz9Yb9zYtpNL4sJP9CygqV1uB7fvJdWXa5c8mtFH/zoT ogkiB8sXNDp7PfxWgCvcdr1pBmy9rLRS+AX4yszqNFuwfixzOj4A+JmylkPo 8RNFDa+DYEbudikHzV1yEVDHYSVSVdPG9l/c7yEOB5Eo00e/VW0r2766kpOQ 9NrGLQg9XimqvhoFQ/WDk0XobIeRt80xUKMne/cCrXqWadwfC8aP45N3KPA/ fDnyzCQBBrqI77doavQ+z14ApkE2w7fR891Kn31JoHLVfTmOTs0PVAiTYTVn w8VaqTZHq9Wcmwql7ourcWjpZok0UgTy0PdW99DUQspaYhocemWwZRqtGxFl kZ4OQZ3W/nva1Fb8efy8NAOUtocXheijpmlDt8TQOJaoU4N2disSy78H560l fSto/sYpRf8p0C0cpTza1T49UW04dhpicq1v0GiV/rPrG5lgP5VxBdDck09M tmVBdGWf9ybaOaGCZ/QD7BxyCT3YgfMMuHWOZ+FQWmnvj2hO8xu7fTRwNC6/ zUEn2OgqPWjQKxCb5KGlllYCbxq6qg4HX0JfnP+6nEdD6H/TPZfRzku/OYfT IEjd03Md/Sif58HQIE1+3H0PPa/j5a+kIe3Dr2/uo4t3+M100hByJc/od3R9 R4ikl4aPK0KPPGTz6CZ2DdNwZ3atqwq98qogeI6G2iTS9RSt4qjCTRkoXreb k7Pe3v/enIEzEmPDOvTAneFfLBjwLp8IBDb/tclRWwYUMxc6G9m8g4vR7gw8 yEqabWLn1yxv9WJAon/MoAVNOa2V+jAQ5LgrUMG+X92Y8mfAVW4oVLL9AZt5 RxjYHrAsaUPf86TsQxhYGRorb2f3p6TaQhkYEig6Oth9LVKJEQz8D+JGO94= "]]}, Annotation[#, "Charting`Private`Tag$7497#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{238., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{238, 238.4}, {-0.007657449706387709, 0.005228477853506774}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.8424382636216803`*^9, 3.8424383001831417`*^9, 3.8424385645116606`*^9, 3.8424386726493254`*^9, 3.8424389133230906`*^9, 3.8424400867886543`*^9, 3.842440179283087*^9, 3.8431290571693273`*^9, 3.8482514108102045`*^9}, CellLabel->"Out[12]=",ExpressionUUID->"7b0cfd5d-f03c-4b28-b49e-874682901456"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Q1", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "238.2"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8424402093132343`*^9, 3.8424402905077815`*^9}, { 3.842440406074133*^9, 3.8424404072100916`*^9}, 3.842440803549906*^9}, CellLabel->"In[22]:=",ExpressionUUID->"b46d647d-fcbe-457f-8cb9-0e3c2504df7a"], Cell[BoxData[ RowBox[{"{", RowBox[{"q", "\[Rule]", "238.16212237907018`"}], "}"}]], "Output", CellChangeTimes->{3.8424403237987022`*^9, 3.842440810164362*^9, 3.8429753238119316`*^9, 3.8431290607693367`*^9, 3.848251415227048*^9, 3.868592126317268*^9, 3.869625994476714*^9}, CellLabel->"Out[22]=",ExpressionUUID->"43a363be-f864-48bd-935f-df34040d934c"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", "\:0434\:043b\:044f", " ", "Eb"}], "=", RowBox[{"1.296", " ", RowBox[{ "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", RowBox[{ "\:0432", " ", "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", "\:0431\:0443\:0434\:0435\:043c", " ", "\:0438\:0441\:043a\:0430\:0442\:044c", " ", "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\ ", " ", "q"}]}], "*)"}]], "Input", CellChangeTimes->{{3.8431289771472473`*^9, 3.8431290090207987`*^9}}, CellLabel->"",ExpressionUUID->"f2516471-e981-41fd-b4a5-b1fa86962326"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "4613250", ",", " ", "4613300"}], "}"}]}], "]"}]], "Input", CellChangeTimes->CompressedData[" 1:eJwdzX0s1AEcBvAfFklpzFuXOUmt9XLTqYgjd1akDglDjoS5G2E5f9TMbsp6 2XWdpU2Wc85YC8l5KaZW2K3MRWN56eW2C9m8FOmG2ur3fP949vnj2Z5n16WC uGxrhmGC2MDptt7AbbULwhFDynF4raAwHh4NsUmAverz6VCwukj2J5kyoYKp yoLusS4yuDXBh/zRGXwZaucSSO4prp0rq2N5DPnQyG+x1S4I1732P4Vx0u96 WDQs64B6rbgbLqnse6Dgn9Mze9bIizGk2nJgGMojJCNwynDzI5xV7ByHmuHs L9CLuUJGZiyboa+Z+QaTJ8J+bWFd4Xv/hkMVtTscWPmLAg5krDsD4BNRUCCU J/YJ4MR4dQi8F+wsgoK2enJjt0LsxKp0XSOjGookcCb3UhpsDJjNgX6VrTL4 1zHJxY3VsZjrCvNCpIegNLSGBxk3/hF4UnyXNDeXnoZBgUbyTtNiNOxZ2h4L X97Wp8K1UpUEho1ONsDCgaVGKFA6PIfhklvkhNqnFz7aXEy+99/TD8/kviDH 6g+/o5/2qUGobbIfhT/HuGNQWZA0CTmvLKSt9+BXeKPkoAmm15TNQk8LZ47+ /DMuuKPPe5wK9+rkmbA6VJgNj9VViz1Yz80bo6Eh9Goy/PzBNwXOzMvTIMcw QCpsynOgJc9IhvMKr0Ndfjv5qdVZBas2dZEaTf596CIzk/vCrKrgSsQDkiOa q4GCOqGGdqzCdfDPqo6MS1Q2wjLOPNmRntUMYyW8FmhWm9qgaKFCDyv91ruh m2q6B24kq17DQV78G9hlZ/MWenieHYInGjiTJtY+6wwyc1k6A6NSSsj/xBPD bA== "], CellLabel->"In[14]:=",ExpressionUUID->"2340e0ba-ca13-4073-9b8a-6f8ba8116315"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw9zn0s1AEYB/AfLmSucL/fdYy649z1glqrq9nuqVyLWlIWWi07xsQY2mrW 0PUyrbrCalmo04Z0f8hyWuSemkVZL8I/KSTJLhUX0sndlbZ77o9nz/PZs32f R5KaG5/uyjBM7GL97zE8RiO+eWDH4sj8EcghU7XgdKKvHC6dnTtD1i+Tw2vm xzly8lI5xNsGLpCf2mVwdK65lFzyVQbHTRk6MvtEBtWvepAckSWD3WKTq8Rh 4YNQcIGiKLLCPRSGffo15KajUmBz85+RTfUhkFChdQt2eK81GKb2mKPJeapg aGxmL5PNVyRQMN7STb49JoaqWh0/xGGvcDF0h7nHkmPcVkFgVvhl8tbmIHix 8dYbcsOuQDjdeZEvdbhgOgDKPuMBcsMZf+h8aLhOblohgiUH5f1k7y4h6ApH haEOv0viQJUbkEj2dmVhx4/KSnJDqR+kiQeHyD5SXygPqgyUUf6d5SCqr1GT xR3eoLeE1JDVAi9IYY4Nk5njHpB/bVYip/wKHmjNNjXZZ9IFmIG4OnKN0K68 eTLV5NxnW5TK4Z+y1eSQGWVkb3cWeaRnQhl1daWerAkcUeYym0xOF3Upf9nK 161xePvS58aSzuws8lv1iDFPVNZIVo99M6Zv3jBJFsXPGE97lIetpfsVFuN0 WmQeees+uzFPq75Pnu11wehtPTNkcwsPVXftinUOp2k9cM+A/gRZtNEL9Td0 reTvPnzkVvrOO43Lse6wakuYw4b1vng1GE+RtdV+eNbQ0kr+YxagbuhNG3l0 ToDt7qbH5PdWAc4dCkBymyeLmbbiDnKhmMX9u2Jekq1xLAa9ez/ozG9kMdJl doj83cBi4lr+R/JgG4tlhds+kdu7WORJar+QNcMsTmTmTJItfA49rpVMkScE HErbdWbn//4cJi/rmyZ3hHLY+0Dxm3xeyeHkhzgLOVvFodeSzHly8m4OdyZV LZAVCRymaAxWcsQRDovvvbaRpSkcVvWN28meGRw+Wvj7l8zkcPgPXDiKPg== "]]}, Annotation[#, "Charting`Private`Tag$50183#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{4.61325*^6, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{4613250, 4613300}, {-1.2471446098061278`*^-9, 2.6866366908961936`*^-9}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.8424409321698084`*^9, 3.8424410279298563`*^9, 3.8431290846720724`*^9, 3.848251447159778*^9}, CellLabel->"Out[14]=",ExpressionUUID->"0ec5bebe-3bc6-47a5-b407-e82fc1ddc060"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Q2", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "4613280"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8424411355629845`*^9, 3.842441156587248*^9}, { 3.842441619365672*^9, 3.842441624049182*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"f1e481e6-bf4f-4d88-b460-30ffa444b7b8"], Cell[BoxData[ RowBox[{"{", RowBox[{"q", "\[Rule]", "4.613284148275481`*^6"}], "}"}]], "Output", CellChangeTimes->{3.842441161802581*^9, 3.84297535012632*^9, 3.8431290887731695`*^9, 3.848251451410477*^9, 3.868592130803894*^9}, CellLabel->"Out[13]=",ExpressionUUID->"2cb18a1e-beb5-445d-b2e9-3a6fc28e1c0a"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", "\:0434\:043b\:044f", " ", "Eb"}], "=", RowBox[{"77.7", " ", RowBox[{ "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", RowBox[{ "\:0432", " ", "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", "\:0431\:0443\:0434\:0435\:043c", " ", "\:0438\:0441\:043a\:0430\:0442\:044c", " ", "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\ ", " ", "q"}]}], "*)"}]], "Input", CellChangeTimes->{{3.843129163537047*^9, 3.8431291766371794`*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"3bcffe89-b392-4789-908e-125efb410038"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "80", ",", " ", "100"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.842441177956608*^9, 3.8424412108939075`*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"a0c8abc7-3920-4712-8409-6a31ba8cf5d3"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwd0XlQU1cUB+CXVyIiq8oUFShCWAZkGGCCDZsvFAqEEQSasNjQcQuIUNQi wihqUFsRN5Ypw1IUZBEsRU2RbSr3WnYoiqI0CCgg+1ITwBQQkp7XP+7c+eZ3 7rmb6aHjwSKSIAh/GPSs51nDIAg+l7j8rFpUKacu2UekHKHNzjSUlckphbEa o4P2VBQ+UySnBpeDiEwG2Ny5OT1bTpVXzStZn4FTiWokllPUDos1nw3g5nR7 a4GcipNnKW5pgQPdUmyUMqrrzslZk+1g/ubb44Ey6sDW2n4hG5yUE7pUN0+p vKIkXf5grvad4xqzVM69670NkWBxTFpj3BSlaeq20poCHpa1FBaPU6lhIRrM fDpvW5fovqfela0aH6ihrWP5495hyt5S/6zrC9qR6yK3ASrtcM6fvjNgwsVS xeujUG2ZTjxTAB7SbvnUQyk7TL5+/gXtwJSgXe3Ubm2d5l+/pM1lavOfULyo n3xKg2kT7RHSIkp0IfpxT8z/HlF7VYyEVX1W26/Q1uuyNW5E/jr1oyNFtAMm NYfakY/thtTBBto9DvNLPcjo4JDD0mvabz0ce16j1W9MWt0/0NZmJ+99g36P mP2uZFMInN+7ptrwHYrMseVeswAPa7g3vR9BZhlSzZI9YFmAp1RzDNUX6gz2 h9OWtPkKJ1B43INsj3gw4b4LX5hCi7EtudbXwSeMt7tkzaCjF0VFdvfA7fud mM/m0ITgRJYIgzmbt4YM/YMoLjOtfgDs9ajtxlUZyvhWt+OGgs7XZqJ/kaN5 9uWFLN1Q+P/ym555C4hlcWlnrQ34VVSR9P4iOtw7x9HyAn8lNegqW0IFkq7c ESH4fMDM6fyP6FE5W9WbCC5MWIq8q0DPhRv3LaeDq7q7hT//i9qsIoudK8ET cc7svGXU8dButLIF3J7Uf+zaCmo5Fhtd+BZcnsFsSFhF+a7sjw9XwP3ZQ2dO fkJnOyNjFreEwftxzDn715DTCdZEsB3Y7OXFTfx1NO0tqHDkgTnuY3PeSnRv QB7idQjs1x0rslIh6so2jfhzYVxxo5WalxaBR2QVpb3Z4HLeeNtZAidfe5hW /QCcNdBvNkXgBTePU5LOMC72q0gsFDLwD5VuvqPvIVfkhYa0M3D1sD4KHoP+ aQUsp04GVujPOzWBuWUvB7f+xcBnzhWwSsahvlf6+YvnDHwxQKkUTUK/y/EV fn8zcKYMPZ6egZzZx3OZYOBHbE+WXA5OnD6vqUbihaOGeQcXoN4lbHGSSWJ2 waLeS9oeRoJmdRLXMUuUkkXYL6Z8OFmTxLhP7c2pj2DBB4P5LSTuSWpNX14G q1tv7DQl8ZbfbqtHr8D68O+DS1kk5o+cPt8PFu/alia2ILGUZxXbsAr3ySt9 utuaxMM7Un2S18A1T4Lu2pPYbN+Bxjmw2ICvfs6RxEcucZwi1sE3w++Hskk8 NTtltkcJ/TVq6rQ4JLbZ+TS3Cix20DWfdCZxLD9Xz0QFef1A8lNXElelnrxy C0xIjJry3Uks+4OnVIHFdr2KBIrE/wF6IDy0 "]]}, Annotation[#, "Charting`Private`Tag$92629#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{80., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{80, 100}, {-2.2809867175290606`, 1.1045891821634086`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.842441199793255*^9, 3.842441234999315*^9, 3.843129111613172*^9, 3.843129215202892*^9, 3.8482514815251293`*^9}, CellLabel->"Out[16]=",ExpressionUUID->"2cf73a61-ef6c-4611-b88f-0f5a1198b439"] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.8431290938375373`*^9, 3.843129111287323*^9}},ExpressionUUID->"4a482f08-5be2-4e85-9e7c-\ 9533e11608c9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Q3", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", "16"}], ",", RowBox[{"{", RowBox[{"q", ",", "85"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8424413110369177`*^9, 3.842441322453842*^9}, { 3.8424416387409115`*^9, 3.84244163910299*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"2964588f-362b-4640-abcd-8429dddfcd8c"], Cell[BoxData[ RowBox[{"{", RowBox[{"q", "\[Rule]", "85.47711799676074`"}], "}"}]], "Output", CellChangeTimes->{3.842441326734892*^9, 3.842441644638994*^9, 3.84297535828819*^9, 3.8431292183557615`*^9, 3.8482514860813136`*^9, 3.868592134644457*^9}, CellLabel->"Out[14]=",ExpressionUUID->"e3615178-f343-49ec-baa6-5d4dacd72f9f"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:0413\:0440\:0430\:0444\:0438\:043a\:0438", " ", "\:043f\:043e\:043b\:0443\:0447\:0435\:043d\:043d\:044b\:0445", " ", "\:0412\:0424", " ", "\:0434\:043b\:044f", " ", "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", "\:0441\:0432\:044f\:0437\:0438", " ", "Eb1"}], "=", RowBox[{"2.224", " ", "\:041c\:044d\:0412"}]}], ",", " ", RowBox[{"Eb2", "=", RowBox[{"1.296", " ", "\:041c\:044d\:0412"}]}], ",", " ", RowBox[{"Eb3", "=", RowBox[{"7.77", " ", "\:041c\:044d\:0412"}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.843129208232153*^9, 3.8431292978172646`*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"befc8de9-0d27-44f7-947a-f192faf5f8d4"], Cell[BoxData[ RowBox[{ RowBox[{"V", "=", RowBox[{ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], "j"]}], "]"}], "/.", RowBox[{"Q1", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.8414865815670404`*^9, 3.84148666834463*^9}, { 3.8414867160015464`*^9, 3.841486720505498*^9}, {3.841501642367877*^9, 3.841501686449999*^9}, {3.841511738794239*^9, 3.841511808923006*^9}, 3.841863409834422*^9, {3.8418638247842407`*^9, 3.841863830550558*^9}, { 3.842033912742408*^9, 3.8420339133995967`*^9}, {3.842033998524009*^9, 3.842034005203063*^9}, 3.8420340781096725`*^9, 3.8420341097907977`*^9, 3.8420923585802064`*^9, {3.8420928187410583`*^9, 3.842092833128294*^9}, { 3.842441563153664*^9, 3.8424415719640217`*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"66d8126e-9920-4e9d-b7a9-2d8a88e580f7"], Cell[BoxData[ RowBox[{ RowBox[{"L", "=", RowBox[{ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], "j"]}], "]"}], "/.", RowBox[{"Q2", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{ 3.842441399379265*^9, {3.8424414299110937`*^9, 3.842441479866211*^9}, { 3.8424415424674845`*^9, 3.8424415564393497`*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"6edd5cae-065e-4309-91cd-7ace061191ed"], Cell[BoxData[ RowBox[{ RowBox[{"S", "=", RowBox[{ RowBox[{"Psi1", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox[ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], "j"]}], "]"}], "/.", RowBox[{"Q3", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.842441463330613*^9, 3.842441527920395*^9}, { 3.842441602317494*^9, 3.842441603337468*^9}, {3.848251404599659*^9, 3.848251405778296*^9}}, CellLabel->"In[17]:=",ExpressionUUID->"159ab438-0475-49b4-8561-03f59d837d6a"], Cell[BoxData[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"L", ",", "V", ",", "S"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "30"}], "}"}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"LogPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"L", ",", "V", ",", "S"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "100"}], "}"}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]}], "Input", CellChangeTimes->{{3.841500071634055*^9, 3.8415002093293724`*^9}, { 3.841500249852621*^9, 3.8415002582608767`*^9}, {3.8415166352827673`*^9, 3.8415166395207634`*^9}, {3.841756034654497*^9, 3.8417560350153217`*^9}, { 3.8420926035856695`*^9, 3.8420926854090242`*^9}, {3.8420976816040435`*^9, 3.842097704028285*^9}, {3.8476877343022203`*^9, 3.847687796690255*^9}, { 3.847688036312707*^9, 3.847688036802*^9}, {3.847688067067485*^9, 3.847688073718582*^9}, {3.8476884898998203`*^9, 3.8476885320361433`*^9}, { 3.848251608826153*^9, 3.848251645608255*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"f932f825-b20b-4ea5-8a8a-c6167060a32d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVkX081Accx4uUqxHmaeahVR6SS26XOPfr++Va7ZSb2npQKXTaeUilXPO0 y83Lw6RNtyTRcoRCJFfI0KUhLYvjDuXhpy15vCNP1Wa3Pz6vz+vzz+fzer8+ nwWc2B2osWjRogC1/veZ3uaGtSl5W0JUxhvCOHEgu2Ya6a4QQhplo8BugQQ0 ag0wVVyEWosme/dZEox79Cl6W7Ogc85xle8ECXzvW3JNhRjGfSmHY16T4H+3 5dZCagHIcmbIa30k7DQei33PKob2W5klDXIS9MdNLs7Ly4EZfUnXrImEhF8L o2dpEhC8oovZ9SR88HYNnE69D8Z7zfkxlSQM3T3gomLVwNCTA10jhST01XBO vJVLIaG261tVMgmZRibc01oNQGHMyxlCEr4J69s/SXsMg6xrsYlRJDyxOumh TG0Evv9qrn0ICfeEaUajrKcgCG7/Ln0nCdvWDr9UydvAd19JxlI9EvK8Ofvv hLXD1qtrpEJtEhbHlred1JLBqHzJRxqLSajpiGqcoHVAtUT2njI5AE6JK+6M pcrBMfuILcgGwHzYIf4N6wVkhV9MJa4MwLx88yWlmnulWV9JnPUAVNK0/QrW DULgyZHxxxYDwE9V2B+OHoTzfr3FOsYDMOkRWd9i+Qp+HqJeKVg6AMMl1SP5 gX/BC5dflmkN9cOLHwgP36nX4BPd1sst6od6R9ZEs+4Y3KB73Suh98MjVkHe c/EUlIr1BavEvWDeV/V3gMM/sP9EVEBrWg8Yhh65tYyliZYG8WsMXyrgotO2 B5w92siMrJXsYHRCV8bGepWeDt7MsfiKqeZOyRO0anyij55M3tzy/udg8stg sij7Y6RGNDtxPrRC4jfsLW0zRpi8z9ZSs+MpnHbNOdIsNEUD+o0mzqNm2Drx Lips0AyzIrxbo5waIY65y9/MxQKfaHygfT3aAIzbVyq+r7PCfqvymDGJFELn VOeadD7Dyy/vdol66mF+vV4vdc9qLIoej8wyrwVmUfH19PQ1eCiV8BuZrAaV gaffXulaTFywvv3rzkp4dd5vb/gyG1xSuNTHslIC7Imz7L+cbVHk1uel89Nd GD2qfbpCYIf8hme5ZRF31P+baCRK16HtJi26kFkKBn/YXCibsMddRUtWNNkU g3lSqbezswOm7PvzVKjNTchY76r38bdUJKUVLety8+GJmfumqbQN2Jsa0zwT nAcMc+nPjp2O2JXEHz7iLgZdTfEZf+FGLOZWMppOXQfLOCumj40T0iDZlnk4 GyjWh+7tbnTCoKkMe/b2TNhAfFJ61peGUXY/aNeUXYbwXoNHnos+x4V2Gf/x +kswMXV+Dzvjc9yE/iEPV4pgu+PvmWwqHftzjFbm0tKgdsrt/ewzOiYUlXka ProAYQ607ueBm/DCsZRErcoUIMa5Mh+KM/YrOfGe0iT4Yq2pl47YGX+8sffh 3PYEsDv343fSzZuxW7eO/tAkHuwDXeusuzfjjQCct5yJg8BaXnzFKRfMHjpb 7UI9B3XXZVyVkSumV02uDiZj4G3hwqzjfXWO4TE95JFw1LqIkunFwJYsDcMc z7Ogshc5lysZWLhlTD+p9QxU5r0fmE5yQ6FQMtv6IBwObF2DbpZM7Dx91cv0 75Pw6fHEqg31TLx5gJtR5RIGRstD73jtI/BZeYGJLiME8lixUUofAg8WWjH8 qSFAi73AEh0iMOcjF1b1qhDgKMs6FP4EPj7I+Td2WQgkdE7PHw0lMGMdv2VH RzDMiQUeUXEEerG1/P89FQzdbqL2/CIChbGZkuLSIOBF5GWxbxMYm6wRfj83 CGZuSwJHywh0+SmtrvFyEBisVsw63SOws7tRc14QBDu0Lcx/qyfU/3kPZXsH QY0sn9veQaCukWhwfJIHnrqVVL6CQImK8v2u1zxQbG+eMe0hMOLPunNVPTx4 Wz2SdLifQOVyRcWVBh5QczaWvBkmkEtPSstM50FNtzv//JiaP7/G1i5F3Wf4 NTgqCTweQDV4IODBscSI52emCZwNVnQpeeq++oRMkzkCj01blYt8eSB8d/lo 