(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 72258, 1543] NotebookOptionsPosition[ 69330, 1485] NotebookOutlinePosition[ 69758, 1502] CellTagsIndexPosition[ 69715, 1499] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Mp", "=", "938.272"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "proton"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Mn", "=", "939.565"}], ";"}], RowBox[{"(*", RowBox[{ RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ebind1", "=", "3.925"}], " ", ";"}], RowBox[{"(*", RowBox[{ RowBox[{"binding", " ", "energy", " ", SuperscriptBox[ RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Esep1", "=", "24.81432"}], ";"}], " ", RowBox[{"(*", RowBox[{ RowBox[{"1", "p", " ", "separation", " ", "energy", " ", SuperscriptBox[ RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mass1", "=", "821"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"range1", "=", "3.735"}], ";"}]}], "Input", CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, { 3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9, 3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9, 3.8782876162121983`*^9}, {3.878288500983369*^9, 3.878288503593914*^9}, { 3.878288562531385*^9, 3.878288589887306*^9}, {3.8782886404025097`*^9, 3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, { 3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9, 3.879568728576707*^9}, {3.880087700774041*^9, 3.880087701627767*^9}, { 3.8800877975749063`*^9, 3.880087987460205*^9}, 3.880694076159418*^9, { 3.880694106655357*^9, 3.88069421626336*^9}, {3.881205548538989*^9, 3.881205552151064*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[BoxData[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"q", " ", "r", " ", RowBox[{"SphericalBesselJ", "[", RowBox[{"ang", ",", RowBox[{"q", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fOut", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{"fIn", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfIn", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfInR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range1"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"k_", ",", "r_", ",", "ang_"}], "]"}], ":=", RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["2", "Pi"], "k", " ", "r"}], ")"}], FractionBox["1", "2"]], " ", RowBox[{"BesselK", "[", RowBox[{ RowBox[{"ang", "+", FractionBox["1", "2"]}], ",", RowBox[{"k", " ", "r"}]}], "]"}]}], ",", "r"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dfOut", "[", RowBox[{"q_", ",", "ang_"}], "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"dfOutR", "[", RowBox[{"q", ",", "r", ",", "ang"}], "]"}], "/.", RowBox[{"r", "->", "range1"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.876220044319666*^9, 3.87622004450217*^9}, { 3.8765038952022886`*^9, 3.8765039216405926`*^9}, 3.876505041667235*^9, 3.8765050912134867`*^9, {3.876505234788604*^9, 3.876505237898678*^9}, { 3.8765054584182944`*^9, 3.876505476330624*^9}, {3.876505721940834*^9, 3.8765057522605066`*^9}, 3.8765058613666496`*^9, 3.8769000872264614`*^9, 3.876912136986064*^9, 3.8771829534368153`*^9, {3.8771829917988296`*^9, 3.8771830129482393`*^9}, {3.8782869289935923`*^9, 3.878286953801031*^9}, { 3.87828729637827*^9, 3.878287488606941*^9}, {3.878287533404892*^9, 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.8782888301901093`*^9}, {3.88120555964981*^9, 3.881205560418138*^9}}, CellLabel->"In[42]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "0"}], "]"}]]}], ",", RowBox[{"{", RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, { 3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9, 3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, { 