(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 55741, 1330] NotebookOptionsPosition[ 52847, 1273] NotebookOutlinePosition[ 53245, 1289] CellTagsIndexPosition[ 53202, 1286] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Mp", "=", "938.272"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Mn", "=", "939.565"}], ";"}], RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Ebind1", "=", "3.925"}], " ", ";", RowBox[{"(*", RowBox[{ RowBox[{"binding", " ", "energy", " ", SuperscriptBox[ RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}], "\[IndentingNewLine]", RowBox[{"Esep1", "=", "24.81432"}], ";", " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}], "\[IndentingNewLine]", RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass1", "=", "821"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range1", "=", "3.735"}], ";"}]}], "Input", CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 3.879568728576707*^9}, {3.880087700774041*^9, 3.880087701627767*^9}, { 3.8800877975749063`*^9, 3.880087987460205*^9}, 3.880694076159418*^9, { 3.880694106655357*^9, 3.88069421626336*^9}, {3.881205548538989*^9, 3.881205552151064*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[BoxData[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"q", " ", "r", " ", RowBox[{"SphericalBesselJ", "[", RowBox[{"ang", ",", RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fOut", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{"fIn", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfIn", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range1"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOut", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range1"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.8782888301901093`*^9}, {3.88120555964981*^9, 3.881205560418138*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "0"}], "]"}]]}], ",", RowBox[{"{", RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, { 3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, { 3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, { 3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, { 3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, { 3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, { 3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, { 3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9, { 3.881205565537171*^9, 3.881205582259083*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVkmk4FAoDhWcsY4axjZ2yJVESZh/VHEVETRJRSrfsEY0oQ6K4Ksl+dXOj vaRFsoWoSZZEm+pWSqlQuEQSwny+H+d5/5z3ec6PY7Qj3M1fikAgpMzm/zRO nz5foF+yfGq18vxd9hJ+JdncYFdQOr/t9Bn/yw4Svjj6xgWzoNN87xXCoa5V En6jlTCQFFTM96nAB8/VEn5z6nOnn4F3+c9PXLdxFEj4D3mJVQOBT/il2/LE dC8JvyWzQ/g18AP/nUrVaodQCd+5Vk7QEzjEf1t3MNn1Lwm/TZFFkdlKwLmP tg9uj0j4K9Id7l1eR0azOE75xwIC/JdMKlorqoA9sX70jhcBa839hzUd1THW bng3I5OAWy/ioh5ytKH4I2jidgsBtrSFxTLxc2AvKt/9QJGIwN9Z+Re9DDHe +UO834OI8MZeevFaY6yKE5kKC4hI2UyaPx1qAqLgVa/NTyJ8m2IDrINMkea+ SfO4QApiOZ31IZvMwIxJzfYsloK1akLut8iFsGjZ55NpIo0/fiyzEIRaoGys n3zttDTOFjTM+XXcEr0eb0y2sWVQmsbreO5mhet3LMSWn2UQWb3MNX+NNQxX fXxllC+L8s1NUm9crXHynmv5kTOyGJt0LVf3sIZHU0H38HlZiGz9dFO3WsOo /rHDoyJZHLiT8iUmzBqlZuYuebdlcbju32ivDGuYO2+4evWFLPLuC8+qvbAG 8ZZF3g0lEu62XBw56m0DKZH8rzcpJNzSfiqM22YDkkG21KU0Ei4ETH7f7WuD qotmNZFZJKRIrRvyDLGBcb0bXzePBHfeeP/8WBvEpyf3/nmFhL4rzt3iPBvM JYT6f2omQf3o0L8Tb2xg61ia0EiRQ7AjtzbYi46EebIXJTlyGDTTaSjZQkeT rpPgx0k5RMhPtE78QYeJ++qF/QVy2N92+93RYDoGFR9l9BbKIWMDZ+pKDB1F 9m/L1WrlULGNbdt3io72MkHE8h45SEUzq3Z20WEVfyCevJSMw5s0xLe66Yju zlZNsyODavuzefIbHaRfnHxtRzI0Zspep4zQce7VotqlbmSYJTHGi6QZ6Jor 7BEHkbEug87un8/AynaBXWMuGacKrctDdjJw0m+H+X9jsz9849t8OoyBS1oK mdLTZIzK53a0RzBQ7Z9WYSBNgcuuSeLSWAaudL7bEqxMwaR1vYCaykCyizNp pRkFm2rcv167zgBvKvWQljcFmo/36Q1+Z8CW8SEnuYGCFZIrlsY/GbjeMLw1 oJWCMKt3dhsnGFhnnKOxtp2CxiwE1RGZ0C8YjV3SRUGUJ6U8jcbEf2Kjzaun KXjxMU+whMFEcQDBrYMlj8wftQd372Oi/gZDta1YHmHPM7ZviWVigXC4XrdS HmtKfO2c4pnQdr78KrxOHqRwCtHwMBPRscbOVm3y2N/nnvAkl4nfHwtLFPrl EdDVf8Cygglqh6k220wBS5/o7B8YnfWVEsOrCxWgc2PA+/U4E96KrYHUEgWM pd61fTDFhJv3Tr/AKgWUOPv//keGhb8eqV7mtCjAtPFmjIs6C9+yhATnAQWo 1jqKiugsnDJs6GPaUNFTFLU3KIKFrx7fz1xpoGLj3JnOwr0s5DP9J+WfUtGQ nuz4LYaFJvXk/aK3VFyIPKG9M5EF2Qjx9gNDVOxYXlUdksPCvNbb6Qt1FdH5 bGomrIKF1iKrbSYRing5nng4apKFPeE3xKGLlWAfQv1ePsMCrVDmaBFXCWXv c7zGpNiIy/hz5YSDErLuXzTfp8DG6KYs4xYfJbimNj2KnsNGxnho9rJMJbQa KKjsX87GA6b7ZOqEEh6syvr70CE2Bkss9EdfK6M7oKYtJpkNZZvimQs9yiAd /iK1J4UNEWvaK3hUGU5NrF2+WWz4Ov2dpUlWQatjh539OTYYacIhNxMVtDuZ 9Mven+1f9Xki9lHBJ+eKZUeJHFRV3lQ2facC6ZAPEQdlOSi+piv0+6ICk2Pk QhGFg6yRLnHxgAoCHm2m7VTloFBDcn3XtAr6XCQ9zkYc7NF6vTjFQBUja5wy qHYcvH9Wru4boAriuref0hM40OWqjeRKVNFc5zEvMokDAxPT+iQKDRmWz3y9 jnBQdtblRKIaDYZKzV8MMzjgLF36u2wBDWgr7yk5zcHTz57l/a40JLhk9rXX cfC8rp7RfokGpxrqotv3ObDsUNrbW0KDyqIjIacaOWhL6n+qXEvDGfn4Ab/H HNTUBt/Kb6fh3sPQwZ/vORgPqA8pI6qB4OQ0ojXNwbrzMY+kdqihubLeZorA hVz4m/TIMDVkLODv+SjDhRpZw3UmRg2GcqzRQioXcwfKOjfnqAGN88a4c7jQ X+NsgWY1JNhLJrxtucjOjzKQMNRBsKsgnhFxoWzk+emmiQY22/e2vI7jwvLD qWgjlgbKHLVzVA9xEZu0r7LGUQNBghjTxJRZ/4lKeniIBp55L3cJ+IeLvvzh /u4yDZzb25hjUcuFSXwJ8ZyrJqZEv7b6i7k4bnWia9JPExvjzBYUNMzu8/m9 44hIE/JJKVXKj7lQ3TZ51P68JvZkCjpHOrnYF1ajt2lCE/bXXi2oIvCwmF4d f++mFgqK5YaHZXh4OXrs5ONmLYzf4lQvpPCwYe+uZMMuLVyryltzSpWHqC1Z wTk0bWg0+QjjjXnwfGJe9z5aGz1dPdUO9jwYFUVJ67rrAN1aSQeceJAe/Dx3 ercO8r46ra1cw4O6fm4pN00HgqGiD2YePJRKmQ82PNRB5VSYDDWABxO/r/be Dro4ovVr7fPDPCiu3x4931UPOc3Nn+8f4yFy0WCIvlAPp0V5otJ0HhbOZE8l ZOmhomPZxZwTPBhubyEde6UH/ZemiT/zeLjn5hb0dlQP/wPemLhN "]], LineBox[CompressedData[" 1:eJwVjnk8lPsegMcSXdINhZgilBRZb7mlz+/7DsYrcSOpDrKco4bIljXLpI6L xCSnxVI6Rc5VtiIV/V6uZC2JMORaO8rOIDOvnO4fz+f54/nn2eYV4OgtzmAw An7wf597MSWc9kWgURC1uWDNOqp22uF9ylkEjHh+6VuhLGX7+uKRpgAEvJ3R JlUlspRr4KC9VQSCiacaVmnqslRsfa7tgSQEQxl+yslrZaiaYHUrnUIEAdwP Z/ol1lLChWkesxiBz7Te5FCTNGUaSfXJP0Ew86+R1Kvp0lRBnOd5+gWCZElu e6OWNMVLuX//fROCHSf2pabbSVEe+Tri0V8R/LPhUsfeKkkqU/ebXdAUgks+ ZWc4KZJUx6OG26fnEHRnyPy02U2SIp/4GDkIEdRcuv/L7KoEpTJwzFBxDUAj czXd0laCWp246T62EWAwZqnz66IYlb2Hu2ZYCcCpT/vOvrdilFkgp/CTCkB+ Jm04lidGBc+bLbUzAYCtO3/OWYz6vNyTWq0N0HX4qtLESwb1Vor5Kt0UIGxL cq+UwSq+o5HLPOgEoF16LDJeQYTXJxs16DsDSNIKR3kfhThuvjZk6wkAvZRR pJolxB71o02rLgB7hw7vz94uxJp+uyNrfwZgWg55G8Ayzn9W0WkdAmB5Peai S/ISLrJvTXVMBxAvqSvX8hXgrZWn9ltkAIwdNx3deUCA07bNjJrcAGiz2RVy aZ0ABwoUDm7KBIh3Wpk3LZnHxpknxrvuAWRsUCQDRXO4YnTY2q0UQPCo73Fi 7iyujhYyOG0A78TH75WjKbxY/Hkmvh3g+g6p45cnJ7HhcPtATgeAYutDqeGs SfzAppD60A1w9pDxwUPCCZys5MpFgwBnPiZduVE9jp1LqleV5gDC47LSxl2/ 4Olh7vfXigQc56g13V0YwTuV/acGNhFQvL65srNsBHsdOtkvUiZA0bXhRUjg CP5YYvTKiElA52k2Y2RiGFfFDMXkaBOgplASHvV1CCcqW66c/wcBV+/t2l2y NIC32UrTWscJiHWOlisq4GPTTot21ZME1MdNTTIJPma7cwvkXQgIlsmaV+D3 YN+QZafVUwRUFJbK8uR68NOs8cf80wR4KXl7lER1YfbEO/drYT/6b6Exv/t1 YN+rt/77/TcC/L5pVO53aMXRyp23F24SUHVW3uhvuS049Z584MRtAvS+13T9 Md2Mn5QnM/k5BNCeP7m7XGvC9Kfo0PI8ArIZB2Sc+t/gtD2eOn7lBKzz5Dfb 5dTip+90r/R0ELB2u7q5s20p5mnV5Ak/EjBj4u9uTRfjs+EnKLUeAjboRBnM /PIYa6r/e8HtEwG8vCL+UVSA086NuA+NEuDBjsm8aJCNfeXumo4vEgBbm7vb KxKQhu3GflqFBSC1eGd3VjlKqf9uqOHGgrrLOxKN3jUjCPpstMWdBQ/6R9oN 2C1IoPbWWNWTBZWhcYq1VS3INSjHdKM3CxI7DbfnFbQifaa52Vp/FjAKwqUj LrxDb4Mi0Uw0C5y9Z01mEt6jDVsEdlQ2C3wX9irRgg50PeSLr0cfC6S6zOYa 7XuRKjsq6Gg/C7gx626pxfai31VkI9gDLOAlxlfbPO5FZdV6v+qNsIDDjzti LtuH2qQD734bZ8HnsEEJ7us+tD578QNPxIJuo8H5QpN+lFgncbBG1QLMW8wU Ji4MoOhNW/+uedICqjw7Fhw3DqM/dNc0nR+wACHDcN5LfgxJCcQ215yyhIq2 61ui1CfQQ8PS2Dt/WsIN9zfPMqVmkK7Xf+xX/K3A+E6pbFfjLOq1eV52bNwK zPXtsNaxedR+P0ofhbDBcZPN4osZAfr2xMFcc44N+fImt9/4LKLVyuDyhHPW QC9+8HTpW0K2hmyr6AVrKPpKl2lELKM3bgY+Z0NIeJRk8ivIiJDCz5yXOaEk bKzltEXKi9Apzj25tnASGth/7itXEaHFYMUy02gSpORdfY11REg7cUm4cpmE MPttdWxLEeKW4RTeDRJSK3VT+bEitF/6SEn5cxJIKulI44IIJaxLEh97SYJz YkCU3YoIvZevdVJ9RUK9rL15hySNOEzT5dhaEvzWBN76okijm0YqLLKZhKFr 6TtMjWkkcBn4wO8jwXqDnO3hABqB5+Ydcv/78UuMjYvCaHTltGMEGiTBODef UxRLI82gOuaDURIe+HKkmak0ckgo8PafIkFJ4Yiz6mMaZV8ZfHZ3hoSR8BDH wac0GuOpyrTPkaC/x9C+sIpG3KyUor1LJOyKLHYmW2jUkvua4bNMQkp3lp9a B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O 