(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 46895, 1013] NotebookOptionsPosition[ 45096, 974] NotebookOutlinePosition[ 45494, 990] CellTagsIndexPosition[ 45451, 987] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Mp", "=", "938.272"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Mn", "=", "939.565"}], ";"}], RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ebind", "=", "3.925"}], " ", ";"}], RowBox[{"(*", RowBox[{ RowBox[{"binding", " ", "energy", " ", SuperscriptBox[ RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Esep", "=", "24.81432"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass", "=", "821"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range", "=", "2.399"}], ";"}]}], "Input", CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 3.879568728576707*^9}, {3.880087700774041*^9, 3.880087701627767*^9}, { 3.8800877975749063`*^9, 3.880087987460205*^9}}, CellLabel-> "In[218]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[BoxData[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"q", " ", "r", " ", RowBox[{"SphericalBesselJ", "[", RowBox[{"ang", ",", RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fOut", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{"fIn", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfIn", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOut", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.8782888301901093`*^9}}, CellLabel-> "In[225]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], ",", RowBox[{"{", RowBox[{"U", ",", "0", ",", "150"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, { 3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, { 3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, { 3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, { 3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, { 3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, { 3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, { 3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 3.879569049028247*^9}, 3.880087707720909*^9}, CellLabel-> "In[231]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[{{3.061224489795918*^-6, 1.940807922738254}, { 3.061224489795918*^-6, 1.940807922738254}}], LineBox[{{2.282297965209684, 1.9845387764422011`}, {2.9941734674575162`, 1.9993610965838908`}, {2.99539175357331, 1.9993869892252918`}}], LineBox[{{3.8625306041212233`, 2.018295309200041}, {6.136253562818797, 2.0729010424770893`}, {6.182822765517297, 2.0741037793717307`}, { 6.229391968215797, 2.075310175845261}, {6.322530373612798, 2.0777340178746426`}, {6.508807184406798, 2.0826263971026}, { 6.881360805994801, 2.0925940258106626`}, {7.626468049170805, 2.113295145936034}, {8.843893520444967, 2.14950944837228}}], LineBox[{{10.791098607617133`, 2.2145823816793007`}, { 11.308156126004256`, 2.2335674387661397`}, {12.038647322831405`, 2.261777314434328}, {12.088172683001606`, 2.2637520106504767`}, { 12.137698043171804`, 2.265734881901272}, {12.236748763512203`, 2.2697253612238386`}, {12.434850204193001`, 2.2778067751671274`}, { 12.831053085554595`, 2.2943838922288315`}, {13.623458848277785`, 2.3293019531410413`}, {13.672984208447986`, 2.3315669181473053`}, { 13.722509568618184`, 2.3338420034147838`}, {13.821560288958583`, 2.338422816820904}, {13.979240340272746`, 2.3458005797934325`}}], LineBox[{{17.861058649914543`, 2.568496428309608}, {18.182932399399863`, 2.5914197321642227`}}], LineBox[{{20.612359074679755`, 2.7965701464575736`}, { 21.384177652356154`, 2.8766877426854762`}}], LineBox[{{23.74486483122288, 3.188517520757271}, {24.5194156385197, 3.320930813286054}, {24.545732075444665`, 3.3257699818548376`}}], LineBox[CompressedData[" 1:eJwVy31QkwUAx/Gx22xsbD4Pe2luS4FDwESyJZO9PM9+jgWdoCODAaHkuNuJ gAdYm8hUVIidIA0QbQiIZrwYJBfd5RRFC08pIenAViBnIy44okA5a3qW2R/f +/z1Dc0p3GZlMhgM1Yv+Nz1pJDf+Rhy6pTEfbpzjgn7zKus+1Khks6sOXeaB YTDQp5PVyDs7FeAY5uEbenBfRoYamzlPGzt8PCTGjc2NFaoh8ny8eIIbhJS1 8yPDZ9QwpzfmDGcHwUIqWq4/U6PC9FVgMclHuOCTHw9yNKisj8/8LoqP37hR hE6kgafV1rwTfOSxNpR71mqgUQ7eSSziY+/fSbu/eFeDo8w19YpRPiomHbHn PRqEFx/OHmkTIGE8oNByUwP7zv4j9q8F4HidnatGNPCfCizInxSgZuSEvHlG g72Dm5cSJMtxaqAr4KREi4Z2nmy+ejk6LkwMV36ghc/35EmYkUCI5eg5wxEt kmJKDa+ZCbila2z/1mixyrzscUkugSqnXWHv0GKlzez+toZAgZXMt45rkRzZ NFQxQWBa4aFDZ7RgTJnCzi0Q2DGWHTy5pEXIRe4Ym0Via3z35VS+DqwdzsqL 60isD03kGKGD/N6ejK4KEp0//THxPFmHp5leW1wTidDahp6+TB26+4Vt8l4S wc995jfe14GtmhPP/0Li8f0DbWHtOvz68q0bC4ZgXHH3GgKCKLBcIUSdTAhl SqbkmpSCkT1vdm0UouslxlzJagqnfQ4nL02IZvuWukWawqafP7teVSdEWers gwfFL36H37uMFMHPc33ZdIjCYsF2plkpQtFArDO9mgL5T3o5UkXIUZbH3P2U gvWeacbfKIKRWHmw30shyhQRW7pOjKu3b6aUTlNQNQrIiFQxYsvyw1UPKWyr 7mltcIgR8afnzudcGotT0Vk/DIkROPSOrIWi0SVRDjr2S/C989glx3kaU/sY fa8wpch6K/hhdg8N9y5lS+cGKWY5Ta8a+mj4rSjZkisFs6q7hTNKw8i/MM0d lUJ1/G75SaYedNyzWdulFRhIzrhWItDDcng2Y2FpBVL4vr+yZHqobrvaxl+X Ie+jR7vDlHq4hN0JVK8MrbXilB6LHu8dOCv13pIj+u0zx+r36NGexvy9jFDg Chk5YNuvhxv8aPl2BdLa6xiRtXqs37SryPRIgf8APFhbCQ== "]], LineBox[CompressedData[" 1:eJwVjHc41f0fxu2shKzsRFl5tJD1eeucYxyjiLPzIFJCRSGrEk0rRROJjBPy EBXqe5KQpCOEyMpWOlkd+9fvj/u6r9f1uq97s9cJFx8+Hh6eyb/5fw90BQ9G SuGgMndeZrvORlZIRoFz6UYcmI+ZF/cIbmSltJ5tElDEQWCwXlxftjTrg4Vi TcFWHITgwg0zx6RY5tL0ohmEA09fL8adG5Isio2etrU1DkhmV5/WWEmyzkQu PbrjgAPXWsvwXWMbWMUj9+9YUHEw1DAcPPFKgqVW1XPxchAOvF9KV/qkibPM OYWrXWE4uCN5sUhWVpxF0Yo6q38OByM3+WWn08RYyUkqJ1qu46CTE6RUlS3K 4vN2pyk9xsH5J0NGj3uFWap3DdoDnuBAffHQcm2wMMu0eXU/6z8cCJU5p9uI CbOCTTIJPq9x8NBXSE7Lah1rSLzf8GkHDnKb1bMs6gRZ16yz3FO/4SDsvbKk e5Aga8d5r/iI7ziYjbhnuUldkBU9MzRq8wsHR/ZWuu84L8BS+Dqe0S+Eh2jd 778rnflZrzc+aaoTx0PaH2fb8yL8LB9H/8VCaTzcwR9rTajhY5WyptzOquJh a1L2irsJH8sxb0Zc2ggP/tRjltwdvKzZ/memXDM8HPDjuaI0w8O6pxhytNcK D9LlS4Z25TyssQTuW6YjHiQ6KgILzHlYMadXwnE+eGgReFiRXbSKVVitGz99 Cw9vaWYXln2XMEZEgxz9Hh6W3JPGdwktYfzlV/FWD/Hghqfv7ny8iB3QFn+4 vhAPItXx5TbjC9iEhBQ59y0efHa9fsc5x8VUexTfdUzjIdvFpCJuZA6rle2Z fsXFw/3xMAu4M4cd35+unrOKh/3rn0atEeewFzVqkSdFCeC7P6k9tGwWcynQ 3CWiQYDUW6eaG5JmsMshBlmmzgQYHn3VKRP0G7uynudBJpkAP20O6WTq/8au 5bSkCbgToL7NKF5sjIMlfj4d3+xHALWVDVZnPTlYqkFVqFcsATgq20b8qqew 7BEbp2vPCfBiGFfW/mcCy4naZPfrFQG0DZv9r8ZNYLkykzjXWgI4mBHNE2Qm MOa+xL2qLQSARLP3AUbj2H8ZbZqlEwQIVP5UPH9lFMNInktdKtbQb2JgW+Q9 hLF+7py31LQGQ7Jn06jAEFYTK/A7W9camoJRp0bud6yuNG8kwNgabO0PG1+b HMQ+Sky18Dpbg6b9SmbJhQGsuy48XyfWGjx0bsccLvmG/TG65XZ2whrgRKnU YcM27DTB05PFsYZaX4gNyW3FOAcNAtb9sYZ8bgq7WqUVGzvZEJvKbwMeMyrX WzZ8xr4yl8v+U7YBirPIvUJeNlat6iM94WQDB3wfx7buaMAuCBl9opXZgPoz D7LXYhm2KsPfnfXSBkqKRIdFnEux8C3skTHsL/fqHvnOLMGCwG81pOnv3swn X4zNxLzDM7bfHLYBnjw7RwnlB5j1lFD8B3lbUK8TfG2J3UJiXzpszSP/8q93 bk15VUh6PHWdfIwtKGyd2Gg1VI0Ulg/W/b5sC5zZUzdrVV+jrRpsXN5NWzCc 3ZMvaMNCENhgKf3EFqqTvfdLPKlBp4Ve7h7rsoU7b0IFNGzrUY/RPfVbxnag +fzf32+GPqFBO0pfoIUdrFKGFMR3s9E4Qy7DDmcH8Ymv7Ohn2Gg+JkVpzckO DE5StMbn2Ujy0zU5vyN2wGpN2N0114IIvhHikGoHpNTSrIrvraj4NoM7OW0H Q9NScuTYDiQprBdLWLADduyNoEesDhQUtrAhc80OHtEes+8vd6A91LRtLuJE YK5C1P3gTlStyCa90CKCdveGm4OHulBjOq48lkIETSWtbm3NbjSSrRuk8poI t17o7F+J6EW2MgsrIbVEsDlKtnB62ouYsfVX2Y1EaDFxm/cY7EUBPt5ZFzuI 8KUruP2jTR+a3ZrBHucQofb4Yeb4un7Ex5T6p2KLPTCFJV9GNvYj1RLupNNV e0g1N2YfMxtEolovdM2T7KEiWntq24FBNH839JhOqj18DiyQbvEeRM0X50f4 s+wh4VmfyHDCIIomzw68eGEPDYeiOuT7BlHv6q8OjTF7GJksF3sf9R1lOI6+ nbd2gGV+tTBi0RBSmWy/nyHgCJapgd/8ukeQ96vHeaJijtDYfeKj/c8RVJh0 pixEyhH8Q58MK6+NINPdsh+cVB0h5Esjb7LGKCJFuS6uGjuCk7YBz6ujoyh5 Qyvl3+OOcCBmTZI4PYoEdrNl1T87gqjxpU3Di2NoIrIxKSvTCYhmEcOaoxOo KMTJ89amAzCXkVoVbTGFtkMnpbn9AFhJhNm+ieKgjeUB0wNZzmBq2sB16/qN rKq2TBz3cIGcXyM6K2Iz6E2JLa+J0kFIlv/ng/TOWZTnfLby2/BB2H487ILD 6TnUfrGxZeGRKzyc3TOgXTyP/Dy3Xf91wg3GXEynv6lwkbPBzOFte0lgWFfT 975sATX2NSvLmZNA2e0eSbNyAe27wWwXQCRY/My4EMNaQLtnPW0G8STg2c8v Svy4gOQq2brpB0iQvTk6QWh0AfUQin9LHyXBTv4zBaZKi+jooWPnVtNIED3W