(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 279308, 5027] NotebookOptionsPosition[ 275041, 4954] NotebookOutlinePosition[ 275469, 4971] CellTagsIndexPosition[ 275426, 4968] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Mp", "=", "938.272"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Mn", "=", "939.565"}], ";"}], RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ebind", "=", "7.718"}], " ", ";"}], RowBox[{"(*", RowBox[{ RowBox[{"binding", " ", "energy", " ", SuperscriptBox[ RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Esep", "=", "5.49351"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range", "=", "1.6"}], ";"}]}], "Input", CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, { 3.87957152299862*^9, 3.8795715245943327`*^9}, 3.880085368016633*^9, { 3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9, 3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9, 3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}, { 3.880087577450821*^9, 3.8800876498236017`*^9}, {3.880095497014333*^9, 3.880095545116588*^9}, {3.880535317453936*^9, 3.8805353221622753`*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[BoxData[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"q", " ", "r", " ", RowBox[{"SphericalBesselJ", "[", RowBox[{"ang", ",", RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fOut", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{"fIn", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfIn", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOut", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.8782888301901093`*^9}}, CellLabel->"In[29]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], ",", RowBox[{"{", RowBox[{"U", ",", "0", ",", "100"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, { 3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, { 3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, { 3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, { 3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, { 3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, { 3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, { 3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, { 3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9, 3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, { 3.880086380215939*^9, 3.8800863803996*^9}, {3.88053533924759*^9, 3.880535339536429*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[{{2.040816326530612*^-6, 3.7763447313814664`}, { 0.015061718517180307`, 3.7768192105873473`}}], LineBox[{{1.3253305498462626`, 3.8196747275450647`}, {4.090835708545865, 3.9216676523762466`}, {4.104349732502464, 3.922209506286295}}], LineBox[CompressedData[" 1:eJwVynk4FAgDx/FZRRdhLkODmXHNMDGDcc3Rr5REppKkUZJziiKRc1ZtklRK rKZyFbpWaOOpl1aRkjby5mhLRShHhxdFSdneP77P958PMyDCM1iFQCAk/ez/ n+ekrsYp1UKI2e/SkWBNBFtNafA1GKhrqawhy7XgwQkepa40xmjOs6pNvVr4 s10R0+TAxmxJbZqlXBuXDgYF9K5io0yjeX7xDm3k27mv+SZjYyshwXvRTm2k K2mcxQo20lqPe2pGaSNw8/UXJ+rYUHTEUTSStEHuH3T2cePglnFsxrYT2tg7 vp444GuO8Y4/rBXV2hASzctnJ3MRMF1c+guFiJZfZE3Nx7nwtt8s+qBDhP/o 4b6cQi5+7F5M69IjIqV1SIdTz8UNQ+3bfzF++ozL+zxUF6PROF6ngPvTL+B4 5hxZjCC/4F3ty3/62ezPZkpLCNwWHDaIJSL028m8Eh8ehCt6+YN9RGRL39+N 9+fBe+p+xtIBIu6cWzHsIechV63sQt4wETTXL3YTsTy4NE6T/UaJeJC9pdXl FA+Dj9nuhBkiOJbsWYMdPBwa6eM265Hwzv8vufl6PpTMuMTzXiTQKqnHf8j4 OMCqtZT5kLB8TmTVkwA+WudKyZTNJOReZakkRvHx68T71OxAElZPHTr7dyYf XrrsfdVRJFzN8mwJb+WDl0I9ciGThIj7AzblHtbguW3oN3hCwh2UhnG9rYFh 17UFnSRo1UQWXfazBiOPsNi4i4SK8q/E4ghrxF0Srxf2kzCmXDCmzLTG2Hl/ zcIJEvaGWVX81mGNurYX3qvoZCRpxXK9t9ggpIZdIg0j41G6MKgt2AamI/bq YZFk6KsSctfussH2mb62ozFk1H5NW+CebINqC4+LPclkEPrODC85ZwO30B/r HmaTcaCq9hLnjQ2yTdsyr94mI12mZvI93Ba+Lc9vTuhSIOGpTwxF26Ks7WD0 TkMKRlWJjZ1JtljWeXhkyJgCn2v62yuO2qJiyML1kxUFJnMFVwNLbREdMjdt jQsFd6oCBQ/f2eLY6FgJO5qCCa26Fad2COC32uttaTsFV97ep6ZECSD6n2HL x+cUbLn1aCAyQYASQm+9/WsKGkL/OeyWLkDnwLpZ3R8oyKwdaf5+WQDZeqZd yhwquOEG3kFDAqwOpu2xFVER2JgYwpfbwYftvfDIH1QEiUylExF20DuuTC76 k4qQa62Cmlg7sMez/Bv+Q4X8rInqikN2aGBtKjN8QMWuiMdFPhfssPD8GY7k DRUJOkavk/vtoKV8XsBm6uBk6EPfFn97eL77e9qiUAfZL6Kds+T2cLW9cy3q kg5+X2do4RNpD9bnxnkNFTpQCqOnXifbY8PmG59T63SQr2lw+nO+PaYaIxac 6NPBlRu7O+kv7TGrun9TPYeGujm668I2OUBln3mIx20a3hZZuj3b5gCvWwzp cBMN6ljuvHKHA34bNPM81U6DT1yEwCjRASc+rFvGGqZhZPCebleuA2b89w/M UHSh/zCq163HAQ1y2/HpSF3EH320xzzUEZaZMSWWAj3ks3vDlRGOIGYQtRjL 9NDQMBmsFucIA0G9tdkaPWh9Z/n0pjmiVd6VFLtdDxd3xovOXHGErPuVl2mB HjqkpqrzPzri5H1V89GFi8DX3pczFO0EhoZlwTwVOqrnPmU3Jjmhf95KQx1t OpYRLGuKU5zwqj7yk4RBh9dIV/fWbCeE5F2ofCWhY2+zPafzuhM6q8a2hSjo uHV4pKZ+zAmpjqcT/5mhY8V+F2nhlBOUc+20yrT00RKX16NQEUImzmw+z9RH d6i7qiNRCPnDVMN3zvpQcbkoLecL8Wjni3FCuj5cVba+PhspBPlQcVw23QD/ /Vq1Jz5OiMjTTqvTrAwgG1VX27hPCOPYa1vOLTNAWE+1OfGEEE5z8Hn5dgNk 1FKj08qFGNOXx/jdNEB7QotazEchogsfNyz3M4T/uJgrDRdBbPLltjSEAQ0i obU9WgTTyXrr4j0MVPPq9/gqRGiStWrq7WeAvMulRp4hQnB54lt5LgMPBqVu BypEoOfsPV3YzgDv1Vb5zU8ieO/2nX7vzsTLaab6ku8i7Cg7I0j1ZSJ9UX/5 PVUxig92J7iGMdHvI598QhVjTlfzTbcjTCjbIlM/OIgRekxa4dPMBKFpfzFL IYZqt1mYSMbC1QFn18sHxdjNjO+tDmdBpqb23ipDDHWha+CuZBYqndNtxAVi POv5QI8rYUFee7J+Y50YAxO8l7xPLLReL+o5qirB0+rOpQZ5RlA8CU4hLZRg zaJ7ccHXjWA+asY+Q5XAxPJ8z1iTEVIsSyMumklAL/E+8GbSCA6XK3/UrZLg yFHujbUbjXEu/x598pgEmu8ucLJMTJC7mft0Q44ENPUv63fCBEq9rMzKfAmG dytyi3xNkJHjrxZVLsHHTz3zuVkmSMj4NvK+VYLJ2bY9fWqmiFkdcMX9mQRf cp0sOo1NETm/KejKawnuWihUBc6mCEnNeRY6JkFA2au7S/ebwvNX/t1e0hIo vnc0v1Axg4dIqVhKX4JbnFXpccZmuO71sd7KcAloM5s27uCZ4V9kmD7N "]], LineBox[CompressedData[" 1:eJwVj3s41PkXx+eLyJhck4RN1oZaUom25HPoOzczhNC32kpEUin3yGpEKMJK CKGSlWy/hJHE9xsl6SIzicpuo4hUUuRu7Pz+OM95Xs/rfc7zvJd5H3HzlaPR aGmy+f/ebn/n1/a+zXDhxeoHV/bqUoyNP1qmPm4GIx07hWk9XUpbWtV15vtm SLgYpzOatpgyjbeaKJPHIYe1hsmP16G2pK+1+fQLDvT2Qy/rL2hTL4K00NoV OEhHI2I2eWlTxNYR1nELHARWeYGJJtqU96JKTxUbHLzldlUcuL2QCs9fE76S g0P4HY2CqXdaVH7p6uqDATioh/cY2BCaVMsrn5bCQBwcL+w/E7VCkxqlZ70R B+NQZj3gyJ/VoHiHpzDb4zgMW5fHpxdrUFOrm5wZKTi07mHu2zapTm2vcx8o /xuHtZxhZ1GIGhX/OWFaUoGDfcGJsHETNeqmQa2qthAHg/baypFuVWq+wGDd Hw04vJXTdvXhqlK38Q+xTm04iNlCnFq5gFr0LEJvaFjmk7dvrNZSoRzmrlkY /cBhp63A+JGYTgVadtt7TuJgMnrmVFwmnWrOAP8GjAl6R+kFPTp0KmybcnWq JhMeXeo+NveLMvVCkuu8yooJ43uyhlt3KVF/jtTHHo1ggk6rfIvUXIEKFKXv /f04E0ZyO2+MYwoUv8LHnnOCCfMUOrL4L+UpxSPKmGEiEwxUS4bnCeSp6EF3 QVsWE3x0JyJyOuUov55PMRZCJjx+YcAlsjDKtk03+vMoE+gBf0c/yZaSujc+ 7+yaYIKDil0BtlVKjqWQG+/PMKFhsqyjWlVKVjj6TucpsGCJCndBVuIsubz5 ZhRvIQv81u/Yr35ihtSoZ0eWrWWB4uHJvaK4KfJDWVi4fzALaIr5Due7x0hP A+m/peEsSPclV90uGiMfpCWwP0bJ/mkpRrN8x8ji0OzFAXEssHRdVVX09Qfp bVd752AmC1rLStXMlX+Q/7bPSAOFLMj1DVla7zxCdkzEJYZNsSAnKmmRmcEw iR9kDFdLWbBe67xb/quvZNU/mcSYHBtybl7zOBn5lcxovGoWocKG/K7Xi/Tr hkiXlIePj+mzASLMonYzv5BPlqqoR9uxQf+yYPhz6CB5n5WRc/IkG/ZFTmaE 2fSRfX51T6MS2GBZblQ19bmXVEzslQs5w4bfU6fy+i73kpyH1od9MtjAiKGf +KjWSz5hv7HHL7PBdL+Yc27oHSnmGH+a18gGw5CFcU31EvKdo3DTaYwDLk/M Eh02vSLlD74Njp3Hga6aAMvehi7SOHl+aaSyzCc/bzO27yL9Hu/QDNDgQGlt pkMMu5Mc5M19cFwm48nOjqCdHeR3PiedYc+BnDWjIp/CdhLb8vpdmoADw+sN IiINH5AtDR4/h8Zz4Gi2R1gO7z6ZbtHuQyRxwCtTvbgsook0VG3pNUznQFGr qvpl0T0SnlZ/qCjkAGVtUeNlUk8KeH8OihtkfpQIksTeJGkcznedWQ4IXGJq cI0C1FLTtGaGxgWB1pjUZOgSSjdBIRIFLkCbsDH7eTEyVLIeLWVwgQqrP8BN KUPQ/PPYb/pcKDLwTWv4egsJ8LnJnRu5IFEO+OXyTD2i2QuxokguqCuvY7kn PEI78P7Wrj+44KUx8D8lm1ZUxV6cqXGSC4b99z5Nf2hF/s5Ry+POcMFyz5bq 6/gT1L7TjueXJ8t3Rsxyx5+hy+HNmb/Wc8HF++1mBwMRwstfmtTSHEHSXGLD NuxESTrjTqJER1jincoAQwnKbGl535jsCMUZCrobQIIKI3MjK9McIfR9/QMd LwkSvtl0NTPbEaLvktkxhRLUVxg/4/mXI8Qr1a6T6vcgB1PN62+aHcFq4wT0 ab5DM+vN5/fN4wGu+ECP+ek9OrrDp3E8jgfhxrwbph79SLVwUGKbxIO7gyNz G4L6Ufn7oLnYFB54VZ/SWXe2H/UfEtgyzvPgJK9uUc/9frT7xEWhYQkPst6+ r9dbO4D4xZ1l3BYe2No9w61VPiLTId65PAYf5LYGn20tG0Q9sVb70Hk+ZLBX cc3//oKWL1JNPXqBD7kvmflFTV9QQFl/zaWLfMA7P4vkXn9Bo6JcFYUSPtDs pn/LVBxC842xyhYhH5KEHzS+7B5CFs1PMbcuPmQ9Si1IZHxFUfT9hfv0nGDV sgmlYfNhtPDchdenLzlBx1q1oH37v6ES9RWRD/OcocC2pE98aATdC17KNLm+ Ba6l2h6ycPqBCgyL9De5u4CpSkuPWfsYqo+eovk/dwHzKy8XlC+dQMt4SjM/ b3MFn16pUZTXJKpqM0t+9cIVJAJRaE/AFEpplloa7nIDq2tJ9BuHp9G5kI8B Xt1uwG/1jD3OnkHR2j+pGW3fCk8hHhtUnkXXzOa1hkq2gs1dh6t+rbNIcRTT vbfbHb5FeCaqHZGivywrYgr63aFKfNrdSWsOmXmXOc8e9oBztiOnpX/NoTfc 2lsenzxA3GfAOLSQBqIrUeYoxBP+KQilEj1oMFHpamv03RPqWE3i7ak0mLsd XJ0QuA3Gfe/0322kAc+SxYz+sQ0iK+W90QQNHu5adeBgCAGBJft195hgoOnj X3cxjIBan3uPVppisNv/0oLnEQS8fJPGnZDxWLDWLatoWZ7xriZ9BQbGSeNT s/EEDKA7rqQ5BoJbZEp6FgHf4pTPallhsEHJ5WZ1LQFcwUZhDmCQwDgtN1BH wEV6VMweewzaNRrdlzQQIJ/Stni5Awb++laTMY0ECJvU79/ajEH26sUOnMey +2dG449YGIzulIhfdxOwWKLT85WPAezVXb7gLQHxV6xfVDphkOzndgz1EHCl ojw3whkDo6D7+sV9BBzjf7kk3YKBa0Kp7+EhAm6f6s2jb8UgP7mnpnCYgJ++ 96x8KuOB9CV00XcCZjtEaWnusj55KTesxwlQ8egWa3li8KToAe3AJAEjMXpV HTLWKZG65U0TIN6U55+9DQPv6zZXn84SEEAGfiMIDG7cPDo+N0cAx+Sa85Lt GPwHF7gzmQ== "]], LineBox[{{0.32398767037169474`, 3.7866405247040857`}, { 0.9814340804846833, 3.8081171024409564`}, {1.2615550396421809`, 3.817514118086613}}], LineBox[{{0.07883722872126195, 3.778832955352546}, { 0.12268104577487113`, 3.7802214858760586`}, {0.2453600507334157, 3.7841247593444605`}, {0.26021216016761306`, 3.784599121234171}}]}, Annotation[#, "Charting`Private`Tag$22503#1"]& ], {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 100}, {-6.345351296583567, 11.594561319099327`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9, 3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}, 3.880084507024222*^9, 3.8800853736383677`*^9, 3.8800860259425*^9, { 3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9, 3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9, 3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}, { 3.880087582924012*^9, 3.8800876543745813`*^9}, 3.880094554518929*^9, { 3.88009550172042*^9, 3.880095549656839*^9}, 3.880450030900723*^9, { 3.8805353288921747`*^9, 3.880535341553361*^9}, 3.880612842330372*^9, 3.880950027979465*^9, 3.881033736935156*^9}, CellLabel->"Out[35]=",ExpressionUUID->"8f5003fc-1c61-4f7c-9e11-ffbc3a524392"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myU", "=", RowBox[{"U", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, { 3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9, 3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9, 3.8800863417389393`*^9}, 3.8800863843913307`*^9, 3.880087663509973*^9, { 3.880095506086014*^9, 3.880095529013947*^9}}, CellLabel->"In[36]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[BoxData["49.82150997759732`"], "Output", CellChangeTimes->{ 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, 3.879571550250393*^9, 3.880084507942923*^9, 3.88008537507251*^9, 3.880085724042804*^9, {3.880085881510993*^9, 3.880085919139512*^9}, 3.880086027259701*^9, {3.8800860790573597`*^9, 3.880086104048421*^9}, 3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, { 3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, { 3.880086385464319*^9, 3.8800865107303*^9}, {3.8800875839389973`*^9, 3.880087671218701*^9}, 3.880094555917272*^9, {3.880095507297576*^9, 3.88009555113643*^9}, 3.880450032982963*^9, 3.880535343801962*^9, 3.880612844013884*^9, 3.8809500300512943`*^9, 3.8810337399875727`*^9}, CellLabel->"Out[36]=",ExpressionUUID->"fb313b4e-189a-4668-9fdc-a09eadc0f439"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}]}], "*)"}]], "Input", CellChangeTimes->{{3.8800859130397387`*^9, 3.88008591646206*^9}}, CellLabel->"In[70]:=",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myCoeff", "=", RowBox[{"coeff", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], "-", RowBox[{"coeff", " ", "*", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9, 3.8800859424236307`*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[BoxData["1.8472893558629866`"], "Output", CellChangeTimes->{ 3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9, 3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9, 3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9}, 3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9, 3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9, 3.880086511995571*^9}, {3.8800875856465683`*^9, 3.880087672538249*^9}, 3.880094557765129*^9, {3.880095510469705*^9, 3.880095552895302*^9}, 3.88045003501324*^9, 3.8805353471630363`*^9, 3.880612846206691*^9, 3.880950033016953*^9, 3.881033742237726*^9}, CellLabel->"Out[37]=",ExpressionUUID->"9807fcc2-c6e9-45c7-86ad-e1093c39efb1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myNorm", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"myCoeff", "*", "A"}], ")"}], "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], "\[Equal]", "1"}], ",", " ", RowBox[{"{", RowBox[{"A", ",", "0.5"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9, 3.8800859833274717`*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[BoxData["0.7088388229648961`"], "Output", CellChangeTimes->{ 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { 3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9, 3.880084514207199*^9, {3.880085965594881*^9, 3.880085985349716*^9}, { 3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9, 3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9}, 3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}, { 3.880087588111286*^9, 3.88008767445716*^9}, 3.880094560272614*^9, { 3.8800955121968946`*^9, 3.8800955547288637`*^9}, 3.880450039503292*^9, 3.880535349939876*^9, 3.880612851865893*^9, 3.880950035526105*^9, 3.8810337446842613`*^9}, CellLabel->"Out[38]=",ExpressionUUID->"d65a4682-675d-48c6-9fa1-0eadcc1e8f70"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", "myCoeff", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { 3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9, 3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9}, 3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}}, CellLabel->"In[39]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD 6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9 nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa 3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54 nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o 5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF 5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9 +ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq 7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9 si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx /rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu 93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF 43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475 EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S 9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6 zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9 BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C 4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9 /Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+ CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05 S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU 8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo +Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs 99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9 5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8 gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf 5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z "]]}, Annotation[#, "Charting`Private`Tag$24477#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.7088375225314254}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, 3.879571608345409*^9, 3.880084516269706*^9, 3.880086015267064*^9, { 3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9, 3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9}, 3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}, { 3.880087591163252*^9, 3.880087675790471*^9}, 3.88009456141636*^9, { 3.880095513424275*^9, 3.880095556137561*^9}, 3.88045004068221*^9, 3.880535351094419*^9, 3.8806128530849047`*^9, 3.880950036573413*^9, 3.881033746188324*^9}, CellLabel->"Out[39]=",ExpressionUUID->"2836f5e4-fb31-422d-9104-7e051f01f7df"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f3"}], " ", "==", " ", RowBox[{"1.561", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input", CellChangeTimes->{{3.8800865535980377`*^9, 3.8800865699855547`*^9}, { 3.880087570285039*^9, 3.880087570627646*^9}},ExpressionUUID->"700162e1-a626-4c8d-a329-\ bbb787d8421f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox["2", "3"], RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm", "2"], SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm", "2"], " ", SuperscriptBox["myCoeff", "2"], " ", SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.880095066018161*^9, 3.8800950760469503`*^9}, { 3.880095479252779*^9, 3.880095482250162*^9}}, CellLabel->"In[40]:=",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"], Cell[BoxData["1.5627722778696047`"], "Output", CellChangeTimes->{ 3.880095484411269*^9, {3.8800955177242403`*^9, 3.8800955604897947`*^9}, 3.880450045304723*^9, 3.880535359224338*^9, 3.880612865473521*^9, 3.8809500412555923`*^9, 3.88103375582927*^9}, CellLabel->"Out[40]=",ExpressionUUID->"3038d452-5cf0-4f34-9bc7-e3a116036de0"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"PsiR", "[", "r_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", "myCoeff", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.880450259849861*^9, 3.88045026245728*^9}, { 3.880450342004263*^9, 3.880450428007826*^9}, {3.8804505083503447`*^9, 3.88045054654538*^9}, {3.8804509533799887`*^9, 3.880450954981093*^9}}, CellLabel->"In[41]:=",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"PsiR", "[", "r", "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.880450434981985*^9, 3.880450437069388*^9}, { 3.880450467622654*^9, 3.880450475414855*^9}, 3.880450957309256*^9}, CellLabel->"In[42]:=",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlnk81Nsbx2UpF92yXJJtNNV0IxSlBZ9vVBJtSFIpYy0ibiqSFkWSksYS IVskhKiopChkSVnKvszMt2xdzIxlcuv3/f1xXuf1/u85n+f9nHM0mT7WrqIi IiKfqfX/PSmYOXe1S4TJ56Tfj621wkyqmmlW+2nHULWV3dFGuOL3+/IQGi0A Ld0b9VIIfyRVRGpI0MLx7/TWEiZxFV7G/iemNO7CNBTsN4hB808P1pjGQ3BD 6wh340zM6xxgjGqUIjth+zU5gxKkfkjxHdaoRcKPOpuBP98h/3F4p5dOBzy9 nG0bt7ViSG7oxg6nDhgoXS+t8moF4/QOkxWsDtzMW9ueFd2K+0bSqeyZDrxa 3PVav6cV0bU33BzedULq6qVTjqfacJp9a9z8UDeczPhzB+59QYp0XYjs1j54 nggUK+tuhzs+3R3xY2PzGvPhAqUeiKRNlnVGsJHNKkw3MOxBvLhq14cMNu7o 5Bkl2/WgptZN/WEbGwLPhvQlMT1YYTub5rqRg6elAzajC3vx3YOR2zOHC+kF 5mdL5/ThePT58qYoEouvuDZWDfZBVJDW+/ohifM5cdvqpvqQsL9G5PFbEkpq TPlKiX58UJU3i+ST+NAdHBiq2Q+trOxqC/tvcLbp1D1o34+RF81NbzW+41R9 +ODqyn54c/9mF+cP4oJKTveWyAH0ObZLvqkdhGiklItrwgBsvl7TaeAMoskq 7j+/rAGsr/sWwF08BJ8tWmv3vRmAWGHmQsWwIZyb1jU34A8gPkjT5MyRYUz9 si7fa8eG1GSTc0jgMJx/sDyMmWyc97kYfitmGNoZJQ5/ebPBZPa2ZNUN41qd Pxl+lQ3t7UmeXw1HMHL/+u4rT9h4I698d8PCUbzM+ce8WJoDg8ia8q1ao9jO o006KnLwYO5Zzt5to9i848RaAY2DGzNtuseDRnHWjr2Rs5YDu17W+4TvoxAx /rK+zpGDoZyF/J8VP5DS7ChanMuBlOYVRu/6MbjX1urnreeixui2bvDWMcxd arNAh+Ai1D7ZUM16DJJ3riveM+dCNOq5+UHPMaQvfx0JOy6Ev0bcvySNIWGL pGe6HxfDXfuyP4qO4xb78un2LC5yppkF3gvGIWqWobIynwsPhZPP56uOo6Pu 93X3Yi44ltdrLNeOw6/Yvii7gouusvLv1e7jWJHLv2H2lYv6eMbfFfXjaDum KGgTI3G92GD1kfZx+NRX141LktjetHnDL+44Ku6Zqc7MJ1E175CF0e9xXLNs X9SgROLl6ahjz1dPwPjNr3nXV5IIjE7y3W8ygcO+MgaSuiTW5+cETO6YQLnG sud++iSKuVXhBi4TuK8w8FzGiESe7czDgtgJyARv1be1IuF1cm7R7vQJVB4f KTHYQ2LlDfmyH48nMD9gwz9zbEk8qFz1Qbt2Au3sI1FHDpJIXsMcyv45gWVp g8JVx0gc2uUzYS7Jw/JX1tM+XpTXx4OEpAIPmWsclZJ9SMSmxkot0+HBxWHF 43J/EjcX1q1MPcqD/ocZ4cJLJEoN1Up2efNgR7+xZziEBMfRB7PneOCV/DTM DyWxKU/edn8cDzYeMoWjESTcWlx7xDN5CD5jaHz8Jonon888iop4iMuw2fOR mqvvFofOz2/kob31whybGBIKvvnzXnTyULimO8E3jgTiRaI9Bnl46fy+8Oxd qj4y40GlOB+RIpzdRBKJN/On9Hzl+AgN+rtZJIXEiIHFC3UaH6vGVesf3idh FjL6MWATH1d2GS8qSSfhnQMHhgUfrgQ8lDJJJHy6zWmx4yOduMtgPiDxbprt fdmFj80aPNuYLBJjGutmdP34CNGf/29BNglV82sh3Rf4kDtcwS+m7gFz7475 EZF8MCV+uaTmkPCL0Y5fn8jHfVqTyelHVP4vg5eQ2XzU6hy4pJ9LopbdlHvn KR9hRi1a7RTzpeiGm6v4kOGwjN3zSNDW+L/58YmPJzvnPe2m2PJAteW9Xj5S 9QpYRvkkTl9UbrMY5cO6Wbs9hOK0LM+jU0I+vknrhzyhuKHx1VCGpAAhxO3o OoqnBQv8rRUFuOyuM6+eYroa8/dvugDh86T6iynetaU4PG+1ADcMjWihFAd6 zlU4CAGeJAuqQHFmtH2y5E4BGKcufOyn6mkqzVnx1EGA98GbCC+KZ/tmi5w9 BKhSyFDqpc7DkNxtLHtaABUVK7uNFFvrplaXhwggJdE7e57KI9iOt9frtgDm zTSZHCqvh+e3dimnCLBL/seVcirPlow4t+pcAY71bPJ4QeUtUj84dqpMgKdf lZ7dp/qhxdt0bkmNAAv0sv28qX7ZLb4p0dQqQF+C1r2lVD/zPNYs1hoXwJRx yWRHGomvt65kfP0lgJatZVkp5YP4szadUJlJKGdPP5SlfHGQOGfWz5iExD/C 4cBEEqHaDQ03107C+D8p0xuUb4U2GvZGZpPQ+HRaPpTyUTKt0ivOcRJDFVw9 /Tsk9Gv/mtriNYmWUo9LJOWz45j7pYmASRQWbrO7TPleYiITuzNmEvfX0+L+ CSfB7LR9LVY/CfqqmQqjYBJSif0nfNsnsadCpdv0HIkiB2/VXnISSYfueK05 S0KsIyygbM4U7CPY4w2+JDK+lun7Gk5BbSJzfNKZhFW8+UDPlino3TkpZnGU 8ml/S5SV9RQWCJPTrxwisfXL6CjjxBQOvXVIfk7dD2QrLbsnbQpKrWkj8luo +Y7Js7MqmIJ2uGlfEUis27dRouzVFMycBJc3bSIR1mLDjPk6Ba9lsd/+WENi RXOoqtWf03CSe1KQqE7ieNNIVGnANAy+89PieFzIRQWAETaNdReWfm4e5aJs 99wfLNY0NuVeFRV+o97VjxqWJx9P46yuV7B4Fxe5DdYSDO40+sNDb8hVcvHj w/MA1p4ZrG76FLcokgvfd1eYPgwhBl9v2btekQt1zra5k/pCfHxQs2THAi7q RP/ICSKEsBN33+QoycUyInI8/IAQnz7yTSKFHLSXxVzMiBCiaIl34NxeDjYX PEhu/1eIBmVfVddsDmQTazrMnv9E42ZTssGIg8KTMjaLLP7DHFnl5cu82Eg9 5zmkt1+EOPpYo0S6qh+XU2b38kfmEJ10fes2+z6INPcRLwPFiGdxdXFszR4s P+V21nalBOEwcOSVPasTHEGcnfSrucS0mCDvtks7dnCPn4/2lSTylUv/aDT8 gl2cKC11dSnCTDjSn2pG/ZcqmRdr8qSJJ5b/1GjFNUNHtk3N7Mh84raEqeeF kU+QgsCpi/cnoRsRDNkLTTAfdZhasm8hEfPJ1bqC0Yivb13mOGjLEmNcp7Nu iXUouVblSBPIEoG/1DYke9XCTcK/r7FRjjhKHlCIJarh7HeuRCZBnrhDnx1y c3kHXXetRisnBcIlu1Hl9tNKfJTTlvbf8Bexu0DOwUbqLV7kX07UFlMkLK2y xMMTK3Buzso99d2KRCD7/qPMw+WQ6grc7l2sRFwOCWL4Nr4A94EmKyVoEcHN W1uul1QK1gpl8dJ9yoSSocRiX+9niEpwq3aiLSZCJX4yv98qgQPrcKPMt8VE RPHAld7eJ5jekjmTUq5CNKfUrzNeXQQ21/Ts2zBV4nD59hGnigKkGa9WaXBS I5amvXjESctH3lV/WfdV6sTTpFztEzq5CNvnbCkmUCfaSvK+rJ56iLVdqQ/D GjSI28KgVxvfZiH+78S8BksacYadqnWgJxMXKiLjLUtphInog0r7/9KxU2Vf 5oelmsTh5y02djvTsNm7+qBsuCYhczRP36LzPlJUmUvrBZrErLOG1c/WZCyt zIrddXAJIafTSTKO3EPUqrcrP5cvIS6KsaQLlyXAjSf+qXYlnZAI0ukw+hEH ZuEELfwWndAI9unRl4yF12Wb2R236cSZUKVYeZFY+NsUf5G5Qyc+npHYOTkV g2sC/5tRsXQiLsS8uOpbDPI3zPyMS6ITHguvW1ytjsHMm99tDx7Rie5/I+6y wmIQ9VkmsqqaTlhkF6zn/BGDhPQTHqG1dKJLPOGlpmgM0k81mm2voxNBn/XU mEIWnipGCesa6cR1A52Tw0MsdDnIezS30okSsQnQ6llgsJXNBth0Yp3jmnuy t1jQKw5Uz+DSiWsFGieCwljYeLVzxvUbnUhWlZAausCCFSOpYHCIOq9DfHrD SRb8PGnq4+N0Inq/4oan1iwEGV2aKeLRiRVlU1aGlixcnT/QckpAJ0jTxKUv zFiIf5weMT1NJ+4KFVTqDFhIuyjuXiakE3IGA4b7V7HwaK+radAsnTiefUSB XMZC8ZL3aia/6MS7+vDHZ9RZKOctn6EePGLR6cOSMkos/A9M949z "]]}, Annotation[#, "Charting`Private`Tag$26258#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.7088375225314254}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.880450477448555*^9, {3.8804505437974977`*^9, 3.880450549561881*^9}, 3.880450904266193*^9, 3.880450960572151*^9, 3.8805353762901163`*^9, 3.880613017272277*^9, 3.8810337608134823`*^9}, CellLabel->"Out[42]=",ExpressionUUID->"b6b6f642-22c7-4948-88ac-69c62af41041"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ "\:041c", " ", "\:043c\:0430\:0442\:0440\:0438\:0446\:0430", " ", "\:0434\:043b\:044f", " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "\:043f\:0440\:044f\:043c\:043e\:0443\:0433\:043e\:043b\:044c\:043d\:043e\ \:0439", " ", "\:044f\:043c\:0435", " ", "3", "He"}], "*)"}]], "Input", CellChangeTimes->{{3.881033769215639*^9, 3.881033785832822*^9}, 3.881033912603038*^9},ExpressionUUID->"79a457e4-2694-4aff-b91a-\ 36c1c1457a0a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", " ", "b"}], " ", "x"}], "]"}]}], ",", "x"}], "]"}], " ", RowBox[{"(*", " ", RowBox[{ "\:0438\:043d\:0442\:0435\:0433\:0440\:0430\:043b", " ", "\:0432", " ", "\:043e\:0431\:0449\:0435\:043c", " ", "\:0432\:0438\:0434\:0435"}], " ", "*)"}]}]], "Input", CellChangeTimes->{{3.8810339163716393`*^9, 3.881033972483519*^9}},ExpressionUUID->"21c7637c-3a09-41a5-b3ab-\ b8f8756d6a35"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "b"}], " ", "x"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"a", " ", RowBox[{"Cos", "[", RowBox[{"a", " ", "x"}], "]"}]}], "+", RowBox[{"b", " ", RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]}]]}]], "Output", CellChangeTimes->{3.881033952641965*^9}, CellLabel->"Out[43]=",ExpressionUUID->"e88a81af-30ab-49f6-b5de-4e2614f35e9a"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"TMatrix0", "[", RowBox[{"k_", ",", "q_"}], "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}], " ", RowBox[{"(", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"Exp", "[", RowBox[{"-", " ", FractionBox[ RowBox[{"k", " ", "range"}], "p"]}], "]"}], RowBox[{"(", RowBox[{ RowBox[{"q", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"q", " ", "range"}], "p"], "]"}]}], "+", " ", RowBox[{"k", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"q", " ", "range"}], "p"], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox["k", "2"], "+", SuperscriptBox["q", "2"]}]]}], ")"}], " "}]}]], "Input", CellChangeTimes->{{3.881033977845848*^9, 3.8810339795737133`*^9}, { 3.881034299194148*^9, 3.8810343272795763`*^9}, {3.881034608568304*^9, 3.881034692687162*^9}, {3.881034784166951*^9, 3.8810347952400923`*^9}, { 3.8810348409016333`*^9, 3.881034881737472*^9}, {3.881034935763405*^9, 3.88103495049362*^9}, {3.881035061115604*^9, 3.881035092839991*^9}, { 3.881035468416505*^9, 3.881035481765575*^9}, {3.881037944040091*^9, 3.8810379482351933`*^9}, {3.881037981288925*^9, 3.8810379843458767`*^9}, 3.881038021731368*^9}, CellLabel->"In[47]:=",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"], Cell[BoxData[""], "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot3D", "[", RowBox[{ RowBox[{ FractionBox["1", "100"], FractionBox[ SuperscriptBox["mass", "2"], RowBox[{ SuperscriptBox["p", "2"], " "}]], SuperscriptBox["4", "2"], " ", "Pi", " ", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"TMatrix0", "[", RowBox[{ FractionBox["q", "t"], ",", FractionBox["k", "t"]}], "]"}], "]"}], "2"]}], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "0.1"}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "0", ",", "0.1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.8810356116630173`*^9, {3.881035677781157*^9, 3.881035689103971*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"f99238c9-b7ef-4abf-8fe6-dda08a75d851"], Cell[BoxData[ Graphics3DBox[{GraphicsComplex3DBox[CompressedData[" 1:eJyUnXk4Ve/X/1ESUYmEUoRUhiQkxTHknGgwK5U0mZJGmlWaZ6VRsyZFoYQk lCIVRaakMpehgWSIht/n8/vu99rPd7vO9VxP/+zL66zuvdb73vve6572Vlu4 3MlLTEREZIKUiEiPf45nZ9sciLxlbo7j+MWDNE9dWi7oN+j3oyLLYB6X33ob mlNoebAbrz/Wf65n8/FufNOkUsdCy3PduMT3vMsatpeI67Y9X9R82kWQZ5Mw 1LP5KnFVyZXxNqcnCsL//78bxBte7Z66t0ZTsPBLsHyh5S3ia3OWrDx2TU5w QvW2QCIojnhBlu3bDwt7CDbaqe/UsL1D/FCy0bjvp3/w5wcez7BUuUt8wYyo 2+rWn/g25yVEPJsTiBtr/DrNP13GH5293mxTZhLxGt89qZ5y+fy+3xs3hIcn E397pKlub00mH39DV67OXA6duRw6czl05nLoDO5b4SPdJe1MOoN7W+3/s07N lHQGHxw7KfJUL1ZncBGDuXe6pFmdwQuGRsgebhAjncFdRqUYiY1jdQbv/am2 R0PlR9IZfOzFBlfNCazO4Hdtt1QrVuSRzuBZNqJp2dGsztCPqzOX428uh85c Dp3B99c7lgzX8iOdwQd3fHWYcnEG6QyenZgiHjPHmHQGD/SKeRacOJx0Bq+f t2Wylq8s6Qw+91Ks65PToqQzeFFpSXmXdAvpDJ4uKnFvcE4t6QwuLxb8Zb3a W9IZfJfBqo7DU1mdwZ8XhdiF92J1hk5cnbmc4uFw/M3l0Bm8pXq3hrTSfNIZ PH/3zTPlAj7pDL7x6ecav6ixpDO4Wv30k3YWw0hn8KcldrkWRn1JZ/DW0HUb Sn3+8qEz+DrH3Na8mc2kM/ixo4VRw7RqSGfwtaJb7L1XvyGdwYMybfqLPHtJ OoN3/p09YlKPJ6Qz9ODqzOXQmctRLrjujFejZpxfSjrjGJKkteHoNWfSGbx9 7dXg71fMSWdwwzFDW44HjSadwZ/b1UZ/q1QkncHXHehhrqElSTqDq+nOUXWR 7CKdwc1epMXaXvxKOoNHvrv+d4FmFekMvtnG7m3MnGLSGfzakyCtqi05pDN4 UeqIBZsTM0hnxM3VmcuhM5dDZ/Ckv7/m9Pk+j3QGP5H2x/Z9k4B0xtHw6b/P QUPSGdy0Mu2Vjak66Qw+XGSJWpKBHOkMvjfH7VycU0/SGdzXKHrHp8ttpDO4 Vs5Fg6+eDaQz+FTJVtVLP8pJZ3BjlzHVdlKFpDO4tVbx+6sNz0hncIuvNvrW Jo9IZ8TH1ZnLoTP42OtDb/3b3kJn8Ohzatv8ohxJZ3BtZf68KU/MSGfwH/YF mwbEaZPOOMbdXPFPvjGYdAZ3+XytqlVJhnQG971g91daSYR0pnr7VntvxvHv pDN46f2ZJyoEH0ln8BdpAV+CLpWRzuBKHz8cWBKVTzqDb/iiMTvV6CnpDJ48 6c+JqRbppDPi4OrM5dAZXGnsSpvlkXNJZ/Drs0+JXZlsQzqDHzIdOrFLehzp DJ56O+Kqf95w0hl8/izDs0NeypHOONr4/5vXiZPOZG/b6ZBl/JMPncH9dk49 W6z8lXQG750yXPA7tIp0Bm/Sj7n89kgJ6Qye/Wvrj8UpL0ln8Pu59ZdMdj0h namd25+l/kr8AekMf7k6czl0Bv/SY53fCF9H0hm8KSqr82+pKekMLlm8vVBd axTpDN7y/on2yh7KpDN47YX7xfbnpUln8NuWSp/mrhUhnXHs4fZv/txCOoNv 9zE7+cKgjnQGt9DRy2q58oF0BpeaJNa736cC0hk8wb/o04mg56QzuNr3lLZN 7Y9IZ/AzTfmBTZX3SGf4xdUZnL+Hd6CsyYd0BvdNv+v+b54AncHfW4zO/zdP gM7gbuWpnz8OViOdwc9/HrYjxm0A6QwuVinp1/GpJ+kMPjykreNbZQcf8YAb V6if+/e5hr9xPGPwbz+lmnQGv+C5oHjHyFLSGXxpruWV0Nt5pDP4h9+TF94+ m0U6gzfNijm/2jiddAa3TuSX9vucQDrj/FydwYNbi+7HhnqSzuADQif+EfzT 3lIexnB3/dxTvgojSWfwvjnlihO+DCKdwaPl1d5+8ZQincGXtc39Lf39Dx86 g7dkGNa0N30nncF/5abN+9D0iXQGX2/x5adlv3LSGcfiNsN/+oOFpDP4KbPs b5E1L0hncOXvb9bzTR+TzuRPr2V+B1vvk86k25/KpCSDeNIZ5+HqDG57q/Ty gQhX0hm879qhSv/mCdAZ/Iuv2lTFb6qkM/jEJ4OnuGnJks7gzt5qxlNce5DO 4IYnNrzbZtJOOoPfW3PQvE3pC+kM3hgurbo0r4p0Bo8znqPS9u0N6UzxXpDP /rcfh79xNJh8459+91PSGTwx+MgsmekPSWfidRnyRgZJpDO4wGnT92GpcaQz yuPqDH7h3TUn/j/9NegM7uSiczjSS5d0Bp/quWib12pF0hl8lHX9yH/zW+gM fv3Ug1Pny37xoTP47Rnr5yyJaiadwfeEfzdQPfaRdAZ/PcrgjO2T96QzeEFv nZEhSoWkM/ifY5YhcnEvSGfw3aV65Xzvx6Qzjlo3O0/zT6eQzuBvF2d5Hq6P J53BX7SmpLYp3SKd8f+4OoPvmGg1+sM/7TB0Bp/UGG78ZLsm6Qw+pk/Q47P9 B5DO4P4Ln33wzxMjncGvBA+K5X9sJZ3Bn73a725n1kg6g1dKzX289E4l6Qze 88yWkox7JaQzeGewaEmZII90Bp8nHZz26mkW6Qw+xe2HxFeDh6Qz9f9OJDw8 NC+JdMYxe+buVE+526Qz+PNDyzvnWdwgnfE7V2fwJXrbbm4/aUE6g4c+ORAk raRKOoNb1/cpsDXrQzqDu84dULoi8hcfOoN3rbkbrljRRDqDO00M+3Flci3p DF708GzFS/F3pDP4almD9i7pAtIZfO9f/vOPO5+TzuBTnqpOXZqXQTqD949c fXisSgrpTPpcMJ6g8jKedAZ32yBRp257i3TG8WbX17q9NVf5BaElN0ssA3g4 QmflcU+LPZt3duOqljqVGrZh3Tj+xv/jlsPlKIfL79T9KP5H0G58ePY8b4mg i8QPTvP8XOLjKfg82LrSUuUK8fseiWVDtSaTPzgP1x8ux99cDn+4HP6A/zp+ 0ufjZTfyB1x++7rCiz94grvLteZuyowkrrT36M8rDaPIT5yH6yeX4/9zOf7G UXzM3f57arzIT/Dty3zHFSnPID/BPxjb3y09Mp78BBdMPvZt/C4NwebHfUoS A6KJ33n9KNJjhxz5j/Nw/edy+M/lKBc8zFPn7tfKWeQ/jr5OQaIfFlqT/+Bd k/zFQm/rk//gJ6Ryjq8yHkb+g4cezl4kMa2fQDCoybF5YCxxyYY+Q1dHiVBc OA83Li5HXODpo41GCFwXUVzgszL5NT+UplNc4Csu31Zu/WZCceF4cOjzd8Ot tSgu8GPZsrMMDQZRXODT1lr1Or+hN8UFznvTpDtKs4u/x2jJx4Get4nrjfEd HLbqG7UDOA83Xi5HvOD6ZzKP2nx0pXjBfz05Krr0jiXFC645eLRpmUCf4gX3 Xnds0xcDVYoXR7tW+wmecrIUL7jGyzdSDyrEKF7w9kmPA2sftlK84DmKnn8W ijXwl3m+Ux83Lp54xaKdcecHVJAOOA9XB/AltY4f2z4tJh3Arya6Vn32tCMd wBeXOdtf8DEmHcAbmocvr0vRJB3AdT0WuXtnKJAO4BcDu4apDJckHXDsvPTN a1fzLz50ALcI2CWx36aZdACfvXj3w3B+LekAPllSe/eu9rekA8rj6gDe+GCQ dudTd9IBfMUIg2t97lmQDuCjg0YEL1ylSzqAh6aq2A1PUSEdwE2dgzW9jPqT DuAKYrtVwsLFSAdwA8XPnyeMaSMdcBSdY9ik49hIOoC/nFdzpcSuknQAL3f4 YTt4VTHpgP/H1QF8kNwhX6tkB9IBPOSScr+dqsakA7jR+K1zJvbQIB3A30u8 8l9dJE86gC+5VSd5I1CCdABf3LQ8ft3TLj50AC96WMpbKNtMOoD/Oeyrlxxe SzrgOHdKT7+PEu9IB3DFHdXP75x6TTrgd64O4LeqVh6NPcsnHcCjN5wbpOah RzqAWy0N1XgpPoR0APdy8XhZUy5DOoCv9pgX9NpClHQA17pyPWxjxw/SAdxz y8pZgQENpAO4fOLUQnXVStIBPPlJ9IL4pGLSAcfR7XNENz98STo47Z2xwEEi oZsO4FpqA/bev8wjHcDDys72z9+oSTqAn3npsz5GXZ50oHJW3hoSWCFOOoB7 1CrNu/XiJx86gO8tke/U6tlEOoCPLln32ud8DekAbnVL0XaMoIx0ALcI04/f tOo16QCufWaPbMXSZ6SDSfzD8wFlibycXXM63O2WkA7g0zIHKe7KNiYdwPfG TbX+97kMHcC/1cW+1r8gQzqAV2uW7vrmIkI6gIsOTGwOON5COoBferkz2+xR HekA7j/48OvlEypIB/BbfaLPTy0tIh3AQ1IDjZ37vSQdwFuXi5i5ymSSDkPe G7zbF3uPt++3cr71P8996AD+rr9izy15+qQDuLOsiMK/z3HoAB67P3O3w8Re pAP42eK8sevzOvjQAXzm4ARZV+2vpAP4GP/poz1nV5MO4NlaE+6vziglHcA/ t/RZVXw2n3QArx72e3TDqWzSAbxmqVL+q/WPSAdh6yuE9Re48/i0joFjj/6d sH4KtxzoKaz/Imx9Arffgf8vbD5dWH9H2Dy7sH6QsPl32Ju3DlXhGS2juLj2 6LfC3vd9jn7eTEe6fmD/fphXtpPkHIqX269BvMLmtYX1p4TNdwvrZwmbB8fv afertsY6LaZ4Yf9abZ3OD6UAihf286c+EP/yT96FeGG/4nhKwfTjTjTuB/vH fh/U7aQMqT2B/aTfznmBlybS8wXcxaby4AMjLdKN2/+CbsLmqYX174TNXwvr 93Ht8Tc9T6TO9co0difd8Lt1+0bxuWvZdQWUl71N3vAr1Ip0g/28KZc2PzeY QrrBvtNhf8GiFD3SDfaPXqla9f00juYFYH/5SADv3+c79IT9orO352xqV6P8 DVxy0rQ/2vtlSWduPxE6C5unFtYPFTZ/DXv5IEuL9v+Rz9M89acHLp89l5DO sD+ZlKz977oXxAn7svqFHW1NTqQz7H+rpeZtHzmBdMbvE0a6Rlv045HO+P3o uSXH486OIJ1hb6JaVHetRpt0hv1E5ROj+30eSDrD3j5t1N4Drco0/wV7sweO +ypv9SL9Yd/j9cLO82l9qD8FvuTaFrMErT981Au3/4t6ETavLawfzbVHvcC+ zK36dojJTKoX0inORv5c2VyqF9iniayz98+zonqBfaPkobHDjvGpXmD/XadU XbFCn+oF9iqXZ3luVWLXJ8A+uaJPjvR0VaoX/B5S2nMc35tdt4Dfe6/IXjks le2/wH6yeuSj0Hp2PQPsO36tkJ0wjO3XwL6Kp7EiY6c4zb/DfnH+tLnZB3/Q