(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 26456, 741] NotebookOptionsPosition[ 23353, 684] NotebookOutlinePosition[ 23780, 701] CellTagsIndexPosition[ 23737, 698] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", "Input", " ", "*)"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"kin", " ", "=", " ", "20."}], ";"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"U0", " ", "=", " ", RowBox[{"-", "40."}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass", "=", " ", "939."}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range", " ", "=", " ", "3"}], ";"}]}]}]], "Input", CellChangeTimes->{{3.8698997367340517`*^9, 3.869899843251645*^9}, { 3.869900162194075*^9, 3.86990022514108*^9}, {3.869900263296324*^9, 3.869900278820773*^9}, {3.869900716799706*^9, 3.869900721797647*^9}, 3.869902565634445*^9, {3.869902624866561*^9, 3.869902626057645*^9}, { 3.869904698619644*^9, 3.8699047019298077`*^9}, 3.870142822697193*^9, { 3.870144764448131*^9, 3.87014476799769*^9}, {3.870144888379427*^9, 3.870144970243932*^9}, {3.870145792817855*^9, 3.8701457939369917`*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"137265ab-321f-4792-b29f-d90a733af3c5"], Cell[BoxData[ RowBox[{ RowBox[{"kIn", "[", "ee1_", "]"}], " ", ":=", " ", SqrtBox[ RowBox[{"2", "*", "mass", "*", "ee1"}]]}]], "Input", CellChangeTimes->{ 3.870144988515087*^9, {3.870145025281687*^9, 3.870145047838258*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"883ffbce-ec8a-4bea-82fd-15315e8e8450"], Cell[BoxData[ RowBox[{ RowBox[{"kOut", "[", "ee1_", "]"}], " ", ":=", " ", SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{"ee1", "-", " ", "U0"}], ")"}]}]]}]], "Input", CellChangeTimes->{{3.870145798453801*^9, 3.8701458265877657`*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"11f78f48-8152-4fea-ae39-cefff89cb163"], Cell[BoxData[ RowBox[{ RowBox[{"phiIn", "[", RowBox[{"A_", ",", "kk_", ",", "rr_"}], "]"}], " ", ":=", " ", RowBox[{"A", " ", "[", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{"kk", " ", "rr"}], "]"}], RowBox[{"kk", " ", "rr"}]], "-", " ", RowBox[{"Cos", "[", RowBox[{"kk", " ", "rr"}], "]"}]}], "]"}], " "}]], "Input", CellChangeTimes->{{3.870152844667737*^9, 3.8701529287583*^9}}, CellLabel->"In[39]:=",ExpressionUUID->"e8582651-3455-4b2b-993a-3b8a29159332"], Cell[BoxData[ RowBox[{ RowBox[{"phiOut", "[", RowBox[{"del_", ",", "qq_", ",", "rr_"}], "]"}], " ", ":=", " ", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"qq", "*", "rr"}], "-", "del"}], "]"}], RowBox[{"qq", " ", "rr"}]], "-", RowBox[{"Cos", "[", RowBox[{ RowBox[{"qq", "*", "rr"}], "-", "del"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.870152939201292*^9, 3.870153012792206*^9}}, CellLabel->"In[40]:=",ExpressionUUID->"73442ce5-68f3-46be-b20d-e95b03dd60db"], Cell[BoxData[ RowBox[{ RowBox[{"phiIn1", "[", RowBox[{"A_", ",", "kk_", ",", "rr_"}], "]"}], " ", ":=", " ", RowBox[{"A", " ", "[", RowBox[{ FractionBox[ RowBox[{"Cos", "[", RowBox[{"kk", " ", "rr"}], "]"}], "rr"], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{"kk", " ", "rr"}], "]"}], RowBox[{"kk", " ", SuperscriptBox["rr", "2"]}]], "+", RowBox[{"kk", " ", RowBox[{"Sin", "[", RowBox[{"kk", " ", "rr"}], "]"}]}]}], "]"}], " "}]], "Input", CellChangeTimes->{{3.870153559658717*^9, 3.870153579409636*^9}}, CellLabel->"In[41]:=",ExpressionUUID->"79d8b53a-83cd-43f1-b702-4145bfa1b3d3"], Cell[BoxData[ RowBox[{ RowBox[{"phiOut1", "[", RowBox[{"del_", ",", "qq_", ",", "rr_"}], "]"}], " ", ":=", " ", RowBox[{ FractionBox[ RowBox[{"Cos", "[", RowBox[{ RowBox[{"qq", " ", "rr"}], "-", "del"}], "]"}], "rr"], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"qq", " ", "rr"}], "-", "del"}], "]"}], RowBox[{"qq", " ", SuperscriptBox["rr", "2"]}]], "+", RowBox[{"qq", " ", RowBox[{"Cos", "[", RowBox[{ RowBox[{"qq", " ", "rr"}], "-", "del"}], "]"}], " "}]}]}]], "Input", CellChangeTimes->{3.8701535782161903`*^9}, CellLabel->"In[42]:=",ExpressionUUID->"7ea5d8e8-b78e-4509-abe8-b72db91fad4a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", RowBox[{ RowBox[{"kIn", "[", "ee", "]"}], ",", "\"\< \>\"", ",", RowBox[{"phiIn", "[", RowBox[{"aa", ",", RowBox[{"kIn", "[", "ee", "]"}], ",", "range"}], "]"}]}], "]"}]], "Input",\ CellChangeTimes->{{3.87015444052124*^9, 3.8701545067203207`*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"545408ce-c343-4b55-92ab-86235b47318e"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{"43.3358973600409`", " ", SqrtBox["ee"]}], "\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]", RowBox[{"aa", "[", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"130.0076920801227`", " ", SqrtBox["ee"]}], "]"}]}], "+", FractionBox[ RowBox[{"0.007691852566567431`", " ", RowBox[{"Sin", "[", RowBox[{"130.0076920801227`", " ", SqrtBox["ee"]}], "]"}]}], SqrtBox["ee"]]}], "]"}]}], SequenceForm[43.3358973600409 $CellContext`ee^Rational[1, 2], " ", $CellContext`aa[-Cos[130.0076920801227 $CellContext`ee^Rational[1, 2]] + 0.007691852566567431 $CellContext`ee^Rational[-1, 2] Sin[130.0076920801227 $CellContext`ee^Rational[1, 2]]]], Editable->False]], "Print", CellChangeTimes->{{3.870154460106698*^9, 3.870154509381689*^9}, 3.870232656456702*^9, 3.87049013866081*^9, 3.871395687237591*^9}, CellLabel-> "During evaluation of \ In[43]:=",ExpressionUUID->"1c4d1337-7be0-4bfd-a895-da362faba795"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", RowBox[{ RowBox[{"kOut", "[", "ee", "]"}], ",", "\"\< \>\"", ",", RowBox[{"phiOut", "[", RowBox[{"aa", ",", RowBox[{"kOut", "[", "ee", "]"}], ",", "range"}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.870154551684757*^9, 3.870154556228182*^9}, { 3.870154586618369*^9, 3.8701545919075603`*^9}}, CellLabel->"In[44]:=",ExpressionUUID->"1d7fdb07-1706-452b-a766-109e6e4a624f"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{"43.3358973600409`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee"}]], "\[InvisibleSpace]", "\<\" \"\>"}], "\[InvisibleSpace]", "-", RowBox[{"Cos", "[", RowBox[{"aa", "-", RowBox[{"130.0076920801227`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee"}]]}]}], "]"}], "-", FractionBox[ RowBox[{"0.007691852566567431`", " ", RowBox[{"Sin", "[", RowBox[{"aa", "-", RowBox[{"130.0076920801227`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee"}]]}]}], "]"}]}], SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee"}]]]}], SequenceForm[ 43.3358973600409 (40. + $CellContext`ee)^Rational[1, 2], " ", -Cos[$CellContext`aa - 130.0076920801227 (40. + $CellContext`ee)^Rational[1, 2]] - 0.007691852566567431 (40. + $CellContext`ee)^Rational[-1, 2] Sin[$CellContext`aa - 130.0076920801227 (40. + $CellContext`ee)^Rational[1, 2]]], Editable->False]], "Print", CellChangeTimes->{3.870154593331479*^9, 3.870232659231872*^9, 3.87049014072447*^9, 3.871395689321123*^9}, CellLabel-> "During evaluation of \ In[44]:=",ExpressionUUID->"9aec959c-f450-4143-9349-2c69d553de28"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"phiIn", "[", RowBox[{"aa", ",", RowBox[{"kIn", "[", "ee", "]"}], ",", "range"}], "]"}], "==", RowBox[{"phiOut", "[", RowBox[{"dd", ",", RowBox[{"kOut", "[", "ee", "]"}], ",", "range"}], "]"}]}], "&&", RowBox[{ RowBox[{"phiIn1", "[", RowBox[{"aa", ",", RowBox[{"kIn", "[", "ee", "]"}], ",", "range"}], "]"}], "==", RowBox[{"phiOut1", "[", RowBox[{"dd", ",", RowBox[{"kOut", "[", "ee", "]"}], ",", "range"}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"aa", ",", "dd"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.870153930327222*^9, 3.870153964168378*^9}, 3.8701541955377007`*^9, {3.8701544153372*^9, 3.870154419959092*^9}, { 3.870154606314208*^9, 3.870154641950348*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"9785c009-8129-47a7-a8f2-2f541851d41a"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellChangeTimes->{ 