n1N1aRGdi++71z5LAj52Oif/+BLK9cdV8nNJ8Mhss3x98BJqcsjr2rFEAm6o 8vPJiCWksP6EQiIvGYJN1t+wjV9CpQmrqdYSZAjz6+c4Fy2hoUSVG8+3kaHx nX9zEWcJEW/QL9+lkeFnzNbHg5HL6OQpLLf+EBluRZ7oHY1bRmnOW+rmPMgg 57/JYC5xGX2XmhRw8SWDdEm6vXbWMopMCY8RPU0GDdOuLdPvltHTm3ejIhLI 4LAt8+tmqRUkk9YRfIhFBsuZO44+xSvoPLfM3+0tGfh6ch36nq+gSVqyj2Md GUJAycDrzQqqUbMjWzSRIUasuSOmbQWdLKg0VekkA0Fz1/UdSyvoQ3U677df ZHD71iR5kLiKYr4fTmKoUYArd+b+Fs4qmiLAFVcNCginPY3pXlxF1HzlCw5a FCBYDNzMEFxDhgHtQeZ6FEhxfnHFWmkN9c5bk5SNKZAkaC6vbrOG9orqqvQ4 UUDOguS4PmsNcQw5THo0BfBCJ9fM/uGBTfuJhfgLFJDQ0hXZt4cH9gXkFG2P pcBgi/64kxkP3CyglKxdpUCYga1XlA0PGGm8Kc9OpYA6WbHawIMHIjemsCYL KaCbvTvzVwoPrJvf9SWimwJtYckvSas8YCiT2OHdSwG9SY10V0FeoOwc63Qc +Pvn9P4gXZwXmIEPutVGKbAevYq7qMgLDqMCA2+nKXClGJO3MuaFlM72STFR Kng128bFBPGCalUo7wMTKlw3lTv+nMMLs+tox2rNqHBqF6e7cIEXGl3NW35Y UqE42pi3hI8PQqd4siwIVBgzip7pk+ED9uZr0OdMhafvSNSJvXxw8cqDcxrH qRBSat/8/hIfjLm9WclPp0JT1XunNn1+eP0o26flIRVcz90cbzLmh9RfcR8X sqnQw/BK6tzHD/uuEtOJTCq0vY1v0aHyw/3qVvMfFVSIb4GdlZf4wWnLSMQ/ bCoYFR41eDfMD2Uc0cVyPhpIkH8Q7MsFoBnzMcsXpEGxydylf2oEYCKRFXlP mAaq/HdL9T4JgPr2kLVoCRoMLZh99x8XgMRjAwK2ijT44ZJ1V1FNEPwGn2/4 uoMGpLPuOUeSBOHSf9LOTbtp4FgoN/EjXRCyzgekvDamQYlwsXByoSB0qm6R zbaggVLjo70GjYJgTU9U9LejgfYeiYw2ISHY3OattepBA9cBEZz6JSEwz8aO cA7TILnSJS8rTQgoQYr5g0doMNFlirfOE4JESbZuvT8NxHr+rC42CMGyg5lh chgNFCTHPqpJrIPOd1JmGsk0GCN+ZDdkroOk568PWGM0oO2u//fpkDBQyrO4 oTU0OMoXoxK3LAwaZbEPC97R4I754PH7MiLwrJjIEW+iQX969kICQQQ6H39J au2kQc7hryMFTBFQvzXV7DFNA6EKPtyHGFEYv9ESkjJHg6/9D34YZYpCadIz 1VouDby4l43+VIkC/np44LY1GkhTPr2NmBeFozFCElNidBDiiFx5c0IMSk6q OkZo0YFHLDi24bQ4nA3knSvUpoNo1EIU8bY47PMfetCrRwePR6c8LSvFoc2X +cNqJx2MbgVyY3nXA9fdKF4Y0eHSlzN0dup6sHJ0+pBKoUOORHnIfx0SIGq/ I7ieTofpivzuOL4N0GYro7TgToe0tup87vYNcAT/1Y/hQwcNFce0+ksb4JrZ EdEtQXSI6smv2asuCZ91ou1KrtPh/ZUnSp2TktBf0NX4JJEOVXXja26CUjCl s8ch7wYdFKpKXxmrSYGo7g+njNt0ML/vo2foKgU4XZprfDYdbjqzO0zfSoEL s7z9ci4dHq132aTSLwUeulLkiwV0sJt8KRW2IgWRug3U8Kd0OMnMJuTslYZn ukb/Hq2iw05mQ4DhC2moYd7oP/yaDk95lUJ3dkkDW/en579v6OCe1ufcsCgN P3VzvEn1dDiv+MYLQxthq560H76VDrXFS1ddWjbCbb2p0+qTdGieLvlAlZeF 3Cd280pTdFD8qLOnGScLz/Qeh8r//uvF99bonpIFth4jXOIPHcAsNeBlsywI 6zeeW+ZjwHVq4bhomhzIFWrxcgUZcCHV5fSDRjnQ1L8QMyPMgBa/h0DlkQcr fZO4CQkGyKRHPIw6IQ/h+rnXOhUZoBmzJFR4SAGuFPKKt6kwoD9lC/XTAwVI 0z+U8EmdAcZfpDKivilAqb5Mct1WBgzovUiqOLwJJvVjUp/tZMARLFrNN04R Fgu/yZXsYUBgtlgR87MiCG/fe+eJCQPitV39hTSUQHM7594jSwaoMq19POqV YOR4cc41WwYYWvme3D+tDP8DgMXNgg== "]], LineBox[CompressedData[" 1:eJwVkHtYzPkXxytNpTTd1Q+lhCQVbaVEn0MtRbGrtG30vUkSEhKtVLpoRYmS SqjtvopQKKPPd+lidHEZoptmrDJDRjS6SPxm/zjPeV7Peb+f8z7HjNmzcZuS goLCSXn917dYqSdNDAZCXcmIvrWlHiueTNHxlAaCZM7/Audy9NhtL1yL7WWB sGlT2D+vt+uyREpJq4YCAQ8aZEU/3HXYWQfjshSnEFDdnpDTqKDDdm0NoEY5 BHyLndRwrNdm/VZwZa81CPiUEbO6c4U2u2HowMw6QwL2zbq0wuMCl+X2bui/ OoOAQ8vDbwYv4rKtfMurxcYERJiGnFKt12Q9CntXnTaX7zsp8IkWT2PB7+fQ EFsC1n+1lE3312C/r5ptT9gRYNRyzWz+uDrLsx2f9HEgIN9nqcG8PHXWaWrl aeRCgNBrovDm26nsEp5+7fQ1BHDHpUMlGWrsUJk0ftpaApSnW7tfWaXGXjn7 wEvJm4A/kl0XLx9WZRfuiRZ+2EiA1Gz+BtZflZ0z541qI0GAQnD7q/X2KqyQ W/+kjiZA23aX0W4ph704ce58VRABWVG74xvKOezM5+ts80IJGLMO2v3dnMPq /3nDb38kAa993aMezlNmOdL4YrM0AmziNTMl/kps+NT+536nCXiouWZXj4kS 2zN3jcrJTPk9TwsaGvsV2erNGttHcgkQt86p2hqpyAbxMxa0lBLwstDa3/ov BfZeUdHliH8IMMu+HzcTfcc2rEpPeQMB+93CrbvfTOLc7pBpfc0EJP3yy9bB E5N4r671bs92Ajx1LqgP9H7DpnE1NibdBAi8xSgifQLHbG661iwjYPNhlZ3J C8fxu8gFr7+NErDdfEa4z+sx7HcmRddugoAWh3W52ufHsDV//f48RRJcou6n r9Mawz2OL+z3ckm4Kxbor1Eaxct0xbdmLCDBNvg3v2buF1xivVa8wYoEi5VZ 9hUCGdb1rDBKsiFhdnbeerccGZbEhkd9tCdhr+HkpcPzZTj7w9iyhpUk7KAf X2Y9hvHIg6n1uzeT8CQ++/BPf3/Cs/MlIxkECc78fsuWqE/Y4yDfto4mwfpz eli/5yecO+94gUoICVt/9YvIeT+EXePVki5FkHB84Udxs/0QPuai6vUklQRq b13e6toP+Kru28TRdBKy4+4PKG3/gF9Kmu4aZ5KglGVie8LgA16Yfcw2NJeE ptzyR8MRg7hdxtGbUkrCxbpa3efL32PDK8pd9iwJJglWavFSMYakN7qb78v9 WndtakrFOHRLw7qjTSRcb3hwPYUWY5564t22VhIyfR6r6L94i6ntUwqCO0lI T5t7MIg/gMtMlUKyP5Nwe05gK+K/wXn8H1+P6FLQ0LxVrdRShH1GrJRH9CjQ ndZpbjEqxOrm/pphBhTUJ5IGnEYhPhRdNZswkvObUd8OWoh9bWl3VxMKWj2j rINQH9Y8ey/1uyUFvEByyWe/HhxDJZnGrqTgpbTtc/LXDuyQes1ydBUFiaJ1 Zw+Xd+DB2l67Pe5yTvCe+cW/AwfoOf5MrqEg7mhwckTtc7y0aWAH8qbAXy+1 LS7uGR6y8rjxw5+CBROKzrx5TzE9qr46LpyCMqUjvN7jLTjM5bCS0T4Kwv9y uJ4w/hBHx76vv7qfAlZ8RKoT+hBnq7Yu7YukID/VZcUrbz5+bJhq6XqEgpB1 gr6x2c0YOWlpfjtOQdUm5xhm8B42jtJ7drBQrp9689DOJTfxwrsJ6VrFFJia 3b/HdavBTooyr9ISCoaOJc3S8KvGvsefNXaUy/P/XtCvFHcdn8w5e8uhigLh CDHHqbkST9Qanh/mUaCwc1fX+/OXcOfXmcyeDgpA5d9gs0eZSD3OQ2Pwhdxv ylMdvnMOLeMcqA7plOsnF8+3Kc5FuVrtKkyPPE9rjE2MYz7aMjfusu9rOb/j 1ARIipHQ+43MWUrB4j832uvGVqG3+RXJyio0vJy8rHDqWx0ymt+5+KgqDVV3 FFsML95BHpc5XZNqch4fT3znykNlNcSiUQ25fluTYF/MXRT6UPuJRIcG4R81 KUu+YCQdjpjxyJgGNm/KbWf6HvqyekVljgMNXg59Y9JPTUj577Iu7lIaBvNn 6GgtbUb6mvpqiU40lJUGXBAfbkZ2gndMmAsNrYs6u/jKD1AYmW3ktpKGQ9JO u1/1+Gjg4HDCoBcNFZVZWU/NW9DLsvIAFERDw1SDgl0Gj1Cd+nS1/jM0ZDpd aAqzECDTpEZxVCYNTm63b0y4C9CxHxF8bhYNPZ8KvHcxArRRJkhxyqHB5pT5 0vE8AZL0ntY8eYkG+2jD7CbtZ8jomqbeTxU0RLYKbHyHn6HI3zgmRxv/my/r Xl/cgeyKZD8Zj8n/8ehi4YGGTlRHUornxuVzb+Puo12dyG1ma7v2BA1FvbYj 0UOdyPdM4Q7l7zR8Naq2gVldKDJu46X3UxgIdsxUmdzXhWq3VKnXaTGwSOLe xBh3IzDYJfKzYEDbRtF8Z3APWn/s37R0PwaMVqUxYW2v0Jq1aV6O/gxsNj6w 6IPoFQKus3rP7wwkMdHuW0ZeoSVZaUkWgQzwJGZVGrP7kH6Jc3T9VgbcempK ru3pQ92Np3YMhjMwfdz4rIGqEIVwlrt7nGDA4taDIKt8IaL5A4rSkww0zas2 iy8XooDU0zgjjYHYiimLnl4XIi+Dt8v6TjPwY/yeJ9EoRLbzziyJzGZgBi85 1eKdEI24i02Kihl42TZgmWQnQh/VMno8SxngVt6JiXARIXHrityPZQyENHy8 GOguQp2+GQYuFQw4ZruTxn4ixAtynfb0OgNjy+9U+kSJUM0CCf9gNQNPv45a 6caL0JXBjGTjm3I/T7nqYYoI5UdIlHbUMtBu9rHfMk+EcpwyWe4dBkJzRcWP i0TozDfXmGoeA3vftyXvrRShFFbiElDPQKJn4ZlpN0UoITFz/AdmYK716raC ehH6P9mIOYE= "]], LineBox[{{0.580471590483438, 1.9514200875838648`}, {1.4721511207270248`, 1.9683836516713138`}, {2.186634699903562, 1.9825925710320407`}}], LineBox[{{8.939556785751089, 2.152490616868101}, {9.207993935126206, 2.160967792009999}, {9.299305334729599, 2.163889625808596}, { 9.481928133936387, 2.16979276003634}, {9.847173732349962, 2.181842875836804}, {10.577664929177109`, 2.2069690219426485`}, { 10.59036934281167, 2.2074186517273064`}}], LineBox[{{15.835754719747317`, 2.4414299437024716`}, { 16.687319194227936`, 2.4915397677971853`}, {16.73197212591572, 2.4942919725966415`}}], LineBox[{{22.763523401115037`, 3.0445179991141096`}, { 22.947972382630205`, 3.069820622958715}}], LineBox[{{3.091055018879432, 2.0014259047659824`}, {3.343293478053214, 2.006857035698921}, {3.7422877758768687`, 2.015614922736117}, { 3.7668673388151013`, 2.016161269426587}}], LineBox[{{18.917112571488154`, 2.6470421147113985`}, { 19.747774596335077`, 2.7162552749872737`}}], LineBox[{{21.479840917662276`, 2.887241944107288}, {21.568829651773182`, 2.8971921120413873`}, {21.76553538422295, 2.9196521759320224`}, { 22.158946849122486`, 2.96659757335866}, {22.200608173424442`, 2.9717348968934307`}}], LineBox[{{14.074903605578868`, 2.35032866174145}, {15.180775289873466`, 2.405721642181061}}], LineBox[{{17.05545921690165, 2.5146262200643115`}, {17.42684360447982, 2.5388652813832806`}, {17.76539538460842, 2.561843832651462}}], LineBox[{{0.09344920708285748, 1.9424942553287703`}, { 0.18402156866230668`, 1.9441367148350859`}, {0.36804007610012357`, 1.947498215336329}, {0.48480832517731554`, 1.949648438817852}}], LineBox[{{15.52807047584685, 2.4243668761537593`}, {15.740091454441195`, 2.4360684247050886`}}], LineBox[{{18.492341839908118`, 2.6142740417093675`}, { 18.821449306182032`, 2.6395162373133374`}}], LineBox[{{19.94153124592807, 2.733470483245029}, {20.169965455101522`, 2.754330941876069}, {20.516695809373633`, 2.7872225167896643`}}], LineBox[{{23.226047178497186`, 3.1094414545487137`}, {23.64920156591676, 3.17340116189556}}], LineBox[{{22.30769504889355, 2.985091982002679}, {22.552358314022023`, 3.0164564905150737`}, {22.667860135808915`, 