9TsCpz1qZW67eaBHv+ng+w+BuW1MeLONB9eOV08vLKj3v7SZuOrGg/8AIX3q eg== "]]}, Annotation[#, "Charting`Private`Tag$135473#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVlnc41e8bx3GSFSEio1JGdvY6H/dDNOiIyioyovzKSENRCV8ZGV9RmamO mVHC19YXDSMj+1jnc8ooJ3tvv/P947me63Xd13U/1/1+3/d9PRLOXmddWZiY mOoZ5797idr4WTIiXX+936uAy52s35Uq7GtACQIq/algZGMAIME2Z2FKLMxo Hd/alx8DPuY5vQQKGXhtDr7hu/Ma+KaEYld7C4FPKI+bzFYAeJWZ10JvHbRE S8hzeHyEJEEhl1usn8HvNOu44O4aOO+J28ypfoGNHN3Qf0ZqoOnADcOZqHp4 c56ZyzC0DkqCngpOHGuGDEnZwvs5X+C4JH1otrcDwvPbcwNufIN0czObD56d QDTwaWsRbwbmh4UdN1i7IGL0Lim7oRmquv3qp1W7gTPyjtghoVZQCeX6MBnV C8sx7ctLpt8hushLPl+SAmyH1D9oJH6HCbwzw72SAut+3T1Wo98hUzsl6c/v PihtuxhF8msHMbpC8PixQWh7mZZ3Jb4D/PY+3cruH4SBxw68ewY7oNdw8Z6b 9xD8uNukX3mgE2KTqz1+pVJhkTWDmSu9E4Kls3LnHtBg38qG+9rrLljt1Xo+ 0/sTFGTp1jGePVCmyu6YJTsMbs2sUc3ZPeATRZG7dH8YHsqG2HP97IE5Q9+a b/tHYLaHJ/GlRS/Q8yv+ZLqOgpRecdt1KQpks0eU2JeOgv1+/wcCNhS4cvli oADHGBjXrthSwikwLLyxNyhvDKRTv0I1nQKDf2GG9vO/QO5C0awJuQ+SqNzc Asa/YUbgwSux1j6w0aH2Nr34DXQh4rcDq33QPeXvoa07DiXGnyS+nO6HVtua hD2BdOiw1M7ppPdDjfKx6UaeSegkaLyU2jEI/k/2VAQ4TsLfY/eCdCUHgTg6 HKxVOAls99T9shg6licFi2RYToGoxLuTsQGDUMj61TggZRoeKjUGjs0Ngrfj C16tqWlI+axlusw9BAn2RZNLB2Zgkezz7caRIbAq+6ss33sG7uXmN2ZcHIIO D0kzUcFZEBNSv0iqHAKV5MiiJWwW4sQ1MvrahyCmYUG448oslLjfrh76NQRm h78Mh5XNwqUCss95fio0UVx9ly7Ogebh/rcKTlSQ3dlKbQ+eA+WmKvnsW1QI U9M0ys+fg2zqpNzbx1Q4Hr1zt8v2HPiyigsaZlPh07Gs9HbyPHCzJOet/6LC 0ej348sN8zDuYKvRu0iFVEqp0v7peah86P/2LAGHex4NZdf0FqCGr0FYSRyH sdLvmzFOC7AVnOYRI4vDOZY+w9LQBXjx6qpTvAYOSvHjzYSuBQj2rSiKP41D yo9ZPrm1BdghxGoRZ40Dh8KalfnBReCR+sSp7YzDSA3njxT3RahWvKAY6IND El1+UYN1CZwNyueUk3Fg11DXtZNfAt4cFbPYNBzuPCI+CrJYgka8/EhmLg7m AiSOtpeMeMjk2bEKHKovWZotflqCB8Hn4gXqcJB7ax8nSl+C97xnjFYacGDV 9xR301yGCj5T8nA3DjfDfJyj7ZZhQitAZXIAB1qHf1Zx0DJwa38eff8Dh4qr f6swty0D9ofPzmUChyOF8T4yi8ugItg4Zj2Lw/ONV5Uk0RWQwFZl2JdwuPG0 wDjp6gpct3htSN7CgTpQ9qQmagX6bwn/Ps5MA1Pp2raxohWwUdT/KEagQdmN RgHu/hVgmcjn7txBA+nKdls1plWgSonDtZ00iGPtT7WVZvA77oqfbDRgMv85 /Oj0KuQoto8QOWjgmUQ/knlzFW6FREr6ctJgYGTOozlhFXYQ9YbiuWhwUnm9 cO7jKojXF3on7qJBiS9hRXh0FUxGMo75c9Pg8GcuDLjWQIOSVXSchwYxPAJB riprkJWjLDHP4C0bsfoI6zXQt0mm/7WbBtfTJHcVPlwDtnVVj1UGUyYVLChp a8BEl2c9z0uD49oaL7Ya1xj7KJf7GYOLg7AByZk12Cr9RitnsESL8UHTvesw JZDc+4XB0UJmrt7EdTCoPGRSxuANJ6uceOd1EOy5+vdTBv8v79J0ddg6nOzw 3LRgcM/SFfWRd+vgZqA//t/7RgZevpzd6+BV/CMznMEfIu5+PLrOyBftHs7M 4P09jwjWEhsg3rrx04lRT+TBsJMPT2wAf0f1jlxG/avXYqLSPDbgEd8f/SGG Plf+SehojNuA3rYO2gpDv67t10Iz5RsQW0/R3mLoa2Dy1m4vbQPCWu49m2To L4aXjzkrbEKV31ZoxH/+zHsnNFpsQoSiyWMDhn8jO+VMjt7dBEOP7oBhhr/5 Skn5m7Wb4BkW8niC0Q+xhmcdXH5tQsmUzN7zTDTwseLk+7ZrC/TL2d0sNnHQ 9/e7nWC9BbTpnUR1Rn8dilWV3n6wBU39Mr2eczjszKT3upK3YPcl/9jHUzi0 tlzQU5vcAtFvvg6nxnBwENdjaQ3ahlzdA5VaXTgYqcwXqWdvQ9W/qU2ObYx+ Ns51TW7Zhh+VlrX/a2LMe0mUi/ouJrRid0hJvAYHRN2sZ7ZmQmIcRWhvDg7t itTolAkmFE/cx/X+Hg6ftSp+ndlmQlvFHM85buJQYvACEfiZUd7LmRST64x5 tjSb+58WM7rhej4t0B4H54cfLbWCmJFPXlJJC8JhrjlVrEOIBT0oZx6XZ+wb AXeHHLZjBPTUgVxM9KWCHFvaV3NrApL5c0fRyIsKiDz2M/E6Aanx+9/WcaWC O8VDVOEZAWXtc6icMqfCZ6MHkeajBKRJ5BWMkqHCbfFEz8TQHSgvhnlqkLFf O1s7VOWbWZFyxq6iUrEhiFU5XmlmyY7ipOzPSiUMQF/C0ZpZXm6knH/puT6Z AhHpj9pY9vGhn9jX19ah3SD0bDg87uUetFdZ877oxw4IPX9Kv2NJECk7mP4J uf4dbum8cWgMEka1aSJevleawWh6zc9zWAQpnHrumP61AQKJFk4i2uJIKYS5 wevtF9B9l1js/+8BdM06e9diaR24r8wGNHBLIPrUTjnq+RpYleelKloeQhEp 7Rey5auAmJv3+sWLw8i2VlfE1K4MZvlNHK3qJFHIwsWkeuN/YCTS0eommzRS vp2YqGhfCKem754a1ZRBd0LrPpFYCmDiMvut4kdHkH2tmftSfC7jvyLEElon i2QE+kLOUrKAv0U6umBaDnnWXgxabU0HsbD35pqaCujakTW2xPk3kCCvw7vn qiK66qziYnniFTSJGGjMP1VCqdTHrPjZZNAVq4tR7lFGN1SxL1UJ8cBDIN92 CjqKdqhVm4s9ewb7Aw8QbaVVkCVHMul39VPgkLIrOVuvgjjPkaQH8qJBCdv3 /q69KhLl8bz5pP4J3KTyfzJhUkOE5TOdr8VCYXo+0vJUghoSkX0yEicZDCeU vyadUlRHGWaH7GyTAuHjvN76cqs6EsH6q1yv+YOngmp/u6sGsimoL1cM9wNs yqXLlkMT2SVq3d897APGksIkbrImkhz9fEFy+hYcCXhyr05LCyUOiGm3uHmD nKvOv1L9WijDjcl1aLcnuH50Cy721kY+shq2vzSuwb+vu1xmBXVQuDK5Kzz+ Cixkby8rl+ogtSFfy+chl+GyVC5HEkkXsZ2mY4WcTjArF6dZOKOL3pwc94ty s4ey9PUfi2F6iG1RaU/3K1u4YHQY6e0nIq7a3zyGl61A1CO0XKmGiExqf5bq WZ0DQU73DyRrDHlHcHtXDZlD+rGHfjO2GFr+Rd6+1WkOqg+jj8XZYeh4m3yn SqM5mM0UdFOcMNQS/l2nptgcQnoWVy+7Y2hiejZJJtIcVsiPDP0CMXQwIcxR nGgO/XpxnZm5GKrkYjm41+AMuN1JTzn1DkP7dUQI7EpnYOndP64TBRhae2IS zCp6BvgPUZZVSjBEnSQbHV40A1N2cbHqGgz1Kk4v/35rBlVdmS6d3RiKpdB2 xQuagQlPmaIPBUO5hNEwIJgB5UTjkvAAhgbb89XmZ0iwUPEn7BINQye2TNfu N5NA8c3R/HE6hi449kXxB5Ogqt/AJ3ISQ+NHd9TtuUkCE4FzoDyDoa27g1MH HElwJfRO++1FDH0d7RWyJTLy1YQkCa1gSMEvc2eIHAmC1uIvV6xh6OpF385q YRLwqr9VsN/E0AeXgrtMbCRI9ahY3N7GkPX99xOkxdPwfx3lBAo= "]]}, Annotation[#, "Charting`Private`Tag$135473#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVl3k0FVwXxs1JyDwn8zwPF9fV3iFCJUohReYGkkRUpoRELypjCS8ilLmM eZGMlVmGK6IkczJFvvv9ddazzln7nP2c315nH1HHK5YuNFRUVJ+oqaj+P66S W5sk7mcdkDCyOSVyMfFAbxqf/8HBUPDpOHEg2fk6IPdHR77BeJh1/CiSdewu +B5/MUA7mAnNY9/u64s/BvZ53viNgRLIz3mcn9eZBWM1x66sDDTAKem7rfFS ZZDCzet8jb4JBEkOQSonyuGk55j1sto7EHPbPGl1uwLa9nvpL8a8B6PG9acG bW+gIjSOe9agA/Rn6ohCxrVgJDEzujTQDW/+3qjf+t4AWcePWRd79oAk189V p0uNQH27pNuLvhdqda5xFsw1Qk1fwPsFtT6ovVG6PTXfBKoRe4rnYgYgvy5i t+pkMwjNKIT9MBiBh2TboWepbbAxoPV4cWACar49rv436xO8UWN0eC77FXr4 uHTFhz6Bb8yg3LmbX+Gcic5Fvr1dsKzvX98uPAmRvRcS3Py6YKaw6meOyxT0 HLZmKz3YDSN39PTP/voOOY6cJ1preyCFzMLCdWgaJkI/H2P/2QPWOuSBtoRp OB8VdmqUtxf65gM9tIk/YEd7aInOqxc+2NQncYbMQHBMxUyeQB/UKxsstLLO weEzBy1obfshMIqzKthhDvJfa2QtBPUDaeprmFbJHPxg0uLwyO6HypQwgWyr ebiT72wtvNAPJfTNh4KfLMCCmPXmldsD0O0hcUyQewm0/jmr4hc+CKqp0aWr ekugKrdW+TF7EGJbVvi6XZfA9kAn6V3TIBwTf/c18s0SDIRF/b1H/RnaBl38 V88sA+0nr+kY38/QaPA8qyvzF9isFcbwmg+ByoNXP9ZafsFurlyXSdchSBt8 rSS88Av+5fYwcA4cghseLW8u6q7A+mUmyaCCIVBK/NFB27sC79Q9vivTD0PK jPxvTfpVMCorV5/PHQZGTQ2infwqiApEHpGpGYbrQaSgUItVGJNNdN/3cRiO cx3d/fHpKjzWqYklrgwD/QHPfe6ENej786r5qO4IeMUVHUpxW4fLUXbVB2pH gDz8Jqo+Zh38nWSfOHSMgJnUfx+/la6DXthKm+HwCEhVd9moU21AwnuFD1br IzA8uezRkbQB2QyyF3KUR+Gw8p+S5boNMPa6UvONNAoV/rTrfFMb4N2f3DRr MgqxrFyhLqqb4BpGTDVzGgUjbc2Ev62bEMi50mv/cBTKQvWGJRY3gbV71ehz 2iiIdh4SMeP5A2pfzhcKvhiFrfOnXiQ6/oGR5ZGfW29Hofi+X53Knz/wuTh/ H+nHKAj3B9GeFt0Cx/Ezkoy/RiFaJPLwbeMtODxF0E3fGgXX8qTu1odbkAxe nIS9ZBAaq/zmqLANflEvJ2nUyED162pSq8U2bGex72YnkmGSQc5UxW8b3vIm 8yweJEOhUkrh9n/bUGemf1jMggwHAgN8kk7/hTe5N9wdPMggFq8mtXPrLzyz 2NHduUYGhpyZAZfMvxC7XzPzagAZPnTa6qrP/YWndtre3eFksN+nS/MhdAd2 rv3HE/OUDIaqv0o1cneANsXYvyuTDDKH8l1SO3fAM9No4+dzMtyoiHHWYKZC R2mdB1nFZLhYf6H2uzAVWmcfQYMKMti1HeJJVaXCLxYCppVVZEDy9nvq01S4 /EsmRaGRDGrTn0XKL1ChYficv9x7Mkgsl/u736JCqxqfSap2MjAyeMp/zKBC kuxShHY3GTb3moaFllGhVNmXUyl9ZJjllxrVfE+FBlmRI32DZOhSJD94MkuF ZgeU1YfJZGjSqvpuvkOF1RnFCdnjZKg4mIC0HNR4dM/vPtNJMuSaeSdXSFDj 4Qk5nfZvZEixOrZ8QYsabZ7zMUr/IEO0vZzZPlNq1LjAF3XuJxkCLzBkfbKj RkdHfgbvOTI43q6z0gqlxh3dVnqlJTKcjEh5OfOIGsuvHOIeWCaDUZzvrrTn 1MhUcY5wdoUM2qmWDhZV1NhyebWw/jcZ5LKVKuk6qfF7WHg99Rrl/l8xcbwZ o+y/KFoisk4G1spvFy8tU2Muz/XmfRsUHhobGoXpabAwrxk3KHq5I02om5cG yz+sOZVuUvjoD7h+V44GOTfDvI/8IUP/l1MftPVosFo9/GUTRbfMqEnPmtOg 3cArG6EtMlStsAY/c6TBN98sy09QdMHfmUHL6zTIWHOW5hJFpzG+V2WIpMEv XnYhjhQdy/FvVGUKDcpd9/cmUvQdoaCvlwsp61dvc/+ixPeVOkMSqadBvsTu vGiKdlfRetzTTYM3M4M8d1G0LZFzPnyKBgWWFTOdKOc9YrhgRFynQRKd9J0M Sj4HjrU/m2OixYVRK/P/KPmrWD9fT99Hi4FSxoaNFH/EHO9YnFShxUvCcs+e r5KB67L9i10GtHj12acnnv/3c9e/zcdP06LFtrTk5i8Kb5nfJpIv0WK4TWep E+U+TunJ7UwE0eKtqeVH+YtkuDzoIajwiBbVY49wdc+TIfRasdb1XMr6Bbbb A7NkSGL9faKuhhZDGjb4a2YoPBneij4+RYum2WV8EhRehsbe5iZv0GI/QxxL 7lcyLAbQvptgocMjk8/tmCm8CRVHbfsQ6HCn0l7Ob5gMPvuSPZMj6NCOt9p8 9AMZot6MRE2k0uHK2bCpSxTe00+IPJcvokMeD6k9o5R66Lj3fKx2kA7Rk53P vZ5SH6vlxydk6TE9Sj9NpogMxLiNy/IH6DFhsF6wJ58MxxX07vlY0mNW07uD jpT6vOXY9B/DTXrMdL58XzmNDD0futXkO+iRwewuf0wUGaYv8Jj7fKFHOf3U Cae7ZPhLZ3updoUe844aWogGU/zUHf/XfB8D+spPc1tcp/jzfIHLx5MBjcq6 v0ado9RvMPNaDdsuDNvSvp2qQIbDgsc5GSR3YXxzcNG6JBnOVTxUNtfZhQJS 4Zq4n5LvrID7+PldyD5szvEPOxkmrGU/05fuwlv/NbKp/R6FeFWj6mNWjLjH +1pd9ZtRUB62MdZzZ0Ti8vaLc8Wj0BHm0SN/kxHd2ePilvJGgWHw0U/GDEZs 9/WZ/54yCjcDvwo2zjKi+qKZoeCtUXBuD76lFbYbS+xcrtfpjgLBpVpPpJQJ m2XtOzaLRuBzkkr9EhsLzlGb7c0PoLxnPfl7fSVZkDuqcCPiyjDYskrbb+qw 4GHB4d4zzsOUfmHfXxonFkw8YDs5fXQYvngykbjKWVDiqfPuJyLDMG04+Zpg w4qZn6byQ5uGYH0x8dXNjL0YtMeVU3rXENzPCvpIw8+O/W6sBU23B4H30dd7 D59yon2nd92mcx9EnDQ50L3KjUpnt9//ftgN13Qy7FtD+bA5yj9Xwv8jGC5s Bnh+FUCXPdZWf4vaIIRkcV5Aex/60DSN+t9rBuLL5LLAt/txJrlVMfJZA1xe XwpuYRHFgchdbv/8rQPiVVeebxyiqKn+zTB2qg4YZ4byaflE8XtzZ0RmRx1k Dzf2HxATxbdHGff9SakDct1jhXKCKLIGxufc1K4D87s6gxn2ohhvNK5Z6lsL ahwhyjeLRfFBf3pW4041bMizkRWtxJB47AXhqX4lrD4VCFG3FcPWrqc/+ZQq YWWvpISOvRgGJrpf+Je/EuZ/6Vw0vCCGzi/an00uvoGJaqdV29tiaJtczs+b /gbazF6zRmaL4dw7ZwtN6jeQcukcTPwWwxALrpP7P1QAKb8gPSFBHMdO/lO8 EFsGwyL5zw6limNCf9QZ+pAyCEjIS1t5Jo4OcePyUlfL4HVIzhPLPHFU046V umdRBmrW6UmsNeJ4oPNdbw9HGcjSP4oNHxfH/pioZ76JpcBjfzPYV0EC/xaE xzbnlsASh6nDqQYJbPw2w0ecKYLBy2KfLr6XQHnemsWW4SKob96EoA4J/Kgi LOTUWQSxAfn7c/sl8JdylXllURGoTDCPbcxIYNrOgs2sXxF4Fn88+5RTEpcC rwa7MhbBjLnVmUlnSVxeyKhccHwJk9EOp7x3SaEwLdWjbcN88JxREFNhlsIL EZZK35TyYc14Y26OTQpVR609xvjygYk2/u4FASn8t3qkkHbuBaj4N5Y5KEqh Ka8VI0fCC7jtIsVpfkIKO/3aX5F+5gHPgdmP8s+kMJQnTy0oIxdMFvxMpgjS mNs5WuGjmwNCqsLhjCRpVCDqtxZK58C8d1OD/EFp3BMsZL/GmQOPVtlI3mbS aDbEPFk9mw3k7TylHXtpDGO23WJ8lg3ezCOc/Pek0V3ydGsuQzakyCL5yLA0 SrrvO5U//i/MOjFeKwuSQRkjwhdCUwbMpxnWvg2TQdLvnsnAsgxY+By8q/2e DLq5X+PozcqAZfON1PGHMpiWWViffTcD1nRnmlhzZVAoRMJyyjgDaLg6eC58 kkGvboacjg/pwN/0T9U+UVmk8qi/vtj+jPI/4aWJaJDFpJ9nL3ldeQI/HI1z dd/L4vwnFfPS008gOsPv2GK7LDYMOnPuxifQIzyYYtMni44RSfRzbE/AgT9Z XWFaFkmLuXsfl6aCP6ugSxeLHCp6ebXZbKVAwbpwi6CNHF7QF+W3Tk0Gjk6p B0ULcsjWdPayFXMi/F1QyW5bkUP1dtoqo7UEmOHQrZnckENb/a/ephMJ0GBt PsNHJ4828wYzkW8S4Nqkn1EInzy+Wkk++sUlAXr/tPy1OCiPHMK/N342PoZE uUtXfsXLY0vziQL2mEcgFPnqOIGggF2JwyoPjsfDi5eFjRtEBYxP5ttowXjQ 7ssn1IICupcJdLGpxsNJsVwhQxMFxF01Ee/Z4yG6Jn3awk4BD90WW/nYEwd/ FuOCPUIVsHt1P4OhbRwM2fgUZX1QwOs6Qed9vGIhSV6HjdNNEZO8KmM7g2LA yqwztu6SIt6TS5ordY0Bjkvn2S96KeLE3bHpl0dj4P6Lexz/+Sui66lbAROC MRAoO8R1JVoRK6W1zQ5URoOz9E3+9mJFvGPO2121dh9UxWvF7mwpYm4Vo86Z O1HQJnBQ81ecEo6di2T80xUBn4RfSdElKmHhu4rV/uoI6Bfbx8f9RAm/9x3v ac6OgHG5jU1CjhIWJ7lzTvhHwDqxuD6gSgmZA0N66MQjQOqM6BGar0r4jkEr c/ZGOISmUjuxaygjs1dsdrfaXSAKNcQq9ytjal19+P3hUJgQlyD/GFJGRonT tBztoXBPPlw+a0wZq7smAnKqQmGQaNrM90MZ1xZcFTeSQ8HPpvsP9ZYyZliO ORnahIKt2VX1GTYVrD9+97j7UAgkRIak1RBUsOXCh+Lkb8HASpvpcz5UBe36 2yRKDwcCw8bbE0thKnjHM/vPkHwg/J0fVQuJUMF9N6Lj9+0NhIUh/qX0aBW8 xs6esdx3Gz6VxHl8SVDB/OmjeZ+db0O8Y4irfb4KnmcNmAmPuAU8DQ7WZ3tV 0MRT4WjdWAAIh+wn2UipYqy8Ie9Yvx+8vMYoNiqjiq8TTr28Wu8HB1yXdp2X V0WD4tQRvhd+cNasscddRRX79taWZ932gyfcbpduEFXRqLPoXJGkH/C/eJmS eEwVc3X6xiL8fYGrR2+jz1cV3R4HWtQqX4fdknYVlu9V8RCz679p3d5wkR9M 81tVsdKJoYCmwRvaWMTItB2q+I7dbvf1Ym+IXv1OX/5JFVcYID4s1htYW65Z 8Q6p4gXpZ/8cNfem8HV/ZXhWFSXPvpq79fEqpd+qUnPhUMN/5GiaqYa8QEmP /5XfWTX0LjF84CHnCaXiF/7QOKgh3sp95cHiCdpMlcYPHNXQhGlD+N6iB+gP WH/JclPDyeo7d9hfe8Cpq0ns3VfVMP7sTqHLIQ8Iyub1UQhXw9qtx/sY3C7D JxYenfGXauiZfvVCcO1F8CZzNJpSqWNqEFOhS4kbtDTb1b6gUceWH9cmGZ66 gfCrnNdM9Oro+jqYtjrCDdqCiAVtu9Xx8o7T6zNn3UBM1PGxKac6/hd1XvX2 bjfocip2M5VSxzpCvLeaiyuo/DBnNj2ijpb3RrfWZV1g4Ve0lUmSOr6+Uqde MeUII4MZp56mqKOv5yHbhV5HaKutOL30RB2Pqy2LajU5QlbEF5vkDHU0sPjt uJzpCLaCGud+vFDHPy9cLXjOO8I7/WHXe7XquO1ppbz7y3lIjZO90TqhjrN9 n68ZTzuAsXJziomiBkaWvzY5AefAmuHwyU/KGvilzt6QS+wcXBxtZTmtpoFu +76wLNGdgwf3O4OdtTRw2W5vznbbWej/3usadFADCaJNQhQSwTn9q1q5lQau DYz+Ub9hB6Hs1O0igRpY0/xr/GK7LdT90v2z9kEDbxdL6qxVnYaMjteOJ7o0 sOSUUt6N7NMQlq3e9rJHA79+3DRgiT0NJqflk10GNbD861LFFZfT0FsloNUz roEhdL/redlPw0zIhvfLFQ00FDFk/HbpFPCwvZ5xFtBEZWbjY3uUrcBTQW2o y0UTW1QTfcSnLeH6msCmvbsmjnt0HbzTZwm3GmgF5i9qYsHmsvjvBku4b91n w+Slidq/eCdY0ywhN+zGZ/0ATVSkSnbjs7KEiZG6wdIHmhh6OHfQp9kCTsWY DTx+rYnHJLfufik/Dnrzzr02uwlo7x2vRow8CjzVxpk1ewjYY+div3r5KMxH yHntZyXgq5HDDu0WRyFNdHHPFAcB+Vv8774VPAp/T9408BIiYPO08Upn0RF4 Wx1XEq5MQP+AGGuvMTM4eK8uttSKgMfpj9YQjpnCIQm+oyyZBPxoVbTnvIcx lM29E3XOImC/Fm+VoLUxSLy+tlqVQ0Cnahr/H/rGQGf68Zl7PgHbUXeqls8Y Gq6ELzeWEdDzH/Gsw++M4ED1SmLAewIWPDSxHBA1AoJl18T3WQLGXrtOe2Ha EHIEg14fWCBgbqGWoWufIXBPKUQ/XiJgXM9Agk+DIaz4RWoarBJw8pW7ZtMT Qyh5CpFpOwQcM8wqU7Q0BOUfhYpWHFqYlxXYIVRvADLBUTcatLQweX0+iCFX H2p0s+mPELUwZJ88b8pjfTi+9ja+j6SFYeVOz+GOPtzw/F0wfVAL5bHDo/6c PrTYOYyzHtFCITJnaQKPPrjrEEzPOGjhAdVO64h7ByFveVxwJVILqe0C2Rlu Ici56LyVHNLCWiOGdgkRPfhH7NjmnREt/DzP06RFrwcrY46aE2QtPJf/ytpp hgR1ttH5aV8p8+ETf2jLSWB5fCyRd04LHb5fb3A3I4G/7l2v3VTamHpk7Xjh LV1oYe8SnZPURsXcHZsHizqg+HHKzkxGGxtpdA3vD+pAfPRmYp6cNjL5usim 1euA3S4JVldlbXzxhvSYPk4HFrZ8N8na2hjHXNc+qKYDPNNCPZ/MtDEzXrc0 KEAbXOrcw8quUuZfS4+b8mvBvMeM3yEfbexpvWbLR6MFN/ZdvtTvq427uWjG tmYIEHXriuX6TW2cdMh5xVRLgCKirwgpXBt/UHNuERwJsFVxp6YxRRvb3v5c qCvShPhXaSvdjdr4kJadZvWsBgjZi0w7NVP2j6apDTDRgGzWzOGVFm3UnVb9 zKmpAW88sht4PmjjxavmU6HMGjAqXxBrO6iNGV3jIpY16iCTW6kwMauN1KGl DFn71eFteq/zErcObogwuMeuqMKXI6L2vnw6mMjYLPZpQhWoNjxs/gjo4MvX +0miXaqgb7HrGL2IDjLnxBqvFapCMzVRi19OB19k+Sx4uatCh+Oz3QcP6GDx cxXp6C8qMCRx8WWsqw4WsISsT1Yqw0ruzpryax3MEHqj5cigAN9OGaXfq9RB 6fyPSTdm5WGQLubw12od7FlmL8vplodqB4HkhHodFL1n1mjyTB5C+TSJ2606 qH1VZTFXRx7YIi/eahvRQdeWB8KV3nKg4NZH5UJDRN14F4+43zIgzC2UV0dH RLLvxylfsgywNTpa8O0i4oSFUczV9zLwS3gxo30PEfuFM4RykmWgqp/JQI2b iCW+pdJMIAOHjfDujjQRqbRpbhXGSIOTZP7ulKNE1Nt++f2LjhQEvDt3Ueo4 EXst1sqixaUg1oWjvcSSiBmnFquPsUhBTbZ/dPtpIrayRe/nHpcELqnDe7fP E3HARZmce08SmqWmuBx8iSi3OnLnM1kC5GT2i0g9I1Ler6urnUnigC3dwSUZ RMzyN5DluysOp9zDxw9kEZHZxJ/a96o43MmdyzydR8TO1PyTl03FYUSmRvJe KRFt/g28fHBbDB7I2sjPvqfkW2PRdctVDJbkHhJKFokoOWyX+dpIFAY78BDn LyJmCrjc9yeIQr3n/Amf30Qc7g5JNJUShQclJlcJm0Q0YFcb52cQBTkiVUEV rS4KtzRUXGoWAUcTD9FGHl0UVDzn+8lEBHrdjJl7SbrIxXzweGiFMLzJ+jP+ O1IXpZgrCjfMBIFg4LNmel8Xz8cVVDWqCUL5+Cxzeowu/ghLJ2fxC0KJMFnL NF4XQ9wGeAu+C0BBUn1MWqouLqes7u4IE4D06Ls6xi91UdfMYBsa+eGez964 pB5dbPB+c/rycT5g5IzMmevTxQLz+7zLOnwQXkxVoz+oi9O+D69Fi/NB2PzS t9kRXQyuuFn+d5UXAt17SQe/6eKk8Yj1QBoveNslT/9Y18XW3hxuk2UesDUU R11hEmYal/gVP+eG7V5G1kYREqrZK3evxHFDusv8sKk4CVGnv+voLW74Fl7p ZytDwi+7T1xCC27wbjV/5a9GQlkGzwrJLS6IOnZL+I0RCe9a3LlEtuKCKuu+ LY0rJMrPwftcAB8nnP1R1VZzlYRTfWFRpvScQBWQnmToQ8JLWYEDisscYJR6 SeOkPwkFafIiFTs4oHuU+vK1OyS8ue6suzeEA2YclYaLE0mUftqzymyeHQQ9 IiqV6knI4lISIt/PBg92XDXvN5Cw7WPn9NlmNqCJNyr+3kQ5T4EV47MKNpip oM9LbyXhP5LniEcT2aCKKiyJo4eEqgLzi6dt2MD2UbDf6hQJ1RdpmQj1eyGp 2l+zbo8e6vB/Pry5wALMx2yKBVj1UOF8kMNQDwsEf9FW9GPTw73N/cW9r1nA nX5dQoVbD/fE1aTzBrOAlrkvV6awHh62U2PtZWeB/gnvX3dV9fBQ02cXDiIz cDNdLj56Wg87KrhsaZ8yQZbB7YBFGz0Mi1Ts5Q5hArXbDwwe2umhU4en6yEX Jji2WNQ3eF4Pf3TanPmjyATh/b83nC7rYc+JPYfe1u+G9cwg/YAQPdyt23A5 5icjDOk+7MnJ10Np6fm3N612gfv1rCcmL/VQoo9oukHaBasvy11mi/SwLN/N OVZiF3CIDa6pVuhhgUg9mYnSNJsx7hOqrdfDLd1vLEqPGKCmN8e5p08Pky5J /8fzmR5MWd8o+g7qYdb+1v2iDfQwaNy6yjesh3kb7dcM8ulhpepn5LkveuhN 9TXp4216UMxQKfwxo4d/hx2kaSXooWbooG/0HMWvdsfgNhZKPK4ToLxIiR+g sidvjQ5cI653+fzWww9kvVP57XSwUh+ewruuh8GWDd8+lNNB6GaiU9WmHiqR U012p9MBm0aewtltPRyckHWzjaKDNI+q3zs7eij186t0gw8d/A8yFFLb "]]}, Annotation[#, "Charting`Private`Tag$135473#3"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 30}, {0., 0.5936472400792799}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ RowBox[{"1", ",", RowBox[{"296", "\:041c\:044d\:0412"}]}], RowBox[{"2", ",", RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], RowBox[{"7", ",", RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable -> True, InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm], ",", TagBox[#3, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input", CellChangeTimes->{{3.8482516697852106`*^9, 3.848251726776382*^9}},ExpressionUUID->"2a3471ad-d9f2-4cae-b572-\ f7864d7b08db"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVxXk81HkfAPBhXU81RckxDePIMTKPmV9Sj/D7qCXlFvWjY1tHM3IkEbvO qNxFQs9qHBvbxuYqSaXvl5TySJJWjjZDDV6x7iaKeZ7nj/frret70iNAlkaj +f7P/9e7tHy9SLvZprBHPudszRrcoMRmhQiKyQ4yNXexcwg1R1eVGQuqSfsn jB6/r0Mo1+LDYfrFBhLvu6XaaSRCT7mn+AoCRO7sIr12eIpQ7EbpPWnJY7Le qzvv10QRyr9sZ/Mtq400G/D/c80tEXqW2e2wwH9J6ovTDorkh9H0uTWj0RWv SGEQ86ojMYziHlezJSWvSfWZqrf1R4dRPnyumsvqJVd9e+2d3jCMnlsmN07w 35NzKtqHtwaOoEqrDfHbqofI4IKaa8K8ETQz4F8cUSEixczd7xRbRlA8Q2l4 tmSEHDQSHB1kfEAFBS78qaxRstW67tj5jg+oPWfg1Bh/iswNtA/oNROj1Kv5 