3.870153975204578*^9, 3.8701540087004557`*^9, 3.870154039956328*^9, 3.870154198378965*^9, {3.870154410662923*^9, 3.870154425045542*^9}, 3.870154654771998*^9, 3.870232664759469*^9, 3.870490143821384*^9}, CellLabel->"Out[12]=",ExpressionUUID->"74c9f7f3-f465-4450-8df6-3ed4464d0f4b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", FractionBox[ RowBox[{"phiIn1", "[", RowBox[{"A", ",", RowBox[{"kIn", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}], RowBox[{"phiIn", "[", RowBox[{"A", ",", RowBox[{"kIn", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}]], "]"}]], "Input", CellChangeTimes->{{3.8713955807785063`*^9, 3.871395628935857*^9}, 3.871395662736054*^9, {3.871395728206418*^9, 3.8713958340074167`*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"23b6297c-d11c-42a3-97e3-5e6d2f9d5bc9"], Cell[BoxData[ FractionBox[ RowBox[{"A", "[", RowBox[{ RowBox[{"65.77566666666667`", " ", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "-", FractionBox[ RowBox[{"99.83497721299663`", " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]], "+", RowBox[{"43.3358973600409`", " ", SqrtBox["ee1"], " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}]}], "]"}], RowBox[{"A", "[", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "+", FractionBox[ RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]]}], "]"}]]], "Print", CellChangeTimes->{ 3.871395630568039*^9, {3.871395664289365*^9, 3.871395692218008*^9}, { 3.871395758524177*^9, 3.871395806080703*^9}, 3.871395840590496*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"a0c80a4e-7b9b-43df-a65e-fd6b61478ebf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", FractionBox[ RowBox[{"phiOut1", "[", RowBox[{"A", ",", RowBox[{"kOut", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}], RowBox[{"phiOut", "[", RowBox[{"A", ",", RowBox[{"kOut", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}]], "]"}]], "Input", CellChangeTimes->{{3.871395649722047*^9, 3.871395660968624*^9}, { 3.871395769529414*^9, 3.87139577079108*^9}, 3.8713958214921494`*^9, 3.871395966073908*^9}, CellLabel->"In[50]:=",ExpressionUUID->"5de06862-2043-4b0b-9eb2-084ab60d79b1"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"65.77566666666667`", " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "+", RowBox[{"43.3358973600409`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]], " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "+", FractionBox[ RowBox[{"99.83497721299663`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]]}], RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "-", FractionBox[ RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]]}]]], "Print", CellChangeTimes->{3.8713959686798077`*^9}, CellLabel-> "During evaluation of \ In[50]:=",ExpressionUUID->"cda7045e-c9b3-4faa-aa88-a89bbf0b0548"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"LeftS", "[", "ee1_", "]"}], ":=", RowBox[{"Simplify", "[", FractionBox[ RowBox[{"phiIn1", "[", RowBox[{"A", ",", RowBox[{"kIn", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}], RowBox[{"phiIn", "[", RowBox[{"A", ",", RowBox[{"kIn", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}]], "]"}]}]], "Input", CellChangeTimes->{{3.8713959911977997`*^9, 3.871396034483683*^9}}, CellLabel->"In[51]:=",ExpressionUUID->"1e999219-f9ed-418d-b404-9d707428f5c6"], Cell[BoxData[ RowBox[{ RowBox[{"RightS", "[", "ee1_", "]"}], ":=", RowBox[{"Simplify", "[", FractionBox[ RowBox[{"phiOut1", "[", RowBox[{"A", ",", RowBox[{"kOut", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}], RowBox[{"phiOut", "[", RowBox[{"A", ",", RowBox[{"kOut", "[", "ee1", "]"}], ",", FractionBox["range", "197.327"]}], "]"}]], "]"}]}]], "Input", CellChangeTimes->{{3.871396041514462*^9, 