0+gvaaJrhg== "]], LineBox[{{28.992520401116344`, 6.989114408516514}, { 28.992522325141426`, -3.5027620306546083`}}]}, Annotation[#, "Charting`Private`Tag$4194#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 50}, {-3.5027620306546083`, 6.989114408516514}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.88008674094413*^9, 3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9, 3.880087992161138*^9}, 3.88069400745238*^9, {3.88086082362481*^9, 3.880860840824017*^9}, 3.880869126504476*^9, 3.881204831143188*^9, 3.881205584395485*^9}, CellLabel->"Out[12]=",ExpressionUUID->"ab87c9e7-d22d-479e-8e60-a486d3571fb7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myU1", "=", RowBox[{"U", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "0"}], "]"}]]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9, { 3.8812055878679543`*^9, 3.8812056017959967`*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[BoxData["35.89034438287419`"], "Output", CellChangeTimes->{ 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, { 3.880086743953726*^9, 3.8800867473357487`*^9}, 3.880087715279483*^9, { 3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9, 3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9}, 3.880860843173624*^9, 3.8808691277708607`*^9, 3.8812048322740593`*^9, 3.881205604361702*^9}, CellLabel->"Out[13]=",ExpressionUUID->"d0b79513-3f3c-4a7e-9d4c-9cf52de46f51"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myCoeff1", "=", RowBox[{"coeff", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], "-", RowBox[{"coeff", " ", "*", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.8800866773952007`*^9, 3.880086704667201*^9}, {3.881205606847561*^9, 3.881205617689822*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[BoxData["25.351749791847226`"], "Output", CellChangeTimes->{ 3.879570442808729*^9, 3.87957064413636*^9, 3.8800867486475277`*^9, 3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}, 3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9, 3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9, 3.881204833642619*^9, 3.8812056191396523`*^9}, CellLabel->"Out[14]=",ExpressionUUID->"f3d3808a-1e3a-4a37-b9ac-83ad7cab0a61"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myNorm1", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range1"}], "}"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"myCoeff1", "*", "A"}], ")"}], "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}]}], "\[Equal]", "1"}], ",", " ", RowBox[{"{", RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.8800866795052*^9, 3.880086723648281*^9}, {3.881205621463208*^9, 3.881205632051371*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[BoxData["0.6514573663189586`"], "Output", CellChangeTimes->{ 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { 3.879570637910142*^9, 3.879570646893675*^9}, 3.8800867527823553`*^9, 3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}, 3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9, 3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9, 3.881204835578549*^9, 3.881205634171431*^9}, CellLabel->"Out[15]=",ExpressionUUID->"413f2204-d5e7-4ebc-99c1-5d089819350a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"myNorm1", " ", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"myNorm1", " ", "myCoeff1", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range1"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { 3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9, 3.88008672825279*^9}, 3.880086759707464*^9, {3.88120563620135*^9, 3.881205647216186*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI 0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/ P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD 3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0 za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3 nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u 