z3N50+TaqbfltofFyFRA+mytniZTIoLElaliFK6YExNeMUPGJmTzE0VitGJn /mi6ZI70z+sPZOeOIo3HP++ezJKQW5tDQ2M+j6F9TYouYr6U7NEoiGI1fUI8 qe+C2rSUHG8UsuwnP6FMnR869a1osOJT1hasNYEifO9HerbSwERYq34/bgJ9 Lw5rre+RgSTdjgZPm0k0PPnux+iF74BjIvMlDf2NdJYbri1bKEGrcJvV0tA0 ekG3+IfcEWXQri5+6D8yh3ZdssM3XDXg7slFGe2kRRRgtkTn0XWg4QTnZJGc FDmzA2bU9myGvODwj14JsriuJy7y+Q5jaJ7NrnfZK493rjeplkswhRvEzDe6 qxLmf70sLKe40HzJ5m2N/Wp88uno1mpnAjoedL6xW70Wp/soGCwHm0O7m1t5 13ll7NcWc5wnsADDyv6wqAkV3Kyo6R7kvQOYVw4pKDttwDyVxPzxCEuY8o7r zXiuio/NWZu6BFvBzhTcmMhRw6VFT5iSLBsIyCnrparV8e2LlgPdHgDGJglI z0QTR9y3dhM62YKvScy9gAwGRu3ls2mHdkGMosZkxiomDtzzr6ZAajfQnf4k toRp4Wu/8+qDTnwPMSHb7tya08Y5c01nw6LsoOXiE6nyDh0srog8Iwi3h2SG TFXKuA5utb98NSlpD9xWpS9N3dTFMq79w5cSHaCo5WbnlSN6mGZ7V6bkp73Q 22CbWkfXx6nqEufulH0Qt6nifXOHPg7z8WuRJDuCiLiO6AmbseisuT+Z5wR3 7gVbO4IBVs39d39aqTO8Ps8rkVkxwL8pm/zUVugCVQopGfNVhrg5nGVnVOkK Xxb+UO0LNcJFOiVMa083kF71M1zSNcZNsUs0QZcb7E/eqHXllTHWdVT8pn/Q HdQGC2pZ2Wx85yU7o6/HHfLGKjpHbU1w5tMVrs4RD0j2u5hWKrsF554eP3Fs 0AM4l2VfFNzdgmM3aq/T894PBkrhCwp8U3yTLd8eMbQf0idqH/ANOVhhXkaz +agn3DqXtEq+j4NvcGvji0Y9wTpDX5L7yz8x27fCZTnECxh96FkhZYYH9jbW eX3yAp+QMyrTclzcff1nDnn6APxgEElfHcDFX267W+nNHgDb7Q+dWx9xsfRe eP2F0IPQPpFIu6/Gw45ce7vYhYOQ3sdJMj7Dw21HzAKDTlPA1tF32PaSh9f7 CR4IIynYlOg01tLFw0cFpfSuKArWDUWmunXz8OfwDXXmsRQsFD97FvSGhzen SpaWz1GAWaF7fx3g4cQ6lJmdT8EBVuO+dWM8bKnoVlPfSEGytqvzOI3AF9ak yY49oCAqPnryjCyBX6m0eDIeURD4V2mWnByBBUzzxfgWClyL5l+wFAlcwNPY 5fAfChjav7gcoBN4/tDQ6/5BCmq1Pro+1iQw/KhpSH9PQVnc2mm3TQTOOO4R TYooKHi3PfsvJoH1TrUyyz5SECtM71pkEdj9wu8BIX9T4KDFdecaEvhahqih eJoCyzjvmSYjAo9lM1Z1z1LAeZeU48gmcGJhZpWFhAJV4ZtXx00J3FHyhBa4 SIHi8sqpeQ6B1X9b8Sj8SsHiYeP1SWYE9q3cXv5imYJPD93r1vEIXFUTJpFK KXjPjPEQEgT+L5kb/40= "]]}, Annotation[#, "Charting`Private`Tag$135563#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVlWk8lGsDh81EFFP2piwJyZYtZhDdd4RKyP5o0bFlbCdLgyNZSiRLodKi 4kRKi+2gcrhvS6S0SSulHD0zljJjX8fb++H/u75e16f/Bt8jLgFUISGhG7/3 f6qeXbx5XblpW5LILkmlUG1cJ6a1Pox1A2x94z0eOCKBm2IfFGuyysHkutnU nixRnMcYOEDLrgM6m0aKd8YL4zaDiMDlLAQm8w5QWvdTcbzc0sOlwhZQedGA a42E8MVcm20LWe0gTmvYKWxEgMpXZ7bMxD0H87XbfANfLKCnmV07JwNfAY9N ztw06jzipUhwYsveAL+SvNM9MbPoeEu51nThW+Dn0EdtWT+DVlJdQ9n574Dt CSfxNN4UuginHoxnfQCKNIrKfP8kUku8zI9I+QQMewoK7vEnUEWDhTEvrge8 NoNRh+gTyGKhL/rPiC9gJoiy56HrOOowP/loJLAPxKspBFOLxtBdC5kEk/Jv IC42mSEq4CN+j/+No2XfQW956CE+i49Mj9Xi6pJ+cPDJ9g7mNx5KWCfWP1b4 H/D5yeVk+fJQ6yOvZUYFA8BZLehd+ZdRtNLrrnpE/g9Qk1TjYi02ivLzHQNH szjAPKniADXrJ/rKKDytl84F1+bcNP4aGEHq7/l3wlIGgcXATx575wgKZls/ v5c4BIpFL5+ZrxtGFbIXRobjhoH5qsPhmkbDaKqapOlEjwDpw2nDRrVDyNLV VD844ic4I2z2IcB6CD3L6YngBo6Cao+EU+3Rg+j0pYsdeYY8UMMLKepVGES6 LLBvSzkPTApmXP5r56JXTO5Qly4ftPudcQmN46JI0ZxjkWV8MBPxb6fUFi6S +2AmIa05Buoy3byi+Rz08FZ/QWXJGLjUliG3o4aD9kdnbHZWGwf2xfq9Ogkc JLAxbuQVjoPaPZL5A/YcVCT3xfGc8gTw2rhQoq3MQTt+nOrTL5gAIZ+0CTRB Iu4/euGv1k6Cr3bH2axXJMpI+SB0JH8SJKr4vRu9TyI9t6ScVXJToG8mm6J2 jkRdalqqD3KnAFdjqL+LTSL2+JsqB8lpsPURO+atN4noLXHWP7OmQW7X9Nn5 3SSqz1XrzhSfAZEHEs6rm5PI27fTXzd9BoTM9Dtq65KIYsSefL58FlQmXn48 pEKiYopyakjKLHjG1PlkQyeR3Zs2eXHqHDjEe3dGSZpEQ4VHSssS54Cexsdg 91Ukyg6nm+5enAP0LGp5lwSJDGHT08G4eaAcbbwynkai7tXBXukz86CnMSrH TJJEsX3SQ5rRC6C0cN/NCVkSKZTXxz0dXwDREtff5CuQqDHBX5wVsQiaY6I7 V6mTyMeRViA6ughirOqdbPVIJKxcq1saKgDXnVKldH/3lP70brAdEoBcHfOq B3Yk2t0g6kgGLoEw2HG/weO3z5LvpDxvCSRvK2U3skiUqXLopZqFENR1S74a Ek+ipCYJVYskIVjZUyBbnUOio76P2W6tQtDyiB4+eZtErGWsjlAxCnzoW0K8 wCQ6UCyndGoPBWpkrz2c9JlEO8jw1ppuCsxodXvMleIg0zRl+ks6Far97XLn hD4H6Wp2hpAHqJB/aNkuJ0cOkgneJLPmBxV6StRV7D3LQf0/v/jETi6DZ3yw U7MSF73Pzqg5ZyYMI+pTbtdbc9EzfbMVd44LwxkRk7bzwVxUFXG+4pOICNzH qVlqfcxFyZO7l8zll8MwURvCzn8QqSzWFSwyxODY3W49+vshJHs9gCd3TAy+ nY8aa18+jMSAzA49JAa7hk+EjDOH0WjSn8Pedivg552B2+5dHUaNwhvNsedK 6C5hcNGENYIOSuR+OBErATffCvC8Jv0LvaAxVggflITvR5SDZF7wUJe99KWX 8ZJw2EyJY8rloY/pvzQuF0jCPzaP7wpfxkcDIqU79Holodt9nCltzkcLi2uS iP1SUFjgXyR/m4+0f81O3fOShpU70upqU8fQ6ZcNA+4esnCw4e6VTvsJZHXW Bpc60WHBars0U+40CtCfoxnSVGBbq3fsbfkl5KAVwJe3U4fGr0TtOo4uw1Xd x9kdpprw3ybzOwsKonirtHa5cKIu5D5J3ZUjJY4D53OvlRAGMPyMeOW9iVX4 SBtnS7mDEbzyLfFS1G4pfGbf8o2LocZw/9y3d3XbZbBf+7HDhiwGHK11jchY I4ebRNc6h3iZQverX8dUBuSxoVTSxcGj5rBz7erQLx/o+I9xS13HUAu4syjI SqtsHS66/kRxOmsbvNsTIFlwUxFXZ5v3dLlAKGHp3fo6TxkffWy599qe7TCb ioN3G6pg9KxkLH2/FdSt3TAKdDfgIDuzhiDCGo4r0lWPy6vigtuGNSHBO+Au 177XDrJqOGe8ITk8xgZeuFocmUhTx2QZO5oVaQtX5AuaZybVcatt7qUTJ+wg zVfrrMjYRkxx+tx/NmknZH7jrtj3RQMLba+lFP61C3qG34pZ3boJn14z7dCV thuKvjb2IRo1cfg+v+bpk/awr99zlluqhb8nG/uDC3ug7RN7Gq1EG8vmXf6c XuQA/35kKZt7TQffktT+q/2qI9Twae3wPqWLmyLX22y66wTNPirMNyZtxtdV ChUt3fZCNlWs53CIHm6InxNivd4LS7eN3T/irI832IsuqHk6Q5MSD8GpjQb4 n1daGZ+6neGdFMHC9GUDnNkmMFA56ALJ59mPttANcV7UYPAfvS6wNjTIQSbb 8PcfK69W9XKFyfIt+25SjPAdLZFnR7+5QhlNEY3FBCO8fIKytsnbDZrn5Tyd GzfCpQaVCdc5blDz8HKt5sgtWMu3zHExzB1KWs1RzUe34J5dj6rch91hVozp P+5+xrjrZtxmEOUBu2QPqW39boxnqp0tVMc8YJn466BWDxO89DCyJvVPT3hc HGsJOkywvYGtTfykJ6RHXSql2DFw+0H9oJAoAtoZ1y/crmdgaT9W/TU2Af+W Sfxa2cDA3qwi2usYAgrGrPBjxMBTkTJVxvEErKl8drKzhYHVT0/PLaYQUFX/ 80recwZOqkKZ5y4ScF5rls7sZWBz0b0VNY8IWLGeafJkgYFTJdKp3HoCSizN yb8UMPAbqWa3dY0EDPzaOPNeiIlZisazCc0EVLpm+y9XmInzDelWO58TMGOd h7UEjYkn9n97+7mXgAFybGdXJSaGPms1aH0EbJow3XJgPRNnHHaJBd8JqNC9 IBuwgYlVI1oVi38QsCs35WP0RiZ2Tr0dEPaLgFDy/KErm5m4ION73Q0eAa+M em6/qc/E3HPrVnaNEXDqpYLaPUMmTrqa+YAxTcD7WTfJBhMm7ix8IhQ0S8AV YYFP25hMvOaWwOXqPAH99+iUvTJjYt+7zJIXiwRs1BnN+LiViR9UhE8vLRFw nXh12HdLJv4ffCj58A== "]]}, Annotation[#, "Charting`Private`Tag$135563#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVVnk0FPoXt5MlIsLzJCRKmMjO95shopAlY8mLkpFkiUJiRCIG8bJkTaGQ JRGJ71cqS1J5Xj2pRDJj383Yf/P745577rn33OVzP+eeu8fT386Lg42NrZYl /9fyKRsP8mVbjZuebfut63AAP+dT2e1HLgB/WlXzhRqJ4NbQyofK5Cqwk29f zAN+AZyuPeImlPwc/H3ZMOMqjRe/1Qj05iEj8NAgfp1Sx40jxLcatgrbwOBI z2YdLxfOSDMzXqe2A/3oTFrsEw5cJZzUxgx/B3oKfeW5qey4I6nXYsn7A4jf xsxGGWx4NlaQFlr2CYwIJxwOid5C19uqVBiF/wAH7Lh6nG8T8XPYXwzJ/Bdc kkzYa9OwjjLgcuUC9QtI88+Qt7m9hhSisucCY/tBf0+L7tfQVVTdbKg1Gz4A EktWic+iVpDh+uCVS4HfAfNIdF90DhN16sc0TnoPAvWqZbHkTgYqNxSLPFz1 E3CacdoW8TLQ3MC5guCyIeD1Y0hqzH4Z6V6rx7XFw8Cuy1Knv2IJRUrzDc8X /gK2G+/X9u5YQq8bnTkP5Y4AbN8cXBu1iPidyxUDM3+DmSaVU1TGAsrMtPae odJAxp7RlPmtefRDuzBeLYEO/D6f1FFImUeKn+ce+8WOgTVXxalhxXlUvfPu 5ET4BNimXWQu7zmHlmtHhQ5cmQSnDagL7/jmkJG9rvqFwClAYCwcdHw2i7ru DATSvWeAUl9Mx1vJWRSfldGZTpgF6QNSA8SiGaRKBi6aVbPgyaJYB0V6BgXx 3rkWVDYHWm8LyvfvnkbiX/QERZXnQfFnCz+NiinUUDKcW1M8D+zPGajEGk+h TTOtltnCBXApsi+GfnkS3Rf/bp0quwg8KX0BvhKTyPT3zUH13EUwGf3Sqqd5 AiXGfmHzz1wCCVxh9OPSE0jNgXJnu/gyKJG6vb7ZM456FVTkK9OWAZdw8/zL W+NIsi2cOEVlgEIHZ6knXOOoKU2hL0mACQZTijySO8aQu2f3OdUEJhCrmLbs TxlD7IdClt7xrADr/FV9X5cx9JBdNs43dgUMRWTlKCiPIfNPbyUEOFaBRJBr 7S8mHY0X+peWRa2CCtu56ORuOiLA1o6x8DXw9MsVOd0IOuoTvuCcwFwDdwYV Q7lIdBQ6KDqufGUd+K6/8jylTUd/VDWFdyysg1sR+P2uXXTUEnlOgBy4AXbl hLdprtKQh7VQLu/MBogheZEyBmmIS7ZetfTiJmA+epmt2k5DpVPuzUfHN4Fs Q+b1kWoasmzmtR713gIH6oz6KnJpiLDluSQxuwXO3qZ2cybQUJLcXz0Khmxw bOJiY+FVGqK0CsobUtjgvuek6gAyDQV7vghxeM0G+SUUqjxcaYjMSe68yMcO jSPtqJ62NOT2UPzPm8fZYWVF0bSnOQ3ZmrUF5KWyQ1cGVdse0pDpaMDruj52 uCfnTYSiAQ3p3pKV7JHkgOfFbt7o0KEhVeVu31E3DtiVVvGIoE1Dcp1haLOQ Ay7zp43asWyxC/vEdv3mgG8iQlt369IQj8C/59VVOGGGWaFpEivfavmNF+Z+ nNCX8GsliVVv+rjG9jM1nLCI/GlYgtXP8NR3j9AlTgiZpkG7bWjoc3JiXaoe F2y76hGXS6KhLnW9bY+vc0H8mOkZe5aGWj6OurW2ckEPL6uK9/409DTw7+p+ bm4oBOU8/a/TUImoCdf8MW7oyqMycCaJhu7VzjjxJ3NDxtUanM3CN3rJcktf ggfyvDyz1opZ+GUw7exdeGBazHeZoj4WfjolJb75PPBLV7ph+RgLrzB261wl XmgnuDEpw9q3qXTV/WcXeGHRgKxtqDod6Ta5LXVX8kIFnx+2wxZ0JLfxPHdD mw+2hJlqdEXS0c58r1nxa3zwgaNPimEOHfEBMVM1xAc5me/iSxroaIZyacLd fBu8+KPB/Pgyi09ce/WxEz+8e7dh3CFiDD0t7qX+l8MPlcGNbmbBGCo5Shma HeSHkgR54qXXYyg5fiB+D1kApsu73G4WHkenBdO+3AgVhJkhRsToqnFk+wQc yHkpCPkyi0tM+8eRqfVUZC2bEHyAXrxo4pxAqqkWSiPxQnB74+TEc5cJtC62 FWyWvR1qxDhwpolMovdC2tu4TotAYz1JCZfsKdRrJZrVEyECuc7TzRM7p9B/ CdNK2bki0HxGKFhzdQqNcJeaqn0TgRYf71YOuU2j9Y1dFJLrDsjHFnslbt8M 2j+9slzhLAr/zNQMsCSz7lNP84jjqZ1wu95ukrbWPDJJMcOlNpJQdfk/hqbB MqJYPnvce0kS8gv7vGp0W0Yt3ArpG1RJqDVjm+EcuYz0I9jO23dLQqe35+xH W5eRpk+TwJaFFEyTeql80JKBFIkEp1Mm0lDddcvT4C8m4mHITHMdloFZXnpK 37NXkZf6qhBBSA4uBOgc8zXfQidUvOYkzBXhsWftvksS3Php3/WQTl1laKDl te9DFD82EN1fxRWlCoOy3tFlT4hg77W0vGKSBmxTXSp/5ymG/d/SNKtOHIKr x2pcP9pJ4NsuPHs3LmrBSi+t4OgUKXy2/dp5AlkbZrX9jD5cIINbeaVO+jrr wrDfdRrWpbsxYQclYyxYH4bccyO6R+zBZxaMVK0vGsK/Yka/5Qoo4Pv5b2QY VGO4UtrwUREp4tpk/YFeOwjlig0DFf2UcPALI9u840fgyokM4x1syhh1Fc8n uJpAkkD9w4l6FexjrtfsQyLCWRheI2Z3AOc+ItT5XjCFDlFqCVI7DuI7C83R AVfN4EDT2UWXTjU8WhZyhRx0FJ584k/IPKSBXx9Ny7pxwxwONqj2nxMlYHab r8MpFAv4h7ae0j+/CJjtSD17YdgxWCY6K0mtOYTjdzFO9N6yhHF/VL7fd0cT B7icfcWIsYKpBammGp5aeCha6xy4exzaymhRZcwO453p2V8T7p+Aa2c2HY0U tXGJyP6w9hxrqDKspVa8qI1bg3ab7Su3gQTfs2rzn3VwvlyhjJGDLYtfzvrB Zbq4OWKVjfzRFsprRJ7hCdfDe6x41xWcTkIlM6oRxVUfP/ugktjfdxKaFlDU JNQMcNLbTQ2503Yw1yqxPlPUEKdfHrtw5psdHI7jWVKmG7L+GVlheWd7SD0y UF7faIQfq3B3Bf+0h3HB4uKaecaYZ5FdqtXdARYtJPs+CQS4VKMmMp/mADva RTmFVCFW8Syz3vBzhDxq+vnGeRAPHGt86jjhCHt/fy6j8RzBvQ/CD4LLp2AP X3pAYtgRzKw9aSg/fwounb7PKBo5grcaguriLjlBEc4bHpUnTLCVxlGziCUn +MGjaXs9MsHtp9V9fC+TYEu61MyB/UQsepbclBdCgveiS3x5VYnYnXxf6ONV EnxZaTA2fJCIl4PEnmpFsPx8kbRsAhErxjNWN2JJkEY9PcurR8SUpygpNYME owrcNUfMiVif17a6rpEE14L3XM/zIuI4wQQOehMJ6tq5Sod5E/GnHa8cpFtI sCsrs8HBh4jJMlorka9IkFkmwRTwI+JMgqSJxTsSPDikEhMeTMSLrj//+fqN BHNrIjqdYogYekgpCQ2SoANqv6J5k4gTz9uFgiES3Osuulf4FhHLB76Wefib BFvvFce+vU3EJ+MeeflNk2CPPLI5nEbEuYlDzwtmSZDSzc69428ipqdK8/fO kyAqMGmavMuaJyepUptBgjbCLfsfZhNxd+EbNp8VVrwd81dUDhHvKtm0y1kj QTNBjXzXPCL2LNcpfr9BgioiXs46BURcWR3A2NoiwU5CprjYfSL+Hwe+h6U= "]]}, Annotation[#, "Charting`Private`Tag$135563#3"]& ]}}, {}}, { DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Quiet[ Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& }, AxesOrigin -> {0, -39.25839490778487}, FrameTicks -> {{Quiet[ Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "ClippingRange" -> {{{2.040816326530612*^-6, 99.99999795918367}, {-39.25839490778487, -0.525265491627573}}, {{ 2.040816326530612*^-6, 99.99999795918367}, {-39.25839490778487, -0.525265491627573}}}}, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, CoordinatesToolOptions -> {"DisplayFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Part[#, 1], Exp[ Part[#, 2]]}& )}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange -> {{0, 100}, {-39.25839490778487, 0.}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ RowBox[{"1", ",", RowBox[{"296", "\:041c\:044d\:0412"}]}], RowBox[{"2", ",", RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], RowBox[{"7", ",", RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable -> True, InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm], ",", TagBox[#3, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input", CellChangeTimes->{{3.84825173726093*^9, 3.848251737328946*^9}}, CellLabel->"",ExpressionUUID->"a69340c8-3d55-4b01-a082-5e602758e073"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Psi1", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}]], "Input", CellChangeTimes->{{3.868592822275166*^9, 3.868592828204987*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"c1f60bdf-85aa-40a0-b042-625e18a6bd55"], Cell[BoxData[ FractionBox[ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "k"}], " ", "r"}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}], SqrtBox[ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "-", "q"}], ")"}], "2"], RowBox[{"k", " ", "q", " ", RowBox[{"(", RowBox[{"k", "+", "q"}], ")"}]}]]]]], "Output", CellChangeTimes->{3.8685928291465673`*^9, 3.869626002847086*^9}, CellLabel->"Out[24]=",ExpressionUUID->"81848ac6-4afc-4119-a924-06272c3ec87f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{"\:0424\:0443\:0440\:044c\:0435", "-", RowBox[{ "\:043f\:0440\:0435\:043e\:0431\:0440\:0430\:0437\:043e\:0432\:0430\:043d\ \:0438\:0435", " ", "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\ \:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Psi2", "[", RowBox[{"k_", ",", "q_", ",", "p_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ FractionBox[ SqrtBox[ RowBox[{"4", " ", "\[Pi]"}]], "p"], RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Psi1", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"p", " ", "r"}], "]"}]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ RowBox[{"Re", "[", "k", "]"}], ">", RowBox[{"Im", "[", "p", "]"}]}], "&&", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", RowBox[{"Im", "[", "p", "]"}]}]}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{"Psi2", "[", RowBox[{"k", ",", "q", ",", "p"}], "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, { 3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, { 3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, { 3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, { 3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, { 3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, { 3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, { 3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, { 3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 3.8429761802928667`*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"28022c76-1dc5-462f-aaaa-deee655910d7"], Cell[BoxData[ TemplateBox[{ FractionBox[ RowBox[{"2", " ", SqrtBox[ RowBox[{"2", " ", "\[Pi]"}]], " ", RowBox[{"(", RowBox[{ FractionBox["1", RowBox[{ SuperscriptBox["k", "2"], "+", SuperscriptBox["p", "2"]}]], "-", FractionBox["1", RowBox[{ SuperscriptBox["p", "2"], "+", SuperscriptBox["q", "2"]}]]}], ")"}]}], SqrtBox[ RowBox[{ FractionBox["1", "k"], "+", FractionBox["1", "q"], "-", FractionBox["4", RowBox[{"k", "+", "q"}]]}]]], RowBox[{ RowBox[{ RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}, "ConditionalExpression"]], "Print", CellChangeTimes->{3.8685922536274242`*^9, 3.868592346311206*^9, 3.8685924363180447`*^9, 3.8685925271538057`*^9, 3.8696261159846354`*^9}, CellLabel-> "During evaluation of \ In[25]:=",ExpressionUUID->"1adc7663-3373-4163-beb3-72b128641479"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ "\:041f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", "\:043f\:043e\:043b\:0443\:0447\:0438\:0432\:0448\:0435\:0439\:0441\:044f", " ", "\:0412\:0424"}], "*)"}]], "Input", CellChangeTimes->{{3.843130807463869*^9, 3.8431308540633965`*^9}}, CellLabel->"In[30]:=",ExpressionUUID->"6103cbcb-41e7-45c9-bb09-0b31a318aeaf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["p", "2"], " ", SuperscriptBox[ RowBox[{"Psi2", "[", RowBox[{"k", ",", "q", ",", "p"}], "]"}], "2"], " ", FractionBox["1", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]]}], ",", RowBox[{"{", RowBox[{"p", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.8424297759514723`*^9, 3.8424298904774303`*^9}, { 3.8424302132641673`*^9, 3.842430221226556*^9}, 3.8424308283157177`*^9, { 3.842431023031686*^9, 3.842431045030918*^9}, {3.842441926294345*^9, 3.8424419379889317`*^9}, 3.8424421645252914`*^9, {3.8424447346828985`*^9, 3.8424447531082444`*^9}, {3.8424451876234922`*^9, 3.842445210127918*^9}, { 3.842445241924023*^9, 3.842445249688614*^9}, {3.8424483961307383`*^9, 3.8424484004242554`*^9}, {3.8424589935407553`*^9, 3.8424590247120314`*^9}, {3.8429767149416723`*^9, 3.842976731081705*^9}, { 3.842977308206172*^9, 3.842977317290962*^9}, {3.842977460771119*^9, 3.842977479967112*^9}, {3.8429776043458705`*^9, 3.842977607769457*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"8a103e52-246e-4acb-9af8-cf678ec594f3"], Cell[BoxData["1"], "Output", CellChangeTimes->{3.8429768308386664`*^9, 3.8429774249420547`*^9, 3.842977583631036*^9, 3.842977709051814*^9, 3.843131171169419*^9, 3.8476892540267506`*^9, 3.848252020239182*^9, 3.869626421154914*^9}, CellLabel->"Out[32]=",ExpressionUUID->"8a7b2f50-860c-496f-ad20-c255f9749b45"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:041f\:043b\:043e\:0442\:043d\:043e\:0441\:0442\:044c", " ", "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\ \:044f", " ", "\:0432", " ", "\:0437\:0430\:0432\:0438\:0441\:0438\:043c\:043e\:0441\:0442\:0438", " ", "\:043e\:0442", " ", "\:043c\:043e\:0434\:0443\:043b\:044f", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430", " ", "\:0434\:043b\:044f", " ", "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", "\:0441\:0432\:044f\:0437\:0438", " ", "Eb1"}], "=", RowBox[{"2.224", " ", "\:041c\:044d\:0412"}]}], ",", " ", RowBox[{"Eb2", "=", RowBox[{"1.296", " ", "\:041c\:044d\:0412"}]}], ",", " ", RowBox[{"Eb3", "=", RowBox[{"7.77", " ", "\:041c\:044d\:0412"}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.843130862431376*^9, 3.8431309443719387`*^9}},ExpressionUUID->"276d1ca0-d12e-4d61-981b-\ 3fd39751d1da"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"M", "[", RowBox[{"k_", ",", "q_", ",", "p_"}], "]"}], "=", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["1", SqrtBox[ RowBox[{"4", " ", "\[Pi]"}]]], " ", RowBox[{"Psi2", "[", RowBox[{"k", ",", "q", ",", "p"}], "]"}], " ", "p"}], ")"}], "2"]}], ";"}]], "Input", CellChangeTimes->{{3.842448751392885*^9, 3.8424487953821545`*^9}, { 3.8424490730056396`*^9, 3.8424490792071953`*^9}, 3.842449117797203*^9, { 3.842449176027671*^9, 3.842449179152563*^9}, {3.8424495650557804`*^9, 3.8424495945895767`*^9}, {3.8424499740320044`*^9, 3.8424499846546497`*^9}, {3.842450149220636*^9, 3.842450164380662*^9}, { 3.8424501979068365`*^9, 3.842450219034045*^9}, {3.8424584581133766`*^9, 3.842458474065017*^9}, {3.842458603624431*^9, 3.842458683642142*^9}, { 3.8424587820987186`*^9, 3.842458785542663*^9}, 3.8429779349403095`*^9, { 3.842977981604545*^9, 3.8429780126387243`*^9}, {3.8429782551339855`*^9, 3.8429782567222576`*^9}, {3.842978935303804*^9, 3.8429789399794235`*^9}, { 3.8431309581969247`*^9, 3.8431309600304036`*^9}}, CellLabel->"In[33]:=",ExpressionUUID->"9301a705-e9c1-4859-84ac-1b5ce87ba920"], Cell[BoxData[ RowBox[{ RowBox[{"V1", "=", RowBox[{ RowBox[{"M", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "p"}], "]"}], "/.", RowBox[{"Q1", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.842458711696268*^9, 3.84245873574479*^9}, { 3.8424588016634493`*^9, 3.8424588031058073`*^9}, {3.842978435743429*^9, 3.842978436124936*^9}, {3.8429784683270617`*^9, 3.842978484933129*^9}, { 3.8429789454479103`*^9, 3.842978946088683*^9}, 3.843130991688418*^9}, CellLabel->"In[31]:=",ExpressionUUID->"6283ebe8-6c2f-4f81-afdd-03a59b159407"], Cell[BoxData[ RowBox[{ RowBox[{"L1", "=", RowBox[{ RowBox[{"M", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "p"}], "]"}], "/.", RowBox[{"Q2", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.8424487324378023`*^9, 3.8424487924976873`*^9}, { 3.8424490812716303`*^9, 3.842449081860818*^9}, {3.8424491928549166`*^9, 3.842449195716154*^9}, 3.8424492326284895`*^9, {3.842450114156495*^9, 3.842450118031912*^9}, {3.842458698127815*^9, 3.8424586997524796`*^9}, { 3.8424588072981167`*^9, 3.8424588087068987`*^9}, {3.842978487821079*^9, 3.8429784886892*^9}, {3.8429789505156507`*^9, 3.842978950795658*^9}, 3.84313099820064*^9}, CellLabel->"In[32]:=",ExpressionUUID->"a4f06394-1c16-4af5-affc-5ede58072227"], Cell[BoxData[ RowBox[{ RowBox[{"S1", "=", RowBox[{ RowBox[{"M", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "p"}], "]"}], "/.", RowBox[{"Q3", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.8424487742240176`*^9, 3.842448843385522*^9}, { 3.842449083797745*^9, 3.842449084203415*^9}, {3.8424492073215456`*^9, 3.8424492101892166`*^9}, 3.8424492481001034`*^9, {3.842449351053405*^9, 3.8424493595531363`*^9}, 3.842449400814065*^9, {3.842449454931864*^9, 3.8424494689151335`*^9}, {3.8424587036693344`*^9, 3.8424587039080153`*^9}, {3.842458816213194*^9, 3.8424588174747705`*^9}, { 3.842978491566579*^9, 3.8429784919389296`*^9}, {3.842978543947376*^9, 3.842978570400922*^9}, {3.8429789541426935`*^9, 3.842978954412698*^9}, 3.843131001928097*^9}, CellLabel->"In[33]:=",ExpressionUUID->"dc085a4c-7718-4290-b4f6-21ef20f426b3"], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"L1", ",", "V1", ",", "S1"}], "}"}], ",", RowBox[{"{", RowBox[{"p", ",", "0", ",", "500"}], "}"}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", CellChangeTimes->{{3.8424494839615555`*^9, 3.8424495102411532`*^9}, { 3.842450000590666*^9, 3.8424500014713764`*^9}, {3.8424588269002743`*^9, 3.842458831886714*^9}, {3.8429785171732197`*^9, 3.8429785291328506`*^9}, { 3.8431558669109173`*^9, 3.843155877148394*^9}, {3.8476897503297596`*^9, 3.8476897506498394`*^9}, {3.848252190928172*^9, 3.84825219610848*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"a126e6ed-cce1-4072-9d3e-c6df0794243d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVV3c0FY77Nj9ZX5KRhpWRcY2ulXDf916y501Esm5mZGdfknW5N9lEIYVP WppI8kFJSkuKjLatIjJSP7+/3vOc857zPOe8z/uc95X1DqH6cLCxsYmys7H9 f52a+21t6vuFpGZ2utpDYtEw/EKslklVB2zf6JXoU3ydFMM/47ul6hW0Hnyg nFH0kqRnInnzVNgweCr2j2qOfybFt9awcVV9gnCPsvfKBXOkwUFSLTDGgbEz 2G2Ua42051e/TXzYDEyzDbPRP3LBU4Ze3DvCD1D6+IZBDxCAteITNsuV8zAc y1tgmr0JCDXPZDaLLULvI81Ch8jN4HZz209txhIYZbzqtPq2HZjtfl3UtRVo fVbxuCtRFlqe3zgdGrYGZk/yLbSeyMP0yN/gk1/+gsDb8Yep3kpwcvGCTD+B HbMyQrzskQCtXHPz85Wc+L0o9CHJnwj9/CXDHO+4MFfriO+3Nm2Y3UTqEhb7 B1d65kbdDPVASjbrtAaDB68Gbv5DOW0IukqaqaQOXjSsK4rZngBgq9EfbLPG h1ndtjbNQIZEox3kI2H/wwd8xQpnIk2gwOSRSly9IEZOaI9H7TSFS1ZHRRlf hLD2ljIvddIMZgnDEa8IwujHUTizt8IKpAyUzX5UiuCf7uu1Qu8d4CLp990l I1G8zx+3emqRCrqUZ5ps70RxdLPQwC5RR7C1iNoqJCaOr7elTe477AR05/9m CAwJ/OKqKZfqeBCGI1wK/MMkcWXZoFxSlQb+0QTeUEEp5BP5qeQ3RoOfcX8T o+ulUEa6SXxnzWEQSLngl/5FGtXXFKLuqfiC1KMYyZcEWbz6ROGBom0A2PZ3 fv9WKYfnS59avZ4OgaTRQy6Ci3JItC5/MRMUCtfGF/8jWMljZpwFTfVzKAiv KuUHLMjjP4zW3PN9YdAnzdL5ZKGIs9LZPXtaIsA1YH9c/5wSWhWqmVaURYPf 7y+c90zUkUAcXZS3S4IS7qSgd6XqyHljPlulKwkeCUq8Xp5Vx+5EPgFb6WRQ kbWs0S3VwN3asxovC5Ph1w5n+bfHNLEhoKm7lX4cms3uPnTo2YXfvc2uWhqd AOqTDavvF3ahsqKIiGjECZiyd9QIlSHi5EEDS6+6E7Dddab4ZBQRjc/mctKF UyExSDqgR1oLl0/oHE8bTgXMPcG/N1IbXx8oO046mA5dI+IkjnJtZP6TJuOf lg62hIuh9zu0kbKcEyF4NR0OdT1/rS+ig01QLd/LlgFxa5KV6td1cHEl33vD 2Qxgt2p4OTWgg929q2OcnRmQWWLC/S+7LsonaYXETGRAsdaRQDkHXaxoDFR5 RMyEmwGN2hLfdfHq1I7K1dZMMLhj5fd6sx5qVzbINbzPhHau0dI80MN7Qce1 htkZ8KKC+69Ajh7GfKgXL6UwYPY1tZtdfTcuyU1uqL7HACXKzKGpI/qYpu7+ Ue90FlzNST5Vl6+P4xNia8E3skB3WKTD564+XtNupkk/yYK9MXuU3vPtwWjL WM/F1SzwvpIx1/fvHnzD+FKYvj8bJla3KuS92IMuntMH6wKzIdTiirPd8h4U u9xda5mUDUmf+1q6zQ1w0qNjQKQ2G8q37shoHTNAs6xDP3q/Z4Oc/62meCFD 1OVc5OPnYMLFW+bTu/UMsT6YoNW7iQlN9iEON9LX8dJ+8gyRCXiWIzX0iiEe 9etdsqQw4dFU4W21fkNMwmIvLQcm9Ke3bKtTMMKVAG2BumAmuPfZ2frYGGGW XKKebjwTvsh+St4RZYS5ny5/pWYy4WcL79fyTiO8sHSp1aCKCcLzTtdyaSS8 OtdkMfaUCVKHZB0zskj4cOD+pVdvmEDomvqV0EDCY/1ON10/MMG8LBn8/5Lw lFV+seE8E5y4rT4dUgQ03/DZv3SVCbQQsYx9NoBHJj93F3CygG58sZdUBvjG 7Kf6kU0sYF6ODNduB7xEj1A338KC0s0grjIBGHaUerNLmgWv2riGhXgQHdKt 708qsGBwYeJK1jZEFRNX2+uqLPig8iyZWwPxZ/5pT+ldLBj3uElNpiB69Rku EHVZsNhNX4wKQNQ9onfOAViw9of26HsComzriUZ3YxZwaVucPnIKMdJ7zlrc jAV8AepBX6sRLyu9OBRryQLhsyIkrzuIjjEbJjJtWCDxaklo6DHiWBHX9F57 FkjxjHxwGkHsTr5Ca6CyQMGo48aLH4j8VAfrJ44sIITXpVlzk9HfMKeq2IkF WrUs5y4JMk5vcHAXPcCCPUPhyhQCGVW330kwdmEBWfjAaguQcUmQf1HBlQXm pkZP9faRse12Q3vLOraL31Fx3ZeMxfckB3kOssDp2oYwtTgyXr/eTuRfx25f pil1LDKOF/O0d67307a+FJWrImP1OCToruNAuztfz9wk49PNRY5e63yhqeWN Eo/IGJDCZ2S6rie66XhW/jsymvXRFL+u66XP+roJfiNj/ZACG2U/C9LkrNUZ HBTke57R6LpvfX4HdrFxiVNQbCHQcJcDC/JZ4i/pyhQkNTtEP7Rlwen21epl Qwoydznv22bNgqpf76Mi7SmY812xSdOCBXWEh2bfaBQcc1jI2WDKgite9VsC oyloIh5zr5LCgltFp6Y+Z1HwoveowhqJBS09Ufc8zlLw5JZn9ZIGLGhnO5gz 2EDBZuYBTU49FjwPVNB6/paCDdWJDTLqLHhTwcdtNU3Bjzyq/q7KLBjp+9b/ 4C8F2d2yc93kWTBNao67q2iM1M36Z++t+2+DiF17TaQxHpT3nOblYIGguXaB bKYxzh73yT277mfRxC2+5WXG2JswCRwLTNgx9ok3r90YlwODPumPMYF0N8Yh caMJBshbcyd3M0Hm5UTvWQUTVC6/r7DYxgT2CVfrtj0myGopWtRvZEKnuJEZ p48JchPu+qnXMMEynN2I0WSCTSr5ap+T1vdJOUup0Hsvhv3ZKm2uyoTduHrh dvRetO/JseeSYcIW5yC5t8y9+CE3nLtclAlDqbZS2+7sRVKlu7jXWjZ4v98k WsVvit3oIeb8NBtCisv+Xrppii8W3lYU+GWD/RWBxN5uU+Rdo/p4uWYD8UHi yrcRUyxpuc0nZpMNi3MeC0ReMzxH/RKnRcyGBFv5qcZDZhho4LvdfT0PM7kv 93f+Y44fQqcuTjOyoDKi9fLQAQvc8/TxcmEZA5ZnqSqFQRZ4W7xKfD+LAdTA sRqbZAucXJSOFUhiAJfXxsrWWgu0tVyi+ngzwN/WO69y0QL/dk9/71JigKby P9GHCyyxcNOOa7k3M+H+iA1OP7PCjZljdK7HGTBiMfxy1dQWJRLS627/SgMf q7gZ72cOeL9A7bOaQwrIkN+eeT/ggFK7E/h+GafAkK6urftnByx9MFjZrZsC 1B1zV1yWHfBy/U/V7O0pgMsBofZyVLSa3r0pefw4bK91mTeKpuJX4RxZrZTj 8IpDf1lCeh9Wi1mHdbYkA7n5F9ezo464qanjzMlyOuz2HtMuiXHEB8/PZ9pk 0kGT781hrxRHvCPZQd4eSQcp19ud84WOGHjryt9xKzqsLEemStxzxMl51Sek 34lwU3+O05t/Pw7WPYro80gExaZpjoXa/bjpqNqDQGIC8Dd+YNv2wQmd59zP aXLGwXf74vQ7U04YY+d8XfdHLPRNWAs4LjrhBm+FXOvRWDizrXEzi98ZKVlv 0mvvxoJG0kn1vzrOOPXU+5NEVCzsMzVw+5TljBoHHb4OT8ZAWV/BnXrtAzg3 vy+q8EM0qP4wO2qY6YLXtwx9HV+KAmvDnAj5PBesKtxUEjYVBUEZ/TEC5S4Y WDBozj0SBZckfU4MXXVBc1+OFJuOKCBYppQkvHHBbDGgeJ6MAvXqlvYWRVd0 8XHKTleMAuL+XZuNHrhisGrHlgL3SNjTtLXNiMMNh/5lCTZOhUNCz9UP8/xu KHLumdC39+HQOmzCeVHMDV1+JMer94cDmSPEVFzZDfcatUQ8bAsHc6uOJ7N2 bqhZ9ljEtSgcnIePDFScccP5o1IMXuNwiGS/N8eufwg3qmvZO50Lg6sWHgoP Q9xRsrBPXz46FEasm8vt4tzxf5I1xxOCQ0HQXkx0INUddaKCLw/RQiHIqYdj utQdFymjuTftQ0GJpvdeuNMd+/ZK3PlPJRTOJQiVHZLwwJKulQuFbSFQcPX+ xoU2D5TZ3v+0u+oo3OPb+EeY4YlbNZ9vOMIKgnCf9NjfLE+0NywKqqcHgVLb 759f8zxRbKN74WJIEORFTUzdLffE+zokgcvUIPB/3z7gc80TT68ndqlEEIje jrrV9MYTP8FHc/+aIxDk9S7IS9ELI3YOTpR3B8LWxpp31zq8MLdyZTaBEACm /Gwc3N1eeLJGWEVaOgDC3V2UXHq9MA/503qEA+Axl0AU+4AXuj+0iqT88od4 hzBB6qwXbvz4RK2u3R+GJg3I8xLeGBx+fsjyoD+clXxRo3PUG3fsn264nO8H O06shjVL0PD0zrZDAtK+MNoUX7MgScMtXvniCqK+UP59dVBTjoa3b1Uz9vL6 grj7b+NaNRpWnulMOTPvA3z6a2IFFBo2fj3N9u8jH/gx+6cpOIiGHwXKSEqR PtDmysEh20bDZi/956XPD4M7kTcvw+8wKr3IMfh2hgbCyjbnOyt8MN1CfjHt nBeEGNmFBM354tygadH5Eg8wKc0gpKr7o9aOrOrEGjfo3EQ/909aAMqcsaEq fnaB6FC1c9avAzFoLa7jdrYzVImJFHAIBa2fXSfKuar2Q/Tb2yQ5WjD+4bi1 8eGTfdD58dS7G5VH8U/1ble6JRVMXshx8LwNwbxuE0LJkj00Hm0O/VQQitaZ mj5V3nbAkKAPxBHD8Oj5BznFYAOaLyrPmg2HYUVA9cKIihV8X61QWkwNxyzf CfaXjhYQZNlc7yYbgS8FWs2ud5nBvVqt7KXHEegkS/wvH03hsdIjmnVAJDK6 GCvGP03gxzZ99hSuKKwf+x3S2m0MM5K8q9OXovB+6dDu5UoKXDD+OSNkeQxr i+Tl35wjAzGGZOT/8xjKPnq3TL+AEP+8Oi0mPxpPNsUTNIsBhk9/yQvUiMF6 VwfjQH4SiEWm/859G4MNs1ujZhMNgTeM4hF2LBatLlqnrCoYwMuEQ1LpsnGY TjMr+dKjD7dWHM8ldMehyZWmxzmndsO+cj9pVd94xNufvwFdD7qsB5YENybg yTxqS6a/LizK+PZcvJKAuZwJvcRjOgB+z7yVLBORg7pcrVasDe4txU7v5hLx 7OGtPWo3tWC3Tryx6Sk6lvymmVnMrP+38RQV7nw6Vn/KXJmaIEJUO69wZyEd 8+ui83K+EuG6XckIuYyOsYKhIQOjRCAE3oo1qqHj2hu219EviSBT8e2qdgsd Hyo384zeIQIv7+HtcuN0VD3mP+l4ggh1dqqcHyfp6L3Cc0YkmQimRXMTlTN0 pJ2vUHmVQIRUueN3pObpWPYm8bXjMSL8MTpL3fqHjh2///XyDiDCXPjbTGHR JLzsmSNcY0eEU00VIc/Fk9A0eIN9uDURNNj8nHK2JOEYqfUwWBAhiLUg9z/p JPzW0yo0RCHC19pN93lUknD8yXeatO463+zAhS5CEpZ4GFvPEYkgp1PFTNdI wi1qaTwPNYjg2a7hyqWThLEbG1ZDlNf18PzCDr0kdP6Ph2iqSIQzdq07U/as 831UMZCUI4JhUZog2SgJfXJ7xRekiTA4ZL3wF5Iwnqe+8+l2Ivwf+jC98g== "]]}, Annotation[#, "Charting`Private`Tag$2973870#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVl3c8Ff73xxHKiBQyMjIKWRnJuufg2is7svfmGpFxSVY+yb2iyC6jhHyz IkloqUTJCO2UZGYk5Of313k8H+/H45zzfp3X+eMcdA+x9KKjoaHxoKWh+f84 vbhhouf9jdA6+TfvQPm8RljFGUViWTeUzUfpHaOtIUSzzHjzlr2B5h6NPHWa FwQVokAjhTQBf93aNMQSPhBiOypp6Mu+AE3f99CNzWnCu3eEKjj/A2zMTlKO TSwT1FaHTGNJMzANg82fzmwRXp5XiRmTXgCRrxV1h/0ZYPPKOdO10t/ALz1S N7zMAtKVr4T3c60A42hYZM9tDnBs5F9SOv8HejeqB+zfcMGFLp8nlpt/YZqL VdbViw/a+xuuhpI2YYRX8s85LyH49X4r6OK3LUiL3P2z0U8ELq5UCA9J0+LZ R8rWdnbi0EG/+Pt36Q68PBenMvD2CAyx5E3QjdEjReHlGQVvOZjdS3jCwcWI vUU7go5cPgqCBzOuyp3fhfFLOTf9apThmIR8MqGbCaVIAU3GH1TATG4oyHST GY+InTsZK60G8ZoiWgGk3bjrVmMOPxdADvGpVMwtNsyZlJjnHUGoMQ7mPP+N HYP87+dHKGjDrPRE+BtpDoxmc21X3K0LguqS+gul+3CMRP70z84Yqgkb9/5o cmKYjsagFJMpHNN+JU8zxombr7w7TR6bgZlhJB87FzfG8Qo+Wj9qAWS7hzPS 53nwyU0L+jucNsB8Ksdd6RAvPnysLOTKbwuXnX2G1bt5segwRTblsB3Uee1+ aLTJhwE6LfPT5vYwEW6f40sSwHcx+iwiH5zAN0qaKZRNEOkePmFNZHeBpZit +KhbgiiqsnzVWcQVWJMqfFK/CWFaqxB3l7MbCD6NFngtfRApIvlqtL89wGyo Z36uVBTrvgm5Mib6QcIHJ3u2FVEklzx/s27oD/U/Vh5KG4thlOqmKR13AHCs S1zyWxbDE07iursaA2FQKFP5i+Eh1N/1MFJuRyg4+NnEDC1KYLwqIf9mbDj4 bHzbcZ8oi2dVDq0ODsRAHkNC4Fi+LNb8d7ai2TAWnrLxvF2blcX0Rt351oex IHXQqPJYvhyyGQTdYr4TB6sidmIjp+XR+Q6LtcAlMrTp33ts8fwo7li/x9Ql cRaQeo5FN0IJZd/cirz8PBmevOcm0BUq4au4vbsFaFLATLo69EG3EioHCu30 UkoBpyf9b1X3KWORsJybQmEKxGwKlMreUUYDlg2DXN9UaPS7q8QzfwzHb7SG yvxOA/UWY5+3+1UwgIn1AodoOnTRf8jPBhW850NcLrFMh4EShi3WLBW0Oj3C 21KfDrNvLZ/Ryh7HQ/3BjvW+50FCe8ZpOkAV4+e5jFYfZ8DtrETKjUuqmB/x 7+rOhQw4NrGv2+ueKn5sDqU08P0HutFqEh+Z1fBDoufAWOB/4F6Xtjh4Uw0v SLuJOrFegEI+kbSO7+roqHVaoFklE0R9m1pj2TXQ0UmuT+tUJlQ3Gfw6rqKB Uce/rbqRM6H1RIhFQ6oGlu/PeO3cnQlDqe38N8Q10etFbpuuwUXg+G1bT/Ug oNuS1YMGzSwQdDponZZBQKa8xnc/7LNA+sn0atz/CKhSblDZFJkFBgWJ4LtF QFFGj3vcNVlA1qnuIxQAmtb0u28yUeBCbUSYUhcgsfBbbjQ3BfL3A7fU1PaY PFp0OkUo8G55qi6DHzG8syulSY0CK8/IK5F+iMf9jmqr+1Jg85/H0/k4xH8u VeMC4RSgVzK8GkBBZAIllr54CnAU7yO4tSDaRYn0X8mmgHTYjRQTBi1sSYra eNtKAcWqTLsnPFpIGOqQk+qmgNp4mKS2tBb2fjMPN31BAQM9zZcqVlp4erWK ju49BTz4XnOKlmnhksawj+QWBfzNWyaLGrfZlVttg5EKocmFd3meamGDwe6p EjYqkGe9HdnmtLBf2X3YQYAKV7vWr69paGOlzxpN5XEqlK1+jIw4oY1X98jf ZwQq3JB+rD/noY3nfpW7qelSoekyZfprhjbK37CL5regQr+/uGL/iDbqa5Re fuFNheESZgbjX9qY0SBh+CKACu8H54YebWljDgeTUFkoFX4R2mLuHdLB2o/+ Ts/PUOF3eInJMTUdPBUXduogmQp/byQL/s9UB3d3DlSZJlFh5z7zrsoIHXRW SzwllUEFNgOlnIPpOriw/uDUWCYVOON5vQsLdLC8XXrcg0oFke9fmLK7dJC1 SvfSxhUqSB54NsY6pIO7eileuwuoIG9RV5s2pYOGC+pzK0VUINyLtojfQ8Qg i0F3m+tUEH491VcsTsThlJ/J/yqoQDvlYNKptv0eJPsj5gYVPm89f/bJnIhN /xta6K2mQg+3pv4OLyKO5JrtnKuhQqVMXY9YDBEFJmUvfq+jQhpRSFsvi4gn 2FV+NdZTwfcU5YFPORHTnPTS7O5QwSiMVvN8KxG/u9k8etVABenzYW3VfUTk SwhhFWyiwu7SLyovvhBxraCmS7uZCrPN1k0zf4gouSFlRmjZ1v/lIwV2Nl3k JjBxcdylwp2vx+rlRXVxLt41/t42X1qvkrE8rotORYQZzVYqROzlvRVuqovG t0t787bZVjJDItddFxPTgmJfbPNxXK9ojtLFlKBQr9Ft5rULFB25oIuBi1az D7b5b9BE6VqZLv77URibuM3jyWaC/C26uJZQEca/zR0FDwo0Xujivfi849Tt +iV35HmdP+nivqJAhc/b/SY+K7ucsKKLtcwfe9i22f3jXs4yFj28RRdhvX/7 f8TVc9QuYT2cy/TV3WikgjjbMttXZT284nx3/f62Pozi3hcYjPXQ7TnnmOO2 fj/Uh5kOu+qhxtQnvdFtfXstDdIMIvVwsEvhmuJtKtT4tdL7Z+ihV+0j88Ba KoRcKdiqadTDYb1ZqZibVDhRxxrf90wPfa+rHjhRRQWFR/F/597rYdr4ke8M 2/NfWXRZVmDSx//4j2TuLaXCCNNAmLWgPvKZdkv4b/unVVh7PlJRHztW9wpd v0qFODOx6btO+rixKpHXlkMFZ69c33dh+phxfGk4f9ufEMc4uZ6mj5/exP46 dZEKdNU/PhLu6ON7yZxdGWlUSGeoHephNEB7/0mRvGgq+B8QtJ7kN8D6kY8H 8yKoYKyYNbDzqAH+8OF7Hb+9T2xupBdGpwwwqIhSve5DhZx25a7+2wY48Tvx Xa8NFUrDO2rHTxripzTlE3QyVFibtZTKDTTE6dd+J78epoKl//dK00RD9Cir 4GgUoQK9257SjipDDFJuvSrAs+1XM/fs0hVDjPi1ziBMt70/koxRnjlGqGrX UMvzhgIP3pvir1fGuPwuYSXcnwI8Dp/by78YY9FRpo1EDwqEvj2t6rRqjJfP if5McqSAyIsShT5BE1QWfqDvbUaB1NYFsfogE/TbZPCqP0oBs5xcpggWU+Sg uSC6+isL3htOvF7XM8P550rMxKWLsLdq86+DoxlGfrj6feHzRdCjFxRtI5nh VPRpUvbARajtcA6PLjRDSlXGek3dRYhT/LhvecEMo4ikHgvfi8Ar8MV6ttAc M+c+5FeMZoJUdERA6JkTiAcWu4uaL4CXccyM+ysLNOBbceT3zQCttlX6V8HW SP2mV/uRKRVY7n6i4f9kizE7stbf+CTB/IkrqS3TttjfuUWnYJ8Eg1MmrNYr tsjT3Pc13ygJivjv7s9ksUN50z3qaTJJIJdwUXZL2Q5bFKWJI7/PgpWeuuOX DDt8Yym3ZpV0FgoGc1puKZ3EFiX+jdrKRDiyoB+skW6POz3eyjDxksFEIytc LNseXRv0y4GODIFpQ9GshfZodKM7NHU6HmoEvM6N37ZHCmF4gdgRD9JGSXlx w/Yol7j0LtkzHmSvt3e1H3LAaXKDCXNjHCjYHN2v+cgBR8pv8q45x4JaK1+n Jp0jOijuEK//HA1xz29/+s3iiOduHb8o3B8NHRPEHdVcjtgzJfus+H40aNGF 6HFLOmKi051LPXnRYGDc/WLW3BEryP25jebRYDcRMFpS5Ii3aJoPCHVGQQTt /UVaVSckynWc+Fp9Gm4buog/DnFG2yszkc6VEfDepK3QPMYZNVSKyI25EcB2 gotzNNkZ92k3OvKkRECg7XO6X/nOeH2JFMLkGQESHiofOXqckXLd6EWWSARc i2MvcOJxwdMPwU7sWjjk3H6wZ7nTBeNEsznEb4XBfeY9/zjOu6JLzbWDtp9D Icwr9cxGpiuWCKSJtb4NBYnOjaXJbFd8FCfOcuhZKGRHTk3fK3TF1Sx/L4H6 UPD92DXqVe+KC0PrsWfJocDZHNnUOuyKUQ8d6ngEQiHQbSzQ7ZAbhqVaTpZ0 BQPf3cqx+m43vMdRdLp2VyDosdDQMTxzwyvXuJ1VFgMgzNlewr7PDY8t6XoO jgVALz1rJO2oG/J2KP+nfzsAYi1IbJazbqh2bX/sHrsAGP+prvWbxx3/ei49 Faz2h2KBgUrlYHc0unb8RYeTH4icWye18XhgNeE+Plz1hg+tsZXLAh7ofHtB YfabNxTOr7+TF/VAM4s9fyUHvYHbeUOnSsYD34Ls4Mt6b2BW3eTK0fZAu6eC to/8vWFh9l9rUOB2PhJvue8nL+h0oKM72OmBg+LN3EdGPcFZgSk7zccTCakk Tq55d1DVtkz1DfTEmL7cL9mf3YHTsiDGkOSJV8V38fK/dYdnJBkPllhPVGR0 