3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9, 3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, { 3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9, 3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, { 3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9, 3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, { 3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9, 3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, { 3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9, 3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, { 3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9, { 3.881205565537171*^9, 3.881205582259083*^9}}, CellLabel->"In[48]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[{{1.020408163265306*^-6, 1.9542056510587136`}, { 0.01533589602798134, 1.95450534532755}, {0.030670771647799414`, 1.954805312463711}, {0.061340522887435564`, 1.9554060669719528`}, { 0.10673372170032629`, 1.956297235353765}}], LineBox[{{0.1744007795136938, 1.9576301702798387`}, { 0.49071704024234164`, 1.9639332656670865`}, {0.98143306007652, 1.9739537481472582`}, {2.0454178542729324`, 1.9967582383524491`}, { 2.616491096940589, 2.0096527244409996`}}], LineBox[{{2.6483788520426295`, 2.0103870163210384`}, { 3.9970850280545243`, 2.0429298667814453`}}], LineBox[{{4.028972783156565, 2.0437362945628186`}, {6.038824600370569, 2.098497418319898}}], LineBox[{{6.07071235547261, 2.099434012690164}, {8.173138546173233, 2.1667418625401034`}, {8.190810618713272, 2.1673586083776293`}}], LineBox[{{8.222698373815312, 2.1684738382815945`}, {10.212868840241999`, 2.2447260010028462`}, {11.20350189457867, 2.2883550401698534`}, { 12.174646887116866`, 2.335616257404832}, {13.228344634183118`, 2.392855394392674}, {14.211533911287631`, 2.4529648491869356`}, { 15.188903992890594`, 2.520493246516589}}], LineBox[{{15.220791747992635`, 2.522845469815221}, {15.56358972676484, 2.548785629082597}}], LineBox[{{15.595477481866881`, 2.5512612249385356`}, { 17.299275412626642`, 2.701724699706361}, {17.315811322851648`, 2.703385750319353}, {17.332347233076653`, 2.705051225574531}, { 17.36541905352667, 2.708395524380095}, {17.431562694426695`, 2.715138041680882}, {17.563849976226745`, 2.728843058089542}, { 17.828424539826848`, 2.7571689648523265`}, {18.221613151343977`, 2.8016834891277576`}}], LineBox[{{21.974823578504093`, 3.4621865169448443`}, { 22.018005096654353`, 3.473740868788307}, {22.07927672210476, 3.4903755221042627`}, {22.201819973005573`, 3.5245169011505606`}, { 22.4469064748072, 3.5965149472565265`}, {22.45504823382889, 3.598996586630873}}], LineBox[CompressedData[" 1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAt3Yk5XnSOEBNpjvmkt8SQABISPIX /ThAT6N6ywJiE0DIt8My/AA5QAdv2Y90bhNAkCc/c+AEOUATCBVQ/noTQCAH NvSoDDlAHey03lqUE0BAxiP2ORw5QB5MSixAyBNAgET/+Vs7OUCTnXUf/zQU QABBtgGgeTlADyFX4rAkFUBaROfK2H05QC7fnHghNhVAtEcYlBGCOUB7hHe3 u0cVQGhOeiaDijlAk88Qj29rFUDRWz5LZps5QOqd8evltBVAonbGlCy9OUAk f7EBolAWQPx5911lwTlAjTCX4fpkFkBWfSgnnsU5QB1e+2KIeRZACoSKuQ/O OUARX/qJRKMWQHORTt7y3jlAd267G1n5FkBErNYnuQA6QC0zun/AsBdAnq8H 8fEEOkDV9IuZzsgXQPiyOLoqCTpAU3ZthiDhF0CsuZpMnBE6QHVckmmUEhhA FcdecX8iOkBXzym+3XgYQObh5rpFRDpAIap1AxpUGUBA5ReEfkg6QAPu4x39 cBlAmuhITbdMOkAUHpazOY4ZQE7vqt8oVTpAswIp7sXJGUC3/G4EDGY6QCRk 6ERbRRpAiBf3TdKHOkANUWF4JVAbQJTIyOPCizpAdCvuax5xG0CfeZp5s486 QCr+k/yAkhtAtts9pZSXOkAgYcoGi9YbQOWfhPxWpzpANucvLu5jHEAklQ9W 9LY6QCTIhpuO+xxApZHgTg== "]], LineBox[CompressedData[" 1:eJwVjnk8lPsegIdEl3RDIaZIUkpZb3Wlz+/7ToxX4iCpDrKco8aWrWyNpeV0 EZrktNjiFDlXNJRS0e/lSnayREOutaPsDDLzyu3+8XyeP55/nq2eAQ5ekgwG I/AH/3cu1yvM1BrBBD/k2IsT6yhTNS2Hn84ikA2PSxqxWEtVTdm/T/RFwLgs KG4WyVHWby/Z1Qcg4O3kGpfz5SiXwAFbi3AE4880LW5oyFHRNdnWB+MRDKb6 