cxz2ippHlXe6dVB9cfvvqC/4y60v6heHN+csyVtI9QX7/n4vpKaY+VN9wX7b 8BeDbM2mUn3RfGyl4tNBFQ5UX7Bfvmx3zaN746m+YG8sppycKz6J6gv2D+tm fnv5dATVF+y/RJ0pqN05muoL9k2Vg8UOzRtE9QX7PA+LGH0Vdv0D7F+ohVnM s5Ck+sLvcXID+qjbsusi8Ht0orSgbccvyq9gr7zgU9CDPex6Cdg7J1mO6Zve RPUF+/jCyK4h3i2Ud4GPPVJSv/3AJ6pH7rgE6lHY/DvsFSx4t/g6blSPsPfv d6Ksz/T5VI+w14w4ZtmUa0H1CHuxhCrx2RWTqR5h30vE9t2lYrZ/B3uFtYLq ZnkDqkfYfy95d/Tf/B/1SPPpKmevzG1Uo3qE/fn83MItef2pHmF/KbV12Rlt dn0F7Oec6jlUrEuM6hH2yc8avt4LZ9ddwD65/3nnOus2qkf8PiKscp6pK7se g+K1HqmrIdZI9Qh7T905NbeT2XUasH/pv9RpUmUF1S/sp2zyvyw1tprqF+U5 P+Dr7xdZRvXLXQ+A+oX9gfIZCbJxU6l+Yd/gfW12yFUXql/YDxzT927jTSOq X9gvkfm90Up2ItUv7NeK7CncHK1B9Qv7VfJnfaT1RlL9wj7nVkDLpmcDqX5p Hv/py0/r8hSpfmH/0LtwjNbS3lS/sFe83kM9fkcfql/YnzN5dn7j6V/U34H9 g0KBwiYZdr0H7CP6Dq39dx0j6gP2Ic/81umtYteB0PhSxNLTmTdqqX7x+/PH DvE+tuz6EPzOL93xZ91Tth8N+1azib+kNMqpfvG7V4rMSP4//UTUL3cdAuoX 9onnTAQmw6yofml99wuPTUs9p1L9wv6bvLNUoIwu1S/snbLTpM9ZGFD9wr7h ysrK1h1DqH5p/UD0l+mVsapUv7DX9eg39kavflS/sJ8+7pNlxElZql/YuySr 7Fz9Q5TqF/Yffkyf6CbHrieBvcyt8WqZsa1Uv7Af1JK5T1yZXWcC+4kzd33V 6t9I9Qv7qHo5EwMxdv0J7KebqyqOd6+k+oV9xsSBI5ZPYNelwN6+j0LXmsxi ql/8ftQj/azZxFLqF4PfzNS85lWfR/WO34db9XiwrMdsqnfuugjUO+wVZe/2 nB5lQvUO+2jltLtfi62o3mG/5XnQw/phGlTvsJeKGj1q8upRVO80LvdVLFt0 nDzVO+wlD24Y9TeGXa8Ce4lbS4/b72bHJWAfOEHGW2GrJNU7je+VvXi4M6OT xitgH7N99cmjWb9p/hT2wzYNtiw71kT1DvsbGYn3U6ax615g/ymn2bG3US3V O+zNcxoL7zqy62Fgr7du8qiX+WVU77AfI31W4+P+D1TvsHfPM+g56uprqnfY d3plfn+/ppDqHTzFyMTzaOsLqneMmzXpBKT8VHOiesf8bdvWq4l/m5dRvcN+ 5vUdGnkzx1K9w/7ouVsaOzJMqd5hP8h1Y5Fi3BCqd9g39gpfyrMcTvUOe1Ot YabTpslQvcO+5K2V8dIJ7PoZ2Ce7vR7077wY6h32V9xftBWWiVG9w15xkOdd NZMfVO+wV8s5mzB4eRvVO+xPqjjrloTXU73DfuK3nF2CoZ+p3mFfONRwmfS9 Cqp32AfoyXSp27Drc2C/JP/suJHzi6neYa+oFDH/22J23Q7sLQvjx/uHvqR6 h73dq9S0M1fyqN7BTUK112mrPaV6xzhhfvn+iY5SdlTvtP7BoEti5wZvqnfY zwrIH95fbhTVO+xPadTfmrtjHNU77I3GqRpltcpTvcN++QGnsfLFylTvsNda t3N0cbw41Tvsg/YfziwOZ9fzwP7A/CtzHyv85KPeYa86666Lqh+7zgf2IyUt z9V2fKV6h7206PIut5Hs+h/YN/To8yajrZrqHfYOrh93zCmrpXqHfXjv0sXj Dryleof9mfDgvQqV76jeYd91/LTKe7nXVO+0TjByWFRCeAHVO+x7OW4uP678 jOod9q6q1gJxXfa+xvin67evHm90rKkewfdeWh34K3Q41Rd4qq7oiH/nnVEv 4CKLTZerLhQh/cFvmu90n6XfQjqDfze5WWXXu470BD/z5neETWA56Qauu8ym omBSEekDXvbd9+k9j1w+/sbRxMoqZvTEaOJYNxJpo+Z90PYGH3Fxx1dhh/83 cbnMbb/tkXxcb9xxV1wn0C9mTafVAk0rwablhjnzm4N4OMK+Zle04+nwvd14 T//zQ61UjnXj+Bv/j1sOl6McLj85wEc+KeBMN47y8f+45XM5/uZylA9u6l4W cXaDr0D+/SBxBc8I4vEBEVcPr7Kn8+L/cc/L5fj/XI6/cfx0YW3ljua5dF5w 97r4V6f4NnRe/M49L5fjvOCjQj4kRgb60HnBw9WPLVsg60jnxXFxrYhFrcQk Ou8H/V9bHCSudjsvl+O84GdWRPS5+cKdzgtuopjR4H1+Mp0XfHF/g98bVxnQ ea/tqOjcF3u923nBBQfN9O0netN5waNqIq44a8+g84J/WpcZsypjAp0XfOar 51PqT42k86548yQoc+bNbucFD7HuubNtwWw6L/g1Fb0X885b0XnByzJUs4qi 9KkcU50bTX///tN/HGlo+vaYA5UD7qySuky8v4lgbsiBbWWWHjwcudc/l+Nv 7v3oWF41R9N2m9D7FL9z7bkc/guz596nEwfdvywRdLibPfTh8s5e+6zGjbtM 5czSDslNrJtCfqI87nm5HH9z+cu0beGbMk924/O9p4Y2D7xAfLaqHG9V1HwB rkvwGIn2etscU/IH5XH94XL8fy7H31wOf8Ddpa561jx0JX3ALR809jw/wIL8 wf/j+sPl8IfLUS54V9pvpSPhC8kfHC2Gxt/UdpxK/oCrxfh6Ka8ypvPid+55 wZ94jpasLg+g84KrJu7au6HDhc4LnjWlj5K6qiWdF8e5Kw683fRQj86bMXtZ akDZtW7nBY8dve3yV5f5dF7wRUeTb0x6NIXOC752e/Qju1IjOi/4qle5W1xk NOm8B2KcTK5vj+p2XvArcevul49wpvOCP5wisU8k3JzOCx6lH20Re0KHyncR Gx9fpR3Du7uubfh9Cy8qHzzSJmqR+zMBlQ/eNv1uD5nkcZQPc9sN2u/JaR9o fo3DMV8srP0RNl/MLQec2w7Af649/OS2M/j/wuaFufbws9v7BJjzcfMl5OGI y+XcVP3QhoXEYf/o1aiNj08voPwK9q/c+2rVV/KJwz6pwPe9co4NxcXVAf4I mwcX1j5z2zc8X4TpzOXwh1sO/BE2T821hz/c9g3+cO1RLpfDH245lK8Kmf8V dl4ux3m5nPbLcNpJxMXltI+Gw3FeLqf9NWhvqhNfaC71pbi47Sf84XL4w+Xw h8vhD/hYS6s9+RYLyB/wY+L75+/ImE3+cNtV+MPl8Ad8Z+z3n3oXAsgf8E17 W+sK472ofG77ifK5HOWDD4s6Okj893wqH7zFuURt+0h3Kh/tIbd8Lkf54Asj Qo70z3ah8sGHnFmX9OTvDLbdiJY52beBnS/AfQVePjT+/QjNOVQ+uJLnrh4/ n9hRew5u63FloOtPcyr/R+GWQu20O7xtM7ZJZFzzo/LBH6RvbMkZ5kT2pX+a ZW3D7vIiRjotWJiwgOzBQ9L9Q44q2wqO+4Rqh2kk83BMtx+etmTxdT7uK257 jvxN2PMC/VG7JV+W9b43n9ph8KUvczVNVHWJc9thjKtwOfThPndwPXM5/j/3 uQA77nMB/QLoNHlpZeL6HbOoHO66GpTD7VfCnrueBPbc/iDsuesoYM/t38Ge O78Pe26/DPbc+WjYc/tZsMd4Atce1wn3Ogdf+/fc9P0x7PpD1HvLrMc/TEfI Uznc5w6uHy5HvXOvN+jLvU7QjnOvB+jO5fBTmD/C8gfucwr2wvoj3HJwXXLt 4Q/XHlxYP4h7HYILW2/GtUdc3Ocg7IX1a7jlIC5hXFg/iGsPv4Vxbjm4HoTp wL3vwIWtK+PaQx/uc5zmlYT0s7jlQAdhnFsO4uXa03yTkH4c7JVstscMHs4+ L7jtCfzncsTLzR9gL6x/xy0HcQnj3HJoHxdjHxJdMzuyF1tf3PYN/nA5/Ofm J7AX1k9EOXIiu8pXVXiRn9zywbnlwH/Yh9+6aPDveAL857a38IfL4Q94ev6T mrV5s+i84APEMgaIT2P9Qf6TJVFzxi7Ph/yB/UL9XK+Z+s7kD8apjHcG9hJX 86dywIv+ytkqBrDrkZD/uJ855/rvuCXaZYxfce8v8J5bC+JNK9l8APzt9pO/ AiVnUjliD7OMVApv8zrWrngrNo3Nx8D3bMhRsi62ofLBnfgT1n2QdaNyPtWb rDa9Hs87khC9v8HEi8oBdxB5FTi8yozKAb9UHKu0SGoGjavjuSaxJzB0Rtw1 PuyF9aO5HOcVtj5ZWD9O2PuvkB8+Sx8seLXRi32fG8Nr7kW67ZOdTPbID51a R859dn4uceSB/mlmeurPnCkPRNwP/JJHrtgZyYee+H3fFFuHxiJ78hN827C+ n6qzRxAXNj7AzceQl7D5oIrE32w9mt8EPy5pvcRrtQmNy0G3J9ds3lwzt6Dy heVpwvIxYXmXsPyKm0fhPoUO/YLVxi4RGcy+L4uTt4Bzn++oF+7zC/ZcjuuD y1EO93mBcrgcuoAPGnRITrRrIZXDbbfp/W4cDntuOwl78Bkdz9bYTQsge2H5 J3fdHfTn9gfRfnI5zovyq8XTdwxbOJ/Oyx3nR/lcjvK5HH5y9+uhHG6/ksaP hPRD0R7u2HvngWHGEiqH266iHC6HP9x9cygH7SS3HC7H/QbuP+FG7CGTGVQ+ dz8aykf7yS2fy1E++JixAz3+nQ9COcLqnasz7kOc517Trdn/risGp/dw3Axb fniqvgDPabQb0UsOlVf9HCfoe3WzXon+BaHvF10lKTV89K3tdN4Vyu/f8aae 7daeD5+0PiBp3fFu41Errp3+8sBqf7d114fMRx50vr+x2zrDuZanzGYEruu2 Ps2h9sXBX+KB3dYvrV72+Kipz1neWfPFDhEH9rP66ykq5J07zvMuruhj8/Us cTuRur5n4v6xs58a2/8g68/lUcsCnn3ZwEsf67sty571p845tudB7ZW8ARkG gZ1j2P13YR8Fxvvfn+N5pyc5347bQjytLj/ryNozPHlL+2Ydf7afMmJN+Ygw zVM8HMGHhuw61r52D2/c2aSlxepsu2p+4UKX3NjtvN0fLCsup7L39UabZe/j nAN5x8YvLej1htUn0LPOMyJsBa80PbG3Ud3/WN+1/j/Xx+47/1lvAO608j9c 5+5/83O2/+ENb/+7/5t177Mkr8SPVzjOLqL8OctPNU+7Gah4rttzTUo30rq4 /XS351FpcElHsnl4t+c72uEnPoE93aq6t/NN6+ojKyzYeiztkx7+/MTJbs+1 QwnTJwUFHu32XFtx82zZm0VHhO7jeBji8W3IafZ5V/dqkczP0EPdnoO9Ik94 +Zbs7vYc3OKY2r9Qbme39e2fH398bzhqe7f7eohB9rsZOVu7raNOvRGmmPx3 U7f7XUPL8uIjkw3d9gVfXS25oMJrTbd9soemt73NnLay277R9gP/vR6M217V lwYljiti+eE5/72OCHywrauGettZ3julV2Mz9uwi3tyka9Ej+DTP09bL7pDO UfZ6WP7oz/WuMN4gz1FBti/Zennqna89QnU378Ivv2ZdWfY5OMC40+ap0jme zQjJdJsI9rqyOd15537MKZ5btdRW83cniPc2ytiiLzjMqxh4KE4whO1PuUvW TDBeE8qz7P9156jDLLfpcfmea8N2XujV4WpzB7P318jqixdNe2/l2W337nn9 DFsv9zeWZzVEnOd1Fud2LRN1I+554MKnnr/P8baXVC+Rc91AfIZsjOvDr93f G/zUqGvQheBjvHNnvh4/lnCebZfuDVDpZ3aMdy0+/WCa0f8Yb69597LP1O7j 55ZK82OTRhzu1n/c01D8pGj8Xl70uAmnf2Ww/bLUIG+11R828VSs3//eIcle V/DvTe67c52x7HPZebhV9fPNm7s9r8O0L/R67beeN+Ov9/bdd9h2Ur5oosKI 4+t4vmoxjXby7PVZY3HwUFpuIK/PwqtxzdFsezX+5HeFGslVPNfKc/x85//x nq7e4ZsWBJ/vNu7qqPLf46vgOub/vR+W6r1jz9099n48p+BRPSQ2sPYl83/r iLqG8/rKKN3Jusm2P5bhA21W/uw+fhJSXTSN13KCZzf+/tP1Z04TfzH5mOWw 60d471p6FkZ0sHkg2jtFFzGPMhuWNxfFjnbXC+uWN2Z/WFij0OcQr+XdeJ8w e7ad+ZntGuMqsrdb/9qy2mr0VuWdvMs718VULmLbGbS/Dmq/FUZfYO+jzA2b Znu/29ktz0zI+np37dLt3fLG6lGxByKzt/JeZB6pr0li8z2dy+NcrPeG8Hwk S1tytFg+8oFaw+9Tm3hXtjVOk9Zmr6s1s769/1MdxAtbVqUgKGCvB9tMf/G+ H4J4V+3GLXQqYnmfZdPGRu1azcvz2ycZGsK2YyUu4xdlHFnFO5KS7W74geVX TFZu1WhY123ewfK3UurhDQe65eE3OgK9DK1CuuWx8pq+JiYnNnbLJ8OnXZVb UBnULT/cOKH43Hql1d3yOmF5lLB2Q9h1/n9tT4TlIcLyN2HtqrDnuLB2Xlje JSw/FJYXCcsThD1HhN2nwvIHYfe7sDxE2PNFWP4mLA8R1m4Iy2eE5avC8mph zxFhzwthzxdh+ZKw5/X/tX0T1k4Ky8eEPceFPe+EPd+F5W/C2ltheaCw9kRY P0JYf0fYc1lYOy+sXyAs/xSWR/1fnwvCni/C8ltheZSw54uwfo2wPFnYc0dY ey7s+SUs3xaW7wnLf4TlS8LyK2H5vLDnprDnkbD+qbB+tLA8TdhzU1j+Jqzf Iez5Luy5Key5L6y/LyxvFNb/FdYPEpZXCHuOC8s3hI0/CMtjhfXHhfXLhI0z COuXCevH/V/7+8L6d8LGAYTl28LGB4Tl7cLyc/5jRcGZ8PXd8hxaN8LhA9xq t4wbd7Qb/8k8J5CPGdn28y7VdRTY5sku8/a+RrxrccoRm50TBPUL1TJzcm4S r/IeZlwTpUAc5e8qKfcS+zJQMIG5P2k9YMrSuSs9ehOn9500eX/0S5T4p71V PBQefpvsFevvbf+zpIsPTvMVebnLcl918gOY65jeg75CvJfV0CbisH8/JGZ8 ++Vv/IGTLybn5LDf2XmRpHSgOrGaOOxXx+y3qvep5qeOXGzv7Z1I9n5GF6oP dLwhTu+zf24/oerSG76XzMjav3/Z7/I0LPZePMk+jzjsywO/Ob0emsdHPXLz QNQXl6NeaJ/xiAtqF1MMSX9wX+k5Lx/VyZHO4JP8tleNqBMnncEbI0bf1B/y k3QDT55dliLZ8oX0Ad+Sv3/Mm51VpAP5OcM07m90CcULriun+K6/5iuKl5tP It5u76th4gLft/H+TddhshQX5YmNvEeWLj0oLvC6PQe1Cs+1UVzg/DPjX8z3 b6S4wHffvPlTQa+S4qJ1fz8jU2+OKaa4iC/tfVSwIpfi4uaftC+G+z4ZJi56 r8vT67rNl/pQXODS8pfPTAkQobjAV+TJHD2R0EJxgbcVxJcULayjuMA/fVkm O0S2nOICT156zTfdpZDiAi+sjo5J4L+guLj5J+LictQjuOd0mWiDaz4UL3hd brjhTd1eFC94Y8DABS+9Oul+By9cHWa5MoW9r8H9rh+MGKZbS/ESr33u92hT GcULrjB56Edpm9cUL72/WVVjj3thNsXLzUsRF/jO6AdjHPrNprjAd0mEzDEN FKW4wGX3PaivD2qluOi9xVMu+35610hx0XtUpu/OOihdRXGBH9Q1ubGytoTi Auc/bzy2ewTbzoCfG+fgK2WdRXFx81LUI/hLkYziLdmLKV7wNN+p0dMiZlC8 4Md9YttX6XbxES94wouPGk8mNFO84FfnjLZcOP0jxQu+o+DnqYZZHyhecJG+ msembi6keMGlxw6uUNLLoXjBH/7K3voy4THFy81jES+9P17Wqf8wUXeKF1z1 fcb27T2sKV5wac3sz2YDWile8NV2OanmaxopXvDUhW6rvSdUUbzgIw0VfUT5 pRQveIrf+rgg73yKF9xNJtS/v1s2xQveGDbW8yb/ER9xIb89l7VVYuUze4qL 3qMwe4rjgSQTigs88KPEhMhZTRQXuGFXDl+9uJbiAp+X9WTVqKvvKS7ax3/C 0UzqSyHFBS6iqjMgcVYuxQW+d+/eYOd3Tygu8EuLRUdoyaRRPSLvFVl3r2LR W3+qR/CwZ6lm2ao2FC+47YPr76zi9Sle8Dp5eddxQfUUL5X/dafsnvmVFC94 1eO5GaPl3lBc9F6FkEOLHl/JprjA16w5vMf7+SOKC7xx56R4g9/JFBfy5M3e wzcn9FvErhtn+Fi36ZY+GmYUF/hj9+tjJzhpUVzgW70nT09rqqa4wFdGdKl+ TS2juMCnGCpd1zlSQHGBP3W3cCi79oTiAs9sk7JTs0ijuOi7DwM3rAhblEhx Id82dnY0VW6dTXGBv69e0BZ935DiAlcem245N12V4gI/Zvx57LOgcooLvP2w 92QTXjHFBa47JGDz16pXFBe4+ZQDe0qnPaK4wN1P60orxSRTXOAXZ95I/20W T3Eh/7+7vLjA6JQzxQVupGz8zJyvR3HRvmydMtfEK4oUF3iU8t/HJWKlFBd9 LyDs8MPspnyKC9ztjGxtktxzuu9oH/Rtk+p5wY8pXvA1O4wGDOuRSvGCa0o0 /M14kUDxgqd7BSf83BFH8aI/oihjrx89ajrFCx5se2v6pbMjKF7w8r8tK113 DKDxRvB7+58PC8nuKbhhJjZIROQicZcR9o9iJ3Xw0R8Bn2EZrz4j4isfeS94 a7rk5IC5NXzoCe7p4+mioFNIetL3fKbMkGtckkt6gi8Y8sp0w91M0pO+XzD9 1t5tYx6SnuDDnzz4ttfzHulJcX2s97m//Q7phiM33xMw/P6F74c2ayhQnrAe +zXNvtoY9+hN+d7twQ6OI2xX8X7MmLaz9+gu8vMJ1rO4HTvdIt5EfmrW9U1a 2OzFk1o+wv7WFbb/Is2sjzj3ZYhuSiPbT4lZ1KZbbTmdN2pFkmPcVLY/8ixO JTQpYH83/8Ffn0/bmb1JnvyvYq6L7NcrlY7c70X+/5k7QT44czdvcvqw9ZKK bH9NAe+jjUqT7a/E9sv0JF3DrVR28F6qtg9dP471X4B9kzsOmD8MZv2fn7Bi aO+grbzy4KQ5W+RZ/9u3zEx1kOjejwB/MnNSTmMN24/AOPmqWh198Y09yX9c 17ela0pbpTrI/6HM+O4VdauE/aps/2i0zmorBc8jvIVjP4cYGrH9I2Nm/ZfN hhGBE1ex/aNdPcWkvg8M5QWaHB1/tSfbP9qnpRqfOfNsN//B48MWie27IE3+ n2DWZVV8DEx/FSdK/l/5fSvo+vbTvK1Fb471dm8l/+PwHr70iNaQJQ3kf2rB RJP9sad4U57dOXrlWQX5/4xZL5zw86DI3o9F5H/RjWedAWUnePtrFryN5bP9 oEM+gS4qhRHd/AffZ9Yyo5esBPmP8fCHOxZUeP9i+/tnnFIS+jZc5N1f8aNr /YLv5D/G4Vsjh8yfPv0T+X+daVcCCp4cO2Hwgfyfy4zzy6xfVT5IjO3v+DqG NVVpn+dVPQud8lWB7e/MTJn1auamq938B19wvLflyrFi5D/Gva8t8m+Z+L6N /Pe+dkHfNuwKT2GAxv1arS/kfwMz3v68KPrYMcUa8n/lkY9HTK9f5g17sNQ2 99Rb8r+daRc/DLletPxrPvkfvEm3RTvtEm8Mf3+ZawTbf1HtZ2YXpnGjm//g ykNHZqxy/0XtJMa332wJXDDS5zv5r9e5PXq76XWeu+jhw8802X6lae1z6SCH SF5U1qRLN3uz/ZGHzPj8+Zzev3QjXpGffKb93ndvSMTCfmx/BH516+8zR8sb +786/GTzbYxj91TTLGia94X87JjuOyKtKpr33EH72ZFn7HhOjwmxu2M7oni5 VU+aDW8XkJ97mfF2rfv9Wpfse8GOz2i01V3sG8WTiy89fnj7Y3q+uJeJXdxu GsdT2zBSoUGimfyhfl6Wea347E/kz6OIaREd+2J5MqvXuhmoVJA/OQeOijVc jOFpuC6LfH4rj/xxYsbPv5QlRPxNe0r+vFn7dlFZ4q1/2r91rjMGPSLdeOJB 7y/2vcObnfxlzpe9PvT8xfm/XAj4oH9mHOlpztjXdXZ9nBncQP6LMuPPF07F Drx1uIr8J11XH55zQ+ct+T+1KcU8TOM279SZHl25cjnsc5AZJ5+6pTLR2IXN 5/O9PL/ti43j3cwtVPuVkEr+a4z5pJxWFc9T5ucse9NzPvkfdWXfi8SAeN6k NZtrzotqk/+wn1KgqReTVEP+Y1x6mePPqqGn3pP/0Uw5M7tsUnIsi8h/fWW9 TbEdd3g3EuTac/c/Jf9bmPXPcQO6grsc2bw9MTRf5/r2OzzvvND7W2LYvL23 u/usssQEnu+OkxlPXntQXpQjFx03c1MCL1Lz2EiB9niKK/Tlr96Flgm8U/0z Ntlqq1NcKGe9eP4hI8cKiusFU470nEsms+JKKC6UM+PigbbyqfkUF46NzxUP VCc+prjeMOu384peDOkISKW4ziRbL8mc+c/9MbXXh4MqbN7+dduL4x37/ok7 vNc01a2uFNdtM5WvgQ5JvECPO0qGmfoUV2DHMn7zwCTeOAm36l+fB1NcKKfj 0Scpu09sfotyiiYX3z/av4DiCmLKMc5fM2uVWQ7F1RkwoL3+YiJvssuFfpEh DykuHBVKzlUf6LhHcW2tTois0k7kjT0SaL1YhM3bX980Kxjomcxbn+K1Ocl4 Cvk/a3jl9r4N93ha+yrtHHLlyX/Y9y5p+eR+n80nsX47fvWYkmflL8l/d6ac FMle8c9HPCX/y0/uMJQIusc7/slry4+bKeT/JafiA9tN7/G2qu492E8/gQ9/ LJj8jTvuZMzkRTSvxzznjBg+4mSwas+Ni4n/ZfIuxfHrYpL7L6Rxfnsmj7Lr Z71hn+p0Kl+PyVu45YPPavywyuvXHOL4f2sutZavknCn8k2ZPKf47HGPadMF xHsx+VXs4h9iimrWNI4dxuQ/E0y3qA8SMySOPC29V42URjB7vT1k8hOun+C5 F29u0vJxIo78x3FQfv7dcQ7kzykmX1o6s1PRe/BEOm8Zk8/YTZpSoBMxhjjy rvV3J65K+zmSrhPYn9z5ObGfUX/yE+fn+omji4l8Sc/ZAuLIcwJvnSzw2DWZ /BzI5EVKYoPHWVwzIH+WMXnLfY3+z/6kaRFHfmUetSdmm9Nw8hP2m3MDJTzi pChvWcDkRWe2TtBTGfOHrsPVTB7SkTBxpvTUheQn+GblxddUTpkR92LynGGP TjRKapqS/8iLrJJe3jy9fhT5uZXJW/4syP/Y6ahGHPnVjZZTcy23KpP/sDdN OtIePVec/Mc6h6JeM9z31HTQ/biK8dPfzVitXvcrxTWRyVtenZkbOqPEhfwH n/Gq4XdY/3HEdZn85+9wH1P1n/oUVyT2VQ0cfORmCOs/jsWb6+QPdCgSR951 mrfROmCYHMWF3wdp62V0PBehuLDOQeREoYKy9g+KC3nXDEuPxRly9ZRP3mHW OXxivpcEnsjwaoZDB3EmL7rm6R2lrGRL8YLbyX4qmTpqFPF2Jr/6PnrjlKQT I0iH/UweNWu+8+vzY4cSR552ROVYRuNCVocBTH71Lm6EUukfWeLQQ75IapR1 eh/SB/ZZF8a7rdHspHYY6yW6BhWP3jiqifTpyfgvbqp36fupGnZ+hFkvYc98 Rwl8K8OnMBz6vGTytMU1v9Yeec4jHcBPDfmc17pcjW1/mHyv2KxVd/pbVges iwhXjBjpP2Qg204ycXy58LJQks/qUMbkeyvvBfiqqkgRR/4pGDWqeJ5LT7b9 YexDs+zyUqf8IH1cmfNaV96z/vWonvTJZfy/JL3S8GEOe53YMOsu6pjvK4Hb MryK4dBnGpMHKu47z/sjZkQ6gB8xMpWQ0lMkTvNyJnIli8+wOmB9xUxrecke sn2JY11En8qeq6Y29CYdXjP55EtvI6/6ET2II7/9fLeywUfrD+XtsD+a/dS1 bus30gfnza2c1XPa5hrSB/mtzqE5Pfs6lJEOu5l1HcOY7y6B72W4MsORL2E/ nXKR4JlfuhU9F8Yy+ecg3/r2VS90SB/wqO+n5SaPkSWOfNivsiDtRBerD8of kJyuNT9PnDjy4ZrKdFeZqWKkzz0mj31XGXvp+upfNJ6GvPq2Ui+pkOttpBvs XTdov+9xuI50a2XOO0o7wrfKuYJ0g/8Wsn0Vtuuz1w+Oxsx3mvD3cuaoy3Do hv2GytMU812HmZJuCpin/WNWfmmWBukD3tUWOkHsV2/iyJOvez0YpnqnF+mD 8rfpnFwVqiJCHHl7D55/11XnLtLnLJMn7x1Rqb7Uv5U48vZP+qqPSy2aSTfY T7wRKd1ozY7D47ydzRPiwwa/Jd2QJwYf97tXLcNeV47MuhdD5rtO4M4M12M4 8tttTN6r5qYzRxAxi/L2NCbfvN+u0HQz1YD07GLyatOzsnKxO1VIN3BDXY/Y TXvFiCPPFzcqOvuyhdUN5Ze4TbDZZcKO3yLPd37m7fA29QfpBj9L70YHt89s Io7+whZ7OyPB+QbSE/Zyt26pfFv+gfRMZ85rsc9/kffPQtIT/s9v0bLdvjaX dBvPvEf0F/N9KPAJDG9nOPT0ZvoTCq7eJsfFnUjPy0zevr6X17AFYdqkZwWT 5z+397B8WT+QdAMf7fSo8HDPX3xw9DukTCIGj8/6Sbqh/Cjxn2c6gr8TR7/j es/Q4Y9bv5Fu8POS8YODoZPriaP/Yishuk3uOTtODnujP7r9x0x8Q3rivC33 dmm4f88jPdF/ER38PvSyRjbpNphZ19TAfGcKXIXhtQyHntz13uDcdd3Qmcth z113DXsuR71wOfSn909saEy3cFlE1zO4rfT1857+U8ke61jcvDsfCgLmkz/c 9djwh8vhD5ejfPB3MuqHJmvMIX/A1/F/JQ3VtSF7+n7ypf4rt/5yZfNMxj7I QslU2saAyoG9qXWj6EFpKzbvwvcH0gJ+7xqhT3Fx12kjLi5HXFwOP8F7Lf1q +OikI/kDfj+o0qV+ljnZY/2JRJjM2QU/p5KfsM89ePCtop4OlQP7cvVqTxH+ BLIH3yplfbCf20iKi7t+G3FxOfyh76P69zpgYsCn89L3Qscc85P8Ykj2WE+S cj497FuEJfkD+5C1zzKc3mlQObCPilZeeok/luzBE+b/+Oz1XI3yPfoO4cpY Ef+i3hQXd/024uJy1Bd4o11NmLjPAvIfvMX00UbdIZPIT/BJk8zDboSweQvW mVSIyHsa7DAm/2Fvaq0wRdWCzYdhnyr/eabOfrbfCu5q98dYMUaJ4qXv7c65 OmNAYg/qH9H78wqHZq4rbad2hrveGzqAm++u+563zp90AE84levoUehMcYF3 LH9UI6/B3kfgx/XbjOYFq5M91p+sf2/9q36JLsUF+6yPdfYZL9i8F/YuTfP/ hIxRJXtab7Njb3Hy9gGkA8oZ0JRwX6HwD7Xb4CM2iL3+yWshHbjrw6EDeODO 5knKfzxJB3D+Ss37AV3suAT4yqClUifFRpL/4GHKF9cs/aVM9liXYtfnxIoZ 99UpLtgfPzlOQhDSj8qBfc50j+m7TiqQPfjsqKwho99LkQ4oxzbI4I39t3bS ATzzkPLQc1lf6fkFbnxNxMtKl+0Pgk9j+n3QB+vPZ50o3yaa50z60HdKM2d4 T9vCtlfghlpfDks7qlJc4Du3Bkmv/DuA7LG+ZZK4qcaM0YMpXvqeiYxlY0g7 m6/C3q0iT2qHdH+yB2/ycHdxv92DnV9myhE/IqsVffA76QMus9nBZn1wHekD blW1saz/SrY/CF7L9PugD9a3Ny8YfeBDti3pA75l7vlpA0zZ9hBcNXa8pMsj BYoLfIb4JpUbZn3IHutkgt2vjpfQlaN4YS9tO/m+TRObf8I+a0eS1KUJEmQP fsooSbXPpN+U/6Cckoj8Aa8KP5M+4JE+k9XXra8mfeg7wsl7DtolseMG9B1O Tn8Q541jvjOC+5G+3/tr2gn3Jm+6H8HPttZKNa6zJD3BIw4VWBbkapM+4I4p i3iJFv1JB3DznV7isjU9yB7rcwxzTzalxPdhxw/hr4y1UQ8HNv+EvcKxLyK2 Q0TJHtwxQlL+yO9W0hPl7Ew+4qy+/SPpCa77/UudlGQ56Ql+cff05/3ji0g3 8LGcfiLO+4j5fgf0xL6AeQWj4zSbPElP8LTFL9wyg01IT3DHfpqfyu+w7Tb4 zQ+SGktSJEhP+j6FbXmW7eHflLdjXZB4odPj68t6kj6wN9ydY6Ou3UJ6wt77 jo6Wx9WflJ+Dfz4VmHDqcRPpiXIaptkILt+uJD3p+yPps9OiC96QnrQ/om72 l+eR+aQbuD6n/4jzmjHfxYCe+M6C8/htq/rUu5Ge9L0Gs4fyEjfGkp70nYv8 hzzBtSGkJ3ig6ZMxN26Kkp7g2aa6kYpubaQn1h3NaGnU65v0h/SB/S7TAde7 lnwhPWHvzrMumrG7hezBtVcuvPKypp70pO9fFDYEfhB/R3qCF+UNn3esjZ2H Al8wPKlC/XUO6QbeyeknYn/HDsWnfVaXOZBu4KpVjubBiqNJN/BEA4tWLXu2 nwje+vrnEP/cToqXvhPxccxKUfVmihc8ZOexH6/efaR4wY/NzSieOK+Y4gWP Ma5YUqrJrhPGUf35F/UvRnHEC5j+o5POifCrmTeJY73T2C8HBea2N2k8kNtf g/+0HyHpx7PChVPY/gWzrombl8YL4dz1VPgb81xce2E8m7OuCeXgd669MN7G WV+EcjDfxLUXxrnrfFAO5oO49uDb+S2WorLLiGPeR+9urrhdgy+Vg3kZbjng u5rFThxSYeffMf8y73BL6BXnOVQO5kG45YBn8PvEtwc7sf1cZr4jqcAv/FGr PZWDeQRuOeAjGh4Va27hs/tBmOvaxW+P79x0a3YekBlvV0447NH34STis5lx 8nkDPVovH55A5/Vb/J91blydrTjzreBLmXVlXM6dh8V1Xsfc9/OY7xGAV2C9 OcNRzhFm3pNbvrB5WMyTTomzuTx4zDyyx/wjtxxh86TvGPsa+zglJW0XdvyT Wd81hfleAPXXGD6Z4ZTPMPOJ3PMKm/eEvX181MCuR7ZU/jxm/nE0810A6hcw XIPhKAfzgCu/zk6qdGb9xNGXec8//u5ijp4MRzloR+3kth32+mlI9o+Yebf1 zHv7wR8zPJDhNA/OzE/lBKjvszukTTpw3+cGzn2fG8rBvL/dhWlqRj182X4o 0x6uODzgwJ9qb+LYR2ZhPOGJZp0X+TmVWed5UPZG13dxdr57K95vLfPtwrfg Gez8C1POFLshG3u3TCc/ue8bxP0l7L7gvm8W9mFCrnPue1lh/07I9czdp095 spDrENcJl2P+msu5++VRPsoxOLbl67w8L7LH9dNNB2Z+lsu5+9bpucNcP1yO eVgu5+4Tp3aAmQfspjMz38fl3P3a4EnMvM/FK2u+T0taTBzzO8/aH92Z5LKI OOY7bP6ax4/cNZc45mUU03vzPLPY9f/ccWDoLIwv47Tb4MKuT+79RfP+Qq5P 7vsxaP5XyPXJfS8i7csQcn1iXavrico9kWbsuBPWRXz0Wmky5bAHcazDnCvb 76yIuiPbnjPPO259IW+NUeKFXHHwI455Q4fo4h8OKguIc9+3SfuImfnQ5L3q giW9lxHHPOPxxS9my3Wx9Y75rGKJlR0t4WyegHmNb4OHlCwIsaX+EfKuJYH6 XlXn2HU+GG/f/v14U/QYYyqHWy/gXP3Bue/TAOe+jwKc+z4HcO57EuBnAHMd 9rK28LjfaEKc2o8vR4tU88cTp/dcDsl9+yea5Wg/9xRLf7slw3LkFar36zSu GLPPO9wXPkU+Z2wCltJ1ImyfKXffIvzjvvcAHOsKuNctdzwc9tz3M4Bz33tA 8zvM/HtHQIJfkxXLMc++Z/fZJM3WpRQv+hGKj5se+Cb6kD33PQ+0Lj9n70ze 1e5+nn2wYsPj5be76ZPu/3n1izPd2+HEyQ7Pkqy6+5+wR+L+kVvd9eGe938r n1vO/3Zerv+4Drj9IMwTgKtZu5QkmzvTe3HBzbq0joc5mNL3fMGN5LJS3IZr 0neZwe3FzZ/rqcrRd9KpPsclNoT/FBNgnAt8zsYlRiIWP/gYrwFvWX1+guzX j3yMO1D/L+/AZlubMj767eCnAx6mhXzM46OfCT5ljGd1xZ1MPnTgtvOIi747 1y4bssNOneICjz3a5jk3X5biAt8genNy0ldRigs84ZZDULBbC8UFLpvyxy5U lo0L/IzfqaeLfd5SXPQ9tHVGLXdWsHGBP7u9QKt2DBsXt7+JuMA/ptVv2JWt SnGB95kR0+L1rR/FBV6+1+dE8BIRiov6kZOPyDzqaqa46Pm56emYP09qKC6a 37NMi7olX0pxgc+wDHkybc0rigt85OF6uS2Ln9D3LjF/p2oQudMgpg/5Cb7/ g1/uCZPf9N1P4nOKP3Y6N5Gf4EPvmRdZjKgmP+n72Jdrju3zKSE/af9Z5vvB K6/kkp/gdR8eWr+f+5i+Y4J2KDns29d0Lwe6v2h+cnz7xgu7Ten+onUTISWf 68O0qL7APT/W2+2+oUD1Reuk9M3HG0yTIB3AJ+n/9Jq66CfpAH58f8F8rd5f SAfwyI3tVye6VpIO4D20L3qMCi4iHcAj6kv3N+5+QTqA/17+Wm+kVgZ9R/Un Jx/GOA6XY/6Y1tXie0CMnuA3PVOmXZlvQ3qCy3fmP96RakB6gnfOr51+47Ea 6QmuYBJu29guS3pSv61mUckPkx6kJ7hPj01NJadaSU/wwt2HXjS415Oe4NHG cvKDKj6QnuCxJmdynVYVkJ7g+W/qH/ibPSM9af7HVL5k4uuHpCe3vwA9ab2o otSLjQE+pCf44dNhk9dFOpCe4JOWF6d7W04iPcG11gSGi64ZTXqCi2wY/HTm fmXSk+bVk9U6Q9WlSU/wp0Pi++fz/9J3aSlfq9x0Im3Yd9ITvFx5pU5NXi3p Cd4/12jHQtUy0pPmw5X27yuYn0960vqgvWaPc8qzSE/wI/yTvX+9SaN2krtv COcFj7y/dqPv3EI6L3jJ+yU3HP48p/OCH7tludTFNoPOS/sFt8fZLeUn03kn cPIQnJf2sdWPDf62OZ/OC+6idONxQ9hTOi94tYd+uJ3BQzovrRfbMUpkz41E Oi/yfO55wQ9v7Xtb/kcunRd8xxrRI3pbntB5we9oeqdWH3xA5wX3eezzxMTk Lh/XJ+13ZL53j+sTfDvzXXtcn+CxzPfrcX2C92G+U4/rE5zPfI8e1yft82O+ O4/rk/bPMd+Xx/UJbsB8Rx7XJ/gc5nvx0A3848N7ebVHn5Fu9J6Y8Ub1Nx4/ It3Ai9cq8irlkkk38EUjxxQ1tt+m+sK6Pu79Tu8pGRK94NRIA9KT9lcZ3so8 36VCeoIf4F21rznQl/QEj1D29hzpKkp6gle2ef2Z0PGD9CQeH9H8YX0D6Ql+ xixqtoZ5JelJ+0GXSMcM7llCeoK/1MvPPTvnFekJbjg3pcohL5P0BE94XzBS +34a6Un78sfXOLS3JZCepE+15RqN4lhqP7FvxmKe0tOprtMoHwbn6gz+rmJz 6ZxJ2qQzOP/Zo7LjdxVIZ/AYj6RRwQESpDP4xU1xnfo/O+l73+DX6qWPLzva RDrT/qSXm3eutGG/kw4+MVx8q/lI9nvo4Evsq4fHKrDfPQfv1eIZ5+L1nHQG TzaZf2NFeAbpDP7W2+/KrP33SWfwkxHG43saxpPO4DLv6nIOq98knWlfqa9u 0pAQG9ITXN69P/91lgbpCT7s68y1bUGypCd44aVasVJDMdITvOHLHaUXJq2k J7hiQ8FGqRUNpCc47/ET/mzDStIT/HW/20pPlUpIT/D49XN/jH/8ivQET9su 61A9JYv0BK/p05me9SCd9ARvS8oM3fo5kfQEX1Pj1nNXZhzpSe+F6jXoulr+ dT72yXP7a9jXxOWYB+JyzOuAdySuruyRPlOAeRpa93R+uVM/KZ4A8y7gcRuf RP0xHClAP5/G52KealevERdg3TyNlxiduOq+s42vzqwLp/3op4wd/HTq+Vj3 TOOa5SdPPrv0nv+FWb9L4ze1y07PG/+aj3Wo9F6E8ZePa018yse+JvSDpi32 l/ozZyZ9twVcZcKxD60uPAH229B7pyq8fNPSRwowLgCeybx/APsHwLNX3Wnq md7Op/XxDO8oqqo5vqqBj/Xf4HIJ/QP7S5XzsY4ZvGl6Xr+2XgV8rMcFHyse 4ffXMJuPeTX0g8YcO64ot3CSAPNk4B2LFPuKz9ISYJwO/Fz6tTv6VQ18rF8H N710N8UwopyPddg0DhSjkebhX8DHuBt45c4ZTnfus+t10d95wez3x/oAcJfE n4PaXcr5WCcN/rH57O1o9wI+5o/Br1kmmqSnZ/Mxzot+hB+z7x7rsMFzw3ot nFb0mo/1xDTvUfh4Xy+bbD7WkdM6fWafO9Ylg0t5WZSKz3rKxzpmyhuZfeUY Z0T+lqRuvrZvrasA87XgoclTFseKW9B9B15xa2Gcj7ku3Xfg/sO8FPfOH0r3 He1PL/iwq92/P9134AEvHVulL4nRfQc+efJYow/ZDXzcd+Cxo1a/DXlVwcd+ DPBZy3M+6UQX0X0HvsEuK352n1y678DXHA1s+xn6mO478DbN74csPt3n4z0R yDMnj/5+V0OgRd+1BFcuGupT11uR7kfwNGux2QtuSAkwfgoeZSWmvE/qLx/7 ycEj+g7sr1z+nu47cK1+g9cWHSmg+47WDb27e1C6/jk/jrnvwG0frBmY75hB 9x34E1Hnec+XJvOvMfPryGM/DX8QKScyXHCWmS8HX+87bJr85wECvJcBvExV 2edhkLgA7zsAF9eM2PLmyE8+9pODP4lSVxi8PJ/uU3rvV/Ospyf3ZtN9Su9b ssxJ2PzpId2n4H4Xl+kNvZtE9yPu16j3OlfeKmbR/Qi+wdu054KCNLofwS/o tN5yK03gY7808qguq4uvP5ak0H1H+WS/gyt4P+L52IeMfCAkdbiWyaA7/Fxm /oM7zoZ5Su44FcavuRzz2VyO+Wkux/wc+GDnU8Z3D1oKMK9G++mlrt7St9Eh f7jzzlhHwuXwk8uxXoTL4T+Xw3/wJ1/lAvdIeQqwzgP8kFF07aCjMwVYt0Ht 4c2cvCfzrChesm+tjy88Mk6A5wg438dX5EHkGNIBPKvfj8A8x+H0fAG/PNup zDFCRYB5RPC6PYvj/vyQFWC9Bfhe+5mnX2bICDBfCH71taT3hWdiAsw/gbtF jUwQzfjLxz5qtM9tj4YP8ttpJ8DzHdzRyJy3OtOY2hPwqi2T3e6aa9J3l8B3 Zz7t8iwYSs998Nk1qQ+CDAYKsO+U1i9M3K/Ra0U/AeZvwBsichwjvXsJMN8J 7nZW6/Sl7yICzHuBb7s2xvaUXgsfzwU8X4au2SxYqsOj5wLtC98bv6Hrkw49 F8CTUj/01M4dQs8F8Brtq71GevQVYN6X5scWxy+N3C8lwDwu+Ow01Xc5x3/z sY8R3NNt3RKBfjM9L2hfmqjrc63H7/iYd0f7n5W82F95toMA60XAZdrrX/mk TiB/wKe8UPux9NtfPvyh/ZRzmhWc+raQP+DJH0PV0td+4m9i5he54ySuzHwt uAjzncdJzLwseMOqli2tW6zp+6Tg91I/7M4dqy/APD3tA2D2z+L6of3BK6dY Zz7sIcB8OfiNac3fj+1p52N/LPgZlZv8lI7PfFwPtL4++wSvzK2Kj3aGOw6D 9gT87s1FKw57OQt0mXYDPPJ91fMgSRNBOtNugG8JKojq1VtTgP3qtM/7aZvZ hjG9BdjvDV43tjFTJewXH/ucwT1Cmq4L9jbzsb8X3Fx184ZtYz7yMd8GvniX +fTUZ+/48cx8G+2TY+JqEcIHMPO14C+qVh6NPcsXDOfwKwwfwuxHIvsN5wap eegJNDj8CsNjmPwSfNbSUI2X4kMEiRxuznBVZp4SfL2Lx8uachmBBocvYDje uwQe7DEv6LWFqOArh69kOPbV0/jSlethGzt+8BM5XJPh2GcOvnTLylmBAQ38 rRw+l+HYdw0+JHFqobpqJd+WwwcwHPuQwTOeRC+ITyrm7+XwJIZjny24FrO+ Wp+5nrnjVAbM9Qwu79u50GTNZEEPj/88H8FPGw/U3VM5SaDDXOfgFhU93V2X jBakMdc5+KrQ8yL2YYMEyNPARXPkA04tlqM8jd6DtUxK/YaZON0X4CbDrqh5 9/jNR/4GfkT2TmrViJ983C/gxoKYO+b5zXzkdfRemYsZu5KnfaP7CHzA3+CA qakf+XifFPjbp+9r60bX0P0F/uXlm13h79/z8b4n8HP2o/7Mv/2W7jt6v+bE FJky2ULKJ8GXZh7+uaIqm3+SWadF7+85vy3L6Od8gQ3TfoJneLrHThazERgx 7Se9L1ahftaKrSME2Uz7Cd58433r5gg5wTnmeQ0ufiInePSiPgJF5nkNPnbV +IK0jD/8SuZ5DV58++SIzxe+89OZ9hZ8oPEDnmSfr/wo5nkNLmv44HdM1Cf+ HqYdBt8x+5FYtnc1fzXzvAa31x918djgcj7ehwWec/rr2ecvS/l4zxT463Hx C44fzufXMf0L8JQrg/q+nPCEj/cD0vvqYgy3tr2yEuC9e+DXV8VHK0mqC/A+ OxoXWn/4crlzf8FhJh+g90It7S2pGd1DcITJB8DfF2TaF1xs489m8gEqf/gJ idyORr46kw+Af1+o6OE3pIqP947R+zh1cyRVN1fw8f4v8Cm3h6c9HVvMx3u1 wH/vsJzeM+wlX5PJB8C/nDHbcG3HQz7WVXDHl7D+hsuxj7TbeyyZcT9uvwDj fuCLl5t06sf40/s/ufYYDwRP0bmk0+nsIMC6E3Aj44Wzj5t40PdEuP0FjE9y OfzkcvgJLi2ec4M/eRH5Ax482yS63t2W/AEvPX7RyuKiK42303sdRIfLO60a J8C+RPDzC5YXDKwwp++N0vx4x7UPS8xGkT7Iq+2tyyXVamfTecE/hj5ULT0x mcoHvxkx6/XXzWOpfHDZRsV+dgaqAuxzo/0ZNn+eTB/Wn76XwZ3PxfXA5bge wH/1Xp8a/tab/Kf9LiOsEzrS2HoEL/bqUX3670TyH3zxhVdVNUdHkf/gqx+f W1Ehp0T+g1+/4rT1/BApAdYhgbvy7hktv/aLrnPufCvt6+ZwxAX+MUrTUDB0 DsUFHrsu1OvOHBuKC3yYqIzCIE223sFNH/mKrwgfTnGBZ808cqGHoRzFBb5q UX7x1nc9KS6aP9UeNlbldjvFxZ33xPVP85Wv/TbohTtRvOAXJVwHDPBYQPcF 9Qscyoes2zeJdKDxrqC/D8wt+HS/0P451aATPY6OJn3ofcaH7czPjRpH9xH4 6nfPd451GEy6gVu9Nju5pXw43UfgKRWrXnR9kCE9wXdqHhk1Q1ae5q/B5w4q NOQripLOdN4fel35G3vRvDZ43OR2v/rpP/jQH3yOwtX50yd10jwC+OKh9x5E fKzjo15ofvmUxDepmG80vwA+qOTNb5el5XyshwOftubOkmWJ1TTPQvsOme84 ox7p+w+vQnZ3dE2h+qL3XY0/mxEVPY7qi8bTbunX3LQwp/oCr/t2qeJO9XCq L3pf5eQFq8bnjab6AjfOzUoZ2F+e6gt8i1XbqVybwVRf9N5f9eU5/aJ6UX3R flOtv4lp7TJUX+CV78pfGKV18lFf4Ev8Pyntdhal+gL3/FtS+u/6H9QX+Num KIO7eT+ovmjevH62qdOuGqovcO/QDEe73HqqL/DVQ1Y3/Fn7luoLvPbP1iPL llVQfVG/rI/X8YaVC6n95PaPUI/03u66sUYt9pZ0P9J4PNM/Qv3CPvtMs+7t V9pUv+A/orf33T/SiDiVw/SbUO80v683PbaX52Cqd3o/+rHBbxbrqRNHOVOY /hSuB9j3eeE8p/OdDF0P4PcGuFb+EWevE5Tjz/SzcJ3APqc+xPqUqyhdJ+D8 v5ZuLmfZ6wflrGH6X7h+YL/re1u+rEgrXT/g/Vfa1A9+x15X9H50pl+G6wr2 DYHH9rlOaaDrCrwwt7bN/iB7vdH8PtNfw/VG9VXseiS/poKuN1qPneJ885po LXF67zXTj8N1CHv9LJVnRabFdB2C35BpMXrgUkYc5Txg+nfYNwv7/1fZ2cf1 eL1x3FKpyVZR6UGZSEuj9MSKpbhv81Bp2STS0+qnSLZG/BY9COUpIS2UpS+j kTyFqEZE6UFFfhRFRhOxtNLD2u/12vlc92un1/eP/fvu7tzXfZ3rnO997nOu 6xM57Ez0I/Mq4rgedZYQt/y6D/EJrv9F8sGPdjlSvIFPdC28e3yNCcUPrcvW LZPFKGtRPIA7+CtlL7oh9S/42zlhLYElUn+Bu7tP+W1OsuR/8LDdWkPtZ0v+ BO/b8K5v0fA68g/VeS3WGrinTfID6ahEv21S+7CE/EA6P7FRteZpy8gP4Kty /Azjrk0iP5Ae1Aoj0eHVSPIDeFZQmWuMojr5AfzGZ1VT/VKk+CcdjLCj1dMV pHgGf+t99MiVFVJ8grdmlv/6+WeN5AfwIM3D60cY1ZIfwNXHd3rO+LmC/ACe 2rdnoaPOdfID1gvrxjhftM75mvxAOk6Pwp2/rp1IfqD68S8jzQxe6pIfwONL R9jaXFEhP4BfW9295Y+YbgF+ALdruvkw69Br8gP4LT3HUAP7p+QH8HGRP99Z rltHfgDPvqhXF6lXTX4An3LQMurPTf/vd7YvBp5hH/BMo+CoQLpQ3HoHz8Vz 2I91inXwgg8dTZxF5LXy12N/gefYp+DXKbie59jf5Dn2N3mO/Qjw1N6AGYph 0nkD8B7VJRqHAwNpnwI8xMR68d7xX9B3b8pbrTtxZ2rzHLKffy+F/eDmlsMN B61bTPaAdxqcqXmyxFJEniTVsze1/vT+bjfxOcfjGVdg+SHgi0dcDlVSnyQq c9yNceR/8v5H/ifPkafBc3zvlXc9v0+E7/A8R54buEqq0SdFhf4i8tmoHk+w bcuFzjniXPb9h1+XzZfDJ7PvQuD3lpipPnm0XJzC8ULGkf8JPu7cxvi1nR5i JccNGUfeJnj5zMG6xiOniX4cL2IceZjgniwfE37j12XwM8/hT/CwpW4/qeQH 0D4deKGC7JPLV7zJz+CLgv68O2iwC+3fgR8pP/Ty+DGR/A9+u7xzx83yybRP B77WY6ln2eTR9F2Cjwfss/Ac9+U58kV5jvkT3MT5m/+ce+VL8w/ld9hUrdiu IZA9fLxh3uA53ld5jvkQPMS8J+6DY4HiBmYnH2/hcjjGL88b5HCMX/AJ05w2 33b0pfEObs845h8+TvC8VFc1a3O1qX+IaMT8g/ciDaeBl0IHLhRtmR/xnjCV 5S2GsfgEz1Qz/t4524Xet/n+wvzGc+Qx8vMzzjHy/gfn/QPOPy84/Z4yjjxz 3h6MF3nzGG8n8i15jvcHnmOc8hzvFTzHOOU53jd4jt9lniNPj/cn7OQ57OE5 7stzB7a/yffL93I4+p3vL+wnypv38PvoNktppUru1zS++H3VDXL4XG6/VZPt t+J5wetj9/aEq35Fv9dYR3i5hbf7Z86mcQRutDXm5OUuZ4oT8O3eZgE23t40 /2B8mbLxBY5xlP3dnfDt7e60b4v3KLWJsiLtBikfBHy8T19ufJCdiPxVvt/B 5c1vfJzDHv69BfHDc/QXzx3k7Hcj3niOeOD3kXE9z9FftI7O9iuMv+NK453/ /rBIjj14r4Yf/CI9g0+FWYi5bP6kdZmS024vyxCxPervdvjz1blML4qfZ/D+ Cf83jjMrX3I0mOKKj/MQFj+8P08ye3g/qKtOqHpdG9Zv3frNlIkH/d6P6He9 e+w/13fgQ7/653oHfJtizP7rafv77VPMskxa6LsmtV+8Oen6ZOeaJPYb78u1 zDI1GvrX/09nutt8f5WtjutVU0rrF59bHR+72Nzs7x8tpnvO96+8dv7tc8mz X97zqi84V3/LMKFf//5b++X5R16//9v+hR3wTx7TX8N5Ifjn0sPe60t36oh/ sP1f+GfjhOC9MWt06BwUuLm1bOnOh8r03R6/S+Z2l0Lb65RErEPBS7rGfdzn 1SGgTjr8HDkqd8rt2naB9GkYL7ZQClcb1SwgDx/+73A77D/N4ZmAPHyq8xHV aj/Mr05AXQb0S4G2yvp63fsC6imDTzy88lrU5UoBfqDvyYoFi7MLfqd9cIyv PI9VHbOSW2m/G7x0mNooK60mAXoz6BeVu2v6Nkb8IkBvBv3yOljTpqkqX4Be C/gFL6OxruI5AfUU0C/NxYWBm5YH0HlvPG8V033AeW/wY5GKYx2bWwSct8fz qh1I2OhzwZ3O5YJvcKoPsvZpo3O54F8meVpE2z4TUA8dXH/ME4PEi00C1guI r/cOjOv2mGMqom4I+JVI89XjrXRFtAMe7b98VcqFegE6HFSvK/+WRsQ7IxH1 1sGn3jNTdyurFVCPg75DNnRkOulWC9osLjFemli99CMsnsBVOv6ul452wAcU Waw8E10qtDC/ox9zWP3w99l7OHjDptrHL2r0RS9mP3iSdWOtar6iCN0y8EZW J3wKex5wB1bHeyDrR+IfP/A6/eiWAH0mOj+g8NGSM943hC9R54rFT6fH3/W6 a9h7C3hxRN8xzS2mYi+LB/pedEsnRcFzqBjE+pH46HlDfGzfE6GvBn5q2maZ 0cS3gsjiADyL1d9+wfoV3IrV2fZi8QYerl8UqXegUnBk8QbuoHHAU9uhWIDu FPjm0aOvuoZfExBXVAfouaa+a5mdGM044vP0Drd1p71NaT2LeU+26qBz/d1Q ik+q33B6Qui7MfPEPu1/vr8tZO9v8uZ5eb+/dG4V9z0anTPcIZDqDlF9mqy4 Id9PcqG6vuD5yWbalXWDSMeQ6pF0dYxsfCnpSIK3FKrZtV2WdCTBve2nR6iH SzqS4Hrdb3yVsyUdSaqnkmIx3n5MJdUnxPwT86ZTtXmDL9lJeSWc3iW4iY9x gnbRO7ITPEKh7Fe1ja/ITvCqhNgrs0slvUiq3392fsJvbyS9SPCitLTbHisq qH38Hm2NLuhyPN1C7YPX7klf114q6dqDq376bPjbSknXHvzIc2dx94jyfvkj FZxeJHiw+9yHy+IlvUjwcyWOxvt8JL1IcIemoYemh0g6X/D3Mk63EfyJ3g6f F7nV1A7Vl3081jZ9ZQldj/iq53QSSTfDUKv0/CxJR5vqy7L8EaqvDv2BQjv/ lSeket3gJ852DpocqSNSvijjYc0G2X6nJF1vyuN4/sq44oGk6w0esX70JyUP JXvAvV1ya2JTfiF7EHcuUb53MtJH0H3Bz7VlXE3KlnTu6PvnV2pF37WV033B +zJfPtxadY3uC766+PSFmfYF1O+I6yi2r4T2aVwW1Yy2OCP5H7yh63y6y4dX qX3wY5nWg+L35FE7VDf3ruuKAx3XqR3SFbc5anM8uZDaAR8iq0idOkPS4UV7 v5Yqp/aWXaLrwQebFZ8MmC3pHeP/tmebT0iTnRL490Po84LTeaTJa4f650g6 cRgvcTWnYudGaNL8AJ7vZm/ckKtIHPFvv+t88EEHBZo3wLuTkof/+UM71SOl OkAWKSFxzZL+KXj7NwrrspOeUR1OxKmOrD7j7JAAui94LaeTBb7e8sE0B6GV 2gfXLTDQv58h6ZPSuf2bth43myS9JIyjmYf3u3bNW0D3pXPpiTMHxFRKOlbg xvtsgyxaf5P0hhivrlJ+T3N7I92X6l77NB2+v0/SGwXfbfE6ybCjguyh85ns /aeJe5/J5/RQwPdYbZl06p4h2U+/G5zOCM1PWc0Le2aUS/q5jKfInLf5XSuk OrGIuxGcngjpGCfOfevaYi7V52R8yTZl1/w8HYo38Emcfgd4o2zL74krJd1w 2v/SH2CYEyrVASbecNLwvz1XyH7wWNmMRvWdl8jPlM+764LQHHmW6oH3O3fH 7EQ8v3ExPF+zQdItQtxWha57tjPbhupf0bzrZau3tWoM+Z/yUKKvpq7I6KX6 t6Qv92OT7OfkkeRP/F8i2yeCPaSrFl2qfyf+DdkPPzmEdlclVoh0PZ03KHh0 okdNqhMOPmrA2v2aSk9ofoZf53N1ucGdWF1uqicG/TGu/jbp695W/vLMU6ke MnhPYPUO+xdS3WPad1Z8Yd2W0krPxX8HQPv4uw9XpxT9uGd+xGL9sdMlvTbG n9QuMht23JL8g+f2fbrveN63qtQO1Qn5vS7EcY4JXU95N84pw8orFKm/6HfT LKskIceT+h380tmIG3uDWyieaT216MCnJfmPyW/4v1ZOTw08t+TBpmAbJZpv wa02bvmhe/Ejagd/N/+2UOwaKumvUT2NNT9FBM8bQPZT/h1Xvx1cxtVvp3ML TK+K8kVRH56row5uydVRB8/g6qij/Vp2zkHg9jUMuHqM4KH33uza5jKZ7ERc mV70HGw7biD1L9UZYOs42I92TobkWeXZPSb7wY8tKJmUvvp/ZCfaSWfnEGAn +JY/Zp7f/MECSV+SzT9tmlaBTZW91F/gcaPSzh9SkMYFuIyty2An2i8N0Els /rGefi9gr+PTVR97mtrTfUmvpntrwmujz8hv/Pcx2M9/H2uSs8+F6+GPCKYL QHliyH//3H1qpbENtSOv7ij/Pe0vomDeSQ== "], {{ {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[ TagBox[{Polygon3DBox[CompressedData[" 1:eJw1mwn4VdP3xu893zPeBlEkDaJEJSJEUUlJ5kooIgmZJZGpyZghGSIlKUVE CBkrSaYkMmROIn4iQ+aU//vp3f/nuedZ6+y7z7TP3mu9613r7DDg/J7nRaVS 6fCkVKqS/LxcKk1XQ1PJtXmp9I7kcMlpapsnvb620Wmp9LbkFWqvq+NG6bjJ cam0WG3baxus/av1XyPpT2Wl0kj1uUBt1XXccOnnS68m/Xv1eUt9LpMcqa2B 9DnqP1p6Q+lPSv9IsoW2kTpmqu7hBenbaXtNW2NtF6r9dckdtA2Rfo3Of5Hk nbqfcTpPM7W/oPPMiHzPO2nrrAe9RPtfSu9Y5eflPhrq2HE69gEde6eOba62 +Tr2gcjjwLluUJ/h6rON7v8m6SOk15V+vfQrpdeRfoeO3UV95+nY26TvLP1F 6Y3U51b1eVDnf07t+6r9dbUfoP2DdR8dJD9T266Msfrdqv5XSd6n9lXhfnfX NlvH7sUY6Nh99N9BOrat5A9q21vbLTpmuNq6aPtN+011nolqe0x9ZurYPdW2 WMeu1jm/kt5a253qc7P67Kj7nyB9rPQm0mepfxv9/6r6b6n+HaQ/ov92Up8p ko/rnLtKf0j6s9J3lj5V+hzp69R3n7LHtJna75N8Qu2Tpd8m/SHpP+v/tmWP Sw2df3/pD/PMum476bUl71f/e9S2m+7ngdx96tKurb30rSWnqs8k9dlVfbbQ eQ5Q+yztj9YYdNNWqO0O9blJbY3VZ4b0ydJ3l75cx5+g/l0lH0983P5qn5P4 WQ+Qvp+O76U+b2j/4fCMe6l9d+mPS39Bz7Kd+hykPk8wFjpXZ+lNmINq7848 VHsH9X9N8k313036Y9Kfl/60+h3IPJZspfbZan9O7QdIf1X6G9Jf13891Gc/ yTe09ZTeTrKt+sxXn0Xqs4/0edJflv6K/juCOSG5VVgX49W+r/QF0l+Rvpf0 Z6S/JP1l9TtM/fdg/uqeD2XeMhbqs5h1pj6L9N/ham/DdSPfw+uMo/Qjpb8k /TX9d7T0fSWbqv0Q6c+r/UXtd5W+s+SOau8m/Tm1d9T535JcovNvLHQP2BTJ A9Snt/os0X9v65jjWLuSS7UdK70TY6a+b+v/pTq2n9pWSP+A9aT2D6W/L/0Y vf+1Oldf/f9+7n7dJOdo64TNknxP24nSD5bsrf4/RJ4TtSU7Sj6qc3XSOZdK vqVz/qv7O1T7IyXbq88x6vMm45j4PR+muTE/9zO2kNxb7c+qfaGOnaf9g9Xe XHKZtuOlHyR5iPp8pj6fqM8n2j9V7UdKbtA13tN/0yQ/1v4AtR8h2V1tn6v/ p+rfTfqn0j+W/pH+O0V9Dpc8NLL+CeeVbFm2vZ6h//aQ/orW9Vrmrtr6Sv6o rYH0k1i/2hpK7y/5vbZ60o/HzmirL/1Eyf9p21b6sZIjdL6fpDfVNkbXHaX9 n1nXurfjsc3q85u2FtIHSdbQtfdmrUv+rv2W0s+UTFnDOvYCHdde25Nqn6/2 OrrnKdpvVNH8lLydtaj25tLvkD5L+pE617SS7eqfZT8ja35D2XYMu7aeYyTP kGykc94r/Tj13y63nektvYXOOV76I4xHbltxrNp/1Xay9H0lt81tc46Rvo30 +3TM9rq3X3XMLmo/XfIP7KP0syT7al710fa99r/XMT0kW0perfd6rPTWvAtt PbFjkonO11365Yyz9o+W3kIyVvsh0i9T+0/aP1f7W+u6VRq3anrG87Bzkn+o TxttP6pPL8lWkuPU/lfJ475G+6epb20d+7X0LmrbXvLvsn0E/iDV/4dKXqFr fcM7k95P8m9da2vpN3M/2ppJnyD5j9q3kT5W+gbpdaXfIn2VjikYW8kNOmei 858h+ZX2K4y/5HrNmaFq/x/3pv2akidLfq2tuvQTsG/qPE/nfVAn+1VjOUT9 10uu1n/V1KcP/cN7v1H7G8v2lfjE1qn940Rdt1lqPztOetPUGGOs9J1Sr5Fb pO+o7Voddz/rIzXGuFpt26bGOaOlX6f7OA27rmf8Tdsp0ttJds88P1+SrKH+ ddT/YvWvybhJv0T63/rvdOyf5LdlYwbwRGP9d7XkVF13B+nXSJ8m/QuNz0r1 aaBzrA54BMzRMDWuuU5926TGFfdK3yIPPlpyva7RX/p+ki1j47xdeS71G6r2 u5hjZWOekdqvr/aLeae897IxDLingdovkbxb7V0y3+czrF9tA6S3l6yXGptd xbzUNog5gL/L7U8Hglty+8kzpe+XWH9RfVrntrWnqb2d2udIn8cayu2XT1X7 XtKf1n8tNBeOTO3j5mp/j9R4Y5L0PdXnKcnm6tNY+oPSd5DeVPpD0ptI31H6 TN6z9D1T45B7mAO5bcgJulbrxPqTuoctU2PPy9X2id7FEum11PZu2dgVXPtB 2bgXDPxe2TgW7Lunjpku+bTOs6xsHH2e9punxl+3c//a7lfbU+rzlc6/njnB fMyNiQbofrqm9h2Pqu8ujCdzWfd/g9p+5zqMkfr01/4y/Xd4ZD+CX2H+nYo/ 13mu1bwdKP0A6YX6L2DOSF6qPnWlX5YYB7J2WqXGh9jPlqlxFPahRWoMA27p KP1WcC3joGvuo/08MvYCEzK2jDHYj/nJPL1G93CS7qEtODk2th8R4oKLdOw2 eq6B0ktqX60+V6l/b7BGsL3gQPAgNhwf/ZjkD+BY6eNT4yj8ewfpowJWH4WN jx0LEMesxodjB6SPKbyerlSfGwtj7zHSbyg890dIvzb32ifuAVfz7niHYGCw aFvpBxTG3mnFPh1/fZrab48dr2A38N28l+WJMRi4qEtqnMD75T2DM8GTB6b2 7/jxgdLflH6S9FNSz1X6PE8spfaTpQ9Q++esX2w4sVri+cC8ABeBc/qn9mub 8XzuWIa1v0PqGAdbtL30eontHvaPOI65vXXq52ccsIXEKa2wEdK3Tbz264WY CLvRKMR9rIXaqWO0HVkD0n/MHYvFFWNpMHOn1LESdhh7/JP6DFOfdYx9YruN /R6tcW6C/83tu8H8D0luUp9HsQOMj+ZKH3ACfhL/AbZhzWi/L5hBsmlmfPIQ sVhuLLdEso7291f7dMna2trjCyTTzP79bslLwJr4ep2zyIxh7pHMM+OcSZJZ ZrwxMbPPLTMfmL+5Y4o3Jeur/TD1mYn/Dff4n57vxMT++sfENhAsvUBybfDx t+kZ/9T+HRqf/mqLiDPVf3xme0vc8VJuW8c6Jc7YNjN+mEFMl9gf4ZfqZcYb DwQ8w3wmxtouMwZ4MDPeqKj9XLVXMmObyZIdc2P1t8C2mf3mc5KdtQ2TPhu7 re1M6Y9m9pvDdO21km0y+4hHMtuozb4yxCzblN3vHO0X0n/Az2r/HukTUttf 7DD2Yqj61EbX/4CNiWq7m3mod/SQ2q+QPkL6BOmXSu+a2bc+m9lHYCuICWpp f9+ScRzY7Hydb41kNbW3Uvu9klvhn/DLjCE+DH8t2Y1nk/487zMzhnxZ8nBt d0pfJHlUZjv/BuOaGbsuBN9l9hFvZsa6xL/EwT3gL9S+hHNGtidg/V6J7f0J 6rNYeh+190vtTxeqfbHuf/sQZxF7dE8d0z2p/3unnucLpB+Teh7OwxaFmI4Y tXXkOG4xGCOyXSJWPDj1PHxM/Y9L/d4X8t60hu/R/nSN1Z6RY1Vi126p5+ET 2IPIMSZx5VGpY8Zn1Z4H3zQmDnNL7ev0vOflxrQ/Sz9Hx86SnjL/Iq/xTFsl 8AZwEE+UPU/AIsyBe6WfrXM0jxy3EhufnRhj/4mNiYwfiJ8fk8zLxnCsC/ik