yTVqcwel/1koZV30xD6uHdNiKe7AIn916HKTJwa/1xp9cMAd7soc4a/c4YXX 1SazbK3cgEPStLynxAs/tNQvNN51AfejZ3TYK7yQQX9fT0qpCzSqVny2r/bC hLP8uf7pLmBrtCk81+iF0i89Z0JOukBhQG0Rb68XPjoin+2z5gwSdbuvBC95 oQHRsXWd4Ayo2Heex9Ab+1bklrRHHCFE0zwkcNEbG8L3Tw6DA7wXJPY5rnqj V+y5oigZBzCjUZUx3fDGl7bFduL8DiDdLTItw+iDF9yTKqtX7OGnwYr3HK8P 7gtKCj9VZw+e1kXOYVo+WPyUfbeJsD04BEybRlN8UGqoQVmA7SQQ89Okk2V9 MepQH7MGuy1Ihbsce6/oi1kqf3h7/tnAHlMVPK7qi/w2tXn2szYwTvPd6peO L/oILzTVvLSBCF+9WGt7XywfaZNavGAD5SoMvWLJvqh2NWtlbrcN0A8l+Twa 9UUz6xt/fXmtoWcv+Rpjih96sP1Y3bKyBPX+uDb9DD/cvCfY9ELPEu5kxr5O z/LD+BOj76+rWkLJrjN0LFf9UL0z25okZAkx/8Ld2W/7oULVyJu0aQs4+tNP hGfUD2+MCFILUiyg+KHNNUkZf5T5d4hd9OEJiAqVuWby1h/nd3fA1yozYN25 fEbxnT/u6XmXWnnJDEqL2i34Pvhjr4N7YlSCGfT2GtP++OGP7xRfOOramcEB cX/Xcxv++Dl8IDZrpxl0jVYKtokG4C5DctQbf1Ng1REuOBwWgC2r+YEv1U2g jGtfDh17IJ65UHqSwGAENeX3ua04A/Hi/+T7fi0awl1F3/zrvIG4oJsVe/Oj IfRZ3C8migXis0QhM9N2Q9jI9LmZqhqI/bb1aZoRhmDL2N7B7BmI19bG9zdP GgDrqufU3tZAnN+QFbj7Vh+iRpoJoh5BqGRooXJ9VBdKUeosr28Qns8875L+ XBd6bxR1swcF4Yi9Tl7UfV04cCbZYON0EOpNHjkQUaYLnbyWlm8zgjA48Enu Vz/d7ft6xivtThAevn+2vHCDCMUTopnTtME4NmbFrSxJhJ7PlLGG0mBUntrz 7UyRNpBlj0hTK4LRKntA9BtVG47HPIoLrg5GGzFO55Op2lDD8VdAsjEYzayI tbYh2pCDHq7FT4KxrtBlzx0tbfAsVv6WPhuMw7VOz95/1wJ6h3ezThoh6Hnl 8cp3VS0gDojS7RoJweBymbNs3wEiuco2zSZCcBomFb4MAFTaC67lfg7B+uOC 8U/aAXZ+5pkXnQnBKMLBmx3ZAF5rjHNCtKGYz3qK3hsAJJg3xtW5QxGO+XFc LCBA7ZHJu+EYilbfvRbmnDXhbnBb6JecUFT2aEsjs6uDS7xTn/2VUBxk6Utj 3lIDxgs00v35oVjzh3yzbFYNbG7qfW8vDsWRwBn5hZdqsPjltdPlG6HYvjUc wJmpBtL200aG7aHYvNGU4rlbDUp1Dojf/hKK9kf+yi9xqcJ5HvJojAIJxczT XaR1VSDwejbrIWUSJtM+4eM7pgJmslUwoEJC1U+LLXsPqwAnsb/isCYJd44+ ixRjUoHiEJGwQX0S+pPZOZ69PAZ3Hj9mlnUiYe9zfX92+2MwHsGu8SmNhJ8e mavaRSmD/EBpsf4ECS8Oto0IDCjC2MunJyc/kHByvrHuQY8ipPbO7035TMJb ZHEx/7uKMN6NaV3fSVh0/eCbkRJFSG/+GKK5SEJmrtaMAyGK8LFAWEtxZxga 14XcU2FXBIp36RfBo2F4f72FlWqjAPPrJRIryWH4U35WKGFNHgKN2m45HgxH UzvD9ORIGbhfpfjfn95w1LPmdGmwkoReiaceJn4RKMjoe7CS9RAs8KvSJtFH YgtjqcmUkSjMCDCt/6qJRP2wC7wn7glDhc7SDLvRaXzidEqV1lkAFKIJmr5L pzH6XPj9nkxeiO2/nhJ9KQoX+o4IzcVzw8TVb9n+ctHY1mD5SvHLPuCKSN2g jkSjoriaDwuJA5hI2i6k02fQ0nSM7s8vNngd5ySYejAGOwfMg+sVWaDpr/W1 uGcxeOnP8JvBXbvAqtBH6Ih3LN7wfv5SIIIBnpiM/mHbE4d20g7Dp2h3wIqw 9/PqujiccbBd+0lDC+Dzyl3CKB5zdeSOs/z3j+DcfsV2bDEe4wm2jinq64Tj yrE6ehQyPn9U26ia9IcwFKstxXCJjPSzd4t6T/8hRHYxcfTkklHzSlKpW8Af wh3zvPdaBWT0zOv4Wmb9hyDt33RGs5KMIUWn6AIO/yEIl8zdVmonY91phuAD fasEJibPA6I/yGieFeD6RWiVcMP8yI7PP8mYcftysTzXKkHv8uJU6QwZJ8cd U88xrxKSRc+2CP4mY0Snqa7a8grhn2axJd8/Mk790RGd7l0hLIaNpHNwJuDD zoYYu6gVAqW1JKSfOwFNFm16NgNXCHI0PrZZvAl4lm086ab7CiEwc1l0t1AC Mq7UW3CYrRAmq/Y+2CWVgGfs7o8fFF8hJM+OVjyRTkCn6dvhv/lWCKLKZRdS 5RJQkLri1btnheDaJedAr5yArKkfzNM3lgn/dq1it0oCutUf0wpZXCYUmXcc TlJLwAOlxmdP/VgmaFxOYdPS3M4/sclq+n6Z8G7cZHkLEnDPmuwnncFlwv8B U8AKGw== "]]}, Annotation[#, "Charting`Private`Tag$2973870#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVlHc8148Tx+2ykz1S9h7ZI+87e8+sj+ydvQmRkVHfrM+nZaWBVFIqI6NB oUFUGihFpcwoI9TP7697PB+Pu8fdvW6I+EY6BNBQUVG9pKai+r+dXtywMgn8 QuTl+WktsU7ti6k+pGp0vgs4x5n0i/UuEUnMs4H851/C8aXdd+n1uglNo123 i6LH4GzNnI5E9zCR0llDRXd+Ak7uDC9i2TdJvH9P1EL+FLw9lVn+unye0FkZ tk6JnoU/T5Zw88Ey8TxfM3lE/ieIvz2inbj6l9g8nWW9VrUEfvxmPQ+16EC+ ZmAPL/cyLH65Ie9/ihHcbwv+UstfhQ6tscPfKezw38OgHofNP4A6NYzMApzQ /uJWaVT0JpCrw5JetvLAzId/4QVf/kEb75x/XZ0AFCxX7xmWp8YJjrc0Ad+F oZNucWmpihbPXDHRnpcTh2HmM2M0I3R465FvpnCXJMztJHo4uBnQpLEg6FOG DAiLHCtVyt+OymUnWm7GK4GGtHI20cWI8zKLJfpOe8FGaTjcepMJb5ynEtSi VYXDeqL6odGsWMVLp3/srAZQjHplk6+yIVfT6+cPMrTgmmUEV/4Xdrx3Z5UZ DuvAnPxY7Et5DqTSCTO/W0+AsK6M6c8qTtyQrjCSXzOEK8RG26oeF3r9ZOlX 1TYGDYMBZaoRLvzPtC08O9MEbMzjBdi5eTDF6J/Vc2VzSHN5MCufz4eTma5j R/7YANMBiq+aJD++vXEv+qq+HZzyDHqj28WPTDabi5lM9nA9gPWBxaYAXi7N Mnatc4CxWBIlOHoX7rvaINMq4AzBifKMUWzCmOWmbFBD7QK/kv8dTrwqjLZv Did2zLgAS2Z1UM6X3Xj685icyQAJhHuTdg3Ji6CRh1hke7cH2Ax3L8xXieHr Oy8IRzU/SP/oQWJbFsOf1YIXDV76wY2p5QfyluLYpxslbhznDxzr0uSDv8Xx kgSrbUh7ALzafUJ9wlwSk9I/zYb6B4PbQafk4UVpbDHT+9nHEgFBG19oO4wU 0bOhw57aKB7O0KeHjZxVxIEjjE1O9fHQy8b3em1OERm6zdg0eBNAVsSiRuOs EmYd/9eYP5MAK6Iu4m8TlLE0rFKeoSIJ7pq2PbZ/uhezv/aulXOkAhZnMRvH qeGf+P26oyczoOcDD0FTroa1akSJ79MMsJG/EnWvSw29ba62TVNlgkfPi9fa nOr4znyNmSosE5I3d1UpNqpjZdbYfVqDLLh9sEWNb0ED3d1E53hnskHaYNZj OlQby0tlvlEp5kFD4ZGiy2RtTPf8MjzjnQcaY5xdAW3auPzLrv0aOQ+Mk3Sk x5l0kL2Z2uPiah74Xs9dfFWng7lBXyLN7+dDuYBobuc3XZyoFW2OMj4OHEvO N4r9CLR3mApr3F0Awh4ijrnHCHSJ/9rKb1EA8j3TK6k3Ccyk2TeqEVcAZmVH IPgfgVIiT24W9hRAmuGVfqIMUJGO/2ttSCEs96Utxx9EFLwd5bNgVwSbf/16 F1IRh/kms674FQGdmnlpaBFivvtknk5CEXBUchI+zYju1ce1RkqLQD7m8lEr en0sL+Q/yve5CPwEhrjEzuvjukrdgf3BxRBi2/y14rY+BtbGCdgnFUNUdnkL X6/+1rx5M0TyiiFtLtCdbV4fPwleuqVdWwylD9cvru0zwKxSe2ajiWJ4ESKh +uKtAf5upe+77FACb84x0VvOGGB4ToVxl1cJfHg1P/zonwEWdEuMXQ8rgRni bnKbpCF6znkqrx0tgW2ctg9r4gxRod0vg9RUAkRbkv3hHUZo5Wlqa8JGhj1D 3/srJYwwlKqg1IKfDNTf3azu6xhhiHHYZV5xMnTz6JnSBhhhP1W7EYs2GSxi qPXyW43wFce7cB9vMsjnx9y90m+ExaTMhvqDZGCtmtB8NmGEv1qP2XfFkOHF 80cq7GzGeHn/A3HLbDI4yxyTPulrjJ0ihd4vLpFBC9ermxKNEayvL4ZcIwO/ S5jY2/+MUUihc2rgFhlGs22EBZuNUW9AvnLtARk6y+6V7XtmjOEebQ2dvWQ4 16jM7/nJGF/4FPTZDJDBd3wn13lmExyf2973YoQMRitZxQ/3mOBH5lDmrk9k kGD7zTapboJNjCnsGd/IMKX7hlHK2wSfX30g5rNIhicOZrlm8SbodT2rNGuF DNcOttKFHDPBvC9/z8VskCHydNm/a7dNUPHgJ+VmegrYXWc53N9ngkZ+M3Ks TBRQeXT4z/wHE9x4PENRZqPA8qLXbxVGU2wO6Cob56bAW8bBGEdhU1Q9dO5m OD8FWvcYLMSrmuIFIlqiT4gCqTbi0y0epkgj2CIyI0oBz4CTwe9jTNEt5pPM bQkKQCrD1/VcUxTq9yi0lKbAHnKi364KU5xv0Kc0ylKA5srUONFoiks9KSnf 5SkweZ/k6d1jinY3B/IWFCnw6M2TkYxRU/xe9oKqV5kCNXO6pIs/TdGpb0Q6 SoUCefT1w90MZtiVxWn6XZUCIULCjl8FzfDDCdIFVXUKWKoWDm7ba4YPRSwy bTUoIG9BZStjYoZlZRpKepoUYPOJfmZxwAwVjPYsbmzxQuJn87AoM1yxu8VV qEWBwYL9PSeOmqF0r/6npS1urO42aig1wzj3zgty2hSgtKs/fNFghvSFzZc0 tjjhZQ0sdpuha7SDKvcWu/zg7eB8b4YHeEzKerbitajzddTnzXB7wLCMzRYL 8P1pdqYzx11WA/J1W/k3FEPVk/jNMUHmyOLbrXrHjEcbzyqao25TU9/YVj+d 7tbKbYbmSI6/S92iRoGq2M76UVdzbBc1+xG01f/anIPsyTBzLDbicd++pY9D yLca6yPmKCWklpK9pd/VLyliDBRznJWIzh/d0pfOZ0dVZ605SidP9e5QoIDH 6CWhxDZzXPPeTBGRo0CTi/ZZpYEtdnX9wiZDgWAb35KqZXNsvdP39Yg4BR70 LbORmCzwKRFJz7A1fwHj48c5hC1QcjXmW/BuCjzTvZ2daWyBHfEC9H1b+yPR bEatS7JAx1ObvY95KJCmMnZ4KcwCu8abvS9yUkBZhiHRn2KBGW94hf+wUCD/ UumS0GULfH/a7nkcIwU+71aKet1mgQ2mGX4DW/tM4XE9aDJhgeZuHiSJv2RY pb1yQFrFEjX+NVO5z5LBPp14O25siR1yKaljU2S48mfI8SzJErmDbzPpT5LB /ee6NVOGJQ4NpsY3vCfDvQ/WODNgicddAiT3PiYDn9vn9ksTlhiRkfrmyX0y RL1O0PZYsUS9FPM+szYyiD47p9IvbIU/QhaOLjaQIaf1p/iNcCtUmTSjpj9D BhvKScY4ZmvkexLS6OtHhlp22Rz53dbofqNm3dudDFTHO2m+qFjj5quQt6ZO ZGjM+Lbu5GaNTSvKHi9MyMATqT2nWWeNQ+KC/15Kk+GD+djQuokNDvFWBo5P lcDO2s0/bu42WDWtcOflxxIwoRMWuxttg75PJCJvDJdAfadnbFK5Db5xbYmU 6i6BVNVxzt8/bfCH+r8zXJUlwL9rwnGu3BbpOq7Qq9iUgGxSXGjUITu8WibP e+Z8MQRYJs/6DtjjuuA5nQLxItC/u0I3EOGIB+y3iw/xHgPmlk9Ugp+ckXRy rfxUYzYs2J3OaZ52xj07p4r7yrPh1XcrFsdlZ5yh/k3LkpsNFYItvCeYXbDg wo6KeweyQSm9QPGfugsOhCbrTtBnw34TXfeJYy649mXutJRHFpS9ojRfVXPF /Sw7js/wZoLcT9OIfXkk/MNWZyadng5W+wpjxUtIeCp43F3CMx3CcoeTWMpJ GPzN8QzopcO1XQFZow0k1DIcini6nrZ1/5lnUt+QMN3p1jwkp4HixfaH7ZJu KMh1cMep1MOg4rSXV++RGxqt5tS1nEoBh6okIYkBN7wxt1/O8lAKxEzfE2F9 54YV+6F+7UAK3MqwkR+bccMCx+G0KyIpoHY9VP8w1wFM2siYJV1PBo1tNaEd fgeQfFOGf/LZIdBpFbivR+OOG+/LnUE4CVKfNnxaYnZH1zdXtz53EnSOGdFe 4XbHxwJPK62mE0GfJtKER8Ydf3mZKne2JIKZZdezOVt3PKbMr/rMMRFcxkLf natwR9mblsVHixMgjrpjkVrbA8tPH5ZdE4qHJk4HrhYDD/yVRGlOZIiHVYlv 6hFWHnhqnN6OdSEOUi04Dr338sBx1n/uh7viIIsc8K8xxwPvLrxfjwiNgxIJ Nhb/Vx4YeSRyNO9eLDSYe0k8jvREm/9eNwgkxcAHq7vltsmemOnU5HjVNwbY 7Li53mV74qrMzhRH6xgIc35KM3PWE2VOPFmYF40BaT/NcY5uT6x2zKAyH4iG C6nsZR58XpjVcaYtUj4aKA33dvy+74WTla9vfpqPhK5Ggby0p1649kzC7OmT SFi8E/9v27AXmsX56oxXR4J9u9ycwLQXlhMeGcfdIyF38mlAFZM37k6r6f78 NAKMfmoaPlbzRo3jvh3hjeHQwbTjL0e+Nx4/xTT7uCIUYgJyDm2c8Mbojz8v /EgPBen7G7++lnjjg1dG4Uq+oVAS/326rdwb4cidFkGpUAgef/gu4IY3ej0T zExpDAGupvg7rW+8sX6BZ1xn4CCE+YyE+Uj6oKGB24HXu4NBtN1+ylLOBxts QvlG6YPhDU+vn4ayD9ouaI3/mw4Cg2e33Zh1fPBMx3uuypYg4NMsMLtj7YPC CdKte/cHQReLvjhjvA+6ZqjHlZ0IBIGWmpEbXT4onsbysY4nAEyYqWjo+3xQ sTaRV+2vP8R4kqRJ/T545zz/rtEv/vCEjiWe+p0PqhQ30By94w8p9tFsDnM+ uNJn4aPh7A+jP3T1l/h8cZKmRX6t3A8qdw3WqEf4oucyzHKCLzyJkn2eH+uL 0mJmb7hlfWG5K2tpLMkXs2xM/Pdy+4JNiAbmZPkiq1bZj9vTPvCvqezd8Blf zE7hNftx1ge87QJZkrp8cdlIoH7pjzeIZq1H3+XzQ8/uyamACi/42JpS83uX H2brckwwJHtB+cL6e2UxPzx6r40YcvYCHs8Nw1oFP6T4MVl/2+EFTNqb3BSD LU4MVqXP9YSfc39bw8P8sGPHjM1ksgfcd6OhEbnvh2VMFNJo+gE4XJyp4f7I Dyc/jvCE+BwAnV6a0NNP/LDSYo+qkOEBuK1O+4r1tR86eJOGZxgOwOUddDV/ vvth0+3JRZ0iNyh8TG/xitMfp1dP5/jXkcBThbEkN8gfV9pfB/X8cgFtA4ec 4DB/DBkp7bcfdQEuh7Jk82h//B1GclzpcoG+aAU/5hR/pF1bAjLZBdRu2qsV FvhjXi1FnVnNBZiVS4dP3fHH5Nxt6+OHnKFFQU6whjYA2862vHHicwKyXhx7 7vYABO0yOSZaJ4iw7qANZg1AM1Gp1dezjiAWbjsjwxuAXXTfCm51OULBtdiO etkApPdM68qKcgR/uXavO/YB+LS3Q9mnfz9wyFhf6j4XgMWBUjEepQ7gu/eQ IXt1ADKN7D+jl+MAt7WrP5OuBCDrqffn1GMcwNlic8/87QDs/B40EmbhAOWh 9RX8TwJQ8svTnl/r9iB9nfV0xK8A/PrAjtHezx5QtT+fzzwQ/UOY5RIN7KBE 94+0n00gMvWHGwrttYMJQ8ne+v2B+MHX6tHr3XaQ45jGYOgZiIV+vwjmdVt4 Fq+YFR4biMbpUq+vxtqCa0tB6sOKQPyxK8zVJMwGIvVsI8MWA/HWRaX4kkNW 8EHYqN99JRD1En9unvKwAhsqbQXrjUA0MGVYatW3Avku0WkFhiC83NxGcWOy gh9my4Hz/EFo0VP8iabCEvwdKzxj9IPQLc4wa7DHAtxCp62TioLw+2SuUZqK OfRZjV8LPhmE5Y+px9gEzEFL8TUzqTQIqxPIXa3U5sD7s7NP+1IQsk1bU3sO msGrhBLj9eYgdK2zXBqNNgPbTG29tI9BeNKhpLe02RSMzubKZysGo/1RGX4b JxOQjfXS+KAajAYsPrTShAnssNZELe1gZAyeuSQkZQKjVN/2zxgGY9zYTJ7T mjHEBZukOJK2OPmUDs05Y7ikSf9EPDsYyYkMVHLzRkA3nBn06F0wvplO8Rk/ bwg/Gtyid38MRhdOfPvyhCG8yFdJOTQZjF8/JMp/OGQI5XqfCxTmg/FkG7Gh 4WAIatX6TSfpDqKFIL/sMq0h+MdR0QcqHcR0Ul97SagBdO9Mu8Bw9CAKstIM H7fQB90XqXdNjx3EDZ6ih4na+tB4ImUor/Ag/ik/VZIgrQ/nth+iYS49iOrR CpnXGPQh+W+sL3vDFk9dk1npQtj746Ao37ut+KYMs1/6CJUPnC7IKITg3f7O 9p8nCeBOd7wbohKCMfKsxxSTCPhv3/6hq5ohqOHk9O64GwGHmu1oFA1C0Mxn xLd2NwGO9Za+Ki4hWL+7fd7jqh4wndUX1c0IwaPso39re/dBYpTCBavXIZj5 q3/5Jr8usGz7fUj1fQj+aLz1LI5aF6oq2u0FPoYg3bXv9HbfdeDJE0vqqakQ 3HT7qGHbqgNCEiHeWRsh6Ew/UxfupgMP39UI3xULRTZbjUXO89rAYrinTCom FM3bvaScQAuq3n2LYUsMRWMWr/OLMlqgHtVg8TslFH9/mnSv5tICzwriz8Oj oTjl8kzX4ocm3FxxJ3meDcX2fQvchac0wfnaWd6T90PxKy1P8s9FDTjPzUmh YQ9Dg/UzhkfuqsO1Sx08+7nCkGvQNpGuRh1aVIPPXuQPwwKFxsTKYnXot++o NBIPw4qLsUmcB9Vh40RQXY52GKZRtTb95VMHZ4b2Tib/MLxtrRTXnaoGLCv+ 33e2huFHrbCLAftVgS+HPcyvMwy37yqziNNXBTHuu3O3usLQ1T+996SSKuio sv9y7A9DoySdnztYVCEosvXvqYkwJG3Kl355pAIPv7FyCbKFo1qxwr3f+1Qg 8W0TIeYXjuV//a1EtfZCFcpm8AeHY5Lkqk+EzF54crmiiz08HF2onzf0CuwF oUPZZhsJ4bjyJ7W5dlMZ7vM7OLw+Fo7P288OsnYrA9OB2YDcxnAckgogwvcr Q+WY2Ilp6ghEHL0qs6oI3Z+LRm5VReBFO0dT1Uk5SFOUky+ujsDvP2x2ZzyX A63kR6kRVyKQo/H0wkSTHFzj+LNL5nYEHp9RkJnKlwMK+nlX9kRgZYF/5ZSy HPhXqn/Jm4vAB2NXjZszZYHO7f2cx75IpEhFl22qyYDRoBjN9reRyGQ6/4D+ hSTEc5/ftBmLxJjaNcfIdkmoIQmvnfwcidZ96SwzlyVh22e+BbHZSEzo/3BS OFMSAtYY5ndTRyHd9dDBAHVJkGbaGNXlicKJNzs1Q89JQL3c15ZYjMLrtdu+ 9B4Rh5aIu1ETlCgckGYNGowTBa/DHv2k01FoXJ+RHB8oCgz/Ucm/OBuFprq0 VpKuouBUZ/KtvTIKt519tlyvKwqLE0Mepy5H4XO+Z6yOtKIgT5q2MG+PwmP8 LEcWKCJQZSgk0TARhS/ZL3LzPtgD+Xxp75JVopGF/vUHu3hhCLtYwiKpHo2a ub9f7ncXBhvFWhjUjEbWwaPqEYbCwGX0olpKLxqd3BdHpjiEoTJSNOaVaTSe f8vAttSwCxofP2ZS9IjG3jVOUZMFIRiNY9/3KTcac7RPeBtnCILyYFWl6Vg0 iot0DM5+5IOR572uXz9GI7WpzvvEZ3yQ82Rh59HP0ehqFGnL2coHo12Y+/Bb NPaoauqklfBBXtN4pN5iNHKv/pYXNeGD8bI9+qrbYlC1rP8C+QYvFAVWTQjv jUHTxI7IumIeWFg/J72cHYM0B2cCiAwukA249jAoNwaHZ1/duhnDBf79Le7v 8rf8/SeGlf254G3VYFF7QQwu1TpEO5hywX1j2rXMMzFY5Eb3TISNCwoLA/vY r8UgbfHXj98qOEFRTCFE5mUMHnf9MtL3aCeEWdy96i4Si4fPnDHuVeOAT0pa grTisfjLTbrgkxQHOHM3HauTjEXWftMFekEO0B+/eXBZLhY1mT2HI6k5gCeh TqpIIxZz15Ooevp3wP3zZy52Wcbi7OV71YdCdwDXWkKZbEIs3jf9nOhAYoeO WtXjq09isalv1V3zDAs8XDv5Pvp5LB71vcTamc0Cjy1XZaYHYvGW/YM/+6NZ oH++vXfsVSzaH3vgWG/BAh80TRi6PsRiTGgfmesvM1D1umacWIxFeveYnrog ZjCaOpwoKhCH9zsix08aM8ET6V4/q4NxqPQr5eKQzHY4NaOn0xoah/eKZxJ5 BbaD341bOyQj4vDHDgfOYKbtsKF5ruNfTBxOlzskyk9vAyXTBN5bqXHY/bVk HOu3ASVA/Cl/URya/t7TWqi6DTwvHFH51hSHJD97jywzBvgpqE2dSRePsX9r mJ4X08HqgT31YtviMVBKtbEyiw6oyreRHjHGo3+lcWlKPB3sEBq+sZ09Hk9c 6KN1IdGBslCsdyF/PBZOikqQReggSqj+XrliPLq4N2/ju00L80Iiac2u8Sgv +S2e4xMNzO5iXJ+5Fo9MLXUrfa7UkP3kVY5PQzweI82w/rCmBoHEqp3DN+Ox tDH3L4chNZi90JS91xSPU2z7nA4pUMOlzEBS8f14nPVYkqymoYYD37qa1V/F I3+B1KfQ61TQdyMtLm09HlVv6lIdZ6aCasNfs+wWCShXSpd3+s4mkRS217bV KgGb24ONx89vEhYnI2742iZgZ2ofr1bBJjH3dSrmjmMCzhon9XAFbRIax8ZW 3LwS8PIOxu9H+DeJ3hePqWviErBKS56DP2ODmPE4y73vXAKyyHy1WHRbJ1SS CL3gXwnoLuDr06KxRpBZvdMmlxNw74rMiRSpNeLXhYx73msJqDTi4WrOt0Y0 Pe/WJ/1NwJLKsqt0f1YJXTFLE4vtiUgSYPZY61gljPpdbOWFEnHQfc/9l6ar hLN4tM+CYSKyK3CWc/mtECkvLh5NIieioWWrz66m38RY6ZeSEKUkLPWToJ8c WCS443I2it8m4S1yrfKG9ALBGG3gFZ1wCAMltgf2i84QQ6kewjkiyXjuueqH cosp4s4fxwupfckoKeBEVc/3hdhfHrRbLjAFG6p/OnH895nosXq3yrYjFQXy DD9pK4wTy3sCn165noobvTqik/+NEhA04CttcRiNesIi5u3eEZ7tp51HFg+j ikHcxKTJMKGlnmJoUpSGTnuOZjIPviSGUwxk6clpqDjfLvHs8Usi/iEjR/fJ NHyUUjNb0v6SaLQ980G/LA2Zrr99r3L5JSEfcueQXk0aJo6HNLWlvyT2nJtv UGtPQ8tczvezSi8JRkZ/IbGpNExacLnVTBkiLtvK0X7+kYbDu16yqR8fIkxO LX6vmk3Dil8S7C0ZQ0S2WEaz8FIaPnbfM98fMUT81at0EPibhrcdTj4E8yFi MeZtHgdXOso0ecfI/hskilrPRb7gSUeRZUES1fIgoUQV5FzIn45ym+J1IzOD RNiJ32Ksu9Nxo+1CwoX3g8TX2p33tsumoxK/s29U0yCRPfeuukc+Hb+SMhSj 6wcJMfXz/+UopSN9H2GaeGmQ8H6o5Eanno6BCUZ25JJB4u/2FezSTMdj+mna dfmDRIVtp1SmTjp20sr5dB8ZJPadOsqmr7eVj/1Z12TiIPF+1Or3P0hHJ4vP HkyRg8T/ALKNDt4= "]]}, Annotation[#, "Charting`Private`Tag$2973870#3"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 500}, {0., 0.019749501994637892`}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ RowBox[{"1", ",", RowBox[{"296", " ", "\:041c\:044d\:0412"}]}], RowBox[{"2", ",", RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], RowBox[{"7", ",", RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable -> True, InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm], ",", TagBox[#3, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input", CellChangeTimes->{{3.8482538059339123`*^9, 3.848253846044467*^9}},ExpressionUUID->"3cadc262-eab7-4fbb-884f-\ 234f08e0bbde"], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\ \:0439", " ", "\:043f\:043e", " ", "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\ \:0440\:043d\:044b\:043c", " ", "\:0438", " ", "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:043c\ ", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], ",", " ", RowBox[{ "\:043f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", "\:0444\:0443\:043d\:043a\:0446\:0438\:0438"}], ",", " ", RowBox[{ RowBox[{"\:0433\:0434\:0435", " ", "\:0445"}], " ", "-", " ", RowBox[{ "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:0439\ ", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441"}]}], ",", " ", RowBox[{ RowBox[{"\:0430", " ", "\:0443"}], " ", "-", " ", RowBox[{ "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\ \:0440\:043d\:044b\:0439", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441"}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.843131030649044*^9, 3.8431311460404525`*^9}, { 3.8431534352323246`*^9, 3.8431534721316104`*^9}},ExpressionUUID->"7d92322f-b234-424d-b5ae-\ 4f47a8aa5809"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Psi2", "[", RowBox[{"k", ",", "q", ",", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]]}], "]"}], "2"], " ", FractionBox["1", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]], " ", "2", " ", "\[Pi]", " ", "y"}], ",", RowBox[{"{", RowBox[{"y", ",", "0", ",", " ", "Infinity"}], "}"}], ",", " ", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["q", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["k", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}]}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", " ", "Infinity"}], "}"}], ",", " ", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", SuperscriptBox["k", "2"], "]"}], "\[GreaterEqual]", "0"}], "||", RowBox[{ SuperscriptBox["k", "2"], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", SuperscriptBox["q", "2"], "]"}], "\[GreaterEqual]", "0"}], "||", RowBox[{ SuperscriptBox["q", "2"], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}], "&&", RowBox[{ RowBox[{"Re", "[", "k", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.842980288224*^9, 