qSSskaUqgzUsdhQgCIhtP9u3ag0lmp/iMZ8g8J7Smxisl6FMIqhehacIpn8a Tk5KkaHyYzzO068QJEjFttVtk6F4iQ8evK9HoHNyf3KKjTTlnrdDkvsVwT9r r3TsK5ei0nS/2QRNIrjiXXKWkyhFdTyuvXdmFkF3quzPm1ylKPKpt6G9CEHl lQe/zqysolT7jxsorQaoY66kmFuvolbG77iNbgAYiFrs/LogQWXsjV09pAzg 2Kudtb9ZgjoQyCn4pAqQl0YbjOZKUMFzBxbbmADA1p075yRBfV76mFyhDdB1 NEl5/DWDapZmvkkxAQjdnNAjrb+CszSzmYccAbSLj0dcVhTjdQmGtXucAKRo xWO8DyIcM1cVsuUkgF7iCFJLF2H3mpH6FWeAfYNHTTO2i7CW3+6Iql8AmOaD XvqwhPNePO+0DAEwvxV1yTlhERfZNiU7pABI8qtLt/kI8Zay06aHUwFGT5iM 7DwoxDe2To8Y3wZotdoVcmWtEAcKFQ9tTAO47Lg8Z8Kfw0ZpJ8e6cgBS1yuR geJZ/HxkyNK1GED4uLcwLnsGV3BFDE4rQIvkWE4pmsQLTz5PX24DuKUjfeLq xAQ2GGrrz+wAUGp6JD2UPoEfWhVQ7d0AvkeMDh0RjeMEZZdYNABw9kP89dsV Y9iJX7GiPAsQFpN+Y8zlC54aiv3+VomAExz1+vvzw3iniv9k/0YCnqxrKOss GcaeR071iVUIUHKpfRUSOIw/8A3fGDIJ6DzDZgyPD+HyqMGoTG0C1BX5YZFf B3Gcivny+X8QkJSzazd/sR9vtZaht50gINqJK1+UL8AmnYfb1E4RUBMzOcEk BJjtFpuv4ExAsGz6nKLgI/YJWXJcOU3A84JiOZ78R/wsfaxQcIYAT2Uvd35k F2aPt7jdDP3Rf78Q9YdfB/ZJuvuf778T4PdNs8zUvglzVTrvzd8hoNxXwfBv 2Y04OUchcPweAXrfK7v+nGrAT0sTmIJMAmiPn92cb9Zj+hP3QmkuARmMg7KO fe/wjb0eO/xKCVjrIWiwyazCz1p0r3/sIGDNdg0zJ+tizNtWmSv6QMC0sb+b Jf0E+4adpNQ/ErB+R6T+9K+FWEvjX/Ounwjg5RYJjqF8fOPcsNvgCAHu7Ki0 S/oZ2Ef+vsnYAgGwpaG77fk1pGm9oY9WZQFIL2TtTi9FiTXfDTRdWVB9VSfO sKUBQdBnw81uLHjYN9ymz25EQvVmIzUPFpRdiFGqKm9ELkGZJhu8WBDXabA9 N78J7WGaHVjjzwJGfphM+MUW1BwUgaa5LHDymjGevvYerd8stKEyWOAzv0+Z FnagWyFffNx7WSDddWC2zrYHqbEjg471sSA2au1d9ege9IeqXDi7nwW8uMsV VoU9qKRC7ze9YRZwBDF2ZnK9qFUm8P63MRZ8Dh1YFfu2F63LWGjniVnQbTgw V2Dch+KqVx2qVDsMZo0HFMcv9iPuxi1/1zp1GMo9OuYdNgyhP3VX15/vPwwi hsGcp8IokhZKbKo8bQ7PW29tjtQYR48MiqOz/jKH227vXqRJTyNdz3/bLvtb gFFWsVxX3QzqsXpZcnzMAsz22OBtx+dQ24PIPSiEDQ4brRZeTQvRt6f2Zlqz bMhTML73znsBrZQFl147Zwn0QruHc+8isjZgW3DnLaHoK12iGb6E3rnqe/uG kPA43vg3kBUjxV84rzMvkLChitMaoSBGpzk58q1hJNSy/9pfqipGC8FKJSZc EqQVXHyMdoiRdtyiaPkqCaG2W6vZ5mIUW4ITebdJSC7TTRZEi5GpjB2/9CUJ JBVvVzcvRtfWxkuOvibBKS4g0mZZjN4rVDmqvSGhRs7WrEOKRhymyVJ0FQl+ qwPvflGi0R1DVRbZQMLgzRQdEyMaCZ372wW9JFiul7c+GkAj8NikI//fH7/E 6Jg4lEbXzziEowESjLLzOEXRNNIKqmY+HCHhoQ9HhplMI/tr+V7+kyQoK9o5 qRXSKOP6wIv70yQMh4U4DDyj0ShPTbZtloQ9ew1sC8ppFJueWLRvkYRdEU+c yEYaNWa/ZXgvkZDYne6n3kEjlbzvDuliEoyNLqTO9NDIs2B/btMyCV3+n9rq h2hUxA9cXFkhof/lRb1HYzT6H+A0cJU= "]], LineBox[{{18.253500906446018`, 2.8054284400043947`}, { 18.388442097790758`, 2.8215117093829716`}, {18.41931052855447, 2.825245375359729}, {18.481047390081883`, 2.832774933618509}, { 18.60452111313672, 2.8480880664428825`}, {18.851468559246385`, 2.879773145171297}, {18.902745810684312`, 2.8865366857980708`}}], LineBox[{{19.664811473124303`, 2.9953633972500637`}, { 19.894607490948285`, 3.031581190285004}}], LineBox[{{22.70404483317278, 3.6779039853826045`}, {22.978355855674483`, 3.7721800929411358`}, {22.97861714578529, 3.7722738833006026`}}], LineBox[{{19.374176545709584`, 2.9519238389151745`}, {19.41225986015114, 2.957472926327447}, {19.47915626883656, 2.9673227507815527`}, { 19.6129490862074, 2.9874237947720785`}, {19.632923718022262`, 2.9904717714292666`}}], LineBox[{{20.6289927789888, 3.160051629138947}, {20.93253964723565, 3.219696628574586}}], LineBox[{{21.611869798063996`, 3.3702447860964773`}, {21.94843370292227, 3.455192738484164}}], LineBox[{{23.747553452685903`, 4.087674495131448}, {23.990185443948018`, 4.2068284895341295`}}], LineBox[{{19.926495246050326`, 3.036745422716521}, {20.014327538319918`, 3.0511510852118}, {20.14812035569076, 3.073620329111152}, { 20.407903505507523`, 3.1191608830283095`}}], LineBox[{{23.06164794976241, 3.80248548354988}, {23.244080546108123`, 3.871850925154577}, {23.499443772016118`, 3.976487860558715}}], LineBox[{{24.1125734651488, 4.271330804947326}, {24.254097955371385`, 4.349987338635825}, {24.4996062024744, 4.497954082107208}}], LineBox[{{20.503121174462198`, 3.136521055959324}, {20.59710502388676, 3.154026471465027}}], LineBox[{{22.48693598893093, 3.6087741586512894`}, {22.51333764741561, 3.616940273014054}, {22.57976882002402, 3.637776491953916}, { 22.67215707807074, 3.6674614587047976`}}], LineBox[{{23.62018847806595, 4.029343924613762}, {23.715665697583862`, 4.072812203865003}}], LineBox[{{24.53149395757644, 4.518345081057084}, {24.563001917687984`, 4.538776326705424}, {24.62380830706138, 4.579024156083463}, { 24.744378327546922`, 4.662175688029397}}], LineBox[{{20.986383491526656`, 3.2307302782952756`}, { 21.072490038662597`, 3.2486750642349222`}, {21.189558183358017`, 3.273683547323134}}], LineBox[{{23.56589895613415, 4.005294293164303}, {23.588300722963908`, 4.015160793327014}}], LineBox[{{20.433413957044174`, 3.123775652804504}, {20.471233419360157`, 3.130665824554927}}], LineBox[{{23.01050490088733, 3.7837799341325167`}, {23.02976019466037, 3.7907858578536966`}}], LineBox[{{24.02207319905006, 4.223334566028984}, {24.045662821970478`, 4.235679386899559}}], LineBox[{{24.776266082648963`, 4.684948473900576}, {24.79028471632805, 4.695067443574621}}], LineBox[{{21.221445938460057`, 3.280621239272723}, {21.48095112173827, 3.339190246722059}}], LineBox[{{23.525311334850716`, 3.987619390222114}, {23.534011201032108`, 3.9913863426390823`}}], LineBox[{{20.95755283022232, 3.2248046245010387`}, {20.95755283022232, 3.2248046245010387`}}]}, Annotation[#, "Charting`Private`Tag$80288#1"]& ], {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 50}, {-3.792830135315049, 7.245661192037037}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8762203703057337`*^9, 3.876220379980977*^9}, 3.8765050131761856`*^9, 3.8765050505154057`*^9, 3.876505166733531*^9, 3.876505253203033*^9, 3.8765054682425213`*^9, {3.876505736001601*^9, 3.876505760106862*^9}, 3.8765058280963507`*^9, 3.876505866424039*^9, 3.8768987397838306`*^9, 3.8769000954185047`*^9, 3.8769010854667377`*^9, 3.8769028434196196`*^9, 3.8769121476361966`*^9, {3.8771829651953516`*^9, 3.877182971722556*^9}, 3.877183021959716*^9, {3.8782890252122993`*^9, 3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9, 3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, { 3.879569032952899*^9, 3.8795690542179728`*^9}, {3.88008674094413*^9, 3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9, 3.880087992161138*^9}, 3.88069400745238*^9, {3.88086082362481*^9, 3.880860840824017*^9}, 3.880869126504476*^9, 3.881204831143188*^9, 3.881205584395485*^9, 3.883471998256879*^9}, CellLabel->"Out[48]=",ExpressionUUID->"4b9fe172-9212-4561-a287-0e5fcec3095b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myU1", "=", RowBox[{"U", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}], "]"}]], "-", FractionBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}], RowBox[{"dfOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "0"}], "]"}]]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"U", ",", "60"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, { 3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9, 3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, { 3.876901089974984*^9, 3.876901108003067*^9}, {3.8769028508117027`*^9, 3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, { 3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9, { 3.8812055878679543`*^9, 3.8812056017959967`*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[BoxData["35.89034438287419`"], "Output", CellChangeTimes->{ 3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9, 3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, { 3.876898758684599*^9, 3.8768987659384336`*^9}, 3.876900107897892*^9, { 3.876901091009881*^9, 3.8769011091519423`*^9}, {3.8769028519905815`*^9, 