O2L7MdbCTO3vm9rOTAODY+Mjv6fO2n9H/y+L/Q54F69id9Wna2SbC8HWJcSV h8aORw+TvF7P9i42RMcdlFh/J7Z9x84vAQNmjnOJAQ+OHMMS3xKDrpT8PLbd x/4vTRxDf6n2L2LbVmzsD8TliXH7A+p7XG6sfSfzOfL8B3u1T+1PH1Df/VL7 iOmJ/THr7DH1rx/ZZ83lGrljmruwG5FtOLwGfgvfNEvH1gKjaP8q/V8nsi2C 4+gUOf4lrt4/clxPvN8hcrwPL3By6jEkLt+oa01U+5mSS9R+duR1/ZeesysY J7bfxf/ur7Hqo+0nfCB+qmxbSpzzpvZPj2wHzoh8zo1qv69svEG8NCiyndnE GKlfZ8l1iefUfyXPoVPx0ZI/4Z9zn+MLbH5uP3WP5IuJ1xfrbH7idcf6g6th LRwufXbiNcXaeibxumB9wNUwP8G58DzM4SOkD8h9X9j8k1LPq/dT80usu16p eRXGs29qDuco6T1Sc0qs656p+RPG/8TU/AZjfoL0U3M/46rMvgqf9U1mf7SX 2tcQB+T2HX+qvVZibAPGyQuvpYuwYVXGg88Ff8yaHaL2uLBNHiz9wsj4c8tg u1l/ZfUtEmPUG2L7A/zCH/ifxDHXjWpfqLatysbYi8q2/2DvDbnt/CDJwYG7 roXtKGxDLlT7ybn5iSk6Z7/c3MW3cEvEALxbnf8WHTuaZ2Ss9d8vJfMVb+n+ LoiMV49JzHmcxbhFxp/E3uXEeHUU5wnnYK58p+Mj7X+L39P4DNAxNzLvmBsS I9V/bOjPWG+I7Y8ugHeK7WsGx8Y5cBFnJraHj5Qd470nfYK2mZwzddtZiW3b 7GDfWgb+Af/Idbge99Y48zri3tpU+R31K/n9Twvr4uxwbrD7/ML3BGYAz8PZ /K+wrX647PtrEbiLTbnXCdfpJ/lH4nsYkHhdsb5OSIx/4CngKP4Kepdgr1lz AxOvc+4T/mJJ4XgVvIFvmBXu7c3C8S3+ffvAb3wT8NVt4Zys9SnhuRh3xh8+ ZV7hcZ8R3tX9Zf/3ldojri+5WlsV60BypbZf1H+I5OfavpM+WPILbT+D+yU/ 0/al9Askv9Y2B7ws+aO22jrPZRynrbr0SyXXaasj/XLJb8Ef0odJflKYF3tH 9/ZD4ZjteslXC8fbYK1PiUHwJXAv0v/RdYdKvqRtU2ycubAwlwTuXSB9Y2yM t6gw7wM23kJtd+ld1pL8Uu1/S14k+XJhfgpcjb99PPhc1hBxB+uBeA0u6hvJ P6qM1f+sMm4/Su1z4L1y98UHfVw45l8mfbH0momxInb6Luyh+h2bmm+eF+xo u8i86+DMXPIdOu7CzHzz+MJ2d9/IvD24Bs4abDO1cOz1j+Sg1L7yjDRwsZH9 0SOFeatxOt8VmXEQOYLueobvwEYBK+0T+Z4mqv/rzGvWQWbMBT8/RfvvgOMl L8nMvU8obJs7RvZ3F2XGRHDafVI/E5jq0cIc2a36/z7p77I+JC/OjFngjbH3 e0fGWtjvAyP7zUnq94b6/1kYo+0frnV86vEA+2GzNvO1qTnbnpFt3+/hffHe iC/u1vENMs9Z7Co4mvhsbdl8Mjkz8jxwa2ML80/LJUdmvtZk5kDu97hVYT85 MbzT+7U/SXpD9a0e8HmN2Dgfu3FKYl9MH+wFfmly2bbglcL8MrHDqMzjdq/a Rmd+VjjwqzO/T7j0zdx/5DwBeAus9a6udYaOyVj/hd/tkeDCyHEzHDr8+fDM c6dbyBGAST5gnmcebzj5KzO/B/IIYLHu6vOx9kdkniP3FMZ0h6j9I+0PzYxJ yWt8VJgnelttywrzgMQFcHbYcHD1C4W5cuJQeBs4pAvV78XCXDOxKrlVuKgh ifk41iV+E84H3vH7wj53ftn94K4WBB2s/XTZWByeBf/1S+bYfWHws/Cb+BB8 Nb73pdD+dOFcAjEvvAn8yVzp98bOZ8KpEu/DYd4EP1c4r0BcfGCV85tjSubG 8NfnBRzAtc7RsU8WzjcQd38aOR9M7Lcycn6X85K/hLe+keeUvof6/y45Jfb9 wPfWCuc/t2QeD2yymbsqnBsgjptbOM9BLA/nsSjgCuJR8s3EBmAf8tDgHuIE 2uA8iV2eDPbwmcI5FWLkZwvnVIgf4dW+L5uXJidHbg5uGW6OsQdTEQuh/39M vDjcw+258xjkl+HvwEh/ZcY+L4c+YJPnwzPCr+EPE11/BZhW27P6r1Hg67bH VwWcRvtumX0dMdd+VeblztH+84XzN8S85PJ550PxVbqfy0uOC+DxuCYcKTkS /H9WGIO9GN7pisJc59LMPD18PTmam9Q+hnbWYO580omSHxbmYd9S/zWssbJj 3g8K52mIi8Fb8HjkO9YEjHpcYmwDfmOf/Ad+nrjy+sjnwcatDnE08fQ3ic/R G1yd+zjw4b8ah+Hqv7HKPCv6ngGfXBWwynuF81LE9bHGoRNjLhkFvUryncKc PpzAu4VzDHACxCDYWOwdGBJuBzw0NjK3y7XeL5zrgh9oVmXMyHnhPA+U7JsY S9Kf/bcK8/VwEXCYI6S/XpgDhQulvgJO97uy5xP5BOoc4ECp58CukxMhN0Ju YCS2OjJ/zXuED4UXpWYDzpTjnoD/yL3en4a3iJ2Hgd+G02aNT4/NKX4c1hH1 FaukX4GNyD0XqNmA96P95tx885qy1/blufs+nrkuZWmY5/COK8J6hHdcXvb9 wVN+ENYFvOb7ZT//VbmfiRoVcivUgEzSvV2T+9nhOOFEPwzPDm/MdcmzUPOx mU+Wfmvu+6LGYzOHrLbXJMfnXt/UkJyfmTshd19o60q9h/qUctu+doU5NDAA WODEgEVe4d2q/WXJ1hVzhmAbME773JgH7ANvSd55CDg3dx5+mPRDcvsd/A9x Hfhgkc7VPbdfxj/DOSyU/qqe79DcPhRfelhuH4ovhXeGfwbHwGXDQYFFdquY d8a/f6r+y9V/jPrvXjHvjC/elHk+MC/gfOF+r03MQcOLgFGO0n/L1Oda9W1V MceNr/widT6RvCKYDQ4ELgQcTd75GGKPwpwGOckftD2ldzktNW8A1wImAwu/ rD6vxY6X4V5eU9vOFcfn4MZdKo7PwY2rEmNZbAK8BXnJz6R/mpgzAb8eqH4f EJfruIaFOZFOkp1T14TAe9ym/eclfy5cI0I7uapTMvNV1AZ0UXsD+BTJBbE5 lefUp3HFvMC4EE/srPaBkh9ltm1bhVwzseH5seOPttLPk2xaMY9wq46tlbv2 5knJlhVzheDPFZnt3JZq+z6xDcWG/B04bbjtnwNnDndODNGNeRU7JiOOIoaC m8YOEtOtDTaXOA5+qFHk56lbcW4Am/Bv5vXE+sNf1Qlr85WyfSrrF7+DL6IO oJLat+FrstQ8AZgH/1YrrP08NRYB8/yujbiOOLF+xTmDBZljVuJDfOGrZfty 7M/GxLExMfJ/ieMZ8MZTktXL9q/EN5Xg01dmtq/gYWIU8gvXEh9lttngWGIp +OELyeVljnkbSa5PjF+JeYnDyCkMic3FwMkwV+aUjcPw/W1zz4VdK47/TsdP xuZ3wP0vJI4Xz1D7zbFjWWJ1/NyviTki8DO4G8wN3iYfg33E10a57TM2lnwe dna82qvlrhmbChcL/scPSlYHw+v/BrqfsvQbSsZyGzLbRmwz+SEwE7Zxq9T4 Epu4bcX5JDAheSAwJT7pn8z4ARyxMbPtxQbX4Lr6vyG1DbkxXb2K42/qJUbH zrufVnL8Syx+HPMKniQxNww3MrXsGB5MUzN3vcejuWNuctzkvsldkcO6TW1p 7ljmrtzxN/lu8uAxdl7721XM71GzdrdkEuw89r5/Zp6Y2h540HqRudC+mWvG yOkNTz2vqXMBc4GtwJ+8/zaR40x4Mjid/iXzGfApYKlHQjvPBp4CV7EGwO9g +vPDPXFv5NDga+uVnSeZF/rju0elzmWT06YmD/tALpy6Pe6THPlvhXntEYX5 9eqR89CPFa7JuD1zO3V72LJbCuelfyrMkdeMnLOfH+6Ndft44TqSOzLXDlKf QG5+bu7rkiuuX5hX71i4Po/aG+YBuf3/yn435JPLkZ/z4TA+rO3LU9eWUGOy dWzuapvYPOmmsCaIQ2+PzNPemhrvgfuoVxoT4l/iYHT4wf8C5ivFxlwc26lk LhveG/6bWtmLI+OfnsF34EPg3VkjYB76E2fDhV+VumaD2g1yC9Uiz5s+wQ5j j8GY/SJjP/DwSZH5Se4BnIcNAvPSzjPcENq516qAOcGh4DXu7f9rd4dGxk5w 28TVxNRwluBO7NdNQec+wKRgU2zHpNCfcZwY2sGrvTLbCmoye2a2FdRkkvvP w3PdVRjLrJecXbhe57bM3PZukbmMMzKvFeoVB2X2lfgvOO9dI8fJ52b2J9QW UuO4udYxMXfeJDI2Ojo1x0Je6ZDUGIlcFVx7i8gY6/TM+QfqGMmPUY8IX3Nn YXz0q+Tthe3rL4XrQZnL5EGoB6WOhfwIeRJyJ+RNqOPk/qlNoZ4MO0NtIXUb rBv8ODm0xpGxIDmQupHvgxxLrcjnPT7zuqAWlJzM1uH8fTKvU2pKqQ3lOGpc qJkhr7cwPMsOkZ/50NTjQd6ta6gFnsD4VLn2l/qSo6pcW/xL2TaRe6aueGbs Gl3qYchj/Fg2hqO2gePwBeRUOG5y7lwYNbYPcr3C9VvkoJ+J/f6pU2mXehzI nVGHRW0WdpPc4E6R8Su10axpanhmx8HvSL+7MF77vXAdM/ONejuee+fwTqm5 5BzkN6kfYsyoZZ2U+1nAANNz1+xR90itMDr+bmrwd9R0PJi7DnBxiE9/L9tH Un9MO/7v4dx2ibpoapnI1yzOXac5kBgjcf00cRU+g/oMcmHYf+oteN/1c9ey fa37X07eJ7ddwwYybownawg+DduIjdw6Mx6Dg30i9zheKX2bzNgPjpc6GOZl Q8ktMtcqgBOpjcAu18tdmyexmYuekDvGu0L6gtQ49iB4lMLjxvjxLpg/5NUm 5ub+8C/TctfAMG6MI+PJGB8SuDbqbcHw1+i4o4l3M2NIOHNiELiwD3LHHfBl H+aOO+DdVkjWzIx74dXBveRfyMM8ldsfDC+Mr8BU5KyoY9yM/YgRE8er1DVR P4l/IG8ITsOGkUMDy2HbyN2Bh7H35IWm65i58Eqp6xupY4TPhy/6NPBOvYKd J3e0KXUNLTwt9RbM6Va58+FT1H+y5GDioch5MOo/8eFn5a75BH+Sp8ZPUctB /RI5x/HS70rtF+ACqFP6L3ftw54V52+oc5iY2u/Aa1DzQ21ts5LzDuSx8GnE Kvg7clrUjVAXuhnr5o5JsLfY3bmx1/F88nWxbcaL5Acz40zyEUmYM8wdMCTc wbiAA/EzfDNCXSN4lbzGnYHjoq4M/E9MTi3Vitg8KDlr8CQ+cazkZ7Frm1lH YEJi++tzx5JwBzdI/zA2j0t+/A/8uPbXwvllxoHkUMBsxPB8z0HdJN+1EOuD t8BdvE94JzgHuIfNc17ne7twDRhx6huFsSicHd9eUKcL/iQXA3YFR/EtDHgX 3Mu3L6wFsPTMgJnhWfiWon2Vrwkm+yg2N0ydHnEv8S/15MTv1A+8IzmjcCz7 MD4o9ncifC+yMNj83cGxPIva60hWtO0mvVrs2BM/A/dAXQ45gA7YjNjfjPDt yIeB80tS+zt8ILkL2usS/6Wup6fWgPXcIHZOtyEcTuY4kVwY97lO7QMlr8tc C0EN/8bUdePkUIgpsKczQkyB3cB+wFO8VDLOBEuBvcBK+CX8E5ww2BKMSdz8 dmwegPqKSzNzF3AY1JJSR0r9C2v0k4CtyYO8VjJ/PzWsX9r5NgS/Rf0G9YBw yMQhYE/aWQMrQzvzEm4Mroo4B7uMX8NON0m8Rlgr3cL5qH9Mg53EXmIvuPZ2 wYbi17CpcEF803OE7rFl4muy/sDqcFvEtkuDzrqCK+ocuPIOzIUqzyW+oYK/ aqvz9Ar5qVVhfjPn4Hl3it2/WWwMuzTgWOwkMRqxGseR3+JY8jTEjeREiMf3 D1xw+8LriHoSnEjT0Mb/9CO2WRXGCrvA3CSXDBbfJ+hgdOQ+Ice8R8DE1Pj1 07n+Vvs3uWvmn4nMAZ2k9prwEPiFwvaZOnN4gMkhDqKG/Oko1LgUtt+zCttz /Uo9AtfNfTIHmPvw4dwzdhn7DF+9Y+xxbRL7maeGOUOuHx/xleSgEGMSa2KT 746c48Ymg6nJb8M5TAixCbn+ZiGWoA6Be4aTxy8QG8FtUN9C/39z10hwb1WF eUnmJrZrWJXnAeti99iyNTxN5jGmP9+10Zd3MypgfrA/NerwJNRmULO9mVfJ vd5XBFtQzvzdBzEa2A6MB1fJtw+MMbUTdQtzCc3xt5m/GSEe/C/1tyFge/6j D89C/TnPSO3H8FA7QQ0FOU1yc+ToyJOSRyOfBt4jDibvSl6VnBq5tRaxa9ep Yd+c8wlrFtxODEFelLYvQjvxIPUK1AqR7yOnR573i3As65vYhHiB3Czxcoew prYN9rGe5PLIdRW8T/Av+Bn7xTqE12YNfxXaifcYs1Wh/T1db01kfwqm+zbg 5B667oHkSwrfD++MNbw8YEJ87vTQznsk38z65BngGzkP31JtV4S1lTl2/iby d3PgNXRs04aQvyCPAf7/Ktznl+E+mUNDw/ph7fD9E/Vq8KfUsJWrnOtkbdEH DnSnivFiA+xD7HtuJ3lE7O+tloV6N87zfsmS86LD58DF861kjcKcLd+SULdD vQFr/MvA/a4Mdgm7Rl4WToxaplcl84q/LQQHnqPjF5VcF3G8+l5bZdx2VvAR +AW4dPLufEPGGDAWvE/wD7Eo38ytDu2Mz9mZeWNqEhjLHlUez11iv5vm8Mn6 76mS87bU18EJwBXzfnoGP9IyxGZ8E3Zj7jkM508+ixgfW4dNGhx4T2qEqCmO 4Joq/t4SnN818fds1Hodmfg9wEnDRfPMfIPDuF2HDZfsXBj7UZtHjSUcZpR6 /TKnqT9ZH76j+a3KceLwECvik5i/1NF1DJwM393UrPg7N7DEsNT1GdTTVav4 u0rijlohliGm4VsMYm++L7wsc84df11U/N0m8Qi5A+Y1a3SLgO3B+JdnzilQ x0K+g3oLvn1sk5gHgC//PMQXxBm9wzx9L/ZYMdeWx/atYKdlYWyYG4wX/np0 8Nkfpv4+i3E7MfO3J+QcecZC51hHDiLkF8gz9Mv8bRp5TGrV4Gz5BovvMuC+ +d5xZZjD3Ful4m9Zift6h7VFjoL7x4z2jI07RodYmniJ5+L7Kb55gQfh+8uq imtYqYWGu4YTBP/XDPEgcSF+ZlDIEeI/8aPMS/jGwcH38S0MHCXfqlLL0D+M 3cZgKzaFdU87eZrqFX8fS1zTNGAJMAV2DPuGHaCGDf75L8Y79jrtFhtfMq+5 Pt+07B7s5t6p5xXvpXvsvAy1sUnF32MTk4KvwKvwDeWKay75HuSXMG/5Dowa EuIkPiYjnw3eaRybd2Mdcy24sUHB/9ao+Pte8DN19tSPks+gthDOn5pv6hvw j+QfyC/AYxLHUetIzqJGmC+MLe+4bvAX+A3ynviDq1PPRewe75z7webCC8LJ 4mfAaNQcEtt+nfi7LOxDK8n/A1qh2fE= "]], Polygon3DBox[CompressedData[" 1:eJwtm3XAHcXVxu/e7N7d+yIFAgRCkOAEDUGDBpcWDS4fDqXFixV3d3d3d3d3 LdCWQoECJXhx/36/PPvHvO+cOTOzNjPnOc85d/gWO621Y7fT6dw6qNMp+X9J r9O5jYaPqK9WdTp/QJ4T+X7khZHPbTqdL4pO5yTkmvo0DNoJ/WjGD6P+Pm2b IP+IvEm/0zke+V36H03/gvpWdaczC/qVaZsHeXrmf5/6/uiPZv7vGDcT9f1o +576X+i/OP3XQV6K/usin4f+MvpOMNDpnE3bZ+hOpK1HfUv0M9F/JdrmQl6K +adEvgH9PIxZmrZ7qY+g7TnqszHHSvSZGflp5Ml4hlFc98+UwdQfom0wuusY Mx/1OWi7FPlfzD+C+hyMv5V5r0e/DdeeHXkV5puVPs/Qf07kNZDnRX4ReTXq c1N/gP6LMG5rxsyGvEqR+XdBXgh5LeTFkHdFXgR5beTFkedivrsYdzvjd0C3 JPNN3s3156Z9TeT5kB9DXhx5OPKHjD0A+VjkH5njDPS/49435ftMg/6f6P+C /jD0s9H+bJFnnJ36nOh/QD4O/enoV2P8c9SXRf8P6kdS/oH+INp+qfMOfZd3 d3K/R1PeRH8w8q/on0WevZtv4Pc8vc5a250+6yJPxT29jH5brvUf6pfR9j26 s+kzgfdO/3HUN+D7LIP+AOQV6b8JfVZCfy3l5yJrZFi73q6lfjPzTTSQb+K3 uYe2Jahf3s5/DvJU1EfwvN8hH4t8KmNWoO1x6gsy5hXqT1FmpH5XJ99nPuZ8 mH73+Qx11t811G+kbUJ0Iyi3VVl/2/qtmf9z5j8E+STa16HtXPcd9QH6nsic /0F/DG1d6ss0mXsurvk89e3qrB/X0e2MWZG2J9ybtL1K/Xnal+XdLMi324D3 s2yTvTsP+heoT4f+Pebfj7YjGf8+8xXIF1Cmr7NGXasPol+O+h8oz1IfQ9vf qf+e8XN0c08LMX5u5J8Yezzymcjz8gwb0LYEfV63P+UZvzXyG9SvovxY5JmH Uj+Qa66EblPaVka+mPIt9bPQD1C/EP2X1GelTET9Adp+1807dn/fStt09P+b 7xT5Qcqk3Xxzz5ead3C+6w39IvT9i3vc56WtQXcKbcPouzHv6wbkinKe65c+ C6M7mTIN+g3RX4/uIMqLyC8i/0L9QMoLyC8g/0z9Bq/h3mf83lzrJuQ9fPe+ c88j5N3pPwT5B+o3KnsWIe/TrqcNeX/rIo9BXpV5N6T+MX3+QP1ddD3Pa+SL qExSZj9X9JmU+gH9fLvHqH/ts/TyrD5zQ30hrvc68muUoehPQh5K//Xpfx3y cXXm9ho/8OdL5AkZeytlXuonUqZGty79r+1nDuf6gr5XUr+UslmnM36CyT2f +X+275rxv7A+9tdmFHknH7v/mG9luv+V+e5n7BXIqyDvg/wA8kb0mb8Tm/IB 9e/QT8H4Rz0P65wHs6BfC/1b6I9CXsN3Rfkn8saUUeg3Rf4v9dGUOzvZw+7l d+h/GvUTmG9L5BW57urUR2pDfLdNbMu03HvF83xL/8nRP+z5TP0tyin0PQZ5 c/pOPRCbNjvyIOTr0e/F+LOY63Ge52Cfj/6boV8V/XFN9vpetH1O/RPKntSX YQ8vRv8r6b8q+n0Z/yDysU1sqX0+9VnQH4Z8Efqn0d+FfDjyxcjPIN+NfITn i+c68vfIU3LtxylLUO9yrzf77PRpeMYPm7yrA2nbhPrEvfTdDf2k6Ef3Y/tm LhzAnuwHL4gbrqZ+KnNO6/vmejciT0Z5rpt39C39z/f8Qr89+jvRfUN5soy9 Oov6q1xjK+Z+C/lN2s+j/1zU/0j9DvRfUR4tYz/P6MceavP8Zgsz/yzIryCv xftbGv0djJ+xyJ5bzrOWMif17ZjjdvS3eL/oX9GGaRsYvxzjl0eeHXlZ6tN0 Y29HcW83e16ge0mbiv4xylD0N3keaiua3MsK7lvmX5rxU6G/Ef28jN+on3Xl +nqpSXF/r1xG5/v/nL4HFFmvXe6nYFxXmWsvz3zTd7OGF6R9+SbvbhRtL1M/ hz4jtDXMdxvz3Y88B2M/opyG/sM6c11EmaHOs07L2DsYswDzXUDbF9QPQr8p /c92vNiG+W7tB+9oA1ZFPz/6S9Avhn5X9Pegvwh5UeSdke8S/yHfzvz86/zI uJkG8k6WcQ25/6gfwbdan/Ia9UvFe/TdjfH3tuOnRL6DOSZGPs3zHnkz9Dch f4Y8wFw3Uub23ikTFFnT81CfqJezYlfGTMLzDerlLNsKuY98MX1GU9+F+e5u z78pOlnTru2zxHTIW6O/Bfm+OntbTHUK93+Q5xd9/w95FbGlNr4Ipj1JvIj8 SjeYZoi2iOtfQn1Hr0+95H0M4//bRfbzjAPBrGOQZ2yCH8Tgv0deAPky7SVj 9+Z+7mO+e5BnLWLTT0A/fCCYcGm/L3JFv6U72YM96ofT9ga6A2n7mbE3u5+r YO6Dqf+VtofdK7T9E3nm9nyukB9G3tp7Ya43aVuJtsfRjyqCAa5m7huqYG8x oLh6a8Z8zbfdjbax+gb0v5Sx89PvDXTX8H/ZIntoGfqvWWatuGYubc+Ui3ux SX6Pm6r4DmI4cfbGdL6E/iNpfx39/yiPUF+vCF4aL5fBQKdrmxizgvYPeQXP GteytgJ5ReRte7Edq1G2o/4E8y+g7aJcx3zb0PYS873ciX3xmXx33wzKs17O HEsV8RmWEOvRdif9r6LPCZ5vtC0nVkNevooN/4SxHw+Kbf/Z8wLdvxnzJv2/ pDxUZr+fQn2tcvyx2zmM/v+i7xfa+zL792TtJfd7MfX5mPs136/31Muavpz6 Y+jnL4Lpr2Ci3epg4QfpPzFrZwb3rbaN+YdTn4kytbYCeWbqC/fjH+gnbEF9 Hv7vhe4ozzfqjzLfyCIY+lLmf42ymL5VJ/vjI8Ycqe/hM1Af18vY1ZnjJbGr a6rMGnQtbuRa7sbnWBrdxp4dYmExKfLHzLFXFZumbfs7Y/+BbvMi33Nt+i/Q DUZeEvkD+u9UBdOIbd4X0zFmHfSH+K6r+JriV3HsCfQZgu5w7m8N7UUVX00f ZlX042g7usx5cjj1mdr9WdLvIb+9PlMRTK0f+DfewaJij07w7n1VfDvb1kX/ APLYIu9sfeTt3aP0HU3735nvT8i36Hsg/6MfzC/2f7IT/+dMMYRngXtW36zM 2t6iyH79Z5m9u6U2R3+via3Txk3LfKu2+GFGdC8hj2xy1uuj6qvOgbxCEZux GfKuyNcg/x9j/od8l2cOugW495fb9ahtdI/Pgu5gyqvUp0T/JPpj2nfn9xjg mpOX8b03oW0K15gYCd0y7gnmOhD5ZeTJ3Zu+DzEF8lroPxav035sEcx3EvXV xGfUZ2fuV+i/SouXhiO/iPxnfQz6r03bp+i+r2Ibx4phqY8QExaxuZvXwfhi fX2AI+r4APoCLyEf2foXN4gFkb/2fpA/8CzmXp6j7/L6A+imqYLP5qpz73/S NrH/VkDeE3lYFby2MvKhyDMgv9APhhHLDK2C93Zj/uuKYO6v0D1JWaTIM/vs T9Hn8CoYSCz0ZhVf2/NgDeq7VfENHqJMwD1OR59lXR+0F9zP9sx/Lro1aRuH bkF9wiKckP7s7vQbjPwIZULGL4p+TbEB+p28F+Q1inAS8hV/FFMgr8F8H2kL GL9kEZ9tccb/sY7/4p4RT12MfokiPt9o8UMT7CCns4FYX/xO/xH0+1s/a8q1 NZ5Poj4K/QbUJ0b/GPIY5O1cW1Xw+FbMdxLzLUfbf7w/2usi7/RX6n+m9Knf RCmYd1QTW6wPLN/jGnQt6k8f1Y9/IXfjmbOzvknrz/SY5xH021fxhVwj+ki7 Ik9K/YEieOBT5OMdj3pj6vMzfn3qE1F/tB8fRV/Fb/QuutUpp1KfA/2r6Oce yDnieeJZMx4vo1u/iP+vT+7Zpk++auufe1bqk+ib6O97VmgTDxEL9YKNd6b/ gS0fsjHy8uj3q4M/Nypi0/bV16njD29QhD/QmE/Ev/dbf+AX5hvw3lt/8w76 lIy9UHymPy/mRb4A+XfU727PE22a58evjJ+A+nutPz4KeRD6k2k7r+VD5IK0 8fu7Ppt8uy200cgH0H9n16L2UtvW4r9fWn9zc+b4tZM1/zX1LSi/dXLGfFvF p/CsfKAXX+M3/k/o2mn5g/9Uwc76pOtSH9ri419b/61Anhj5gxa/TtXi5Z9b /3c97nePIphMbCY+lusSA/9bv6aXvSUntUTLx3mWi8kO9eyu4zvpQ62O7sYm 73IW1/VA/O8X0e1L20/0HdyLL7MT8v4tH+ReOJm2renbr8OPfNr6X9pobfWX 6D+mXtfhDz5u/Y2F/b7d4J255L38ZvQ9H3k66vMMxK5p38QG+s+/oDujiH+4 GWP+RzlLDOH6of9XyOcgX9IPXhndjY2Uv5Nv2Ydu53D9Kenb1OFrPmn9u4HW H/2s9TflG2fu5B37rl+QT2G+K2ibswrfIPf8jnaZcpP30M39T0z9liZrdVb3 Mde7Xx8Y/dWOp96rw4+Ma/2lSehzVC/XlN8cW4drvMhzBd2+tD1f5Bl+RFfV wX8ftf5Gjz6zM/4rn1esp/9cxCZoG7Zink4RG/Yd9SGeuX7b1j94t4ov6fXH Uj+zjq8lpim1d9qvKmeA/Nz0TXyHyXim9bQ9vXATchSXif+4n7/1sr7lX7/1 zK1yBuh//uAaqXKGyBde0c/7XVDuaSB440Pkvpyctp32I7vB0K55MYPY4SLk 46n/SHm5yhqXbz4N3an0H+M3rmLvT0D+zjXY7k99/w9bPCO/5lo/l3s/uMVz Ymc/60+9cGRyZQ8h741uB3125A8Yvyb14U18MTn29etwc0t2w4kuVYVzk3sz ZmDs4HnGnFzlG/mt5HDkcsZQvOji2nDq+1P+QP2CJlynbX5fMfWsZfC2WPuY JvhanL2l/hnykoPCMY5rwp88UYVDkEv4Cfn5Mmew+38wZXSRbzANuk3o+30n Nu/zKvfgvSxP6ctF0PZtJ5jL96s/QpfOOy3ft1GVd60N+szn55uuUwVvybXp 34wdlPvZlPqkLR/xdetf70vbn7rB//oBg+vwO9+2/v5kdfiZb1o+Qf5a26UP sAe6SVo+4quWX5ATkBvQx9HX8R3NXYaj8t3JHy9I/0PESE34NbmrYa3vLSYT m8n3H0t9iN+oyBm2to4oc33jfueZCuon0vf4bjjJ98ROzLFeFXstX/IdczxV xUYaL5ATlBt0vb5dh1+x78FiZnRT6B9Rb5hzLXR7M/821FenzwFl4lVywcbA jIUZD9C3dQ0ab1iK663Jvb3fft8ptMmM/Z6xvyEv2c9ZPW+R7+s7llvRJg1u 8eGFZeIRx/Rjk+WCPcO01X5zuV7PpJ9bPlhf6eAyvpR464AqHJrYXjy0XxWO TKw+hPpUjHsd+TBtgWu/yDv9bVAwsFylmFxsLOaVq9QHEQuLceU2Pe/Evofq UzJ+CHMeVAUDyM1rg8QGs4mZWkxwe5M1cVkvfIJrRQ53ZuSPi3C7+jjXlsGQ +j76BNeUwVT6CsaMVu4lZmksSQx+dRl87fmrDZeL0sZo28fHPbt5xp+of8PY +cr4uPq6VzaJf8xF/TTudTrKLOI+2s5qgpHkTrW5Yid9Tn3Pt+nzVi94XHy6 nc85kD0i9yaGce+IQYxlaAPFJtqokfwvurFdxpgWRZ64m9iT61mu1z2/gVi8 if+7Xi98wL+Yb2z7/bVNnieuta+1Oe4lxsxB32+QL2qCsU8og7HF3vM28Zd9 h77LuZvwNyv2Eh97uUxswzNDPuTtfri22cV/jH9Hf72MTdO2/Rt5R+0Q8pTI /yvDTXomeDZoY/Vvju7F9oqZj0e/bSdYelOu8UMnZ8IOZTDRfPT9rQhWEqMf XsZnELtfTf8xLYe7YR17JXaQo12ryvlxVBXOT1/PmPRiXrubWLU2fhGftRvb r324qgxePa4fjLd6lRioeETO4FD063XCJYgJjY3IKYgV9VmMJegj6svIyR1W xkeQq9NmaDu0EdoKMa2xlJU7wbpiArnDFdv3KSY1tqCPIlY17ipXeaXrt8r7 3al9336PFymPUH+iDP/gN/RbGnM39ik3b6xRH9H4tvFWsdr9VWLjcjT6+/r9 cjcPl4nFyzEYT9RH1FeU05fblx+R2zAmPpa2p8vEYvUx5XNeqsPFycnJV8rP yGeNzzGg/1NluHF9UPGysQa5dzl64+PGO/VVHqsSqz/S9actoN8n/fCNxrJ9 Pp9Tn0/fb3wclP4n9cPty13OPBB/1tik+8t9dkKV2Lf7230uZyx3bFx+6EBs j/yAnJzxZjljuWNjSMaSTqxyNhszntXxVbCY+819Zz7GXPanfZqB8E3GRowR r94L92nsWJ/V/A35SWOjrk/XqfFU+drraZ+B8af2E9uWuzU3Qh9fX18OWi7a PeBekMOXy7+b+Yd0g5HMr5DP9X3Yx30jBjfWIgYQm+sjbNvuV32HZyiXUb+t jP8ulzldN5yU8Yin6/DFt5bxb6cYSMxKzv/zOhh7m/a8EHvf0p4fs7XnlZhD bl8fSyzyQh1uUY5RPs0Yl+ffey3e10cwNiUm0XfQ5zH2JCbRF5LzkvsybmKs 6HnvAd39Zfjs5+rwc/eV4aOfrcPf3VuGjxVDiiXl6OXq5TDkMuT85f49cz17 9XH0dQYPhJMyRv9BnXi2XJvcxDnaOeRzu4npGtsVE+3cnpeeh+ITfVJj6G/U yc+Qb7y3yvc1fiXXckeV9SvXPEM3HJ/xJfl818Nw27jesH6w8Sut/3uPWKEb TmbeFg/qcxhDep3rzUi//xaJEZg/Yox4yjL8nrHjtyhbtd9r4jpnmmfb5PT9 rJ8YubHyvavsx9PL8F/yWearLF2HTxtM/VPPTv4PR/ck5bQyZ75n/4S0/9e1 wPNeVQR7ykXLn99d5Xx4osnZrG2XQ5NPOJeycJGcpyvL+Ahyf8tU8R3k5++p ch49yfg9KbcV4YTlhg9xXzm3+7sMB+P56DkpN7OPHAG6e4rwEQcjT+95RDml jE/l+eU5pq8lV31JkRiecUExpueh56LYUx/OXItnyvh25jgY/z+3l3i8/qJ8 43lisCo+g+eh56K+hD6WuT3PlfG99Nn03RZD3qwfzvNtsVEVLlQfQ67hlSq+ x4H0u7jIepU/NcYon+oadi3Lkf5brFWFOz2b/wsW4awv12fVhnYTMzF2cg76 hYrkeF0hrkB/JvWbe8kP0kZpq/Qp9ullzHVV1q9zaUO1pYNoew/dz/y/WqzV DYYSQ6yA/ocy2EKbqG38sQz26PWSCyJntH8vvID8gD6r9v+9Ov6371K+dBz/ jy7iI4in6l5yT8xB2aVKrpw5c0P1G93zYham6KJ7l+t9Uodv/K0KH7xolbPD M8RYgGvU89Fz0rWrfZmzSA7W+bQdjzyiSIzvvDL2Q/tgDtYFyEeIN4twDvrE 2pP5iuTo6d9f2GJt/Vfzk+Q/N0e+vr2nkdzDNsgTUP+wH0wgNviyDHZzD3h+ eI64NzyD3dv/LYMljclpj7RLxubc8wuh/6LMWbBlmVwfzyv5sx2brHfXvbEa 35nvbuoyeSfyqZvR99oi+SVyDuYqPVuGi9Anlf94tz2b3FPuLXM4jAfv38/6 GtliZWP8y9JnmTKx//36WZ9iRLGiHLdctzlH8qGe+Z79nvnGNu/vhUuSg/CM NJ5lfMAzw7NDjl2uXX9Jvs0zyrPK+NVkVc4IzwpzXMy3kF+Xe31Qn7QXzm2U 51oZLk4MJhbTphkb0k/QXzCmLl84dRP+XAwqFp20l1wjc44Ooj5ZL7lJxqT3 rRIjuaUM32r8YN9+1pM+k77Tq+iKQfFvjZ9qk7XNxmDlouVvzq9yfhoL0qZr 27XhcvXaxPva9Wzsdpom/L9YSd9EG+l6N2Zk7Ohz2hco48Oa2ybntEGbKyAX NW2TeKtYRuxtPEMu8/4i+U5iQrGh8RnjifLtxt7dk+5N+RC5dDl3uXf5DWNN xpDkk8QIYoWH2v0n5yH3Yc7Q6b3sT/mjBzuJXZhzYO6BGEWs8kEV7kHORT5f jkB+WJusbZZfNrYivynPKf9sbET+Ux7U/Sp/9Y5rphd+ZkwnZ4xnzftVuAQ5 MONde5Thbn9oOYCjXJtF8JL5PfIv2r+F9L17sVPaK3MmzIfQXpnr83fkqXvJ 39SeTk37VAOxr+aKmjM6tJf8T+3bVLQPGUjMeu0ynJF8gfbM3Av9f3kA4yvi F89gz2Ltn1y8a9K1KT+vLVyc+3u2l1iO8UJzLswPds279keW8aflAeQDzHEx v9VYjPFB/THzG+9FPrMTjuTlXvgV7cc8yE+LYSnjisT4zV+8i3mn6IYDNZ/W GLmxcvNghw0kHnhVJ5yv3K/+oXylMYq7W35XX08OyXzS6RlzYZX8Vfkk46dX dmLjtE/G69xrjne/zNTyy8ZE7mzCZ9xcRjZWIkY3DmY8TOw+vOX3jZnc1vLT +vpiFuMp+vj6Ip4BQ1t+Vy5bTvtmbQnzXVCFg5R/kq/Rbmg/zBUxv/LATt6x 3Is5AeYGmBMwY5mcUXNHtYHGz8zBNBdTDGN+ybR11rYxFeO3xhfFHsZUjF/9 3ITrMib4S5McIU3qv1q+Qx9aX8Uzwnxe97x7Xw57jFi3Hy7XNefaE2NsXYUD E3vs1o/92bq1T7v2Y1+2au3NtGVy1815mI76Lv1w42Nbe+UadC3+roj9H1Zn bxqzkM8zHmpurxj40SY+0VVV+Gt9pb/2Yy+PK4NP5ZzknrTZ5qubk2Vulmes 8fp9+sGrchbiX/O3jOW7Rk9vku8jV2mOsLnC5g96NpgDZL7wEU32rnvWfGs5 N/eee9T8bPewOEA84N42n9DcIzGB+fnm98lVyznLn7qnxRXiC/e6+U/m+orp T23iox5TJT9c31Wf9rgqffR1zYdSp48rP2L81Fx1fcZHmnAuci/aYON95swt z/WGdZNLZ/zY3Dsxj9hHn+vaKntIX8wYhbEKbYDxJX0YfXHzifRt9KmurLKn 9LXM3zHHRwwqFtWealu0Md/2gp8O6uQbafPM+TH3Rwxg/Md8IPePMa3rm+RH +NsAz4yHm/h0V1TZk/p65zU5f2aqYr+M1xvv3aX1387qJUdW/DJnnRw2c9nE gOYj/KVK3NkY5u7tfl2oF05/8ibxdnN/xFxPtueNMTg55Smb2KAdquQzaJvM X92iE5uwRxOfwDi08Wh9Bf1JfTNtRNlPvq25odoIfRtthrbDmMc+LYchl+H5 WzbJZxArGuM2H2OLOr6jORTGx9zvZ3aTE2du3K9NsLj2YESdM9azVn9xwib5 Hc5lDrFGxf2n/TMGZHxQf869qQ/s/ZqPMkmRHO4e8iP0P70Tjleu9+E6XK8c r1yv+d7GIsxhsb/+hc9mTvVPTfIVekXu2fNp2oHkvGsvJmrCwepH+Ay/aQ/q cIdycnJzV9Xh5uT05PauQd6wE45RrvGhOlyznLLcsmvAtSDHa76F78R34z2Y LzFBGdulDZuwzPoxLm182vczvA4/Pz5ndCD5kea26JPt0CRn2nxI8yL30Jb3 g793bP2fvfrxRw4pg+937wff79T6Q3v340/5PPrTxrOMLRijNFbp+zizl/i5 XLXxTf1bsabxt5EDiSnqb/jbIOMTxp7cI+6VPfvxv+Qo9df26Mc/26uMfyRf rh+oP+hvf8yxN9feaxg/NYdeLGGOufFt8+/NzTDmbb65+bvmhogRjE9cW4er 9ryVK74O+Y+dcNhy2f5mQKzomjK/yRxh8yHMizD+YA64ueDmwJhfYD6xv7UR sxgPGdtPbLthvm2pj66D5c25MT9o0TpY1TPB/B1j2MayzbEzvmc+q3tXH0hf yBiUsailNeFl4uXGRI3XmSvl/jmjyu8rxC7aJG2TPI2/FzG+JRbxNy/+9uWz JvHdQ9tvo8+pn+cedi+bM6Q/qF9orMg1tU2Vb+Jae6AOly03Iv9ozFP+RB5F rvv2OvylNkfb4zfX1hzSXk+fWd9ZTCA28EzybBK37tFyQH4bv5HckDZUW6qN lPtxjbpWXZP6psbaD+nm9wDb9xJfNXauj+vvScx/GtdJH2MExrCMZbnmD+2H Y5FreVxM0o/PuWMVfOz7l7OWu94a/RH9cDx7VvHXPB9do65V17C+/eNV+GXj scZlvSfvTX7MeLx6cxnNadxE30yfspPfxGzRy/mv3+eace08g/x6J7952pz2 p+r4Xvps+m7mVJiL/GyVXAvjosZHfWbzvdyz7l3PJLkx85HNPTJep//3CfKn g5KTam7qC/pAneQ4b4lsPsYZvfg//nbir1X4OTk5ubnb6vDdYgaxg3vYvbxS J1yMMUtjl8bR/a2L+Uj+FuL5Kr8dktMxBuEZ7FksjyWfZQzUeLu8lPyUMWHz P81nda0bUzO2Jqe3cxWboG2QB5APMGZq/uiZ/fDj5mLK98spyvWL0eQazZny t0hPV8mlOr+f3FVzQb0/34f3a47pG2Xit2Jnf7N0SZP813Pa/eVv1/yefg/f 4evtHnGvyCfK3Ztv6vzyvfK+8mH+3kRMJOdgDq25tP4uzXihfKT7zfimcU7z 48w90efQx5c307fQ/pt/Y362v4XzN3HXNMnRNldbG6YtM0ZsTEwbYOz4xH7m 08fQ19AnMDYt5hB76MMYGxdjiDWMWRrbkGOqW/t4VpVreq3T+omfmKtt/Mc1 I/bX13UtyVnKXT6BeE4/vzn9grX3+aD8pkQOx29o/u+F/cQYjX2YY+zvAc/t Jz5kzpvf67x+cmvNMXL9yx/6W1V9IjkeOU3XkHvuon7ybe3vbyzX6WV/+f3d g6/Jg/TT170rv2m884Yy39vfqsmxukbNB7mA+v8DCMlPfg== "]], Polygon3DBox[CompressedData[" 1:eJwt1gmUTmUcx/HLvDPesUwnS4yhopKUVEQkpCimkxat1iztWctMSUhG2ska CWPJkkookor2lLSc6nRaRZKokzakPv9zO8fP3N/3+f3/z3Pf977Pcxv0G3zJ oIpJkkyiXLolmyTzKyTJmIxrYG+lJDmFBhqrzA+me/KT5EnskMxwamusiL+H LtBsYF6SbJWbK7cEy7i+Q66L3LH8UsrFRmJdseP4ZZSH3YkVY434VrTOWvL0 G2JsvH7tsFuNV+dLaQK20ZprmXet2lXYafx6yseex5ZjjflNVBtbh63GWvAv u66HnevvOdQc32O+rOvp5r7WWCm/3LzVYg34VeZvzi+mf/hhdCZWl29Gq9Tl qBkkP8765ppnH7ZC7gmsJn+N3FF6d5J7CntYbit2rus35TbpN5LfIztOpj59 q8defjv9nZMkf9EobAc/W/07aq+RO0/f0WpH4VuMV8dGGZsocwi7SO99/Az8 X34S/jzfjW+q9nq1W6gN9pK1PCd/Ez9Fbj3WXa6l3FBsKrYBuww7AxuGvadn E9cb1W40djZfH++ozzS56VSu7gtjw63vV/fxC10Ya8Jf97eXTEc9StSNVr9V rgY22th9MovpJf5Dulhte36GbCNz9DfvJ/jZ2HjsS6yLug9pHjaH3nfdX6aL OcbKvJFNn4N4HtYaa8U/LrfZdT+5842NkXuHTsCWyU3V9yL+XWqCLcemYRfz Z0VPay5QW2KsTK9yPf/Anpabix3B18FXxn1h3dTW5j9Qe6bxDfE8Yzfz8/GP sI9z0/uJ+xqofrJ+I+QG4juwcVRsrQP0/AB7Qt06rJ7rmXKlas/j96st4KvR DD0O8DPxH/nLqVAuj3+MdvFXUl2sEv+CbMYcK7El+h7L32ae/dGfOssdIbfe Gr6Xa42dQU/RBmwH1sF1e1pDfdW2yaTZ+E5bVnZf6rfFb42q6vcv3s48r5iv 2HVj2c38o3Lfy/SIe0ligZ4/OlVuFbYA6hV7hjn+5kuoE1YLK6ff+RvoJKwG fxd11ruvOd7WY5a6+uZZ6LoZdii+P36W3E/qrqYitdn4jmgffz2dGHsU/0Ol dL6Y91o9dvLz6Df+Ompi7HB+c+yzxp/DyrGe/Pt0GrYaW4j15hfQH/yN1BSr ya+mOnKF1ve59U2wvinYdpleVCBXIX6/+E7jDeXul8/hi6jc9cnYQWPL+Yn0 hesirMzY/T6Dh7Ft2JHYROwBbISeHXxWPbBN2DSshHJi34vnyLwNZUZgFbG7 scuwBtid8blii7Dd+s7Qv5DmYSfptx9bwk+V3SHThw5TW5EvVVsl1pBJz6U4 n0bF52wtfdS+ZewxmXvp9jh7ctMzI86OZdn0PuN+p+NVs+lzGc9nqzgD7CXH xNmktmbsR9gItR3U3o5VxR6M7xI7FZulfq9+x+s3OcZkXo693XWjvHQsMnfg NbDpam9T215mGr7L+DFyDxrL8N2z6Z4Ye2O3+MzUDaFv1HWn2moPyDeTW2n8 LNc13Percb7p2RArl5sgdwE/hFoYv1TuRWOP6rUN6x9nO00y14A4T4z7lyzw 30JaJPe2XGOZpfpNMdaNf5WOjn0UG4915YfJ/hLvC3Q6Vg3rjlXi8+g981fn R1NHtVuwLXKlcn3jfIszDL+CPsM2UgPX8+XK5Ir53XQT9me8V8jfHN8bVhB7 a/wO5VrwC+kAP4RaY3X4RXSQH0ptsEJ+rLUUq/0K+xqbgA3FdvIDMuk5ksHW UtH/z0EJ1pnvY+67rWF7nHv0KTZGbdfYm+W+kiuL3yo222f5OG2Qb40Nx36V GUQt5QqwAdjPnrvdcvPj889P98XYH9vFfmrsRL3XyBb6Wzcv/X3G7zTOxzgn e2KvxfMV7wGuT1ZTWW1+Jn1/WRrnTzyP+J6cdI5H1H4bv0my5Sb/xFqxn/ne VD/e+fhJ9B1/BVXBDsnNju+E7xnvT1g+PyfeV2I/pyOxKnxTa3zGutqqOdw6 X+HvMncj7Fm5itgqbEU23Vtjj51prBo/OPY/45dg67DJcVZmYxPQU+1i7Gj+ EXyF685yDYz1i/0AOy43zUX+WbnV2XS+mPdJYw3j/Sgv/XzbxjtcPL/8GjxH rrnrOXIPRX89a8V7WpwXWnaMc5Dq/v+bjj2iU+xr8Q6ntrfaN+PMVfsf6ylr TA== "]], Polygon3DBox[{{2332, 1727, 1603, 1090, 1089, 2385}}]}, Annotation[#, "Charting`Private`Tag$26365#1"]& ]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {GrayLevel[1], EdgeForm[None], StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData[" 1:eJw1mXm4FcURxedN3zf3znMBUYkmUVlUXBEVEvzDJN/nEqOAolFUUJQIBHjw UEQ2QU1kcTeuiSZqviiIQJS4IbiwuRuDERQQRHkqmLiBGNzJ+XHq/TG3enp6 erq7qk6dqtt+QNOpI/Isy8brJ0muqWXZrpLXVLPsWfXdqGtyXZa118OrJH+u Z8+p71pdU3S/ssiy/mpfLLk1xh6tMS+ofZ2uabpfKnmNrivVXqVxF6g9RnKw 5jwv5vmx2lMlf6Z3L1V7s9q3q/1KtK+XfCn3mNGVLLtc91XdT9eYqbrvJ/mw 5pyt61KNaVTfYRozo87Pxqn9ttrT1P5G792ndl+1/6X2bbru1f0xZZZ9oXY7 yQN0tdY7nSRf11n8V2MPVHtH9TVp7AbdP6Sxl+sarvt69Re69Nns3xrfQfI0 neVqrWeIxoyXHMm7uh7X+KGSA9V/q9qd1L5Nsqfe2U/faCN5nORa9d+jMU9J flHz2F3U/5X6blG7h8ZNrPi9BzX/Fo25Wf2tNOafcT43SC6S7CXZReMekVwq +RfJk3SdqGuQ3sklk6739WxFve4lJxfeE3sbpjF9kscx5jINGKq+k/X9ffS9 3rpfq+9/KjmkzrbEeXeOMx+jjkvQIfqQ3BW9Zj7vNmqPVf94yV+EnhZormMl 95e8S9dR7F3ybq3pNL0zTPLh5DG3SA6OPbTGDvR8Yu6+ByTH6fqt2m/pHYx9 ouQKyTt1Pab+IVr/FvV1b8iyO7Sf8ZrjicJzpJibczg5t36P4nz1/CiNP0Pt t/VsqOR3eegWP9LzUdiH5Pl6/us4l/e0hwmSZ0vunmyr6OXDms9mrOSq3Hp/ UfeVFO9pzI36+DDJxzTna+rfpjF3S/4999padLRZ7U26qqE7qTPrnrx31vdV zfY2WPInpX2hSe2u7CO3z3RU+w/hb4eErfJOl2R75p391L4pNy7spPZktUeq /QJ7VvsSyR8k+/549e8WekfXByTjAHbcTu19krHjOb3TT/2jJKeCK+r7ROtv pedTdH+R7ruWfm+Q1txW/X1jfuzo7NzzD9f7jZKnaswO6m9g/7p/p2a77S15 Vsx/utpLNf5M1i/5VG573qjv3qr3dpNclIw5lyXb4ve5z/91PTu5NL78SnJd st5mS66r2XZOqdnPPtb4Zo0fIXx4VPJUjZ8R9jlQ4/ZOxlLOoSnWw7r6V41z +MKS3OeCDf0wGYexoby03kZqzDnJGPElz3L7N99dnozH90nODd+5kzn0jTFq vy1DWcB61F6n9k+T/WPnOvs7uLeq3rEAzN6SGbvAnG8y+zUx4H+6ZrHG8Lu9 kvEd/AeTwdqKroOTMe1bvXtuMi5/rWul2tPVP1Nydb2xtqfktMJYu1Ltvybb xW2Bb6xno/o/rPe6zpR8qPC3vlL7lsLr/Ezt/sm++q2u36s9CtsI/y4C6x4p vPeK5LLc6/la7z5eWL+tJM8I33xT/UMK+2iPevvdh+GP7+j+Y/X3lryh8Bls ULtDxD7864HkM/6jZBvp7w7JRumzJnlFbju+P+z5lIoxExvvnNmGH9W4fhq/ ofBZ9tf8N4UvfyD5sq531H4/OR4QF96T/FPEF+LM9RFn14MnhX26mVidjFNg 1Iqq93JoaRvFZ4n1PN8zsOz25Lg/X3KT3n+Qsyh8bivVP0/yjap117k07oGT bett+3tHXJivcWt0v6Dw9/juRWofW/q7qzTHimQbejNZX8s5i8KcpV3gCfH2 96FfcONAySNLx6IrdY3WdXVubOJM3yvsR5wddgV+gS0H652PtIb1NeMZ/Z9n xrPdYs3v693raEsOlNxD1+FwIcm14Hkyp2gbc26N/U4O/rNXzMn8e4W/VOuN t/CIVvXGcOIYcbdNxGHOjjMk5uADzMHarwjMAq/WVM2fjlTMWlg4PmO/+PMH Mc+2ijEZjtao6/TcODo68Bxch3vBAZnrosBqMHtdxXGZ+Ly1Yl3CDT+tGJPf VPvCwJkza/aZ5lgD9ordHqEz7lWa9xHrd1X7VXRTGnfZy/TghxPDXsE/cBCf 7xA4w/4HRRs+id+CN/jx7qVltwbzRbhht6rjBP61f2keA/7voPbqqu0J/Jip +3c1Zx94YOn9sm+wlnhGTHo47HDP0hiKzYCprP2K8L1RYZN7aPzqZJxdo6u5 5lj2fWks5qw4s8NL4+tbVWPvvsn+CQ6ChyMK2xH2hB2iU7C6T277BI/BCnAH m4Krb8esOvMSbAb8BI8+KMzBPi7MVfqFnuE58KLjS+PDK9gzvlzv+AIfwybg DWAasevCOnPgnskxlfvLgyO0y7xfYs1Zkgtzx3fuewWm4yPP5PZPfBMbwpY4 k6dz8w3OCG4CR+GMWodvHab2Paw79/lcFXGceN4jWSesY35ujOW8HijMLwZU zKHgC/vABdW+Mu6xqQ6xR3IBxrfXmAHJ58088yQn5dYNuP2k2ksKz79Y7WcL xzZiypOSf9P1I12vJ+PTQbpSnXME8K1X5tgHH50hOaVwvrascDxoDL4Dt0Gf rRrMjbBHfOfcmJc5Lwhb/VpzLknW49KIO+AEXPveZJ4AX4BbwxPgC5xxpzjn 5ogRcLxWERPhunAJzmpm4bhL/B0fuDE1bAz7bR8+S0xEv7MK+xi+NqdwnCZe t+SJjAd3NtWbM6Bz5uoQ/k6sByvmSk6qmKsyBt+fHnheiZgO/0fH6A6+R65I 7IJzdil9NsQXcsnn9d7zhbEJjFqr/iFxDuRd5AfkHfA8cp9PcvOAOWEDcM0T qo4z8EP0iV7Zwy9LY8EJpdc6NHSNz3TI7EPbquaWcMzBwdvblo73NybH/06h G55ho3Bd7BYJ9yV3heNuDL7QN/kZ/eiKMbwHToAhR4c9Y9/tg+OxZ/SxuWZO +XnNXG5Yso7PCl8+qHRuAz89pDR+DIw4iH8MiDmJyyMDA0/UuI6S3UvnJzwj h8K/ySvAUHARLgIPQe+Dwx7AzuHJem2KOM+7n9XMPzfVbDuMnxKxB8zoFLk8 62kKvx4UMZcz7xjrwtfAN3COvH5jnCWcHe6+PmontOHwpd7ZJXNcmBP2fHPg UJmcOz+djKVzks/y/tzfOCXyBdZMbJkZ85PXk4uB//B88ta60vsh/uFHm2N+ 9MjayHvV3H4Gs2IesI44D29g7BmBaTPDZ68pfBbgIZwb/wCT0Rcc5+qIL3AT OAp+Nyv89/rCuRS5CbY7Lt6Ft02Ifjjf/YF7KwOnmQesBovRN3GhMdbAOi+N PaL3XZLHfBT+xV7gLnNzxxXa2DJ7wbYfjH7mBHs4Q/hAT53jBI07SWd4WPBJ eOVxUXu5uupcjZxNYntNhjx8/6gFwb+pFe2o9pbc9SJyisN17VRneUS04Rnw DXyW/Ib8mdwZLg1vxl/eSMaWx5Pjdb+I2WAWOTnchTydebtJpqrze3Q+JOZM wSd5d3P4Pn7O+uAn5wTmN5SuF8BteL9P2CR7PSn2S7wiZhOvn4o2NUH4Anwt hT/2Ch2CAWABXIrYQwziDImxPcLf2fu5sU5yr/5xPn1iDPonRjGGHBBMZW3s E13w3ebMfnJitMkPqCtRN+kaa+CskNzD42s180V0Dd6O03vHVM2XLw78QY6K dpPG3KX2aaXzA/IEsIDcBbwCn44PLgTv5tuMYV5wmhpWS90LG6P2xfPRMaZH 6WdwSDhgU3yXMWPiW6yZMYwdoevPybWCsVEjIl7AEdEB+Qg5Qfc4z7eSc8l5 yTjRLe6/izGsn/oVHA+8bU6O+w8l52nka1sL14OwU3gsOQPcrnXp+gLnenrp uumhceb4B3UubGRd4BcceXnVnIx6KnkfORFxAcwGu6lnYdfYA/k4fBs77RI1 xd/lxly4BrUmMB/7wJ6o35Jn/yd3ro3dYRdwW3RAzss5kvfSfinZjrAncqC9 S3PCa6vOM7GnJyLmU7+GA+FbfAu7BS+fCMw8v2JcATMZyzvEOGI+/I8Y8Exy 7W1acv2Iby2U7FXx86mFdc530Tv7R0/EL2qq7Iu1kaNTE+SssEFsEZtZDE/K XXO4LtbMGl4Mfk5eRb0YroHu4Hn0L06udfBuJfwa7gJvIY5iNzvH/PCZRZId S583+NMQuALHgJeDWZ0jBtEHPoHf8wPD8/Dj1hF3GNdSQ2YMMQf+vyBiTYfS tW3y9BYMwgbgrWAZ9oFt0A8u8X/EoogRYNWT0U8fz4iT1M0WR2wid18U8Yt4 8nTEiGEVxyJiGTEFbAKXsEG+h/7wIXSEr60LPaJP1s4exkW8ei7WQ75CDjM2 4uHC2CO2/HLYM7ky/7VMjnjI/yWsg9hEDa996Zj+j9wcg5jGfw8teTuxEJ65 b+naPtjFmLmxfjCf8+C/HfqJi8MDe+fGPJNiTvqfjTyFmhWSs2uJ4UviDFkX ukBPSyLHoUZ3ccUxFs7zfPgStTh4HGdE7KYWQQ5BXot9YXvEFP63gGOSBxAT +sRZUQuFj1AL5BzgM9QVN4QP4ovgDHNTp+F/GuL/uzXPwf7IicmrXg1f3hb/ m/D/CdwNDrc+c35FnoVvwr8mRD+8F13D7+CW2PKXhXXCmuBajVEDpBa4LHI0 /kOZFWOYZ3ZuzgdODY8aC/+1XRi57btRn54UGIJOJsUeyDUmhu/AucFfsJf/ hrAncpPttX21v5RckJxPzEjO4eFi1COJ233DPndO5sEbgldjj+RqW0OP6PO8 8BXqBI8l8zjqr/y3QK1zWHA3+Bnc+tPwo2HhFztFfP9NcizgGTUleCv12nkR o6iDdqpaL6wfDrU8fI1YS8zl/xn41Gu5eSTxZ1mcw6NRe6EGQ00HPgJPBotq sUc44Iu594b/vRR7ptbEf2hdGxxTqoHd86JuyX8uk8LX0EXv0BN5EDUlzvmA qmPQ7NAv58r5wqOHxhrJR8n1sH9yWWq20zXm88L9zEP+St2P9fPfJnZO7KGe AYbwXwi6pB5ITOB/of8DBEfI0w== "]], Polygon3DBox[CompressedData[" 1:eJw1l3nQllUZh5/3Od/3fO9rJovKaM2kYq6l5kLpHzXN2GKxCYSDWsNgboCB C2ZsbUO5YeESVs4kUwaaiJYioqalkGFpKkJsCgmCWhoqTmSOdl393v6457nv c59znnPu9XcOOmvq6Cl1VVX/gnqgy5uqGsD3PgYXwZ/F4GDkR5B/hfxX6Kul qo5h7J/oDu8wH/kfyM/2VdXRyK/B38vYufA/YP5VrH0Ymsz89cgT0Q1nznvI o3qz98xWVW2Bvxr9HOTl0AT0m5j7CWgv9Bv5DmXPWXxvZP1w/reO+ecif8o7 9GSNa0+DdsCvRN8P/cWtnP8LrJ+OfAXzT2H9KsYOQb4S/RL4FdBeyDvQT/W+ 8B+B3kFey/czrP8K393sf0wnd/JuZ9Sxh/fVNiuQb4cfzp0ehL+I/TfAT/a8 8LcydjP89dA8+JXQNNY/itxm/wucA38qY3tX2UP5xD2qahvfucyZyP+nwH+N uXeiXwC/AZqM7sus6eN/jyF/AHkWcxY3se+B6B5i/m3wO5jzRhUf/RD5j9CH mb+LsUvhN7o/8mTkfszdoS2hVey3me9T6IeW3On78OP8J3tdgfxyb+7k3cbX 8c+hnLmH+dvYb3SbezJ2bJU1i7v20JerkO+AP5n5ZzL/74ytxl9TWXMc8rHQ x9Ftdw38NdCL8F9kbEaJj99j/gDmn8RZvoU8At3mnthd+3eQ1zPn7So+1bef hSaUnPGQTs7oWS/QDtDf2vH1QPRHoL+YsT9A+yMfhfwC+jPRDzJukPeHnq1z Zs8+CJtsamLDz6EbB93kvznjA54V/z6Bfos27+T8xvob6H8G/653YI/pyFuR 90F+kv2P1AftnMc8Mp+2IW/kfv9h/fXIu5Cf60ss/wj5LeRJrL+DtTMYO62T 8/0UGz2u/9AfCi00luqcbxBznoI/ijXn6T/ku0psPBD5Bv6/szc23cC/djM2 n/l/gQ5Dvl9f1fH5z+GXQ99F3gf5SvgzmH+O8Vvn/L+FX1An/m4vsa+1Rhto i0uazHU/Y2kpc05Hfgl5AfxV/HMg/Eh0/bDttCaxaMwb++PaqWfWtYuanNfa NJ/7/Bt+EzSS+UugPTrZ70t1YsRY0b7XIh9sTHZi3+vq1JTjkA+EdtWJYWP5 eGgY+9/A/ifAf4P9p6G7pI69T2b9FGXo8+ivRh5b5wye5XTo7JIY29r1j7Gz lD3HM3duX2w5Cv0B3fpgLXyRsXW9qR+7jFn2GIt+iPmF7pet5JNn9uzWxfHM v5D9hyDfxB41ulHIi+vYYIs69vsmth3BHvui79dJ7moT4834d+/LmXN3k5wx d96qk8/Gi3nuGtceBl3WSk+xt3wU2q8kJowN7/eKtoI+hO5IaN8Sm2ibE5E/ XVIDrAX6RN88rv36sn//Ep/re+vBCM+Gfk90rU7uugYa0pcaYa2YZcy0478j WPs28uCu/axF7xgDneSEuWHMGz/mpLnpGv19KvJt6MZAm+HPZ2wluqeRD+/L P/330ib2MmaN3Umt2NuaYm3xDvZba461Rxus6Uu82C/sG/+vV9bO53sT3/07 scWfoAGd9OjVrP1gSe+2P14KPwcaaaxCs0t6brsd+9hbFrUSDx8zxkt6mPk+ pp1eZ/4908UD7q0P1/bljt7VGmK8nMD9ft2khu1t/rB+cis+Nn53ozsfeSby TnQTGPtdSYzr/4OgT8IfUNKPx0ML7d/d+HX/O5vktPXneOTXe1MTjQdtoC3M Weuh/cC9vJN3u4y1Z9epZ9a1C+1xdTCR2GiGeAa5WC/Q34/8GGuXQC/BL4c2 1amn1lVla+1z1lP43zfBXTuRH4Ef1hvefJ/Y5H9iFzGJ2OTeJrVwPfr7muCn V6tgnJVdvCF2EUOIJeax+TLWC/Ls3/0Y2w95HfKyJjVSX1mDrcXDmL9abIb8 NPK3m9Qm17j2ma4v9ekvujFirBzcSr+1Bz/fSg7am7WBOm2gbR5kfGErMWDc 2wOs3e7p3vrU3H6yxNc3l5zlXWMG/lrHu/jilhKf2luMIX2tD/SF8XRX117/ u2srtrD+z2kFM4od9a+9UUwqNp3tmlYwz8ZuDP2Z9Y+WxNZa5Bc474w6eOd7 TfhzWLOmN3lmvolh5zapudbe2Z65Cb6Wt95Yd17VRiUYZnt3P/H40C62Mr5u aQXTie30h9hL/CCO+HoT7CpmE7vZD8V61gRxSQ/0/lYwyD1Nar65u62LJX9T 0jvsIXd3Y9bYFX+IQ8Qgns9zik3Ed2JDMaXY8vV2ctOaZm17s51aaY+wV7zJ nGUlmMOcfAX+O128sLVkT/c2Xk6yv/Kd1koPn1dSr8Qq5qy5K/6faa1qpR6J p62l+kTf2A/ERuaE9VCMK9a1p+gP+4nYyDeK9eh9nfRKa6b9fX6JzjN4llM6 yd3pVfrxdsYm1YnhW0vwkFjBHmgv9P7Wat9Q9gvfAL4FjDnxtf8TS1jjrHXW eeu9Mad/rI/20gdKeoPxaO7qQ31pnBvvxoTxLeYX+4vpfe+IN+ytRyPv6fum pNZYcx4q6XHG3nmt9B/feL71fEMYn+ad+Ycpq4dLaoy1xpizXojffZuIqcTH +t+9+lepz9rmupL3ybZuPRM/v9atb74JzF1z2PfFj0vedmKM9dDsnmAja67v Q3GD+MEa63tmUYl9fJOtgcZwhhXI98BPFX+XYGV71sueoQS7GnPGnjXV2iqm EtPrX7GWGEwsNrYd3w/u9q/RneSHeTJFLFNyfjHsjSVvOvudPcH3ohjZ/z1R gu3FrNZr37AboMUlthTT/gT+v2X+E1s= "]], Polygon3DBox[{{1723, 733, 968, 967, 1722}, {1769, 302, 736, 971, 1777}, {2206, 498, 972, 922, 2066}, {2324, 404, 1149, 1711, 2323}, {2386, 924, 925, 196, 1902}, {1778, 970, 736, 478, 1765}, { 1763, 907, 962, 716, 1710}, {2374, 882, 999, 990, 2390}, {1654, 609, 913, 907, 1763}, {2360, 291, 1768, 1741, 2361}, {2391, 302, 1769, 1783, 2473}, {2391, 993, 1001, 893, 2380}, {2387, 926, 976, 766, 2340}, {2389, 966, 985, 821, 2160}}]}], Lighting->{{"Ambient", GrayLevel[0.8]}}]}, {}, {}}, { {GrayLevel[0], Line3DBox[CompressedData[" 1:eJwl0klLVWEcB+BXTUVo0TcQs7XfoJWbFtbClVAgBoZZXFcuokVby8zSnLKy 0jS1rCybbNC0wRGHbDCbHNIEA1NUIqTnItyH3+897/8M3HNSDhZkRmJCCK20 x4YQ7S0yT9lICGGH9bJ1XGIIyfqqvl1P09f03TIlyayeoe/U/+r79VT9n56v R+JCSHfeMb1Q36MX6cf1vXqVvs/8CetGPduxjuh5slfusrfpWuN6xrYQRs3V McJlCuzfl5e4SMS6Xd7jPHepJcvxIVnKLIvMcIej9i7IQc4wzS9+0Gxv3f9x W1+WA3KOfv5Yl8hyFjhi9rts4w1v6eM5t8i3/1XO842b1PCFZ7QyyRSfeUQL 1XziNavuedh1Tutl/OQGH6PPylNekWemUzYxwQfe85AV12iU2WZ6ZC8vKeYc DbzjOlU84Rpj1DPOIec+kFep5BRnOeB4h7zCY05SQTdd5Ngfli8oIt57jZde bej2XL+j35zepS/pfmHCUG7M1nf6H/Hbb3I= "]], Line3DBox[CompressedData[" 1:eJwt09tSjVEAwPG1d+kgSpSQSkdKySHHDhQ6SA01xlRTTBjMhFszHsB4AW/Q jAfwBm7cmaHzEbelIuV8+H0zXfz2f629vv2tvb9Zu3DwUdfDWAjhNVcTQ0jS j14WEkJY5BO3U0NY0mVW+MwXVvnKHetrus43vvODfu//1F/85g9/+UewV4w4 CSSyKdqfZO76bIou+S6pupk0trCVdAZck6HbyGQ7O8gim528cM2Ke+QY72I3 e8hlL3nkU8A+CimimBJKKWPQffbrAcqp4CCVVHHL+iGt5jBr9jyiRznGunmN LmuPa48bn+AkpzjNGW5aq9U66mngLOd4YK1RmzjPBS7S6/1mbaGVPvM2vUQ7 HbzxzBfiIbw1HvH4F43fGY8ax6yNGI8Zj+q4jumEjuukTuiUTuq0TumMTuus zuiczuq8zul7vef3dtqr2x4fzNv0ivmzZN/F/Im+0iF9qQM6HJ1Ffa6X9am2 6GNt0vtao71apu2aq3WapVWapvka1wy9EZ0Z7Y/Oj/ZFZ0l7onOl16MzptfU 4wvdmqJd0Xnc+G/8B/INWFc= "]]}, {GrayLevel[0.2], Line3DBox[{1794, 1941, 2481, 1793, 1940, 2480, 1792, 1939, 2479, 1791, 1938, 2478, 1790, 1937, 2477, 1789, 1936, 2476, 1788, 2524, 2416, 1787, 1935, 2384, 1758, 1786, 1934, 2318, 2475, 2470, 1785, 1933, 2317, 2474, 2469, 2404}], Line3DBox[{1803, 1950, 2488, 1802, 1949, 2487, 1801, 1948, 2486, 1800, 1947, 