3.842980304636065*^9}, { 3.842980350190974*^9, 3.8429803881369057`*^9}, {3.842980459380775*^9, 3.842980460201066*^9}, {3.8429804983600235`*^9, 3.842980529303157*^9}, { 3.842980696604257*^9, 3.8429806993664875`*^9}, {3.8429810848783765`*^9, 3.8429810857319965`*^9}, {3.843131180242304*^9, 3.8431311803784227`*^9}, { 3.8431312129599676`*^9, 3.8431313227437353`*^9}, {3.8431315652060738`*^9, 3.843131568057932*^9}, {3.8431318423645782`*^9, 3.843131847708364*^9}, { 3.843132835332533*^9, 3.8431328374624863`*^9}, {3.84313510981318*^9, 3.843135118063053*^9}, {3.8431365854023275`*^9, 3.843136608518384*^9}, { 3.8431521386616273`*^9, 3.8431521549825897`*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"556c9c87-cb3d-46ed-8dd9-1fc8b0a73f7d"], Cell[BoxData["1"], "Output", CellChangeTimes->{3.8429804208267326`*^9, 3.842980466538209*^9, 3.842980534275172*^9, 3.8429807076695385`*^9, 3.8429810874691515`*^9, 3.8431314719859695`*^9, 3.843131798671479*^9, 3.843132104320747*^9, 3.8431330193689384`*^9, 3.843135308664959*^9, 3.843136815477418*^9, 3.8431523489418387`*^9, 3.8476916849363337`*^9, 3.8476920260193815`*^9, 3.848252342382391*^9}, CellLabel->"Out[35]=",ExpressionUUID->"c4b29f81-a005-4330-bc1e-c64e9841dc4e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"P", "=", RowBox[{ FractionBox["1", "\[Pi]"], SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["1", SqrtBox[ RowBox[{"4", " ", "\[Pi]"}]]], " ", RowBox[{"Psi2", "[", RowBox[{"k", ",", "q", ",", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]]}], "]"}]}], ")"}], "2"], " ", "y"}]}], ";"}]], "Input", CellChangeTimes->{{3.8431533508025804`*^9, 3.843153381496809*^9}, { 3.8431534803691063`*^9, 3.843153556845418*^9}, {3.843153759833788*^9, 3.843153765576248*^9}, 3.8431538701351504`*^9, 3.843154029069189*^9, 3.843155959385624*^9}, CellLabel->"In[34]:=",ExpressionUUID->"51b4c549-6998-4369-96d3-3b8ae7dfd07c"], Cell[BoxData[ RowBox[{"(*", RowBox[{ "\:041f\:043e\:0441\:0442\:0440\:043e\:0435\:043d\:0438\:0435", " ", "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\ \:044f", " ", "\:043f\:043e", " ", "\:043f\:0430\:0440\:0430\:043b\:043b\:0435\:043b\:044c\:043d\:044b\:043c", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], "*)"}]], "Input", CellChangeTimes->{{3.843155965896037*^9, 3.843155996607298*^9}}, CellLabel->"In[71]:=",ExpressionUUID->"09c4113c-9755-4ec3-b2ff-9af9bef1e6bf"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"P1", "[", RowBox[{"k_", ",", "q_", ",", "x_"}], "]"}], "=", RowBox[{"Integrate", "[", RowBox[{"P", ",", RowBox[{"{", RowBox[{"y", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["q", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["k", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}]}]}]}], "]"}]}], ";"}]}]], "Input", CellChangeTimes->{{3.843153718635796*^9, 3.8431537344843245`*^9}, { 3.8431537735999546`*^9, 3.843153877781804*^9}, {3.843154371973528*^9, 3.8431543752454567`*^9}, {3.843154436039977*^9, 3.8431544367799425`*^9}, { 3.8431560377776704`*^9, 3.8431560402820034`*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"c0fbe9b7-0355-4a6c-a36f-2cb1b091ebc3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", RowBox[{"P1", "[", RowBox[{"k", ",", "q", ",", "x"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.869627957423524*^9, 3.869627970957747*^9}},ExpressionUUID->"a8fafb7b-4ec3-4516-8164-\ 2e04b61ac9a1"], Cell[BoxData[ TemplateBox[{ "NIntegrate", "optx", "\"Unknown option \\!\\(\\*RowBox[{\\\"Assumptions\\\"}]\\) in \ \\!\\(\\*RowBox[{\\\"NIntegrate\\\", \\\"[\\\", RowBox[{\\\"P\\\", \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"y\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \\\"\ \[Infinity]\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"Assumptions\\\", \\\"\ \[Rule]\\\", RowBox[{RowBox[{SqrtBox[RowBox[{RowBox[{\\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]], \\\"\[NotEqual]\\\", \\\"0\\\"}], \\\"&&\\\", \ RowBox[{SqrtBox[RowBox[{RowBox[{\\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \ \\\"\[NotEqual]\\\", \\\"0\\\"}], \\\"&&\\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", \ SqrtBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}]], \\\"]\\\"}], \\\"\[LessEqual]\\\", \\\"0\\\"}], \ \\\"&&\\\", RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\"]\\\"}], \\\">\\\", \\\"0\\\"}]}], \\\")\\\"}], \\\"||\ \\\", RowBox[{SqrtBox[RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \\\"\[NotElement]\\\", \ TemplateBox[List[], \\\"Reals\\\"]}]}], \\\")\\\"}], \\\"&&\\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"(\\\", \ RowBox[{RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\"]\\\"}], \\\">\\\", \\\"0\\\"}], \\\"&&\\\", \ RowBox[{RowBox[{\\\"Re\\\", \\\"[\\\", \ SqrtBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}]], \\\"]\\\"}], \\\"\[LessEqual]\\\", \ \\\"0\\\"}]}], \\\")\\\"}], \\\"||\\\", \ RowBox[{SqrtBox[RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \\\"\[NotElement]\\\", \ TemplateBox[List[], \\\"Reals\\\"]}]}], \\\")\\\"}]}]}]}], \\\"]\\\"}]\\).\"", 2, 42, 4, 26399387527435089823, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.869627966344137*^9}, CellLabel-> "During evaluation of \ In[42]:=",ExpressionUUID->"39469be0-005e-4827-a632-1196ac7faffd"], Cell[BoxData[ RowBox[{"Printp", "[", RowBox[{"NIntegrate", "[", RowBox[{"P", ",", RowBox[{"{", RowBox[{"y", ",", "0", ",", "\[Infinity]"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotEqual]", "0"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["q", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Re", "[", RowBox[{ SuperscriptBox["k", "2"], "+", SuperscriptBox["x", "2"]}], "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Re", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "]"}], "\[LessEqual]", "0"}]}], ")"}], "||", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["x", "2"]}]], "\[NotElement]", TemplateBox[{}, "Reals"]}]}], ")"}]}]}]}], "]"}], "]"}]], "Output", CellChangeTimes->{3.869627966391492*^9}, CellLabel->"Out[42]=",ExpressionUUID->"bfd655d0-084e-451e-ac0e-1bb7f767e6cd"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"V2", "=", RowBox[{ RowBox[{"P1", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "x"}], "]"}], "/.", RowBox[{"Q1", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.843153613284049*^9, 3.8431536149817986`*^9}, { 3.843153649570823*^9, 3.843153667561942*^9}, 3.8431538916493673`*^9, { 3.843154444412447*^9, 3.8431544445933447`*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"73bbfeea-4784-47c3-81f6-e61e2038869a"], Cell[BoxData[ RowBox[{ RowBox[{"L2", "=", RowBox[{ RowBox[{"P1", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "x"}], "]"}], "/.", RowBox[{"Q2", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.8431536172592535`*^9, 3.843153678984726*^9}, 3.8431538934020915`*^9, {3.8431544468774705`*^9, 3.8431544470274763`*^9}}, CellLabel->"In[39]:=",ExpressionUUID->"3d2e41df-5350-4ec0-9780-19143fad94e6"], Cell[BoxData[ RowBox[{ RowBox[{"S2", "=", RowBox[{ RowBox[{"P1", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "x"}], "]"}], "/.", RowBox[{"Q3", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.843153644623069*^9, 3.843153688253951*^9}, 3.8431538951934004`*^9, {3.8431544020425186`*^9, 3.8431544042491956`*^9}, { 3.8431544496685734`*^9, 3.843154449799135*^9}}, CellLabel->"In[40]:=",ExpressionUUID->"8f149006-97bf-48f9-a856-9a54eb0f7b99"], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"L2", ",", "V2", ",", "S2"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "50"}], "}"}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", CellChangeTimes->{{3.8431544089277177`*^9, 3.8431544271688585`*^9}, { 3.843154584559061*^9, 3.8431545942212925`*^9}, {3.843155893888873*^9, 3.8431559013749876`*^9}, {3.84825389538888*^9, 3.848253900416486*^9}, { 3.8482541178099146`*^9, 3.848254117951827*^9}}, CellLabel->"In[50]:=",ExpressionUUID->"dec3584a-f019-4e76-b512-9ef4183d1e5d"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwV1Xk0lesXB/CTewy5rFRI/STRcLmVWVHsjfCmuJoUGUrJezLPEnW8GUOE UpmvKSpHpgYhMlRc6aS6kTRQum4cIpLh99w/9nrWZ+219nqeZ33X2qudvfa4 CLFYrMuk/juVEmfzshRuGfZuaeo0LGPgtpjKKg86EcpcVVP/c0Nwaf5vdDZY KBx5a0CcottvL3m+CKyDad424hZ1H1cRmgcdeSi6lThUZv7OfE4F6L//MrCF +FKyqeFMwm3wP3tspy4xb1H8w6mQGngyUrZZi/hRPJ+acK2HkcynJWrEggiJ z8ElDSAm15D/O3HYQ57KZM5DyJyOXLueWFxor3tAWjPkjytsVPpvPn4v/ZbQ CsGt8TXyxMpnroz6RDyGfrPOTlnistpt2oKQNlhu+4+7FPFj/bN3/3V9CsWq hXpCxNe3LT2tw+sEzyUWJ6Z5DIz2HMv2L3kGHb2PVo8Rn14h9mEs5zmU6tuv fUfcdNf2F82MLnge7efzkljc9voan7QX8ErNbXs7cVqaletIwitYz19wppr4 rW5OzKbYv8Hwf/mfSojXvBwt9oh4DW32G19kEZdJX/x3KKQHVmjMmEUSP7nQ 4zPo2gdXphvDdhHHXL70OEXjHfCcu+QNiDfQYKfFeweF3r3GG4l9RS+c8i15 D/9ovFOWIJ4z1a4T5HwEo80CvaZSBnJleq2SFPrBdqvI4lvE2wci+9Qy+qFO RcUrkzgu4hXLK20A2E25D/yJ5R6GmHxN+Ay8T1V3VhLXJCt3xf86COOV5x6J EDs6tx/bEDsIn82inEZuMpC/QCHKLeILbJ2bV6on1sCGR19ChkChyoVlS2xR K2r1yXUEZoUC5QJvkP6884SsYAT2q2SK7CeOV3TqUN4mgC9TYq5axP7O9wL2 NQkgP6/l9PB1ct9P3k1VXaPgIh0j7kj84WvvkeCJb5C/eOCyUgkDL8/HVSXp jUNzqn3pVDH5PzW9hcVh46BpH6HbQVzuk1r2WngCOhf+kh1EHD5hMa8v+x24 SZeePbzGgOLs7YxZ3Sn4w12nyaiIAeksF4HMqSmws/YVW0QsBku3b6qfgr3s /vqeQgZGuJ5DjuY/gOt8LsaPuI69Vv/BgWn4Jj4YnlHAgINE8ismeAa8Aw+v 7Mpj4C9J3YVsBxYOhsphdzYD/J1LLneEsjA0ujLmKvHfscPrrmSwsH28+oAd cb9w0fZNb1homi4b+3cWAzOzy7gHDy3A0mQ7/aeZDKgO//h+w1YIA0Zn+grS ST46avv327CxwSHv7NQlBs5LXPVTDGRj0qK0m8XEqRaBQkMX2ch8tHayI85u 2aTIfcHGzdnmdvcuMlBdl32oZJ8w1ole5fmnMjBQGs6f2yOCifxnH/gXGDBO NH1Q9IcYShgpt+rEM8C1qCzme4rhssb67tdx5P3CyimzCWJYYX0sNIxYP5R1 fG+7GDrf+sl5eI4BLU7Nr/PUQpSseD+yI5bk30TjgI2xOFIyZeVGUQyITMoP s3UkUOz47eA3ZxhwUZuW1JCUwg4Rtn2jDwO7eqIL5BSk8AQzroPE2tEyBiw1 KWyZ2Xu+1psBdp+6+1NrKTzgfedetRcDf553feKRKoVpptHsPA8G+r52RZX8 bzEOR856HeUwYHuDN6+sugRlHhyiIg4zYKniMiprLo39zTZWOy0ZmI4LqOm1 kcbZqEdWlbsYuDYcGZl/XBrpzIqP8sTsysLlmlHSmCBs2favBQP3DAeNLJul 8XeLsZRoioF1+9ySz5rIoKySo0KxCQOsMz5aApDFFvfVVRl6JI9dYQGPt8jh ph7BnMUaBrYuUeWxz8jjjiMj7rcE4eD6Mzmz4KAiVuy+ZmF2Oxy8Wj5r8SyV cNfHsbz1oeFwzk5k7az7GszUs22O0Q2Ho62njmvQ69B8R/D9jwIuNIgu3+1m +xtW/MkyarzGBY3F3Etf/FXxnIF9eq0NFw5/M9hg5b4BO5w8y7VFuZCb1Sw/ mbAJI89qdyfbn4GK8/o9/D3qyKpZqZJVfBr87xlYZ+7SwG7Nzcsa58Og/knB WOwhTcyO60pB0zDgmOvVcg5qIR535fRcDIWMaxpVbie08dWHarUtr07BhW+1 4d5BOnjQMuyBgfwp+FQSEEj76uLyb+xdVz1DoMks+TLDbMabc19TOytOwoI/ uj8kcrdg/dCKaQvRk8Ayql6Qc1IPB6hbnbsPB0PMsklLfrQ+prdV/jZzMwi8 7Y42Tp7diurCNjPh4kHwPlz7GFzchqOrXm/ssg8E6ZQr3bG5BtifaSK5ojoA CqVUT7amG+J9sfIMZYUAaPBdZbr+OqCUucdXuzB/yFLMkTfYh2gmctRs9ZAf 1IZOs+hOxLkB8eEgJz9YvVN0RvmAEVYMB9yQbfeFyqcqca+7jFCwJ6El3MwX 4lvm1BUdjPFFbu8/U3d9IMXvy4nDb4zRhRV3/b6+D9mPCouUbE2wPOLI3YoG byhWEX7i/84E+W18LmPsDSLjC5Y3OG5HyUHpVarZXlCkfut01uftyEsNl1Mt 9QQV5xKrWQ9TnDL0K0p87AE9O+6W7x8yRSOfAw0WP92BnxeyEfzM8OrjzJOS yu4wVbF7m9KYGZZ4cljjTm4wf8e3KsrTHD3eZo/2Fp6AnepmpqET5qjIatdu 6edAq4Max82PQhFNVfMWHQ4sOUrXZAZQOHUiYLZZkwOOdK5kZxCFM7Y317ao ceC779Jy7VAK9ynltbWqcGBNzOT0bASFNoP9bp0rOcAtr49PukShXV/1yHdh DuiLWpdV3aXQ3sEm9fJLGqIkYoUGaygcTVzDKXxOw7PFjftW1FEYHfb2ZmUn DbS89o/TjRSui30RxX9CQ5qGnDHVRqF+mFTA0noaxg+9e979hkKFkPvaJUU0 4JHl6yT7KAzyamXV59MQd3xPMLyncMShbmtXLg1KPk3y+QMUft6hPjefTsPu qGsuHsMU5oa4VNgn0ZAR9/52toDCjbsXT/gn0DCYtEKcP0YhHaxSkHCOBm56 fKnuJIX3BY7WDyJoaM9pZnF+UGjrZL+zO5yGZYVze9J/UlhtG1U5fpoG5+ub C/6apRAF7XGLQmkoLfOenJ+nkK2t+Ez1JA3/By2Idl4= "]]}, Annotation[#, "Charting`Private`Tag$2974148#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwV1Xk01WkYB/CrkS10q2srJCTXNJayDKOeN+vNVkqLtSJc4V5rydbFL0vI HiVLk7KOnUS2iCJDrroJo5qIlK2krPPOH+95zueP9z3fc57vOe8uR+Yx5w0k EikLn/+nbMLq3WzpioOOSvcllTwIeMBH3elJT4DdY1wzVOzWgNI8RXoO/Kkh 7vK/UzQ/2Aldzwc/xckwRewOVW9XHnoZRPb76e3BDhZZr1vPrYJ9lg35u7Fv JBseXIl/AMpdjyrksMs2x7X9CGyADPfLZ3dhP43rpy24NsM/7nNV0tizhODH gKJWGOffXbIDO6StjLqY2wbjcZTD4tgCG457+Kc/gVCDlmuU/99H30u/xnfC X9GK3mRsuSs357yJZ8B+aL6yCbu8UVd9NrAbSpHqXl7sZzoRDz+79oKvpErg ijsBxbrbQjXK+qDdwyzjO/bc0Pkcv6IXkMpPtZ3FDt3O934+lw1lQbK977Hb H1r/su/2AJxLQKwhbAHrYnnv9JdwwUPmFRs7Pd3CdSaeAxdsFb3asP/RzI1W jnkNPdOW1fXY8q/mCj2JQbCyQFkV2OWUtM9TgUPQ1Mewz8buShrynnAdBaWj e9N9saMzbjxLUXsLhpfSuOjYe+lgs7/sLSxydZPtsH14k4J8it7B05IcKX3s NUP1ptncfyFQjDwniH1HZMQiUfoDfBxdCVu7QIDB2NVRldsf4HF984MZ7FiC Q2Kmj8FLqZ4tL7DF2wL1v8R/BMlCZVYCdkOy3EDcpgkoGfyqFYrt4Pj8/N6Y CdB/fyvVAzuPSzrSnZiEtZVUXRq2Gmp9Ohk4Bb/V0o2X3QgwaeS1GHedgcIr 8iZHsdXWHRdEZ2fAt57LQQs7TubM33K6s9Az9IlHGtvPsd7fqn0W1p5NiX2i 47zjXu01A3MQlb2oGYL9/svIuYCFrxAiy3FPcCXg1fXYmkTtb3Anjf2Cid2l os1fGPINOFxCPUewK71Tywc3LoBWpkGEMHbYgsm6juh3WKcqzUS6ECCz+uD2 quYPyFsQfurkTAAl23lWJOgHrJYkRRzA5oNtBsrNP2Dzu/gBUewZFmPKwfgn WDB/0Xp6noAm7t06LaeWwNXLZm03tr1gMic8YAWgJP1WjyMBPUKa/Nz2JMTh y1HqOUNAv+nWjL+DSajWjFswC/t1zLTCzdskVBBNTvLA/rAx30B5mIS6tqlG CmCvrIqxTttyoY9hglJ6DgQoTf/8XmK9AQmQznDl2uF+/N344cRJbvTp8+FO UWsCrgve8pW5yI0gdllh6DQBqSYXN0ylcSOh+wtKOdg5HcoyrJfcqLl2cKcC dm1Tjm2R1UaU9W69UeUUAWOlYf1rx3iQW/VAn9oJAvQSDFvyj/ChKtPXgXNH CWCZVBf2M/jQq6magWLspo1yKavxfCiStYfjjK0TTHI5/pwPOV8bffn6CAH7 3Ro2rdP4kcrw8YZ6C9x/fbVTJ/UEEEXx868MMwJ4FiWnuTUEUftmu/4UY7zv yliOipUg2iV93lQfO9xzqcXGVxDpJ73ynDfC/f6Xk1JeIYg06GJlR7AX+5K1 7ZSF0IVOthyPIQETRXxXq/YII/a3+8OOegQ4qywJqQmR0XBqTcuQLgFmQ1H3 xKXJ6FFARXUAtnqUyAGSChl9lZrSF8HmHlX16D1KRqXkQ+rmfxDw53XXLs9U MhIOz7Sv0yZg9MtAZNGOLag+wGQ4SJMA65KydTmlrYijl/bygQoB5lTnOVFj CvqnfkKLZxcBS7H+DSMnKeiUQOGtZBkCCqavXs1zoaBAW2qBNDZ39X2JfZEU 9Mo/pU1jJwH1BycOmT+hoO7f1VbPSBGgYOWeHKEvgjJMO4k8CQJIV7z3z4Io Ipe6q05vwf0eCPF/9rs4MiU50CO5CPhjq1IZ9xVJJPFm6nDKYAS4Lidn3Tst g4Ta3rjWlkQAs+Pj/jJzWcSRCigmh0bANRue3ase8kj2ytO5KKMIcOoMclGj KyCphloZS+EIaOWVsHS3VkTqIwc1ndjhoLaFdWPSTwnFZlGlQhLC4ezXA3st PPaiyZnLi3Vm4XAn+4nkYrwyMvPT27pMCoeq6zpD/cdUUWIoLTGpKgz86g8c zTJTQ0SX1b0Fehg0d92bj7Hdh/4Sz5tvFAkDN2PtRrfT+5HiSY/rWh0suF2g VuN+QR3psCK32zFYkPS1MczrkgZyCfDbUSfKgvEi/4t0H00k2xZ1Yz3qCrQb JWeEh2uhc8L7MrezQ4HryJv3Cazf0bhs92UjaiiQDtVy5V7WRttG8+tOhYdA tNiieX+UDnp0+lKIRk8weNk4PV6M+ANlTJ+IiJEPhndh6uchTRdR7gUfj2YE ASXl5puYOweQ7OuzawKNgXCfrHS5M/MgWtLubBkRD4RWn52Ge4oB0XaUyOfQ L0O2TK7kASuEzD+n6PJ3BEBj8BKJ3odQ+qO7+SWKAbDLlHdF7tQhNFTZy3Zi XYLqXmrs4MAhpHlRr2l47CLEdaypytjroZHi7GStQxchxXfywtlhPfRiT9q4 WZE//m+lN8ta6yPKOUU5MQl/KKRu7PJ7q480Mw8ONof6Ac83LolWBwMkeZja 2DTnC/mqFaHZHw3QjU0VPy3tfIHqWGSx6mmIlm/yylJ6fGDo8MPKE1OGCCns 6Us28YH+u4G/ga8RCj72LDqwxRt+VFnqys4boZiEkYTHet6wXudTE8kwRmN1 3uzwLi8wVTUyDF4wRrbldepOpl7Qaa/i5u5LQzz23ze1ljFhqxO9IcufhgxZ 8sKdxUxwoN8R6rtEQ5yGhciefCZ899lWqR5MQ3lk9+GhHCbIRy8urRI0dPjE L6JrCUxgVTbHJd6gIXbLl6bTXkzQ4T1aXvOQhgYmvzS5qDEhUjBmw0QDDXVw rK4F/caEF1seW21voqHeorvdiVQm0CXVf4Y+pqGJuLdlj3YxIV1NXI/WTUMC 6Nc1ia1M+Gb7lv1mGOcrSC/5NM8AdE5CQWgU5z+bzuaZYUCsy7EAeEdD/cwd XnJTDJD1bpfMG6OhHuV0fod/GWAZWeDsOU1D+4KKGl+zGXA79t2DnFkaSnXY nvijlwETidsF+udpyMZ1iCP+nAGszLhSzUUaEuLX6rRpZ8Dz3Cckt5801F3Q zghuYYDY/bVjmcv4flBMbPYjBjgWa93rWaWhyuVQqdY6BpSWey2ur9PQ3Zxs +Q/VDPgPCluBWg== "]]}, Annotation[#, "Charting`Private`Tag$2974148#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJw91Wk41GsbAPAhQlFyhqhJQoojTCRr92PLPzKnIllKUhhJZuyhjPFPOZYs WSo0lSVUlJZTvcRJhKgmEZJdWhTZt5ynD28fnuu+fl/u696u61nn5rvHXZBC oeTg9ysqnpu/li1/e5tsR3WgiwMJlSG3cjYyL8P/Xa3F9lzMLP7tcOmFfxZ4 pb+dlmyxbS7+AbxPrTFywn4exyfGPZ8Aj/F8kT32MCn+MaSwEo6I1Nbtxj75 tFh1kvf0t5cI2h4LTH8GGytqk2x+5UMTt0bja+BrSJ3DDmyliAsjbLL2t0vK jHSGQ+uhhF6/1gLbaK4z6Di7AQI+1w8g7FqDqIdfPV+C3rUXN42wi4z+OLWl +BXMOzcE6GGPtB+5HFD4GiqpjYY62Hph9ytKc/mwI/pl7Z/Yp1aJ9vzgvfnt qoeOizZnNsHryVf7lH7V61ikzE5/C6klr+XXYu+amrMoSW4GRy9+/yrs9HSG 5/f4Fuhue+Mvhf1Bl3dWI+Yd5KY0GSzDVm4eKfAhW8Fr51uBJdhHA83qb0S0 wUhZ8zmBX/1RU79+CW0H48F3fWP7SJgoHZD4M+g9CF5pLRrGNrbV0zzK7oBq xza/r9jkj5hdBcc+AKO+ndKHXZfUzh707IRmo46EduyzGWm1KfQucLn1gfYG W50JTtrFXTCwtquwDvvl1sHPfPVu2GzVs1CG7SeSFOZX2A0Tgr3VD7GlW/TF pTb2gOmm/tU3sf/J68m8ndsD9dkDBTnYPy10yod5vXDZ4HPcOewr0h2MRPk+ +HLkazcX27z/dKdmZh/4Nw/5hmLHki0U3/R+sPQb2eOOLfs01Gwo/iPcdZvu 1MV+nKzUFLd0EKos5mbXY7u4vTiiHjMIOx/Mx6zBzhGQj/YmP0H/UkEdIWw6 qnz+KfQLZKuIy9Tak2BVJsIY8PwOb6jrrjCw6Qtu4zLD36FvUqnMGDtO4WCj ktEwjLWptKpjB7g9CrSrGoZ3jpveLcY2H2BV3WsaAQ9Jw6z7e0noGeo4FDI+ Ci/yHcLFsJsTYu8l6o8Bz2z/wTE7PG9NfbGCk2Ogn+Eq1o59h32+pFV4HHLP MtNuYEeOWy0YyEyAmeKJYGtshfkHmfO6U5Cgl7U3xJYEarb7sHTYFHy2uFrt hC0Kf5hrPJkC7sU8lgn2d87xLy6W07Dgc1tOELtcaL1Bxb4ZuPm5SiZxDwkH xJNbuCFzIFvzTf3SbhIaJHTFhA5QkJY4o9bnLxL41lIZjeEUJB1r99wS+13M N5ULmRTEznDUV8PuE84313hPQQZpHls/MEiYm1/JcXAWQOYKEbkMbLVv0xM3 HAURc2VplrwNvqfGsr699kJIfkJxdaIVCQniF/0VgoRQ9Sa1bnfs81ZBgl9S hZC2/ObjW7EvV2socN4KITIezfTsIOF++WXnQjthVNzhwqNj99+K5P/csxhR D2WLlluSYHrOoiL/L1Fk7bDe47o5CRyruwX846IoXEDjUSB2ubBSyny8KLpR qLvMDNsgnOJh+0IU8e8RJ1vNSND2erx0gRBDqU7eDcuwlc3o++xNl6DSqbsr XU1IWDxJ+ya0RRy9KWUUvTfG+74T26JpJ47iGh3ir2BzfWYqnPzFkdjVw7pu 2D97W1JKboujB/LB2sNGJEy+StbfryGBXEx53AVDEgYLRU+XbliGtsyO3pI2 IMFdc0aCLiGJWhpzFJfqkrCz/UyurLwkknUuSa7ZQoLOGWljiqYkWsP7X20E tlCn1rGXuyRRyaXmZx91SLia4Fnnc14SVRWLXH2uTULnUFN04eoVSDzbN5lJ J8HxRvGCkpoUWuJtSQlVJ8FG1X1ExpKK3sXRiMp1JMzEBj7usKcitTm1pmPY 17+dPp3jQUVh3vqusthCd/PkNkdT0Ror+xBfBRIebRs0sXlGRSoVib5ya0lQ sfNOjjKTRsQ50dD9NBIoEWztYZBBU2sotLsy+L6bTgbW6skiS/NlDTeXkGAo pVYsFEFDe1NkDhkNRYHnbHJWroMCsrn0LHq2Pgp8qz9qF9soosU6D0+rFkTB 306L188fU0Z3ZT/YH4iIgsM1YR50pgrye7Gh4aFdFFSKyO32dtyIJJ92dGRu iAL6Ck7apwA1JOzQzFQY5YLrqLE645g66qt6wpsr58KV7Ge0yXgNlB89vVI1 igulCQbt/D1aSDrr72x7Cy4EPDLelbWTjvjCbZ5CYlx4Upf7I8Z5M7I8eNJ2 qCoSvCz1y7wctFGOf+XVRVGRkHmdfs/7qA4SvubsRehHQtJoWSQreAv6KUU7 fPMbBwYKA4OYfroooWdnkVM+B6q2J2dwuVsRg/7qjLUDBwT+aus5x9FD62tu 8JdKcIBicl+Ad0If7W0fVzQhI+Dsykkb/hkDZDOiKMzsPAUsp8P/TkYZog7m I5Ems1PQHalzBFKNkJhBU0/ShZNATbnQFnPFGDV3ZSwyHQmHPEm1EzWXtqHx PxOoMbbhUOm31mJDESCPR91rx/PDIFuBRzO2Q2g5xyopQyQMysJnKMxXCFFd lGU5R0NhnbXInNI+E5Q+qbuJWXEC7r5UjW1tMkGyqcYDOxRPQFz1Ty2FA6Yo cLmr9NvgEEjx/3TU9b0p8jF0R09ag/H/L79c0dEMlTNuVsxCMBSoCtcFdJkh 0aZBjcaLQbB4TECu0sUcKUvMXLQWDIJ8rdunsj+aIwXr3qMLLoGg6lbImPex QLLBg6mfKgKgfcfDO3u/WCDn/kqtM5oBwL8Wugn8t6OYJUSsw3l/mCrdbaT4 A7v3Wm+TsD8s/ON3L/q4JUqPly8NCvcDa63tFuHjlmjLuDyh9ZkNNQc0vbz9 CeS7TLCVOMIGqcPMx1mBBMqX87w5fYgNLswrEq+CCeSZ1rD86kE2TPj9cUcn nEC7DNPUxJ3ZoHx2cmaeJBCdqRb+cjcbOHeexCWmEch71+4kF2CDgciuknsP CbT1U/p43io2RIvHCA4+JtAgd9bQVZYNr1f8a7eqnEAZtINcORk2MGk606f+ JRCnckNW1Ao2pNNlTYl6AtVeeGDuKsqGMeeuN23vCfR0nP9p8wQL0CE5FYlO As1S9Mp7R1kQ67EnBLoJpC2elXx+hAWK7CpaTj+Blja6JS0fYsHu6OvuPt8I ZP70O22+lwWZsd0PLg8TaGy/7eH73SwYTFy1hP+DQLTT91aHdLKAcynulu4k gca3h60abWPBC94zitc0gXK7PrjeeMeClXk/91yaJdDeUNN892YWuBVtzW2Y J5AwNW9IvokFt0pYkwsLBNpkJJrX9ZoF/wEcc69z "]]}, Annotation[#, "Charting`Private`Tag$2974148#3"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0.002987464548829257}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0.002987464548829257}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 50}, {0.002987464548829257, 0.00997193241052691}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ RowBox[{"1", ",", RowBox[{"296", " ", "\:041c\:044d\:0412"}]}], RowBox[{"2", ",", RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], RowBox[{"7", ",", RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable -> True, InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm], ",", TagBox[#3, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input", CellChangeTimes->{{3.848254130234454*^9, 3.848254130272463*^9}},ExpressionUUID->"7811f0be-f9d2-4836-8214-\ f2cba0890f96"], Cell[BoxData[ RowBox[{"(*", RowBox[{ "\:041f\:043e\:0441\:0442\:0440\:043e\:0435\:043d\:0438\:0435", " ", "\:0440\:0430\:0441\:043f\:0440\:0435\:0434\:0435\:043b\:0435\:043d\:0438\ \:044f", " ", "\:043f\:043e", " ", "\:043f\:0435\:0440\:043f\:0435\:043d\:0434\:0438\:043a\:0443\:043b\:044f\ \:0440\:043d\:044b\:043c", " ", "\:0438\:043c\:043f\:0443\:043b\:044c\:0441\:0430\:043c"}], "*)"}]], "Input", CellChangeTimes->{{3.843156060540451*^9, 3.843156070864973*^9}},ExpressionUUID->"24682f48-fe78-4702-b7ba-\ c8a624310eed"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"P2", "[", RowBox[{"k_", ",", "q_", ",", "y_"}], "]"}], "=", RowBox[{"Integrate", "[", RowBox[{"P", ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{ RowBox[{"Im", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["k", "2"]}], "-", SuperscriptBox["y", "2"]}]], "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"Im", "[", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox["q", "2"]}], "-", SuperscriptBox["y", "2"]}]], "]"}], ">", "0"}]}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.843154572190744*^9, 3.843154613927022*^9}, { 3.843154855435098*^9, 3.8431548741800795`*^9}, {3.8431557366749687`*^9, 3.84315580667634*^9}, {3.843156074713861*^9, 3.843156077008526*^9}}, CellLabel->"In[42]:=",ExpressionUUID->"4aa23bd3-9fc5-44a0-b942-5216f5789198"], Cell[BoxData[ RowBox[{ RowBox[{"V3", "=", RowBox[{ RowBox[{"P2", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb1"}]], ",", "q", ",", "y"}], "]"}], "/.", RowBox[{"Q1", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.843154753218886*^9, 3.843154777141105*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"79b32260-3d3b-4bf1-a08d-0fea492553b8"], Cell[BoxData[ RowBox[{ RowBox[{"L3", "=", RowBox[{ RowBox[{"P2", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb2"}]], ",", "q", ",", "y"}], "]"}], "/.", RowBox[{"Q2", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.84315471836549*^9, 3.843154722057902*^9}, { 3.8431547555798607`*^9, 3.8431547724428005`*^9}}, CellLabel->"In[44]:=",ExpressionUUID->"4d010334-98cf-4b38-9855-df93f1ce863f"], Cell[BoxData[ RowBox[{ RowBox[{"S3", "=", RowBox[{ RowBox[{"P2", "[", RowBox[{ SqrtBox[ RowBox[{"2", " ", "m", " ", "Eb3"}]], ",", "q", ",", "y"}], "]"}], "/.", RowBox[{"Q3", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.843154732355355*^9, 3.8431547847248154`*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"8b215324-d4a4-4be7-9159-76bd3efa9294"], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"L3", ",", "V3", ",", "S3"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "0", ",", "300"}], "}"}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", CellChangeTimes->{{3.8431547892758975`*^9, 3.843154799841782*^9}, { 3.8431558197216015`*^9, 3.843155820908786*^9}, {3.84315592502964*^9, 3.843155931597404*^9}, {3.847691824991763*^9, 3.8476918251596203`*^9}, { 3.8482539905602865`*^9, 3.8482539940809865`*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"d20724c8-7667-49a9-81aa-abe87a7a5efc"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVVnk41GsUVpFIkmS5WUKYQUwYM2M7h7ImRZFdloRGzJj5UZGsZc2WJZKk VBJF2qWuhHDjFolbJBGhJNwSd+4f3/M97/Od7X3POc/zKfqEOBxYzsfH95p3 /r9rnBZ+TFT2mngea47BIhWTpCbPHvv0O/BBE3Tud62AjLexx+TTn4Nj0Fo7 /671kPMxp50/vQeadIaFbnQqQ+7nc7NzaSPQntvwQ/ovXZBiKqV8S5sDpwWF kanGbbCv0s9xMk0QN9slFtYW7YG2j943PGxWYco/96fk9PcCynoJtq8Uwtmr YgvUv/aCeorLvYpoYcz+tFwkkM8JFgLs5AJZa7C/av2JQk9nsBcvmmZdW4d/ xO2LMlvlAXPtCfe/pEkhZ+IWv8AyX/ADYfq6GSmslVlWGWjrC13V6beprtKY 91LFOCLPF25k51UfV5XBFyHnnqVr+oGfy9XLYo//wIfSHO14hwPQ9bEtS++r HFaxt7bWpB6Ent9JVBOyEk46mToq1R6CdH1bzm53JRxzvaLxe/oQbA8RrfE5 rYQVmjrpB7cy4dZAFuXkDyXkupO6Rq8zIf3PQo2XT5RxqlnR/HRxMJgnVSr6 uKpg6KHf54WYIVAj0bkmMYWEi2KkFw1OLHjI2viR+oCE/jZZyXrBLGjsOHB/ eIyETgHKdmFxLOg+9dPf3IaMzt32PfZVLJhfUG7gF1LH/PNys1n8bDAZJthx iRoYfLh6lHyJDZZmT6x06zRwU/rS0V132bD7/GqFoWENZH8vjcEXbPB2KXlh Zq6JN4VadBO+siG+vWXzcv4teH2J5VtID4PW27I9J2K0MKaHaS/2OAy6xA9W Um5qYSI94tNcRxj0hdyMGxjQwsGle+nX34XBF7IFBVEb94TrlEX9DoO1xSFJ S4vaOO61Z/gpnQOpv/ur9klRkDx9Z62UJQfENJcXamtT8Fyy8TGGIwdkkmxZ 7z0pSBfqf/g5lAPq2wbloJ6CG2WWX124xIEbrJVCUt0UPK1IOfP8Fgd0SzRm JicoKNDxa7PPYw4Y/ea2FsttRbUHeZMr33Bg5x3h8MXIrehoX54kIciFUA29 l48MdTB83Y3PTHcuvKNZLsnt0cG2njtV0v5c2LndVet4kA7KneqRLQjhgrrH iVSTAh2sSRb8UzqWC8PpbVaPZ3Xw9uSinswlLuwtfB+uIKqLdeFBqqGVXHha Pn05WkUXmbMlxLnbXChpkBbAvbqYFGIkGfmMC67Tfk8aburirlfZebuGuNC8 GP51U4suhm60euo1xgXa6hSFmAFdjI/aKWP1jQsSm29Gma7Vw7MilvTSRS50 OP5mPGXqIdW+7n6sFAFGPmKBSvF6eCBioMlVjoCKw8r5sYV6WNP+u19EmYBT J61nzVr1sFo7VoZPi4Bt987c+lONilLzSlFkMwJuPbsyqAxUpDZLx7yxIGBT 1wOxeCcqdstEhfvuIGBxbPDw9gQq+pLnt4ruJYA5N3OurIiKKeUES8uZgL4V q9r5a6mofk/rrIY7AXdltTSefaBiWGVn8SNfAlTJpq4qP6nIr1E863CQgDPU vUkJ6/RxuamvdlMQAWy7oyPmqI8yc98NLVkEDLimSV7ep4+XFntSHDkE7DpY Yr4yRB/Fjg7WmoUToHmi6WLTOX0c8ctLvh9JwNnU3i7V2/qY07mnxjyaAKGC L8tOtukjztpXVscQEHFpiTIypI/R1FN1v+II+HRTfL/lL318e/WDiFoiAY71 KqfLxWk45mc6qXOKgMZWer2gOg3/qCPyFZIJuDDkKdvsTMPqQC+TojQCxL6y dpBCaSgT73tb8zQBxxfij546ScOhA/3jxRkETKzKvzpaTOPNn4nC90wC3DdU vLGqo6HkzZFUcjYBrYr1glfbabgmdCPbLIcAhlanvtAwDV8UrRAxOUPAFYOP BwIXaNg/UJknm0uApOVcTst6OqoeFXZ4x8PTzTvmN2+ho3PPACkjj4B2mxK3 ExZ0DI0cqNiUz/Nvm6nv86LjzU32pAwejrezVqIdoaPNG+vxdzy8/+W5hKws OjIUq0zXFBBg6DA9OlFBx92/KBEbeVjylYWt9TM62q+27hPi4WnHwqqyd3R8 3ky/84bn39EzJc43T8c/6wSdT/HwVZfthNs6BtqUxwjJ/J+vL7+3Tp2B3kJU qRReffs9JozEtzMwzpTV9n/9hu9NS4I9GFgqYs6R+J+fd+6KFoKBnhORLpo8 /tMfxvw3ZzDw+MULTao8fdr9oDX6KgN9KmcF+Hn6XfmUvaXvKQMr/o7wbuTp Gx8wmqHfz8C0+n6lAJ7+XmNGM5k/GChyJi17Kp0AA2bmvglRA3xzqWLBldc/ ycnh+1YkA3wks7r8WgoB30IM5MtMDTC2SqfvXRIvftjQR1eOAbp1BS2bTeDF /0GzqkszQKnRn7G9vPnxCk+tWFdugPqfd1WW8uZL8hiV3dxrgHp6D6VGePMY H3tyiQqGWDul8A3YPP78/T6Zzobo9LYgwDmExz+R0vSFZYj+jJ91zkwe36Te 1ItlhmgTPTK6zp9nn6nxxzphI9RRy+U7zNsvo/UnopjKRhju2p/Rxts/qTOv Bp4bGeG++JNrN9jz+pEfVX48hPce8aTfz5pnX/KX3pdXRkiuC3q6kkGAtNLm fMtJI2y2ln/1QI+A7xcjfpUKGqOdZtXf7hQCrpUrPnUxMMbexZYcXzWefVXY rufnjTFOL/7vZAme/SOpoNIgExQMqD3LGefCvD2lwDbWBDe8t6f7fOLCwrBV 82yBCSYoVWSYDnKBX/So6o4WE5zu7lXt7uaCpGf/h+9qgPE2/O1uT7hAXyxx Mx8G1F66Lr+UzQVQOKM6U4X4o2zN300ULpgFKpq0PED8PHmr21idC9trKh2L nyPaJ1tWVChzwcqyKd7qPeICrnViSnJhd8jchyJRU3xUU5aU8IsDPo9dzpsH m6KY410qtZEDCV7y0nnqZijTWssM3M0BE78XLYE0M6xwGOp1teLAbEDEMaPt ZijYOyRvgRwIYHe9G/QwQ9435J4whQM2CYmXNDPNkFMnMbhrLQdEKyZ1ns6Z 4Vv2jN2ntjDIn63fOdG4DSV2rOBsMA+D62lecdu8zFHQ+LWHuDYbNh5xZ87H W+FKyl2u+PpQKL/a157I2YEz7mb85dFM6DiZdOfYRTs8odma1f9vACS/7hdR 6diNneyazQ2y/vDyWVek2DYHTJVIu6hf6QsfRQYoVT178MCFN5oaB73hJKF1 wcDeERfUZOsjyF4wp5/jeGTMCS12hlFlG91gdXePlVGkM4plJGy+POIMN/Lc 58enXZAm5cgOzXMC+er5cbskN2yktZaWBewFufHXhcX8HshXLJAffsEBxiJb T18474nJ1sr2vt92QyVh550jsx+H3F6ZOv6ygy34xrnj9X4UyO4SuX7GFtbf Dp4evOCNpdUx41MWNmD6QHns0H4fjPaTPf7CzQqeVFsto2/0xWtFAp0OFRZQ bn/k/j/Dvhj7EzI+CZjD67jWzn9L/dBW48Vfzy5ugyBvtZSpkAPoblqQT7M2 A3ut775qDH90OuWvLSRpCtGp78++nvHH7siA3VHrECRye8I8Gg7iHl831oSC CXylfL3mdjwA5RgjXoMBRiD/IHxZET0Qw/OLR53/MYCar8I/by8PwuYLKpXi exhw+k79bovHQfiViP5QwEeHLvJx6+qUQ3jLMt7z4A19cN/iWZJhw8TAMAGp T8lUoG+qlKwRCMat4RvGKmL04Fi9oHbVy2Dk/njV00nogsBk7CXF9MOoYpDp l3BaB2abheqD3ULwGhyVZV7eCkUtSz+jxEMxSvNc7p1OCnjPCVucCA3Fp29/ 9oVIU6D350afkO5QNB4fcoB7WvDDwriygMrChhqTZknWFrgvLLlqOIuF6mGm A41mvE972Yyu3DwLidRr849ENcAucSg9w4mNB14fsc3nUwdLm3RbfWc2KuoN DQsskAFFGcL9LmwMYly+yZkjw9bc9AQ1DzYuima+c5wkg8RlRmS9Lxv3PQiK Ve0nQ9+z04FfQtmoP2eVy3eXDAECRtutUti4SeOG9JlQMni3fFo2mcrGe1Ek XRKTDK5pmY+z09mYZi0W9vAgGWw3jBi8z2Qj0HK9Rz3JoK2StZXIZ6MsKXFy 504yzG4flS+7xMaLXj2hu9TJMLUqu9+6nI2+JT41MypkGG0zPjt1hY2NOqob ChXJ0Ls3e4PhdV6+hx1649JkeOhnItJ1i43ysf/25guS4Tbpc0t4LRtzrM+u tlxBhhtfsk/K1bGRFRbgMrtIghLO5+WB99ioGyts5TxLggJ6ToPoAzZ25MqN Ck+TIGvB5HjtQ1684P7S+gkSJDd8NnStZ2PE8pHwsM8kiIvP+XfpMRvPRf7j Tx4mwX89P/WK "]]}, Annotation[#, "Charting`Private`Tag$2974057#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVl3k4VWsXwFUiZEiSzEPmyJXZcdY65uKKDIXIVMnsmM7ZlSSUMmQoUSEp VApFV0KikFLcEFEkZR4zXKFvf3/sZz+/51nPb+291nrfvV8pj8ADR9ezsLAM kNf/748dVuYnirupbSsEjd9qJzX+tWuXTdJTqFB3/XdP7nq43BN9UjypEXQL 08zmcvgh/Xv6O9akLjAbzjU4kyMNV0duLiwm/gSBu9JmCzfVYbuf9KWZxEUI z1H6uphhCAeLvewnE9nx51C5qWrUAVh8F/tsPHE75g3oM8ekPcALOHW2/NqO Px1tj9j4e0B7SVK5ppMQVnl78kU/9YCHaRklkXI7sHAk4z1aeIKXY9Fdvlph TPDgZ5EI8oL2729TNabFMLK4O6z64THoWo3XpCpKo6xR/0zXsg8kaVmGWh+W xolVLnmagS8YB/I89kiWRjtBI2u3M75Q1p+qdn5eGtW79Nxq1vtBUv115Q91 MpjV7cUzttEfTOKLpTycZDGfu344czUAHgu0ccddUsD0sO5rhQeD4XmwyHfN KgXs0C0ZnAoOhobWo8+GRhUwHN+pbkkIhs4Ly8dM9ikiR7qBzUBtMCytyLxg 5VBC9gzRuieydKAOhdPPxSmjAPXhFf5ROpgZ1pnvqVDGNVpT88S6ELDO4ZIY HFJGVdmG6Fs7QsDdMbfF0GQXKsNRaqp5CMS8a965nlUFJ9LeSmXkh8CbctGu qLOqyNf2XljGPhTa+Y8Xq5Wq4ufcF+uifELhc2Dpuf5+VVxvMnT/yZlQGFc0 VUPcjd1+CX/dKQoF3uzA+D9ru5GF/fvpvN+hoGQ0IAY1avhRdlZ487UwCFLW +FCtr45y+dp7HpSFwxdtsz9itupo7RaiUPIyHP42dlKN9FHHiRuxnxPbw0HJ JSqBmqmO93kYDzpnwmEo6a157YI6Oh3R9M9RjQCnWa+6F6V7cHRELF74VgQ0 rUVMSzbvwciPy9vrHkaANtclibP9e/C5x1tXw+cRILCz9DSNVwMPbBt27+iM gFb7Vd2Xfhq42hwZApwMMKq8UlYvr4m5jq0lWj4MKHtVOCADmvjxv6DbqWEM kGyv4otx0MThPo+SN1EMWBsdCDCO1cQv2jKR768y4B9RVeVX3zQx0ie6WrWO AXKKNCfZZU0MGH5iF9DCgCuadvGxW7RQTJD66WIHA+hWxE8T1MK8er6tziMM 2BX1+vbrm1o4SMkOcOZlQlZCd7tcuRby5jifjhViAkfm+Lrzb7WwMlXAJVGK CT9K+d3MfmthtudbNu09TLg16CradEgbZWaN7ebtmCBotpjevFUHFXlLJHRT mTDbZLG0U0UHr/m3TP/IZMK7fbnOUaY6mMw83RtwiwkxVnultZk6WHY0qZi7 hIy3v/4o/4sOyl0XH7nUwoTWril+liWSp3uBt50JRY7G4c5bdLFmiJ0r4BMT 3FwmKPzGutjFdftRzXfS7wVvzhTpolVlzNbS30wo/JGm8vklybSWCYF1BMR4 D1/W6tVFKT3KbXs2AvT8Ug5O8OhhT4+8QwAfAYKTQ8/MFfTwiKfJI9NtBMwE 6onn0/SQBz9krewgoDBk8LtTqB7yKc4MrJMhffPa5hWJesjvqJNlI0/AkYiE +1sK9LDMzTL7jDLpO6lJb+rWw4nI08YRe8j46PN/NEEf7WS4FXtoBLix9nqk HNJHh1vzrlImBOjHqb0eD9bHanQ/ZG5OwGx8d8LtfH1seiNjq2VFQCuX6vRa tT6qf7R9vGpNQFFitK1Tlz4aNlek37ElfSnKwls4Kdgg6ZqZcYgAytao034y FPSf/SbyzYmA7Vc+9jdSKLiqueMLtwvpF1Q0lnGgYNXKU16RI6T/2umCyEAK Jvue7udwJ+CecDtnzwUK/s5SierxICD2hlyAZh4FnYgU8UQv0p/7XmP8IwUt 84sEM48TICS985rZJAUtVNbez3oTMHeb8TuP3QCT64zNdvuQftl3rmuSBnjK wuqBlS/pL5B66ahngPnyo6o2fgTEKYbLltsaYI/E0JqWPwHu999c4PM3wIoT myxZAsh8KhLjvnEG6FwoZFpMstCjkP2NOQbYMPNRlBpIwC+1pjLpSgM07pr/ U0by+zJRwch2AwwO3iWxOYjMpxHM7B4zQHqg1L29JMdVvOrV2EjF84qhH3xJ dtcRxsviVJyoqKyjk0x5FnB7TJuKQuynil1JFqLUs5nZUFFtTad+N8lz1dt9 8nyo2Jzurv6DzLdko5ZpGU3Ff386FMWTvDJk3rSQSUWuylJdQZJZCPfF3FIq Brd85Uggn5+Vh5CzaKaib5YhjpHvuykv1X6+n4qcr1U3aJDMrXU/JmeJihfO jjGOkfXhf1P/eC8fYN+GssZosn6Crr3f5uQBvZYfbIsn6ys8+2tLNgBeW128 wDxBgHgcN838IOAv9hwzO7If0sJyQbMBgI2TNyN2kP2Sf0jNuREHqN/3ldp8 lIBdhgdbTbMBoY1a70n2V60zcHW6HPCu8DmlEbL/Omu5ziZDgAeSzuqUk/NC Sa28OLUCOBUTqLRCzpPk1pFeS07E52FFV1QPEyBbsG7zohRiOiT7O5DzqDCT KPNWBbF6b+tOSwcClPSF9W/pIkq8jRxVsSNA9b26j4UNYrSSv2bFfjL/jtqz ki6IoY7JrC5/E6DuaZE57434oG00bHofAVqLnk05UYgstoLtfeT6AYkrcr8e IS7I+gZ06hFgeEKK2lyFqO8ua/VDmwDjx8X22Y2IQ1Nyc4MaBJibvY4x/4ro uTNbtEiVAOvAxW83eGi4uaH6o6sUAQcqzy0HC9Mw6/ub1/1iBNht4OM3k6Ph oHVylo0wAY4ZCrQZAxoeKHQKYdlKgEetY46JPxlvvfefqxsI8OL4USHMpKGj q8L5tD9MOGZLb52KoWHi1IRlFLk/+f68uJp5g4Y0+0gTpTkmhPI+d55soaHP Xtbs+gEmxB4RF8pQMkSZm5xiis+ZQPVqaT6hbYj3xruM31QwYcGbcZJibIgP fz3icC5lgje9/cuAiyHabTnObXmXCfti4+7sSjFEqT/vjgUlM4Hn/qT6y0VD NJlI2jLkyoRrCzV/TzQY4XJeSkH8HAOsf/v+qW0zwmjWtOoT4wzgYNlRmvrF CFOD2ZSoQwwgOEIEdJaM8J9Jw8sNnQxwEZX/HK1sjNVaw5YWlQyQNkz2Fko1 xpgMtwqXUwx4kHjknNERE5wSMHYJ+01+P89uONjja4J9VRoOpnMRsCmsQCmY YYIN72Y+845FgOfhqbbsFBMUic9aSuiJAGHlM5LL9SaYX6B9SL0yAi40ZVeX KJji7nfWihgWAV4bviyKzZriC3+PBv6RcBBhHvZbijHH8+qywq4NYVBQ9Pld XKgFely/MZx1OQRaz8c/PXnbCtMf7DhtphcMFzt6N8u2WiM2vPY96BEAH161 n+IzOoBPt88pJL7wge+b+9Ueddmiu+jVtiiD43A+XPWWno09brzYUS3n7AWL Wun2zFGH//8ffPXLdQeuzi5zyqlDyK88vPz7pis8zDi8NDbriFsxInZLnxOI lyyNWcU743znR6s1+4MgNtZxPZvVBVVy96+Vn7KD0VNvkm/luKL28gw3ttlA cbiVe/oONwx+3yd5SHw/qOCnQ60dbtiSkvLBP9wCtpb7zw7ccsfdh6v3eW80 B1qVzKivmweq9pce5NM3gboS83U6Ip6Yvr1lq0mnIRTYMJ/1DXnizNERmkwq Qse5N23/5XlhEE/bQ9YQA/Bxl780FXgUjQQTaxrndMFGdc5TXvcY8ndQQnvm teBMwtesjl/H0Pb11UPPojVA4GpXiMuL43hAom1KQUUdptWm7zlHeuOMZt2V RkM1EK+KWHdD5wTeo/Im2KirwONpzuXy9T5YnFpyM2S9EiQ/rbE2rfVBs9ol vlfu8tCuGLm35JIvbi+IutfYuxMOq7jmXt7nh3djynw+NEqDjmSx4OON/jje vfuw1YIknKxh3/3ogz+OzLJGTfuIw8bJ6DtSSQE4K1aa1H9WBBaaOGr8nQNx w99nX+FjIbjR/Gf5NH8Qem2Pu1WLguC+yGkaFRSEXy8JppzVEoDuZRGPwM4g FF3Hf1eIwg/zpgbFmZrBmPatXkbkCh884xTcNJQajA4/Mr8VAQ+o5//aI7YU jGaVok3bvLnAKm4w6bIDHWuTav/9byMHmO1LstQ6RMdPg4cH+39vAuTR5ex1 pKONxIOLb2c2wV9Xk2LlXehY0iebUdq3iTyX6J6q8aRj+QaN42Xlm+Dzq+QT 