8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902 nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz +mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9 LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC 2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3 IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A 8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA 3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg /ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj 6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU 7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3 ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK 3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7 109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT /PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW 12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2 naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ /yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm /jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx 3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta +ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7 alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8 i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95 Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64 KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb 6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3 w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27 RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj 1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer +3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA 2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY 04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/ D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s 3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM 1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY 46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+ u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219 CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6 EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX 7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83 cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577 YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK 3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn 2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD 2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7 nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj 6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4 VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq +qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6 76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6 8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx 52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY 9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8 +pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8 oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ NDieNYT/AXAvkZQ= "]]}, Annotation[#, "Charting`Private`Tag$6329#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.6514573659417787}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, { 3.880086754549075*^9, 3.8800867612813787`*^9}, 3.880087724555195*^9, { 3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9, 3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9}, 3.880860852002902*^9, 3.880869132289547*^9, 3.881204836375863*^9, 3.8812056496910753`*^9}, CellLabel->"Out[16]=",ExpressionUUID->"8082d315-b512-4039-9ab9-4f8290a4ac22"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}], " ", "==", " ", RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input", CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}, { 3.880694241216975*^9, 3.880694245436596*^9}},ExpressionUUID->"3894cc59-ff84-4f88-8130-\ 0b3a87025770"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox["2", "3"], RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm1", "2"], SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range1"}], "}"}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm1", "2"], " ", SuperscriptBox["myCoeff1", "2"], " ", SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.881205652720017*^9, 3.8812056628772306`*^9}}, CellLabel->"In[17]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], Cell[BoxData["1.6819723510511688`"], "Output", CellChangeTimes->{ 3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9}, 3.88086085882454*^9, 3.880869134852079*^9, 3.881204839005999*^9, 3.881205664575473*^9}, CellLabel->"Out[17]=",ExpressionUUID->"f0141514-31a9-41e5-9f3f-c4d639d78a0e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{"PsiP", "[", "q_", "]"}], ":=", RowBox[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{ SqrtBox[ FractionBox["2", "\[Pi]"]], "myNorm", " ", RowBox[{"Integrate", "[", " ", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", "r"}], "]"}], RowBox[{"Sin", "[", FractionBox[ RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"q", ">", "0"}], " ", "&&", " ", RowBox[{"q", StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}], " ", "+", " ", RowBox[{ SqrtBox[ FractionBox["2", "\[Pi]"]], "myNorm", " ", "myCoeff", " ", RowBox[{"Integrate", "[", " ", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", "r"}], "]"}], RowBox[{"Sin", "[", FractionBox[ RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",", RowBox[{"{", RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"q", ">", "0"}], " ", "&&", " ", RowBox[{"q", StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{"PsiP", "[", "q", "]"}], "]"}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.880694278090423*^9, 3.88069431541903*^9}, { 3.880694387538165*^9, 3.880694410158606*^9}, {3.88069522788339*^9, 3.880695238148691*^9}, {3.880695299107029*^9, 3.880695399255343*^9}, { 3.880695592119051*^9, 3.880695593735093*^9}, {3.880695831316757*^9, 3.8806958598656263`*^9}, {3.880696512328432*^9, 3.880696654085586*^9}, { 3.8806967062490797`*^9, 3.880696714868608*^9}, {3.88086092671025*^9, 3.880860943550437*^9}, {3.88086099431623*^9, 3.88086102694107*^9}, { 3.880861085731583*^9, 3.880861089817754*^9}, {3.880861136990347*^9, 3.880861156730859*^9}, 3.880861188011704*^9, {3.880861225989965*^9, 3.88086123636522*^9}, {3.88086158804482*^9, 3.880861594138795*^9}},ExpressionUUID->"16514567-4615-434d-b213-\ 33ee847a7d1f"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "6.811476328478858`*^-9"}], " ", "q"}], "+", RowBox[{"3.745279174922489`*^-13", " ", SuperscriptBox["q", "3"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "3.3578902009161846`*^6"}], " ", "q"}], "-", RowBox[{"1.4210854715202004`*^-14", " ", SuperscriptBox["q", "3"]}]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+", RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "6.77804201786032`*^8"}], "+", RowBox[{"1.0913936421275139`*^-11", " ", SuperscriptBox["q", "2"]}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+", RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}]}], RowBox[{ RowBox[{"-", "7.41024534448729`*^8"}], "+", RowBox[{"22558.281403320576`", " ", SuperscriptBox["q", "2"]}], "+", RowBox[{"1.