2485, 1799, 1946, 2484, 1798, 1945, 2483, 1797, 2525, 2417, 1796, 1944, 2369, 2615, 2370, 1943, 2270, 643, 2576, 2134, 1942, 2135, 2482, 2434, 2132, 2405}], Line3DBox[{1812, 1956, 2492, 1811, 1955, 2491, 1810, 1954, 2490, 1809, 1953, 2489, 1808, 1266, 1807, 2527, 2419, 1806, 2526, 2418, 1805, 1952, 2144, 2008, 2578, 2142, 1951, 2143, 2007, 2577, 2140, 2280, 2279, 2141, 1363, 2139, 2278, 2277, 2397}], Line3DBox[{1819, 1960, 2496, 1818, 1959, 2495, 1817, 1958, 2494, 1816, 1957, 2493, 1815, 2529, 2421, 1814, 2528, 2420, 1813, 2559, 249, 400, 248, 1517, 398, 247, 1515, 396, 246, 1514, 394, 245, 1024}], Line3DBox[{1830, 1963, 2499, 1829, 1962, 2498, 1828, 1961, 2497, 1827, 2531, 2423, 1826, 2530, 2422, 1825, 2562, 2024, 2023, 1824, 2579, 2022, 2149, 2021, 1823, 2020, 2148, 2019, 2561, 1822, 2018, 2147, 2017, 2560, 2467, 1821, 2016, 2146, 1376, 2295, 1820, 2015, 2145, 2014, 2294, 2322, 2388, 2407}], Line3DBox[{1844, 1965, 2501, 1843, 1964, 2500, 1842, 2536, 2425, 1841, 2535, 2424, 1840, 2436, 2534, 2033, 1839, 2435, 2533, 2158, 2032, 1838, 2581, 2031, 2157, 2030, 1837, 2029, 2156, 2028, 2563, 1836, 2027, 2155, 2304, 1689, 1835, 2026, 2154, 2610, 2303, 2302, 1834, 2025, 2153, 2301, 2300, 1833, 2327, 2328, 2532, 2152, 2299, 2298, 2398}], Line3DBox[{1858, 1966, 2502, 1857, 2542, 2427, 1856, 2541, 2426, 1855, 2041, 2540, 2440, 1854, 2439, 2539, 2040, 1853, 2438, 2538, 2167, 2039, 1852, 1398, 2166, 2038, 1851, 2037, 2165, 1396, 1850, 2036, 2164, 2312, 2580, 2468, 1849, 2035, 2163, 1691, 2311, 1848, 2034, 2162, 2310, 2309, 1847, 2437, 2537, 2161, 2308, 2307, 1846, 2330, 2472}], Line3DBox[{120, 1177, 119, 1176, 118, 1175, 117, 1174, 116, 1173, 456, 115, 1172, 455, 114, 1171, 453, 113, 451, 1548, 112, 449, 1547, 111, 447, 1545, 110, 445, 109, 1170, 443, 108, 1169, 441, 1055}], Line3DBox[{1863, 1978, 2508, 1862, 1977, 2507, 1861, 1976, 2506, 1860, 1975, 2505, 2443, 2185, 1974, 2584, 2186, 2046, 2183, 1973, 2583, 2184, 2045, 2181, 1303, 2182, 2044, 2179, 1972, 2180, 1409, 2177, 1971, 2178, 2504, 2442, 2175, 1970, 2176, 2503, 2441, 2173, 1969, 2283, 2174, 2043, 2171, 1968, 1666, 2172, 2042, 2169, 1967, 2582, 2282, 2170, 2359, 2402}], Line3DBox[{1868, 1987, 2513, 1867, 1986, 2512, 1866, 1985, 2511, 1865, 1984, 2510, 2445, 2203, 1983, 2587, 2204, 2055, 2201, 1310, 2202, 2054, 2199, 2565, 2428, 2200, 2053, 2197, 1982, 2198, 2052, 2586, 2195, 1981, 2196, 2051, 2585, 2193, 1980, 2194, 2509, 2444, 2191, 1979, 2192, 2050, 2189, 2287, 2286, 2609, 2190, 2049, 2188, 2285, 2564, 2284, 2363, 2048, 2362, 2187, 2403}], Line3DBox[{1873, 1995, 2517, 1872, 1994, 2516, 1871, 1993, 2515, 1870, 1992, 2233, 2514, 2446, 2230, 1319, 2231, 2064, 2227, 2568, 2430, 2228, 2063, 2224, 2567, 2429, 2225, 2062, 2221, 1991, 2222, 2061, 2589, 2218, 1990, 2219, 2060, 2588, 2215, 1989, 2216, 1429, 2212, 1988, 2213, 2059, 2209, 1316, 2210, 2058, 2207, 2365, 2566, 2364, 2381, 2057, 2366, 2205, 1742, 2393}], Line3DBox[{1886, 1998, 2520, 1885, 1997, 2519, 1884, 1996, 2518, 1883, 2085, 2234, 1450, 1882, 2595, 2084, 2232, 2083, 1881, 2594, 2082, 2229, 2081, 1880, 2593, 2080, 2226, 2079, 1879, 2078, 2223, 2077, 2571, 1878, 2076, 2220, 2075, 2570, 1877, 2074, 2217, 2073, 2569, 1876, 2072, 2214, 2071, 1875, 2591, 2070, 2211, 2069, 1874, 2590, 2068, 2208, 2067, 2331, 2367, 2471, 2614, 2400}], Line3DBox[{1900, 2000, 2522, 1899, 1999, 2521, 1898, 1337, 1897, 2102, 2245, 2596, 2449, 1896, 1462, 2244, 2101, 1895, 2602, 2100, 2243, 2099, 1894, 2601, 2098, 2242, 2097, 1893, 2096, 2241, 2095, 2573, 1892, 2094, 2240, 2093, 2572, 1891, 2092, 2239, 2592, 2448, 1890, 2091, 2238, 2090, 1889, 2447, 2543, 2237, 2089, 1888, 2598, 2088, 2236, 2087, 2333, 2368, 2597, 2332, 2385, 2413}], Line3DBox[{1915, 2001, 2523, 1914, 1347, 1913, 2548, 2431, 1912, 2116, 2256, 2603, 2456, 1911, 2455, 2547, 2255, 2115, 1910, 2454, 2546, 2254, 2114, 1909, 2608, 2113, 2253, 2112, 1908, 2111, 2252, 2110, 2574, 1907, 2109, 2251, 2600, 2453, 1906, 2108, 2250, 2599, 2452, 1905, 2107, 2249, 2106, 1904, 2451, 2545, 2248, 2105, 1903, 2450, 2544, 2247, 2104, 1901, 2604, 2103, 2246, 2394}], Line3DBox[{1929, 2267, 1638, 1928, 2557, 2433, 1927, 2556, 2432, 1926, 2127, 2555, 2466, 1925, 2465, 2554, 2266, 2126, 1924, 2464, 2553, 2265, 2125, 1923, 2463, 2552, 2264, 2124, 1922, 2123, 2263, 2607, 2462, 1921, 2122, 2262, 2606, 2461, 1920, 2121, 2261, 2605, 2460, 1919, 2120, 2260, 2119, 1918, 2459, 2551, 2259, 2118, 1917, 2458, 2550, 2258, 2117, 1916, 2457, 2549, 2257, 2395}]}, {GrayLevel[0.2], Line3DBox[{1105, 1700, 1701, 2475, 1702, 1360, 1500, 1674, 2576, 1673, 1642, 1364, 1506, 2577, 1365, 1509, 1681, 1682, 1515, 1371, 1518, 1686, 1687, 2560, 1523, 1378, 1526, 1689, 1690, 1533, 1386, 1536, 2580, 1692, 1693, 1544, 1395, 1547, 1406, 1555, 1407, 2504, 1558, 1418, 1567, 2585, 1419, 1570, 1430, 1579, 2588, 1431, 1582, 1443, 2570, 1593, 1444, 1596, 1456, 2572, 1607, 1457, 1610, 2600, 1470, 1621, 1471, 1624, 2606, 1484, 1634, 1485, 1239}], Line3DBox[{1106, 1757, 1758, 1759, 1760, 1761, 1750, 2615, 1749, 1123, 1366, 1508, 2578, 1367, 1510, 1372, 1517, 1373, 1519, 1379, 2561, 1525, 1380, 1527, 1387, 2563, 1535, 1388, 1537, 1396, 1546, 1397, 1548, 1408, 1557, 1409, 1559, 1420, 1569, 2586, 1421, 1571, 1432, 1581, 2589, 1433, 1583, 1445, 2571, 1595, 1446, 1597, 1458, 2573, 1609, 1459, 1611, 1472, 2574, 1623, 1473, 1625, 2607, 1486, 1635, 1487, 1240}], Line3DBox[{8, 1787, 23, 1796, 38, 1805, 53, 400, 68, 1823, 415, 83, 1837, 432, 98, 1851, 450, 113, 469, 2179, 128, 489, 2197, 143, 509, 2221, 158, 1879, 530, 173, 1893, 551, 188, 1908, 572, 203, 1922, 586, 218}], Line3DBox[{1107, 2524, 1248, 1108, 2525, 1256, 1124, 2526, 1264, 1133, 1374, 2559, 1272, 1142, 1381, 2579, 1528, 1280, 1152, 1389, 2581, 1538, 1288, 1161, 1398, 1549, 1296, 1171, 1410, 1560, 1303, 1181, 1422, 1572, 2565, 1309, 1190, 1434, 1584, 2567, 1317, 1200, 1447, 2593, 1598, 1325, 1209, 1460, 2601, 1612, 1334, 1218, 1474, 2608, 1626, 1343, 1227, 2552, 1488, 1636, 1351, 1241}], Line3DBox[{1109, 1249, 2476, 1110, 1257, 2483, 1125, 2527, 1265, 1134, 2528, 1273, 1143, 1382, 2562, 1281, 1153, 2533, 1390, 1539, 1289, 1162, 2538, 1399, 1550, 1297, 1172, 1411, 1561, 1304, 2583, 1182, 1423, 1573, 1310, 1191, 1435, 1585, 2568, 1318, 1201, 1448, 2594, 1599, 1326, 1210, 1461, 2602, 1613, 1335, 1219, 2546, 1475, 1627, 1344, 1228, 2553, 1489, 1637, 1352, 1242}], Line3DBox[{1111, 1250, 2477, 1112, 1258, 2484, 1126, 1266, 1135, 2529, 1274, 1144, 2530, 1282, 1154, 2534, 1391, 1290, 1163, 2539, 1400, 1298, 1173, 1412, 1562, 1305, 2584, 1183, 1424, 1574, 1311, 2587, 1192, 1436, 1586, 1319, 1202, 1449, 2595, 1600, 1327, 1211, 1462, 1614, 1336, 1220, 2547, 1476, 1628, 1345, 1229, 2554, 1490, 1353, 1243}], Line3DBox[{1113, 1251, 2478, 1114, 1259, 2485, 1127, 1267, 2489, 1136, 1275, 2493, 1145, 2531, 1283, 1155, 2535, 1291, 1164, 2540, 1401, 1402, 1174, 1413, 1563, 1414, 2505, 1184, 1425, 1575, 1426, 2510, 1193, 1437, 1587, 1438, 2514, 1588, 1450, 1601, 1451, 1602, 2596, 1463, 1615, 1464, 1616, 2603, 1477, 1629, 1478, 1230, 2555, 1491, 1492, 1244}], Line3DBox[{1115, 1252, 2479, 1116, 1260, 2486, 1128, 1268, 2490, 1137, 1276, 2494, 1146, 1284, 2497, 1156, 2536, 1292, 1165, 2541, 1299, 1175, 1306, 2506, 1185, 1312, 2511, 1194, 1320, 2515, 1203, 1328, 2518, 1212, 1337, 1221, 2548, 1346, 1231, 2556, 1354, 1245}], Line3DBox[{1117, 1253, 2480, 1118, 1261, 2487, 1129, 1269, 2491, 1138, 1277, 2495, 1147, 1285, 2498, 1157, 1293, 2500, 1166, 2542, 1300, 1176, 1307, 2507, 1186, 1313, 2512, 1195, 1321, 2516, 1204, 1329, 2519, 1213, 1338, 2521, 1222, 1347, 1232, 2557, 1355, 1246}], Line3DBox[{1119, 1254, 2481, 1120, 1262, 2488, 1130, 1270, 2492, 1139, 1278, 2496, 1148, 1286, 2499, 1158, 1294, 2501, 1167, 1301, 2502, 1177, 1308, 2508, 1187, 1314, 2513, 1196, 1322, 2517, 1205, 1330, 2520, 1214, 1339, 2522, 1223, 1348, 2523, 1233, 1638, 1639, 1640}], Line3DBox[{1234, 1349, 1748, 1630, 1479, 2549, 1224, 1340, 1617, 2604, 1465, 1215, 1331, 1603, 1727, 2597, 1747, 1726, 1206, 1323, 1743, 1589, 2614, 1725, 1746, 1724, 1197, 1315, 1742, 1775}], Line3DBox[{1235, 853, 1631, 1480, 2550, 1225, 1341, 1618, 1466, 2544, 1216, 1332, 1604, 2598, 1452, 1207, 839, 1590, 2590, 1439, 1198, 836, 2566, 1576, 738, 1188, 631, 2564, 1564, 734, 1179, 2582, 628, 1552, 730, 1169, 623, 1541, 726, 1776}], Line3DBox[{1236, 1350, 1632, 1481, 2551, 1226, 1342, 1619, 1467, 2545, 1217, 1333, 1605, 1453, 2543, 1208, 1324, 1591, 2591, 1440, 1199, 1316, 1577, 1427, 1189, 1668, 2609, 1667, 1565, 1415, 1180, 1666, 1665, 1553, 1403, 1170, 1663, 1740, 1662, 1542, 1392, 2537, 1160, 1660, 1739, 1659, 1531, 1383, 2532, 1714, 1151, 1657, 1738, 1656, 1774}], Line3DBox[{1237, 349, 2260, 567, 338, 2249, 546, 327, 2238, 525, 316, 2214, 504, 2213, 305, 484, 2192, 294, 464, 2174, 283, 445, 272, 2162, 427, 262, 2153, 410, 253, 2145, 395, 872, 245, 382, 1019}], Line3DBox[{1238, 1483, 1633, 1482, 2605, 1622, 1469, 1620, 1468, 2599, 1608, 1455, 1606, 1454, 2592, 1594, 1442, 1592, 2569, 1441, 1580, 1429, 1578, 1428, 1568, 2509, 1417, 1566, 1416, 1556, 2503, 1405, 1554, 1404, 1694, 1545, 1394, 1543, 1393, 1691, 1534, 1385, 1532, 1384, 2610, 1688, 1524, 1377, 1522, 1376, 1685, 1516, 1370, 1514, 1369, 1680, 1507, 1363, 1505, 1362, 1677, 1501, 2482, 1359, 1499, 1358, 1699, 2474, 1698, 1772, 1697, 1762}], Line3DBox[{1781, 1770, 1745, 1771, 1782}]}, {}, {}}}, VertexNormals->CompressedData[" 1:eJzsvXk0ll3bP64UKgmRkjKVIYko1zbkMBSVKcoQDaJBKlMoJRlLpkTIEEKm yFjIkLkyZZ65pKhcE8mQ8Xvt3vu31u+f/rjXup/1PO96H38e61zXufcxfo7j s/dJ0MLW4MJKBgYG+bUMDIwMf/obh3+1PHdpmf5Hg4W1/QWFmiHKMXPSqx5S OdHm5f+RizM+4NrtEqR87w1/jM+UNDrxl/yh4mXvOAE/ZQmDjIuiPw6jO3/J 12YyRhL67yk3cyr376o6iyL/koedZzJJNvJWzpfoid7D54Ay/7/ni7OKFPd6 Ksf28SkHUj1R8V/y3sd2VR7x7sqb3idraTqEoHd/yb/prBY5ouGmPPSk47D3 VDxq/ksuat62nN51W3kLzcS3OzcTdf4lbwnl2pDW6qKsIHmneOePQvTv0vO9 xVyVpSIahBzmWCrLLQc3ruDqlZ1cyM3JzqyxiQbXGRUL0xhLYMeQqKiEkAwi eMonR/TRQJ6mvb1layE8M4sgnNt/FN3YGndu6TMNxo62c9wSeQWLWxnWRrqZ o9xC5YKG7zSoWdDI8u3IhcGIncHH0xzQte6jbb8oNGCZ/nh6fjYbwhv1dg9e 8EIpfvFsXBM0EAlq17j3+SUwOX26e6A1BIkJbP5lP0kDt9tuut2GGbCFY4vv Y3iG2O0/xR6dogG7kL5UqkQ62HWCnqbgS+TDIGdcOU2Dl9PXvn3XS4VvuRcR t1rRv1zPBsesQ0rDqHBcK8xAr7UVLDadGE49PU8oWVt/2Gk1DfYKv2RfvvwR nGj9YUdktiLG96PCYkdpEMioLdrfUgdLO64batL2o9720i05zjTwWvhectLo HXw1GjDSJ+iiuZ1Se34+poHxTc1Lc3HVkPWIc2uotQVSdycunkynwejHJtk5 p0oYeqDBm3DWEYXnIl1s36DYRYtSun0t7BSrGTq9kfiHq3blNTRw3V0jZeBS Bsz5YW9GZkORiM2T89juGo3D21Podi8abswVF0pAkx05+7530GDTAfKRmrEi EEhI1RdzyEIy8R0Z2B+abmrTmuj+0PM998rZ/W/+5Xr+JLV2zxo3Cui27bGi dnTDymy3S2c9mdHNULect0JUePbMx87vXgcIkZ7tcVm9A8kl/UjHdnFF/Hm6 dLtsAos1QvIH0NnNIwMGo1T4yO/83SqxGRzc+33OtxqgjUU2qpP8NLjLLKYt VdwIBZdlqK4jF9AlIX9pbC+e3ccU++j26qQVhVhevYEeenMGNlymQdSynz37 xfdAnFrb9vn0fZTg/iqMxZMGEVmcr4+cqoWUk5sza+bCkIGd+X5sx1VjGwp+ 0e34bfwKW1B6IpqRJLydS6RBpCprTbpgFUzsTIjc3ZeNOPccZdmcTQOu0Gxa VEcFTG7USvDtLP7H9PzFxIxVaYIEF7/qVq7cS4S2SfFy3++zhFCP7fd3xpEh MvJQuUhcP1ReYvwZpMuN9M9eu+2iRYH93+5umCzvAbMrOvc63aWQabRV75Mu Cpz3z1/jy9sFc+nsqnkVB5HA7dADPupUGP2USnCsb4ctLS94JDpM0NdXMgXY LmF1bpbYLvUcvC3PT19BirUeYXntVHi5h0FLfkcLPPwgqyG9zRW1dI1Y4Dja wqjguEiPI38vBg5NGX8UM7cqqlCCnrcPM2iqTDZAv+G0X/HcE9R6lCyH7WUd rlDdS7fXSMj5mEO05yjtgaBslgXdLjoW/Z+m34PKmRTmPT65iPvboCiOO7co gQATetwp8BUf0SOU/WN6Xij0iawrIEFMRG2u4zwRxJP1cpPz1iBKOL+8FDsZ xtknRbkrBkGes7h/Uk0Ytb/ICMX6d/vBGoT17xEwu9foojxK/hC4W1eCAlFX ajZd1e8FJ7547WVfXcRc02KXnUiBGvELycwC3cChyXh/w4pzSMzFV0iHiQpX WIVDDIQ7AQQkLh15Y4+S3rw62WBIhTkLPb/Os+0gZrJ95yV7D8ScGVWG7RLN ZCaL7fIm2DUpWy8YZVasGLf4QAUb9YTQdscWkP0SIUTe9RTdCEuzuDBJBf3s Y0ybVJvBwumsdwh7GpLXEfDv5abBVrGScjOLJtBZNgl0rM9Hxbvidp2Wocsv tW4cvNsAPEMGz+8Ulv9tPU+/nrLE+jEq+aYtStfPF9ueeK2yeUJKJop+/p4E PNffmZWVE+H+Q3Ex/+TNSN6CJQ3LH7raSWD5GsfI/Jyv0mi/O9/WIBEy6CpZ xBFtBkGM+dMxVtuDyHXDxhj8++Tz169i/a8vTPeuLDdC9mL7/QW5KcD4cnf6 UG4vsComruCtvoSSXCSO47z0uLS5gELPSz9solad9ryBCp/ak3BcRGRm59yn xwWjj0Kl8a57SEhdqBnnqz1ME9UP6PkqsoB8/cbqx+ibwv7vdueokO1AC5vb 0g5ezjcqZy8+Qyn98VXYLmdbczmxXe7l6/Xyy2cicWFFKa8KKrDnebmszGiB WxrWhp3vC9CV5bMTOL/NRZSb4Pw27Vt3xLK18m/r+aZijgHeb5HDlfhP9P2e mgmUHm5Yg0Zfjh6dW0GG9VtbXQp+DkJ30uf+q+tFULiOVX/IaxL085muzlwm QrjKhPg2HyX0OtC6rm6ABG/mxCoPOxPh3n3lyBzxY+hGUIypEIEMTakxloS9 gzAUcnehkGyOGMnjz7D+HSfnT2D9y5g69U4V26GQ0lU3f66iQPjFxqvk2V5g WEfZlRd6FwWLqB2NPUeBh6tzJdTNekBsIEDfJCoA3ZgVsOXMo0DvWd4bn9u6 IGtQ757S/BMkP1knfuMXBSZSlTbcsuqEasXWnVv4nqOvUUT+rv1U4Opaed+W twNmBNw8LfVyUGd5Q4z7ZSpQX/hbLXxrA+9maa6NccXIaS3bO2yXM+LXFnTo dvG2KY7d7Vbzt/Us++YEH/YfvhLtElzXrtZbNW+V3IQOrKRk1umQIUJg25ux vgGYG2Ka+xUogx6MmKdjf96a80YE+/Nx+UtyTtyaKETITmZtCQlGCso6XpGJ sOdE0z2JGRO0pHRLEud5D/l4LZznq5gOsd/7boUkXpxMbVYn0+s99UD8ikEY Z7NTjPa9gXS47iRj/ecb1Kv9zv/z+1YE6vogmbigVcmzZOhaPjiQKNkHK3qs onNiQpDRz4dPcF24Y07z+0GvC40K2qvb3ePQfosjkv1hFJiSF9nx0LIbdk3c nUr6lob8NixN4rjYWejjg+NCqH24IaciH/VLXpWX46DCi6rVB9597YDdfKdH kxXLkcaRs8dxHfnuXFt4nV5Hsj6r+4t3vP+jnsPrquZF6fl/rYkXF5Ge/yvm L0VT0n4Q1tRAAX6vZOupt7hOFeyyfX36myBibbH3xvsFs9k6vF9hRbWM4/EH 0AhVRgDrTZV9/22sN92VrnKL0/qo+8KjHJzPNSjWZ3E+T5nkIkS+s0BMqd6F 2C7ODw5MldLtUhn35ob1egd0ZQX3VRwvk5UlK3C8iLRMS662cUcPPn5qwfaV jnq3F9vXNezQ2h+FAShHc1U6Xs9Vn5f78HocOM4Wb9J+glTVNofNUcmgZnv9 e6FRHwictl7LP5+INkddq62Wp4B6zrQ+lb0XTkzJHjRbnY3yE4LPYr8SVRp3 xXnJe5OjQgdvEfJ/9It4tZgCirtMD21M7wL3khrfQ6pVKIJp6Jz4DwqwWLGu tnrYCV9NSYY2Uw1/1PP1Q9fOYvxTcb9zGxcd/+yxWOyZD1wgGM/bx+H8dory pAPjsVQOylVODwl0mjPBFq//IHGNbxF9/ca+zhWicRrIKzp6E87D18bXZeM8 HH32o03lnClSaNbMw/q84BrCjP28ziQzI9b7Cnq14FuA9c92pPgo1n8c9ZdU Up4LUi31XfuxkwTWYZdf/QoigqDLWppP7j20a2T/cVxnrdWK33PR66y0/l21 H2qhaGqYc7bdkAyvVqtcNi0dAJYP/W4N2XHoidmHDKx/Frkocaz/xEotoxMX 05Cr3RkZqa9kOH3FvSHuRh+cPvXm8suRPOR788hBXJcVvwZmXqHXZerZ7TqL vmXopf+GeQ1rCsg7e3DNy/TAWUKwAs9iLZrM176H6/Wbtg4lXK+/B7jdY1vR 8kc9s8hMXsN4crTAUU6Hjidrtx888216FbrtVF+M68XK67dS5+n14ohWxQXb Q/uQqYr8M+wP4uMts9gfLrz7yNr37Bj6ZL7p/Mw5elwLTptSggZgoFBTmy/O EqW8Kxfs/EqCjEl2uScGRFh6F58mmHYdVXo19xoVkUB2xXbrTdNEMJ4XfcM9 7YEeJ5TodJWRoMn13veZYSLIpr+//mk6CJnpcykFfSGBsuegjcYZIuxaNrHj SIxEXBoHkoCPDIScTrnPjwehUXHdttnwJLROTWTc7hQZVrDz3uZLGoDmJ0Ne bYLZqH4dSxbW/xmnOAGs/95Vwx6RbwvR/dWZfDVDZOBP3635MKQPxCfKWd/H V6Kfx0TbNfkpUPy2fPzWvV4ol2G5Ih9cjzZrzo49P0mBE09+WnK598D16FVF nRztf9Sz2rFgTozPT96aW7dIx+eCm7VSvCvXo5hfTpE4z+d4fdiB+zvZQX6m wSElxL1RQhHHV1NcqzjO26URIs2XXxojkseHx3j9ulGRD/D6lSy0TQ6XXUGM x9w0sR9GFd+dxH5oKGNIbre/jVqKnIqwn6vXT0zgvDGqLk71TfZFscEeNFxP LfSlqzLo9VQzWXDTYudjZLBLphw/3696phc/v3ko3Cr7azxy230W4XwV7Re+ A+crzmKZx2ei0pEWCpXG8bXwbkYPx9e4pyx1rW0+YtXWvIv94dmwzw8y3R9q PocyO1SVId6uhWy8ftXDDZvx+jfYSAtWlNcih8YEh4t9ZBhSLlzPmEaP35yV vnLBzUjehyUO44Ti6LrjGBcxhfdmba7u+qOeG+q943G/Y5x9YiKT3u843dhX penLhX6uPs2C8Yz7Gx5fRjqeCcny3tm3oI5sCxNLcL5KMKBN43x1XoKfXfSi OcrYbW+E1+M0edYLr+e7j+rHUYHrKMLOjUg8QIavUc4vZngGIeg56Uf1W08U cEnm7qdPJFC7v53p/SUicIyGTVrEBaOO3BSp929IsFwdeZVrggg9ca+s1DKi kbHHUTZuunz/JiYjz0kiyP1ScjHlTEZ3vEU01dtIYHuHyd8lmgj6/mu75Thy EAd34b7cBbp8tmt9IzMRSjTZRXbUFKHz9vm7bKTIEMMdsfKHziC86yljG91Y hbot4sVTLpKhqvCL2KjrAESZmre31NajuJXRuVj/h6KOc2L9e8eXB+0gt6Eu auByZyc9fzqd+rSypA90hl246/b2/1HPo4ZrKDz0/jG93Wn6Kb1//MVL22ya uhVxhrk1Yny4zKJleZmOD7Vyc38Ql4+ik/OzgPN/28z6Ipz/Df3C0tdLXkS7 P3V5YvsO3o9twvYNV5M4QGxwQZYHj5TtsqHHtXGz4aezA9Chy/nuLP8DNMIt a43rnWJvAAuud2VvC+et14ejp4tvS7HfygxShrHfHpiNMVQSTED+jN9/YD9v OnOhAPt5rCw3/1afDDQzLfc0vZwEL0cI4TH9RLArdpgRLn6F0LnaAYwnt8uG 3sF4ctaQJTRbvBwx3UtBc0xkkHpaavtkeBB0wJm97fE7FHNz6zWMM3fyumzH OFNmn+aqQnIzCu+pFci0JsPJB9dmza/R1x9bdzJvsgshXdZ8rH/alSBWrP+s O41zP4uH/m3zur8rZ63T4sH9rxF3JOcAHf9YHn/DdPEqM7pSH+CN68hLfirS otcRwdg1j9/N7fyX7+ucwwAB95t6k8TjXfR+s+2DYo+VPQfKd3DoxH1lzeEf mh30vlJu9Y8A6i5JlMAWewP3jyyruBhO0/vH9sHRNc71B/+xdfrpybth+24x 7/2M7Xtom0/UTDEDUqaVieM+ws3eshL3ET891IimUXwo8jN1Pe4XXtbpJOF+ QSFa4z0v334kUuvkg/uCbj6RGdwX+Go8+8kVp4WcEu1nC4qp8JJyyFekvQW6 dvfuCDYx/8fWb+DHrIfjK+noJ2scX72rjIuYbNiRnS5/EN7X4UtqSXhfJr2X Xm3WFkPkezYZGA8ovwysxXhAZ3zI+tRqFZSxM/E9zquGDolvcF5N0Rar1lA9 jh4yr67F+G244PEi7k8vnpdeb3zuAvqwXdeKep0KEvHt4y2pbZB/+4H9eQnn v70vgcu5Cx10vNH0dfsbjDdu/VIqEE5jRFqHE2Qxrqh9YH5wlo4rhFy8+b5M b0eGmlkBGD/cDrUPxPjBqrkr5Vf4PnSQsu8J3q8phXQb79czilU0+u1h9Lre ugzjATna/mO36XhgBbcJh2KwGbKMM7nh9JDeD1Kbwu57dsOBfXHgVH8VSYX7 FTtQKODP5Dl7JrUTmo3YlarsXdF1liDnIQUqXHsXp+O52A4hwJHxoNTvb++3 xvVzIa5HI+nnlGbp9YgmI99Q+5YTMT/ZuAnXHQ2lqzW47gRkKMUezJBAk9Kr ZXB9mX5l04HrSwTSZUYcqujU5tFNuI6QpTW0cR1p4U878HXjceR+ak8c1oPc Xibz3/58yj9zJ9kSfRpkuODISu8L3IO1g7p7oaaW4jeRdx3VB3Jc/mJDgTWS a2stt/WAEdKs537iidaK/ao6WE0B3SfnOe3vdIE9w3b51R3BSMarZox1PRXU 7QpLQ5Y6gO2anIGP6dM/6oEqN+mN/afo1Oxlf7r/THIt7pk5s0io+Wl3A6+z 6cP8El5n2aZwN60HAui8yt0SnM+DlF0mcT53uG/3rvU6Afka2mVinF93ufga xvklTLEn5Ry0kHkVgzDGq2PPY/Zi/wmzf2ajwXQasWWXf8Z6rpt3icZ1f4w6 QT5YcRX5Lmkn4feGpflr4fcGFCTPJvPfRsr7T/dYLZGBfUyocjV3H7CHRB9g CPZFe+fGXEYMKUA6LK1w/FEP+JcJlO51DkOu03AX43bG3ltnMW4nxpgpe4gl /FEPGnOHJXG8FFJ9zrTR42VquYPjhD0LCtDjysDvza3c4M1Ef6+MU235Z1MJ NLo9wdFpExnOOXkeFU4fBJJCQvoGqhpqEnh5fXspCSw5rYOmvhFBJqFyv7+Z Ieq+z6JBrSCBf8OI575uIixUrAuWTbuAmG2PNk/8IoFSOKtcIQcRXqnQjB+H OKLc/rusm46QoX2u53YxZQB+cf6YC33uiRLPH0rF+vHmSFfE+kl4ZMC7fDgY jactiPhNksF8XUznOfU+sH3t7fQ6KBo5JjnvF1WjgC3PtLQsqQdkeZ8cG0tP /qMe4K4nc3UeFWayS28mrG2Fg+bTPML7NyL1H/Y6WM9FAVpMJ+h6/gQRvxyc 96MAuWmdoyfJ8FPg0SOx7AEoHVStCDmog/gXRzeHdJMgfLH6WIUvETRYlbmK N5ujyEjk5UrHD7tVXtrN0fHDtthMFJpki2KFgtbnf6T7j2P1quUUItjLujVL s99BpW1DLOZryFDOw1E73DMIHS4nV+11fYD0H5LDVxmQQTIkdW6wfgCM5+YX 8kLCUJzT6Re//bbxiBTWT7FfUU1LyTO0aMOxYniMDMK1UXvWWPXBSqX7KWvt Mv6oB4Fji28w7tq+rZKMcdeNp5daltv50JUmpRPYrw6975VhofvVtAjPt5zt KugE5Wsgfm86if85fm9XGZ/TxjpDJKwSehbn/9oNDFI4/3OsGf7wOOASkjll qonzZ0xM2TLuy/Ledm1SiXFG01IekjjP7LXlcMR55qza14VueW8k56DcheOu J/b1Yxx33q2+2j5qj9C+yMFH2A8lT54nCtH9kF/9HYeeYww6JclyDdtlZfgX XmyXW9zFxiXNyYjQ2p+J1xlhpr3zd3yVp64tGMz5ox68d+XcrGSjwVYf5jeh HU2gzX5o1cOuHeimgaZJ0VcK6F+MPXSvthMqLklueWOiiSZ21c62fSbDi1c9 34p9+kCRb7O1+sWz6MqAEIe1LBlEOQVWbYVBGGgWij1UZYdGTfwSz3eQoDLw y4+ZULr/r9776/Kzu2ji3h6pT3Q/UQioTXu6RATV9xfvvnntj1xqO48HVZGg VG9a7kErES7d/HVsp2AEavAq8F1HIkHKkfnDIppEWKNZFu6YlIBWvRjyjRQk g0xBp9wej0Hwb9J4cEElExmvNLlrcJYM78qimTZGDkDQ/oLjAfavEX8862Wx URr99wm7rPXzQbH9wffzOZ8INs9/ljhI0aC/yPvq29wGkBlexZS3TxKtZzDJ wvlTpzfYFc9PXsZJRjeeP4b23YxlY95JgfqAsRNS13pBPE7U7O7iBVRxTvFH iRW9X07zMux3HADXmo836w/fQOfq61kzp0iQ7HhZYqMgEdZXDAx+femD9pie fylEx9Ul2+z4nQeJ8Nr5K8tCdgj62GtZivPtaTlbOZxvK6YHI/wSYxHrcTtW SiMJGB3tdh14SYQnP581fVZMRUpul+S3z5DgxQ8p9S9biSCw5pJ8Tmoukma5 6CwqQQbqBg/ljtODoHCr3nlqWwk69P1cKuaFOc8wzwd15IJCHmEThesbQY9Q xY3x6tMt8lIYr26LMtGTpcqi3QoTgHGjtFSNMMaNPLpRBJFrRijW9dx+jNNK tjgHYJxmYEcgHGK1QRojfFHYDwPWaztiP5QjUrI2Jt5Fe/UPR2L8sNDPfxbj h+iDrTa7JQOR2fB6FVxnc3wYk3Cd3Revzj/U/gRltp3+rYdPW71/6+Fq2vHb X9Ynof7EYR+ch8tG+PRwHj52vyNLVSELlciISeK8FLUgvwbnpQY31/VDqQVI a+GVE45TqeHPg6/pcerPsFfR1b/if00f8b9F3vx9lxDmbdlju4z3FjfCygO3 bt8dmSL86XnzZNObeG4p5m7Ex3nxPbDdWrl29DQPWq6/6oz5x7AdsbsUdrTA hzgOQdltrP9x9qpMZlnQZqJCWfuSxXHhTlgq1tDWerMC+RKOWeI+XeHLsjHm a5bW3k3iq54hnKwVf4bnVw86Cn9g/shqK8PWXD0B9O2i9Qc8D98e5n4Oz8NN 2dLaT+7ahCTJB7Qxr2dQzJ2Deb2TNjL2j9nl0VGNZ4143hi3PlUJzxvnLa+K zl3cixaGTLfguc0kVxMHntucWNe51PVe8z9Ob4RGL0PMHxU9PLqCMtsLReq+ +1+HbkB2phq+mAdRo314jXkQgUXFh099mdGZ6YFjmD/6UjC3/ktbF+T8Cn+i PC+GNJbVRp/PkiGT1+FMkmQfBDfc3JsXI4T0N0swYf7oDsc+XjveDpB+n1F1 Xk8VfWXh4MQ8iNoDhVTMg7ClLg4nf5NHsVlLOdguNhPHfLBdxHX5liXdDJHh 0htBzIMc/bHlLeZBCAtpsymKx9DoJlriZVsqPN722Lm4ug3Sfe88bYi2+Jfr 2cHJIxLPbaIK3p/Dc3gQcjt2df1KlNEo/xDLrT2qfLA87qhz6jPveYLE2buv MK9h6HHpKeY1fCLZ/H8W8qGAIaA1ddLzqlg291wQESqLhGbv525CAal7bmFe wPbCOTPMCyxe2vxIYF4WETyeD+L5vN+iaB2ez+s+vTPTlC2FYk3bNPDctVT3 +g/Ma5i0r6d28h5BTrtW8+L5fG/rgkz8jT5Yf9TvQ9aIOlqbP6WF51psvlYu eK51wP4Qj93UKXTK9+gXPJ/vd2x1w/P5CROzlM2LRsj3haNKgw4VOkNc0pQf tsOcgh+NcY0tetQW9AXHi+mVgx2Yt7J4kEO6UmaF6q6MuBKkqaBwTrrivkIH JF68Kxa/xuVfbpeL7/tL8HxeL29tK57PPzbPsuKZ5kByzK8F8ZzZKvDSHXyu 4MTiibwu+3VI5M4tYTyf/1J8phbP5/ddT729MVEcTSwvduD5W5J36FbM2+5t qW9a6tyB1g0Od+P5vMuUUPvv+fyPqOR2QRV0xMhCCM+Z433Nr+M5c0i6j5t5 lAK6QNzBhOfz+/IfPcfz+TVav+Q/xBsg99My1njO3MFwVx3zDjSOTSscq3QR mbahE8/n7fbJVeP5PEl9I7GL4zyyWD58Bs91s0WfW+C57hy7kBsh2ByNenI7 viingBfL7FDywy4IaDY/+eaMI9rYRQ3C/OO1pLevMf/oNNWevKXVDn1OfvCZ cxMVTDvn1zI2dkCWZKrKo6deSH4o0K8ggwKFtSOmtya7wEH8e06Kovvftlf/ 6xc78Tp7c0Z1V9HX+SxQg+W7ACPyiVxgxv52fVFv+DLd3066OH1jl5wmOAgH muP58/TBSQc8fy4QE7Y6HyeADm88HIHnqNc1Wsh4jnpP5LWsBf8WZBn2YoaL jtub1PyT8Px5b5bB1lOccuj5+EAijruINT4HcNztv7m+9ICgDHrF5SqA58+c LV1GeP68Yd3Pjp01R5CjcoIvnqO2vicP4Dlq7NGmqzuLD6HyQ8yb8Pz5440L jnj+/K3m2s22WjO0ax+nCJ6jLm6QycNzVAHptbfbHxujK5ejyHj+XPtYSpqx pA/u35mMrN97FX1kK2XDc1Q9S17lc9cGwH7qaWr+5CXESajqVgMKqG+21Fae 7QG/8vLb7wi3kUbfLyC1kuGOVjlJq6EP7tUUzWfz3UDHvhUdR9EUSBM52uR6 pBvUZffN++x4gFaU+/Mm7KPAm1AX9THRXrA+4J5+xtQHCdQLdVT7U+CxS6iE zuNueLhfwqZhPuRv2/HUujkj7D/hVidf4XNNCoX6jC0bONDzsZsrcR7w5SJt UqHnAZNwP/HjWxiRavAzJsynbNosTsJ8invwXKjvx91I6yvneq+PZPgQXsN6 ubcPIqZO1Fpc3YnetE6LY16ec+PeSczLL7kUFBsrqaH5qqRPqrMkqNf+IlHP Q8eTkjkFirMHEMjo5WL7qj2fXYvtaz/T3bZS9ASqmeLs46Lj0vYDXLFji0QI MqwrT5fWR5Eb7x/F8e7nf/Ub5pU6zpNWxz46j4jXdIIFWkigNdHjt5hAj/eR 9nNptefQ4G3ZKuxvbPBBDftb2OVdyzp911FPg/Bbu81kcK+6cZ+YMAhP95yV oSB7NJ6sr4D3Nbz0SN+Kvq/kTYxmvkaeyPrFMXt5ezJoZB7fyXJiADRa7Xg5 Wu8iT3NDJcyHKoc1N2M+1GtKiLdGJxixm0dG3WsgQ09KdEj5aB/kDZ9IatIM QCTdDFOcz0M/7H6M8/k6n5sSDkwxaONw1G02YQpUbj3lTnTqhbXnP92Q0X2C ji/2RMXL0WDfjjzDun0N8NQgaUr4GeWPeM//xgZDHO96T1acv02P95nttsrc 5/jQ9iYVL1x/m9cLv8K8XsyKUe3ETjYUdiiJZOBMhs5tcV4ElQG4oMtX4RxO QG8zDmzA+9r8rOgJPn/lLhEg56K0FzFoM51o7SXB5zS55AZ3IpzcmmlpStNG SgXBhzHvcIONMwXzDoSb7OIyqZrI3kbp5wd6vu1tfi1CpfehQguPDI2KziBJ j8NZ2O7V7MHc2O6nnE4f7DIwRbGMH2LjekhwU5XItMaHCKJsEVRGNhskPJ3Y hfO/sr6gE87/2XFmEskq1ihSZEVSPz8Z6mLPOIffH4SNK2OrpbpuoyIdNnec f9qjOBhx/nnw8ce+JrebKNc/xo18nQwKFzU4A48MAGNjjnDOW1/U2n5HHPu5 kr6kNfZz6xVH6rhafdCy9M03wx/o8b5lw5WkiT6wiTkfc049DGWGXWE/Tteb oZrLTzm63roUzBQ2lYegrF9eIq+3UmBnTMOQYHgv0PRa+h2KnyGem3JMD97R cVfK5Jj+fB+sFdItClePQ/4fo9s4zGjAe2qQZ2/QBwh6HMHvRZj5o30de7ud +pcoMLV/B9lHqxNyIrTJCfoiyNmt8p5rExUkZh4P5BxrAWfzAeNHKTxo4nDk kC/9vWdsc30M6O9NcaS80b2ohnaztv4+Xypwx+U85nOvWbYOJ9gqIAGh04T3 a8nQ9HkVtbp9ECZe3lwgbjVCN/zKTou5kiE+PyD2hvgAaEt8pbcV+oiT/efh dWUk+Bj8uqt0hAhHXE5L3my6iBhCSuN+kEgQnFOzTFanx69nhO46P0vkKRx2 MZLeV77tsV488pUIW/V31k2EO6GB6/eIwYUkuBpmIFszS4TER+UP+GYc0OTR aZWa7yTYvODxLleLCEVoao5i5IU+sz+L6q0kQYOGkfZCOxG++pyYOSnpgaiK tbxPd5PB6BaborXJIKTyNemrPw9G2gXK+3AdP73HXBbXcf1xM6HI3EC0Z/br DpebZKh/P2zfTRiAH58k4XtFNKI8N1vcJkOGs8m6i+Pqg6A0xBy5tf4JCk1i HL9WQ6/XHyS45xj7oXK9osi7e8nIfgPB1OoWGa5KlGzQkR6AkfKW+RP8SUi2 SmCvbxUZzieeFape1w8yF2XbJoey0Kh05Gy2Mw3yDfvunzJ6B+NeFpcenlvx x3zOFc6wDZ8LKth6ZAqfL5XZxWyuUiuNviZvMEmap0I9S3d/1YpmIPAzq5yz EkQXWXsccH/kcfgYF+6PHp2rGhcN1EIsLhGzn2spQEoocBOy6wJCL1fQxtvq SJN9/xPcF9AmKm7hvqCnk/Nhwglz9CHyq0BzBRkUy81Mmjn74UcAj9tzVVPk IWa4Ap8/6bb+1IHPn1jbS9jq3bVD5CKT3oUtZDga+Lh179NBqL7v7GIjfRVx Nd0iYdw1IS7cgnnP7dFywUmObmjthaLXOA98nPSexzypy0jmmoWPtxCt+UsJ lj+YI49gefOx9SoDgX7o/TPNLVP033l0mCvNhJ5PRFmaVvwsvI+6OaYXcX2x rVyuqaPXl6QDPlOflMORnOzi96wmEvDdjCUHvyDCmcr5brGVj5H0mo2XcL7q MGHaj/PVXRsm0w+cCch0y23G7iUStNTYqLAyEGFwd3gNi048Kg93vIP9/7RJ shD2/+fP9uuqJ2Qg24p1FkWKZDhWr1HCIjAIGVEcYj+609DLFUU/3t4hw5Y7 wjrKwgPAzSaj/5U5H6VlhluxBdBAVs/M+b5TDTw/SeBcu3ENuvHAWA/fL7Bz aZhyF3kFDcTwp6tZBwm21sLy1a5UEN1s7FJm3wbHlt9N8R1FaHS45/cc4Gbb eW08B3hIif6aWCmG2KxbeStPUYDngcnaMvse0JRd0xxGOo7SB7cx4/Oxd8cH RXAfPcdtIvazSgvV6PQt+brT7XUiuMVo8wBUJe5na7S6hFSKGC1x/9hVtfcd Pn8447C993KSBdJcalwSnCdBZUUQsltP72u+RH4+pHUDncvRqcJ9kIY/22Xc By1JWZSaNV9Hsv32u33fkuAZi8re4CEiXJKcqq3c5IOen+uUwfhc73XpQ4zP J6/tyZUP9kRv3Rd9ftLzgMq6nKArM/T+Cz35uGfpEbJXvbAGn0/o1V11CeND rVF6GeAPRkem76/50E6CZttsR75wIvTUlFQJ33qKnoSFK2Mc8v2bzwuMQ7rq zqybSI1CKRqoZuVqMryF4tY33wch3bJyJ1xNQb8G4Qqua3UhnCdwXbsz9fAg u+ZzdGnwYSMNyNDX7hGH2On+/OJtEPeuXKSfXnQM50nHteWPcJ7cvU97drVv NhIWn8rFcXRcZ4Ybx9Emft7xu4JF6Pv3IvHhGBrU6S0d/tJTBQzMqx8rPuBA EbtCxrm+0YBmtDbeOCAPev1e7l/K+0I4+b72RHgGFba4SAchxVY4Gccwab1O FaXfFrd0OkCDE/YGLhVv6kFXkXM6kW8vmk3f0Bf2lG53uTcMEwe6YcNQB7/T lBlqVXnSInuACkkspxp4xtuh+6hT3QPF42h7iZeLZykZkpSYr17Z0Q+C6qPJ pkZ2qGBdxxxNnQLj30KkhD/3gKsPcSj83WV05riYAK6POq6vA3B95CXZOr/l cketrmdLx73IYFJTvG5+7QBIeF0+qS93G0nqp5sr0u0SHaeYvOEJEXK1pt7z ZwegYVrCCjMWetwxCplEDND1/2xEzmP/A9SWm8KpS8d7l9OmTuyg4z29g+/5 t7M9QZ3rG4pxHtB7XvUd5wFqxOvsO2FhSN2kd7GL7lfrNAkqt4h0e3Xv6zM1 TkSlSufHb9Hzg8sugS/L9DyTRi5WKwl8hly50+oKh0gQ06JgOnKFCL5lb0l+ 4i9RK1e149ZqEpg3usbGNBMh6nQVwdTvBdpCMTDBOJNfm+M1xpmOq24w7px+ jXZurHCwGyXB0wRdkxBjIty31L5IYH6FlLd7jeL7KQEZ1PwFp0q4vPe5rs8I D7ojcuoWnrNZNOmy4TmbO0Evl6ilifgfMbbj/vpdaNkuPI/6OKH0woPfEtXd V/iB5y0rAq5I4HlLHfdZXeohZ7Tp2dsxPB/4mssSg+cD91wdBL+V+yBxG28p XNdurNE/iOvabD57K79UKBIWsIvAfRDHKZN03Ac9n3xTef9NHHr9aiMZ4+q9 lWKWGFcnPuDm1+JPQ8nbIyqxnt+NLbRgPd/rN/jOqZmHflbI5uE581TM+AY8 Z17u5+ZU+dGDFjMcvn33JgN3vYeYGPMApIgyz4ib/fl8Do8LZVn0DRlU5tEu Xpl+eK14WHqgYPCPz7eeH/DC9x08eNOrVScb4L6dVnrpnNh/3JztXy1/aW2l h3n83PFbRr6e3fDUd97iZv0CwTb5kBHm6zO+PWH2WmwHdVMT/oBS3n9MP91H Fz2x3d9dr2vGdt/fbBqbxr8Oxbdpm2Eecw5e1WK++FWejL+s898/V8PE/cYC 85iifsqfMI9Z3LfVLzxpmWB/zIlydg0ZGuJLxT/3DAJa8Doo67oF3bdkfoTX Y7wx4QleD69+rnBbyd6//d7N8zaemC/r5Yi9NBtKhMVH0muuPduAPAhnFDEv lpB/KgDzYrE3R6RFBUVRSaONA+a/OuaePcD81/eNCU8vqRz443vvlAsyYL7m 3LqDXgfNesDiwMONR1iXCJIzzc6Yl2FQ7xnAvMzRqW1bpCS3oYa+nueYf7E6 vsYX8y9Oca1LI+v3IdlRnS2YZ7npdlIP8yyX3T/Hfkr985x5i06FUFE9Ba4P 0Xy9jbtg269q02bTtegRz5DiUwcykHOOmSTqDgCXRk905DZxNOz4qKKE3i8n H1Li644nQr+3lCPvExXk/oTv8W8+Lp2dG59nKDTdUcIQxY0u5Lhd2lVPBkbS vVunyX3wfXzm08uL+/7PxeOLLK/tmL8r3tjnj+8zfkueWimjIPgv14NG7OxB fL5i/76q+tbUNvi6lVpxUYIJTfpYBWJ+WZlL4mpIRxN8+zCveKzt78fF35Wn d2tr4HM1O4uZLp/f1gNOTTsf8jzhRNbHbRvx+ZlzPOvPhC51wDDYFdw3lfzH 1pPtszUHn/dQ8DidjM97BB7+YRUesgrN3unxw/khPvVkzu9zCwJPPBiOCKBD sxNb8PkN0QRCJj6/IdjCwUROl/vjegLM2eQwj3nUTq0GnzdYY/PGOSJghsBq 7MqBzxUUGZ7uwOcKXpb2dPTKcyEpKVUXfH5glBgqj8+xlHw6o6fvuBsVLTGH /75nkRLnjdeTIv/gSOGg6h/fW57G+g7z2saHeRcwr31iz/VfjYeZUXNjVgjm r5OXaXcxf93bsy92MVsIMe1VnyY3kmDB5+hNzFMHtmmHjCgilEvIOYf5aNEo Q3/MR3/5dvzIzDbtP743l4XheVM7GSJvJ8c5VffBp+YzPbc5uZGyhXlaEIUE gXWS1ruVidD44ppKjao0WsfGZJpFz9viKy/qH6XnbTHVTKd3NHUkzKqVjs83 Grja3O10bAFBFZGv9Sd/EaoqVwfg83iRll+Naey9kO/eJtVdKYiyt71hxOe7 JpUiQ/H5rpv23jdbahX+z+WTf0o+r/g4C583OPQriurfkQtXNRUCDdNWotCK UTLGpZ+fh63GuDRPUUsj6ewqxFGcuAbfQ58ji9v6f34Jx9IuC0GrENKB0xfw vemHkS0chi5lMPOJw+XrrPB/7fJ/VH7UtdINz2OvWW+4ieexXdaT3MxsS3+c T/5T8jHlRyL4fJfpcq89Ph9bL8d8Si2GCbGEPmvEcySTh34I83d6BdtdUhzZ /rZ/LrPRuph2UoDhi6iG9LVemAzSQ56LUwTN/rzDuC+mdl2VvUrvi3vnNj86 ZcTwt3//m2kmcU8kBawOjW+8fLwbrngPDDVtWoVOPWRUq5SmQNLNprN75XvB x8Rz//XS9X/79xN5/Uedf1Fg2Yf9xm2rTshtSDwctcyOUoyYqX1hFPjKvdk4 2LIbjq77LMEgtOWPv3/z6vvGZ8tUiBNmuOdW8xF2W1+JeCy2Cllayl2d1qRC y6ZdQvdy2sGpL9Fj66atKF8uMEItlALE5I1UMbtuMNG74brq0G70vuZq/okM GlSc5d9rCJUwXjTGyvhxjMAelcZnJ04DK7P8Ky68jRCRclXzrD8bmpRRl8Lf bfBg2MFekVsO64ZZXMduTxIek86vw/hqZUfVOD4fxczLz/0GNqGlJO/ffWgb eyYbrqeT7Lck49wH/rbeKPUX24xINHDetTAQIpELy+5iFyL6SIS+b5HlOYY0 CHbr3NM9/QFq6x9/PMRN+I/Le6dWSb7b6UcDWY4yilJCDZQOITQpvOE/bp3/ aXLHD0dc8H0Qt5ftctqnamHncUfR7kUxZNtM4ntxlQrbK6dHIjvawDggZ4zI YPpfff5X/l/5v1AukWFZge8vfIm+yYfviSzpMc5pViz8y3HFPyWfO8e2E/Oe jdNPTpSNEGFldnDerabpf/n6aVyxo5dlydDvnpuAz4ETTw84a1b9fXxywMWz B/M4qgbzZZjHee4scfiwFvPf/p2JS602uC6LzDsJ4u+TtGkRVvEkbkCXll5F 4fl2yKGPBg94u4CFg+WWN/8kQeSQdbDUOirc8v44Us7SCc9DDNl0w34RzJ+K VeP5Nkcer5RZ6QDk0Q6ojJVzo52DY1aSqVR4IeW3ocGkFdIeZwxEp08Snu7x GScjKuSG/AopYemAJfmOKo/3DEjF0zkRn9u8gkIVF7a0g+A+1fMpz1f/cV+i jwgZ+J7Cu1V3Ta0Tm4Hh0sXrTTwMSEjOXt7Yhwr1jWKyzxXbYMXovVZt93Xo bMTeEHyft0js/NUswSrYpBKQuZYyQth8Ov8cvh+3+mxMy+K3Nqi1Pd1w/Z0A stlJ1cf3+4hhC1ZnLZpg0YiXq/8HC3q3XOUQk0eD70+NhFzsKmCUKrbGWHGc wB9jPLo2kQq+Ny8Zzt9qhfgxk5aFn2JI28JfqVqBBoy3PodtJdVDsumn1Bkv TrTSbWajfQY9jtKtT7653A/rTtr072X5993fLB59JfbdgAbrUIXNmd11UMfR e4DS/ZPQmRefnU6iwMU26X21OZ1wkffLvsDVO1A/50UfRzsaMHlb9J/sewfH oh9eP+a/TIhm7daTuU+DIa726sTRGng78vqG6SQTWpTnY10XQob7HZFbDNv6 4WihxKbTLYPINolZ8X4zDS50ETZu9SmG9UyXOkIbViOninTvxs00QHoNnuS9 TbBKaTCOjaryt/XzaXRdHra7hsQG5gy63e9+ye6S7FNBNxgWRPA9+j23Mnjm 46ohmcc/7mG6LArPGZgYyKTBB6nrL25yVULJ+Caudqnd/za7uO5RY98ZT4XU jbEVokGtoMjOYxtZqv+/BucEFNg+w+e4Hv90r8HnuKR4zVcd62P8x9b/JHN7 E+bBpzIfBBtvHoBk/Yt9H63+fA7nn5IHeo9WYL5vxNL1F+b7+E8+IY4fYvqP s4vOyaiOtyo08A4dL9p9tx54T2rPz6SM/9vqdZ2K4E/PCioodPzgWpXRAll3 764VMeH+x/Sm5fmySmOCCkJHsxxk9JuBZie80FXA/7d/f4/ZxWj8/UYboRu2 GRLpUL65yvuIoDL6krS4G39v8JNncMq7sSLwVr+UtMsBkI3FVg3cF4c2vziJ v1dpyLVx+lkn+o/zh//K/yv/r/y/8v/K/yv//8slVC/9nq9OZLz/PV81m9/z e776n7bO/8r/b8r3/fXddUuXpzKjtmHKVqwaDgZ9s4S9X3ZZGy3QQKefON39 NBYyVr4nqzJOEyTNj8OeURq8H5N5wK+XD9oinmPsP6cI9oJ7tx3PoMHsk4wz HlAJHiMRbKclpwjpP8KUnSJpQJpSq7OWrobKQYcPizemCDZZ2h1nfGlgrbHk 4VtfA8l12ooMqVMEv5QGNw1NGhwWf3n/GnM9pB7+xLb52U9C8s01NAdhGlT2 NUgauzdCdc8WLr65nwSle5MdNdtosNR16EEwsRE2b2jmNheaIgSv4bwmwUGD cq/R7oSXTfD16dR7pYGfBMaD3ocpyVTYKWT1Yue5Vmh2vqW8OXqKUBgcO7bX kwon1jA/e6TXBivLP7FkW0wTRk8Y9+rtpIKIjLzfrpsdUHisau1n1ylC/NG6 QuZ6Ctj/2rmFzawLUqoSgStgmmDDynL9ZiQFuNc7ja806AaHG+qTPzmmCaTP l++svUCBw5FpouZaPaBQdOGaW8IUwdO2X5dLiQKi+x2+BzH1AhfbyvDt/lME N922a96bKJBVciSwI6MXhD8bGbxfniJ4ORYellhLAePZw4/shnuhzObrmP2e aUKo1+zn1m4ypJUOD5bn9UHJu2Hx26+nCMrFX1x+f08ye/cU5omESpWaVBWn Ce82d4Q4XSDDan/PFXc9BoCcMnbVQWSGwJ746vxPBTKoqfmwkIQGwZ/zzbfE 2mlCcJf6iUMryLDnwmsVjZlBOCTFxhxkO01w+nn6WjSNBMe2B9M65YhQeOZ7 rHv2NEE6NV9xxzcSSDo+7PfQJ8KOxwMXlQanCUNf/b0H3pPA6/va1Lm3RBAR MWYX1pomfJeOqaqqIkH0u4KCphYiFBjlc3icmyZYMMkxnakkwZNsy/aXnUTg 2DvNM3d9mrCw5dXszGsSaHLV5esuESFVbDj74LEZguqewKxvdPni84EXXnQ5 2wBf9LXVM4QspnnZnaUkiFPt4xr8RgTB1st6R4ynCR2SOdkr3pJAKaHB/Pww EcIDy7vyz0wTcnR5Dhk0ksDt0CPbU9lEcFA1O7V3aZpgry6veriLBE4dN8d1 AonAkPNr8IfRDKExx5K0bjUZilcPJEd+H4TPj1j47ppMEw54Wg0arKPrP8Ld qqF1EGb7CwSEZacJRU9X8CQKk8HsGxNfmssgsD3Ia/+1MEWQ/Uasf3qIDGt4 8so75gZg+YSj5bor04Q2vy8KPUZkiEhN2XeraADEZy8VMW+dJozsyFoHDmQY 235iBcexAXiSpVVUGzpFSPYfW10fSgYGuQSG8w398FHlvZlm2BRBeqSEK+0N GQTqSxlZpftB8IBdTPnnKUJl4AWr/e1kWP91cGyitg8IN8zvPHaeJiTualcL kaT77fCNDWc0e8E77tHmLy9/Ej6oqYlmEiiwJ7Ptli5vL9zbmLRtn+dPwu07 G1hPGFDAlroslvmsB6JXzi4NKf4kFIbsVHl7mwKfrvrW1A11A+P6otEDYz8J x0x/ff8UQwGD1aEs5qrdwPFls2Mr308C03Z578wOCmx66bDLbkcXsByuzlhP /kF4uWudjFkvBTjU4IEqaxfYpMupyoz9IFz/yZouzEKFWXP5C8ZbOqGMu700 VnCSYBacGNjIRoUXhfdcF352gLlL+2at15MEHu/d7q/V6HEd/XmHaHM7aN+/ 8cCN+weBvxeJ9p2iwvON584/3d8Oi1ZZY3dHJwjjnOFJhZepsHxpZFXy1zY4 dsp+VennCUJAuXLxgVtUkMteXhnk0QY/nz28aFY2SZjniKTIFFNBx5HFvbir BeSUnY5mUcYJu+NzPs7WUmGr/ROFdp8W+MW5v+dXxDih4e2tCZ8+KnCqDrzo /tEM9yovTlP5xwnS7VHL7F+oMP3149Md+c1grKpQaGQzQchZl0kdXKICEmlW OdPyEfTl2Q7If6YRDtSK9ZVspYHxgQPvLq5oAg62V7ZGLymEXxrsa+b20iDM crfd83sNUHOXGNzMTyasj+oXaFSgAY+Yqa3rWD0IKB3hs9AhE3x2agXWyNPg TZjx588L9dDAY/O8uZ9MaOKr+PAAaHC9sG5UPKweOp/yf8pZIhF2LIeOfz9O g33yxRxCW+pgN6+ts+siiSDCNiz305wGEnm5YRFbPoDV9dj79bvIhDN3ewp/ mtKAixJodjX4A+SeO03I6qQRCqw7pJacaZCobTXRo/cOrmi0ziuwjxFefVFy Y71LA14xVVXJuFqITk+JjBj+TreXaISLNw1SlgUEZ3fUwnSp/Zb7A98JbwPN ijlc6PlfvGusQ+gd+DT11xjUjhMK4xpbTiXRQDh646A3TxWcadrJJFMxQtA3 ul3pQpfPhSnL+nBVwSBSfhlYOkJov/DyaxxdTi6Njg1mr4Kzh2+vSCgaITxq W2w0eUyDoJTwp20vq4HSqbkQVDlOuADbXw7n0UAtwP+Rq1UFqInH5wX6jBKM mboibhTS6+mhO6LDQ+XwnpYzZdM0QnjPVMs7Sq+bng7SQr5SlcC7huXAuos0 Qqbl6W9slTQoGPVM+HHlLdAC34QvEkYJQaES+fdqaJCUaTJh6lsGehHT086O IwStmSNnqj7Q4MLFPmKrVSkM827OdAn/QuCwi9xQSP8df+ssdR7Vt8CssHDu Ew+JwJn/Yt90Ew0M9/rOsM0Ww6b1XyuO53whXLtXRk7ppkGo9Iih7oYiyHKL Om4z94lgE7VgmNNBgyKTLQ1f54tgoz7pxWryF0LCx2YdUif9vXrUEaboIvBj ynYkcI8QfDyHF15/ptd3h+wzBqqvwDZ2qOKZwwCBmmv0+16PgfG2aXyvZyr3 we97Pa9+/c93chhFuH5/J4e02u/3d3ICOtb9lk+03Pstz2L2/C3fLfc/90RO xqz+fU/krW/a73si299Y/v7OTJyj2hz+zsxtVZnf35lJl7P4Le97PPpbviVk 9295daruyfdUGnSnmF0rCc+GSsX1copfhv6Iz7ffSp8wHqfBw9r3JfmJWTDE xz7cm/fpH8PzjX/hsUQxZ9Zx70fKt5wPEu3E+JHAX/9HhrDWx5OXGqhc3qVR eWbjfuTyl7zvjF149cH7ypHcgjNfT55GtcaTJAa6no+KzZyQ8nkF9x5To8fd z6CQv57Pe30ode2st/Kol86hF0K2iPWgluZluj6Hgt73Nl3OA6V9IZQeNjuU /NfzcQrsr9SXPZW/e3KzVDq6IY8TPTQnMg0WnWxCCl7kQPvGrMZPyndR/l/P /xANLhu08lAe2v9qLPC7P5rfLK8TTKPBl4eNDOf3Z8O9G0w/9vkEoPK/nn9u ptnixuGunGX7reYhPEFCc5QLixM0kA49WGtNzYQwQ+Ij3rwn6MNfz7u03ox5 ln5H+aLNa5OeHUlotsw/hTRJA6eHdkZ69S9g9RP224w3k1DLX8/H3iuuWBtx W1khaNN1L75sdGRcfMvtKXo+5Hkbv3c8DRJv5cW1GmX/7bniQZh8vuEYDdhn zj/Pt6iDtM4ef9e3CkhMcXiH+SMaaLASub9PV8OQr04Az4ZzqIvKai//nAYm n75eiWGognzupscSYfbozUjnW718GlyJX5paf6oCVO+Qie+63NGpsf1NK8pp