3.031688294707287}}], LineBox[{{15.343333012503038`, 2.4143697715089045`}, { 15.432407210540728`, 2.419167306163315}}], LineBox[{{18.278595664705986`, 2.5983979935088914`}, {18.36672775876869, 2.6048959453198033`}, {18.396678574601996`, 2.607119481454969}}], LineBox[{{16.827635391221843`, 2.500232297983178}, {16.959795951595527`, 2.5085393163924277`}}], LineBox[{{24.641395340750787`, 3.343565604471415}, {24.655365320941417`, 3.3461915693103883`}}], LineBox[{{10.686032608117792`, 2.210818688735391}, {10.695435342311011`, 2.2111542530000747`}}], LineBox[{{23.043635647936327`, 3.083246216359192}, {23.05083928655206, 3.084265758591256}}], LineBox[{{15.25449064936491, 2.409626312171736}, {15.25449064936491, 2.409626312171736}}], LineBox[{{19.8193359030368, 2.7225634976773403`}, {19.845867980621946`, 2.7249171149694478`}}]}, Annotation[#, "Charting`Private`Tag$48818#1"]& ], {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 150}, {-4.790211036257171, 7.236631161024249}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.88008674094413*^9, 3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9, 3.880087992161138*^9}}, CellLabel-> "Out[231]=",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myU", "=", RowBox[{"U", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9}, CellLabel-> "In[232]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[BoxData["48.01652525001887`"], "Output", CellChangeTimes->{ 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, { 3.880086743953726*^9, 3.8800867473357487`*^9}, 3.880087715279483*^9, { 3.880087808333634*^9, 3.880087992954145*^9}}, CellLabel-> "Out[232]=",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myCoeff", "=", RowBox[{"coeff", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "range", ",", "0"}], "]"}], "-", RowBox[{"coeff", " ", "*", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",", "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.8800866773952007`*^9, 3.880086704667201*^9}}, CellLabel-> "In[233]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[BoxData["8.088071130275875`"], "Output", CellChangeTimes->{ 3.879570442808729*^9, 3.87957064413636*^9, 3.8800867486475277`*^9, 3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}}, CellLabel-> "Out[233]=",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myNorm", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"myCoeff", "*", "A"}], ")"}], "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}], "\[Equal]", "1"}], ",", " ", RowBox[{"{", RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.8800866795052*^9, 3.880086723648281*^9}}, CellLabel-> "In[234]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[BoxData["0.7696211451653487`"], "Output", CellChangeTimes->{ 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { 3.879570637910142*^9, 3.879570646893675*^9}, 3.8800867527823553`*^9, 3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}}, CellLabel-> "Out[234]=",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"myNorm", " ", "myCoeff", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { 3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9, 3.88008672825279*^9}, 3.880086759707464*^9}, CellLabel-> "In[235]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlnc4Fd4fx+3M7L0uV8gOyag+x6qkbCozI3tHIdIXWaWQrWyVsgpllJXs mRGi7HuJIuRexO/+/jrP6znPc57zeb8+5/McEQcfkxsUZGRkreRkZP9fn911 oDnh9ODstOZbkZOTUWfbhjGXrmDcoIIpRakd4wiH7Y2RGEwwjEa71KdhbsKz 5gRhakwchHI597ljIsHzTKDXjnAmyC0f46LCPIHhPdeUdeES2NPQaE0QKoQj 3+Yk1oTrwH6QyrKDpwryu3P9fgp3waFlzoUW8k9QXhH3zVNuEiY1pqQuOA2D CwxlrvrPg9P27WqlqW9AVvC3/tuDeWheLT0SsvcNMqgEprqL5mEv705DBd8U dHY5C5WMzcNNk45d/NUpkDTbL7ihvgAdol7DiSNTgHeVKP1OvggpFxvxxZ3T 4J4c1jiYuATFZSX5LoU/wHvx+Hx1+TJkZWkGND6ehRnbCdqWrmUYrJabkciZ BdPxWLm+hWXw4wzZiyqdBdUeXPAi3wpkkTHw8HXNAuWbYhaumBWY3+f8Uk4+ BxmhImdv2/0EcYn48mDfOWhh581UY1kDvb5aChOdeVBO6GzUlV4DG8+IJCHj eXhOE7RgfG4Nxuxyc6dt5uEhcUzePXQN4kTUuJRuz4PFj5T2LPwa9Dl2BqqX zMPKK5atveZf4LOe6VRFvwD0IlESP1TXQXb/uwL7pwXoPJ0kf1d3HTzy1acc +hYg+mrOKUGTdcC9tJku/roAFIm156081uEzC1Un9eoC7B6sunx9tg713D1J MhyL8HPK/OUAxQYo16a+ZHFYhN4MiePNvRugoCrDQL+1CPHVyifsJjbAydJy tXZ/ES4MaqodLG6AxJkCd0vqJWg7Yq13+nAD7pdEHA/kWoIPtxLdak/8gbTX LsJ0qktQZkYsqUz7A2o+rWHPg5bgEUuPVP71TWAP7T+f+nsJ6k4J1hh4b5I8 AiN2ZwkWbH1g/84mDAgvOeUdLIFGGbvZlfRN0PEP/OjGhAO8nnUYU/8mRF9L CFKRwoF25NpAsMYWDDTuFVVdx4H3K7CU0NuCE/FEbVUXHGQNJS2MWGzBxzxa iVIvHKwLqxDl/bdgkPbPc/sQHOR8uCu69HIL4t9XM1M+wQFhmznQhGsb/Inx 9fwtOMAKOhweYrfhs+iZB8ntODDQqY4rO7ENDx2+WBF6cFCcfDWH9vI2EDBa a4ljODCRz+9ojNwGjIuY6/YKDu5abBp7Jm1DIGNs//xvHJSE6U7x5m4D+Wtt 7pYtHJD1Lq8H1G/DecdFzQsHOChzVeST3tiGs/w3n8Wy4GH8cVTR+ME25OvN vl/jwAPV+zG5aMa/sBkvnaXJiwdL6jvasxJ/wW3hsKRGBA+0BZ88023/wtNa hsL+E3hw+GbWRNn7F7Rar0a3GOCBPnvWy2/iLyi87gukMMHDW0tvgR9LfyE4 8EqBojkeKCdjguvJd4Ds9M+S61Z4KBqvV/I7tQNrhzdUN53xcCnj/Nx3nR1Q eRw5WuaGh60rI4mXTHZgcvVG7hVPPOh+XVuT8NoBrJjs2yA/PCyNYl5+L9iB wVmNwvUQPDxKLbO4VLkDtULFgWJheFAxV6eu/7gDPLJuLufD8RAzYuqQOr4D ASnHCy0j8aCQMsNCubQDVusWKxfvk/Iw9Wry3dyBxGOa+lIxeJAcjha4dJQA cmpy5u/i8TCYzN5Tx0+AK+eb9hwe4iHIJC9Y4jgBmBKPvz9IwEPXUN0YhQ4B pr3EXSmT8OCfdO6+rzEBHoUUWXkm44HPeFjpuy0BjN5+sWt7ggf3wdXEumAC TP5OS9NMwwNbYjBIxBBgpSewwzkdD/WGNL9SUgjQeS+N+k4GKW/mJ08pCghw tFTd6G4mHhgGhPV9KwjAllXx3DcLD9WPSonTHwjges6A1iQbD9YGai/1uwlw 2fpOgOhTkt+j7RZ1XwnAeerFyiyJS/tMqCUWCZA4d9k98RkezBJ+VKX8IYA1 /84f2Rw87F/ydKAgI4K+oUpUPYmLGIksvkxEyHj2SlAlFw+Xe+83TfMR4dTX g8Y8Ev99wOatL0kExvBll10S5+jnCtSdJAJvtwyPdh4ezjHI9IhrE6EmN20g hMS/umuDU4yIUJxJ9iifxGnxupIUtkRQpjIyfU/isxe/jPl4EMHwe6DwBxIv 0dndnw4iQsKE958KEj/u+qmkH00EAUvt3mQSq8YFzdU+IcL8rSNlTiSeuUCd JJ5PhKvEyZRjJI6lTYaUciJ42CxHjpLup9Ap9Iv8AxEChtxCAkg8HvP6qU8X EWhVcoMoSHzvvKr+9BgRWgXH74aT6pc88pl4cYEIIn3eCT9JeQ22G7+s3SCC onpX0TkSB0V/txA/JIIV47XPiaR8Mec8qFMYd+EwO/t3F8mH3+coBx+JXQju dHWkI/kSWjhH81dpF06GxB1gSD57KOhehaJdkLodNnGc5PsYStiIu7YLjPuq xsyk/vhia5jK4rwLYQHav3+m4CE8jFUt3X8XbvK8GKgj9dNEfeq9oge7QENp b3mc1H/RE1fEpDN2IXAD0fQ8xoMSgbfzTdEuqFgm7Ng8wkPCyRzmpo+7kMk5 U3blAR40K5/nTPzeBdyf+MisKJKfflet6/u7EJtVHtAegYfsNamlJdo9EJZi qpq/h4dtqQrZLZE9sOqiE/gTioeS4vcfjprtgVb3aLNtAB4s2oKvp17fA8sG lzOc/qT3P69BJeC1Bxycp1g/+uDBBtOsfzx6D2ZdVdpm3PHAmt05qV27B3s6 Z/8Luo6Hxrr4u91te/Ath2q2zgYPHuOXRI2H9mAl4EzRqiUePnMOudmu7IFg S4eVOGm+BCdOEIIE9iFMx6955QIexCuynx5K7gN5QrPne108DPfZoOiT+/AS i48P1MKDLMNczBODfRiUzBRr18DD7P0VrvJ7+6Bjdo2mTpY0T4pK65UT9iGv jCqEVQoPGp+8bRsy9+HvBwFfK3E8pJJtFne+3Yek8IjVT0J40Luzpzy/sA/3 JNOdcUfx8MaX0ZRH7x/QSS+Gh6zioDeLPbjM4h98YMuVjcPhYKmNL1fL6R8k s7uTxczhgI/3+E/P8H9w+oEd1mgcB1EtupEtNf/g4FdqG88nHFiwhVe5ix7A xBvfruhUHPiejp44lD8AXu/VuLjHOIh3TjhMOXMAWuX3y+7E4aCpPlu/6eoB /KiWl5cLw4GkY+08++MD8LbqSut1xMFu1Qb7x70DiFmLW/8jiwOO7wQ1E7pD wCsV7q+J40COluw6jusQkm8/rRkXxoGj9dFSVsVDyK1Q1gpjJdVDJa3j7HoI RfvPzSi3liDH3CmAefQQhm1uEo+8W4L8Ox4rClfIkEaqoRef3BIoNNMRYmzI kKfpraiKY0vQTPWS+ocjGQrXDjtUEVyCmYQFTIIvGRq+SaMiyLgEQnk2V5bj SCwyonp+eRGy2gzb8j+Qoc5/NIZc+YuQzKScwyZKjm5891HvpFmEiNx9461V chT1YMp86PU8GCnU+klvkiOvCpHLrnnzINRyM8mBSI4sKXjLNlPmoX5uZXCQ mgItDii34sLm4c+xCcMyIQpk+e002TnDeXAorbnsbESBHONyJmd+z4Fmnbfe eBUFumtD/N4iOQdkwzPoQwgl4jxm7hF2bwailhvzQ/6jRLX/3Dsu+M8AHdkz CrVYSvTpAo8txmkG2GSvtdWkUiIqb3HWrfMzcCxm6HxFJSUK0I1xk2GZgYsa rQYFS5SoPaaxtkL3BzwpLLSONaFClp3bDc/zp0E8wDnITIoa+aTf2IrLmgRZ 9R+muQrUiJc8eEjq/iQok12VX1GhJuX9dmLKZxK0HuothWtTowb1IOUA3Umw LZIxe21NjYJ/f33ivTEBaSN/5CkeUyO694Ki0ZcmgPpkOK5ikxp9JPfdmD86 Dgvb6RYMH2nQVVvdb+kto1CgqXRz+hMNsjAof/K8fBTsEvofV3TTIPV/Kt2f s0dhUoy6y3ScBml1agedvDUKQ6b+Gk83aVCQ9EW9celRaHxzCSMrdQQFCwX4 CGeNQLoX+YpB+hFkliLRZRoxDBcX3cOS/WhRFA3bk5C7Q3AuDFuqE0SLxujC QqJ9hkCLc2ry711atCDOJpV7fQjUdS+rWj2kRRriLO/+ag2BVLH8JvYFLcpv qjc+QzsEDDe2XGumaNE/lgNV4dRB6F0IMxs/T4eyL8+ZTfgMgMFCorSQED3i