3.8713960497704363`*^9}}, CellLabel->"In[52]:=",ExpressionUUID->"be14efdc-0ce7-444d-bacc-abfa25f3cad6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"roots", " ", "=", " ", RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"LeftS", "[", "ee1", "]"}], "==", RowBox[{"RightS", "[", "ee1", "]"}]}], ",", "ee1", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"ee1", ">", "0"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.871396143127357*^9, 3.871396171040531*^9}}, CellLabel->"In[53]:=",ExpressionUUID->"d815889f-3d98-4e53-b408-c822c3b58319"], Cell[BoxData[ TemplateBox[{ "Solve", "inex", "\"Solve was unable to solve the system with inexact coefficients or the \ system obtained by direct rationalization of inexact numbers present in the \ system. Since many of the methods used by Solve require exact input, \ providing Solve with an exact version of the system may help.\"", 2, 53, 10, 26410970983181781695, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.871396172677999*^9}, CellLabel-> "During evaluation of \ In[53]:=",ExpressionUUID->"3f24e577-52a5-4afc-9921-7689ebd516e0"], Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"A", "[", RowBox[{ RowBox[{"65.77566666666667`", " ", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "99.83497721299663`"}], "+", RowBox[{"43.3358973600409`", " ", "ee1"}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]]}], "]"}], RowBox[{"A", "[", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "+", FractionBox[ RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]]}], "]"}]], "\[Equal]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1733.4358944016362`"}], "-", RowBox[{"43.3358973600409`", " ", "ee1"}], "-", RowBox[{"65.77566666666667`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "-", RowBox[{"99.83497721299663`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}]}], RowBox[{ RowBox[{ SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]], " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "+", RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}]}]]}], ",", "ee1", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"ee1", ">", "0"}]}]}], "]"}]], "Output", CellChangeTimes->{3.8713961726885433`*^9}, CellLabel->"Out[53]=",ExpressionUUID->"73fa0bb2-a763-47e5-986a-1af01b068d49"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", RowBox[{"roots", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.871396180493724*^9, 3.871396186397656*^9}}, CellLabel->"In[54]:=",ExpressionUUID->"a7b09a3b-0f01-4266-b8a6-eddf4daa62ef"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"A", "[", RowBox[{ RowBox[{"65.77566666666667`", " ", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "99.83497721299663`"}], "+", RowBox[{"43.3358973600409`", " ", "ee1"}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]]}], "]"}], RowBox[{"A", "[", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], "+", FractionBox[ RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"0.6588439092477092`", " ", SqrtBox["ee1"]}], "]"}]}], SqrtBox["ee1"]]}], "]"}]], "\[Equal]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1733.4358944016362`"}], "-", RowBox[{"43.3358973600409`", " ", "ee1"}], "-", RowBox[{"65.77566666666667`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "-", RowBox[{"99.83497721299663`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}]}], RowBox[{ RowBox[{ SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]], " ", RowBox[{"Cos", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}], "+", RowBox[{"1.5178101914030513`", " ", RowBox[{"Sin", "[", RowBox[{"A", "-", RowBox[{"0.6588439092477092`", " ", SqrtBox[ RowBox[{"40.