sI6su+0B7S3wZshyMp8PQgv6+oJK9Hg3X/qqrhlYCndYD0eockehiNnYmGfN NPgmv0Lg1p1iGLtsqSPj/ByprfavSqLHKTVdWYiUXQQvEuKS4ln+/J2uP8mz NA2UeLfQ4A7Tnon53U1gacQuIGV0Hi2OpFsyqtDg1oTgsYCAeggriRJV1nVE j0eWcg+foYHH4VWUat0PoOC43Zaw7Il+dbvt3kPP8x1vLPTPnnsH3caJ08vt wejcDo5q3Qc02Kg6olr/qgZ+BV29/dE1BnEHM5Kbn9BAMDzL8IZKNewfrMh/ LJmCNELjdPzo+qyZryRJzVbCqYWun7EKuX97X6nMHSOGAVRoiXvUt3pDG3TF bK05IXkZVbbmBHvVUCFfXUN7Q3ALzJ1vDl/jeRNRxC8FZUxSQWDLz7oZ5Wa4 RM5wVD10D73T2zoxt5lu91UwtLynCeIlOR9IHg1Fp8Zf77Ei0GDQ/SXPL5EG kPaz9EEs8Uj0Fm2rI91/9g5+Y1Qxq4NflMftkq/TUFLpLm21CzRItRkNJla+ B9vkj1Ju83l/e19FvfeK7atJ4KxncMn2IxE6Sq6vTy1jQOuPji19nKPA1stj qernOqG64nRprKUdKt3lpSurToWyGK/N+o3t8MtKhd9q+g5af5f/jJkbFVwC tUUqL7XBmddr+9Oofsh5v2wBazYVpBcTv/UKt8LxRpWg9NJwtOf4hcw7PVQo evkiIXZFC+x5u5zU6ZWAGvx33lJYoILexp5g+7mPsGOipOyUTCa6H7/b0pvu V8lvA9/tEGkCfe8P5QTz13/cLyGZ8NZriQQWM+qxSiuIcPTkTwZHR3b0jcft 7iN7CnjcKfdpZ++B8lzJkaudTuiOZlXKyUoK+N4o2CJ2vwtWpxx4yi/rhe6o RvdJM1Ph0Y2EULftnVB5al1J3otglP1w7ukzOj7MHNseEU/Hh111aR3S1tGo o+FBh6MTFdbdbTl2Kq4NYlI/GnJ0Pkdf1oTun4inQtRCx67Pvq2whhSzovZr Ngr33i+iRMd7wh+eDjH4t4DYY3t2G+8//1+qXWPy2kd8KUDItlJa/bwbJIzL m6IdV6Jn2XeFUo6TIdd3YDS5ZgD2KZvvbB7chs5cOmkTPksGjolMg1HJPuj8 EurO43wHUeDckLYWBXY4X2Qoq+iBirnpcI85X7SZJ8H1VRgFyjq+9R893w3W JUdfldx+jFyd32372EmBZe5AauT2LshiORYu3hiPhOO5Mu6zU+Gi+4SiD6kD dtRndN2UTEdvf414raH7SZ3LNvWDTe3gGjhW7PY5Dxl2ay7vsqXCYqeO5IHa Nli19+ejAb/SP+7XWtUmo2mMAm0nLvzSed0Jxnzp66bLNqBTpyp0qFlkcCL3 6Meb9YOAlug25pPi6ClR3buG3teY0L71udD7mldHe7KVp7zQitnv54qHybC0 RjPY0K8PRPpVbp8zD0ZXeyRd1en9y7aNFcPFh3uheqZd/wdvFMonuTjtpvtJ sky+VBZnDxxhKhL/3J6EtslIRVBeUoAxN0jc81sX9Cts99telYWqndrLj4xS QC1f+e6Gpk44G6m38nhWATJQ/JWaxEMF1wcHlYyrO6BM64YKWbcCNaisSPFR pIIjyVa/7lc73LIuW78jYQvq3PFY++waCozwKSZ/GumFTMVn2nJG/4+9N4+m sn3/hkMITZIilYpIGTKfig5RkRJlSoNMlWQekkhRmZUhGTJmnodMyTxEGTLP e29FxJ5KphSea3/ffd9//O7V+677t95nPc961vPvZ1nbdR3XeQyf8ziP8yOD 2sWfxmw4QQJ1833PytfgYXNT5eiZVX/U9tWhYcCfBOe9VI1bqCPgqSA2ccg7 HLHc9Ddz6yTBrrXBn5S7huHe7TFWsbIEdMixrqJzKxk0vdoNFYuGwDgx7qM2 UyaaEUu4UatDhrey564IvhyEn2zuTzKtX6Nw2SbVjCAy9JlZTkkGDADbnl+c rM4VKPtyyowF5i8n5tTLh7z7IeZXd9WYSwMKK7j9ttefClMtaxzEQxthk/A6 0pGwH/L7GlUOnbxPgfVihvfCbbpBLv3yCZscAZTUpWQffJkMrt+VlJVdBmHW gmN3jiCgUMso9vvrSMDlN1DAh8ODX23Nq2cHQtGVux6eNDuEEHfO0exQbuG8 cd2xGMTRsG0u/REJtNBW6tb1OJjAd3/ca4/lNT+erVsYyGBxszYklm0YHmg8 65MeK0WPlfhnNY+SYe0Z6ic29iHQMzmu3yJVizY0PeaKwL67jTJFqxyLD6rv Jfp7rjYjP/9MG/M4jKdcKKs887oeRJ3GMqsKV+Rlc/boTxVieeG5MK/D5i7o /MDyomZZFH3zar3EnEKGCV/FE268A7A+rT5ah3IKJbAH5fERsHirbvo2zp4A TFLymcNHItH8s5i4yA0keM3O8O7JBzw8SfYeWufwCtVycy79UMVwcsgBPgY8 1BzFlWQ5ZiHLFytf2MtIEL7LtaL4yAiIPwxQTrSrRNyvYqvjv5HA+m7zWI3W MCycVhBtH2lAp4jaBa+FyECuFpdsuT4EDx9MMDTva0O/KSfwd3OoEHjMgeDN XwfrrIYy6k6yotulgV0TeAqw9rG/PzjUAWr3WTXak2RQ/9ZuzeIvZEi7OveB t7MP5tlT+cf1tFHJ527Ph41EkHp+IqeyhQD5a0aNxxgTUOWV644bJ4jwPO8F UC9i+eXxD//Kb2losqPBto6TBLLx7uW6b/Ews1nvZatnAdrqoT0k4EqC/UIn qMdkcZD75Eiu5/46JNB0WuJmLgk2zirtaTcZgfnle3n9F9+jpdJOw3LMr9Hg 8XFDzK/tlzawNdzpRONHsyL30M5LMyQY/m6tAcsuNErcsBnVc2rFKzBRQde9 9LxU0Ed4zvrrbdxTRSSvnXFVeTf2vi5KuhnxvWD+7suuoQR9FIB7kS7+hggF g+6jifMEsOrhZ5b+nowk7WP9C1uIEBM29npjCQHOHX/kerMvF70P8EQsJCKE 8RmvpKoSwOe+eU+JXAny2PgsTm4bFn+4tB+wZeFBJDcBnzRfjfbtU6nWxtbz qwCugMpVHGySvim9z+AdKsosF6A6kSCKZfFV/EkcfA2aOHe5pR0ZLPMYyKSS YGobYd2Q1wjMyTYIE2d7UHZt8ztPjMf5aI5n4c9Vw/fJSf7n8dzo55HfE/Z7 qdCAmFt2vGqDtFaGQ6ZqqujOivJ+by0K+FwLf7zxSQ/sU20fyIk0Qq4GrJ60 /BKhqwVrsfwCmllPopwckMYPubPmAyQ4tOOBY1DxMDjekFAjuXuizsfZarS8 cxyZGtLyzvtNV8za8EFo6dqqxvgSETxCN0Sf20iAqYz3u3f3RKDtswbQX0YE g1OXd3YuECBi07xEIspCc5dLK/ZXEeGel1WHyRcCPDm/xLc68hrFHlhqn+oi wrkLU8FFMQRQcipx1LtUgXjdqZR7M0S4eO10VoAoAbLfOIvoEOqRuWrS+oO8 JOD50JQkn4CHoxI8kzk2LWhQfeG9IGbndJZpOTMsbvBQ2FoCcrv+mHd0218O Bk5Tofx35y+7R4Xwi31KNdLWCNX7s7Z4Yjwi0TV95pdqNqzp6iQELNmiJwrR lNlFKogvOKSzHUmBfcZc82s2PkCvn+M/nPhNBVb+56f2T8aBs6DzaMfZQNTS qbR6dIUKhOgvc5dVwmGgWlniimskUgkqz9XF+EiFqP/mi2L+QOGxdy4/noxU JFY4hjHc4zDT+Dvtu/Dj+/lVJuE/85ECxmDltniM321eW7jwtB6+atQ6r/lm jEyzC3H5b6mw/cFAWodHDVxKdooWMrRH2ga1aewfqVCAFYNKM28h29FNjd/n IdrLE/f0zQgVsoXGz6q/LQUBlSu7HuQGoccxClGBGO8uspWr/iZSBIW3Emfw RlHooMWLiDwyFaZ1rh6r5SuAkeJKU/W2ZDQsYv56agZ7/pyIQ1/J2RBF1d6e 4fzn5y/X/XGGcgjj0bNWzEnUVrjz+VSdKp85Un9rXZOL8QUzzobG4VPv4UzN To1GgiNyVLV9xvuYCkIUS1VPsXcQ9O6hZJ+1F0I7H4axJ1DhR0GlTINvPbzl 1l1Dlg5GGUlCTKLFmB0oP7/1qdSCpJ2X4qziSyS8seK7fiMVFhySmBufV4Hg 6n6lLetSUeqxXz/7OjGem8IUZirwFupeFubvUvozPwrmF4qyjqfAzdAw/c+h XdDBrsTmG2OBkmUz8x59pYDN3jGVHWEdwOS4U9Ow2wWdjDkE9/dQQc7lzAOh wjbYaJZ4Ic78CXq1l+LJfZYKR/zXqb3P+QBGEs5qsXqhyF7bLPOEDRUy5s/X qrM1A46bZUVHMg5tvZk5r47xI541T/kulDTCe42c/MNM6agtrebqRyx/YTVq ydP0eljy35q+5P1nHnTgJoXsvoECCw+eWIn/7gXrokLpAaotev32TOeqOQXy jn8kWq7tgfalnnwFH3ckksyI2HMpcEzQ/4uNZBdEOidqZWT4ocBe4Vk57H3z X8w764d3wJYKXqHnpuHIz8sdXd1OhY4tmk4Rp9thrMSBvCyTiLYLj7kWKFGB yb5o9UlJC7Z+PgsWD2ai8a64yJUrVPBmesakYfEeil8vz30yLfrj81PN3o/e 8iLDdL1qB0/tACQUlpqho85IQFzIKewzGRRVdjbc/9QHq2JMv5MlvdBO5Xvj EzLY83u3Xmvn74UjsYc8v29+ij65x19ndqeAoeP9TMs73WBW9O2q2LMopFzs V+BaQgFVoflbQoudUFp/gmkfVzLaqfuF/fwkBTT0M1ZYYjrA+1RZmGJBLjpe 4nNYaDMVYkbtDYWq2+Gi2o97LRN/5i8xv0rO9LKQQf16Uk7vtyGwYFWJrH/p jm5Z894+aUGG3pqQeX3FQVg4LHDhSJQPsuVP4lqpJkPURkWDLWH9MPPZ4f0L fChyNlv6rH+eAjEv71ifv9cDHmfWS/GMpKFxSq3StD8FUop4mfl5uuFINiFL B1eAlMxHJCUrML6TlKT/uaMTbovNp92U+LN+68jG7yn/6R9Z/DpB6x/Vh/2O xxs9QuYFStt8f5Fg/J2Gld7eYfhW+8SqcPwpOpc8df4sVmdKXZpJUowdBMGi yg/DixHIwPbr5GcSGd68kUzRz+oDkTfHKDN12YhXy7D8oygFuNBc4ohmL4x7 ubE58xajaautlwewdchrwRV2ibkHlr3zUKhxFRr9jhuLPUsCqp1Ji9EoDs70 NzfskPFHB/sEM2jPefeMKKI9p2/nwLS/xnN0/DRn8I0ZEiy13hqXVx+GKTv3 vMj0OITsvXcsBZLhzE+Dc/efDsCvNebSLV4FyOO0tkhcB8aLPx7d6XKsHxol snvmJN+gU7Vf7Ewwf6mQCyltwPxleGq77WRXLXpFLl9M8cXixrG2Jp7GRkBb EqiX6n/IX3hR59WhSIb9BHOW40xDUG71PYP51lGk8fjEWveNJCDNuQ6oN+GB bUpwf0ViCFq5y8xExvLsxbcPv8U04EB44JNzTWI02mVb9p/750cmcWK09yrl wd+SSktCRHlJrysyZBgU9eTcKzIEV1c/87y9U4zaDrhl8buSYflTZKkceQDk SjYlFl6oQjgllmq3MjKYh3CP9ZX1g+XkQdbrvI3opZJO5aUYrD5UeiRxabIe ruWKDv3mXpZn35Sfv+SH1ckkBrWJGOx35qaPu1mcQJOVM3jcZyLY3mR4rGZO AItr+zso/hGoZzaK7zKWl81DZSMexeNB8cjLfcEWicjO10t06yUSHCRx6ezP wUFa6OpuF7EMNPUwSqh5nATi092a5Z7DIKjfWipgUY6OwkbSuQNkuBr0xr/A aAiEt99ssDGoQ/2JhbGymF+8NoqIS8D84uxFgWukve+RRmpev0g2Ffwa2xaW VOtA+f6OxNnLLIjtqtsalV4K7Js7KIr2dIJzKy5FKV0apWs9DRZpJ8PH57+M 1p/ph90GQeZRlzRRwsgTEeMmIoTa1q8ebiTAC4supS6BeEQcmbMSpGDve6aj e6siAS6LyrBaxqeiM1nHl/r2kYAhIuBDtDsekuVGFr5y5SO2gfr/6Jc5nsjf RftejR/WXT9wogZpL8wNWRNIsPfUQoxo5DA8t9OPK1B+h2T8c5aYdpNBKf+K 87rAIYgMdTJS2NSOnlnVJ2uXUUGtbrbM6UsNZLIdj7tA3ISEk+Lxur8okHpT deXg2g4I9lDZFXD2KOJN8rTrY6PAfpJdF+/mPugcTLA+90AXlV4v9/HC6ttw nlGcxxwB8jbNycuaJqNzvzc9i+wggs38t7bhZAIw344REZHIQZuvNz99tEiE y5s29OG3EYC4o1263bYIWW5YKXpjRoKOBamag744eKwd8vQVawP6ZWJeQHvf up3i2/+jF/nqxJ4klhb0+8rG/J4hEticEpcyyxqGJz0c3LfWdiFdg8uql2up oMW3NCIbVQ2PChj8Z9W4UKZWxNt+JQoMueU8Mif1QD0+8+uJqcvosJPJ1GgJ EVbqEl7GrRBg8HKnq+bNTNRa+bByHKsnBQzF9r//TIBlftUn+7IL0eyb5lej g0Rwc3RSEHhMgBjm+oiH3W/Qntu88RekSHD9V9yAqCrGr3s3BC7FNiOZWbWh 9JskGLj5lJPZFQfpgi5Jbjc7/vU+m5rS/gMiWN3CUMVqIHf+PVxI2btFJ5UJ vTw386RuHxXqnx6ZXwhog8b8FTS8hhnZ+/M8ptUtXPqN9Y1Y3ZLV892RIr3n j//3rHNuLi0vN6VxVN3G8rLj3n1Bij7r0U8rU8ZRAQqcHRLtOfKwFzJ3r4bc Z92MRH8eHaLl5cXXMvIGWF6eSLr3O9x0P7IKwsla3qMAp3b7ssvDbngt3Xen 5OUB9Di08AYtL09y9Bj6YHmZfXxWrHTwCAogUfkvlFGgJPp06SNiJxxOhcVE kT/PC6zgHE/T8teNuzfDDDA/PaVPuqcYtR2FCraJIGky+JrwTCuID0H3vWYe +/c7UKIZNek+xqO9PtedPrR9AG5KZTII2kmht5tM99Py12mVjYm0/BXHkDin izuOPKmiu3lWyKDZ6bQ7VasP1pn53n527xRSik6sjFpHBXsVyUxx9BGcRkRb TB+Z//E5ZW64B9LW7SxreyZt3fovP3gZqCGIvl9FMdfcSRC/sFAbfwAHO7jJ bRHswogod99DlUIC3NaOpmrDYfhpJJF8oVwRiZ9S20zLFxuXcmNo+SJnrYff guRpdCn18Ml6bTK8vCWG700fhKTgbnn3E9ooS93Yzh6zPxvRvE0Dsz+fmblK G+EWun4l7fViCgX4TvpteHyzC97pjzKm7ndFl+5qLVl3E2FNQJDoWDQBRowf dTbsY0ZSVo+ZaPE2djGaSou3GUE3XUIsJNGRG9mFyawkqPDX9RQbxUPRm+q3 V7KkUabfx5B3mP/u+yCr8dMHB/uUE/ZsjjyFZHw6e2jxtvXdg++0eBt9uoVs a3AB5fCNfdlWQ4K17AuCBN4RSJNnjDOdM0Cbw2sMy6fIsM5xedvy2z7gPld1 8MMXO3TVP53AgK1DWznHd9uf9MKXTaV7K7MeoPnHZamPL1DgxrECVj3HHshp 7fg5LBeI1PFn6g7sJYHYlSmRdi88aCXfxI8rbEVMkxautLjUoLZlxwgWlxZL io8cklBC+9fsjORvJUJVyuFzwUUEsE4RzQi9qozuVh66vMJCAmBzsPb7jIem 2sO/2OLPo6rPg//RcV7dfvEW7fuKlZ0sT2a5jDhbUxjSz5NgTHM/+VgbDjRt czgns03Qe+XXlLumZEjdtN1S02AQposanl5/dgcJrbHcr59Mhl2Zy1sHdw4A YWfh7LzJY+RR8KEtfYQM31RxUlpr+sFbY/D4CyyP/6WXpELXS1pL10v6Cz9J x9noePhkeQuTKwl4f7hQ3sriYD2ptHMjcS/KUFpiVSolAr+Zi/m1ZQI4Dpwi ruSroex33nprK4hACTaW/UAiwJGyVz3rLmug5Kg9451YXjZQUOZ2wPJyjTKD 6HKEPmpaqRlgx/i1/unHBo3xBOiwl8R3rVxCMUNGJ7oQCR7JmjN+PYiHO8vr L458MkPPomS6U9eSgFK/Zf86Ih5eBS26FGLr03XjjMIWEglaeu69Wms2DF7c sxdPu3gg3b7fD3oOY+vcv2n/KBqCwJxrwdPh/sj6xp26Nmsy5N7UtLy/bxD4 rHmyiAYv/qGjNEjXUfoLZ6bjI3Rc+H7Wymg3CaSvH9PWbh6GfFJNam+rGLoJ jXEMNUTo92s5OYUngNbr/csGkxeQw9ZaTZUPROj9Ua3M+5YAeO3FAncvXZQV 61L8G8sXrW9elTpj+UJA6Pys+RYTpLIq8hmH2fO58N0NfVMEODtNu+3RHCU/ l7Ow/EGEwmLT/MMiBNi3DRdiu2iFKi6aO27pJUJREHcBbzgBfhiekXyX64Dl 5fNHVvwwe4aKGov8GIEX1OqkkOTHaIXfb829VhIwz1RGzU4MQ0ps514pxxBU z7m1Z5mNDI2kgR8yY0PQ8mxb4uuAGORM11eyo+sridH1lf7SXbKn44fp+CEd 8zihgxgPIlCb/fSHIH3cbcXNSx712ppz1uOJ8Iv4YGLAgQBmvnuD8a+uILXu ISsdEhHG1S8eDFMhQJyA/sst40aoQ1gzQQBbb8KseJtSbL2xdCorbZO7hbZl 88eEV2P+OO9lYTJKgIHVrOrY59bovAOx8xZm5wad5Y9PywmgUzpgt7PdCR0s +kn6UEkE3p9Z5bETBGB9xrrQ6n8PaRGmp74okmCRi6sgkQ8PugK8c/NTAUjR ysN08S4J3FcvWn3F1v9Ejcf5YuoLZKQ68tDhNQmSbl08bqI5Au+1WGdizr76 h+7Sz6P/j+7SX7ggHV+l46v2S5YtWB5hOXwWjWN5RKJAM5Z7SRA19NtFJN0l w5c2PxtP6gDEj9Q7b685jqbWKymKc2C/o2ry5nw3HoAnh6d73XV0ySktx2wH CbKNuI+WvcQDi1xLT0DIDaQaMdReXU8E1bse3iOdBNjzOSNMXcIBuU0r77LB 4rbkeY+Cz1jcHvjJn163zxkFXzsv6l9GBA5/su3IIgGUT+x5m2Z2H21qm5J5 jdVpzAvDM72zBHjNdfcpi48XGrh6orGAiQQvo5MPPaTgIaVSwG2qLhThPnhf M5Oj6Vrm72GQwUOQWvyvj1viUGE0j+WKJRb3ODXmhKxwsFx2c1D3ThpCdJ2m SLpOkw9dp+kvPIqOB9Bx7lT35Y+VFDD7/kkyv7ETCjouMpFKxNFQbHujfRUZ timtP/8puh9SrQsvmveeRsL67ziFgQTb1nBTD3LhweFY+ccP623Q56oj+ybP kcC5NPXD634cGGid7glit0MRaTZir7D1efnmZ3dNRwJMHDt7RCPFFR0tsM37 NUOE33fKJioPEiDkp/eaHr/7KDMz9cEbzG7i9tiHxOwmVLRh4diNx4iZWbJb voEI10TJzxU6CNBQnqkeaemH5LJT0wxHiBBZWM1g7kaAp8MJSQmMUWiPNRPb e8yeXWzDnw9h9rySyi76MTYJfdjmO+RyGKtj53xUuTXwwGko9NuYIfcfuk4+ dF2nv/BmOh5Ixy9c0+SwzKWC1Pr9V3Yw14G23siOFjtWtHdyjufdJAWO7oxx jI/sgIo2713Ha2WRzIkgy/e/yLDno8N99it9MDjnZhOELqAtpcWh7new75XM YxYOOGjR9pC+T3FCPhJb8rm8SfBs/sSdcEYcfFK52HAR7iCtiC77RUbsu0fb WPJ/x0NmZEEG9bUnOjWiE7cVW7ffpTWfDcXgof/IgaSn8o+Ry8vo4ifviBBw uqFftJkAJAHTO9d7A9C70YLs+1j9XLhFcvXhEwKsuzvt2yEQgka1lKZofeSJ xuImm48EuLih9Yq8VwJqLfWSTyUQoYtKcXttS4Dnd3iOSN7OQEd4OcW5MDvX frwcVfUND8pXPmdf3PH6H/pQUnR9qL9wKh2Xp+P6pROXR99QYe0FJeMzJTVw abnVa4/IZnSKcMz0MTsVIswHjyTxfgQvho/q9xaV0MzWHD9jSQrA+OUpknQv OAxUHq5kMUQ7dnFsp/UXpvWOedH6C8mG3vfeeLkjPCU43qKSBN3V15h7BUdg 2ZXdUVfcA/VJCHDsFSPBzMk54Yf6eFD5yHXLZ94H7dvcWRp3kgQSXwpOdS3h oPdriUuWUABq5dKXUMTWs/JixkKJEwHYue1r6rND0XGBo4zm80R4Pfyx2HM3 AUSv5Wlcrn6B5MfL/sPLNC58+Q8vK7I1W6sUkoLsr2inyTcTYfTyhf1Qh9V7 pW0dEgb5KNHdfU/6J4zXGF+uDrMggP1zYdFlibJ/6Ex503Wm/sIP03H//031 p155/VSnnRuxto+UeRrYAtuP6Wkrn1uLjDijeGnnQ6r9j381NmmCLy2fXRh6 96C6tiN2tPMYR360SmwO7oT5Iqld673W/f/2Xq2f2HcEqFBg9ovcI4HOHij4 wheiHbURyVm8fUk75zDN+OjVsEAXcPys9MiuFEL3DAJTOmqxenhQjBfn1w84 3ESRczAXSqXeNaedc1D4iRt1WPoIE7GZFCMpJXRy+vND2rkC/uozyokdPaDQ ycojbXkI5QjF7KKdH2DIVHpPOz8QV5yk1DT57+ey/4T31zO5LGuQwYgXryBc Pwgzb7nNCm/wInLPmzW0vj+nlf/j6N398DVIgHSw7TDKW3quWvyZBBz3oo7a +g8Dda24RWT8HjRwtMWS1ve/dlC0l9b3V6ygCD4cU0V5ZzUNaf10eRb2Ilo/ vXtXTc14jwz6ofUmjdY3p6pMMW5u74Pe8NhXunn/Xh+qZqa3YG8ACfa814/N oowAi+lPS7uO/Sg17ewrWr87vZmzjdbvxkllvLnAdASl6aanJ9H6yHKPmJ6s 4IBjzzbmkHBRFLNodojW7/Z9PmokFTAAxBbz+XXOZ9Guw7kKfvVY3u/i+lLN MQI1r+dkk84qo72khBFaH/nCWpsz7OxDIKCoZt8qdR65/DqfgDA7eFkOCUi1 9QDh7eVXJ+Ot/vV7ZR5mqTiL5SnXw0erQrA8FdWwvejnG1aUaHBV1nkjxuNa PbNMmvAwJn5GvShFCvUW7Jjm9iCBigkfK2UvDo7ws94n251A1mc5icKTWJyp mSau1SOAoIvTaL0YQsd2qGfQ+sV4MQeVWq1haF1X7vJxRBfx9jvK3MPsk1Ht orZ3FQdToZzXHKJOI9e4RztocZJxUM6JFievtx+QHbxoiNaQXVMDi8hg8GHl zuPWfpCd0d0eOeqArnUykmYZKPBLTGhv35E+YJV2zNcj/r/o6fAoqgaeJoO/ KKtN8ftB0LT0KfAPWpIf5j0Zd0yYBL/Tn5tdsMJDd1uDWde1begtG4vECsb7 qjssHzwqIIA/x7XrDrsBFRf5+dP6rQyEtGZav7Xc58GXlHktVMeUnkbrM660 FfCafiGAb8cl5zU4VXR76dBmWr91dgMzldZvbRg34L3aYoR8DReGaX1GBzUt Kq3PuCw3YqJL0EHmT8NLaf1EVqnD7rR+4qLc9EBgrikaCXlZVypFBsXiXal3 Dg9B7Bn9Q3P6rmgNbJ5UekKGQJtbmyNfD4Co4iCvPf7JH+3A+ZD9AOktGeJ+ OTqEpfVDb8OlG1631yGvthBCgScJCELLm1q4cPC98K6x3ksBNCH48u0QVv/k iOkzNy4Q4Gdo20iV4GlU63rb98wAEYQUjf3L/bB6nnA1Lf/FRXSV7C/v/pYI d90uCiRRCLBBhMxi8lQL7TO8IfeajwRnY+ccJ1/gwe0812h07A0UWZDm8RKr BxjC1PJGmwjwyMKx/aSKEZoUFJTa8YsIYcQDeoEbCGBzsOdl1pnbaN/vZ64B mL88jQzLLMH8hUMla5Us6ImWOmPT1nKToV3tpq/R6yGojud4RQ4PRPXEKTN2 YzJkvG2YDzEdhPuFzN0GOyL+5n1r6bxviM77buoIsypwU6Db4xBfcWcvOOk+ CRPX3oo6z7X1XMOR4KKYoH9DwjCk2gneVz5wGIUgoWfPsfrE3UW4da4dq6tT Vw9Gv9JBLvvy2q5i/G64J+ZUGBHLm/V8Ht+8TJG17GDKCMaLzzednvgcQ4Ap U3489ehFpD166kI1lmcPOb43PY7l2QuHFPeQb9kh28TpVpoex5TxiCNNjyOo cLGU//ENlGY/feFXOxEirDM2+GYSQMVVfWdzhiPybLeS0LxFAosM3Q95Djg4 b3hpq6KCDxprNVxILiLB9tkvsU/UR+CR3esPJ9+FonvGey7lLJPAxXiPywEe zE9Jv8hDvrF/876/+KA4nfcxLlJqthpR4MyGJ+og3gMzF6ROou/8SNrIL+OR NBnO2lutnxIdgrsfb5SzaSqgGywj1Ue+YPVb3MPi0cvY+/IcdBHLvorOUguy T9D0YXezs+FmCODym+WOt8JtVLnW93L1EhGs3j4s6t5IgFH+YvGfLKboqBy/ vUAdEQT2n+B36yeAvM7TGyecXdBGUc2uOIyPvxS6nN04QoD7jkHMZVfsEEH2 5Ldn2O+nslW97f9OgFvs4ia3cG6IGCfeOyxAAo2E6Cf9d/GQqsndtcbgGcoc 5/+lf50Eb26IN8564uA0RS/YLDMSvccZGrekY3Gs1S7L5u4IHLAo2H6F+uof vO83nff9pTNyna4zcoiuM1Kg/svpRDgVPJumDmhENoCBSk7t/ehFeZX8o4/t oiiwwCF4Vrq8Czg/bTXgWBVGNzol8yw8yWDCqpD5uXEAcqS/6En8UkGeV1vY EreQYMMDJRAuw8MxRpeTVVXXke2GTVzDtP2HnUWLDG8IoMFWZ9AW5Ih2WzX/ kBclQYlPwMAnQzyEv+zvPb/eEskUcVsmYLw7d3wzleU3AU6TijfL3HuIXqb/ 8qP59cDM0GOaX/dNe8tFK7ogzgNSrlXYOgyO+cwuTNOF+XpDv+3GIySl+L0o 6zsRzu7mj3KQIAB3b7RNx+pzRHkfKz8iRIKcRsvwKmusPjyjUOsplIDebV79 vNmUBOO2k1YBT3GQZ9s5cvBk+j/4oB+dD/6l37GDrt/BSdfvMMrpcrmVSoXb xwTNR0brQDfsk3AMExPSTw66vfSeAhsfhV5Ps+vE8j6h48JVScQQ0aFj844M ZQ8OyNx16IfFotnEbNczKPXBO5ufp0hwS39kpHgOB3z8R+UtV23QjtTT4QZf iZARfqP7gzbGr/OaCbfvuKFTMpbDjtjz33mfLb8pCAerc8T1qroOyGhv1OFr lUQgXJWz2/qVABXDBnq1Vd5os1ii/j1sPTPmlVxv3UQAi96eNa8EH6LWtk/l TI1EiFN/GWTfRgDbqI6usUB/pOGYbXe/gwg8qbZCR1MIsHt3vdLk2Eukg5Qm Ny8Sgf+d+HU3HgIc0XaUNlmXgrRJ3wsVREhw3HPT8d/meODjro42Zc77B0/0 o/NEQbouhi5dF2MLXRfj546FSwmvqXD5K/k+q10toCkGz3orDsQ0fQemv1Pg IbNgrOHZDihjyefIuIxQ6QpBZIaRAsan/Jg8ZPuAw9HkPOm0Dpo+HPBFA6sT HofEV+7G6gTfTxynnAOd0boHqXPKWF0hHb/90J5mPIi77XIlfvJCX5d3SclE k8BMQDp4rHAEzN82RWtLuiKjY2RThY9E+BRcyZqbgfEavM+D6JGnSLMhpUMd 89/MYE2P+Xt46Kypmm9YeoIaLhEUooaxvNOqx7bBgwDNrxumyCMhyGB8p0Ev 9l1Ov/B76DqB5Skb/ck5vVdoQvnEiEE/EThdng9vC8Liz3jh4QqpLLT5xsfr t5aJwBWawoSYCeBXsGcdV8U/+aMMnSfK7N69Y3MVFRbOWUQLydZA0Wneu5vy tqDDh0oqmLiocII9JDgvuB1GV7rFLZKU0eGnP/kr5Smgs1PGMWhTLzBWf++e Nr2Edvx6eHe2mARkwRSqlOoIULprzY6evY/euUwWKCmQQLQxYk5PBA/SCtoF yMUPqber3m+aIoLfudK2zDME2OFGpbyIfI5usZeYqGB+vUXs0eDZZQK485xy +T6UhmLdLsyP0eIn32LqcA8BtE4+ZuZzKEBOUrWFNL/7PlTOSfO7KGq4bZZ1 L2Lt/3GA4kKCuNuZm+YVcBDGw/jAyXEAvW5bRzxhTwKeGpXEYR0clEYqhkVu GPxjvTEttnaQdi59et1VawaJdmB5vaogofF/7zH+7+K48bzp7hIizKVsfNWy QoBLLFJ6b7MX5SXu97vS9kujHn0i0PZLX209NZHwfPmP80E7gw3YaftgMpWq P2n7YJt8ed6fTWFD0/yzAbR9sATr1etVB7G6tI2B1Of353txK7eGT+wRIwFX RF0ebb+iPgeX6Te/HX2oXBtG268offWwk7ZfwasmwpQrxPfH34kfNuRi8iPB updGN1kXsPq/0eNgQLcgunIl81paIgnm3zw4tCt8BEwEbHa6nhRGYpTy/F/j GC9bFKr49HAYAgdjZsXYJZHYu6faM79oOmvbbJ7xY3n5wLgae5fU//T19pce QQ1dj2CcrkfwF15Gxz//N3UKfGqtQ2l9unszg9O0Pl2GVFJk+n62f/07B00X GGl9ped44ypaX0mR+pmwaLL1b70AY7pewABdL+Av3IyO4/6bOgJO1cmfXVtJ oMMozD03MQy1Mg8SpB33/kMXYAddF+AvXISO76bjUdwep2j7z4IGCh60/eft 5pX6XVvE/3HPfyL9nv+/cGU6nkLHj3lb76XtH2b8Vv5A2z/8bMrDKX1bAb2m 39t/gH5vP45+b/9fuAgd/0zHO6Tlz+ZifMfQn014jkwA8bkeZ5feE//aPt7X GDn5flCBNbL3qURpNuTKqFmvl1qVf4ELM/o4RIV7EGyecLUMOIZczxXsX4OE 3ojP6qZQ4Uuh9J7q5TqYK2ip3HSbAe25/aiZdi60waKCVWIyDs4fcLjRfXYn Ytvf/CwS+x2fk2nhj2zLYFX8o8HE8V1o27YftbQ5r4kVR5FAajVkpo93sJnv /r/xmY4X7bDJpvVZfASTV2h9lm0G0s4aEoz/x9pnrnE16U4QFazYapp1dBsh IZB5r8HvWfnAj4K/hcKooLbnwwtySwOEVBsXBG9blB+/xWL3n3Ow3VktTb71 cHsi+n1vyYr8WrEsLudkKpBvXHVk4K4H6xSje6dv/VlX8f9U3GznA38az21K rntA47lnt/Wb+Cn8kuf7udmBxi9y0Kx2C8YvlEU3Rtvc4UDOvfpBtHpPL97J Qx+r956O9HMfdfnzvfGdAxI4QS8q5F46vabV8B1MLC3utOP5Lt+uKRF6KYIK 2uJ7+/rMG2D1INc+Rs+ff6wHJCUrQ73uUoFhycN7RbwJDIM4WJtMSPJ364O5 zYKp8KiihSt7YyPs6rEK6Lk3L7/Qzml+7hUV2nCWTZWa9bBxZN85f8M1iLjn LGMvVg+HRwPH0s4aqExxW8m8wYlu+0L/bTMqHBT7lM/+tRnOfDYLPjWGEGOL JJ42XylQnpF7V7kBLMxSHr4Q+9/vvnc5TVIO7fz81H3lrpti/iA+ZMVQcVwG ya1nKmYfpsKd8vXV0hplsLQUapInIIvcvvaF0eZh8dx2me733wL7ScOf0ndk Uc3tLp+hBiq81BVgWVtcBfeeej4odpdF1QProhzSMf/iL6iiZtSBVTJ1h/px OXSaPpfNJfMs9NL882PErkdxM8r//p7h/1V4cZf9zzknKvjmXf0U4tYEkS4r r8xipuVvPVZsX3DDcCUtF/Oxd8Cn/yKG4yJF3uFYlbfLVyoIis+iH2avQSiW z3Hee/WP61bk5LsSKlYP/7SNO38bq4efPMNn9gkvyOdqWrd+eECF+ASnFxFP 38F2G+XFmmGqvJqdVaHSLjLUkLV32TwbAj1enfNX1879T78Xy4qBb7QbswOr slGQlUcTzA8Lfwj0mZav0pBUdLpPhVMDQloRde+goeW9ZMwryr9+nnGDwPJL H6gQcyVc9yNUQkSPQQdT3FZU/dxGTwvL+3vsBBT1fMrAO0rmUeyqJFrbzv5p 5zgV7CXeji/sKAbjiNV7aLMG0vn15j/zKRGxHRTafIpnxjeBACtjFBZC9F2l UOGB8DYJHvd80PQNO8ET5YDY2re6Sc1QIYU9alNQcQ584Lgtuv/iI1RpI9cR OksF6Udn1risywK5Q7ok6aZQdETg5KjpPBUK3hBFxVvTQSEkNHGTfCI6H/Fr sHWBCizxIzLsk6lALFfWC9uaiw5cvRZOWqTCttl1u6JOpcA0JVRxDP15jnVy +dUrUjgVZDJ+7N3v2wAyFrat5oqaKFpYc5E2j7Zabcn6mL8O1m6qrjs1Y4Ku VY5L0Pj7kQ/s3wQw/r54vYrp3qwjwmn67BLB7Nl94oWWmmYlMO3r1WRyf4x4 bj39pNhNhTVFGpwZb8rBbmPjrtH8MGT9rGKzPGZnW0aZSZlnZXBBsr6oeToR +bsaeuUTqEB93Fw8VVICNyK7jLv585BT4eGsTZj9FeX8emb5i+GZUGLo9M8/ v1ffg68tpvswv/iyU/lkaBvMr+8qkrA/jwIoTNrvtKmQwzwTI6j3AZTxYrmp 0ebIuUPF3NQBizMf0k/7FjbBsTsSXwM17qDG/G1WZgFU6C30sZd/0gilZZ+L bay9UXBP8TWbOCo0NQvfPltYD9IZn9m2KYajx+O/RRUxuwmPSa0KCdWBJ+XF 4AJPEjpir0n+UUaFCq1hluNdNSDD1FQZZJuP9hmuyBjXUcGkU/e7sUE16Ird j39/9C3KuST1nTb39/LNva8iQx1wPn/ySnuyBdras2WAtk/SWuTWnRPcDnFR Jh71Ta7I/nfvctMRKgQTyowHplvA6TdpbZKGHwrpl51MMaRC6bJgOlvme5Dd +oylxz0CDbM9EV61p0Lti0P9teVNYInLuOjTnoy0zDyy7j+hwr41XQzvN7yD GHuCv1lBAeLg43yqha0T9v0M3QoRDXCq75tG3rpK9DQ9qY22v8csGm1F298r GLktkIHfgbZYrbscx0IGipGhbd33ITj8RtvsPUkKPWCSWrsunAySlrVyz28O QEW+byUHszrKEdQj7GalQP43NqXR3X1Q7nnGcIZ8GXEuv0k3NqYACpjXvbmn B97H8hys322DXJqCZXLTKDCwWfjHritdwIZjWI/L8EBlXjo8FBwFulZUC9U+ dYDQSGuQjVIQ+nnvAs8aNipcKC3Y2CX5EV4+zfiQ8jQaIem6ydBDVGg+HBz8 fq4V1Gum2GR3pSG/7k36SWqY/zLyZxavaYEmwSO3Eoxfo5WyVa1MIyp8q9tM lFZ7D+ZeRPCzqf73OpJ0PSB9uh6QOl0PqDG/QY22/6nCofKStv85+9ipk9dR CBnLtU7S+onGt/dupvUTSatv9M70KiK2zTuT7mJ2TnGxnTWfGYKnOqOnvsxo o1v47Y7iDzA7/yzNdu8YgPjNAwrv/ExRj/7hLazjZDi44tU5MdgHxD1PLwyt d0RhHlNBrnIUWDMftKVtWy/U3nvQ2uHjhdjWWN2lnYO1u8XzknYOVjwGZzCr FILC2i5Ov8unwKnOMSnK7i7okW0oWx8eh87dybA6idmfJZE5n2eiA5zfZc+2 8mWiidS6b/MMGM8qf2S1kvARVqsSmhMDitFIxkd35z1UUB0zi08vbINw7or2 MPjz+Ycs33YwzyUB5dTA8qDJCBTl9GeGya7I57VukqX1d/QGfe7Q+jt7Dvf/ TmjdgRjf7s2k7Runuuxspu0bP4l7+vaqlBQyKZvKPLiTBO+i+XQPh+Ph18r2 /sSGk6jT0+GeeAgJduO+a1f3jUCg8ZUWC8aL6PZj0y9NzGSINHwORnNDYGx3 Q7WUYIHG32zd8dKGDA9Eik3f7h6ER/WECKrtXdQ3cF39fTMZ4hbnvt2/0Q/L 7/S28015IyvNyYJb3BQg9D7MTe/oheAAsdDY5OfIhO2C1WY9CmgJ1x6RNe8B nv3N55ZwiSgrxXDLZX8KaAu9LCjk6wZeilPa7YkclDd2TnZbKQXK1cl9Cz86 QVHaTW/LiTJ0fkt7acsIBYRTFhxDpjpgafuGVakD9X+05+DxnNWGV2Tou35b IlBwAM6e3PzBRSsD3T57+Fn/GBkShJTMCEN9YHtXvqdMpwipcJyZK9pJAR/l 4osq6b0Qvv9+Wd1INTqv6Bt27BwF6n4n28YE9oDij1RKimXzn/X7eGT5rp4n g+u+7OxtqYMgW1Lz/INXLgrklNhFiw9nfSMrw7D4MNzdzMvOXIYufWItvN9J hrJacvEvhX645yckq/ywDu1/d2yOFjdigje+I2Bx49HKwZRv5JY//l+xh1wt 6Zi/OJ3WcQ7H4tJDSWGfT/aFqEVVg2tcgwz1apGF0fWDoOTCxXbkYQVCHuFf Nf3I0D2gd08gYQD6Rl8r8EQ0orE57Ttva8lQG/1LXt2/H7wEbnUzbupAf+nd l9H17iXoevd/6dp70XXtA+m69v9Vv76Prl//X3Xqb9J16rnpevQzdD36HXQ9 +v+qO99K153/r/ryiXR9ecn/oiPvQdeR/0sv/gpdL/4VXS++oOyRDu3cxYVH PG60cxdvZiWjyRdK0PCuk+W0+PN5TWowLf7cfGJ2eHymBpUZP7ujcpIMrMs7 qoVxg8A9dzZyi9p7pLpV25cWl6rnu9RocanMLUio0e/P878EjcaDzHcosHry asfwy25YLeYExtPyaNc18rrtumSIdx1afhk1CCK6QgYyvDqoVm5K8ttdEpyY fX1pnRwOZiFxreWdG2jSWohDZ54IGbcj86p2E+CBQDNHjekdZMCqrvi7ErNP WLnUzBeMV8bua4s49xi9xl0PtcZ46KD5qw1aGA91m+r2enA1BB3/KjpXMUAE Bx4OoogvAfpLNuBNHscgIZ2ElX52EvRZqnkH9OAhNpTn+ExJKkrwUa7lVSPB MsGr5+gcDrjFbLg50gvQpTPyT2x9ScD106r27M8ReE7lKVBheIuMWLaQHJpJ kKt51+DZwjCIbNRi/ynagB4mPS8+gNlZBPdNvfLHEODJ21iTU9uQXX1EywVl MkyV4wqcfgxCv4hI46xTLzJjZO+axXji5QjLT/OKDfCKb46sKrv5j3b2vWlw /HgiBWy0G6id3l3gez104rsboPGn8ouTQWQIWlLBMfkPgEQ758e1XYaI4VKi HS0OM+p5IFoc3njh6s5gWRu0wGghf4OPBMd+EKwZI/HwzOL0eEHbfbS0XfKW Axaft0/aTFtkE0A0W15QP8sfDZZTvL5h65lXQ+6pBcZHLsw6xQQ5vEDyczJY siBCWIDAyV0dGD4cqOPN/wpdz7hvtvKVCKySBjvuniPAKemmwkWTbHQznlWd 9n+NBN8fpv3f1+bvGmMLi1HClgVHRz0SsLSkMrZX4UBQpadI71wN8vrN/owW 542y9FersDh/91mlwU3GZlRDPtPg00oCDV+vxrcTw6BlFjSrdbMTRTEz/KTF f8adPMSrWPznvv59vJgwgAK4ciciUqhQ9UxksmG+Dtry9Hqjr3Gj4LMqh66+ o0Bt1ZQwr38nCMnta0zpOIGCDgjP+dSRIce7tFPJux/6Rz8y+mw1QSqWpcF1 n7H1kFVoLe8/DAWbrMQlpx3RAXljyhgWH6JiW+IMsPjAen2d7ZaHjxBPxse8 8i9EWCu61pL3EgHMkjnKdVRD0EzPYcHjFUSIGzs7Pk8kwNfAqZ09eTFomCq2 S+8NEb7v0nPaOU+A3X0MJS96U9EKoYMztoMIbWf7v7ckE+CdrVp0blwBKrbm OzWMxY0DDM/2JXET4Ip8xJ3vL8pRhSzO3vIgCbLxB2xCjfHApfdBkiO5HsGP Pq13xiToGPPKexiGA2lOPltZv1b04mQ/Z1YkCXh2Zy8wvBkBnzwzxv3WPWh/ mnNsyUcSVHeq54cNDsPxfqujl7r/rMP+b3EWUpSrXTMVDCTn/frrK+Ft0YUq 7gVOxGG97uSRQSo4dkR8Sxotg9e32kqypySQ36Zt8fZjVAjt7l49dbkYTjy8 cfuYtRqa43w9SONxMxdZN393ywfL1LpOdx17dJob303jcU51l1+IYTyuXs/l 8xc+L1R/AHjDMB7nZZmSuQfjcdda2TZkpYWgkyHzXGYYj1PnDQogtqRDWwMv 5w1IQBwXtX/SeFxyCq8rfiIVBMyMRuvds9EN4ytJNB7XZBO5/THG426z7Bgo mytFO7Pv+4iIUOERp6K8FH8bVF9PI2xz5kKZ+g+DrtzE6tXtDC85I5vhuvtE 4Oqdw2iMdee001MqnOztZG9QbIQP0fz53P5qf98/wEO/f+AK/f6Ba8SiBZrd VBQXCcWY3YIuxVF+zXui0vBh/I9OKoRnl6yd2vEWmM2P5N+xCEEbyNRymj3F cgVkPDB7Vpl5X3SdikdzJoFV03gq5OncGxz9VQKaGU0/Pk5kocHvO5ppdt6a vJAnj9l5TKLLS8K6FJVt2brUV4HVD6deVdxq7YQqfnGrqGNSqC5M+poxO/Zd fhgqfeb7CL+DdlntZjyNwg4x6BGx+Jb10+nzmFID/GJaf38wJQRd3exctJiO 1fPcU+GFL+uA8rHjykb2BBRZkcgZUYzxWfXZWR+5Wug9cVCAdTQLmQ18zc2p poLymNElWcYaeOG7WnHnbOnf8/5H6fP+pvR5/4rYml6anY/ITvRxYHYOvioU 9+NOAgo6l3xg7X0qXLriK3+q9R2cybpQ5Hg5G0W2TO1yxuy/azs6Wo3ZfydD f8o6/9K/5+476XP3E/S5+9EopbFz8lg8aYxve3OgFRjGDpl2nMtBazwSr2qf pwLHDd18gsYH7LvN7hLeXfb3nPsZ+px7KH3OXdTX3p1mtzaSp+UoZjfeLdMH eRnf/D1XHkqfK3ejz5VLOwyruaWQgXhCd1Ju+wD4Fj0ixuZwIq01u7+dxvz6 ANfwj6vhOJBkxX/C75RAH9sbLkm1ESHNUtG2NZ8AZJmjqc19qmi0WOnhEpY3 dz+nFlz/RgDf/RPhacL6aP+3c7FjFCKQRAR6LBSwPGtWwEfRuoEM3dEnXRUS +Lb+fCLHioffhhOGscec0QyznPz2JRLsc51vcRceho3XLTyfsIYgSTFmk23n yHBFQ1NzffEgbBfvFhBbiUHHX1zB6UaR4av9N5H8CwPg6VPwI24xDQVJsMiN DZPhBpMuUXttP5zvZ/I56fYa2Wgcc8BhdbibVCLzwfZeSKpKlDINrUJUC+fO y+oUMO867CGT1wMjO/keeTs1IUGVka1kJhKou9w+nUHGg7NT+RSPzRm01vv8 nBP2vmpO8RayWJ1Q7dVx5JrzVTTniYvVwHiH+qWM766tBOC0KBhf+9kKZWnF bVxYxuLw8olUxESAaZ2boF16D33baNeo8p0ErS+e1G7QHIbg7l1XlD5h68ri 9qMFJTLw5afxbVkZBCO1voHOS1noxzs9x3WPyVDxeeWp0ZsBMJS19zjKWYJC XGV3+GL55ZyKzDZaftnk2tIvxVaLNsmveDMuYX8fgBcOvt4HhaFOVzY2vUfc ykX33pzF7H/IQ2WegAPWr+Mh98rOIyFltuSoHoyffr/mUf8Cqxufbmoq/mGK oonlWzuwfF3/4xxpAMvX1yVETyRoOKAizzodt04iWDeaaVQlEgCna7ijKPQh MsnueTA3RYK0hilm6u1hiGjnvEU4lYfarzh+qjqM1RUsOreUFYYgdAh1JG1/ g1621t4vsyeDWWnNmV2bB+Gnyrm4o1wYf7mV9zk5mwzG6mXtfT/6IT3ftWzA tRXtKrb7tjRGgqY6gdM8T7B1soF5OT6sAi1Z7OM8t58MJr5rOOZvD8HP4YHt RpaNCBibG3+bkKExbEE8yHAQtLjON1sEf0SfAif46/AkcPzSJ/4rehhGK3L0 Ujc3IxxJx92NjwyiU1WN+yKGoLC4Xj/GuxO92Dc3qjJEAu+FVI36nGGgpB6I eXm3+3/ZPnPXs41HVl5h8ZND2EjLrQt+b+JiVh8/iNLkvxw0X6QAv+tG6uCO DqhTtDZWPq76v+w5zSIefpvH1j9FeQ2XArb+94Sf7r5Qyo7M6++uu43VFQJX X0AwVldUxsv8Hk3lREfZTA+RWkiw9lUAx7GpYZhIylfp3HEQrRLTLWh+wWTH 9ZzmF1vTYKj70lFEPrMhfdWUDP6PNc1GdAdBx0h41k32OBr8dYaR5hcV8TLP aH5hvjQ4I812HqGTpqHbCGRQOKqllfujD0p0jjObpuminDSNU+sPUcDbyrWq 3wCLD697xkoFzJCmYk72N2UKNCx7RDsO9cDHiqzIoE83UF5mp+8TdwpQns2H qjl2w9Cx3ycN1juh9PgeoatBFNivn9lkta4b2FuurOlPd0G5jN/Of5okgsEC i4HdBQJk2pcEWF/bizhMvo42GZEgZ+i7g9BLzB8Dm8p9V+VQau/BhYIJEiQJ GXbkug5Dwvfi5aKUM4gkc31JE1vnKVQ9W9o6944btbxmqYcK3zHGbzAjQ+RX QvhLzA7br9d86PxghKq4NaVisTj5a+TyOu3zA1Du/UNLY+IGeuAxUmPeSob7 M0sL23X74XRixmT/ZjsUhU6bzfwkAy5A8dkEFjfsHyz7bN3mgvIkojbZYXFy 09Ub3ytze2BDdA5/wHZv5KuVoHQYi3tJulFb+7C4tzdlbI2WwGGUZtGqyrqF BCJZG8GwHA+cqkZyrRGq6O38GvvORyT4ZNY158yBgx+BqhYMfXooKmFBzGKR BBd3sj7KEh+GPdPOD8vab6CR+tYbC1vIMCipv0ezYgjYTlVe3ZBzG+U83yNy 4h4ZXnnfzWyfHIDm17HXesj3kNvRy89bushguvkXi7p0Pzi4k8c12P3QTFam /0ZNCoxRU5NjwnpgUmA9y7eyBPQoWELxzGkytMcrtI98GATg9k5gmuJBUtfk 6w2kSPDjk0ceryoe0lnHBbqbpFELS/zODZcxXCqn1DoDB26Fd3lKbe4izyDZ W06lGO/onlnlVRoB1gOOgxr83sgnqXmXx2YyvJQ5hjY0DUEBlapgpRP2/6nz +IGu88hG13nEHanRPGdLhkyubjVHvkEoFvOV+ZYshPKmGiaXsOc5Tj59YDQF B5Zne3g7CMr/mJ89R5+fFeZP3GLziQifwxIIJrcIwBUo27ZN2xGdOTqxtnc/ xjt04zQC7fGgrxBm9dvPE3W9bb0xcYcED1MnTH8q4eAJf3UFJeUp8lnmlBp+ T4IXfFXO9d+HocOrq3+EHPXH97K4clZvCnuvw+6HA9njO8B3gwDzm/xNaGVJ r8EkkAyhsjoml0IGYEH6Wem+AGl0veT5u5EHJIgW+er5cwcOXK92qejFnEFi XUUS7G+JEGyrhySweiPRel95VIwNkqdmR1W/x/IvSxvnWAUBjCXZHnMpuKOK 9FsX+38TYctm/01qrATwelKShn/vi5g4Cq7VHifBcHpJngkbHk7XqDR/XXmO CA7MXNxBJKhNY0pbmBgBwidiLUE18V/Hz73ay+W078i7q450C/uOl2Jvdq72 7ET8dFyAjj+n41btirq08/YqzUNS6/YMAElo+9eC3crIko6fpuPLdFyPPBlE O7eTSeRPoZ3baava6cz1QQ/p0vEcOo6n4wLKYddoc2eNm9ZIlM7igYXt8/vn gTf/xpvoODcdl7pySY2max8TU7W68JkAGdX925Rj7vwDL6HjixKeYs1YXSRt y+m09TsBLqpM/h5QePwP3IyOyzkc6/+AI8JgXMlz9TsE8OjyPftEJeRvfICO e9Nx2Sh8iPM2EogbmhP2ZeJhm2oTp5ZTzN+4GB0XpONXxNZZaxiSgPHF+I4D +Thw4H5rUNGR+jfOQMfv0/G/zldH0M9XP6Ofr/7T9z32Ro56Xwyr/49te5HT 0wraocdc3Bb50S6DofYyrD7flTtryxjVgdWzfofsmkWQb7HzulBWCphOCTfb 7OwDv+mA8kPrT6AxYaPJ6p8kOLnP2u77gWGYGeiReV58GQXMG/MpNpBAZ3wO /2ndCMhk5vYl5hojN1nftIY9JLjv2KcOj/FQMscjPO5uj4YZfkevHSJConzB luRH2Pdq/6J7OckdBZv1XLjVTgThg/ndvtkEqFJmnuW89BBxyvZmeJQSYb0u C8ntNwH8Gp5cDjnlhzTMD14hlBGher/JYtECAfhfJU00eAeiLTcKW43riPCp M1gopY8AyVI9BmXy4Wh2HXveYAsRruumOz8pJsCpJUvFzNoIxDQbkm41RQSl eetuylkC4BHxyxuJRLRBKnqv4wIRpjdVkwp3EKDJ/SFFeG8Sip2JNFXF3sst s7mDzxsP956t82DfloW0RR8G3bPFvtf1gNLWSzgwaXy+W4G5FE2/+XHYoYEK tRU2WbMfq4AsqaLQx8eADp/Qcr50A+PF3kcjE7ObwS5IuWqb3j7ktNrWfsiI Ao0fznkVifXAViHP3MdxaujOoDIRXSBDjgqnhsirQdi5qMtfM22MYN/S4m2s zqR82PjIzmcYxPakrrARLNBar5cq/6O9L4/Gsv3aFioPKZmKSIQ0GEo4SXZU hozJlAwh0WAoRSSkkpAMlalBSKaMJTIkc8g8D/cdSeqekiGFeq/rfa6nP55W 61ut9f7W965vff/uZd2u4bz2Po5zn8exP6lS4bMMvPFZQ4JO9nXUMmtvdGyH 9+xeMgU05wVes50iQ7JEhlTrpquIHue2zbGaArvH+LcktGA4OT71ujrrDbTs kDSnFZbHXO5XkrkZZAjpNDm9UBWNqFtjBmSw98Jp+CIwYgHLb5Tagd1lcWjG sWOdagUFFvlc9RUmkUGx8IBYmVAi0to4UK+DPf8S377PF56RYY3OtSMNkSkI 1QUUSU9RwFRrdaWHJBlG7Zz5hqdzUEQbd2O5JhWKSAY7omeGIKpYj/mdexlq yp1aeTCCAfaHpFTurKiBguMv7F5liiInH46axWl02Klp8K3zYDvoyEh4nFbY hyh+OqbhGH9cYecv3MffC33jZ0y4Wx3QgdRLn9i/U+Gtmt5ADP8AyNScrnwr eBp9YYucemhGhWyX9pKdz4fgSE6uWQBrIDrN81b63icKlK/3skTyZPDOy962 VzgCLXHWEaVh95tXNdL2ZIAMur7N3W4z8cgu7vBHNiyfnDpD9c6aJEOl/3JJ 8fp7aLnP3ss9WHwXg02OjNWFoUUcViZWaYhxQkYvBuM132UMKhoxXtPzbKuF 6LN8pG351VtKnArc/lN2pV4kaFKP/Gsgr/I/jpOFVzK34H1eZaXvI7i/az/X sS1tKbO/Pc8wss5+DO/zvqw+z9r/sRE+BHM6PNwngOpbOkvwvrBJy8g9/Pw8 z+GVkrV1f37e9XfxpyxqGrjfbJlgxlLBtm7YK8ihoyHNglhS4i3x/iDivGiq G9ABH9vOkqd3iiLrrXqr8HP7Qf1MD/Fz+9eVGp0iErlR9KtkU7w/+ISmaCEw 1gprmoQ/N69RQWedd7Ti/US3uea3eD9x/WGeHStuyaD5hKRBvG9oa7017Udi C4zZnjJKDt2L2KaOfk3E8CQwbTyP63rSx7uGj15djiLh0klcF9DYYbNOfvcg mAYFxce8kUQmaUNMeL9ptZeQxKrUPhgrFm9oClRDBrui4vG+0i3mozLzyj0w tnTvUfUAYxR1LOh4kCIdqKwPrC/xd8HABK+Dbe7vfYp+F5fULnTA9UETh1iW lVzD8rB15KnKp0xIyWAjE64/mk6gqTAXkyGY3JRf1imIfFaGP8TPs71+27oe P8/20SG4pk1pG5J9OLYD77/ovfoygPdfRvhzhBjGmmhIUOsw3mdhcvm6Xmqo D1ir+kV5tQ6izsPrglc8ocFIqDLTdHMPmD9i9zlRcxy9McvadXgFHdSpLZ96 J7qAcXXqvHS5zx/f17VlKzhxfeKniXGO8dskWJz2MtBmmhPxBQuZ4Dopx4wd O5ZidURjn5SzUZgkogSMu+H6iwl9mwVcf2GftGetq68q0rux1Rbfnx+80Lgf 359XviJSbmZghPSSN+Xi+/BNg/dWl45heeN5z5SRkx1qOdKs8GUHDe7rrktd ubQf/BbfPPI05BRK4nbVvnaXBsmPS91l1HrhhW2gNqX99/rWR5PW2rj//DPh 6uAurj6Yb3p1cvwdLwoomi08sZsOD5Q5mtmaOmHk5H3/yU+LkGrz0Dnc73p6 VSJfCRMJksxas70ub0V77zjp4frKlhVdDs+w91K3fEC6QF4cHUs1OIn7MOsd ODOL+zC/c5xeJ0vei/ItWeJw/VcLn8oCrv86kRS8aqO5KjoitfLJthcUyPkx WVk8TAbHJy9eiFWZo6G134xwfUrfg4s8+lj+79KOHKw1NkJNS7hdWb5SYKOx ym1uPjK8cY/+erPDCcXLNjl0dFNgVnCT9cdwMlxfclmycfowampSr/c1oEL1 3ai9Wn1DcIBcJn3wridq3/YqYlAUw3ua1+iKASS4zX+E+jbQHa1TvHnLKpMK XsyKnPyug7Dhs6VXUsRlpC3sd6DFlwq+z0LFKZJD0HFPwD36oR9yCi0W9FpM gwXmz8LPZ/ph20Bd6fK/opBuClO9WB8VlMbsuc7kD4Dc3QMt8wdDkWTzzQAd CxpI1QaEmgf1gYjr5JljSfeQjLMHG12WBlvinzKPqPZDgv46XpPYGPTPHOcr xBzn1cQcZzj+4TQ+LyCJV0hi49UekPdzaQ9ftg4VPdx9H/djd8j4+hn3Y+dR +Jrrn6CCONVP+OC6V0fP/fq2Bf0Q1fi6gf+jDIp5nHcI98d+o/IlGvfH/tGq c/CgkhEajS0VwHV5E1zfWV64kGBurExOWncvaot0MNuHvRd9yVVaW7H3UlPL Ky/GbYeCr0W8xXVDP/qcxnHdkJKZ8ettPeZomfG7LMk2CihVr1w2nkQGtSdr 41CIO2LMWEYkl1Eg9szmFMn3ZODsXVVKm3JCIsqXGma5MLwRqK6hUE4CE45v RzMP+iGtifyJCRoF/HsO2b1SJYOWv+jMs2BPJDesCZOHqaAgbqzUGTUEzaOu rU6lIcgF8USPKlFB1v2rvJ0MCRQev0kc3nEZicUrzuL61hfhjvG4vlXwyRqZ 7rrbKG9RZBX+3Nybyx3w59bhxCdw53IkOkQxMAjA3i9bqFdAFPZ+h4t539sP JKHngYZK2UNUWAllNN/7A8BepvVB99hdVFt7sKPVBsMPnUJLlfa8glNHvIVk rv++rs2puHhOYni4RPidvbVgN5zPdQy/fXcDWkfwIxGCH50i+NENzpmduK9+ xNE9F9TbB6C60609+sxuVO4Xo4Trl92MqVVR9n2glZF0vfOJIjpB8CZNgjdN EryJ9G6XGe5/zlbzZJVpCQmMi4de3T9gjnTnK6tw3WVUwvAorrvc38MO8hSD nzwri+BTnQSfcv5Lk6MAwyeU0m1K/oNk6I2qbWKed0J39hsruGL85eyPj88j vMjwKac6fCX2Pf7Ds2oJnrWM4FllLh3ckhhPv+jMPmNCxfjRV5vMtfc80QJn 6MNF2HpzKTKWkf5OBidnVxu/BPdf+FcOwb9IwwqBHO8ocOXG94ZgKzK8eCBX 3C19GXXn8h71b6LANy9tnV0FZDhZPH+2w97vF15mTfAysdTqphAJKgQefPTy 3mkSvJATzXqiF4k0bLa7W7NQYex0y6M8BsaztsZzt10L+YXHXST4WkLimQ4S htsLNSzFtA8OwfzQhoncsjvoXB/TB/59VJAqeLn+04ch+FCz3qrn8O1f+J0Q weP8ropHMEqogPhfOfVuwup7i8Lh52qPUFisa9rS21Q48lrf5GLVIFxquJ99 wTTpF37nRfC7yLnz1qLDVJj6xF++LHIAFMR6eA7pPf6F94X+H3hfov7c5mXs DMjdpMAsJtoCf5UczmyeW48ytmTeiyfTgH47Ov/7p25Y8eigs52dJsriK1Z0 GKBCet3DMK70AfBzze3ZImyDXgrT1vNLUyG/Uyo9zYwE1bGxqkGr3VFo9fI4 xXYK3LAeObz5Phk+DoeZcbn4obOdRRvHCrH88+DesTBsPYx4s77RfhaCPqyR XWRRS4H3aRcTmurJQGGpUHE6eBu5hiW/ZcZwtaPR4sAjCtjfJ+6wvbM8Cb2Z jTDbKIXxzTolI5ozCZq/vYiLOJqF2MRW6349SoXH74MK088PwaMPDUObe54i vhRWcf53DLB6+8LmS8kTSJ5W03l66I3Ssf413tUbGHDiJnczm9JrsNxJSn0+ twkVa+WP3uelQyfLFctFXV1wQeG8w7CmAfoy7fqEG8vD2vJx+0WxPJymvmk3 y/4jiF13IdzwEBXiA5nuuqUNwamXbAF3ws4i9wONraJY3ls/qhCeB2Rorsx/ HS1yGU2Gpx8SwvKnV5VC9/w4GSz7h2y9nSORBd+z0o/FFAh8uEeZb4oMaQ5u 3Gqpd9CuweOc9hj+H1rGY3c1hgxuxZP08y9TkTOX7MdZJiooU9LTLGdJoPWj W9w2Ng95yqr4X8Hy5yv15WXVsiRYO0G9VXX/OdK0E3W6PM6A9Alhx1SbAmCp nZhRCXunNGTyDWVhdUonr9U8MqARnB/tjeFs24rCS2RYj2O4YmyyNZcbwxUc O1aHzS01QeGdKlrHdWnAMLyuil72Qem18dmW3uNIxkzTtw7Lw8/TnW+s+DQI 2k0PHUL3+yKn7uAIC04MF+1T2+rWSIJRd6v17vLYd+d2StsA4316N2VlXDHe Ny7xYqe5422k+GzNeDO2TmZF3y4MYuukc6b1QK10Eho8qVJshdWpXkq6dQHG 3yVSFOJMPLPQCh6Dj99GKABxDIM3Dhg+8VeUSM55ip4KtXbzvqICS3hi4tTU AOgVdiznShr4Y9w4whXagZ9H3TAULMWR8Qqm15P/6vbd8L/ufP68zcLk1jga aGUqrLI80AsFZRW7fdVnlH7Iveh1aKKBsTIjTsikB4psO3Z0cjGh/LeX6G7a dJC+JlVQnt0JTKtt5K+v4kf0/WwVocew9S9geqhovAMuJy2xfZwj/Nv7fbW5 jL99OR105sNS3051weySlKLEkiXI4IqjFS+Wz2+Pyesdw/L5XYaZmNFNQAGx QjdfiNFBN4OLLzSoC7ItxUuZ4vl+xo2IeAURd8zzc9rUSAVmSpCPNXUARj59 Gc4+uv1nnJWIU4n4/63n/7v4XX/hOZdhCpDMheTtj5HBouKEhIARCypgIuvg +9J8Ldc68H1pRfLJIxMP/1yXF3Z4uSJel/e5a9TgdXne5blnTNgXpX/iukSc 0/Xv+DJz35V43Sw2te7C62ZqWV9XvzIv+nc8j4jLyqp743VtjBytvB6ra/nD Nob7z2z5GX9HxCuI+D96TDVCj5lO6DH/9L4WHYwWW3+ZCn99HxVSYB+CtG9V AYI3mZFXHIcgvn+V9fnEufNrSFBkQblRYf0Xuud6kg/fp0pc7BCJ71Nddr1m sIdVBGnmR3w+VEKB8QvyqjwMMrioGwn8qFqPOrpl8/F9J5YmQw0/LP+QRQ9T GyO3oy+yWwrx/SU+/+0h+P4S85UD42Pu+v/xdaXvdEIU1ymYP4l9KqFQAa0t juK+UyxIOFakF9cjcA1te5NZ/BzKK3y6hnP/5/T1Yv2213Gcn9pJ98FxvuFp c0OVkP+8/oiiFimJ48BDP/pPzWI4sEVxqZXGnSXo3/FKIv673wngZanB9zm5 zspYn7o6AAms3is5ybNKY3Jxs7meDHhpOnDVyqwOll+2d7phtwgtJnSLo4Ru UZ/QLX7J1vFhnGSASd/ac4IS9fB0tLUuyXHl/7p88v/j/2/EPcgaj/b60sFl 5BxL75kOaBnxNOljzP+xLkyK6LfWEP3W2aN/91vFFE8pm1+hQ+NrKfmHOzrg +7ugdr0ADsTmHLk97AYdvL8qnLX71g60J0J2LfaC6AP/Co5cBTpwIA1dwzVd 8HRg7vPl6+uR3Cy725QyAzxgoune10Zgnax/LKPNjP75vp4S3xf10t/f187r EVeTr2H5Stu8cVV2DQjtLMrezsKGJG5Tstp8GJAnonj3/nwtdOtptM907UBr 9Dr4cV3PmI+octXzOjhzcnQhuPl/Xx3/T8f36t2IzXpOhz0BapEWA21QgUSi MzR5//g51NnVnsf1aDHzyqzUwkKQazqX1SUCyPX4OdOOFgYolXMNvi8qgRbO anXZx+N/vN4mhFWqtWqwuhkTMHapiQz2Ii27OOv/fN3+aXxRbJrl+A3s+ldJ mkoJ1oDyyYzJH3coSg+d/+Z3gi+6/5vfddfs+JvfDf/Nd4a3fDiC8x2FLOp/ 853f/b74ouyFZbE0WBA6t51i0QvHij3OjC2fUdoZ6Ewy5qCCS0yAc1M7Cb4N Plu3Xn7mt7/zipi77U/M3WYi5m7/7u+n3WS8OgbpsDlBfMziQyt8Wv924Z7x p59zzxX/Nfdc2JbHZTyXARYxGUpO5S+h9oLn0lMq00oCR5fu8munQ1+dYSrv 9jaY0WOuIxn/XvcaImIosArjoQfaY0VWfCADy74njwX6f39f/+k4jygL1+du BgiXMk9RY4sB6pMXdfiM/PH1mP5m/lptQ5YNTwYDfH1sGkMuVEIfw0uC96MN esp6cZKiwQDTnd5nr5s3wto0l3CmoMMon2TodMGZAU0/5ri/BtSD9mgOj6jA aRS1ZbtL+hwdHE0zAu8saoWTmWFfx4I9EL029iB+ztk7YlJbQeQ1vPkreqPE 2UtIzCqsva6MDhntOU/Ga9rA1+/moZOLryAyWfh+FoMObI1f00ysW2GXP2nc 0D0aBS3WE1sIpsNaLudCF/EOQJar319k3ERvWo+x9JTSwUJI0hc/byxa6JJw