`", " ", SuperscriptBox["q", "4"]}]}]]], "Print", CellChangeTimes->{3.88086116052841*^9, 3.88086120125912*^9, 3.880861255393458*^9}, CellLabel-> "During evaluation of \ In[50]:=",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], " ", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "b"}], " ", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "r", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"a", ">", "0"}], " ", "&&", " ", RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.880861385537384*^9, 3.880861404667945*^9}, { 3.880861435828167*^9, 3.880861482626848*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "b"}], " ", "r"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"a", " ", RowBox[{"Cos", "[", RowBox[{"a", " ", "r"}], "]"}]}], "+", RowBox[{"b", " ", RowBox[{"Sin", "[", RowBox[{"a", " ", "r"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]}]]], "Output", CellChangeTimes->{{3.880861434068989*^9, 3.880861457611085*^9}, 3.880861494055222*^9, 3.880869147295782*^9}, CellLabel->"Out[21]=",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"b", " ", "x"}], "]"}]}], ",", "x", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"a", ">", "0"}], " ", "&&", " ", RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.880861521929137*^9, 3.8808615332101803`*^9}, { 3.88120377534515*^9, 3.881203786644293*^9}}, CellLabel-> "In[134]:=",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}]}]], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}]}]]}]], "Output", CellChangeTimes->{ 3.8808615368747*^9, 3.880869149783291*^9, {3.8812037807260647`*^9, 3.881203787872303*^9}}, CellLabel-> "Out[134]=",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ", RowBox[{ FractionBox["1", "p"], SqrtBox[ FractionBox["2", "\[Pi]"]], "myNorm", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", "range"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["q", "p"], " ", "range"}], "]"}]}], "-", RowBox[{ FractionBox["q", "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["q", "p"], " ", "range"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", "range"}], "]"}]}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["q", "p"], ")"}], "2"], "-", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], "2"]}]], "+", RowBox[{"myCoeff", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", "range"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ FractionBox["q", "p"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["q", "p"], " ", "range"}], "]"}]}], "+", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["q", "p"], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}], "2"]}]]}]}], ")"}]}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ", RowBox[{ SqrtBox[ FractionBox["2", "\[Pi]"]], "myNorm1", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"q", "-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}], " ", "range1"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"q", "-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}]}]], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"q", "+", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}], " ", "range1"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"q", "+", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}]}]], "+", RowBox[{"myCoeff1", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ", "range1"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"q", " ", RowBox[{"Cos", "[", RowBox[{"q", " ", "range1"}], "]"}]}], "+", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ", RowBox[{"Sin", "[", RowBox[{"q", " ", "range1"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox["q", "2"], "+", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], "2"]}]]}]}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9}, 3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, { 3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9, 3.88087538894692*^9}, {3.881035003112468*^9, 3.881035013631791*^9}, { 3.881203805263261*^9, 3.881203818283866*^9}, {3.881203924377963*^9, 3.881203938033923*^9}, {3.881204080636133*^9, 3.881204114844595*^9}, { 3.8812044164683723`*^9, 3.881204430878365*^9}, {3.8812047385493*^9, 3.881204786636528*^9}, {3.8812048642166367`*^9, 3.881204865174282*^9}, { 3.881204917757641*^9, 3.8812049207310743`*^9}, {3.8812056704257107`*^9, 3.881205704444508*^9}}, CellLabel->"In[18]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ "\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ", "\:043e\:0442\:043a\:0443\:0434\:0430", " ", "\:0432\:0437\:044f\:043b\:0441\:044f", " ", RowBox[{"1", "/", "p"}], "??"