40F0PHfEcCjh2Cbw3kgxNr9Ex/8ape9eaWEH9+Yf6yYT6DhqJGvB9ZIdnBJT atOS6LjCcMPYf9jBcttPva8pdBS5/o0/7g477JZN/Sv8Gh1f7lgvWnWGHRaM h8Xz79DxgvjAwLQGO0xtSuvdW0BH1kumF+8ps8PwW4OsqUI6Xjwz4+YtzQ7d dmnb9B/QUcK2/vI0Lzs896Jubi+jY6GKyQv1MTYoVxhpjnhCR4UT1bnc39jg 4XjaebEKOqaJTmWPf2KD3NCR9Scq6bhfymq84jUbZOqkv+CpoqNb11HtvGo2 SF2hRj55TsfvzVzXUp6wwcUXI/pONXR0mNTeHHufDc7FpP/3p5aOGbaDKafy 2OB/VgZKag== "]]}, Annotation[#, "Charting`Private`Tag$2974057#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwVlnk8VP8XxlVE2pUlWyJLZEnIes+ZGTsVyb40w9gJQ7YZS4iUNXtFotJi K9KmlEoI4VtaaEFlLVEZSfzm99d9vV/3eZ17znmee+9nm3vQAc/lXFxc+5dx cf3/Wme38Ptb1VtCqyE7W3O5NJHa4vbaOuMWtPqsWsNO4oKsdwlMyYxncCzz vFZL0gbI/ZzbyZ3xGgrIX8XikqQgf6x4lp0+ArScIihPVAPhAOmT0+lsEIv/ W2oTj2BfRbf9ns6Lz9PoVSqhVsDuPHZ3Ml0Y32TZx8kDFejAr73xlzAWvx1P 3ZNIhd7ajJuaTiIYeOP63R3PqFCdU1AbK7cFW/LP+tXuowHd8cqlDU2i+HZ/ fpOeizv0fu44pfFDAh/d+dk8EUyH1/9SNYkd0nhu12HB9BgfyNCyDLNykcYU H/EHvxp9wDBoXZ17pjRmRi07q7LgAzc+nVJL+S2N4vzvPotF+0LG4zNK3Y9k kFaRY9gb6gdGqVXb3J1kcYFf8KSDWwDUbe5Zm3xSAWsmO2XPrgyGxhCxz5r3 FPDyVbNjFtuC4UmX590v4wq4vv/LikG9YOg7Pu9lZL4Dy1fuC30aHAxzCzIP uVcpYvZUL4P+NhiIL+GMxGQlrE/V6xm5GALtN8Vfxx9VwcYZKwF9pVDoFfCu Uruugqf1Tt28Sg6F/qDriZ8+qWCoacbFRcdQmNxhrIaoivKXK0etj4fC+pKg 1KVFVRRdPm1yeTgUFCmDEvBADQOcLY1X5oVBsJJG9309dWSzX8SsHDoCH/aY LEnYqKP3P4vlkb+PwF5DJ5VYP3V8JLalrYsvHBRd49OIInXs4t1UJa0aDl8y OkybZtWR2dYHjOhwcJqhP3p4fTcu2Qytv7g6AloXI35Ite3Gf38KL5hIRMCe 1Se3Hv20Gx/lxRd2qkTA5u3XY0jrNZBkfUfnqHUEdNn+02kO0MAAq5qy43kR QLmTd+OxvCZKC10bFxKJhBtPLw/KgCby1FeoDstHglTvvQ1JdpoYvyZfK2dP JCyODx42PKaJkoqq74rsIuG2uIrS0yFNlFl/gMcoJxJ2xreUtxRrYcfzgMcb eKNAyISd27ZJGxe+81xNfBMFM60Wc9uVtdGHO3bw0pco6DQvdY431sZQ244v l2aiIGmfmfSeKG1MnJrpxzXRMGN7pubCB22UW+Ye1WcQDZ10aI+7ooMrex9Y F5yOhstfc5T7m3XQg51hUHgxGpJ8RrO0BnRQ4/BMXWhtNOgGZNt/W6eL4jvE QtqecvShw5+dwnTx5zfdAx++c/QJKUuaoIf5Dy/3PNFlApV7wD3bQQ8Th2p9 rlGYoJes1jIZoodO1bkdDEsmzKS+TSu/oIeaBgPxxa4cfbaS6EZ+fTyjnZLh HcsE/U3xMQEy+mg1/iHZNJkJwnkvPz3T53BXTS1fBhO6CmMqYoP0UUZ6okGh mKMvfaEx+VIfndkXPozcYYKI9PZCk+/66OV350TrQyb8LI/8W8ZrgHftISnl GROuVmxrdtQ1QO/oh70VLzn6mtD9z84Z4PEfvZcOf2PCL7XWG9J3DHC+6/px m59MeHFDXCi21wAnlyILhf4wIbnh6YAGD4H2QV0EiZsFP+8L+5X5EXjmie6U /BYWzFmrFVkmcHg82P+BBAsWvpi2zhYRqLz5RChKs4B7XbScRRuBeiXsiu+K LBByGxj6KQ+o6pW2uEaPBaIzvzaWACD98sd1vQQLJJPXkkztAW3ca94mkFkg X02cO5sM+NJh/Zc0MxZoL5Y6G30BTKJ7zDPsWKB/6s6JqQXAazdemgY5skBq 09iAJT+i8ZTHA0sXFshWLFvD3oY4MBPi3kxjgcJ0ukyHMuLP/VRjezoLFPVE 9c7rIN5R1ul/6cUClRfqfhbWiDe7X5kl+bNAbUvTUSlXxJHY2JK6QBaoe1gU /fZBtFI+59MZxAIttkfruXhEzxJi4VYopz/Sj49haYg+hwJox46wQPcki21W iNjauGs3EcEC2Jon96sG8YJJ1pR3NAvIvtuItnuIDiOERR+TBYZ1VbYlzxBl ci/0K8WwwPifTmDof4hx7zaQ/WNZYGrSkmT6EXHin7NJfhwLzLMPnJWYQOyz t391KZ4Flv0f6mZmEZecdmSeO8qCfbL+z58tJ6HmXbvo+AQWWAWxh86uIyH/ 6NVY80QWHLiTOB8iSsKXpTPC8xw+uGKDgIkcCRmOu93zk1hgt/fsDnF1Ev5h j5ZLHGOBY4ECadqAhL6zJs3HOewyWO/QYkZCx9O8S+857KZECj5jS8KAqX1m ksksoB7pTAmmkbDXhvujCYfdmxzPGQWS8FH/9WpnDtNXfW0QjSLhx2p5fnsO e9kwuqaSSFhXtOm3Dod9ihe/PMkiofl1ytgqDvuPnPhXdJaEBf4Uz2bO8w7v EhYMukzCH2JCFE8OBzPLdxrWk3B1zyXaL07/jKeqhlsekpBP4pirL4fD1jc6 f39OwpwNUv+1cuYNdzQNffyahK0bFP2FORxZ/vJE4TAJsy99nbHg7Cv6G7Us cIqE2434pf04+2Tt+XaH/JeEUX0id49w9h17NKpHmJeM0m7Ka/05fsQ/5xmb FCDjX397GxOOX8cOSYoUKJKx8KT4sVaOvwT9eZvvHjKK/lh/05zj/6xPJFPf kIxMgWTjG5GceRm9HwZdyXjw8oG1BCc/UhFxWfV+ZBQ77/bIiZOvt8yd5JQI MjrK6Cd5h3D8P5Z8cWc2GXuvZ7LVOPlcfmK3/VIxGWskLzR882PBvYxPfL1X yZiiOtt12ocFOwt1AyKekNFFd1vUBQ8WrLv2Xb2ZTUZ/YlfBJQcWtNSc+ZzL TUGt+Y11121ZEFdvmu+9kYJrMWyi/AALftwv+7NGiYKiqZYvKJYs+K/b7qG9 GwX7wiJnmJz3N+3VCoaiPwUZL7SxS5eT53e1Mv8iKNieektu8x4WNAzzp5Rl U7BX8+9jO1UWFM4+2PvtCQV5DwzveS/Jyedf/6WmHgouD15ozBBlwSquLddP faDgq3u8O+WEOH6sCt2sPUfBYfZQpeRaFriKy/cnKBniqk+7qBLzTJAmZ/qI nDLEX+wXcYxuJrwz1hedKDFE4bBi45F2JuRYjD2/f80QN024Uy2eMoHblqLq 8dQQLa8aB/Vzvqcj3uzfVXOGqCjqXyZbxoTK9EOJlENGaPg+1s0viAlOR1fY v/M3wv5io52jPkzgO1KhGBJphAo32dn27kzwcJnqKck2wmu903u5bJkgqhQn Nf/YCMdGVj46rcOE460l92sVjFFN60wdNxcT6Cs+sCVmjFFozmpbTEI0CLCP Pq9fNEbhkgSnPdHR8HBc9pzFahPcTi+6+yUkGsR6A42jtptg8/bcSClaNPSW /st9aWeCKx/3nOOCaEBCQv3kPRO0Dmw0LZ+LArEol4C5JFN8GTQ3rUqPgg9H hi42ZJnixTnFjfrOUVDK8PkYdtYUpdN28JEPRMH2gLAD03WmaLXwvlMPo2Dn oTTt8SFTJB1zPdkhFgWEUSP3AJqhf/nhsrM9kUDbKF7ctGCGs2l8tFTtSKi4 0t+ZHGaBXE0rT0eyw6ErJfUWs3wfhm217BgWD4MTrwbWyHZZYc2JK5saw0Og +2kvawPlAKqbR0dKrDoMn9d8Uqt5bYO2pjaBfXq+kBKucl7X2hbVFazrwiw8 ga2Vaxs1boeDCU4DT0tosLrvtak+ywF7HvmNBii4gsBYHq9wggOe+m/kVtkm VxBZsGmZTnHAQTmaKd+SC8hJd1MqchywQGalyNgrF8DDrYTANQfO/yA7wSjJ BcJW3tEYfeuAznabFFOHnWFA67RU7h5H9GCcXNSqdILqApe5iRlH5KrR3OxB d4ANfEpJRn8ckUzbJxBt7QCMyD/rzy05YvQi38Y8wgE0HfPlD6xxQhNhasjy LQ7QKNptd1vWCfUuCard77KH9mLKzSQHJwwvneZN0reHr+WKDIkHTljAfXNT pLQdSNbOTexLdUZz4Zkd/YIHgV/2tqJ+pjMqVZckOvAehNmiCN8dec5osXjm ceecDXQlzn5dcd4ZKfNlvuP9NhBr/2vw9m1nxKSNW66U2cCHxanX0qOceq5V bb932UDJ3pHHs8YuWGDjJO7tcAAkJl6dKeF2xVsSAaKKzVZAv3+xgn+1KxY0 iav/q7eCyswjdeEbXfHPunGePxVWoKsh+HyfpCtmWa8q+ppuBXYxB+cX97hi ZcrmZGcnK8ha/5/DIX9XjBtpP358fD9wa3QLSvW64rhr56E39H0wzmrPPH/O DQP3c1f1nbKAypa8yqmLbigUY7rlVowFHN5AazOodMPaq+cEOnwsYLqcvfzd bTfUvlisxgcWMNe+PVygl3NfxqHdbtIcVm6Jc0nkPoSSJRIP1pubg/TN3Ts8 fQ9hD630U+BGM6gK30fL3ULFwyMRdTGdxvBf8U6zY+JUNLE/w0W6bwx/nvDv Ct9KxaKFzOtQZQxGm55xOchS8bnWxiyXdGN4XwOlYruoSOFpH+bdZwxrx9Q+ lplScUD1r+9AjxEEOm9yvR5BxSNj0lkyQ4agjG8cul5RcdZAvOeENAW48omK xTdUrLzlziO2mQIvJy78VhmgYoPpZrcbPBRgFYScyhyi4hpe4qzAGBnav/N3 WE1R8TSFHWtcSwavYgP4j4+GCjzR9W+QDKXzZbJv9Gi4+qaIr7UfCTbdDJwZ PE9DC2+u/pTbADvTLUUHLtDQcvga9VQZgKGnErmvgoaF5NTqnDSAcMGx7PYq Go6yiLxeKsCbI/RddXdo6Lhfmc7HD1Ci5Ryc1EPDxroWKusQAYq3Tb9zztZY Rm3qSRIyANI9mXF/qjt2U1Vqr9bqgvD+eFF7D3f8vqUm/GGJLnwbGjAne7lj 0+L6G7VpulDEn39NJMAdTyTzt1n76sK0I1/g0wh37Mw9/TNGWhfOz01OSWa6 Yzapfu2HAh1YptXwu+e+Oxq1DbYQadrwqNZ0mbaYB57flzuqXqAFhqHKhe6S Hhh6bZvPYLIWtGoKqKZv80DR5nhyargWdN/tdxmS98Dkq/zu5XZa8OHJ4dtp Gh6Y+bc57IqQFsy/yQ0a3OuB/YOnHN2KNEFj2eD7E/EeuNrv9czhyxpQYR11 9/0XD5yZ96VLjapDcH6fYu+oByYYHWXc6lcH7f7dZ1omPDCw8eJPhRfq0E7/ zqyZ9sAVsaEV5Q3qMBnhYXD0nwdOfNP2JB9TB/WSvQ+3C9IxycxTNEhWHR6M b2vxN6TjPQdb9d3+u+BVYnvPnzI6uh/SmDRYrwaW7JrLypfoWCpYJ/p7hRo0 ++XF0a7QcZ0XMy13WhWqranKbTV0JDJK+148UYXjW2ePFzbSMYV69JZ2gCro 3tuGe/roWM39TOX0AxUonYmsDlvlidTPvDbxQcrgR5M/ORXkieYdIVTTJUUo yTrhtznUE8V93AVXfFOEnqZvZjrhnvjc1Tl08Z0iaEvW8yWyPHHYk+Fi06AI vP2YLJTqiR9BwGn8sCJcOOh01KDME2UCjbMWBnfAB5P0iJMvPdFJsZKZ36MA 1io/PeR1vFBgzb0Pon1y0P6xS1xI3ws3GFV/fPVMDsjZV19xgxe+luwX6bsj Bxq/aCZDhl5IO+oq0lYsB0J3uxWLrbxw+7cZK3svORgwqp4W8PHCK5rRHdNz suDj6hu3mO+FXdx6t7fJykJc2sfTr3554ZAKz+fiAhm4FEC5u2LOCwsUugMz T8hAh2XF211/vTCn+6viZ5YMiKwNEslY5o3Nv8yDhzxk4Eb6Yp7xOm+8qWLL /WeXDHzOkMi+Je+N2keXiKud0pzzt3NKkZM3/hcnray5Rho2578OdX3ojfO9 LyyXLkhB/FxdgO1jb1yxu6wu7LQUTDhlee5t8cZ9aRsuJmVJQfNWM3uDDm+s 5hU/foYlBcFX7upKvOHUV1gWQbGVgueNxcveT3ljg6Cl5CleKUgY9sh02eqD jOhMXeqQJPxQ+3HVOdYHpRpfuWysFAfJexHLzmr7oqCxY/flVyJQ94N//uZy P7RgT72VthKEzFsPrIyb/ND0fVzlv2QB6N0Ra1Z70h/bj1hOf51YDy7KbqVZ 5gHoYqiTvndgNWhLVQnV8QSi3/J1KVaBfMB8wKta0x2IxDfLqgXgAZ7vCRe3 ZRzGde93jpnVLYfZ1lUPAp2DsG130zc+Ky4427Y0HyMQjCNTr6plzy8QNDa/ cXxwMCod4YmIof4h3s6LuQf1BaPn9r6BOLtZ4rexQVWRZggq7RzapNT/k7jL L8T35VQIVgyemCtonCbUL/zaLTEXghll4+6XwqaIfcnDGVl2DKRQZkS+yE0S JuYZlloODLT6LeDnKzRJ4Dod/gFHBvoKSr49tnaS2JWfcUzelYEpDXw6e39M EJsv6bAeeDAw4/Kb23b3J4j+p5m+k8EMlI+2/nXYYoLw4dE3ND3JwHvGB1+Y xY8TtLavy76nMdB+Y//au97jhFN6dlNOBgPf7tY0P+42TthY68foZDHQq2E4 QdlxnLAUHNH9mM3AO5mDA/6G44TR2+y5pBwGmqzTSHfcM04QxfoNinkMdFAO q+nVHCe0aCOh3fkMLK7subdTYpxQlT21K7yQgfVzszefCY8Ts4ajkhcuMvDK /ASE3RgjpvhyBswqGOhW/OjFv8oxYrTD4PTUZQYK6HvqqOaOEZ+yRu3zrjJQ TKvDoT5jjHh7MEdQr5LT33x93pmYMaKRTqzpvcGpz1XiF2E5RtxUGGuLqGeg hl4rbQNljKiezEmRaGAgoTesetxgjKioJYwe32LgloX++iiFMaI0bGy57x0G /m68+nr11jGiSDv34bp7DFwtYch9d+MYcWqBiK1vZGCSmrdGItcYceLhmJ7T AwYyYoOU1rFHicSk3D9LTZx5fcd5oqdHif8BeMB1MQ== "]]}, Annotation[#, "Charting`Private`Tag$2974057#3"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 300}, {0., 0.006964071401958928}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ RowBox[{"1", ",", RowBox[{"296", " ", "\:041c\:044d\:0412"}]}], RowBox[{"2", ",", RowBox[{"224", " ", "\:041c\:044d\:0412"}]}], RowBox[{"7", ",", RowBox[{"7", " ", "\:041c\:044d\:0412"}]}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable -> True, InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], NumberMarks -> False]], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm], ",", TagBox[#3, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input", CellChangeTimes->{{3.848254011239259*^9, 3.8482540412635517`*^9}},ExpressionUUID->"14ff9157-9eeb-4936-a2a0-\ cdc327ea0f91"] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, TaggingRules-><|"TryRealOnly" -> False|>, Magnification:>0.9 Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"79593e79-7454-48b7-ac4f-c8e0391b20df" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1835, 40, 174, "Input",ExpressionUUID->"03437ec1-8e8d-4132-9ebd-bd698daabc4f"], Cell[2396, 62, 974, 20, 28, "Input",ExpressionUUID->"6a7dc0c6-be0c-48fb-a1d8-5e115c4bba2c"], Cell[3373, 84, 653, 14, 26, "Input",ExpressionUUID->"11c14549-6598-4f7a-b43d-46f1014014f5"], Cell[4029, 100, 1196, 25, 28, "Input",ExpressionUUID->"e1e79645-e32e-4b68-b5df-7ab484da6ba0"], Cell[5228, 127, 1023, 18, 26, "Input",ExpressionUUID->"7db9fcbd-2e07-4390-89f8-64abec23f5fc"], Cell[CellGroupData[{ Cell[6276, 149, 315, 7, 46, "Input",ExpressionUUID->"67a1328d-5221-4305-a01d-e50843cef26e"], Cell[6594, 158, 442, 13, 67, "Output",ExpressionUUID->"2421d1b5-e428-4ca5-a582-2db7153aba37"] }, Open ]], Cell[7051, 174, 721, 16, 26, "Input",ExpressionUUID->"9caa66a9-5aac-4de1-bb03-8033da0edc88"], Cell[CellGroupData[{ Cell[7797, 194, 272, 5, 46, "Input",ExpressionUUID->"52cfbebd-057f-4c95-bdc8-b59dedf6cbed"], Cell[8072, 201, 659, 21, 69, "Output",ExpressionUUID->"cfba0267-a092-4ef6-8c42-92733cb13d89"] }, Open ]], Cell[CellGroupData[{ Cell[8768, 227, 5964, 100, 67, "Input",ExpressionUUID->"cde6bbb8-faa1-412f-aa16-d218f4ef9a75"], Cell[14735, 329, 3523, 77, 197, "Output",ExpressionUUID->"7b0cfd5d-f03c-4b28-b49e-874682901456"] }, Open ]], Cell[CellGroupData[{ Cell[18295, 411, 980, 26, 47, "Input",ExpressionUUID->"b46d647d-fcbe-457f-8cb9-0e3c2504df7a"], Cell[19278, 439, 362, 6, 54, "Output",ExpressionUUID->"43a363be-f864-48bd-935f-df34040d934c"] }, Open ]], Cell[19655, 448, 1198, 25, 26, "Input",ExpressionUUID->"f2516471-e981-41fd-b4a5-b1fa86962326"], Cell[CellGroupData[{ Cell[20878, 477, 1591, 38, 47, "Input",ExpressionUUID->"2340e0ba-ca13-4073-9b8a-6f8ba8116315"], Cell[22472, 517, 2994, 69, 180, "Output",ExpressionUUID->"0ec5bebe-3bc6-47a5-b407-e82fc1ddc060"] }, Open ]], Cell[CellGroupData[{ Cell[25503, 591, 955, 26, 47, "Input",ExpressionUUID->"f1e481e6-bf4f-4d88-b460-30ffa444b7b8"], Cell[26461, 619, 312, 5, 32, "Output",ExpressionUUID->"2cb18a1e-beb5-445d-b2e9-3a6fc28e1c0a"] }, Open ]], Cell[26788, 627, 1203, 25, 26, "Input",ExpressionUUID->"3bcffe89-b392-4789-908e-125efb410038"], Cell[CellGroupData[{ Cell[28016, 656, 745, 21, 47, "Input",ExpressionUUID->"a0c8abc7-3920-4712-8409-6a31ba8cf5d3"], Cell[28764, 679, 3507, 76, 206, "Output",ExpressionUUID->"2cf73a61-ef6c-4611-b88f-0f5a1198b439"] }, Open ]], Cell[32286, 758, 154, 3, 26, "Input",ExpressionUUID->"4a482f08-5be2-4e85-9e7c-9533e11608c9"], Cell[CellGroupData[{ Cell[32465, 765, 951, 26, 47, "Input",ExpressionUUID->"2964588f-362b-4640-abcd-8429dddfcd8c"], Cell[33419, 793, 336, 6, 30, "Output",ExpressionUUID->"e3615178-f343-49ec-baa6-5d4dacd72f9f"] }, Open ]], Cell[33770, 802, 758, 16, 26, "Input",ExpressionUUID->"befc8de9-0d27-44f7-947a-f192faf5f8d4"], Cell[34531, 820, 972, 20, 104, "Input",ExpressionUUID->"66d8126e-9920-4e9d-b7a9-2d8a88e580f7"], Cell[35506, 842, 552, 15, 47, "Input",ExpressionUUID->"6edd5cae-065e-4309-91cd-7ace061191ed"], Cell[36061, 859, 569, 15, 47, "Input",ExpressionUUID->"159ab438-0475-49b4-8561-03f59d837d6a"], Cell[36633, 876, 1169, 24, 48, "Input",ExpressionUUID->"f932f825-b20b-4ea5-8a8a-c6167060a32d"], Cell[37805, 902, 32564, 616, 212, "Input",ExpressionUUID->"2a3471ad-d9f2-4cae-b572-f7864d7b08db"], Cell[70372, 1520, 27305, 535, 205, "Input",ExpressionUUID->"a69340c8-3d55-4b01-a082-5e602758e073"], Cell[CellGroupData[{ Cell[97702, 2059, 235, 4, 26, "Input",ExpressionUUID->"c1f60bdf-85aa-40a0-b042-625e18a6bd55"], Cell[97940, 2065, 661, 21, 69, "Output",ExpressionUUID->"81848ac6-4afc-4119-a924-06272c3ec87f"] }, Open ]], Cell[CellGroupData[{ Cell[98638, 2091, 2715, 58, 90, "Input",ExpressionUUID->"28022c76-1dc5-462f-aaaa-deee655910d7"], Cell[101356, 2151, 1047, 32, 70, "Print",ExpressionUUID->"1adc7663-3373-4163-beb3-72b128641479"] }, Open ]], Cell[102418, 2186, 444, 8, 26, "Input",ExpressionUUID->"6103cbcb-41e7-45c9-bb09-0b31a318aeaf"], Cell[CellGroupData[{ Cell[102887, 2198, 1515, 32, 44, "Input",ExpressionUUID->"8a103e52-246e-4acb-9af8-cf678ec594f3"], Cell[104405, 2232, 315, 4, 30, "Output",ExpressionUUID->"8a7b2f50-860c-496f-ad20-c255f9749b45"] }, Open ]], Cell[104735, 2239, 975, 20, 26, "Input",ExpressionUUID->"276d1ca0-d12e-4d61-981b-3fd39751d1da"], Cell[105713, 2261, 1232, 25, 49, "Input",ExpressionUUID->"9301a705-e9c1-4859-84ac-1b5ce87ba920"], Cell[106948, 2288, 642, 14, 32, "Input",ExpressionUUID->"6283ebe8-6c2f-4f81-afdd-03a59b159407"], Cell[107593, 2304, 822, 17, 32, "Input",ExpressionUUID->"a4f06394-1c16-4af5-affc-5ede58072227"], Cell[108418, 2323, 951, 19, 32, "Input",ExpressionUUID->"dc085a4c-7718-4290-b4f6-21ef20f426b3"], Cell[109372, 2344, 711, 13, 28, "Input",ExpressionUUID->"a126e6ed-cce1-4072-9d3e-c6df0794243d"], Cell[110086, 2359, 39564, 732, 205, "Input",ExpressionUUID->"3cadc262-eab7-4fbb-884f-234f08e0bbde"], Cell[149653, 3093, 1405, 29, 26, "Input",ExpressionUUID->"7d92322f-b234-424d-b5ae-4f47a8aa5809"], Cell[CellGroupData[{ Cell[151083, 3126, 4307, 120, 95, "Input",ExpressionUUID->"556c9c87-cb3d-46ed-8dd9-1fc8b0a73f7d"], Cell[155393, 3248, 488, 7, 30, "Output",ExpressionUUID->"c4b29f81-a005-4330-bc1e-c64e9841dc4e"] }, Open ]], Cell[155896, 3258, 795, 22, 49, "Input",ExpressionUUID->"51b4c549-6998-4369-96d3-3b8ae7dfd07c"], Cell[156694, 3282, 540, 10, 26, "Input",ExpressionUUID->"09c4113c-9755-4ec3-b2ff-9af9bef1e6bf"], Cell[157237, 3294, 2744, 77, 72, "Input",ExpressionUUID->"c0fbe9b7-0355-4a6c-a36f-2cb1b091ebc3"], Cell[CellGroupData[{ Cell[160006, 3375, 247, 6, 26, "Input",ExpressionUUID->"a8fafb7b-4ec3-4516-8164-2e04b61ac9a1"], Cell[160256, 3383, 3015, 46, 68, "Message",ExpressionUUID->"39469be0-005e-4827-a632-1196ac7faffd"], Cell[163274, 3431, 2271, 70, 37, "Output",ExpressionUUID->"bfd655d0-084e-451e-ac0e-1bb7f767e6cd"] }, Open ]], Cell[165560, 3504, 546, 13, 32, "Input",ExpressionUUID->"73bbfeea-4784-47c3-81f6-e61e2038869a"], Cell[166109, 3519, 498, 12, 32, "Input",ExpressionUUID->"3d2e41df-5350-4ec0-9780-19143fad94e6"], Cell[166610, 3533, 548, 13, 32, "Input",ExpressionUUID->"8f149006-97bf-48f9-a856-9a54eb0f7b99"], Cell[167161, 3548, 607, 12, 28, "Input",ExpressionUUID->"dec3584a-f019-4e76-b512-9ef4183d1e5d"], Cell[167771, 3562, 26331, 513, 206, "Input",ExpressionUUID->"7811f0be-f9d2-4836-8214-f2cba0890f96"], Cell[194105, 4077, 547, 12, 26, "Input",ExpressionUUID->"24682f48-fe78-4702-b7ba-c8a624310eed"], Cell[194655, 4091, 1056, 29, 34, "Input",ExpressionUUID->"4aa23bd3-9fc5-44a0-b942-5216f5789198"], Cell[195714, 4122, 418, 11, 32, "Input",ExpressionUUID->"79b32260-3d3b-4bf1-a08d-0fea492553b8"], Cell[196135, 4135, 470, 12, 32, "Input",ExpressionUUID->"4d010334-98cf-4b38-9855-df93f1ce863f"], Cell[196608, 4149, 420, 11, 32, "Input",ExpressionUUID->"8b215324-d4a4-4be7-9159-76bd3efa9294"], Cell[197031, 4162, 608, 12, 28, "Input",ExpressionUUID->"d20724c8-7667-49a9-81aa-abe87a7a5efc"], Cell[197642, 4176, 32715, 619, 205, "Input",ExpressionUUID->"14ff9157-9eeb-4936-a2a0-cdc327ea0f91"] } ] *)