`", "\[VeryThinSpace]", "+", "ee1"}]]}]}], "]"}]}]}]]}]], "Print", CellChangeTimes->{3.871396188677561*^9}, CellLabel-> "During evaluation of \ In[54]:=",ExpressionUUID->"6ffa3de6-d44c-4e88-9265-937bc3ec82a4"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"CrossSection", "[", "ee_", "]"}], ":=", RowBox[{ FractionBox[ RowBox[{"4", " ", "Pi"}], SuperscriptBox[ RowBox[{"kIn", "[", "ee1", "]"}], "2"]], SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"roots", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "2"]}]}]], "Input", CellChangeTimes->{{3.871396333711636*^9, 3.8713963761666403`*^9}, { 3.8713964228004932`*^9, 3.871396439638331*^9}}, CellLabel->"In[58]:=",ExpressionUUID->"9ec5a1ad-b707-4708-b0d0-4e9727efe761"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"CrossSection", "[", "ee", "]"}], ",", RowBox[{"{", RowBox[{"ee", ",", RowBox[{"-", "10"}], ",", "30"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.871396448043429*^9, 3.871396469956916*^9}}, CellLabel->"In[59]:=",ExpressionUUID->"1170dd17-d2fe-4cf7-a25f-f31b77fce8a9"], Cell[BoxData[ GraphicsBox[{{}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.871396471635742*^9}, CellLabel->"Out[59]=",ExpressionUUID->"7ab6a13c-70b4-48ee-8a48-5c8ecb3c595e"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, Magnification:>1. Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"113560fa-e11f-4c62-bef3-31abafb036af" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1065, 22, 113, "Input",ExpressionUUID->"137265ab-321f-4792-b29f-d90a733af3c5"], Cell[1626, 44, 314, 7, 30, "Input",ExpressionUUID->"883ffbce-ec8a-4bea-82fd-15315e8e8450"], Cell[1943, 53, 349, 8, 31, "Input",ExpressionUUID->"11f78f48-8152-4fea-ae39-cefff89cb163"], Cell[2295, 63, 514, 13, 46, "Input",ExpressionUUID->"e8582651-3455-4b2b-993a-3b8a29159332"], Cell[2812, 78, 526, 14, 49, "Input",ExpressionUUID->"73442ce5-68f3-46be-b20d-e95b03dd60db"], Cell[3341, 94, 665, 18, 47, "Input",ExpressionUUID->"79d8b53a-83cd-43f1-b702-4145bfa1b3d3"], Cell[4009, 114, 687, 20, 50, "Input",ExpressionUUID->"7ea5d8e8-b78e-4509-abe8-b72db91fad4a"], Cell[CellGroupData[{ Cell[4721, 138, 387, 9, 29, "Input",ExpressionUUID->"545408ce-c343-4b55-92ab-86235b47318e"], Cell[5111, 149, 1067, 26, 47, "Print",ExpressionUUID->"1c4d1337-7be0-4bfd-a895-da362faba795"] }, Open ]], Cell[CellGroupData[{ Cell[6215, 180, 441, 10, 29, "Input",ExpressionUUID->"1d7fdb07-1706-452b-a766-109e6e4a624f"], Cell[6659, 192, 1289, 33, 47, "Print",ExpressionUUID->"9aec959c-f450-4143-9349-2c69d553de28"] }, Open ]], Cell[CellGroupData[{ Cell[7985, 230, 934, 23, 29, "Input",ExpressionUUID->"9785c009-8129-47a7-a8f2-2f541851d41a"], Cell[8922, 255, 357, 6, 33, "Output",ExpressionUUID->"74c9f7f3-f465-4450-8df6-3ed4464d0f4b"] }, Open ]], Cell[CellGroupData[{ Cell[9316, 266, 575, 13, 65, "Input",ExpressionUUID->"23b6297c-d11c-42a3-97e3-5e6d2f9d5bc9"], Cell[9894, 281, 1217, 36, 66, "Print",ExpressionUUID->"a0c80a4e-7b9b-43df-a65e-fd6b61478ebf"] }, Open ]], Cell[CellGroupData[{ Cell[11148, 322, 602, 14, 65, "Input",ExpressionUUID->"5de06862-2043-4b0b-9eb2-084ab60d79b1"], Cell[11753, 338, 1566, 45, 66, "Print",ExpressionUUID->"cda7045e-c9b3-4faa-aa88-a89bbf0b0548"] }, Open ]], Cell[13334, 386, 572, 14, 65, "Input",ExpressionUUID->"1e999219-f9ed-418d-b404-9d707428f5c6"], Cell[13909, 402, 577, 14, 65, "Input",ExpressionUUID->"be14efdc-0ce7-444d-bacc-abfa25f3cad6"], Cell[CellGroupData[{ Cell[14511, 420, 446, 10, 29, "Input",ExpressionUUID->"d815889f-3d98-4e53-b408-c822c3b58319"], Cell[14960, 432, 576, 12, 44, "Message",ExpressionUUID->"3f24e577-52a5-4afc-9921-7689ebd516e0"], Cell[15539, 446, 2633, 76, 129, "Output",ExpressionUUID->"73fa0bb2-a763-47e5-986a-1af01b068d49"] }, Open ]], Cell[CellGroupData[{ Cell[18209, 527, 259, 5, 29, "Input",ExpressionUUID->"a7b09a3b-0f01-4266-b8a6-eddf4daa62ef"], Cell[18471, 534, 2377, 73, 66, "Print",ExpressionUUID->"6ffa3de6-d44c-4e88-9265-937bc3ec82a4"] }, Open ]], Cell[20863, 610, 535, 14, 49, "Input",ExpressionUUID->"9ec5a1ad-b707-4708-b0d0-4e9727efe761"], Cell[CellGroupData[{ Cell[21423, 628, 399, 9, 29, "Input",ExpressionUUID->"1170dd17-d2fe-4cf7-a25f-f31b77fce8a9"], Cell[21825, 639, 1512, 42, 238, "Output",ExpressionUUID->"7ab6a13c-70b4-48ee-8a48-5c8ecb3c595e"] }, Open ]] } ] *)