d9M5SQm90Cu9MGItRo/ozr5TuivZC/o3T93NlqJH9ZZ24gxsvXCB4vsgzyl6 1H9RpMJysQe0MNK32I3oEdMp5+b+hz1w0vpzM20EPYo12Us7+N4NAiNE881F evR1NotMMLELVj453OssY0BK3+wZbot2gHDSuPujagbU1CATeutoB5jZGpib NTAgHy4l1ZjddmgkqEnNdDKgLhoFi6kv7ZAsyzqyM8+A6H55xptGtYNGepOE BB8j0qYfI3db+QwP3QUG7kczoh8PB6R6W9tAjnVMUNuOCZm12BaE5LfCUsJS ROoNJuQeLID8klvhGf0ODufBhLgqCskCIluBkYrn7cMgJiT8Bt/67EYrrPy9 dm4siQkJyP3T+E+qFYqnpr3d2pjQC3L39PB3LSDwcrHp8fGjiI2s+wzP12ag h237qc2jqK68PjLGrxGCNCVp3+0eRcYX88rwFo2wpG1V/picGb0ISxKyP90I rRdadrWYmZFSypmo9CONEGKS8KREihk9lJY7zpP7EX7eOPb5lj0zUqRLdL7y 5QP0PjSXZB1gRhe4JHN09Rrg/Jrljqg5CzL6JRsxFlALORyRw+FXWRCj2VGX r3a1sKXxumLKigWNfnlqsnKxFvLi91zSHFjQEPPKoa5ILexKPB2n82VBfp+U qYf730Opw3TdejwLIsSRB6rIvgeWcbvQxmYWdJviq23D3xoYb3Uit5RhRV8S mzxL6qpgXXOSL0yeFdUItiZPlVTBkRZD5TxFVlSd1nxdIKsKVJrUXZZUWVGU qUxvS0gVpDSw9PnrsqJXIbPtBaerwLD6Q8YDW1Yk2SyaXt36FtqLORQ+JrKi 46dqsoa/voGa2DZbzDYrilyl/riDrYSXF3t4YgisKDdv98MmZyVkMX75srbH iqrCUvB7RyrhXuKPcw0UbEhoc1vBfryC9J/elbNgYUNekiPuZu4VMPdC4fCB NBtSL/F/+Sq5HI52PM3dsWdD0oe7m7FbpeBMHTjT38+G5rMGRyYIJcAn3PV1 b4gN0cKrsu75EuhXFRyQHGVDjDdmMnv7S0DF8/PHiG9s6PYDhkDK4hKgGebM VsGzIeXzfjUaJiVQnPfOPIecHYlZBtzprngJCxqEbi9lduRnE3KW6vYLcPS/ U8OYxY4Mei2IWKViUFH8XnP8GTtqw9S90xMtBvo/6N25PHY0r/dmIpS1GCr9 aN7fe86OwvS+HGNYL4J936Tarbfs6B6urry9rAjSfF40TPWwo2KRAptK6SLo 8hxuKf3Hjuz5dN/SnCgEeRfp/kv2HEjr4VXZZ3b58N1N2KfMiQM506tyFRjl w0NPdpajrhwobYZypUozH5b99owHvDkQXnnq2AE2HwpDe0aNQzlQwDJtnfRy HnAne0xbpHOgp0EKzbOBeXD44fXq9T4ONCYmmjutkAsDbDIMgWqciPztXfHS w2w46+W1nH2aEwUtOX/FLmdDeUd5RytwosdVAa/KvmTDo9ATUSznOFGSX1no TnE2XFpS+ffahBNZPJzQcLicDd11mr/nPDhRn4PZs5jcLPh8/cqwUQ4nEra8 SllplAkN5RHZMpRc6ORdwvqD+TSguWTOl07DhaYdXQZSB9LAeFkik5yeC1UG OXO9aUgDHLYvbYyFCx3hds3nT0kD9kzu5HtCXGjWOY+6STcNPCJLY0fUuNAb 2U0KxdJU4L86Fhjqy4XkdyKNHO+nwB1yKaPeaS70vMjZ9feNZFjSYRgXn+VC d6H/vZxFMhjFrtr9t8CFxizoou6cSwYx5goflZ9cKP7eF6czEsnQK6D8OI/A hYK122jsl5NASPVsfwA7N9oJaFoQ9E2CVm+TS4J63Oj9oe4nTEwi0E+FXPCu 5ka7b5qm/r1JAJXbJUyP33OjV7s4hXNZCWDPNv6lop4bZQ4G38qPSIDaCydt Npq50TVP+8xE0wRwrvntF9DHjYa3UzMN/z6ElkdO2SFL3EjWwvG+NjwkzSuD X9E8PEjTVCX82fd4WHwukpIbyoMWDkSS2IxiYTVqlkh5jweVVhkZU2nEwh+H fDvXSB4kTp5/mVY8FsiERaRPxJP2meMazu3HAF86prU1nQd9xxfVZJfEgFGM 8PriWx6UzFWXkXEkBj64CF6SWeZBxySIoQGD9yFFkpeqzpwXreQO2iclR4K1 rfiL+au86Dne+XRjRCSIpShdPGrNi1TNPOd2/COh+vByoqMDL2r+6eGSZBoJ I2MRAkd9eNGoe9FJa85IYL+/quwYy4vuaWqRX8iOgOTZphtMDbwoicF2XbHy P0jMcu6wx/AhsbiOY3GEcLh9K+JmKJYPlT69hjvxIxxsTXKE08X5EDFssvHX 53CQoR+73SvDh7jGaXyLnoRDV7Cu5Ck1PnTmuQ3mQD4cKK6JxTGa8KEpt3uM Np53IZB77uL7SD4U/YRGwXYzFCxTbPoZcXyoZtRf4sypEBCoouf3WCGd73C9 6Q0mBH4MvXfpWuNDp/vC6tXoQ8CJmY08eosP2f0tTo+cDgbv+HalQ3J+pEdu LfQvKhgi7slnbgjwI2YhXdbgr0FQ4knuNGbCj/KTJCmPxd8Ggk4xMbeRH9Vy 6dvtiwZCaENuZFsLP8IHJVrQsAUCmWIW03IbP4p04V4RJA+EI8KPRRR7+NHp Da36wB8BwEUM0mv7yo86j7sNtD8NAKWyS5n4dX7kq8/tucgbAN6cW6onsALo +0LEsR7BmzC/qBXUGiOAHjS0cNBd9AOt3P4CqQcCiMlP3uFQ3Q/yrlr2JT8S QDFR1G0UMn5g2+Mn6pgqgB5x30xXOOoHk5V5vZSFAkjRS0VTYtgXvtw5wOg2 CqB/uzd/3LLzhVbW+q6OLQF09edvt+cUPlBw5gR/n70gcrdsib0z4AGtBvSR e06CqKEsI2mh1gPm7OZXjrsKohHZrk27Ag/ARqTWR3sLIqvKwtiEQA8oaide Q3cEEcfNBfNWAQ8oNmzNqEoRRBjH7bf3vd3hpb0pV1aHILq8Y/Yfs7AblN0P ZHWRFULmUV41ym+cYfW0TcR9BSHk2JfrLJrrDDJbOpuFSkJojYo3VCjBGV45 cIzOqAkhe37W55puzvASqjIszwkhtUCP94qizlBEXBc2sBNCRj+2dmrSbkCW l6fcySQh1EhfQb4V5wQx5o76lNtCiPGN0yuKdAcoMJyyvkEQQjw6tme3oh3g g565d8eeEDqkTa7cvOUAf86cT3pAIYxo9jsP+a84gLW49Fd2FmFUWJu9z8Lj AIo7fxzEpIVRJjZaKuKpPXzPiAjRtRdG7Ee91E5UXIeTU/klMX3CKGSrS6/l jw2wyLkSKgaFkZ7frytPJ21gNVzu/PiwMMpQk5yOb7WBImzDguSkMKqaEj1a kGwDHB4jwt1LwqjzAG/+XskGdkMp9WnIMKiUYEbpG2wNEwwqLRd4MUiwxTGh ks0KMo5nl/XpY1CT+PeWi8FXYWvzXHHkZQwa7k7sWXa8CoaNf56qGWKQcAlP RLbBVaAxvfiw2ASDFJ0Dq1XErkJgKNE97BoGkXnyu10cvAImA1ckZV0wKPjv NueE9BVgDOQofBiBQf9lzniLr5tDeHNChn4dBt3Mv/JT+5UprEw3pxDrMchm bdrYOdMULPY2E198wKBB7mvy6bGmIKNiGUfZjEF0npmCYi6mMP5aPKShHYPC n0Z6L4uZgmJ6k5X0CAad7Lx1lrvQBJa8NoQYfmPQ8jHutNISY7jMb17cLSaC