}], "*)"}], "\[IndentingNewLine]", RowBox[{"NIntegrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, { 3.8808621852190742`*^9, 3.8808621872400637`*^9}, {3.8808622612561007`*^9, 3.8808622622720737`*^9}, {3.880869441370618*^9, 3.880869443208253*^9}, { 3.880869501822802*^9, 3.880869501983926*^9}, {3.880869536444581*^9, 3.8808695572733717`*^9}, 3.8808697342790833`*^9, 3.880869832570633*^9, { 3.880870060957982*^9, 3.880870064343985*^9}, {3.88087011615005*^9, 3.880870127514163*^9}, 3.8808701957015953`*^9, {3.8808705574838667`*^9, 3.88087055832367*^9}, {3.88087073089237*^9, 3.8808707380182533`*^9}, { 3.880874814478899*^9, 3.880874818483645*^9}, {3.8808752703279543`*^9, 3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, { 3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9, 3.880875587481934*^9}, {3.881204851540709*^9, 3.88120487584007*^9}, { 3.881204929685568*^9, 3.881204938728588*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], Cell[BoxData["0.9999998739674564`"], "Output", CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, { 3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9, 3.880875593014206*^9}, {3.881204848107025*^9, 3.881204877006847*^9}, { 3.881204927752026*^9, 3.881204939243373*^9}, 3.8812057081188097`*^9}, CellLabel->"Out[19]=",ExpressionUUID->"b9b74f50-8c3b-4f99-adc7-2201a234e737"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1962, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[2523, 68, 2848, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[5396, 146, 2312, 54, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[7711, 202, 8151, 151, 239, "Output",ExpressionUUID->"ab87c9e7-d22d-479e-8e60-a486d3571fb7"] }, Open ]], Cell[CellGroupData[{ Cell[15899, 358, 1967, 50, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[17869, 410, 981, 14, 33, "Output",ExpressionUUID->"d0b79513-3f3c-4a7e-9d4c-9cf52de46f51"] }, Open ]], Cell[CellGroupData[{ Cell[18887, 429, 1100, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[19990, 460, 481, 7, 33, "Output",ExpressionUUID->"f3d3808a-1e3a-4a37-b9ac-83ad7cab0a61"] }, Open ]], Cell[CellGroupData[{ Cell[20508, 472, 1962, 49, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[22473, 523, 559, 8, 33, "Output",ExpressionUUID->"413f2204-d5e7-4ebc-99c1-5d089819350a"] }, Open ]], Cell[CellGroupData[{ Cell[23069, 536, 1302, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[24374, 573, 11249, 203, 237, "Output",ExpressionUUID->"8082d315-b512-4039-9ab9-4f8290a4ac22"] }, Open ]], Cell[35638, 779, 392, 10, 29, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"], Cell[CellGroupData[{ Cell[36055, 793, 1317, 39, 53, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], Cell[37375, 834, 313, 5, 33, "Output",ExpressionUUID->"f0141514-31a9-41e5-9f3f-c4d639d78a0e"] }, Open ]], Cell[CellGroupData[{ Cell[37725, 844, 2750, 70, 117, "Input",ExpressionUUID->"16514567-4615-434d-b213-33ee847a7d1f"], Cell[40478, 916, 1424, 41, 46, "Print",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"] }, Open ]], Cell[CellGroupData[{ Cell[41939, 962, 645, 17, 29, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"], Cell[42587, 981, 647, 19, 53, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"] }, Open ]], Cell[CellGroupData[{ Cell[43271, 1005, 562, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"], Cell[43836, 1022, 660, 22, 50, "Output",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"] }, Open ]], Cell[44511, 1047, 6271, 183, 204, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"], Cell[CellGroupData[{ Cell[50807, 1234, 1606, 29, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], Cell[52416, 1265, 415, 5, 33, "Output",ExpressionUUID->"b9b74f50-8c3b-4f99-adc7-2201a234e737"] }, Open ]] } ] *)