Ry0JWSyPOLrGig4emS1bhVU6Iad3ayFbeDLaYH513iKCDvbNu5OVp9thPt/i 9JRqLtomNl3vrkuFhr57Ch2jQzAsV7Z/d85VtNlshS0vts5XPNbtyekgQZho 9Nl75WFoeLJvYNaYCpkZyovV6odgTHS1popgLMphDs5e70CFkMthV0+EDMHA kkqnHz6VyMXHRcBRjgpf1rLzHtpHgvejEckx1Gr0QX3rEiknjKe03H8w7TME D2O3RI3ua0ZD3M6rQ77Q4QxrwZSjKPY8Q05Fe0Qx/5z74ErMfRgn5j7Yfbrt jPPTTWwPTj3H+Gn6yNDi5JzraCe70UjIGAVE5CQUt5uTYerT6kf7pVchOjUu ZWc5DY40T/w1ntADFYWXLh7UvIKuvVOSfM+B1bvSfSo9rN0gXVN0tFs5GnGL h+y3EabDuviNfDdTumC/5Fn1KsvbSIT/difuU72zsn0FPu84gPXbmrQt2khk xFtmZR0FeJk7tu+tJcMVRz6XxXMHEbdukdRKexpEf1BJlznYB16n2q6VWiai 0CMbVQ/0UEDsKofshutksBWuuWObfgAtiJ9pXytAA9lnFya8HvTDLuaPeScP PERwV+Crei8V9sTq2AoVDoBd2mP6+ONM1Ef4pQsSful5hF+61L/80h0Iv/TG bUYK8TZUGFmV6NeVgPEay6fb7g09+ekfrk74h78m/MNN38APsw4aTDpun/GR 64ETdyS9/DhM0N3ivD04LzMIG769HeNlmkGs/oI3TyMjwiecKeFvn/Akwif8 Hx/vNsLHO47w8aa833Xly3IqFLJ88AiqIYHLOlv26dACNOM9KzEgRYVeMe1E y6MksH8e7x2gWfTTr3sF4dftQvh17xUIFZTBrl8xJGSB/W4ruDfuZFW4oI7W 6sZISI9i17+h56ZIXzfMJHwdj1C0QVGvhmPwPt3QvhFfvE8XMWZPTlD3RPSP +xouK1ChyPzm9V1KJHgnFXl246Erv/hvLyL8t//ts11I+Gxrnqne8OI1tg5l V+wlZZOBeU7LYvuTXAQS+puKJinwaEgmS0CKDGM5l6JE1IqR6bYl0azfKRC/ 4VbvUhYybNgdEBwnUIpSPRWe4evB1SDS+Ry2Hl4kMhm5HlBAk80jXPjzCS93 ouPPJ6pZgTdQUxtZ6YU27c9jQE99/tLE/JewkkUrdVxuRklR8kRueCMDTtGS u1MppVBg2KExuUwAvSfwWwaB3/oJ/PY0fZFW4RIasJ+WtTw00Q8LObSnd8/9 vo68E6qafYG9l43evhlizytASrHI9/sPJhRo6xYu24zhPc74ICO5UhgdsnJs 6hBGZVopRo50BkxclhUTrc0FdXntpdpL3JG24tWY/RMMYPasWpmUnA1sRumz u2X9kax06plbkwx4wpwiWyydBUwCgc6DXmEopZery2aaAU5+Iix07gxQSSUL a6bFIqvWTNvXMww4M2Ww8Yh6Gmy44fE0xi0FVW5etP/LFwwnCPD7eGamQtKi OL2LRrnoGfeSca/FDEhYI57cdawFsplTVeSll/yiN/ln3qWQTOja2lrs/8ar vGveXg7uBr7IIikAaY18CD6J4StlHtcS0+4ScOquIGuwh6NruTwkHayuJZqY T7G+Loaecuvew6/jUOs1/hNtAwywbTo+XMBWBCGSWc9H1R6iO48a5kzeYPXo hJoE1bcQ1N4UHb9AzkWVJy/VaN1mgOir03O2/tXQFdAhesMqArE8CxTpxPjs dLG4kARHFYTMZztMliUgdW2x1AcYTnCP8PihW/sSOtOrESMhFdE85fQPPGdA dswyp6S0CjBtQW7zzXk/9SOqhH7EltCPVLSxmi44YHiybrl61GA9XNl87UpH 5D1U1HB8WYQXhvPJTLHBu+vgh1HCEvFbaejRufneqqsMKDdmRFztq4Gi1paU OxsKfupH2gn9yCihH6n0vbfCTZ4B1SyMS4IuTXDfhT3bXi0TeV4qvDC6jwHB GsExQtUN0Lb6I9u26Se/6EeCCf3Ij2D6TrklDChR6B0+bdMCb8UbGO81n/3U j0QT+hFXQj/CGC2PSS+hgI1Lvv9iOhluRwt+iW3XRzKsD76ZNFHAxcycp6uA DLl7OOXDE62QyBq2NfMXaCCpJhC4pbsXqlKTIz9uTEH+3/PlbpXQIP+s3EPt 9B4wl1ForNyYgx6iV422n2lglpHIoxXeDa9tqx32qj9D3Ws3NHBhdc3atF+p +nIXeOXM8SYueom+sQaYiGJ5Y8Q0aQtbHhnyGrS8DCpMUWmjaM2jzTSI61Pt IBn2Q9rmb7nq5mno7eFmW/pxGqyii++myfbBtd6KVv/0fLSM/MPMPoUGXzp5 Re4K9cKmue2BHLYlaGuM1FOLXhqETr46nsbfA4Kt4k7NhVW/9JWkib7S0ovf jZato4GGx3z9mkv94BF/2pXHrRD5HVyQvm5Jg8+K8tqU832gWKDMUJepQJ7a R2w8ImhgzHJXsvxCL3gs2NU//1KLPIZm9GgDVEiY/rC1NXUAOuOS9YNYSlDj Fv2uGT4a8B55wAY5/bAokqJRIFOFesca3vrp0UD12eQG/dI+oDMUYnz6GpDY Rds0yx4qhM6EbyQXDwBNSc+msboWKbJZBuhx0mBD862Usc5+CNqQEHbdowXt 8e/tce6gwou1MR81GgZgx3ij8le3dvRvfDhP4EN3StZsXSaWxy4obok2qIQb I2nvEwoOo441e/QUse/iUc2FfLvMBtilysiwV3NAfSYDte0nGHDzY1atkmo9 RJ6xbRr080Bxy3Vizy1lAJsvz1eRfS1w9PlcrE6aJxq79jkySZoB77dq3JZv b4KXe5I0vT5eRtM12ce6G+gQcGRT2c3jbfDYbrcFh2EwYl4d+qNrig5PeuvP Ciq2QtXpnrTqwZsoskNdOb6RAhp6PDMOhWRQ3ZTKzp7O8gteekvgpX09oe/s 7egQyrLNwFCwE8jTfgV5r0LRuftKm/xu0+FSjXzt8dftcHruvEu9ZCxSTDb0 s6qkw5HcR3GrU9sgsye2ZDOGJ+eSF70TYadC8MUwuY09JBi556VlULgSbQ9Z 5+NWQAP+tEl/nvYeSNJt/B7fcAmlsVD7tn2lQdOKI1feH+uGYzqWL6oXItDz j5wnLynQgSVz+LmBUBcsjPFdujqWgEKvuj69jeG6L0UyjmcxXLfupkMFKTAV cQ005DBj11no+Xb+ems7WLwarIi1z/s5L2YVgX+SCPwjRuCZnQSeKSHwTLKh oIDPFA2krlpLClzqhjmZq015Mft/mTMSTuCTLMbOVXNLMXyb97likkSCmNOh A5uj8tEV0dzXb49ToWU4t+r6ySGwW8d5eeJo1W/niXShKOsRLC/dtLDd7Hqg BZJ+aGbf2L0Tw2n6QpnidOA7puZdd74LvF/ePX3JxfwXXJFH4IqdnaW7p19R gPraQ3hDKRlU6k+VO1TmoB26zsNR4xTYvtTM7YshGdTuSRWLkwtR8dPja7es pIKV3WSLdxkJjm/eKGVrW4Es3df0mapRoZN1slyVnwQ+4hLfXATqUKu6/piB K4bPr2yxNLUdghkh05Atr1t+u/9wg4OmottNh0VRbrYVq9tAa2D6YmLkUaTZ uy4Dz1dZZfP7yFi+il9aGrDbHKEDwzZqeF66arw1Fs9L8dyVZpy2uiiQQzV9 J/Z+h4da3Za3tIMJ3+Qxn+/eqGLiYDmeHx6tzDuJ54fprGyvJzIHfvaJ9Ik+ 0TOiT9Q30OiqbEYFKU8+34GSIXiWcIR1QOEa6vf65N/iQIeUu2OvH3B0Qkdm x332w+uQ76bxby+FqEALtPnIEo3xnSJ3OZpxBJreYzGaakWFx2f8Z/WTseeQ d8GdPzXuF1/uHYQvtzvhy91N+HJrE77cCoT/dg7hv61F+G/r1H1X9HtLgQ+e t9I47cmwS9DEePC6D0o+teptO+4zKe+xxJNGhiiWC3y3Z64gkZaEbS7Ye498 KJvEUk6GrG227q97wn7vN0L4kZYSfqRvCT9SAeHJW89u0WGk68QOz/Z2CPEV Tlj5eAP6cl9o3GOMDvVSPqc8klpB+K/Ry9Jqasg8ff36JWZ0kHiQbOZn0wkh Le9TxJ+eQG3HXxf3K1HBd4zrryAZEqz2ctQuH9iHHAKtyvZi9YWLfckF9lU9 MBQpuXMk/BTSo7qusR2gwTa1larfl/RAgP2SzIVlnOhYiVOKNAPjEbGby9+Y DkCrjlJDXfsNdHpzJhOnCg14MpIsM1b0w9CZx8tZHON+0YPsI/QgzS6qvAZ9 FMh13b11YxAZZkf1GjfSTqEZeleP/3sqdJztMtTzHIDu8qWytFv30ceXjCAa 9jv7o0Qz7mO/E95S6s/tdBK92yXclVtBAVGW15SgQTIY6PaKnPY9h/7xb58l /NvZCf92J8K/3YHwb08n/Nv/Pa/qJMG/5AkfdX3CR52H8FFnED7q2YSP+pV/ +ai/JXzUMwkf9X/OOWQT5xySiXMO//Q1GERf4xjR1+haUh9GrcLyYUzFD9mE NthZvHW/s5UcekbNIXW6UWFaJ7rI9eAQwPlD0y5cZ37hcWkEj+uQ5Nbw6KRA 4Tnrin0xZJhhW1QiSY9HVS4vv9AXKDDHSeo3xfjLFcqOZIEDKT/PITQQ5xAE iXMIqzlYczZjuHRFTYL4yY6XwLn9+uGmajbErLpbfiaRCvtHln4YiRmEiYMv jnvr+aC2jQ+cFDG+o+/ISyl1JoGEAe+RR7NBv/CyJQQv++F4a5daJQWWex1+ INxDBh2pNyTRtQ9Q9EuGysVPVEjv1FfVMMLW2/T5M2L0rWj5YoGvlA1USGE1 jGo9RoLRitinrMpy/2P7z/nEXIBLxFwAM2IuwLAqz6g7xr+ydljJVB6qgwKy 4YSxMfrj//tfw0m4Kw== "]], {}}, Axes->True, AxesLabel->{None, None, None}, AxesOrigin->{Automatic, Automatic, Automatic}, BoxRatios->{1, 1, 0.4}, DisplayFunction->Identity, FaceGrids->None, FaceGridsStyle->Automatic, ImageSize->{291.8218339888972, 388.7527532890429}, ImageSizeRaw->Automatic, Method->{"DefaultBoundaryStyle" -> Directive[ GrayLevel[0.3]], "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" -> "Globe"}, PlotRange->{{0, 0.1}, {0, 0.1}, {0., 1.3140720570423784`*^36}}, PlotRangePadding->{ Scaled[0.02], Scaled[0.02], Scaled[0.02]}, Ticks->{Automatic, Automatic, Automatic}, ViewPoint->{1.46525429605354, -2.69109404052787, 1.4356332097482412`}, ViewVertical->{0.36654325564691015`, 0.5853734486731971, 0.7231763044570888}]], "Output", CellChangeTimes->{3.881035692439432*^9}, CellLabel->"Out[45]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzsvXncnEWZLtx5e3/35E1IyEJCICEQlrAYAmRfSchOdkIIJCRsCYGwCmpG RVxAVBgVN1xxNwruDoOMOriguMyM4Ibjp84+eJxzzpxvvnNOfXVX3Vc9V1VX 9xuP8+d5f7/upJ9+up6quve11lx5yzVXH7jylmv3XDllxc1XHrrm2j2Hpyy/ 8WZ7qTyiVBrxH6VS1/unlCr2/6ZUann7/0ql//v///v/Tv9/l3uvzbRvX7Kv /2Zf/2xfj9rX8bh1u7/1ne69Mca+/ZN9/ZV9bbKvy+3r1/q5hp9s45+UX6Uj j5VPXf7aGXrrlaX8b75j3z5f0r+yf/+xffsIrrnfbI1+83v79ubkN4/Ztx/k fvMO/32XXpY5lir+2gft2y+H+c3/tq9X028+ZN/+tsPc/ot9ezCZ2+P27Ue4 Nsa9t4VEo/PX5c5fuwlNiyb0Tfv2lWRCz9m3j+HaaPc+LLw9PMfcok9ZSMvp 9LNjusdN++Ro2kfs27/rqoBLZ+mtu4p9HB7n/LX6Bvv2Wfs6Q+eU+V09+l3+ ngw+R/NujLJvv7KvH9rXZr3v7/RztZj2sGhfbXtfle8L31cyY7jpneT/rwxA Pn3avl7Ul6DzOPs6zv98WMqqtr2vyveF7yuZMXhaX/DfD0udlbb3VXHfsVF4 63M7Unil7X1V3HdsXEKf+0X//bBcotr2virfF76vZMbIPHdYZlBte1+V7wvf VzJjZJ57pDQMNdfa3leP7rN/w47FVPlx//3CvXv3zrr66qvdp273Piyl+imN HO42+Rv2Hp7SR/12ynQe2Ldv34v2ZexL/l/qcd+1pdJG56/Lnb9m4fBh994c 3L17Nybxgn2tt68ndWLP2pd87393if/dh9x7L34nvzmi9+Hzk7rPR/SzLNQN scoP8QG/fvnJIX3MUfuacs011+gK6pgSQCbgMzo9P52VfqzlHrzNEv11Za4p es3QXRAhpKjbVpQucl9X5NHP6qpkOh7kjfW6uBd1VnIbPsvC3SQv9g+/wD9I 5vr1kqfZ3ymITi3mtrHkWcbJtIZZ9u03mEs9swa/X8PK7vn5tfgRm+sVAusJ EQ4pUI8CoG5BK/yC5vinri55xveYLlUUO2E+/2pfU0ugjsYE+/ZTnZBg3yzd aCGO0R3XNbxwn1ssTGYJOvKwr+YWhKGB4Q7t3OKW8eLK37Nvz2MR+uhRus2O gj3YarK6nyiYeFWN9qsaVvZ7hKkzhzikU31W8cuP3yUfS2W3LvwpR8baZWv8 +pZG6xNgLUwmIdLyX3DNr6+yVhdgdLeb7dc1rPJwvnuvMrNIwXIUnLCYQhn4 6XfFX5O9we/98pb4Z3hUL79b5+d2wyNi7dyS54cCItlv4dCnlPKgUogPq1O8 pHVJ4IeYvsMw/FUzS9Lny2+exfLdkhb73yjEzrNvGzGOzq+35AXPXxdjN84p eRIEJgrrF/n8W/uaXsrTGy23oypzbrFcsPfAuwczS/OiNhBbIU4W8tIa79O5 iLQWriL867t6bWOxa3L3N3RVmLKwauGqM4sp1wbs22SdMS9TcWxY5evsYpXg 8wakNCqzSi+1y4dYarlVLuBV1g/p7r695AWA3PKcrlDHrcl0/0PvmdM69WH1 t1n+USmnj6Y2MrOEXn9NfgeR5pcwn5dQXaBTOlsf51DXG5C1EfZtR8nj2T+3 Tv1IaRi1zV+rCXq+puRJ7L/a1zO6Q/q1PPFe/fr/LXnmcmkJ8I5EnCxCHy7r DuvPIWqfvxaxWLf+ebz+smCWgHCvfBrnHymm07da1juseunXMyCA/vuSF6Ci uN1sX/+zVNig4ooQmSNkIarB7fq9U4AmeqjIqo6mDFVpJpINA5mV67Ug6Eu6 lNJF/jdeGJV/bt+esK8b3Cf/fk6J/pQwBLl+U4pVrHYKqWKBzPQF+9pTCrtX fU/J02NVh7u++K78/pI3QNzf8f7+rEw5PrNcBf6RFvF/YbTcT5YKsVcq+/c7 eLmn+Pvut28/wzXd8hvt27/h2th4fi/qXNz8JmTmp8QJQizEt59YSUWGsBxh rqJTi9x9hT6uX4fQrRIx+Bym4l0PdWbej+zfv1+wJ+B8bkoK2VaRO4enVDlA WyZeIjXfvl3yCL6l5BWAI/b1v+xrv3w7utid3To8WJZfQpfMYryfgNwhE3af hvw1+SUMFj8pr2T44Us9k0qeOQp+9eo+PFLyVChav6CjCM+ri9m0qMm1Yv3Y SqX9eErq2mkVdl5J8Eyj1F24W/wfeMoW/XzYvv4m3NPC0U7KPFm9N60C6Dx+ cs/37dsb6cl9+uRL9bOo9+IvrhUbXJXHH1UBGAjr5Mwcxha7FEuQc6M5XFXy Kr2wRNFGhBeIZdCjcxAEDOp92ems5ak0Z72xLoTLBB/tem5+CjFoWQWHVy7m YVs9aN9+oXP8cknpXKnpX0vEFLo8UzjCc1O7I8uMlNkd0uuO8eRgqcjeyo+9 aC/d3fqMBzCeMiCBWeD7UzPPUCpvZYJn+We8tHhGC1me3nbO0Zxi5nWmH/dO 995CYGdmhvS8u47HQ8tsZULq0L3dvdd46CNEDu0f4SASaFuhBLbi7nWP8csu 3Vqs4Kjunvwe9rraoG7hZ2QeOcVfa2URp/nhD/uNhOUXIVCleEbYgRwwTiyW FTODU/0zVCeP9H+1CYb1o+Rsh2Pyo+Rpoh7vtqPJmZklTS2W/mIE/Bntl3Ss bpX2hvoxulVaSNEtraeYcti9UzNLO6nYgpgtnTLc0oZ1rHRwQRyjY6XGTron SYeek1mJ9yxmGNe09ivxCNDWidLB2TCsE8Xrc42U18hFllFeXShDhLhP0/01 sMeCgk5uvxK/2S3uktytx+ou8ZsccUv5v/IBAU3Y+9mZVaiG2mrSnTQsPNp5 SnLwOFZPyexiNU+qxinosyAzc0/VGYVzavuZK00M5/wYxtfT0fnhlalq6pZz 5L4wswwld3C3o2EZnkNjs9t5K5SBDev0qHYe5lidHl4NysvwxZnVKZ9u9aNO jlbXzqEx1PnrP8zf0cj535jKF2UWcHpxLZaTJ0QLaOfWGOr89X+S10PNYbEN xEwRj4es/7Jio/POOH08/BlucQszm6BKSqtkneQ3wVN8i49jTP7yf67rY70u +LqSp/wb9Ps18uXEYvGIvQQWf3FmoaoAtjpZ/UDgKZH74rjMtT/epSF/Ir0e LL4rS0zsz/U71aZbtORVmVV59HdEGMtcPwbcdvBSyCLF9t5Nj76t5IHl/sYV j0Y8RZ63OvNo7wIsc5TPP9qr1Wr0Zh0VJ+ksH4g34GuYhd93F/8QCQfEXM+U eklmSp6FlVujheN4Sn2po0L+wDH/oeRNCdm4u3S3HNw9xnc07UBEjmXmoHVu cV+s63nbWUVki89ivM5NzHRREISVi4PA8Q/yoLQEIHzsSnhAbjZenAXxVET5 1DnhZ9vRXSHMTzxdO8I9ETcS4DludGnm8R4YFbn/BZIhplgUZjCc20J8dSLK yD34atzbX8wKrvzAJja33ZTIjNxNYHWzG+LZDQzn0BA6ES52T8kjvihswsWW F9OLHse2oZthl2ynAuvIvsIRlKJdwbu9ww76SgePRlUEu/AiEVHCIK7C/mYc T4kDw23hpjBBD87Y3UzGdMxzvZOz5NlKcDHlrF35bjc426Xhad48ydjR3put 1Jen1p1hlHmZFZkCLCpH8qPsCqPML2Yacx2/j5qjEBHGi9iN3WEU1YNbAxDq tfTR20bWJWP/gDlXhAFV5Wk1x7yk03hpi5TRfRfSDT+7PAy6ON73QulTL0Em aUL2o54BVwGGJcUGxl4jr6xrFK2a+lzcKM0ChEdAw5eFkf2mZQwJPyEN7lTh SwRY3MjXhlF8YkDG1az5jT5QUk/RJBJXxWgrMnvhRvM7r37+vH+PKP4F7NQ1 YWRSe2KF1hM7h99bUKhajOxGlb/9YeSVxbexKeknxLYd49JNxVIPATg6VCue j/BDndc6lPz/cGYoVQEiDP/ffpRzWlEmIMAtmaFUwYkcov/LD+VVrErqkuvy WQvBbSV/N2dGXuOvRcj9P/3IZ7ZCOmV/MvnA/nLbuTbGCHddU75Pbx0+aAYv zQy1zl+L0Pw//FCnFUO1pGzdnRlqvd8zMH7g+f/wo50ag9gorr687Zwi+cjo /e9+wFNa7wK4nmwzsO4bVpOTp+7af/dPmB7fvjvEpwqccfua2wza1xL+Esno MOi/RY+C+u0QhnJ6wjB3ZR7lQ0gxRfwbD1uR24W3I9mvnJlcbuSt8WIdz/g9 j9x8gPDrWfopoOK2M7c/vh4gppD/wkM3Dumk5QPrixAvL8uMur0AZiCM3/Go dcQ4YWZgVIf4ijNyPdDfjmKvgj/nxWii0AEiUrZ/kKYvy4y6s5h8QKN/iVBB LpmEMUQW312ZYS/31yJh8M/ZYd2nagxfZhLRsLuKbQ065z/5YdXf+CIjqQ67 Wy0exzDuzAx7RTGlQA//6If1srpddAFUGJUlqE+l3W+GCVioizCgeSn8pCrJ A5LFA1x139+RWY93YcSE+Pe6nmOstOhNKxaO7WfDjq66WLAiiuXVZukmPlkq fOTy7+2ZFV7lr0UM4e90psOHF2rHeF/XMd5HCuaheFF1gZnp6+sz27dv54U5 PnNbZmV7/LVIn/8tVvZH1G3UovtKRe1GrnTDbZDTvTSrb1CXa5555hmZ1rOy lGXLlkEc3ZpZiVfjYh74G8zpjyj1qEX3lYpyj1y1h4J6NzhmMXRDmKd58skn 3ZqOHDkiDo9ZU6ZMgfi4JbMm/x4z4V9jdiEAQWs6xjKSGt/H3+diGbnEVL+m psDFPProo25N8nr44YdlnQvHjRsXlMXDmYX5QE5sWsEvVw5xCVrYMdap1Pg+ /j4X4qBUlxcS0SC0I4uRRZW63HtVFiqLE8ZxFEL65szifAJseTcxlfDQP6YY phbdVyoKYnL1MLo4QZ0Xk8WJJ9IcPnzYLatcLE4Yx8JSIcChg0eLu7bYtCAT f4lp/hEVN7XovlJRdZMrulEOGPSEUnGfW5wo2rKsii7uscceM9OnT5cbgXJO tKWLu67YtKAcvYBpHin9H5f15KIgw9+nsjngEK1SfmtWr16t65P3mmMudpWy MFZtDmYWeoNulopst4k/14UeY63QMQY+hr2NNJBgjMMEkFUuXLhQ11es8txz z5UdQCxEdueA/8lRCLFilRUQIm5FCqNDPMQ2Sl1Ouy0jtuH+NCrWLv4xTHik WUxpdwK/hbIyuwq3poZC0a70kVKib92QWZbH0pa050iG/9QvYEYB50RVKE8p qaogD2/qFCxKQW0IPpfr207BXQvjkkUZ1Nqf0DRIwJcH+eHd+vBEZ3EPuy7z 8JuKa0HffC5ab0ZWlVn+hkeqbjFl1qxZwdS9NvNIcnYEefXjlkeG2egjWTyW evSR9913Xyr6ITGiRx4uxg0a3N9Ej5RZpLw9Ely9+kiVyiK4glTen3nkLQUE gwr119Ejc+JEcFYUGvewvlhWLiyRONmXeeStxbiB4/pw3v9p0fijfsKajxAZ aCwiIP/6W+VfMDevzkz49hgT3Ng+otV7LNXhbLodow2jBl67irp3R+vNGHJe WEAkDigbJZHIwmJPZslq80WRA40WZ2yVlsLyyLRrb+P0pr8bruLuXdHC4Tvl hcvigvwYbJWSh2jhV2UWrsZ7xFj/+JL2yDTiyrtc4V28SCGllI9HQnKUYjMJ yCBKyEwPK1SvR+Sg9vHI/7Tq+FB7R7ZFqLt7Z7S8nJhyZvrxxx/vFjZUSMqj 6fJ2Z5Z3d3Et8GatOfgjivCz5lFUgxcv68g+irkioa1EAnB0XgA6dL4is6yX FeMGaTRYTPePrfGXv1B/p5CPau8ipKyxsEUuhQhSRWdnx0Pu0kqd3LUzfwFy d1dmpeqZjNylutI/wpDq4fuGK8dLVgud84F9cVKcrjbSMsbktQyH4uqyjNjW K/y1SP5qxdIfYVl1832dyvIiSVKBxxQLVMSJdJrjCgVDdBox+wMb2ZlZ4BF/ LYq6+PDzH2NdNdOmCQtKmcK9R3h1WUXG6U5WPXOLGpvXnZzRf1lmaa/01yK9 wEezj9Ge6j2W3gtckvc+f8mHq4ZXdMaRZtbf37+wRJrZjsyCvGsp9qn7Bf1x HRuGL657R7SwYTWa42MNTuRh0OC2ZxbmXUtx5Etz7octhIun1lbngGU+PtY5 5DtWtrZmhrnHX4sk8tejp+akZKQETGjVdJAOJMNuyTz1Xn8tEpR/0fLUI8lT F8pT7RPc8yZ1UD02Zx6JjKySVw8ecOPKe1N+3pBZN2XD6rK25sJwc/ib4geI pOBT0Zw5lJYVvCe0mr1hzpsyc0akXefrmP3kwRFm3pRyqWKWnVyuuf+WzXkn NJ3SIp8aZvbEcsOcOa6rYaaP7mrKLzxyiQ6zvlhKBT0oIOq+Gq0mMmp5NSXv KC9N7qBGXJpZja9/qskYstGOszcqJZm02Xtetc/ctbBmJzr3JWeYvXNHu08n une3VDPQGPFspVIRaPn82SgmDYwTGDwZrQMOAr+X/lokNifHYpMd/9oTIF7H Gfp0QKVZ8VDZfHrFHJ5bG9B17L5orFn4kpnu00nuvWpmnnKSOW1sFfmZDg7j CmCAm1NGWCS7/jxaWE6mROJySgd9YENmYacVADoCAI3tdehmbphTHcoAaKp7 r7uFHpjfL58ArCcVzshn3k1qhkwd3mGWYH/WssA0iBo5HE6MhWYUBlifWeAp xQIFekcBPUsmgoHH6QI3XjDZbL1gIi3QL/rm+b3uU5dCUwAugGdoaj0van/d J3UfR6JNlSZN9M9JU+fngDSdqs5zUg98+e66zDJ9TZCLOAocRVVy8xTAWAQd p0uSJcpS2y2zosu0OyMsBRzETVKLHCOh9uVoSTk5GikIJ3WIBKzNrGpqAbz1 pVb2MUFXIJi58vxp0arE83nbgqbiasRSXtBNGl+gXJCDX4oWlAnqesXA8j+3 lJNpQZYZQzFwvGdNZlOm+AUtLCV8RME0iRa0bPaMlgUJqcmnpoJp56yKMH1g o0MRrcKM5OwXolUNK92ndfb2X5JZ2KQCUocAKbvVgNQUXYTgmeBbwejja30J 81fc01rjKDj+eVoT+33dSuD3nh6vRGDHHv1VmZVMaAMiIQkLIoBDcOv882ZF KxFuiJUMEMMgEDkEUM9WZHJ+LgJRFN3NedNndFCFVmZW5XewJmMcAXwI8aZn qGYKrQpCbSTxBwFtifiDuq0i0/Kz0araqhdY1akdYgQXZ1Y1psC6hboqBy/Z cDvFU3UFAqd0VdfOGxlIbDRhnRV+4A/qpYpC449HC8rFdSM949S8vuR4yorM goYS5EvANFMnT6I3LEh0DzDB43RB286qmwljh5yKUywoEr+fiRaU0y+cLIF+ cVoH/WJ5ZkGDBYR2l1o5+Jk6eYFEbkFr50ylBVUDLq6ZURH+4DR6XVUkaj/t V6UlabkgbqRUzNRVHTlypGVVyzKrQplBKa8OztIVCDigNVX1XfBQOJ6sRF72 e6tcWGwcrT+67MLxQUQfp+JLtkKR1b0sfss81xcoE0fLj0bLz0V35Y4QUTm9 QxBnaWb5PQVQj5QSZm+VRk92tWipQm6yFXYlXbLELlmjKh8CULs6uw32f3Ya ck1IVpiR/Gs/+++63G1e85Qv5UbZY9FqZIvsQ0oOh7rk0ljaUOBRFwSs5V/A H+p8EuJDn4o2MBc4jvSaM1o3MOg1SzIb6L0Y9RallORMaToxKlmg7E1F9kO3 wi7cboUsDLqrLFS2Q67JVnTJzquABftruPced03gIb+T38hW5rZURmjoTGRc eUaBmbFCWdFrFg1eVHrH5kbayCeizc3FrgWrgvPlzA7hs8WZzfW+riDqUlV4 mtKU7IjsgKxKsEyQSlbid85+202mAZY9pNsnKC3bI8sXwky3TwaV72T7umj7 5De8fXytqpsoCGClkNgCsga1LiLd5+PRDub0Odn8oM+dRQE5q6XKd6zPLcxs Yrkg8YUlkqxiFNgJYhNlHxQ53dplL7DugUCJ43VljHR25V2Osv0Gyw+FFYJo mXXWISROdgqHy6rRXYniZh+jXXEaobfCULSAvoFQdUtnt6q5SKyVbfFlMt3R tpQKT1Iqm09S+gJeyapkWwS3lCLlu1EZ6XaCwl9ukZ8JJslPLdYFTGErrUGY YmfwrGKKhp3g/HAo8VHGlCYyCB7Y15pTjShY6Zx8FgykiC/PqjueaPW0oO2T VFebxe8F8a8URbA2tt+mqPCQW8G5ZT/ke7tnQ5nt6I7xQyaMvYh0t4/wXlSQ 9YA9QOZ+ifTRcwstuyVtRjt6CDq8MG3aNNPfXXfoIDaZRYcpaqgNswXyfen4 jKaN39NC3Uv2BPJPcCVQmjJ6NRNLsOftVKAuzCr2JcoyeTTiJrmUj5Aoy5uS eDSdgJxTsI0jJTIzVDOYonghC5WFyEYkvFc2BGYw21jQClmXLyuugAtBmZD/ 273ozWxrv14TBdJi7AOEK1F92YeiPcmpxZGef16s50dBx/OKPRFkCcJejZTJ tFiVR1Zk2GUqF4QUzrlrJmeu1WCiqWwDotjvA6Ww8TOo11inHCw4SdApP+h3 RBsc5LxXkSPyJR0MBR80a+usmpRwUpCOgB66id0RKEgsn3Mb0lRKkHtoM6DV MCMemVEPfXQ0+GrREvkD0XbkPF+RhTG7NTUrqNhnFAiyu9TKTSf+AZzkVAIw KCe3Jz2kG+ueBDHLBgjY7RnjG0Gl8xG6KDcQBZ/BqnxftDu5IFakP5/fIRKq HmohncjWEgq2yDL+D9idMzM7cULmGninjEkkVM0obUNKbXJt5VnHQXFzBNQs qAjlYVzkFhKd3httVi4BJ8o4ntOaKx6MjekFKh0ptbrhxhNldeC/55ByD7mM fWL+2096He1TOaPDDSlvomtC7kjg062KyuZ0qyIV75Foq3KKr+gjITh6QQfT wfuWgw32SCljg43XWUMxg3qvPPl8wh14LyZl9mmQtGVmybIJsvVickDVTeW9 siKBJhI1ovTX90Q7kssDily7F3bOzfOtetq6CbEfsjDEuqCo2WsXkj4HPyj2 gz2Lo5RosB+yV/ISETWa7tc9KAGhpo/ugq6bbbP7rmgvct5GgXQIJ1/UOYjt wwMD7ZyLbnZwcciKwTchqoSnjiJzW76T60J0SmhujIdW181ndzbM8web5sOb 66XTaJN5XMdizp/mnCDqA7Cb3OVdAna7rHRXb4l7BMxQ9g4o3sIGkVlBSoxR WhaYwP6gW9m1DT6o9LuewBHple+MwAF5weCIlO25ne0OnwE7ytFwSc2v8QMV M2dqr7l8Tuv2z509y2xfYHWc1VPMw9snmqevHWV+cXOf2b30VNmPAZUbUIVk cZAVApU/WeIh88w1DauOvXCo2WV+cahpV/3YZY2AmFMVvAIq6LSy55gDBBD2 Pjj7nGumSwDgXA3qyJFbMg6zkjOiu5xmWA3KPzSh4PRKNN0xCiuEV2RwmZP9 TdBzWA8EqbXqPnGC+DsiqEaacQ6q8+PKg8haGCoobDe4TblcdmkNp556agDj lvkzzKHlU8wrLxlvPrx1wHxtT4/5maWW397SbTH2H27rtpP/yaFes3PRjOCF kf20O9sgCEE1kBUrxwqg/uS2uvnhdU0BtN2DXwi4f36j/PdnNzbNt/c1zL3L IQO7W3QNiFABiQys+gayG9hv1q1snj0EKTS720KzzteCeqKkGsxAdnhCy1Xt 3rHO/kKMhEDNwy1QTaPwkb0zv4MN6I2H/kCoAtETRtXNulljzIElkxwUP7Rl wHz+sm7z5K66+YsrLJVd3QBEPUDL5u9v7Tb/z+GmBYAQ4PMHGhbUP7quYV67 ZgyMPZg6LJ41khC8bkLDX73SctcDDFgH17L56UG5+PDaeqDoscoW1DUfYISh SUsqgTeyAdKvu57CV34LPLC/r7YFcRz8xSpAvCJTQOzseoU9zCy5v4Bl8Gu/ 3YNZm7cNa8QtiM1aDLWbEvUiVfPkUSPMFWeVzYc31ioCWwsyQNfuvEC3qtD9 OwvdX97UND852LCfBLo189RVdXP/xbWg+gSBF1MdKE6t/EDC791on7S/kQNy l31Os0tx4NPbCwY+kjR9GVuVYm9/V9jalFuOywAcEh6Smp3p8n8gjDxRoR18 ekyo5cTmUKKGDwNaZ8FDynAUM6eOjLC3RsAe1kRd2MFibxTAFrp2Poy+WsnM ndRl3rm6HbBrCuzf3NJMgF12wH7LJTVdtd9DWTO86iA4ZtRCy49b8fuchWNX OzCXHZgrcpN57oaG+eG1DXN0e71XeQWLanU8lwBumEGqJrn0Eid7x6mEhDdC JicvZToMT1AkKFxgr7cGq1ud3WRrZhl0FNH80wiYOYs6Sh5alPgbShTS0wan kftl1tguc/1LKubxbfUyAfPZ/S3AFL78a+XLFQXm0xbmH9xUp4V7coKxQ+Hd oFh9Z38jC0Q7nIWi+YkF3/MOzvJei8D55V0ed+xQdd1EgBUQkiemolnlq9wH byJ7nseTNJFr5HUOVgmb/nW6BhEMPszeBKgB4rBQTQcQjnoJPxRBOGfbRj6T xe3Sw3zUI8qZ6rWkKnzZkmopBe/f3uTAWyfwyqWfHizAK2JXwGv3O9Aqm4C7 l5xq3r5tovnAzuPdygXEn9jmQOyU5hyZlgKI3eu5Aw2mVnPfxQ68qpUWj2Pt Gta4kJwAEm6eabrh7D5Gqhi0YQmtIP6kACVTPfZdQIeCDcTOMnkGXO7Qv5gv K6CjXOsHWwCdZj0LWQZ/zxItn6V6xyet3vXC1q1bHQ8W0r39Ike6dklZ4DYy jLgTcKFQLZlzpgPuN6zt9LOb+pzUtsOZI+tONJfOn2me2DvSA7frmID7zL4c cIswEWQn+L4CdGay1wLjCfpTSh5zL3AdgbsdAuBkjstxXXhfcvoYjKTZE8sp Z468Dm+OwJlLCI88MEvJJyXXx/WOMHdtmW2uv2JTBL4fXNMCPqFNAaGw3iqB 7/M7684+QTyENaX5588y9286QUDYJfCzmPubW7xm/aub/evju45z+/qWzRNK BMNGBMPnFYZP722Yj25xMKwrG8Tj2MGhYrs0ixiiqkHKaMthiqz+JC6yfvp5 6rtmckTqAevOUM+F71obhPlulND/pgh+Oa9RlFK4VAvqpYpHYGfJzpkxf7rn fHP73k3m+UMDArNmhp/WSPdRRVc1/GZkoIKfBpLzItf+3oLLvv/4YK+5YskM c/niGSwrYSUJuT11ZR1gaihWpFaSKrbnkokRi8I4NlLNQ6g3A6E+ojBBCO/2 aNWREF0QW3+op8IMM8qNfCCCUJTcz7mRKOEEhGSGL51bZUoy37z5RHNw/27z /cMT6hmm2B5C1RxTLHmSKruhf+1JquTfx5jXbzzBzLPU96HLxpgvXTVoHr9i 0Dy4cYy5bam3FGC/QVWRTYWSlOZVIKdiNrFC3fEIWNjZeh5YYH3sXO1X9CBy CtaXneZQ8rV8pRxRVI6+AibBl/DGCFzDeoiWqCIjvgW5/pMbmyU4AQhc9lMr F6w7eHU7BfQ9G4IZH3ynTvW76EzHAS01AVwCKuWAlp3I+yiHAl+xYFo3d6ZZ fsEZ7t9Vc2I/qlrvATxwlKppLtfhA9ccF/fp+Aw5NfMQgl7BSdEwUkFO8kS7 uCGFNDnx3EsSEEqaJtNXwCBUlNzvweNLc8rBzUPgieppoWdKxGDSwAgHhKo6 3SxYHHgETGB0FiweKn2sWriZsRdcKOjo7rGRWiE8rteBo+HAYXmmG+Pbe+vm m3vq5muWqT1qx3vdilqFVAeORMAFp9s5w5twIokqwT5Q4qup5KDsQbmlTCSG oAQAyOZCTx6AOU1iFN0Kq4JSgZglgk1K2obGEsESI9v+DREQc44c56+DIycH RBh037t5grll/w7z+eunKT01WyAH7Ux4n2oTEe8DMXW790qAnqjzFnpdAj57 6+d21M2719XMkcWQ+EUeHit/Ag6BWRfBQrW6kksfLdUC64QtLt9bWB1H8hS+ dI6igNv6pNLC7icyd0k2ihhySZ/igyyNgGacjiBPkD2yTxyTwZW+DK7YZwDV 2A0/pLeCFTtauWgslFH2JUPpYQW1r9BCg+vg9RGu5PxAzkiEHyiHK/CyC9/9 +Y0NkZXmhwf6zd37N5kPX3d2hdBGldF2Ck0p4sE3s8j0aPMTq718/5oIbYTu 37ehJnQfoQ2U/cRXpNKvO7DplHUj/B0pmbUQdklQxWNJM2QXweREUIdGDfUR iAnK9/IUn9TjPIuCRJWAbmrmDGaQZkBXCqRBEEfoUSVJCKtTJC9wHjvHnDUL BrX59EpwFZMUD+6I1zHWVFEJxSWLqKF3XkTkknvsqTvOc/pxXYI37sXufJie wKBHrj1fXfz1oHn9YdqWR50fX98w391XF9Qpt+U4tRZbRR3J4NLEbGQv63QZ QZ/gIq4HbKCEaSRch9g3V0+WCdLq/9XE9zJ7tINfkC0aYJc8A3xMnx90aZY7 YJ+wdEWU5SyqJPR3JNEcguPitRFKPLCvaH2MJCCgRMZTVQ0o8ffk+284sDfM q65Za96x/3zz2otbTdfvHxgA5Ml0tT/ykH/hUBbyrUzDkwl4EhIF7YaNpb1T fivZtdZqqUcBoMQ/7B1NzkEMG4uT7iAb7ENzeXdg9PITYGKSHwxOwDgjI8v8 gB/sgIL3cfrorieh0ikcI4/FayKBEGWW5xxQ5Gk0syd0Obg1SfF+aE3T7Ny0 xhVFtjFdPcTK4ioyf32dg5VdugCq4gAlZPrgJY5MuxInBmS8mkcTdNsElAiu 2VdZMyYpsaI0I8NUuxNAYec1TFPPAGq0h7LUW5SBHu4LcFfW3yoJGbLbn0kT GDFvSjClAKooh+KeCFS5skBR+oJzCaASbrzh1LLyVA8qEc5vWT/KbLvIc9Xb Vp9s3nNgvnnNdeuCBm5pq6GgEvUNoKoqTf35FZ6m7lnaSlOJEB6vXIzlNKea QQ6LxJKf68YigZFTU/oIZngSLC47dKUdzOy0Ifiw9cJtATb25YMDMqcENTEl ApRqYzmF21dDVVFXepSTJV4dga+tbykFn3DOK2Z58FU1OvrstT3mdevGmeVz vEmrVAbO+KEb5piXX7PZ/OSmAfUT5UBYUJtlizlqA6tTEI0nHQSZ52mdB2J4 tMcy3CkZBjWobIpCrRxmYfUlZDxQcl2ELMKeIcxy1SJQveQ+ePCZUsFAb5hT eOt9mLPBSg7Kv9nD8aoIqlERKLcUQ54ZoCpQfu1SOG69xvz1fX3m7tVTHESF d3557+gWk7hLxd3jB043L7Mg/uGhMc5vyyayBXFNifTLO1uJtI17dhxZ0WlC C2Biv+vRUUB8qG7SUU7WnUT4tjB5a0HV5tR8+y+MpNYWC7FflxuEIMOSwzFg sXVCBEwByKHmkUtLoZbF4ewOOrIhJB2/MoLwsC6sxRqiEXz700schB29Ht01 5JKS4IJqZzZX9P2pg1OcP+XJa8eLKlMjVUZpNvLxw8OFbAi7IwzRtLqNMhkG iHkj4g4bw4LrJKIhsFQkCEIhVYady9cERwY3FS7Rk4F4GokRrhuSCylig8Ca ZrfkhKWD5BEPNT3EL6r65eqekjazgakifuPHd3ab16yfZDbOH95aLbv3eurk MEf3TjY37NttPr/3eFVujs3+UDJCVLlTTR00VQGvgrTEHQngE0a9NMQoOahC XItdjLUM7TXpPojiXkIMMOFKBrLBnvUWBfsiI9fEKyKI5QqVo7QzpKiIa0LS ysA12xmH5bxfwQOnJoByABPACY19fIujMSYx+BaJxI7rwDQpPWwisaQox9Kl fR5PqI++M2N0YI5ppinjduBcsieX6ILi6pn7+pJrAueuDJxhhYgbcvxA5RGC X1QU9PIIfrk66SifbKFKQvl80phGBDc27bryRn1Dieojlw2ZG6/cZO5Yf1oL UYFihHfYzYIWwRUPKVGdqPfA15dxF3rN3ztvCk9QhzRrn+ZbiouvQVFskIyh 3Qc1dpFGRcAH8FjRZSVVY96BmFlxRTsSIIg8TvW90P5C7p0xvge+xN5C+AUP wMsieOdKtzMpZRX3+cJJXbAGy3nL3YO3l938jgZeurjXXHfFJnPzhlmREqrw Q5LGMErMRMIErJ5Fn+wEnDpkWLoh2MWHFknsXI4StVENpHRfOJsFeWrZzBU7 Ltv4sciNE1kq+p7UJvUQzBFi6qZb5WkKd/BrVoYH9Va5hn2zw8CMAmvP+Awj x8JdEXoMm8K0UAWwoMeciV0hIYG9BN3DCNItc6c6x8OGNavAeYcShGhjeo4j hGgTJYgQgv2+7OXrIsjF1Tw9LfUhMHg4lVj5bsgKbZXLRYWVKl1NAiGg3UvX NL4QHEds6kL8w9klyxyirSBFLucQjLxFLyV4cw+mqF4NTEB8EutnlAHZ7rZ+ ukYUOwClO3rbcbE5uG1xQ3HW4oK5Z1nNvN4yij9dXTPvWFszj9ihPrq5bh63 +PLpbXXzwMpa4ArZ8vNqkA3HAnjmBD0EMHUWa6SwHuUhoo8J8vtHZwCNkn4o YBrNytVk9pGeKMPLC3nQaggH5yIzIXsPwz7OvImdhsr6oySMOyPazrkyBE1C 6R1EvXzee7Z3yjaPQSmmHH7ZZCR/C6jv2LnYXL9zrQM1wPwpC+IvWoNXPFPf 3FuvOp7RMN+5um6etJceXN00V8wdn1fh8uKCHfkCZUALJbVyDbIEfJyrOJQ9 BBU45/Xjstsa0Sgie5DWuE/moyZwqDgFTwbLFrDjmSwFqCsLMoEB3yhr444W +D6ZiPbIVbWAsjbEgDq6VTakHUkPRCS9/qIZ5obF482bLXTet8Hr3V/ZVTdf u6ohQDTPWOiJTvDgvrnmzn2bLKAKqH7h8qZ59cqRZs0F01Jc6aQIEN/nfBlI Wk31DqlknG+KYvxcdIaBi4QAzuC3Q2D/2TUBcYufC4ztjBHNk4+gaDAElKx1 +Qi1H1PckI0Kl2XHHS9uj2AadXbInRIDmEpq27ShEeoxLJQyeOmF577B8ty3 rq47+L19fa+5fP4Us+j8M8yOhTPM47sGy5J11WV+KG8WbBUHwbJ5eN9sgah5 el9fydNq3fzlVXXzns2jzA1LJ5uLXhKnD8Kll7ozWH1HfTu8CKKIjSf4xJpT NTgfST8MrJxVaw7aA9NcwV4BTzgokKEDSaA0y+wWjJ5FssxWVtmXGRIgVvck i+AoQHBrBOKcp2pKiTxVHsTdji3vP9eBxXxvnyQL+4zT7+6zFvLVDfPU7oZU cnTJRbtnH7UW1x2rppgVF55pXrlmknniyr6SgvhH14o3U8b5jidbO3V57zGP 75tsDu/bYb687/jw/Z/v7ja3XzzJXHJhnNgGQOcczeCo7JXSfNIAaM3UiZQm 9juS0sQwhh+Me0MI1SmzhRcTdIp/NVY3kBmRtWsoBbkcSVjsKnYHiYQjD4k/ MEdbZsSJPrmONQu0iFZY8vstC5aUXeeN3N8w39/fqBA8hVLnzZ5l7tswwTx9 dU8JsLY0a/7K6mg/uNajw7f2ihbuObCAVDwmb99xorlx+WSzYHYIzBWad72T GVZK4wKcX4XS6GKDqlEdCfqYsLsK7HeQtLm0qHyUzossYvdCLEGA1E+AS4t4 wEZEp+6m+YO1UDQvJ2ODu+RwBMxcJk6myrLigCkKjkDlWalwE0DVBGgOkBvm zXQvBWSXfi1uSbGu5d9vWB779SudZO1WGgXb3bL0PCPlnpctO6uIPxdCFDpZ YjxNoF1QS9gikGVeXaHFn5040mPUzAHvY8mLzsStRbLVEFokM7wlwCqfuEgd 2TadkusYnLki3RotDl4y5h6xxA9ieH0ihkPV5c0R2HO1W5GXbB6pVtOtGH5m X8MzW4ujAvO3bhrn4C0ErDB3vBuE+9ODPhPrq1ckQG849vu6tWPN6otmBlfX 4eUTzP69u80tq09GyhG0n5y3jN2fHRLsoDVRO4JS2rQQXQ1a3SSFj03hGeXY qBEWcl7YiQqpnTD/rrZoUw1tszhcwUFiDF1O0ELQjOsz03ohjFekpOUt9oyI Dw1d5O9QhD65/jCR022eBqPEy7L2FIc47iVoIrJbZLhqacrz6w51hFdIpcdf xaij2nfNie/Hd/amfB+7Ai/d4bWnKWHkQxlQ7RALPvZEzUY2/Y5cMdyPBu49 C1jvlWtwLmdLr0t7OwuA2G0ap4vgoXYyueR4MJfQYyKffscxL4iP1q5VsR5R yyAlZp0x36MmQzdGSJRzzUWH7HkkGnTm3qsWVR3yQAFU5Il4jiCOlKGIniHI 89TumtUj68Adq0MEHV9wR2ZvAVZLcOfmDbNaisJYj6A+igO6ei76BJpx0Web TM3xBJo4d6cREjch+tiyp2QuJG6xAQCfjM4CnkgSGsG6JI8sZBCrP9ga+Zym MXBKBScXQaZVM3gHXOSEI3LzhA5LByM8yfUTily487TWRlSUDedPDgYC44dl LF2usrciKGGeuLxmntjlcALoIWLpHZeOCmJJeUS3sklx+hy6dHa0faljl4Lb nDUu5OTDys7zfcA1xKU0zpADDhGn6HUybSHUAq75VCYROvWRJz/c19ryqBKy UmRccsix1x8MlR07OQsije9xHgSLOc4UxH2dYraa28TaTNRx6kCEIW0dgXD/ +rY+fU6bGeqrO+yAxiKc47kbmq7Jimgtgh5f3hnQo9RQF4GInq/sajrLccWc mWbdRTPMrYv6zSsWQ+B737AgCussSNZsp584D54DlJqQmhgaWlFzNxl1/5ZO TqhQ0AsCL01swiQE77DnKHBIVRA00oJjsJMzL5de2HpAROxlqNJ4kG9IfSdp 5MZQRwYULIkDjB+oHEkUXNFQnJZyQ4QSuU5Pke/Qo0SP01hOsQoutA9BgZ8r KogfEKggHihGhUe2jDIHl0kW4xnm2kUTzRtW9ZpXLgGmD0ZiQ3Zl/fr1ZteO LR3lA8kGri2C4OecQ6VzbnTAjZ+48wdYgus34Fx3ULFzrSSKTCj7DWzptMKZ 6keyNmuayniAOnizI4pbQMrK2Lji8dgXrfclkWPPvgYHB58kDTZyUl3H+NGM nFQl3y0VTg2U2qpg6XaCZrflSMIiBDf+5vpGwI0/s5JEtdS6oodIElE0RJJc OneGuWPFePPOdU3zmmVxPJRQhAOzwIobNl5grt611dy6eKDRRh9J7CJQUhr4 0aoNtE9krwGUBm777PrdWBCD8jqlBahp00sAh1bIeczQCnK5zb0JYrQLGrLD Ggun+DDwJaNcRL3Drm3BAyRpoSN1SLcsaTdqKBgiTg6eX3EiA/D/0s4A/xqF COBj3GjhLzjwro395sOX1gQHmgSGuNluNfBq6jwQ9kK0D1FQraJayrGHTBPN MQRdKt+ZlNldROtgs+qtozI4UEkAocy9OzNqg9AdccLAtmJLtI+2RUOGwVnC iXgj6T71g5bgrubOnqRC5Nxg/ixyPequ8qKCHjUkOAWtlOkNKBLkvmVV88XL 2kL/w9sGgnA4vHwiQ7+uHDslZQ7QAvIeU7rNbStPcN4R8ZKk5gg5p0fRziT+ MK+Rw9cBg0JwznU80q2DTQc7xQ7CQQnAH7uNa4lndCCDMjUCOHqIgQ7YQuhO 7uPcPu41BoEA6QVUFD2oTdwZ/ldSN91LO6WkekVwnO1nRClzOna2VPnCoumR mTpyhPnUlhoM0RJQBG7PTfM8c7jr4vHmk1ubQBE+piUBt7qmypEXo4eYgbMJ Fl1o9uzZY5bPP78137aoC4SPoUg1qLXLKutSpowSU99MYW44OUGeINjmysIs JaNxpDw9qWANiM4IJ3K/RrQOawe2K5cWpg5Z+5y+DMZxyRxlJNbpKTBzc808 uH9wWmsDgSaQSLOTYJDLigZpWnEAMHaVdLv36iyNmD7L6cRXR9iXc9s6b70k oxbNhisOG8eN6jMPrKiKEePDnM0gme5dM9ZFvwT5Hlo3kpEvSu4i0VI2ay7S FMTQ37Ab/KlD1tvBZZ53WR7WQ3iNGJtqiB0FIMCLlr7C8fvVdGBkBpalfjVI BOg9IUgUt/NB+5fEa9uTQS7OeATGAH9bm5DUWA92M1F5NooQKo4Z1COUv4ti 8EKIHPODhQ2RqurPFMENPeLn0L7ipA25gM/OJ7c3QrCcTy4qzL5A4wKiCq2Z XtYiugK7ju7wzlmRfHsWTXWS7/M7ag67Xr8c+mNvqyY7e5bZtXCaCwz8ySXj zeb5lnHPDllXODgIaIPkf1J+OYHxjmWjzLVX7nB+4KrSOPCZO7MBzMSHnAhB 0iNmd1cwkxtRuQLXDqnCNJrQANUiICmgi2boAYtaEzjiJOqco6RfgU6pGUEA wqCH0c5uXuZhaYNPKGniU+pk1VnNKmRgajGLMKVQf5trmr6nBc3SfmPRseRA M3Hp3b/cs68u9z428uMKE4P0BJqhfSejl6CSoNQdViX/wJYB84ntveb1FtXW xM4+1VfrUZEuczPZwoaSNqcEM3KxZkbt/tz4ExLEkmvHkdWGnn+Umwl9l72A tQSh1JPXyfOWE27srRlI5KV6lZB9QHgQ2JV9+kAGTdLKG9mzXAtRzJbrM3K+ vqsi1Mn1Nou8wf5ogglOBEpruq/u9olcIvfevnFksMrvXhmjzX2res018wtT SlDjxuVTnE/4s5d1myd21R3aSBNo4W7OlFnUb16+CEspMvyTVD8H5u5E8Zek 4Z07d7qk4YSNhcM8UflRoEkjSLFcJSp8AM55kztzhGwv5gDgJgCZjK3yLniN Oa/IDjlSl8xlk5BT8AqCibBFyI+HosR1WXHqha/+mDw4gt06Ubr37gg7hvUE z9GYkjCa+VavhUdXGImo45BXn9rWNPevHW32Lp5qlp4fyyeLBWVBB7uWd1rk 2LVomkOIq+ZPNIcW9JfSlnQQDpSjUlh2w5wYolGHabRpcXlVN29axPaSzhLs aouT88vB8cNe+dYMpTgx2M6W1RdgqQuvQ8gAlfynmCvIzeAKbN6nVWCi77DH BNoa1sONZ3oL6RLcfldE+JHr2yYYFFKGz6dIgau+mDEpWPEf2tzr8OJllnOs tvginISEit0gQYqa+ZzlFm9Q4bL4/DPMdYvGm1cs0UBj3KoQ8EZiUoOYRKrr JL6dAKmD23xKsnziXtIIaLv4uGBMGZGgSIcFIaZ6T8zO47OckLKYKyZKe1Jp uLorg1fcUAjxZfAViji4F1n62f4huZy3XL0nB9Cg7KTVvCw3tdxkIeFXlJK+ K8KvXO5jFHaYrWEHwS+5Nntyj5NE77Z85xaLY4JX4DVv2TBGJI/ilZVgVgJ9 fme3uXPlJHfPhotmmCMrRpq7FzeVbGKlZ+WcGWb/AqfY4AzyXDYVcA/AvHHz 3IBP6CnCZhZ1I0HHCwzn8yTm6okgZZ/44IrW3DXn6BYjp8xegWyJEcz3xBir ZxAORhYnRh7QNkr2/xz1hA/CPj3XOINxFD1YgAdsxDOPgmeblXmYibnaYvaE pa7PNppQsN0u97h2rv8q6pqnOndU8z9b3dbC286f0hPh12ULppl3bXKaTZXQ Sy7dpArOFQummteu7DevXgqpXY8y6EUs7lkw0bxyRb+romgkKAh/r+aqVPRr LnUCStl/K8qUyMvt6D6DeSHgTc6Ckp5mcpt2CujyQXivewIbkFSB2UGdSSJl rHHH+VT5E+06iUzURKozMlWnkySMnMKUZnxxuJUdAPXMfWBsHNrnKj0wSj5V DDYG5qIK2AOElJF/dGeElMMmB79E6+0kyUeuXXCuNZutBiWa1OM7us2fXV5X htcIDO/dFishTG9bPt68bU1TsBJBkFcsjkt3ds6fal63qt+8aaUr70FLeCSC AS891gjnG98p8Svyh+I7YA13oVh38UKXxDr/wvMjG45cWZNI7VPG0RKoozA/ +AL38eym1aSIyIY8eBWiZsA0laEQs2zXyQviU1hfriQgTR1jwdHaWrQcfHJy H7O+tAMKs1JOUsBzwa65kUai7jm02xFhY5TdnGu/gBMixc/w+uUNh21f2lk3 X0mw8AsqdpdZvihil7CwrOt9zbKaecslTXP3irHm4gu8y+HOi8ebd6xrOkwU O5GTepWNltCND2HfKHc1dojCPdWlWwKvAzaU3esaHfVYu+Q8FxBYNO/C8L29 nw+5j31BjZBQADgn5wOx4pe2SGJ7E5Xn9jPkMEpU1RnBSa5gPWmirLAyIIr6 ziI5zDofWB6rsN10DTok56eB1XIIEs8F++XiDggI7gWSq5vYHiEj2heybhil 2p+rznuxTU8aOcJ8ztqhFhG9rdl0eCj1hO8mGS24+NDafvPI+pqT0yhVvGdp zTy8pmbetaHXBSIvsiJfzNu3rBvpEPKBix1CVkkms99CF+/6BzggKzCQSVYm PsanDAHxErZXVaS6fcU4FwuQf7lEQmUv8hM4OQl6bRtvBxMULMO0cHGjtjkR yhlJw6EIA9/ba/0ZpMg1kskly7LzLU13YA7KshtJlezhjZMlq8xpQRBFzotV GHvqld2Jwhj6Z26LELCtcx9J/+dQa4zjh/rE82oxymJflyBfacixQQjjC18y yxxcOtE8vK4X6Oe283XLa+Ztq2vm/Rub5m0bRprNFu2WWlS9dcVE89Z1/eY9 63xbKKiUqfsDe38gHGXSjGJRqXsVLpUexUkgmQTN71KHFKfDqR+Vi0eAHU3d cq7VlsdxPiv7qNiGQPwGgpUxDNOA/7WTYOVsGRAb+2k5/1ZJLQo9YW5st2hu apaXcdcF5IDZecEmu+Ds06Qt/hHCsOgcka2EYVx9H1UD+EPuj/cuWavzvXG5 szkCR4N0FbSCdH3vhqZDq3uXFSj10U0186mtFh0sKonzRTiaiNgPXNp03O5V S8Ca8olz8v/bF/cXBnFxG2MfYRUgLAElFBYgmsOmgP0/srmRZFHQeqvvRJye 3BgVgs+BzvXoLcVtHsGY2O4FNBEM5xpSCjaGYAEl1nDeO8c1e2hOMFgrGaSB v5j6CgHBQ0EMEFmIAihOimmIgOecupsjvpXrOBkdNOXxa6L7vOKkssOpr7aR lB+xOCRFiW9ZVTPvsDjzic0187ntNfPW9SOdpBRWdanFq3du9Kzqfi8p3ZST KA+raIcWjTb3rvBaYBoR4M7i8i84FrKzOJDkjFjf9RUVA9SZMlQddWUcepz+ A50MGMBZXUA4OxWYo9yikrL6wKc4W5eTv2AZhQBtvryU1TNmc6mrDRYpUwdj J1gVpIVaThCG6IcunA6Jq2T4ulcmOTA6h2VThHi5aEIUa5pFjE0E5kcurTmk k8NCBelutPJRVLCPWyT7mEW8D1jEO7qlZh7f5hnZA2tHO0YG+Sj3SlMKy8jS 0IDaCfUg+3bPHW/ebO2Nd66tmftWsH3R2pgc8C2wrsglhZa/9IIzXRMb8RYt k97STgEU6q2ErdWzJnzqTzVcwssnKMl3tYAbCEDr49kuBHODpsNVtkj+QjCI 7ncv5IJo5DPXeoitAyQrAyW5LCL13LEJypjPfkbkyd+lAZfg2omTOdDVClQR eYHyvsdM5UPkb740wtBc30+R1Q6SBYbWXPxr6pjuSMRasdkl+Wldgo9WcxI2 +Ojm2GB4/ZrRTsO7bdlYs3rOtMD2ypqwDEx8zfKm+cDGmhPZVrs7lljHkO4q PHy5xAwyOb0C7JvvhIOAEv9ZVYekqpvI+ce+FtgpoIu0zrpgqZUoYZ+i3myz lhNsEy7UncFKOLZlapmMWNSBsjSm5NnoMXEyZJHwqK5lCGLmi8guokW6F1gq p4iwdho6g7UmS0Ye6o0Rdg4bDTmLmm9NGDNoVpxzgnnI2ggilI9urZlPbxXC EOwcYz6xpdWeeGDNSHPf6pFmw4XTXEkfO0ooTGEuu2iSefmyAYedMrYI9lcl bu0UTeMa0T88aw3sh8Nz1QRJCi9bI5u0D653W1FQxiYirFlMl/OLKC2SNcy0 dZve2shgalr9yYYqRznAF4FDSHLTycNZAjV1YzgooIKcKWBurhItjcmIcjBA e5HG/8RdDdUyKRNy7uoNHkPP81/l+rMuLFE7mjPd+yQn8ceOspzlwopL6X1s m8NO85mthTRPzRKR5geWTHQnOFHwvwXTBDPfvrZpx6vbcbxqKgEVeGcYmwkz +5VJsBcQvDDHP4W2gRIS4xOVk5ESGp0g5SAhJRvPQMpIkDW47MO9gIiqHGpE xt4B7sep42SLwB8un7oTVGNnHGuPsEXIcA4tyCBokVYlS4POS/YM2zu5jKZy MhXu2cDiAu6eDjkJDtnWRTj4YsZJLT8NIZMzNGdFZPiJgyPMO9dUzePbPQ4+ tjVvvjy03nPGbXOnOrntqgB8GhI7W4QxPrim13Wpk+EetQrsG73FUyHsw0+A fUHjKtgiipWHY4uQSlzNAgxkX8wQPR4gpdSD3GE1aQKv6oa58ERqmghiVDOQ RzMfSscM6qddHQdX4JcKhRiV4I9Rd+pggkbt2Fuuo3yFtkjV6uh4FuwBFpZJ W4hc02sjFIya5gIFZ82aFVDwdPUMilp55tgRYujYqVuMKR3nWN9rVo8Nhoyk yrxy1Vizf/Fkc+mFU8Gugq4M1ifpCfeuHDCfsbj32e2e9YnxoyY0mvJx/wby +cHExNc5jncAhweUnTdQMoJvXzGuxQYtrKJaiFchU0CDGJyCHmdcF/l1SbtE hgoftEdGcznwRTAxlGZDmnMXGSig7McmO4aZGLuL0pLuHBNjQZrWbha5i3FQ JYSA8kkLwQe9hjGtKamboV2v/eO6OzNlyhQxpUsz1ayWGPGYnhHmgxs8s0uN k1ddMtYVV669cIbLRHjZsn7nL7xzYZGlIFgmff7eu7FpvniZ7x8nPqA3r2R/ 4TBo1rbV/RRCL41sBPRiXEESATd/4giuOgVZ40+FCpdl1zI41pPc53sB39Vi qCAlHZxEoyl8api2AgzhiYEEdZhxceluH11Ls4E53yq3zJyzqFOFWIe0BOeY Xh2hHYc+UBqOfHV39vyjjz5aOpW8OcLozprUb16xsN5idYhuJ3rdemt1vGrl aBdQEw8Me1zEA/Tg2gF3EIag3We2eeb2BvXU8JknIUm9aCEBnbqN7YwudBLr EK5m0S/K4QDND2U2uk2ZC/aV3bzcRAgolUt2AZEwe4OBQRYADNEDobdR8RMQ hO5Bf+YpOQaWyyvvdI4OK47s90HEpZHZBTwjk3oQOa1XMcZVj2ieurxC0SAf VofgyCnufazDOvG9zZtSNdctKiyJm604lVIHqSQWf+J7N/WbD26smdeuKDBH vpOs1E9u6zZPXO4xjpkcYxvivBlsY2REUYn9mvvXc7oBtc0qNX2any9OnDdv nss3WLJkife1aYEcdDhtoRPQk23aXLop8ltyxXssWmH9OCd6KwKB84HFKOYj ZxaeSsUFML2cMUpxj6jnddoiI5ezxUE61hXSBAZmot3JeOLKyfUfBNlkEhOi ntkrGVUrKI8/pPaJKoBHS9SL6RS1g0VMDw4OOl4oGPryVeNdndfOBdPMm9aN Np/Z3jTvs6L2tiU+8V2yYPYvmWo+uGXAhfu+crk3NB5ZFwwNR/u3LYjP0EVV aZEm3ppQz7GUtGUgG8OUlYBCVtTk+HoeqhzjDmI4Fp29h+oBT/NhgojkVK0a iVQEcdQmifKoIJlxxBFVFQalORgbBb8SSZqmKvoUfHtzfwYrOWCITAauN4Pl ndMAORSdiod2GQ9gyMykQTWcrh03OvMaZdLKMHKBXxzZLrku0VGQZroWBEmN 7OTjh8yOeVOdFilmsrhs3mcZqnRykIizaJGyZBHfUoYoqfxgqBLAeftqH5wB yoI5pPUdHCuAdUKum5FK1bnyD6Rlk9E8lCCntCir6BDI4L5rYWvfD2QsttEs cwVC1CGTe3mgoyEydnTCYJ1JqT36y1Culnsx4vUSMqa6Iuue3YQ8kBGsEiOf i9Nv0vzrHNtkmcN5lpgfdyDBLoAC9WDsI4nJE7zgKyIEzbW8lp+GmqRpqneK RjBp0iQzbfJ4p28KYj62o+nywCRxa/PcVn76hPLT966P+enNdMw58igLxCwz v416CsTFedWIn6oVEfhip+IlFKnA/qb2aS0tUAvQt55ZgKrHojgmVs7YMoV1 xKYJeB9kP9BDx4BzHxoF2d/ZKpPUXSP39RCGplVupNKWOoXIGeNzR+fkWCgn hse5b7E7KRc5gE+htQ1BBebRsxr8Xh4hcy6ks7tEIZ2T3Pu4YERJF4Jrzyub x6xiIFz26LamufeS0WbVBTGXFWQWLivOdXBZSewGklHpRihz1IUqnisejwsc FDFi5UqBaTM+M9cFqeP/bQqv4BPmwA4rhnH/o3zhFDe7AM5A/N8cn7MCI599 jQi4BzW1zjpxGhUN2MNR71wj2W6aVVqPx0FIjqKnvUI53yznUc3x2lxjXDYQ EW0nTEdYUhI6KpWK03TrDh2jkzPhV2f3+1KP0APuvTbTvn3Jvv6bff2zfT1q X8eXghdUWp9LPH6hfOrq/JNR/ie5Eogo6ulJ5Dhn7W2YUXYo/xUljUPLJppV F87syONfaUnjzatq5m1rLQ+fNymNCzGLj5NHyuzZUpbbG6QoKCxVQEAuSg44 KBwIdwBdhrTaBcC2iDBJcZMqygJ+ws+PhmisSdmfc9ZtqoTAcaYJTcAUjMpJ TOS65ZQ4lhBwbHQTAiMC36mPXY6Ns8uBRQAUkk5snMUH0raIjbuNU67Fp8Sj MmUhDjT1l2eechL8/9qiAW1U+bzRKCSwxNNFv6eiMfbtn+zrr+xLsqKk9uzX +rkWaKFXwqmfta8zVIgM9zP/4JoIla/b13+xr9/Z16ft69QSOpZk6zbQjc0R z1T3PtqlyltNzJGQlOZeu2SyuXzhtKxUEfebeIeFdD611de67V0YnfaDVEmo AloHz7xSDdCoBk1DYiF/GFUPN+vROEWHt35Obw60AGTmSiPuN25/eYLOLCmP cwlaHApJXCbBLCABIh9hxgZJWo9yM4FrUIV6MzTE7jgIkFwRJLf8w3jcnfau