RkWiNh7WG0LGglyzlbgIcttAU8fzDWGhjPbbqoQIEonm5v4WYwih6AMLs7QI CqMQOB1ibgilN7ChpidEkLxFTnjJhgHQV26YTJ0RQUvy0TsfZQ2gQ+cR2S8L ERSz/DHduPoSaHp3WLHGiaBEXG/T3I4e7I4vn2uLF0GPTat+W83qQbU2o+Lt hyJocFXgFb5bD8R5jWmnH4ugONP6kNM5esDYNln9Mk0EcZpyV/fo6sE47y8m VCSC5kPfHQRnXADfzxzN3k0i6OVQbXqR/nnIFXAQ690m1TN388Xwog6oK0nL OeyIoA89yfFLIzoword1ikAQQRe6jbBH2nSA9na0vti+CCq/e0HPr0AHfIde +YdSiKJffP6KeDsdQNGbzTLMoih9SmLDYlob5n5H2SRIiqJSzpGitVktEPv0 Is3AShS9kxr5r4NZE/plCEVT1qKoOVYXNCg0ISjtQpW7rSja+lDdWLeFoMdt eSDaXhQdFXedHZtA4M8iTdfkIopWeXM6E4sQNNmU35EPEEWvork79zQQWBKq r7MkiCKXVeUbKwtnIVG2VepLoyjqXqm0CSdowEtVK7qIZlG0Js9h6TKjAU3a W7gTraLII+Uxt1OnBvy6Jl6c9FkU9ftbPcrO0AD96Hhh415RdIs6NIRMXQNo fphwDE6Iov0mC0LyPXW4kzj/r29LFM0fTP1xEFAD502qoS4pLDJd+vgX80AF bF/p9FvLYNGev1gJebAKWNhH9fyWxSIujoPVdWcVODdA2c55AouqJzR2d7VU QPw1RYP9KSwqWT6/2LB3EhYdyIqJ2liUo2Xye8nnJDh92Qs6boNFdg844YmD Mji8+YOJe4xFBB359VVvRfCMMN2/mIRFC1Ix7I62ihBoWv2V8QkWvXoZw4S/ rAix24GPEtNI52ddNhKSVYRyNeJe+jMsklLiylVfPQHElsOx56+x6AvjPaK4 1wlI/MKY0NaBRbdPpn4MDFaArEIv1+guLBr10u8tc1eAwoB+7Qs9WMRw8UBw 00oB3nEl7vb0YxHNo17L4rMKMGXJ7jo8ikWh9v/9fk6lABLzvNpz81g08Jvi haS4PChUhwgVLWIRu8EjKRV6eVC//414A4dFhurSLda/5OCSxLPK5RUsmlyv 7Nt6Jwf+HhihjQ0s+liw9eeynhyEnv6P+HYTi57vRD8TkZOD+0xzIwHbWKQu 6FDCxC4HGRWFDwgELGqMjUmQm5aFgntULvW7WPRJ7LK6Y6ssvDa+oRW6j0VX +Ew2Kl7IQrVou+DZAyw61kb1jCNBFho3xYmHh1hE8XVJIslfFv4HFzk/YQ== "]]}, Annotation[#, "Charting`Private`Tag$51114#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.7696209539853472}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, { 3.880086754549075*^9, 3.8800867612813787`*^9}, 3.880087724555195*^9, { 3.880087813143466*^9, 3.880087997646585*^9}}, CellLabel-> "Out[235]=",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{ "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}], " ", "==", " ", RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm", "2"], SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], "r"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm", "2"], " ", SuperscriptBox["myCoeff", "2"], " ", SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], "r"}], ",", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}}, CellLabel-> "In[236]:=",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"], Cell[BoxData["1.6882859930125582`"], "Output", CellChangeTimes->{ 3.88008775773094*^9, {3.880087791981393*^9, 3.8800879996867847`*^9}}, CellLabel-> "Out[236]=",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1896, 49, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[2457, 71, 2806, 75, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[5288, 150, 2232, 54, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[7523, 206, 16900, 292, 235, "Output",ExpressionUUID->"3ccd7abc-262b-44b5-b38b-4667bce6baf7"] }, Open ]], Cell[CellGroupData[{ Cell[24460, 503, 1906, 50, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[26369, 555, 793, 12, 33, "Output",ExpressionUUID->"b4205776-3774-42a9-8a33-cf7915e0b844"] }, Open ]], Cell[CellGroupData[{ Cell[27199, 572, 1046, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[28248, 603, 290, 5, 33, "Output",ExpressionUUID->"e978557d-baa8-4635-867c-ce6bf4ad2127"] }, Open ]], Cell[CellGroupData[{ Cell[28575, 613, 1907, 49, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[30485, 664, 368, 6, 33, "Output",ExpressionUUID->"46e6a3ad-c2c6-4495-b04b-21996d66b414"] }, Open ]], Cell[CellGroupData[{ Cell[30890, 675, 1247, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[32140, 712, 11288, 205, 239, "Output",ExpressionUUID->"7832bb28-3d46-47d5-a351-fd05f230e3ed"] }, Open ]], Cell[CellGroupData[{ Cell[43465, 922, 1391, 43, 75, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"], Cell[44859, 967, 221, 4, 33, "Output",ExpressionUUID->"02d33532-4691-458b-888b-cfeaf1cd9444"] }, Open ]] } ] *)