pB6ZOyjlnI2c1QBaYxUHvhVklbEAUQlf4pRB+e62cMxLNTCiDnENp+QvZnIp v0rlwdhCTpTPUNlxZamgwmHv89ca4r7+3/b1mH2JvSuZ/D+yr3+1r6klyLq4 IVSu3O5E9z4U6tn3n99trlnsiYTli4RFPrSxZv70En+E2ePb646AhEjWzS1i HgVni49TQqgXLJwL5Dj9GnZBD2Fd2mgFAorjoJABkxRKh9eeFuhAMTcq/GCD W75DeENTszj5IGpODHsEfS4TVSpX+AFGDxcPW6Psb+bMfTgFOe0rTcJmP3cu 7Yu7fbKQUK2MWwEAKvbW0Z5tCAsrB3FZmAQ1NsgRZDlaysdYFkUk8B379nkV A8DFH9u3j+Bate199eg++/c9+3oeP1EyEfVKRMtHSwX+5w4iQHGfw/zJ7n2U s61FeJx30mizb3GhW0E4vM/qVuJV/7ylgz+7XDo9d5tXrxlvll8QOW64iJld kYqyXYTV8GamfWAY8+GLhzcT1DEywUjhWf4w11rUuxAC5GY5Egqp4zj4BNJj q+/oyIfBgucGK78IXyYpQIVipnoStC1CHc5Qz/mZ2NcHbStnDOfK6tkYhgTI ldXnMoOYrhF6zEVEub0JasvsGBASMAGL7JWi3R9+kiYbwXrC44aLHS2IKOn3 9u3NCSWJIPhBQkmZ+2rRfSUvOBYWxPFB+/Yv+E5lUq4uLCpMPEETkMSjOvn4 0ebaC/rMJ7f3Bs8o0jXFuS/E89RuK1Su6DYvXz3JlcKqZxT5bGmoXX1TCFKl MU/9mumGIwXs3RpDWKAmgNcyKsFyAeuDfuUdWkJglTT5oysJXVF2aQlRVFDO zsWnsmbOYtD+rF8FAKcQ3bUwDphSphITT+pJEjWLHWGw57nfJVX5MO3FVUn5 egtOkkq7QiGDvcjLL4RZUfkTa1xpW5dUy2R3wWCyfK4+Gi6iNd9jtBYTicQQ MfAqwmjB/F8C8yvHeJ+KmXfrfRWiGgR4ebyomnKSex8IVUmPbfPhL0ndkyIQ qTMXESSVSl/b7RuU3XqxP8EQLk+WN2ng9macA5jPIgg5ekXglkkGWfhjFCXY mQvs5TJLZGwWwIwz92Fxp803r156kiMQcX5w5hKkExvz1EicQ7xpaj0H6nOZ MhBH11JX2ZylwQpbTsHitAYu+NB7WEDKMIqyYAGcXxFCPrWWDCCVHpzPmPMM xDHsfOtPjZuxxRL1YJzXQiNiYbya8PdD9u1vMzSS3FeL7it557Ck/quskof/ yr7+mkgoV0sVtXyc6N77ndCRTOv3rvPZ1Z/d7gWLFPU9pUdCPSGksnKKWXVB 0MzKRAqsmckZrUEza3UnawyZQ8zcPG3P/PHm/lXdrjHuKFU+MoUAkd8s6ncT R3iP08dwD1H52QUXXOBah+xbfU6wVDIFxCX43kiGBEpozRYtjgJS7s2+3DTv itOsgVBMNJyODeWMlam4h0I18k3p90FosCsAzUoxfY7pDep2sUmSCo1OHSi5 qiWXm4b9GC6eN9djuWpn4rN6EJivGP94yZvn7q/a9r7e6D77976SFywfty8x +cVd9l29trEgntxpJlGMe4K2rRPZI+2f1p1SNl/YUQvyRTQy6TouZ6cJ4ay9 oAirgXKQpiC7L4fbyJnVL13UopaBNCK6K7vDsYErQEzW5DbPnWresGbQfHxb w7xtTV0ClYg/y0/lSN83rnS1Y2iokvZg5exeGFMcPwPLR4tUwcAr5k1yTTZX rlyJUCJzUJjc0OaQeaGpvI0MfqdVhRxT7nT6Dcc5uJcYJ5hC95QxlB4gFzgF jw/6gjgP1TM1Nqk4rpg7CC4nYY6lOYFsc6dTBzms2OPRNToTeoIXI39I7EWx foZe21QQWtthuiKy/aZ9+0pCts/Zt48lZJu5rye6r+RPQxSZ+PaSd1/LjJ5T koUPOxcpdTSLsP94agUoxcNHFlYifVDo9YPbRpnDF3t69W1YvBIAMSaYJedV ix/7rqX92XQqckB0KTRfv6LmTrB/dJM13rbWzZtWAcbNaGj56Z0rJ5jPX9Fj vn9d0zyywRFu6IYm47x/Y8182I4jDRikaol9IFBZU+8fp7tzpF+WeLz+fsGc s81Vl20yO9YtbUkEzHkZ0tq6jXQUGcvgNgcDQGa0yrxa8JhDAVRvHfwGnP9g b4WUgwZ9bTgKoMbqXWvRUT1K54eCCEHXqekle0Jyx7TlmqrmmmOCaWXK5KOm quPctWOMEZWjGFGOjivHNtyIiJ6P2Ld/V0rHk87SUV1Tztox3uevVRfotbOV xh0Zdxe0bBJaFh4Q2saO1/NOhbY3nVYOiqr0Kv+QpeFrlk51DXN8JEhQc2xQ zEAg0pT6wOLx5tXLmoGOc76Quxc3zQNWVH7w0pr5orUh5SQiOTpdDq5793pP oOimyIbh6gtnmDdtnmj+6mCf+SERc115iowpxCzK9uftuA/49nkt/CRpKDBE 9ETK2zidAUhP4r+SMYGYGGdDcO45/BnVhEzVv+guO38NF1fDR5prbM6Fasjs ULqKuuFDIYV0RbqM0gtIlPTHAKG0/oHzGECiLGL5SAmwLy7pgFGa6twsYjmK 0OkggUw/gd0axnKOk7H+2rBxqWZbuh3+txHhNsSPL9bhD0u+0Yvc8nf6uRro dtjb9EGSxiGi2IXA1LQdNgPjeD3YDQ2JPrmlZr6tpLp1vj+Sfu+S6ebg8pPk xNku84b1E+zOv2PTGPPQ+lGuj4wc6HbP0oI6LPrhwMadcyeZ16zodf0Q5Mh0 S6B6eEHF/PX1DfPM/gaID3SKdL0lc840e5adar66f5T5u9u6zfeuadgneTpF 2E1oUmjzw5slTFE339jjhbgIY8yGLWD29uCkcxaIyFgjFyFym0IYLCkWARJy PBhyFTJG5RE7VuIeli15Su7JlgwHaJK6AHRGmhuOHAJ5I9OWaIltz1xHVU43 SgtJOOmOA3uQrnzwLsg51/kt1xk7jVvclpzJnSb7abOFthHo4/y1YeNujfak 2/rbEfLTER8pqFbzpE4q+SyNF/UlLqBxYfC2X+tzfm7fnrAvd0hn2b+fU6I/ Fda5xI+FJeppfLx2jBCv0dnjuhzFSnxaKPZP1kwyf7m3x+7c9/e7c+qvKuJ7 b13t86ZYuxXYS6/Yh9YNmC9bofeNq9xBbp5Uq06mPn+g4Uj2g5tiuQr6Enp9 cOtk8+zBUebFl/aYb+9ruPB5ca+n14fs44VGhVZFTsu/ImuPUIYjvKDcfGJC Bo3GZjBeXpplBVsWU1SShXxBQi2re+xYzQUCoGzCoa//DhJ9wDZFQi0kMDRs zj1mMdWV0ARrsDlLFaTNFTU5lw6L5WbmvlSMbnWnsxfrwX09dA1uKd7KtHUo Rcyz3ZLH+GvDRvg60Gzrb0fIT0f8oKDZU/x3n9RfG/fJv9+Robphs0jGaRch dK2XLHU5gd2KRaG4LkdwA+Z7FvvFchWXrbS6enCVT0hn19G2BTPMvWvHmyd3 d8uZuk7sPhNO96maH1xTN7+8qWmeP9g0n9pWN38SanSLdqMCMJGSj+ycaP7u 9j7zT7d3O8qTDC9L5KAAIa73rK9BSHa5M/ia5gtWt5XLdy1qtji1kOKSHpUq aDROmT03jpAXdzJoQ3y5bMZ2QlBJvT8hFkliQcQBZrPqf5C/lETiXhx/Y/mW xhc44ypnFXbq+Zwry8gVVDKtcEkH5lLLjIc5c3J8NTM/6Att2m4IdjttUPNz hw365Wiv3O63I+SnI35Z0N7s4skhqJ5rPT1WW0+Ly1boacUZY8xHdww5CeYJ qscRlLiEHleCkkaYICgnwazUe9klk8wndgzY38gR1U1HUHLeEV4ivn592J9v /pntddd7lQkKnE0I6mvXjXEE9avDnqAkI8beDy1QNExRav/MTukvhaC+4wjK /tcR1etXFN1CoAEilwuKJ0h4rztB0qc2oZbU52eItlcJreU0x5d6jrXG4xm/ c22kb1l9squSvmPZqBAZSQg0VzLCUg/Wqn3B6wPxG6VRxgdlkVDjPuep7GN6 AaeAA+AuMiFzIY6czok0eaZJDqt0ymBmeVjP3MfyMM105rqcVNZzEhubvXCW ab+SNL4fjikcWdBfx6DlMLQb/3aE/HTE32ZpNz2eLkqIGaPtUOTz9CnjzbvW NVXr7HFapzS3RcqxGIlHFocqTqetqgAMNCsnJ4JeoXb+/a1N84tDTfO5y5hm vesXpuKNq6Y71fPf7u5xNPuNPQ3z4U3FM8VMVIKtOGJtOGKVS3cvHcjVeo9V xRB0mgY4KTVZ6bcZMqVlhSishezRVOgSPM9ImqKGVSGVmrqdBXxkeyzogC3N Nlr6QcZStMiK0Sn102yQMwwfUp/STeroQWmYcC7u4Z0rx4JjBhR+90IPj1cs LqQpFxZWM7/NHUqUKxfjXGo4z3ISlmvSUS7WR+NBA0jzulnC5jLp2DRBCtxw mQhKzccYSa2JCTpZLzFlV9oNM0JGGfGjFsIWz1fHnJ0xmi4qZe+Lpjgx7ITw 05ZqpM3WJ9WUlDoCIa57LxnlSnVEELNW+y37+g5MyVpQav/5jm5H01+01uYb Vqii2ue2GiQt1uRPDw8GkhZWIqJfhKs88SObney1KCP07CO7D69rmoMLipCN Fs9rukEzeG87tU+HgGLPUEPfuQIIQplaZzJmpTmf1I29BGnGAtUOCYGKgKxa oqBD1mrTwraisVyKtUJBufabcCtzTpulThe/thO8mxJr7yqisGl9z23U35E9 Qakj9jJqHM/0xMXPnTJY2QiAp4oNdNAdckZofrBiQ62DJjlww5zomM1Bf+0Y w6Q1ocP/KPkQ6JxWmmwdZoSMMuJjLTTZNjEIDVLGaPapxFr2neNjpGJhinL6 9jVy6Iqly61FboOkbEe0uJdocYzTh397S0GLT1oCevOqonL6lUu9rD508YmB IEUnFvcOCFJ6q4gJ+dh2T4w1JUbRgh+4pOk8wHDlIObJfZe52C0hxMGA0iCA tAcj26lABmb+OdKDkKBISqgfAGIycYV826KgkzVWSHcu0G/tMhp7dXJ9TdID XK538seTohT/3l1owW6ca4uTZ1ihzdWZcu0/HEbtuzoXIpDzNNgaGNAJk4h2 01IxjigY95axu3OcjjRu9GBIiMjlf/9hMc2aUJCcdPTbks94SIhv2GEiCqxG h2LaP6dw68+iPvujtV2BSEup65ZGlB+NScE8dVV3JyoMKu7Pb/Qq7r/emSfD h9fVzRvXDZnLFp1qFsyZFXw9QoZyv5ChZDhJlFVIsOJp/BlHhyKupYJJulJz +FSAy92M0vAq3K7hfBXSbZCMxuXcmrcdEnyAz3xcBLrAQO9CDLIQuvWoC9Zd 5Llh+mL5kbbC4vYCHOmoEsJDv2NWEJeqF7GbXReNFyosO4W1Yl6mMFFDsJtI Jj3Bhu1vVikgNZm00kImsmUDadmZI6EW2flcyESzEJY2RleNdQyXx+DjhcOG Gr1RWZF4y7daqG3YX0fE1kRaEDc+DFXqSmxKaOPDQTyvWFDxKXxerYyITPw/ TGTPXF34faBzMpE9dIknstevsAS0q2E+sWu0FTeLZlokYBr7wbUN17xODkP+ xlVCVAVpif14x+KBQDrQN9FEMyUrlVbwAbGfIM2WVqwHknLHGxASsgSo6iiq mcu5V5DZmouU80lgaViO3ZG5JJpcKCA9oWfThSJ5hJK8Wydt787ZrOXMc/lc NZV4rJtyf3J43FT6hAZryB4U+keGMNRt/c1oegrSjil3oLdQ1kIfJk89bUN/ mjsjtt5vSnHGXrufaMbe+Z7ejJKHWGxCLl2FdAtJdENaZCFRCaESoQ55fW1P t4sHCoVcv2yq+dzlvRGFiAgSCrEiyCKKpQ/L30Eh0h1ePK3vvbRhvn9Dn/nK vjFCIFHIASTiz2irSbJezVFIQ6IZLi/nPdZqE6sMcT2lAmw0V0GRA4YjfsBQ gIx7IFOnWe6tgz46XJ5HpUNRM8Rcmgo1Toj8+bgvd+ReznefHrMsXt1q5j7W HhfNnikJxxYenlhuWtDaZJ48GiyS+AgRFUn4qqUJeNFdOm4HZH+LCib2/egT w5EyROru1SZKH5LHT2ecLgficZ+UqEqUmjKkmdxSrCpNP56+utvct2GCufjC M13s7BM7BloQWXUpReSRDpH/wupFUtT6gUvr5s+vapoXbulzyAtEFle/+BgE kb+73yOy1O6J+1KMGadKlV1ormGe3utRGh5+4KzqS+jVnaZ8qlyYTACAxoGf gN2AuWkVbM1bQQd2XAzEVPW/xQyB6M+5y1j9wX25tolp7zA22/m5TULW1Gwn zhw6+cj85th9EEQWc+aG+SMLh0eVrf/gkRskxEQ5lb0+ii7DvAi1RkXqDi9g FOGrUpt78eQ5VTVtcTVcJHtmhNe5xA2H1zhIYZR773UqzQkjK+ajlx9nVl0U 4/S3FadJdUlRWhrVP3VVw/zspm7Hh8U6v2SuT5qCJ/y3t3Y7lJYCO0bpKmGz JE+KdQA2S9o/Ni5XNYdC0xOJvcHlNaTSH+FUVuYpDwuIxcesY89bq97ixqZU w8MdA1KclizTnNsp1Ux8qK0VBXIKflfmPoSHgZU7rdlwpXYt54I29RkGTiz3 qxwL9T+wydkOR0UDs1yyvzthL6dRDmS2Atsz3HnCp0ZYLvb67qszRzWgL80o zQMWLJc2qSl2f4/UjnKC2hJV/enBpvmnO3ocat976YktqC0OKKC2FMQ97fOJ 7HLEuWXVHjvOI1bvkBxh7jspih/jdbt8I4QjcA/OnONSXOZ0uTPn0mKaKAei SJcAeShwU8WiXXcMTtJJQxYcjuHGgGn9TWtAs8qp9m5aEmqGZxo4p36kkTTV OGu4QGO2edWlFzxQbOgOdsBh9FORT2k6COtsHAPO9X0NzebyxxUHC3RGhOtt ExiQFDTSvTdCEPT+FQ2H59+JtZIUzb9wWc08d6BpfmcVDwl0AM3lX0ZzuVeU ErF7n94DDu7RXHQRoHnq30Efk1y9mt3hCYq3XO/MHJ69DIh1UI+tkE2rVME8 CETBB4RSNVlZUYRbOKEDQa4oJWk8BfJKeyz53iCtBNBD+8BeFTWfubmOrj+o A1infOLzYTEz+0gUtLCmTDYBsuVT5YPTC/ozi0srNwWgfRmUTgOmReA2b4YM F5A8hVCfj7GNov6DdJbetpllh+ikqqSILp4TMRH/5c5up20D0dMIn6SIS2dM ILqVE3YfvutUlW8minficYGA5DIPsiWR5dkO1zn+h6PQEDznk0eRhJ02xIAL kUuy2BOSO4GRG2dIUs66hWfLdT6kJ01FZQQBuyZnDbA+9AdkF70di0so0VZC WbJvBcJZ7MgMID9msADbITU3gclVaeWqLPnsnlQnaVdlGffmzZeU5HJ62pQ3 v4jI3/SI7+dO23VkgBj5oCa/SDxO2oWJLlNxuD8q4L4krH3n6ob5x9s97osO k3rxGfdFb3m6sGrLhP6iqd+zrNbSbol6KqT+RsVplCDl0B/4gehcGgYqfNUx ScCThtIlNglz3nSqMAzobDF/z5495sol06MkUHBdFADaxwCjwVm1OQefP4nJ plF0RSDYmsALxq3+NvicK5vP6SfsuOT8trQik8frlLM9XHViIzNep9InrkL2 5Usu1IXAWwjATYvwPxePdjkiiEcD/6UkQUxRwXxvpg4V+L+tZpG3YX5zi8d/ 8boI72f8/5sbmuaru31PmK/H+O/Qv8t8zxHBl1TZQRJZ4nzh9qfcVUm/Hpsh gjaNjYM2zwnw8LrDrwPpI5ufO4aIGTm87kAYi/EO8yUi3aP4Snq8YHya8VDw 3dhZFzIu884PhJSoEJC/74TVTCFcZwwPDXsxU2ODc0FylQidmtlzoJqbKYOa ujPjcUw9TluNa3ipB0vwS8KbzvGwkyJKyB0uHB0KMqj5GbI1j11WD2Gmb1vO L2q+cPUf3dBrvnpNewe6xHH/jChALQi7gAL75dAk9sYQenNYniWE9nXhDCik JabYj5TD42iDAUQUusNeprO6gq7KIhwdl6BryNjyEi1HtJ1bVp/c0t+xsDQL 9UcUEz7YElINZh7HhKB+EwL1Ev7AcO7K4FmK36yC43FcoJuLBOSqApi7d6qO y9We56rjcuecMbnnwnWgcS6A9UhcSTuEVwqLIPjnp0ak0LaZA1IjBtV5L7v4 0Cqr/OwrSODb+3vMR64YH0jgC1ePDSQgBZ6C4tL0QerPmAQgAEQoHN1WkEHi 2IEA4P4tRCHIO8qhPzUjHp8BcY/+lKs/VfUKGGeHQqISV37KyBy8BbvnLIjb 0Ku8CLhwo220LuCOWaTac8Z/WtnJOMR8M/WcsIelU2iYzUwWcMDJTuc45fqj 5LLsWXPqVHXGmmba4XIjnQ3ItBXOg6Sexp7/u+MeXqDW4LWY9ztRcaKnhTn+ q9yZyWJbhJjsgPbzQvbCu9dWPX7v7TZvuPSEFqemlG8JHYgilNIBqlnEcfqt q+uubhpFk4nKD3X2VcvrQd7jFtUPQmIPiKHozF1mYgj1XyyAgeYsC8B7oYVD 7wD/l+eADA5dOhtUgGYiKseB6czNyffO/Roh5Ttheq5ukuO1uQNxU12dMThX 68zaD9eYpPWVbBvn6klymerVzHO5FgzaD+5DYIYxnfcll9EOpslRLvsnWpBo Sc2C7YeTw6dEVJA7tVlIIgRy+/Vdjp0S9+i9S6rmL67qNndeMiXr1hcKkNRW cQNZCvClIT2O+YMAvnR5QQBs80YNs7vMQxsadm9eurQ33AD3Pp+Shjw2BGup tRaOl+TzPaCEwwBWdRhExx2D4DfRvASFcVET3GLndfnuCTGUhDd2ZzCrE0Zz /CzVYwQDO+WgMmZ1wuhcDjhTXHoQCgeT2ZOVywFn9yeey5VU2LXc0T+DNGfI jFy2HYw8jnz1FAqQgQI0OUL33AnR61vRvdcJgaXTmq5rleQs3LX25AjNRTGS yNVf+A5XHs17A5pLcfyXfXVEYINwx0P1+JMlFmMeuKQOZdviuzlqZcvLlvVG JFFgfL1FXrDrczppEshd5Dg8dJoDOCmzEaaVFu9q34wGPZVDwVw/k8ubznkK G4FCOKSb1tfm6nXZP8NZn6kfMZfQxvexVg+Ky9Xhdkq5Zu2LD9PGeLnEt/7M eF2Z8dgNiOSfu4oEOQhCDn95/l5B+MuoARzjfHRWde4Ukn5tIzN79mxz1owT Wzz7T6l3R3G97HC93zl4vrW3YT50ad15NoHncK9cOW+8eWhN03x8i7UD9lsT 2ZLL/Rdru8SG02/etbVpvnFLn3lgQ0+K8gioM8aDGk70uOSFIkrxmFmCCRbb WsXWR56fHkWMDonLSHCIHBxxjDhfIACbnOfFakkOlXOKOhfGAUVz6ksuLS3N lOBodC59DRkNRY++fKHdsaVCx0IrF7VG0icX/Og4URtuFUAh7oEG6RoPc7Tg Nf6q6Dpwia5X4zjReYYNCfdrSFiW/bFtPcHNL4QgTF+s4UAI1ky4uuGY/XtV p2FCuHzRDPPmTROc8fzTAw3z80NN8zM71KeuaAoFhNo0UMN3rEH96BV9nagB LknN2tfmKrXgHEpaWXu7wKdmIQrGUWEoTKpwYI85aQVfoUOKBQUfMxW7ZopE TVkDRYlz2kPuqMxOhAHC3ksHDA4XU6rQVNPoc05rycmCnB6eqyfnirnccXAw rIgRBB4fTqWIk6BVrIVcT25LQGIBJC7AHqvX5k1xFi15e2powYtDknGcFlMI R46jU0j6NHIsIbNXWzvg61dl6MG3bhAd/02rvLf/votr5qXLRgV6+MyuITuw pQb7LrTw2ataaeETe7rNL14zYD59jbVw50/hzGNsBEhM7ebjjoUM6sGrA31F EyDIJ+59TNzXGqSjvT8H9TZSedyLA2VUbckkgmPBgU/7Vp/jyKPo6RDjaZr+ xp6R4ZL6OwmEXMUm4ylHAlLdhgVRD+EzJ/Wr0OgnmED+ytfqdAK6k82Cspgo 3VnZVCmtlZH7cFocO/eCu7AsbqKFIAF1FcFtinZBOM1eBYb7FGtQuVhalFLR q01QJLZ2zvTxTlB83RNFCVQhxCLuT6kOe/vaumuI8NHLhsz+ZdPNxvkzRUoE qvj1nd3mx3f3mTeuianiiYO95h/uHzRPHuw3uxYOSxWBPbSei8Cu04QUopRb uQckQKZ1SY9tsx85fqA+qqyuVE2AvWXpOaH9AbfUAKmwGADrrWRQOg08CaLk sq2bhDwwkDslHFHgwOGszq0/g7MHoj6cRVW22r9po2slIFS1wC68LRzMU9yq tIz21Vg3mzAYxupCLyaYLo6dJ7VXAFWecO1WohrlTiGPOgv0atRY7OWrzi4T hnc7vi96kGD509YweO6Ghvna1VZnXO1taNGDvn9tTxch+U9e1mfev73ZguT/ /raR5vl7Rpl9y09khZ11QuR9pk6hYeJjyKbgcwmgVcHdib7L7Svvi66ObEUy unO9pGtyZTcM6N6VQXf26aQJoewPyiXv51TrbkJjbBNYr10Ln2/AmoagcRqo VmUKaXXcJy9NhRaDBTisKdxA1DTJn20Sdm9wXzK2H3CPtX/h5pS/3erhdxZu JcOvYwTPnWIelen3UDqo2ANyIBQKVVy11XUN8+PrG12C3XY137umJ8Xvkkfw ikPw390/YD5n77GIXSccF6NXcPxXrxtlbl831SyY3YLjbPgCx/n4ITa1gd+C DBOJH8eBoiKVR/kae8YRA0o1ia3uSKlW/IZvSLBh3rx5SIhgVhmZldBKcjUC 3KAcPPWuoiqqN8FVyCvBHD4OQN2/0QFMKgoDolJOUWiRDPKO8Dw63pc1jlw2 /11akEJUwp6dXKYRhpk+umu3xT/hxcKmhfkKjqr6fZRbOMWYPGwst0e1dekx esrQCPN9i73PWRP0F7davntjkzH4nnWTHAbfvPIk85f7+iIM/rcHBsw3D/ea 16zIYvDv3zra3HflNLPU/lwzhHMYDNdNmupJFSVybXIG02oJ8spPKNO+tQKq Jf84l4HZ1LEFTnJujRyvIadxKu720DxZc1WjrZfmBAJNWv6CHQ4ShkLM4xrV LpTY9pPfMtEgzEPF7qzCI6MzdWOxNdopQ5/dUp0OomGrGhl5VsHevXjxYo69 ljT4+gLycQh5L1DtORN8jU6V8Mhbcch85TkV86vbLdIeipD2gzvGOKQVk/Ir Vw1GSPs/Hhw0v7hnwLxtYwNI+4bVeaTVFBu21nT/QtpMzusCtyIHsBCe5cCT JhlE2ZRoekktNVkVAGpSXWBQU+xn5A7LT5ZecKbD3APrfWkSMi2hHSi0+Sx1 OAmAELitAH4lcMMoDb5QP9l6TNuvYKLK59olG7NhmSv2yKX5pF5FRs3WhND8 0S/syMFmSWrNGWec8YJm0WuWWdRO5ETG3gYSbmBJwmw8UvJnKUBJlgSzgxdU hduWPOZWzNFdQ87cU6z1SFsNSPvP1rr7mJw5uag4fwhe8jaYywaQHm6gKe7l oIMV/oDCNUmabpF3ELeWRrKuvYbedWqfE6IWFSKK0zl2i+Ap0AQd2mWawM4t c6ea7du3mw1rVkU4gZJ/+PgBf4UjLoNNKxr0J0jbmt7eesaQYiQmxLkxXYRU 4IGd8i/5cVzSkYYEGCE5mx7PZQ8QxEF60jNXuTNhIU9DUjcO7Lj42V27dgk/ 1uaScP1lEFy0EGRUQiORLxAq7dX25eIIlIQAsfQEsXdapBbkfvSyMaUUs//9 rSPNEzc4TbgtZj98zVSH2erSa+j8E09fF6EduNRtOHg1Rl5VnN3uQd1gjRae PtktPqQyk4F8CgEsPoK0lhIAMBtwR3KwIDtndmzZskVCrUh48Pk75FEMZSJY EgfFYcEB+RhBkFfJLjkK5DP+IF8yh7cc20/zFnLZ8JgC4zeHsvhMH+j+uYwd jMe9fWrJeJz3ybp2LmMHfErsE/G2Wma/fmhoSLNjIsdfRAcudPosGHyuj3+P OkXEur9tYb8zBeedPwumoAv5CAH89zcNmP+wSP6ju/vM6y6u43w5wX/xcpt3 j3L4/+iNU8zCC8923Nttk7Jw4AMwH/4qdfJ1KbK4INK2prl/12Sz9KIzg8Bl sw+hTwwlv3nbzlFADX+5N8o6Y/UGnDJJWjsto8YAQWGIEqlG2SBQlCGOgUU7 N62RwCsuQ5lSZEKyGWVXBSuNctHYm9Dy63okAHBLmlXMBkbaHZVrPFjdSNWS A3QMTi67HqWZhVQtuDtnEOey8Fki81F/aUYoU3EzWcfWcPxfzUkLVPUfXHaC OBUlOpqcB+e096kRteTiqqL2h7hqDyUanH3ayVkqMe8aZf7WksS7NjdYSvz2 vkFHJfJ65pXjzfYVAfcc1lmd+8DiMQHDkdrLaAxZINedn/FQr/nV/UPmyM5T Qgc0mKyotgXzBGX9zasGzNePjI+o6+b5rRlq6BOMZi1QpGSm08CNVC7Jy14H yhDGtmhBXBpNrUejDgaIo1916VKXtwAZRWEl99LfIvuIfJxh54DhHOyFvMjl +OTqPTrlKOdOqUHxMt+Xywpq5e/5fH3Wr7jvcE5eQHxy2gRSH9JCfE71YMrv yewLjiaVVpYifyS9Sqhs8+kVcWWqHIq8ljFlRYd05zIWerRhg3Tgl55RoKj/ er+nKDYrEOXMkdW+NTMRvvQofHJA/XdcPdGhPVujOdKSe79xm9Xp3jHKPH/f 8Wbf2pkQOlnSkvufuKnX/KvVD837h8yjN51o1sw9NSJH8iCBslAlo9LDwWgM wU1VIkuJTmO0t5c1u0AWAEwBn1QjWJOom0GZSxqVugmruypEe6BraiId0BRp opz83q2oSfEm97ph4wXh7A0morToJVcyyEifs5o7tcnKIXOucCCXTp1LPgWx MQGyksnXIHY6FRhwnCuXzJqKsY10WGZrPVMsPtNTpIsy0XrU0kjgI45BqXuS RpjY4+mju46U9E9lY+StjSl42BByt5pUkpT3reubgXJFa/zawR5xvwawIVnI Uq+djqXd0ujIMdAi6W60ku6+IXPfVUWKJztgQZ4u8WJvj/ntG0faYd87JJO6 Z4KjehmSXWCCJXL7567vNb99k9z+/iELtt+/c4w5cnkhT5l4gyO2cJrJvqM4 C4F80IbmKpV98oa94lDEPkP79ocpIQKrq+J4tD4jHDgO32khW6shDQe4VvRh jOsuqQEFh5LB44EW16/yqCJxvhxJlTOoyCmDsHdy/oF65rlpZhSTCp+S0yk/ PJdBxSSfc7VzrnoaO8rVw5Funs1gYZsvXRuTPFdop5kuTPIcp7/ofPvcrcuc RiuZNoDBQGPElISEI591TMK508uj2Hi3GoNCwi+8djAYfPev6Q4ZSSx43ruz T0g4R8GswzrH9a1WoD480jz/hnGRQIXjASRJwrfsKLhpHj3k5Sm7NERVllu/ +7J+8+/vkg0R8q078j285VQ3O8QmYoOxUKkXzznTXLN8OpSw0bTfSBqBNjxO v4PDBlKVS5wpHshOQkhMpkRoH+D4uTAmH7IhoUlryGTJJ1cm2ikBMUcWnB5Q S8bjRMXhyknZGEwlYa5giNXnNFGR18bqeK7sNJcE36msI1eeyhI9V/4RTjDR finr1683O+ZNCWd3nVd9NqHEyP9+UkSJudBnFMT3lDjZeZMvvXCcuXLlaWbJ +TPN4vPPNJfOn2muWTbdxToFq8SS/M2bjgs+mMduPcGsXnhWi44KEjSPWFX5 1eODLszOyduWDrh7rQC1axX6K5vfPzzGmZji/MPJn7esmWi+eGhAdF67+0J7 NfP8/ceb1YvOCjm62h2Vu3eA7B7cPMG8dsMJ5pILZlDCVuy6J8/lBBoCzoK0 CryHcA+uOdY609IjPpo4lwVfy+Aod/QXmty7/NRwHztFclnwnZIec7SRozUe j4+vQdlKrqw1RxusUYNn5HA+d8hU7niM3sxzc4dM9Sfr5aRMnh/nRKTqSa4j 880bZqGqn+cQMjVOdu3zmTaj0EErbaZnjLvu++i20NQScykoHD+6z1yz4Hjz zq3jJBhmfnBdr/nFTd3m6ZtHm82LTnfiUGgy9frA9eJo7X6nBD8yyo78+7eP DkruZdqS1XFrK+/E3fOvDzl6e6+jN2ubyniujPvCs839V0w2v3pgqO7IserM ULlM5qpuYiOYpaDFb13Tb16+9kRYgHBsU0AOdNVyImMBmyKFVR+XO5sw1zEf 6K2+wojUOJuMxUaazYZDNjYvn5O9r1NePbOMtBaLSYO9+TntMVc7laur5Wya VKzlSIjHy9XfdurlT9qoeymbQj5GmiOqigv4MZuRZGYieUTDclBL0ViP1ipG puv4kAtVKN1dqMZku4wKpAM1tduhZFjsObdufnKgYX52sOno7V/u6TMfvGGK k3si/4Tenn/dOHN406khjPaKZd3WOOx29FZ29NZw9HZ486nBaScgv3vjJPPU rYOigtYcqVWdESm0JC+hK6tm2h8LnVXMfXsLfTDE9poRiYmok/4rf2Vf11qN U5XjKGOGc4mEVNHZllMwgBDc04cd5qmux5nHfDggxsuFZpnwYp2wEiroN62c L2hQzuBdWp3LIoNZfE5UdaKfXMEWBQeDwcuFWHctDLkCGqC0I+dSTSFHUmpI ilqYGlRMlphVIg0VDQ04ox1+fXtPkJYazCvOVPC1MfPOOUVqwqaU8iGLkyOq yfV7PlKiPKSmtoKQz3fPrzpq+d1r+83vHhwyRy47xTlMRXtM3S9CLeJ2sRqj aIKWWmpOaxQSEJwU7VHCdL+6XySOoxJRFO/bM82dAX7v5Seb3zwkfdmESsrm Hx8YNLddPMHcuWSglCMRkT4ihV441HRksmvxDEo+y5PISR1Qmg9YYuceVKW0 zS03EmLVkJ1scEjm8B7ZUSCRtauWy5g51sxH0kML6pQAzez0LnXf2t8iQJhW YkUZU1WOuEMghtQ3ItIQJhjIILSGu0O+KWaujnYk8MMylj3nBh9Ia+2mPZL4 nOyTldtgBevO7Hu2Xq+zmhY5HWPEz52VHRXCN7XiS1I8XreuYf7XO0Y6FUxE hKRpCNILwgtCy5Y+uGUAJlJA+KCOKe8XM+g3bxnLCP/Y7ZPN1qWnm0MbZ5hf 3n+cIvygQ/in9jXNO9fVpFDegYYR/vCqkxzCS58uQfpf2td3rx8ARvQTGOCD 1HSpErQNgnqUY0pZfuyEA+rnys25NAqo//+39+XxflXVvYd7f7/7u/PNQEgY AmEOMhgQBZHhQhLCTJgnA0FABiFGQaqN1SgUbR0iVq1DFdta2zrFWq1trdJJ 65yHWq21No6tz6Fpfe3z1dqed9be67v3d+2zfudG++d7fD73kvsb9jln7bXW XsN3rTU+RKUqL2M35fAXGuvyoaSGmzmjDHmbAUvZklnl2ZRBh8bUeUlzxcta 88OdFpQdE0xanh8sXWL8mT8JhpVeQ/A2B/d7ZeYLMswFil4M3fKsl182zfkn NBcmrsbGE8cCnEL49dHnH5R4V+7ulVctrv/+JXOBV/uBV/vJlJG1JMLWuAdi oyT7RVyFG9cdU+964X71T4LxI4y6NDDqp7ZMhva2D63PjCqCjxDZR25bbBj1 W/dO1v94/2T9nebnY3cuqc88hTXodMoMA2vJAGTOaGtU/WgiPAxxzqCgnGU0 MRjnTRRHYmbwgYe9lgmWQxvzVYIscHszOs32r02FU7kJqOm8kjVdrqPKr2VL wZ44XFhFnOi93HxtSSFV/FBcX43zEMl1nGGcBIK/MTe+z8aCgU0EmRk4lNWq RyzWSeq/MEElJ5OTk8GmECtcWE7UpljU33i52AmPSJWoxICFk2/e8Lj6sRct L5n0hrNX1+++fUX94zeBSefqPa9ZXD9271Rg0tdfPDBMuuHUY4O5MIRJmws2 bNpsqjDqBZoJEi7jGiu4cdCTzd8IdVGjtQrZcFan0INkcRR6sGfO6IZtpv39 xctyNgpPqq5iNLAXSUFSouxdyNh9VI3k13opvqBnACwtGP4M1cN7CIaxNYSC CK5Ha1WbDAzMaZtF/6f4gRgG2rlF/EnwKBcGerHVI42SNbOFPajBpNa6Cvee f8rKwKFvvmuVcKjwW2DRPQ83SvHe2ZB7+Mmbl+DAl5CL6NgNjZH8q5tW1t95 RWbRf3v94vpvtk3Xf3nLeBj2I4f+/doOQujoseg3750ILDoILDpWf+VZ0wGC uvGMY+unzR9S33bm8uxT5g6UxDMVz/zhJj3aF3xEPSvkGuXsG4noiKiwkXhU F5/TBGUYUD4KnRLGKJTBCMZCA60p9iaOdemlIGB/VXPlaV+8DPtEn5TVr9yZ 3EnzA9sAlrPeYIn4Zz8TvUq5GIXiKd7b8qMAIMyfLN/2alWYioiDU/AzJRNE 4gU6AYJyiaAXsbQc76XmQ9sDpObHtRZFsgsyDWXzeY1z9vB+YPYfN5bxXz93 qv5co2D/9bWLBxpfhDt3wRkn1A9ffWD9zYcWi+EwUH7/8ZuX1F983nT9iafH zjhiO9yv/cz2lt9lQtBXtozXn7tzoA1IQsMFRomiuiNAO+8P3SsYfTunHOph nmGBAC8Dn31EB/PAscJPrDsQrd9LB7xaKd6QdZ6HgF6xnE2C1YLXuFYKPH79 peuCREiCN1VlZT3LOhjvccsrRfakAAbzJNnXAIsSIqf8iEFcM6BUiTSsRzk7 EV7Zigf84d785ef4ZMGBxulEnsYUfOwY9seSWozIgmNCjlZwzCnCmBYJ7Uc0 S6yDkb/POHZR/bkHl1QsNaLvP3nnRP3dl8x6UvPgpSvrLzYuZWPJRKmZDFLz +edGqfmLp0VjhrNeKjUjIjbNhZPQPAdCMxP+/ttGaGSYPQlNsomcBForG5N3 3BaAIbSCU+XOosemWixzBetnNu+ljypjwdBGfJJ5Du+FOMK5x4ScmpTiSp6O Z7cxbluVtPc2sev0EHb1QPpeoSsLntd8vMwYcvEL41+ZrXH8zDif80A1ZZED R3EZjFoW0+T765sI/YbTTwzXh6wweERLxkyg8SgjK17K2rTjh6xIte6ag2OA HRb/D145V3/yGQ0bPzgj5tQYyQriJ09fd1T9iS1z9Q8fXsSy8tUXz9S7mm/u uj1bVR2y8o1ns6z0w99SMgxZee1FucsTDivIilbwcrTQ4nj90rJmCxF1R2AY fTlzpVaGjoBjMpoyF2pvmzfDezgACCamoCHehsYGUkQkKDW4GnDoMWlsREa9 vp5dHW355C379HOFACcPPNb2+phz4sHCTW1dTlfffw/6yc+bPArCWWG/vXog Turz2BCE7b2aOvJaSkSIGemi4vUUtdfwMnktARGCrDPEC20ddr9skYZ+evV3 Xz5Xf/SOifpL901KlRqOInao//jWxfUPfnlWDLgxEq/vvGyu/vRdE/UX7hoP MzAeWm/F6/dvXsri9fVnTYjN1qyd7TcRMfm69JZQEYO/UgbtZes5coNtHpAc 8Of19AKeEE6sFqlxAU3peDZvo2qZhYv5P+PuuycJ4TNsGCHbLLFmhih7PdBZ 9Xuf46Qe5MirGxgt+DndW3DFPG7vqlJgafQ+t9BUgRIuxk/JlQYlhKWlBUYy SqVMDLgQUix+xqqQHWbx2snhVSteCyaXx2mY0o7rJoNgjVAw4K/vn6p33Tle f/+ls554/eZ1y+qvP28qW3oT9Q9etaj+7D0T9efuGK8/dst4sPRYtH53034V ZGv3ENkS32gvZSu7CBlUieIc+RsgY7b2NKEACDzCr9B6Kmc4SFjO5AcePmeh 26gQHyvvobSovjO1UypRkyJ4YvJvWDcva3jQe0Z1lHMBuircGE/sdbDjijnv uh7oi7vVlaUGLKne57hcAHqBk/0l6KvVq7jySxIYsAm7Bp5YkeVgbFupmgDs IPkzgWMrf17b6u0VpanH9bdYjxtPGgsgRfGwvvS86GF96wXTbDlyIO6Vlx9Y f+HZM9lynA2y97E7o9X42B3RcnzmWVn2BPMkgAzEJlT2WPTgYQ0RvdJh4pQq glZoVIFeBoSJrlbpntBJkA4wamTdhQxmS9KbRuw1PcHnOHXIJaFwvVmt24K5 vklxQyt7yF/PV2GAPa7voVA8wL6XivdGGQzoXspjaljfPQispygYwYxYO1+3 bDjvFTywr+eVrg6IteSzz7z4+JSqKdGa3GL23tPHUN7qhsaPNlLojU2WIzGc elkKx4KROdWvQruDv7ptvP675vRrDMsofQMT4xDp++wzpmBcVmMqgpJWlIyN iOCXnhGty/vOiaErQTAvIIJiVZYi+KoLkghyaY7GJUwPNkYtIs/BaFgU2Mlf B9C+QakyxAN1q94QJO8Q8aYleyP4GJlbygLLjNdhB21YIYsSR4SG9hC/npPT 9TkPQczFOOPOfeJz3F6163MeIplldiHkcon+5zgJjzcs6cI6hcd62vvr1Xec tby+4oorymwU90ADubQOlg9DE683YjgOGACGIAItAPgKS6FI5vyqkfoLd0+I 7SlnYN+RQok0fvr2KdigFXw8yZt+5fmCPIxSKIboQxcsCc973lNOgBTCDlUh 1OBJlkTYoI4kOul8k4wubVSvt05ZVQdHT8L0GVSCfYH+Vz7m2qmunjOeGJUA /HtSF5WFxcfrOgwUjrDMLZediePCW7J0iPjSLRROQC5ygKTEkg27MTyoV/xd 9seXv8DkLK8ekt+DK3sjJjhDiLPTQ5h6ffnLCcWaJIPRwvY9ljxhRauk1YT/ jRz2tuvUCczX0u6yYbQE+qMMNHUmdumlq0frLz13upRByRFLBPO2dUfVf3br TGhP2NiiFcdZRAYfi403g0H68MYl9aWnHRmAM54M3hdlMEIXRoNMBmTkXeON sDRS2Gy8yiEYxQgiwv4QRD4ugSLrKwPBl5AfjmuG/GQU0nRE4ihlmeAjkktX y89BbEWou9ols5mDz7H55AmO1wYZiEzxZW68/mrQZTjSLV+aQfWeFLF04HPs kpUjQofdYlnVzZ/zTqk2ZsKGKLlNV3l/rDW6RhlxKe2sUof8v0Az1NusXbtW 3uPB3lZ4bftyL8mw2hiom9V2DW952A1EQcVt/IWLJxSWEWWR4zEf3Lyo/vKW iWSV9hWGDFncdacIUiONzTvvu3FRfeOZq1IxTCOLFQvjtx1h1KT1zySMfMrh xIT9f482V0TtHpOSfY1R3RkZmyZFiI03LqQO/5e/L14dugLyNG0rZ72E5lCG 8vizRIAi/Km8WToyN1B3XA9IWqJBNd6IAKvo99ufellCHW+bz414uQcMaqO2 zadYdYmFxo2qGzdd3ADKdFUmSvg/318j1gDYMnCDvj1XEAkwWRWkuYJIclJ6 aG9ugSpogDuuuzCYEfetW5ayeoBakVUbLqUAqYksRCnLYOXLIEVYvqo4JMMk 8VbtO6IVoG35etdTl9ZfbM4ysTd/9HrUgOpZ94KZkN7+gp53H755pn7muUa+ WLwsTG+U09s/lXhxY94COCKvMSRTXs6FJItD/8wnHTS6Z6JXSc5ljdri4hqL OSGv7QaVIGWNqREkTb5796l9c8zBSir7oDLXNjKGlpKECIVopXaTdGqGr0ok ifunQhgA7UdSEGNrznty6jqYBcWi+/FVxgOAu5ChwXt0YqS2nDDIOH47kiXD osBVKipGG8IBBgoc8FccY/r9tMGagLv8wnXh67rsUudqwFGpZOxEm/W2ZHgz tk17k4FiB0Pu7eWLRSZaUUjxwP6ucZf++RVzLBDffGg25LAhEJ9pPrbtwthy fS8EgnLYRiAwmm9vBALGHWXV0I0flBd64ThZPr2PML3Mp6XQUn+VCoYIxSMq GM0tBWLJ9M4gFCIMbLch4jlBrIedVeMl9fnEvRSVUlCtp4Q5UOoVZOS3vA+Z AMZZEJQAW5UA2stTK94MwVULc5ZWhwJpbnKuuKi+DCQtOF8X4Q7q2jstDblA KbqAxeb0dCzSXuYqzef3La6y/5LJjZmnTdDd8vRQyAb6fQwUvS1BhgeumDEx vU81TNq2oGJa6wtbJ11m1jrHZD19jbh5lKwnDSk0f/203JxjClzWvFTPTlDo 3OOWlvq8WhKef3yjsnXQ5c1nhF3DNZVVwXJQ2etTc7pR3hfjsOq2u+Y3+FKU lmSMLzjr5KTn2JOF3czVBPCqFpE0Yd2u11DOJUp9SfE8GTKc5SEr+FadCwsy vBFYoM98yrig/VdlBWE7zBwTmfH0+JY3rdq0vBjob8nIHrFyef3AJSsDE7bN jMiEj23xNaow4SfumDW5VY8JNbc6lAnZTC+ZkN+zI61zY5elS5eyDl0epdDw XhowFd047E8JqxZ7oOzXr/YCXkalbwG6Q6OKS+dPbO20AsRx+nqo69T+fJRR faZEsED7VVyqpfBv4U8c6bAbdPUl+jJcIT234RdzwQoi3ohCMZIPDH3Vcb0S cmPCsJYjvcnRBhMwpr+FQ1fvu0/gEOFGUYvpiFeN+OzJkOgvmVHLWhdkRhi8 Pysz0nERVAsycGzZLlu2LGjCAyMnLtJDPLRcbA59jwGarQIrIc7AdC97oreh Vhn3iZr1jKjs1zevPSqw5x0bUhemBHOGecCxkRIeDTcrI6ptG39yB723yfaE j8dwUny7oXVZTcAXRisFrryiWgAUEBa1LehlX4KXVK6hth2UiwloWo72amLN UIoxLX2RA/+htX1zwPeUnX/42sX15++bMuz8hqtXBCNXagEXYmfK3P1U7Mx0 dPw3IJKHmKhx3l1vDZha3LSLV/emnG2naMZE9y7wiBXULpHn5OEz6dt4W/hp 0/zh4Vi96+JUuYNbY1wZ+S5oa1vCN9v46XZtVVtm2u1xOWOJrpEUwww/7RkX 7YbTfD+zdD+gNmhmkQWtqP4Y3UJZVYMQJezqZusT9IRmXaSY4uOMUHjTo7cL i0iJXRaKOBHuLdeMB0Ojp/FCKerS/JnGC3v1ezYtrS8/owU/3k31LSwLmjv7 mWWhrGpJstD34hZasBkEIZhXDbFEEBBkY0HgLc6tsQZGvZZ7wGCIMsTMyVus RUCvksNb6Esks2UWDCpbuH0eImvb5k0gMIXbPfQlh8y70M58X0GsQgSjTKXJ wQbrLBQtFNUrsNoZvs8JBIYV2NCKP6OAe0mmnEludmWmzpdwunbFmwsX2coh QSs5Q8vV0WIBkiOStOOGqSAzI0WkvZQcwfkL/uN3N+3nSc6Ik/Hq/dSS42O0 FjhCVucnDNG+RrLcBqhlZohxQ9xyytsI73OM57LJK38wSxuIOB7+hpiJGImV ISFANVK8Sb4l7IvxyV7HLj5UunDMnmR66zFZYPB7JTGsfRiX3wXBmXau21PC co6gaGDVSgRGXsprlYm2RrGWuA8TY2R54ur5+YqaPsDNkJj7/OrgVXDOOArP hBc1TOAplIiNOCmqn0V6PP+269A5nmxNOXBuPTkHxFl0Sp6TKJjXhNSDLnpd 3co24AxF9LDzzOvDRawXeEKMdTVuBs6jeGzhLVn2Z72T2iV7cGSvXIDX88YM dHU+XwiYX0JluEyGxRHoG2GNdWefgRIYnjDbVTuAfXCajpsIpj2BvHzVqory wWMKzwBg8VP3NyfOlglPZtCEDTKDUrERJ+/UJTPUMqElM9Q5hlK+Q0+cNaQN 5Gf9EaOmQKNkfSaohwb6aT/H9j2j9/RxTTMtD+WH0D6QwfBvPZSh18ob98mv MXqQkZQ4UjwZY3RveQ1GN/FIjVJmmYG9ZpGezHpoSW9aASaHc6D/7DNOC8Ym G69oLjl8FJpbtWmirse2BOjRwvkxgAqYcBLzWnvoiCKMRHrG67ddtyx4/eLo mFZVESU44uSnFhIctK3JoULr8COd2bwGuIR33pycnyQkNBqtYuyAkgnY3va6 t/HnSnicV7vBtoYHj/Nmt/DnwJBgDDCFBwbk+yx723NTaw9L5cF4WSDKbo1c YswMPF5cl89Zpo+3ngeBz6BGbvNkT/VBa9oMqwE+GgGeHj45za3GNKFhKzbe kG2TDe5rskI8oddc0A+BsiIuoEGyMYhLaJZF2a/+zygqHA/QzibI9A45ZnTe spy70lgyWGfDEXNOb9kAvy0buTNYTfa7VF5sUHhgOt75EtTWxtT2E6Lh7vl9 W7Ln8SDfp9e0eiLxYM+5qgesxefYAp1wrsamYVkcwprIkzSv3ykfb6W3xSkS r5CnRFXyNdoFd6HzTBlwTvMD23LiZZiD74wMc596Lb3qornk/b/luv2Hyocm 5n56+fC9/q5zJD7GmPw73Lb284dUoBU1o162mQ50bUyZusTcMYABa7rXiA2X mDK9cJrbrEHSu9avaskSc0NZIsQAVubWLgCrN4yhJUMjGWthr+ZB3L1Ves7V uFjDysZ4K9xcpFHGnAfypkswXr0UDa5k9MLJx8W3ztBjYKE8dl97OArLn7Lm ccZXL1nd+huj9SdvG4DfTVHEMH4voaRCuQUOg7PCLfflnxK6CLAd5boW6EyW RlNEvMegM1Vwre/JrWDNshWovA7E2YRuMsAR9557oBEWXZ+TOCoF4W21jErw J8LE5m1fNlhDl4NFWNbYtivXY5w6G/Fep3bAdkkbh58iGVKaW+XsElyCQShl tZhsv3aRdkO9lqu9NtJm6EFfoUJLly51uZmzfv8dboYHXSa5RXufsGLEaO91 ZNcctGzGYHWEJMBTAF1WgLqmadNQbYSYDYxplQJkIVB+LvsFAQGap4RWwqIV PvKglUBCpiEWBbRZ18XbjNjcNp8a+QM/4mGwGTA+43AtGuFwvoeyC151gtfK fbbgVv7cVcf1Hi3MCRMgtVw4NH8NREZffVbRra9obAKF5luTejjjlczlTYyn NBuycEM06YZ4g/PT09P14tlJYdHcwC/Xp5mh0WXPJgST+DVspQRHofrQcEQm nKAfV4IrjjIm0UU2Nq+XyEbtUwQII6qpClA7nwRwHJvrzqnVUVo3cmtXn36Y iakPQ9cbVK8/0KIx17YXJzMszhAwPN5wjyR6y3RV0A1AP/Q1WCh/v+jsPvJL e8M1HPCbUIF68dqx+pcaJtxxwaB+82WD+m1Xxv9vnY/FFtfNr65/YcOS+sFz J8Lnms+nblCkznZCnV2otgeMUYkGQnUBrKVyiJeVTSzsK7eb1ZdLRXd5mg09 lnKuAkwAyO/+3NSY4YVd0ETuTcvlQGi3vZhe0ztLhjki2eeffVp986brQ2Ml TuOBW9XiSEHVwipHqRG1jk9BMcMoof4WNbfCTzj4Nlcxt8lpzftOi6fZ8DNt wmOSwByvuzgyxTuvlZjaH94oWMOP3TZRf+YOmXEg5Qdfv3eyp7VFX332TH33 eUfVm9cdI52K0cDsa8+erD9660T9kZvH63dcMy5r6hE/VC9dopJSKQJAgmOw 0GDwsDGE96DT2ynzfkKG8FnAvImJXOsxjzlzFmD6BojVS2NvleHwMiwt1Src 0xhw7sXEm7jPxcSHqO4A5lBu5LrLLgh9Nhs9CrAgDgNhT0zqALutO2F/Kqgx gSLLSphrjBBsWcrN2JJXboiaZoRY6QM3MCvlubrSp/oFFx5Yv/v6qcQus8op b9u0f3j/DdcdJFwTOiaMh1TGWAB0fXDTeH3GIaOsW66gs1Tycw3npKosRi+R SHFrGDhgtPt4m/uXEFPBv2X4B4U02P0VKZPYDi1eGvzybcIPcidUYFng1M0S wyIqBSbhmQqK0kjMvIiYmRQtzkGEIp965cWhOkuXXFqwovyFLPcTj1pR5oZ3 cyTFMFJPXq41WC/6iGuR0Wa9rxMtJHb/gevHQjU+MVE4ZOQAeuSKyXrzWavq tacmJmmeLzKPNEEv1UzMg/Xqd187qI/db+RR1SNXx1sIiGWEDQfKpyWshwPN gP6UvZvaGdDh7WRz+7I24owDhvgMjG2EBtr6rT2zuq3LxjhYkgya5juwYTyk X8JOjxmGpDuAf4NYNaOE4lfHOY6Xopl0BbhBWJXZGky4UBzjBGMtQWMNLbXt 6TBYCeUdvXSfgGMTD+/jUtp394ScXcH2/tBt+wZ19HONadpw2iI6z1688VBo KsNooqVue0Jvz9wgAPmuy7weguyN05BingRsSU6Fl+bjtGUZbeaRqF7jsTag xqYhvU6XAN5Q5Dl472A+va7XMq+EnN2ZW+ER5IxTLcB5lpLAKwDnyQjmQqUn nCfVKLY+E6Vlqgy0hc+VRwUcSThK1B6AiQUws5O6NCEJy6BebNl0NR/V3xJ4 O+9IQC4t9101f2y98+bli/Vl4VV5SbTfY1vmwtE5Sdpv5dw+j6j2uyFeUW44 pBg5N+/hO/auY49ltr2FqnB3L6TuOGmh8D9l8olWUzGkTp5zzlyL0T3YoZdo 8yBcjOnnYnB4Ah58ksdkd7XK5PBZibxrnzYtPDEMKso6hh9+NJRcUyTdsHau Uw1lvmX+0AQy2rxbzhA1+UPwrijX5sgN7DlSMKke3Z5CbUxAT6HuUsvzxqzO A+82ToIboC+7UnGamlN1nDoGT3qy4GGiSj7lzzFfeB3a4IXLoSj8KzqphG9x GsTDUDFEFoniEjKYFbrlN289JDUY/tuL2ru5FU5lQKq6wGwM5vUaCnkpvVmH 8l2gX64h8aIoj49vnals6uQ3TNHoqKa+hZVnB/ukGVBkVVasb8k2KPXtnkMW 7QOv9WYVqip6rOapGDrgtWzy0sYehsfr/eJlkDhd7OGJoEA8GQAWCjkN8RzU ikxrIHXP63rdCj0sFJ/53CK0/K6HD2zj+exze7q+xJTlfWnNf/UaO3kQsjLT wp/jrk6IWTdcUhq2JrpjGdhLZYQ4iOBrMwPH9mryuuhZ8qdLfasmREvfXhND 22K1xoB1P7jXkk/DQSLNGriGyMn04m3ahnRONbQpYQi5a4U/3pg1NHcTs9aK 5U69tMvNA2f7PI3OjXNL68ZDtnk9QT3pZT9n3Lk/yDCDuqlBu4ecKHu53U9N pb3+Vu2CK7eOwgSJLEcumNboKV/KbJ5NZx8lpmlVmqwc7Yls2K+/8/NT9avO HxM/KrVqUJtje5VDPcIBXKqJNKyi6FOQjxOo95g+JCb8EvhTD7jJdPJ5qVLs DrIXsjN0ET60YNZ6DO+p465R917zVl7PAwh4qKEx55FgbkpzyI0bN6JnQ1cf Wq97MjNkyev30OADp7GkCSJZRvMKdgIjIAMCRpPudn+yeTyw2FxHABr67sO3 TtQXntCHvrszLj0vS4+Nhd4JKRoMDaCBNLyMluQKA/Y7n12T5zKyPgQvjiuH iDuKWEmpVvHZKdpjZGi9VmggNB+XXpKTh/bC5VGzL+WH7eHMIGuLsOsbZKOE E8WJLvuC81W94gG+u5J776Su/oy4L8JC4a81xEJco7K5osbAYBwR0/dcG5MT XfFoaCg5KH/xovE9i2dGkoZ6hnKP5E1X7Lso5E3LfpKcykcblfyanZyYRkHk xJfSHPgSpCKCtU0Mox/DUVLykiY98LZ3RDcfH47z8CeZc7CF61csxnhgIoK4 XGl4epgtXt87Wkte5f7zC0VomFcqd9KiqQ/sUfbj4QvGdA7n8ED0OJ1rf37v TH3CqmBihVvaoqxbaXb04tWZazBzJyM47JjVErLDU5gwLTM3zxokfpG4Cb6j s3tMJywcpMBB4T0+SNWf7ABgWFH2Oqt67NTT30WczgsfgcvYEPMu0yfSQRd6 n0tjAdqY6p18OFlu8Wp5wgmCVqs9Sru++JzILZN7EU3+6vNn6mdsmICOeVZc OgU/JHCHGa1o8W1SlXkSqu4LV/gqXMRU6dqkQT+QXrYA4T5hJUZhoF8L9ZfC MSI3kloMWuyQfjO68cbEarubQ8rprd3eBQvyvGTmNu9zadDGEQEqxkrDxBdO NGxg2tMPzzvEFp/3PSV2oZ7oiN+yMfyBrTP1miP7SWncm9cPLqCU9KIPGQdJ 0dkGljAyh+zsg1lgBat0cQceNIO6E/PpckkU2OsaGsCGcG6ORebDLgdwctcx Jf4iYmYFOctNpaAzhZTYu4RCoj4luCi7OB6TzTqfA5c4WSfjnNvdN0F9rwEl dl9wh42HHfZ90BEB5SPj269dUm/ZOCWKINzSz8X1A45R3fKUwCwTj+wfIDPO HEL6FEzC+U01H5NKYJwFgFl4D+OdwUQ8IRcHtV5qjsQOA+UQkQbETP7iebN6 WA0L0oCNYRhfE8ezI8HI/RhhS2OEM78nD92CmAbz8aS44RFn7M41cyPhEp1B FmesI3wIcf/BS2frDz24pF61YhQpm+p5cX0DcxgeV7behzf5w2tswZEORD+4 B7SNpVn8BKkTMMNlF1+QQtsIE3KbIxiceA8HCDo+FDgZ6Oe8bWMMZ+DYSDlC XIwb9OMCYdSJ487FsHnQa4vaEKYYx4mGBdJBQCzgRJRjIg/JkF5HFA4y/90X Ttf/8Mal9darppH5qJ4f1w+gBekBJKAF2DVeLtnz9zlH7HXi6Kps5zApAyE4 B9XuuDCeYgwC8BTtLT6uA5gZ0g0ILgpFKthig3nhIbwATpAbEugmBTUMug/q Zwk9PA40wKeg7Y5dObu9MgNpks632sEbC2WKKcAalGyoRjsiY8BByXHwr7++ b/2RV+y757ADRuF7viBeYr4iSIuXGPOK9hdK/mLXvQLurj4FXpIYKKSscCaY 20z4ljezaw6hF+/0kqus7AA8KAEDLDUMUJei5ttuvCZYPWedeqLcA6wVaCBV WEuiVSsG7ig3fEpIPlludnKwsar8+gXLSN5ko3DuI8Q6qvONOGslP17Ua5yO mO/9zvJ68/mTol+CO/Mi5enmlwDsQvDCixeVQ4DEy97bFKxXZ1jObRxWP+jl WyJhJ1t9nTgsS+vyjL69aQLD7qLXy6aL2TwEi8y+unXzphT4YNcTiH0WBthf zTUXORQJrhO0lnZKr4irjMtqucrEUxWRJ+pqtyjJhrNSPYL4Ll9+5kQnNPN7 D87UP3rnfvUjP7+Yw2EPEENVCn7iJvroseDlH7vymXdqy/97Fih594rzOGTp pUv6znooJmGmot39aVuj8DgNT3tOOLfgwU1QwokwiUwCufLM1TwkErzLkaMS q8X8zL0inbMYCgy9x+U/zy1+ArFaMJyrMfmnfEaCaqLRHjn44IPFVUDhgkRK LnzSYXB/g7IaFCfeZ9+4X73xjAmE6h8KF+mnaIgMhtB8i5lqjbK9be3co5dp 5+0pS4w5ANrVvIBVXbuR1FgwgcQSET1AUTPWrDbR5I/I85LZHMXnxh5dQJI0 ok8jLRIclO76wmVeMn3KWdcD98049+l1r4OJ3zjcmwu+Mg4381U1jmEQm7W/ /VaFdyBO26fA/ksuWZHdL6gtOQS//+4V9Y4ti1htvTQs30t8te6oMM4Z3iVq hu6x5c4cNN2WAYUTtKVl6eXelva3Y6NjJu5PetOr9y87ZgyD53lq0xsG6cEw cFsB7R4jNIEK+r2uxLSnNjmvOO18zjuz4fS1Av1BA53MrDMMkh44B73LvAh/ zzv1dr1lOUfmXq5m2/j4eH3SsUcYgUFTaq96GCdTrjpul9irwHUNYWpbYLZt Hsk9Yx1LPA2rB8Z82mSx70ZQNZ1+brqVYeLQjfwb1pDaBV6C2etgV2rHDIr3 bUfWomAlJ9ZvXH6jdUL/lN2F4RQOtssvv1yMparvxPpHvePsn963v/j3UD0R yGZRYqxo8Shlya+G31M3fjrxwE5eofo2BvGMyF5EqUpxu6Ep5WB1esAF1nVQ NMMbkORc0rPOPzQoDamO89qZeCngrt5WbSPJtw/bIXAXUWicfKNHxk3Mt/kP R9H266+/XpiByzI14F8eQD/5owPqR1+9jDXIw/G6jLlKaR4EKk1ZZIYmc/oP oY1cqJshDFrdPan0Bbx/Ww7Hsb4ZliZWonbl9doNZaLBuunyDaFq7a71q7qG P3owWs71eerKa2dWgsgkIgg94WDwjDuuWz4ft7xW1bCTjg95A5FfHBvineco vz0x9nzwAEj+5uZrr6H9ltguywiIgqm/uXIxGbsQd+w7XoqK19In40cGqTPX tmzgJ7i9l+61Ff9jfP4nxqHuMQwEEUiRqnFvGN9kcZclANXgDIL66Ro+zfGB jmHSxjk2e9wTEd5DFqWq+RB1QWvtUbIuRc3HuIr8HiQN/58fOTDINgfyXxfX 2l5V7XpFblLeKkjME6ogmetpvBDsS91I8MINOhsld6LNJRMihoAX3IM5ATl7 omATrjpktZC7attOTV7Xac824XYCZcdqyuOZrhdlzJEPCQZMlHFIhpp5/uoT 41sHhN9j0gfqj5qff2t+vt/8vL352b9Ksbf7qpjTC7zSj6+t1teuDOzTvQwV caf2hfErgxAfVkBb+AGO98tbJpS5xup/esWicGioEkF64A1xWbmrlB3gjKBX BZKtKlvgB42wHoPc/NkTRVm+fEPZMp0I6lBuWX9ws7mCpRtNKTZmAiRqRPXM 0ZJQSQ3ToLl+AQrh2SmwlNVOTa3lmHXlp+gvwp6o59yXKCiOT/JUXs9jVc7a P54dy5pf32t+vqCssqn5+Zb+LRES1TOXNb/eX2kZrcdho3u3HMF3C04ba3Fa CPNtmRhVDSaWyb/vXF7Xf3GQaDBJNMjxFDTYm4jTkGnoSkV6sH6vmTj2IZ/r A5MnhFZEdIML/xntkNVizCbcckucEtSqas0l+aaaNeeac5PXnomNJBRKtsIN gMGemyobBgdRem0eIIXpBo3XmjkbnNsnMZeNPqBKJ4xlUpY6XtknlKJMDmWp hb+rOdEdbZ6aCTylSYnAT598eshom+NQtBYnHd4S1zNJh66kJs45hpV6gVI+ BgbO57w8OSquKTtQ6rvkmWO+TxEL5vp9ArAEu4kPWDhuZBBR6MRAdy0QonU+ o0CVfTucn6mdTfa/uImSkzEwjq9RXqOfan79AT6u7PKl5tfv4LWJ4Wy1t99F dJjYaiqwlWBmArL7pvH6n1+9OLCS6KYi41C9ldip0pRDVxbUszg5LOeV03l+ SBmfH4Zm5gIXm9mM82GuPfu41AwJR1ouLbWBebr3GTWAcevMDEWkxcQUhL+4 7wifw+gxgtvQ2WY8elM9rnA3CpXzEuNWPf2wgoebeeF9za/H9oKPFvzupMNH 8XMTKZ4rquldz18c+Edid5RSqH4zfoNzCmlvvRIz5h8v4N+V2/Ra5LPV7LX5 Hl7eOd6aNVOEhieJzdgYZMgG8pRlNbx0xUeEBq5hibjI7e4sNLRZhxPfCH8C WAE2VLCdlw9X/lkR3xpRvngg64jRtzW/vtbFPyN7+d2pzD+p4inyzyDxxJoj +2XKoPqtgm8EmevNC+deDdAdng3AcU3oE07s4Vgs+ZAzNl78sx3bnzAwLoaH b9NgILd+9xLnDJwFk2FNbgsv80FvSDMgB8adhW1ng/k5/MFyxg2RUFCBRiEX PvEQKdtZVVW+n99mpf9qfh4kdpCd/PpeslLnd6eHslKaT4iAXzwG+wnLK52v 1NBJBkfpxKgV7DUG90AbXsyzKyfOxufwRiT9lFbYliOH7sHn9ZJA0ROs8LIp OjMgFz0h3lvacDlwNWacAtJw3PwP+pywaGAtQQD2euqVq2hzwOCUuMV6ov1L 8+tXsO16Kv1+8+vzeG0s/p6rMMwvTmQCS43u5TIz8TU52NCMq3qvvibLrTl4 igJ8ttAMhWITBR9wPpL3l5EypaLyMt9srHgxf/jpcN23kbNWKjvmw7YdHysM LtywFiEnPnfLVAR3b2cbrcwBeTZaeypSe/wfxw6A0HFSCCYmYJnn482vDxW7 /jfNr3cUzCMM8+Pm5/VV7HpfMM+Cy8xm5tlaMM8jk5OT9XFHrgz3P0WUk6eX HBHnlsoaDlimRK2kDFKvNR/bw3oHqUrORNDee6qKc4SICcBbR5To9qdeVvbS LrNKXZOKeNAXpx1LcCQHKtl98LxMeGStUY/BlT/VMMf25teP8KcePI/Xzb8x 89fYPs2v65uff6hirLFgjgWXWTScOUwWipkDAVrOR6KUI+F2rRJC3Bg8w8ic bTmfNNC3OVBNm+zF6IbDJ3LkRgo+bznzAK8DtZdO8DrDgJv5FGLEGNabcnjL Uz8I9TjpCeOJG5UxLvPev9H8fK75uaqKgZl/1L8lXBitlt5+za9PtJhhwW8v jtffxS2A3pv5KGWokIWC1lY5KNsEy19lDatq2/BySOdE4qQME2LSaI4TqqLz zg4fEzDRSnEzIKXs57QQ4JQ1RKl02Pn3gDNlz6hn07wozo+DXDxuz8s7q17Q FMXhuid79EcMT7Fp1X2RLfx2ZdMRw76yJH5FzJu05b9XbLfkqJCEQkS23WIw F6auT0OrcwFrxlPn8i71JrB3DP0mxyfZL1l1xKICgWHfeu0lCUNC+BGvat3r 4cJ2AradsVFl/tjDc5JNYMzs0nR1qtW3ao9V3uILh29IwCdJcufuU/tJSLgr Hm0KxBPuvtKcgQDySZWJcrdymnnc3RbgchLwZJDULJribpvPLQsWGiwAvCVP 8YMu5TMZZ46HNGEMZnkssATju05BuHEVdTsuGr4d85XTPrSEzrIHj9Q4h1fI yEFCA6k4FrFy34riGYYmEzBoUp+Y3XD5KIOElH+SwLLt49XVdvXOZ/OsTOpz eTWHEUoR5Ig9Q7M8P+zJ8a2L7R6FY9PbI47cljUkbckemIpA+UHUNrOgbatK ez3VsZfYNG72IdTQRD36sBTuMIdbUFrLXf6xn6QFvUySBz7NBzELmy7izrBJ G3lEt6+jG3TJ8A1yMz+e3cQea9cM4XZo1BdK6KFJZyNbejRHxm64+Mx0fjUf ByEYAsEHCKSBqxjVWkr5aUoShavr03NpclnozmdOV37aKWHmFvHYn0vjW5gN 19ofESLZH7AHZ+a6UikLha69Todlvz/ulzxsHzPsM27U0264sr79stPDZzQs AG+gwA8gpiCrkAbi7QKdeRIXvGCYdthKzvtCuzfL8nyB8vxzptkY21+3aKPd ojV0DslXW9kKrxLL65wxDCWLM8tT2aVIctNVDwHA4Hc04ZW/ZZtkL7YRAk3+ XeTaKziEDEIhhxCJVaoQ5j3EU0u0AlFz7ocDlOyc81R4Ah724pnnp8W3Lstv 7S426b+VGvC6NTIvdXUs5fVYM5WZdX5sWOQo7+Wonax11SUbikYMg1YJXruQ MueMOGQDsrPzAM2CZ1S7D7luQnGGS+kwFcodJaNaN+Zyu2e0MX3emAWj7mos lbBTYWymYzmVl4teecrwsHR0LsqZbNUDplbcmtOVJlsACZo226wc96baFTkX SDAbZItokzD4BBX1oJEdUmJsad2FK5xdeF98LQSwTz1semgAW1V/K4DNUuo5 7xwV9hoAs9iVW9RONowFkssWFNTz1J9XtAermC1lzwRFHoOTc+QVMUhOE/Op 9LhZ6aKT9t8zNjbG6srYzU+J+3FlfEuOmnI/dk5MTBQx4R7bPbkMpV1kp8/W NZHR63foNeJsQ3YGYQdQX1QaAV21mG0F50OH2Kn0+rl6hiZkh6FDwJl3VE0a EKhuylXDN8W0eyk7hOV0Ri9tkgHoDx0j6G2UV3uWHlybOAw74stiGz552ATZ mwg896VmcfSUHIPdESnw+pdQuWFpHMu5kYxj3ZCr84bsRgdp3RA3OE7B0HRL GGyWQRb9dAgK6XSzXBQzNA+rAvnRiX1dUBTWMl4spKsMkBUiiyhsibJXLnfA 5+t6iLyhtXqF7as7cM3wHZBzvxWS1hMK0slNz2xhRG4Ho2g6kID3RmitvjC4 SdSP2kOuce2lKDjOUao5lhRPHXplmN6+a4FEcwt8hMHSAh244b9nzMbRwdW1 meq7hlGdqxeo2wfrRm4uhqOK8gTy6HZiTN4UjbckxXzZGhy9kSKmdZzXkNJr tautgc2eeB0AWItwNryMLXp74gXHnbSwsVSV6tdZqoe/lOop/CtUR7yxNA/Z d+N2XrI7SFGVaTt5X5XoTLEtKTkjrzUWp3au0Kf3MQbYWq9BLYeduDV1Ge1l DeIV9ow5u1QG6XN0xy3yMhaqUv/6vDEl9ecrJ5JI+PTOSCLLBuSjxLFjJxlK UcblOYLHx3DJyFL+gOBg2ftVBcULG3lD572x7dxsoGwz7QUFOL/p2aNxtggG 02xlq8ijvteko7TeOEzotWdpJ+vstFh6DEZFglfloxJKkhoKRtVyZnyWNhYe NwJGLGcQ167RzZ6M8GnMbhFOITy+U/5kDE+l/lNVtzvUX8PU9y5fmm1cr8m1 HqXZ1hWkZRMQFizOZLz31HOOkagsTnNZQp5el54tiDws6EpJ2hmHPTikVu6L N/nESfQZu1LpvSm+tWMIvVPQ1TPFvcPfkwqvD40XdMU1OFiEfaGARtqXa89/ iqReky2LtbyGDGhDnHuB5rIZVSoYV1Rm71m780Rw6CEqi1lVUDzF34jiN3ZQ fNWqVeIymyZFHPP0wnNeLavXHcuLoXqoNT7ASn0lhs+VGy+mVpxjzJBMOphR 6NtqsI9ZRUigDfVKLA2YncDVUFA9VDrimZDpzIw9UaubMvcXBB9btWbNmt2D wSC07SHrgccIlBViTL+9HVrj9a/xNBN6ioqRg1HU69Fn3SbEPJ8XF+Mt0Ueo ymRCJrwd3N4QGhHO8sy21RVyQO4oSL15KKl7JsLZPATYx4MUN8/kHeR8usJR KZseJWpTFLLPVkrqRcygZXzTC0NPFsRnDuT9BMNj3/U9nqYLK4UZHpoGcQAv cqnUvTlTd0dhFwbqyniTk088PrmVuDu982GANzVMPDcEHXXKbr5Cy9tv3ex5 1VwPZxvz+Cg2j/y8HoLGJVC/7clnXILyFBcPnXHS0UhwebZfbKVRPS0Tv0Vh SRuLqpBhbwyzxJnOpxBSuIA1cK8c2zSuHVHRFrI95yvcfNBkU4IPOt5Bebbc vEgWp3RxNUR/yb7mcw/R+GsfPyhh6qYVvZL2lviWwY3/vr4mXYpOWGG7zaCr bg5g5SC/3AVFFEs9pQc2e+ya4HPzv9wUtDxoPYXtHbQe6s4rzWujaQb8ucQ0 2CuaMbe9OOqMNadEvjUTeWtJ5MWLF7uNXDQryeGQy3WyfI7mWv9BNUZ6KqEu fHJvjpqXDi4RsPxdgry0Mo1lUWOJAGgnnOznhgfOgwVX+ue7ubmyUvm24VQO KHZQmTvhy2O2Nz9PtmY2xyOoJgH1KOVQoRclRRkC7+gueRFcPtvKMB8HK7yg BvfStXAIH5LuBcS50Nez1ubjW1qjZJC/IO6yZctSmBUBPz6anICf2vxlwI9H SSTZpFBGakaYXUnoSxfq4kFivCTh8KFFfvsgD+PtxbqdtI6xzyxxDY7w/fG1 HVNTUymairheiT3zcIR8MNNhNU37I1QCGlMTBtw+CCHxRu3wpG9W6R1NnrwZ P1wpWDbc8kDTnr3n9IE0RpmS9PbhJN1+wAEHtPrke4OvvWAdcUjJ28b1AnhE HkkzAlxPBENg4bE6NtnSFdBmb5FVNlRsV6CaneSxTLqUUTk7vnWHpWogOqh6 0kknpeYyXZOgvSCc132Bw0DAkXCj922aRr3morPFATblWlprYixQ1ByncTTW yaE4D5+3pQ3MatUjvDckyDO/lKB3WoKG5JYSdPPhhx+e4mpe6zuvvtdDsXrp 0HFnvaQsr70kxHDyI/YN4VGaxxG0MoYD0qkb4bXT4XYH0KVTBeU5nuzkSHYy XFEpepflXqbo/IoVKxJFvXGiXXEDLxE9jJVLaQ3Q97UnB6oBGFEqEtOcq5dO rCI+g+4zuWeMH8Onlm9edNjJeBiLSmmpI+sM9DPScizQcnZyIFFIPgpYxZdW 9jDYIUiNhu3c6kx+KJbOphM7VqXyaLuqfT6J3PCLLcKzOhmpKp4eUhoZTiLD WFLnRKLebYm6Jp9M/UBUCTQKUdWfSQzDoDb5UZH0IjIomCzjA4oaLxuNcH7M C/y2E1LtpVUH8pwWyrJzpxnF7FVecxpZSTMSXjhLKXhPJu5uS8GehGrrpUuX 1ic87mi5P+w9a3oUnnAjHcuqbe8/NOO+/ryu8SkerMjzPz1cOp80U0QXGHBE I4ZEQusicEVBx9R9zAtcKR23ZDoWnDi6Zv369XsOOeSQ+ryjB63AlapMru7l Xo/KmIFWI3I0d3n3jIj0GluUfVuZuu3eS22kKatoxgLDxU5x1WzzTg1681Ur HhXMoLWRcM9cgHCzs7MBysuGBLQ21B9zpCLeKk6mw6UsoTTsuPPp7SW4OZZd uisLhUZKqP0NNA3QsnCzMoJO4kwW2EJj9Sj9tup5zDA2pZ+E/m08b0RjGgCm ZbMkc6QeAZ7L6AU+uFnBsObWDFZbqKCzK/DB2sUrFx8+asF1H43Jo+R8liVn OMXfn7k3kXMBtA1wBNz2QSPKxGFGpJLqp8bjHtbMS5bxhpTBDSa017rhBhpY 3jVcwEHxGTtHCfjsTMDk8TABly8P+jRZw+onmIMRjjUVGQTqaNwYQScuEEHd KiKOZQaAXBJT1VhiKb2oRbuXij/qgTFgsL656sQzZNZFqt3bTTVENpPrXKYK hrnOPHNdg8QclkAOHwl5LhLH0V4GJJgXvRpQryOgZ622K/VG00Q4otZ2NlqU WvdlaiXE3Afia4/uv//+KTrJ+mUYeohd4jLOI+/fdvV5oR0XI5Qx6w6HIKvO SwRcnylWIhXZ9fEGgpcRsGFSju86npwEbTcWFHtOPkAS6ynFdh500EEp5NiF +NmbEI585uqrr663Xnh0UpE4MY1ZmyPw2Zqw5g9JrFcK61WZjxfE47nU3AaE ojLJHFkf37o/vrXVIVSKzUqsi2EF5ZAhDwTi9sRsjtYzTzvFQAg5U1IGBziQ DtaDRlfzxatE9dATXuA2lVi2fS9jeCilfi5TKiXCQanVq1cnSu0NrCaHWyZa TZQ1mmo6kkJgS8/Jc1XBRyxlzIMwJksQEx/drL9SPJqMEey8013CGBlKuudm 1VaSbseTn/zkFPrzLj88rjJpQBHyQ/BpJnVXw0yGrsI/JdOYRXA2nhhti3Ka KI/zGacJqOyVCzl4LmNhKPUworVNvX4InGpUCu6Qy+vI+sP6AMUU+uwZ7F73 LC+DvTc1tAykoCMaQk3IISEUz1gujzEn2Gzsi3PjWz+vgsmolUizXqLZ1SfN yMMOw1Doc3sgZQ/V5gGMvaO/q561nehs52KKqEi7Ftw2iUYsmXp27yhotW0o rUY3HnPMMbVYGDlJZtEQ+rQVe09itTJFOAfRNVbPO0ZYZL2CfbjuZNS3mG+W 1kIrQfjtoGhjxOzIVDIWhVLp+ZlKO4uDkkNvLWBD4V4iFsnswbrBS9J49pA3 0s2Li3a552Ct7EcM7cfPPcaXLl26kVSWsSo2RGL9QibWjpJYJ598cmiVK4DI Ep3AZxDaVGQKtAfFFNg+r1mg5+Cw3DKndZUuA7TEbXG2FdAOcJrjBBmLQqmk o3UNNAlUkqZiEouU0nvsDewhXFoDixh/QwkS+ajnx3g4/PF4rDUM53nSJU9x 3Zxbw9eqznaL3I2VoOR4YRa+7QU5TGQMmlG9kqTqpKq/Ocu4Rke1Y+V5KJ6k eRUhCzGSV7dTqiwPPKHF5UwVc/orVbZnqmz1qLLvvvsGqrBPByZBIuiO6y4M JfVTBWlywUDfHH94r0yp8SN5rrCXzGQwoDctDdfgCQTewX5efOtFmRybi8Mq TFCbm5sL8So4bF73gEZR1c9cuyI5bDjQlG9n6GkUQmvqZWAudjEQmy6ej+lZ tck9bqNqzLFtKWFQCn9Arwl0tOEx5dXxln0mp5CE5/Sp4ZAheuIJMprMyF8M 68B3HBe2DT0dPkCrRMo4IUxzMishXrwAISQCJ7EkdrjYa9Aom1s7QvDsll3B NbgauUtuKqinpwMIyD6Z1/69C+TC8UjPoT8/vvXAAtSQxIxQg32o0iNA7xR6 2q6Sp7bZmgvWvchqO6TUTkSr2ihpzPLkuALmlFWCPGgJErjng8pNHDxjH8gi 8geBIEKYRCT1zTn+zIEZz1SdIJZiN4xTxOWIvWy+WrQmmlaUtSt8baca15y6 Sp5ftOQJefpInrFHDz30UETKeFO8VJPXXYnt2zJm5FXzeeUpbYBlL1FBrwOZ AxvOP5EGjPkq24kimrNXafNQps1uS5t+mDOtIZ8EI/RySJ4tye2uvBBRWWjn sRZrK2+YFl0PlBCOs2CbttwpusML3V8QifKS+JYBdkSi9B4544wzQjDn0icG 44BNeaFJ+ZylWcqq0LPVGU9TJiPaweK2V8i05ZpwdFZoPg8fGnR5+mmzZXDQ HMZKlJdmoiRYgSqZEOFauXJlvenUPLGOC/0BTGULrMQZyO4jacVzZ0ru4RSP l7rhyAU4CiqbDQRQicEXxx59eDiOPSdZyfBLmW0KMowFMiBUhYOmMdfhvcAI U1nimoHSN2YN7Q2hZpcOmHOvLG4BPAqe/XHL+9uLc8YcvLGxavXL+dn32Gfv b5dZz3h2DSSZrcVpOGwgalHP42HMOBDAbcnLRB4nBkedz+FIcU5XDEYPf+lT v2zoU/e2yo5LWOTmTSEohC0FNE3+QiCEQ1Y43LzAs9cQtKwXY7Zgc8WDfqTG Im3IpTzp1uJpdQa3AR+omIcgkER3bn6yrVJAcRoUDpBTiobJPTK7PCtueTDm fI7bcpRFQVrjx89mDjt9tlfYZwusHQ3HXpDnm266CREJDydOVPWmL8JdKDlb 7URv8riHnuxqie0YyOb8ih13q1fm50ypZw2ng8FN9GVY6g/O9f3U9AJCaDzJ 3MyC6w05v1oWhLOMlvUc91B7SyfOZA4nfeIdzhMrFJM/LuGE8NQNw+ztaDt4 jSAO3yX7zKio6+oc6xVaeEAPJ2luziJ96lflp05J81h1MjCANn3yEEiRyMGY w3Yedg9CwNBQul02za15P8andJIdKoXgMCYhmLcXzG0OodiqGCO+NzPfv8+R +ZEsH+nBvSrn0rpi37g8NjlhiW/LZ5B0JIHgTBlKFsqR0mwocxWXdxjp0786 vmWS2e+1xAp/6VgloUYIkwg+x6tE3tvMhOf8wKrC59rxFB+SUvlRSicotJPr qZQCv5IpkHI5O60ghL/6mSopPsLyXSIDQRVOPXiJwXY8y+8kZBODo9ymOtqc jMxBHIi62CZG1ufWUecmw/yeTIvUDEmH3nAkJFyiQKDzRjLaCSY4N14oEwmM LysjJCwa0BvG2szYGq1VGjibF7teV6+Nb5m88Lvja/K8yXaJS/TNM1uAuO+N ccrIC3h7xbNe4KMMCW0jqAfXJkxOTq4i9jYnmT7y6/LjpUd+V5aGpNN1vloI YMh4T0ao8aN6IVwvmN2lGr0QrtfVwYuEidlZFFqbo0wf+1edx36nIww6pfLR Y489NsFRpon68C5hW3Q1aPQ6Mnjszqc2vsvFAVDrHHLxDrDYKjyMoapG5Enj hKnkUoe/MPsOcYb0gFAXpGdazdpYIL0GU9wZxLOxPSg6mIqLYrwDSp/uDXkj E2vHIX22c9IMPSeKjqbpNvE45QAcDVOHTn1dpX2Mqe0CdTvQKHPq6GO9MbNu eqzfjq+ZGgydFcahANMcQN2ilJMiExu33JojVmod1Dd3TVZxGlcZOdLHelN+ rBQ1fbtDhbn4Gnv5CWWOII3sUHO7ZSdCVRLTBauy3vB6bbKphQflkfHKgubU UP78tfxQ6YT4rUyDpHoW0UMB2zAsK8K3zU36rL1j5lyw3esdQhBAJy1oDgZ9 qjfnp0rb8rb4Ws07q0OoNgsGCE/VldpgTQYnDwe8hqHBrBxJxd50YYkdi24X b4B9MpPP0WnCxrtdqlsu8Aq4rpyaKNGt7cKs3KHbg27h8VS+uMC4xJVw3o4c 8aTqYzd7jGg3T/Ybuj+sO/fVJ2OnvCsS7DlpnOUi94rrHC1cqN3FSMMLVIqf 7lAf6BHngX7d4dllxQNJ+t4bJl6my9n193IlbHTxyYDcdvN0SCZBezoRBKPa 9Mneap8sxPzfmj+eeHY/3W2JJEhuTdxK7mpVGhSee9+VR8tAnNwRq12lFfXo cUeu3EWPhSROUAWxbT82xzyWbqI5D5ZHVmZvObCEqmYvWOExqDc5gVWqilZY mp8YT/X4VYtLE8oA3PWpfiM/VUrQkBap8fE49a8fEjkHHnhgaNejGrnlF7Aj 5KFz2XZiy7B0hNoZGBepbsRFH0uVnsk76WFmzrk4yq6XXFsphU/VnP6AWmbN LiyL15nSq9FyzCZztuoTvS0/UcqWqM1hnNYDiU3FgTtsaT9lCjiSApZsiO5Z 9uzElMafVyjF4G5PjcepCzAeTM5HDULTz+ig4ikk5IDDBURUApfgEVYF2Cu2 8bw8B4OrxzJRk87Wu3+7fbBw92qlG822Mt890uKmyYb17odbcqXTwY+Ix3FS L0Yp663/tnPrr8/clrRXHA1tvUKWBrHkstVtAAmBpXRTvN7XqYqM0ieFcxdu Iw6EgKtj0ievy0KQ4nOH6kOfc845yc2DQQ0rTfd8mPXFvaIYYZHE9oiWO2p0 qd7x79o7Dnz/2vzx5LAdpgzPDhvK9jivirgHt4PVLtnmtTIj4OQ2jI7U231H vt0U6X9NZv708cPja8YRGxbW9Yx7FJBnA3HAVkr4nmNaGCWot/zOfMspTP8r DtMfobe8bt26YjbiwoUdgRFGtDMU9QswndDwOtCqXgf7OEMDISdzz692HvFI 3SnxobTfhTHqyswkMyrj8eR1PregNuEGrj5ganvlm6Z6x+/ObyUW11yB8Y+O 0s8hdcvD2dgwG17ZkBkBDORVgctrDUXmidBG3eptv8e57R15X9Jrq3VD4PwI ttwrA/PSh2Air3cioxK9pmeerotjPRB1NxFpTT0a7+YYvXX2brw6qLKZAZvM 2rVlQbvEccyM0tNbf69z66/IO5G0yOPC7z77Mdj8Vrk628QtH2eETRZu0uWp Or1JHX9mot8vdzjp2PC7l5KbZ65ewvgSeA88OY9L7Hkuc2liOOe0mTKid4oh Oxy9fVn+eJK94+JrQeEceeSR9UmHL2slxdhq5UQDbslrbslAwMKOC3/FKSip Ix/fpuJ5jNtwAi0hzpBgjIdZoyp7XaaDExc2Ckzv7v357hInKOjKWP+Pj68F m1pAV2Jlcn0exKKEuPNx4XU6IjtsY3FrH3Bu7SX5SZIZvyYTM+Xc2IREKxOG TyBC4/UJ8pRPnK0CwK+JXD6UbzO9diLdEmxyPuNFCiSwPqyHnwZSvQmteicf dO7kFx1ankR3cvTRRwf7mvH5aLVFJh8bHLD2w52MyJXivJPqD/P1U7hTEcFG +E7WzwHyyqPJ2Ri2BlwGnU4NeqsqY+gkNaCU+KN8J8moeXHm1iSOT9LPnX76 6UXzRn9cGHsQ2LubnjAunTsqYhMj8teZWzIBK70lufukBk5R1kHahSeVLNRO g9pZJhSSJ+d6S3/s3NKL8seTgJ1Kt1SO7xgWFNSWuNwOslO+9ZY+5NzS9vzx tJlxoKo1qrvCel5VKBvNnnzHOTLVn9hbCqz2wsx6xXxEa4B6Qw0Hzi3RlI/y +DCCrrf0YeeWtMBtDwtaHL01xnmFIFhqXZaxtHuoS1YLAxMEPQ53qT4Sr2XC Q1qzaUzFOLKhv1l8Sy1DTBCULqPFgaAYKVcyPGpvI7i4WmBrzL7Y/72XbKeT Tzyey2a4wCBhHtuGpxFqJcSf5rdSPEbLoY0Exc7H0fCUWG2uNPTNDcd4NAKs l/8ze2fh8lrBboRrni6PIPgwM8JiIcwyetU/d6763LxLRXPC8LkUoPbK92Ha eTIY59lUf+Fc8v788WQvraXPAWqFY/+sNYd2ypZe6i+VVhw3eU5eNn18HV3q sMMOE7oNz78H4YmzYqqP5gukuMF9eY+TCbM+P18yYTpS4EZA9Fk+5lxKuwEZ 0+RcuhRMEy8t7UmCPtVf5UslN13bNRke2kCXEtsjNx6yqWKP6/VSH7eXCn89 KxMh8V8sWetxGFGeBhrOyeGaO9WrfSLfSLqa9pUzpkRE9o4+KpYlTAnSZ2tw KUKDJS6PM22qT+ZLJXNgS37Y9NpFercI2d19ar9LcRku10t9Kr5l3M578uWT 4oqQL3v0k5IqrQz53vbiUp/Ob6VL3Z3pnY70iL9p1y7YXKBhc73CZ5wrPCN/ PO1ohBr0U1hLjsPCADCsHSffVJ9VGrCzpt1rzWmr091x2nJCzAi2LrvLWfaO fBcJh6Njr7dff/31u6+55pogWR6/6rL/Iy+bdlGbbJtDUec4gznCsorVNLy5 OS77mLPs0/PDFcHRpHKC+hzNl0pPqst+Lr5lXJbbnIfzBuqO5FtK39VlP5+X TZ6IDncwKiJGDcbMss1/YLI4Mab6grPa0zKp0ukTnY8edm+z8lL8aPXX8RvJ rJX/dCSNOViuy6/tAdvYJYx1fHPehMRheiPyuR20v7rKF51VNju0vCavslPV sPw7TiKpvmRXCTt1k7NzV+fHEaIEAsaHr/7GLhHE+kZnl2jzkzzHxasv5yWS ZtAZeEY76xLQd2HpSKvqb+3HwxI35Csmjr0ikwMyK/+Ot1h9xa4SOIkGURYJ 1h52fIcSNfYXr/7OEiuscl3emgIqkCgSXo8ar/pqXiLdyLWZqAXkJZ1r4bGj Wq7+3llCx/cahXeJT5F4jlS78z2mVa6yz1euspMoEg++6mt2Fcpw2QLki/Pn doHNYvvS6uuWWJRPtVtzUX4tUSraFdU3nCVULxtmvyA/CwRP7jgaQtU37T0S PseriG1RJFpu1bfy0yedEU+2pI2oRj3plkCRaMhW37Z7T9vg9YEIl0oUiWZ3 9Q95iSQhugfCjUkVqb3H1NDubtU/xreMDaJ7YI6Z9ZYcYLPoclTfyRdIq1zo bA3Z67thpURXrfqfzhIXOPuyNu9fkrrob1bfzfedllDqGT201pItCEX0nKvv 5SUSV2/IV0ybcnYmB0tdbANUfd8h4Ln5oum1+biK3BygpLJKjCJUP8gELLbB 6iH4tUyR7XGJf4pvmZNd92AX78uZ+ebS6zEIVe3JS2wtCGj00OmZIthDeS9G 16p/dlYh1zTpIVqFpe4Bs4o5NHUVY9c8Ja+cpC7GYKt/cZaYd7bmtPxakroY UK5+6CxxVt6rRNRTLUUgeTFSXv0vu0r4lm6D4fdTLEVk5+XfMRVQ/atdJRwg p+fXkh46xaFIrN+t/i1/PJ3eBQHDXxqmNQZAzOpU/zu+ZU5vJaDRQ0+MrxkD IKawqh/lJdKhG+KLI0K7kzMRWNxijq76P/lu03dPdTYkhtzTsb9diROTlNW/ 51XSUXmKsyEnWjqE7Y+ld9WPnSWeaGnDSxgFFJPT1X/k1dMSJ+fX0m483qdI TMpXP7GrhHt/Qr5o4vIT8iosbhGOUP2nfdLASJq2MAroeHt/4fWIGan+y1lC n97UfRyXby4xVwTKVLVdPSyhmSWjgB6Xn4UV0K/SKvvEr5lTm7J7SQvRUkyW 19NSI/mG01LH5+WTKjomL58E7420zmheJ32HiJF2anVeOxHoTbSOeo3mHI+Z YOvgH2WpBKX0a7SUBkfMSRwpYgXhSEsluCZvpqXURTYnsj6JUU9H2k0IVHqE 1hk46xxtKRv+UsyM0VFvpXXG8zrpeI8UsX754XZXwiP/Oq0zkddJOxSeIWir wzJhWDZ/gxZA4dJtVEByRN6uJBer4lLykGwh/CYtNZWX2l7cv4eKM3rrt2id 6bxOOqIVl2aU1yGZNunIeTutM5PXSVy3Kl877dVKn0q/3V7KnLSr8uXTuXJQ Xorl9XdoqVlnqUPyLqY7PdDeaaDEO2idOWedg/MTp407IN9m4sR30jqL7DqB iiudXVuRH43l9V201GJnKX0Mo9VoKabSu2mpJXmpdJDrkxittjwvn6i0k9bR 2gxjEOyfKZJYfr+8dqLSe2mdffM66WSPj2G1mhYYGAfn92idZZYcYZ3lmdpp vPlSSyLw5Ptoqf3yUumAXpbJllTaUkuiIJrvp3WWO+vsa79T0ZYYsf0ArbMi v5/W0WsblbY4kz/ZHH9A6+xv1wnPEK4dVNqiTBgW1g/SAgfYGw0LLM57lSQj SmLL6flDWupAZ6lFebuScMzkzyVh/GNa5yD7flhHFYFRaTOZNskW/xCtszLT c1fxHaPSpjKV2AT5E1rqYHup8Nd0fi2ptMm8FAvrh2kpVV/myNfDwJRD62Fl hPVRWmeVs86ks3E0ZCoJ65/SOnpYGLthwtm1MUslCOyf0VJAF/N5T/DUpNJo KXaO/pyWOtxZinIy6bW+Q6W/pHWOyOsk9dXPFEmvqSFmTJCP0jpHOuv0MrWT Shu1uxKo9zFaR80Wc+zH74yb9EzzXym1f0XLRCtq2iyjX0mqrPmvDJV+nJaI Bt0EGw6swYzm+iR9L5rGAxgK0FZGQ32q9fkxnHPymZqU9Kfpo2TAg9Dy78/Q R/7j///7/7V/V/v8XwZKCec=\ \>", "ImageResolution" -> \ 96.],ExpressionUUID->"58f89da8-69e0-4f3a-8dce-7879acc37f53"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], RowBox[{"Sin", "[", RowBox[{"b", " ", "x"}], "]"}]}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.881037813538629*^9, 3.881037826539692*^9}}, CellLabel->"In[46]:=",ExpressionUUID->"082f6207-9f73-464a-841c-4b215be27cb1"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}]}]], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}]}]]}]], "Output", CellChangeTimes->{3.881037827809173*^9}, CellLabel->"Out[46]=",ExpressionUUID->"495bd795-62ff-41cd-adaa-77366167d93c"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{"Sqrt", "[", RowBox[{ SuperscriptBox["k", "2"], "-", FractionBox[ RowBox[{"2", "mass", " ", "u0"}], SuperscriptBox["t", "2"]]}], "]"}], "*)"}]], "Input", CellChangeTimes->{{3.88103787531808*^9, 3.881037878188426*^9}},ExpressionUUID->"86090e74-c88e-40d2-b8bb-\ 8d4112906cb0"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "\:0424\:043e\:0440\:043c", " ", "\:0444\:0430\:043a\:0442\:043e\:0440", " ", "\:043f\:0440\:043e\:0442\:043e\:043d\:0430", " ", "\:0432", " ", "8", "He"}], " ", "*)"}]}]], "Input", CellChangeTimes->{{3.881038328963751*^9, 3.8810383435032663`*^9}},ExpressionUUID->"5afa8d22-b29c-4441-90a8-\ 81bd28869b4d"], Cell[BoxData[{ RowBox[{ RowBox[{"myNorm1", " ", "=", " ", "0.6514573663189586`"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"myCoeff1", " ", "=", " ", "25.351749791847226`"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"myU1", "=", "35.89034438287419`"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass1", " ", "=", " ", "821"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range1", "=", "3.735"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Esep1", "=", "24.81432"}], ";", " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ", RowBox[{ FractionBox["1", "p"], SqrtBox[ FractionBox["2", "\[Pi]"]], "myNorm1", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", "range1"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["q", "p"], " ", "range1"}], "]"}]}], "-", RowBox[{ FractionBox["q", "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["q", "p"], " ", "range1"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], " ", "range1"}], "]"}]}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["q", "p"], ")"}], "2"], "-", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ")"}], "2"]}]], "+", RowBox[{"myCoeff1", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ", "range1"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ FractionBox["q", "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["q", "p"], " ", "range1"}], "]"}]}], "+", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["q", "p"], " ", "range1"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["q", "p"], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], "2"]}]]}]}], ")"}]}]}]}]}], "Input", CellChangeTimes->{{3.881038361675716*^9, 3.881038510654389*^9}, 3.881038542239026*^9, {3.8810385811464567`*^9, 3.881038582638068*^9}}, CellLabel->"In[55]:=",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PsiP", "[", "q", "]"}], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "500"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.881038555156019*^9, 3.881038640793738*^9}}, CellLabel->"In[65]:=",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVl3dczf8XxytpifbQvA3RkPa41PuktFWa97b30L6jcbvdRJKEpAhNKYoS kpA+LUk0JBEt+iIaVEoZ+X1+f93H8/F+nPM+43XO+34UAmOdQzjY2NjW2NnY /v87s/jH3jL0o6nJ1MO2reEippTKZF2L8g4kYkiUtOxdME3aNBe6tfwlWhbx fCXVy45SWqrYOMunkK152+Xl50Lo7/kj+9fKlhAv78DjK88VUAvn4tJS2QYI qEp0O/JMG8ntVrVaKBOBV2ePeQo8MUMOw53fv5UpAZu60nHXuwcQnDmyaR9N Dx7LpW69rBiIhJbc688EmYKoX4gIZnQQmT5MOpAqaAH1whWqvPVxiDD4pa9k mwVYH92QcqYlDrF/8bRvJVqAdITVK8HeONQpbmK1IcQCXm0POvHjSxyypbCb HL9vAY/O6Dk5KsUjd9XsHQWB++CvvuGMfX48ij1/6d+NBksQVNlUi2IpqIza UjtKsoGHkrs+v+WmobV5Z7WCKBtIlL8yoSZCQ84HP1ftP2QDxSFO0/FyNMQZ IFjWctUGXofpy37Uo6Fwh8C8shUbyBje+NAvgIa0VLkSg/NtwaXCmL+iiYaw 8f0w228HjMyV4v3+dCTp+aH5ypQd5HxkdScfpKO4VwnGPj/twMSh8WoRjY4U n5fq9MnZQxctj9GVRUeZ9xeU66PtwU1gm1ZNPR055Bfw0jbtB9O6ox9urtPR uM3Y4G9LB8jNVeCvOpuAhK/+/eXp7QBlk+/+BhcnIEtOOaUH8Q7w7SXnA8mr Cai2xZeaVOQAMdc7j/s+SEBM3UmR5QUH2BP140DQZALaKjvlOl/kCFxpzr8d 1RKRWhItMi7ZCSLOC1lfv5uIOqsy/slnOEFK86dQtpZE5Psq/2z/KSd4Htmn aNuViPJ07j7UvOIESa+zYx4OJ6K12eVNc31O4JFVDmI/E1F3QOKNCOUDUPq+ 3rxSPwmF2DHmAvsPAHnLfn29miREMHtTPDlyAML/1r//XZ+ERg0MHHz/OwAH 501PNN1LQs6Ki3XktQOwvPxqWPBxEoK1iDgnJWd4vTuXZDKRhGSukpdMEp2h 5NGJ4EyhZPSm6F7Fw3Rn2PrRVKhEIhmdzRNzNc5xhufOp9trZJMRH+tFg165 M8Qe/KZfoZqMVl1tEtSfOcPfjxV0QbNk9JLDeE1S3gUop9YIY9HJ6NTquepz qi4g/oCHtY+ajGznf5BF9VwgVvPm/OWkZNQ6Uv9AwMYFjgceEjA5kozq6ncw uaguQPjxK37+fDLK9pX8t9TlAs8Wxz5bYsnI7MFPzv4YV9io4UwZ2chARoGf 9QqTXEFYs+dGOS8DafG9Dg447ArJK+fz/DczkJxnY+dSgSuggFeh7aIM9GuN liH5yBVWHzgEiCsxUIPx4obATW5wmWdOld2Uga6/f6+rLuYGtw5e/6pnxkCX j78I+iHnBmcV6FQ/CwbKHanvyNRxgxtL6/8V2jJQdHLsketkNwhZw9KK3RlI 5f4sx/JVN6hNvhvwLYqBZANGdVpuucHV8JLzubEMJMr7PPDYQzf4U7fWuIPC QBzk6+1b+93g0fj6A5NEBppYjThsuuIGY07/JH4fYqDhMvJtbjZ3iPWTGHE5 wkB91jYfBnjd4dcAx7mKowzUXLhjb5CsO6CGYf4d2QxUaPSZPcvCHc6ILGs/ zmOg05PD2gcc3CG8jF9sOJ+BMrO6AqRI7rCeG8k9fo6B6G8q225EuoOuH6/y y4sM5JwUnP4izx0+b/1+xPkyA9kQXG9dLHKH99+cdshcYSDoNn8fVOUOwUmJ 30crGUhTUsls5b47+P8oXzGvZqBNTe/ZpN+7w1my4rZrNxnou9P5zHsz7mD1 yYBid4uBhr7Y87uuuIPTuafR/91moGLpJomTmzxg785DrJ93GehwQ3SxqrgH kAabL8bfY6DQ/UpKXQQPWOetpr5vYqBdaac0/+l7gMHQ74jLD/F6Slo0XAKc HSpPLTUz0Gr9mrGRnQf4yWSwiC0M1PYheF+8vwfwZ5X1VbcykIvlbu+pbA+w eFlTuOUxrp+J7+/TCjzgxDOttC1dDCSTVBUmU+YBhOU5B84nDPSxWojqdtcD psRj7r/oZqCevU9WFzAPiEqZ86p+ykB175isUz0eUDcq8zOhh4ESN08ffzLh AVbcxO0/njGQd1WxQPBXD9glvqmz4jleP+RSwLbsAfdLnSNsehlI+Q2PdPE/ D6Dob5H+iDNvfEuZMR8JphVhLKGPgeZ5aSrDoiRYDv12Zx3nwcuqNyjyJNhW u72C2c9AjbsntAXUSCBmtVb3HedLQ/n3ruuRoHlb8jvPAQY6FG1rYo1IMDvY qvEQ52Auto7/bEhw/OB8ldALBrIuvWud7koCrnxlB1+cdxpF9sn6kaAiJVul HGfhFwTXBxEkWHhmp/cW55WI4RF3Ggk2XS1M4R1koLccOX5LLJzLKtl24Yxd Mvt4+jgJohuuP7HF+Yrez4Ma+STw3Dc95I1zVu+N790lJJARKtYIwTkqNDAh pJoEFA3Bl0E4H/gn8Ye9gQS/f594TsLZoLA3vaSFBGd2+sla4CylfYR791MS 3Lg1+nQbzutPjU6+fkmCFw1ew3/x+KYC54Vp4ySYKjS0eo5z9++KQsEvJCia 7yecwflGPlmudokEr2Oywuxxzt0pcMVmnQSyP7rl1/H60Ls6VT/xkGGG+nd/ Fc6efoybh0XIoLVasGKBs+nqLn15OTKUFXLJvcXrza12CUi6ZCiqcf39Ge/P bLtT1w8TMqS5aT7wx3nAi8v+jDUZJA6/4R3A+3vhZLxHjw8ZQne1R+fhemCp bB8LDScD2wHZEx9xvQRio4EbqGSY23HIbhfO6gtWMXuyyGCd3PKkCteb/Z7T VOU8MqQs3ur7gOsx6thwEn8RGSwlKM3iON+QDTkyepMMRHumVyiu5+fhN7I6 75NBxNlP9DCu99k7SydvdJCh6SN0FHQykIbt4ULmazKYCjkJV7bj/gueFge/ J8NQtcaDsjbc/6Rghf0MGUK6Q8Ly8fmpTSitlfmH25tEvA/C50uzorm9WcUT vgzXtFbcZyCH+Q3dV7RwznBg88fnNcbYrjeH6AkdB7KDRfF5vtk/8trbwRNW RC7UhDTg+/rPyuwfuid8FbIqqqljIB03bQmTx54gxJlzvq0c30dlSTLb+j2B vpOLjaOMgSgzmMLmEU+YcovpJZYw0J10B42xWU/olIq7WoDvL726SLNUUS+Q 085+9h3ffwbcVZGPgrzgG89DOhxmIHfnubjKaC8wHG6S5cX3a0KxXsLJRC/w uronuieVge7pdhzyOeEFB891ihgm4/vBf7Lg720vUGR0LTfh+5t4X6rVhMMb KLMOzwK9GIj57Ob7pU3eYNcoEPWYxEAtYxYbasS8Idg0Eing74EZR6yluKo3 uDm4nup0wufNruP5vKM3JNQsoAf7GMhjLHKktNgb/hsMOB2iyUA09keL7MY+ EHCEKjTyKxk1ijiLNu31gabiEMGDP/H3dttn/Rh7H5gwv/Pkx1IyYtoKJb/1 8wGB+ui4n7PJ6MjZkH+3M32AS3tJ4fZ4MsrbtoU/eMgHoj7aPWZrS0Y3bfy2 dcX6gvWuq0ghPRmN2z8ocmT4ApX7695zzGS0xUlMdCTDF0I3t2Zw4u9zlPsz jtkLvjCtmvr2eUwy2hFkOCnU6QsbLwwe3OydjC4zBS75SPrB1UN+XC76ySj/ Jia43OoHgXpW2RJTSegRn+C60HF/sElaCmvXSEKUkMzkPyf94YmKSLD09iS0 o/XPj095/qDrstIUq5CE8uhfZh4W+UPZc0oan3gSCp9sHwmp94e+j+psvP8S kWgj/e791/5AZVd9vXMgEUUFvIsKUAkApcPTbIaxiUiqqepdfUcAnNpSJGFV noAUj/yOfyAZBPLd5fp779KQrw5v3rGwYFgetApYraIgIdX9VzpLQyAnfWLy alUcijVxjI1aDIWsrt6y+OkoZHHhmEaGZjh03vuhwRwNR53CrMtcRyOg0l+w xP9yMEqM23nZ/tVBWKhaVQ+574/KxUTyOQSioETfoF32lidKfNNoqhQUDS7Z Nzn287mizg+57+6UxYBhecmwDvd+ZPFCiYPnTSz0Raw6nMw0R3Sx8r8OY7FQ dHmPgZm/Oaoiy60VfIiFEurori1Ec8T9QfK70lws3K/X8lia24tC1ri+ybPH gbpcu+9X971oB9+f0d3icRC75Up89k4zVKv+qYkKcTBBftUv/M4ENcU8iJvK jwORQ4c+q8fpI79Unz7y+ThQmWgztNPTR1w5bBoDF+LgEHW3Y8GqHnKrtvzc XBIHKNKypTpdDy1ODfqcuxYHpTdvc7ws0EUa5Blbm+Y4kL+9oKLYpY3KzGW2 3ZyKg+R9Z8wET2qg45KsEYZOPIxssap/IiKPoiry+FX040Fw1+Mn903kkIPm VfTCMB4i/RPLo8JlkajFQOV2k3hQ7ymfFWmVRiWxipQhq3igcGXyBydJottd XXyaPvHw1LHh9wd+YTRKE9jz/lg8BA+EyzsI/jRt+acUm5ON+x84805Y4odp ebbRZcOTuL9VrV/thAXT0LIAnlN58TDb5ujVmfzJdOHZnSFicTyo1Q1VZK5f aOFSIkXn346Hr+x/IodUfrZovSgrsRqLB+UrbweaSwWxd73dpE8T8dDW+WqG z0IIy+z5Lnz0Qzw4Po9JvP5ZCBvtgGPtn+PhguO/+/9piGBZjZOxJovxkH93 cNrkphg2eYlgpstNgW0j9d4Pz0phuaFlU3LaFKBdqPW4N6+A7Q7qLn6kS4E3 vy/W7TZQxD75fffwNqBAcf/7Z1GpitgeMjy/sJsCjf/FDrziU8Km7SYbRC0p YCe537JLQRkDbUImnxcFDv/dYrUbVLDvv0t3rGRQgD3wsb09qGFqITfaw45R QJGp7pKZrIYF9zV5jxynQGFXrU3KbTXsTdmL3OZTFPz/LjPmnJI61rpvw9rh QgpoIM6YfA4N7PTp0KcCNygwMnWJ0HVnJ6aptPOg6kvcPkeqeTReCwvPMea8 9IoCppQV473ZWtjl5X0l/G8o8Hir9ZvMy1qYeLfv4LdRChiE3b1RO6iFrUfl Ehs/UcDctFyHqq2N9TYu8Zn/okDzn7BbX6a1sSjbB9e9FajAfjbb6yPSxd7v MpLeoIxzKJGX3V0XcxdrzK5WoYJqp/3W1UhdzGzyVsSKOhVGXrVeSzqvi4kn VG/PNaBC0Wf5tMezulhreWFFhx0VDjEVZotz9TD9Y+IiBx2oULhZEyVd0cNq ovIPCx6gwtStIxK7mvSwAsPcAB93KpgFRZbrTOhhB3uPyf/0p0LEwX6Zs+r6 mOhawiW1BCocVSW+evpIHzs+/oPvRRIVFmiW8vR+fWy9g8JITKFCGJeo+Pqk PvblVAy58xAVNCL8XKs3GGAtyqESvieocEchXTbMygALd3I7e6aMCmNm2/fk dhtgj67qnljtoYLlD+WdMrcNsfa1grfxvVR4skRVbm4xxLrsVlVn+qng9Xba BJ4ZYn3fmrvHhqig1isitjxliI0bWnJ1jFPh6b70jSKiRhhbNyn95CIVtA7w p+6MNcI4pR4OcC1TgVRx6404wwjjiZIlHPpJBZHfhx0+ZhhhQoIfWih/qODo +aFL+6IRpkiK/OPBRYNWRnRJdocRZjGdmqgoRQM7t5YTNkLGmDVxsuuSDA2k /6W+PiFljNnn7BUXk6eB3tsJgwYlY8xNi/sutzINojYLxN7TN8ZCk3IXZ3fS 4MneRcZxkjF2jKci+p4ZDY4J7L8dccEYy/Hc+EjLggZGE7knRcuNsdwbYfw1 ljSYNZpJqLpmjBU6aVwvsqPBq+7C22n3jLFrhXen091osPnkdAbvkDHWs6M7 yD6CBnI6No5ZPETs3KwJ8X4kDbIkj9bnbCFiQfV3BFViaCBwbZCXIUrE/hiW PvpHoUGies+EAIGI7bJKkLjDpMG5y+b3VA3wc77ZOfk0PN8C5cTE3USsuy+g MyedBmKVYZV1QMQC3ffHh2bSIMx7T9aILRHLD1F+tjWXBucb9TYq+RIxf9WL 5Zl5NHCz3z38KJCI7ZwTSFrKp8GpsIUTe8OIWBftt3LvBRpMJ5+e5I0jYmtH BlmHKmiw4z3j+ZlD+LmVtdtcJQ18Pn3yT80gYnmbWtQ9r9Ggz9bMySWLiGmc rX6jW0sDv+ERRstpIuZ7+ZDO50YajAXvLD5bTMTUQld4XO/ToIF1ueplGRH7 qRo10foQz3dZLX29gojl3vLIudhKA6EA1n+iNUTMh94byN1Bg4ecz7PZanF7 Y3Nj2mMaLHromLy+ScQ6WjU/7e+hAXOfFbvlXdw+40rzg+d4PkDVGr9HxLyt pc5u76fBUvntqoAHRGylfyOwD9HAdZ9vhRpGxHZMjF5oGMPrkT+R3PWEiP24 7BynMEmDM76KrAdPiVhbaLflqQ80SG+zRhefETHP+TtLYZ9p8GlKQle2n4ip 3FbtGfqC61FQ7UjrABFbopeWmc3i91ct9jgOErGcv9n7pRfw+MVimTqviBip jU05a4kGikEZGzKHidi2owm/fizj9f0p/OjxayK2aD07ELBKA/Rf972FN0Ss hT/wat8vGuQouXDwvSViJwZep+7+S4Op0z7Xt7zD/eXvd732jwYXJvPa/uGs TOpQE+OgQ8CVIpexUSK2IG3MfpiTDgp7lOKujhGxVS9CrRI3HZLnI3ujxokY WxE3+TEvHViGxiHSE0SMZ3SeM4yfDq5RYHsHZ0GZ4XoeATrsUdQ/rTdJxCS9 H3nXCNFBd/tTy1KcCUVXeOxF6SDLuHFkCecdoyca5sTpEGp+kqT9nohpyVD9 T2+lA7lX4g0JZyNvT35tGTpUMldED+IMRWZNg3J0mOh+oRCCs/XojmCaAh02 6jsJ2eLsJCMoKK5Mh19W4iuSOJO8fz68p4LHc7Trwwv8Pv+i8TCyKh32hbB/ peEcPvpY5Lc6HdwdQuQ4cI6TqcWKNOnwJedUXjKeT5J3fqSpNh2K7CXI7/D8 DxWlSEzq0uFE7vmM7ThnjQZ2pBvQQUujcrsvXq9cGdtYJWM6bGh+6ZqG17PQ W1v68W7cf0mD3Am83mVFkk9CTenwe2b4fDren3qZz3I15nQ4Win4QRPvX5N3 X4+dJR1qq4hvPuL9bi26mzBnTQezXc+eHMP1MCCT0aflQIeu62pjObhe3nhH Mgad6DD8ZXX7d1xPk0XOKjQXOvjrazSa4nr7JqPAukeig+LvK5+KcT2uePOo kb3owDjzqrYO1+t60bdXv3zw+/3MOK7jet4i27LTNIgOXJIZRaEdREzcp3Jk IgTvh6A2t0obEZMrzjmaHv7/ej22ftFCxDRlvcY6o+mw0K59ceY+ETPw2Xs8 NA6PT7qnzxOfJ9NiVX0eKh0mvz9VamwgYg6yqzl2SXRo0glI0sbnMUa2YM/g YTrwXFl6vgef5wQf5jT1KB2kd77fKIDPO6s4KF8siw451jcWeouI2ClZnVnS STp8Mh1TEz5HxOpk+y9NnKfDmQN8io3HiNicLO/v2Rt04Dwlxc/E91NGz1Bm wE06/HdOWiM6iIhJJZYJD9+iQ6x/DcPBD9fPgKEa1oj321R0/L07EbtyOJR8 ppUOx+vWPPbvI2Jenzvu6Q/RYchObdxcHp+3s6fNa4bpsFqT02oqhfcfvPrl RuhginofqIkRscYLi5+4x+nwrumt1jAfERO2VxB/+xmv7w+5JuayMfa0nkVj /abDdkGrF6Ldxpi/jy3b0l86FI8+XN7eboyt8IrnhLElgDB3iuTOZmNMOai2 wmljArRPc+dtrjfGDomNDioKJIBx7/J/O84bY4YMY+0nignQOu7OfBVojFWa /5gTsE0AXzYD14jvRlhSlLbjffsEuLuoaaM3bYTZFsTUBzomQKH3u3ffJ4yw +U/TlLuuCZDW94uA+o0wg+yxn55+CTDRNi+hU2uEdQ90sVfREuAfoUE0PdQI m/W5ILanNAEkxuvFTfoNMZ0kU5PwHwngMoNVfmEaYGc3+7P+W0mAizrCKIhi gO/HdMx/LQEcp0rZh8IMsMbeTjPyegIIlgYaXnI2wHYr2Vna8iRCR43W67bt BphFn4ejhkwiRIhUh6QM6GPuyvEB380TIehraN0vaX0sZaDiaNLZRLC3SNFa KNbFxi5+zDu4KwkctwUuN1C1MDFa5p8zb5LgXIT+NeyKKsYbv9cvPiEZVmJq j08NKGKDTB+5TAUGvG2YU5FylcDu/nK9zHzKgCYx/k1fczkxl6IwefXQFKgq rc90G+40FQ3qrRsMT4H6LppJblCP6bCqrikjMgV6bBsvHJzrN/W8t+79NC4F oqzyfVNSXpkGDhZcDEtJgbc1qToORpOmcTydYldyU0A148oGPc4Z05M0Ar/s wxSo7NrxYtOvn6ZP7EdWtwgyodwieL37yUYkeUgp/LgwEyY2T2r7beZC4Xei X28QY0JK4qFdbc5ciE+Ko3F1KxO8VNScp0e5kP1nNeoHJSZcc3RrbpvnRoPp zLm7hkxIXNV4W8DDh8Yb5T94+zHh+7x2eZzoFrTra8SB1wFMcEt/tzvcZQs6 JNvQeiCYCZGcylpqeVuQQoZ1qWUEE/jZ1dk3Cwig4APx3lpUPJ6/oldVNgii rzPtwxuOMeHEOXI1aVkQrRBCn9XUMaH3Wq7SwcfCSKCro03yFhNmMjg/rEwK ox2RCk2Zd5hQJ+ESHfFHGHneHb0S2MSEoKCK9/90RBBm48KSameCuXgi12KJ CMqigHb2KyaQr1JLv8SLIqlOqfMRf5ig/zhIU4ZTHOlGJJ18vc6EzSpPA/1k xJH9luEj+9hTodHqIjFLTxyxSGfiFLhSofmF1cvsYHE0NcttOyKQCrdJhytc OsTRDbHlP9ZKqbB1o+zjpRQJhML6A3fYpkIfm4Z2/Igkys8q0XxmnwqpBwe2 an2XRNPV0b+iHVOhIqZDYIBrK8qd3ZR3xxW3v6mlfkd3K/oQb91m6pcKxt9y yVw5W1Ems03ejZYK5JSzxR8MpFDfmTuj6SWpMPXe/m0mXRop3jl8Tbk8FTjZ fFKjsqRR4tAB2pOKVOj5+uek7iVpRJD4vmlzdSrk7avlCcW/JylFGrsL76TC nZvTo968Mkj8auWFuu5UIN614DhXIIN8m8+7v1tMBVcn+hPyeVm019aO48By KlRfS2ukVcqibW/Wa7t+pkLOZOB5+h1ZNLsUsvH2n1QIXxcxV+2XRcnqeg1Z XCw4tz3wJWmjHMq/OCBkIMWC9FMdWWNRcihpR8aj6zIs2P7PQcgzWQ55NRpG KMizIMa+4EPzUTmkOFjSyq/Mgrk/FQn6JXKonjc6dmonCxY/ZvAt9cqhZ0m8 vblmLLi0h6RXuUMe1XE9SuKyYEHzUKn0cV15lJcfp8y0ZIF4Knedi6k8ItW/ Tgmzw+213eaLXOTRp8+VaqZuLNARkjvHliqPODz2Zs2Es0AhzC5W+Bl+/t+y bkAkCyqOxmgGD8mjp5TqieFoFgz85OIqHpNHuacEDdspLDCa9pHu/CaPZLvG PxYyWTDout2NxktARvop5pa5LOD+ujZjrUZAwyl71TaeZYHhiphZqSYB0dt5 hToLWGAftub9SYeAbjsWjptdYkEbc3zdcjcBaRy8m2xSxYKTAeiosx0B9dQz /f9cY4EmIa1mlyMBRfw0t3p4nQV8uiPtf50JqCpjUNT4FgtEL+dNRXkSEKH0 2029ZhaQztYdPR9OQC0fG88ttbBADCn89yeSgHw0WKm321hQtPd1kEssAV28 z2+n9YQFxJnq8Zd0AhIdUv2kPsiCzncPw5UO4/FJLTz/OsSCzSlfEoWPEtCB gKY71a9ZMHPO5s3iMQI6NW+Zvn2MBRl6MpXHThIQL2+wjNI0C+JOTElzFBLQ NUf1DR++ssAgZn8A8yIBWZ5b/FI2x4Ld20+rThcRUIZS+j25JRaIxMx45ZcT 0LpJibPUOgu6LtX9QjUEVJQRYjzClgazok68VjcIaPczDULhhjQY3SLWh+oI KIn0cE6MNw322Krmc90moEXKmywh0TRoot3v+dJEQLn3S2MHxNPg6ljW3rQH BLSLLcz99NY0cP7iU8nVTEBRJ5eVNsunQYfhP8uZFgLiG2rme66QBh+795+1 biWgaqmMhWzlNHh9vOrj+TYC+nRVGONRS4O9xo/u8Xfi8c+PVD7RSAMex537 dB4TkJJ+eU7mrjQ4/nLTD5suAvJv3+XJqZ8G0XL3Xzh24/nx/MTvSgPXL+Fb TJ8SULFjy/bDxDQwk7HJkushoD3njm4xM0mD+lKS5QLOb0ftl/+hNLgmWOTY +IyA/gcVOZA2 "]]}, Annotation[#, "Charting`Private`Tag$26785#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.881038575677834*^9, 3.881038641420527*^9}}, CellLabel->"Out[65]=",ExpressionUUID->"15ec7850-ce1d-4b98-9627-fdb54e76a54a"] }, Open ]], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{ "\:041c\:043e\:044f", " ", "\:0422", " ", "\:043c\:0430\:0442\:0440\:0438\:0446\:0430"}], " ", "*)"}]], "Input", CellChangeTimes->{{3.8810386865704927`*^9, 3.881038721338756*^9}},ExpressionUUID->"c6deb938-a60b-48ff-8b90-\ a74d7ae9e157"], Cell[BoxData[ RowBox[{ RowBox[{"TMat0", "[", RowBox[{"k1_", ",", "q1_", ",", "q_"}], "]"}], ":=", " ", RowBox[{ RowBox[{"TMatrix0", "[", RowBox[{"k1", ",", "q1"}], "]"}], RowBox[{"PsiP", "[", "q", "]"}]}]}]], "Input", CellChangeTimes->{{3.881038727412426*^9, 3.8810387512058897`*^9}, { 3.8810410179467983`*^9, 3.881041059567087*^9}},ExpressionUUID->"6753751b-a669-450c-821a-\ 0e2864446c1a"], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{ RowBox[{ "\:0421\:0442\:0440\:043e\:0438\:043c", " ", "\:0447\:0442\:043e"}], "-", "\:0442\:043e"}], " ", "*)"}]], "Input", CellChangeTimes->{{3.8810387103434973`*^9, 3.881038713560375*^9}},ExpressionUUID->"dc4db538-b681-426a-acc4-\ ce255c7c1d15"], Cell[BoxData[""], "Input", CellChangeTimes->{{3.881038678218144*^9, 3.881038680662716*^9}, { 3.881039279562653*^9, 3.881039296173547*^9}, 3.881041219395603*^9},ExpressionUUID->"b0bf33f5-97ee-414f-b509-\ 6dfa628674e2"] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, Magnification:>1.3 Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"3d2d861a-d48d-4097-86de-d79bc7012174" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 2287, 53, 196, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[2848, 75, 2802, 74, 226, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[5675, 153, 2495, 57, 96, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[8173, 212, 9453, 170, 305, "Output",ExpressionUUID->"8f5003fc-1c61-4f7c-9e11-ffbc3a524392"] }, Open ]], Cell[CellGroupData[{ Cell[17663, 387, 2179, 53, 96, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[19845, 442, 1316, 18, 43, "Output",ExpressionUUID->"fb313b4e-189a-4668-9fdc-a09eadc0f439"] }, Open ]], Cell[21176, 463, 420, 10, 49, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"], Cell[CellGroupData[{ Cell[21621, 477, 1091, 29, 68, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[22715, 508, 777, 11, 43, "Output",ExpressionUUID->"9807fcc2-c6e9-45c7-86ad-e1093c39efb1"] }, Open ]], Cell[CellGroupData[{ Cell[23529, 524, 1957, 49, 185, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[25489, 575, 827, 12, 43, "Output",ExpressionUUID->"d65a4682-675d-48c6-9fa1-0eadcc1e8f70"] }, Open ]], Cell[CellGroupData[{ Cell[26353, 592, 1343, 35, 106, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[27699, 629, 6680, 127, 308, "Output",ExpressionUUID->"2836f5e4-fb31-422d-9104-7e051f01f7df"] }, Open ]], Cell[34394, 759, 397, 10, 37, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"], Cell[CellGroupData[{ Cell[34816, 773, 1356, 40, 130, "Input",ExpressionUUID->"c32958ba-7ddc-4867-b2dd-1fa3dd43d8ea"], Cell[36175, 815, 339, 5, 43, "Output",ExpressionUUID->"3038d452-5cf0-4f34-9bc7-e3a116036de0"] }, Open ]], Cell[36529, 823, 1185, 32, 68, "Input",ExpressionUUID->"75241ed7-817c-4778-b63c-fc8ddf258a79"], Cell[CellGroupData[{ Cell[37739, 859, 389, 8, 37, "Input",ExpressionUUID->"0c53d04a-d321-40e7-bd01-78ab6fb12897"], Cell[38131, 869, 6298, 122, 308, "Output",ExpressionUUID->"b6b6f642-22c7-4948-88ac-69c62af41041"] }, Open ]], Cell[44444, 994, 509, 10, 37, "Input",ExpressionUUID->"79a457e4-2694-4aff-b91a-36c1c1457a0a"], Cell[CellGroupData[{ Cell[44978, 1008, 601, 17, 37, "Input",ExpressionUUID->"21c7637c-3a09-41a5-b3ab-b8f8756d6a35"], Cell[45582, 1027, 608, 19, 65, "Output",ExpressionUUID->"e88a81af-30ab-49f6-b5de-4e2614f35e9a"] }, Open ]], Cell[46205, 1049, 1468, 37, 87, "Input",ExpressionUUID->"3dbd2157-139e-479f-a496-5c8a60d09330"], Cell[47676, 1088, 81, 0, 37, "Input",ExpressionUUID->"bf441233-f9c9-4a42-9b46-8f57bbd8708a"], Cell[CellGroupData[{ Cell[47782, 1092, 765, 22, 66, "Input",ExpressionUUID->"f99238c9-b7ef-4abf-8fe6-dda08a75d851"], Cell[48550, 1116, 206952, 3388, 527, 138402, 2263, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"58f89da8-69e0-4f3a-8dce-7879acc37f53"] }, Open ]], Cell[CellGroupData[{ Cell[255539, 4509, 365, 9, 37, "Input",ExpressionUUID->"082f6207-9f73-464a-841c-4b215be27cb1"], Cell[255907, 4520, 581, 19, 62, "Output",ExpressionUUID->"495bd795-62ff-41cd-adaa-77366167d93c"] }, Open ]], Cell[256503, 4542, 342, 10, 47, "Input",ExpressionUUID->"86090e74-c88e-40d2-b8bb-8d4112906cb0"], Cell[256848, 4554, 403, 9, 65, "Input",ExpressionUUID->"5afa8d22-b29c-4441-90a8-81bd28869b4d"], Cell[257254, 4565, 3835, 113, 428, "Input",ExpressionUUID->"61d6b91a-da6f-40e2-b99d-e31866f61d8d"], Cell[CellGroupData[{ Cell[261114, 4682, 409, 9, 65, "Input",ExpressionUUID->"4207567b-0a7c-4cc5-81be-75f2e42df3dc"], Cell[261526, 4693, 12245, 220, 294, "Output",ExpressionUUID->"15ec7850-ce1d-4b98-9627-fdb54e76a54a"] }, Open ]], Cell[273786, 4916, 292, 7, 37, "Input",ExpressionUUID->"c6deb938-a60b-48ff-8b90-a74d7ae9e157"], Cell[274081, 4925, 418, 11, 37, "Input",ExpressionUUID->"6753751b-a669-450c-821a-0e2864446c1a"], Cell[274502, 4938, 307, 8, 37, "Input",ExpressionUUID->"dc4db538-b681-426a-acc4-ce255c7c1d15"], Cell[274812, 4948, 225, 4, 37, "Input",ExpressionUUID->"b0bf33f5-97ee-414f-b509-6dfa628674e2"] } ] *)