3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, { 3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9, 3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9, { 3.880086743953726*^9, 3.8800867473357487`*^9}, 3.880087715279483*^9, { 3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9, 3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9}, 3.880860843173624*^9, 3.8808691277708607`*^9, 3.8812048322740593`*^9, 3.881205604361702*^9, 3.883471999535993*^9}, CellLabel->"Out[49]=",ExpressionUUID->"9335ded2-e54f-46a8-9b5a-6e4e244b2198"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myCoeff1", "=", RowBox[{"coeff", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "range1", ",", "0"}], "]"}], "-", RowBox[{"coeff", " ", "*", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "range1", ",", "0"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{"{", RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.8800866773952007`*^9, 3.880086704667201*^9}, {3.881205606847561*^9, 3.881205617689822*^9}}, CellLabel->"In[50]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[BoxData["25.351749791847226`"], "Output", CellChangeTimes->{ 3.879570442808729*^9, 3.87957064413636*^9, 3.8800867486475277`*^9, 3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}, 3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9, 3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9, 3.881204833642619*^9, 3.8812056191396523`*^9, 3.883472004239254*^9}, CellLabel->"Out[50]=",ExpressionUUID->"1fefee2c-c22d-441e-b490-61523152bc95"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"myNorm1", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range1"}], "}"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"myCoeff1", "*", "A"}], ")"}], "2"], " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ", RowBox[{"{", RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}]}], "\[Equal]", "1"}], ",", " ", RowBox[{"{", RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9}, 3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, { 3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9, 3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9, 3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9}, 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.8800866795052*^9, 3.880086723648281*^9}, {3.881205621463208*^9, 3.881205632051371*^9}}, CellLabel->"In[51]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[BoxData["0.6514573663189586`"], "Output", CellChangeTimes->{ 3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, { 3.879570637910142*^9, 3.879570646893675*^9}, 3.8800867527823553`*^9, 3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}, 3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9, 3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9, 3.881204835578549*^9, 3.881205634171431*^9, 3.8834720061461277`*^9}, CellLabel->"Out[51]=",ExpressionUUID->"a7b55ec3-e8e7-484e-86bc-a0bdc4afe276"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"myNorm1", " ", RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", "<", "range1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"myNorm1", " ", "myCoeff1", " ", RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}]}], ",", RowBox[{"r", ">", "range1"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, { 3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9, 3.88008672825279*^9}, 3.880086759707464*^9, {3.88120563620135*^9, 3.881205647216186*^9}}, CellLabel->"In[52]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV13c8ld8fAPA7kJW9173ulT0qpaF8PmWkrAjJzAqVrVIJyUiIZCYjKlpI 0ygjI1vIV2WU+1BpKSqj8ru/v57X+3We57ye1/mMc46iR6CNN4VEIlWTSaT/ P/MjPbjWeCUZUPLesZY8ww2aB+jme+l+0PLe26HUzR6WW5+eodOPw7OI13tD 3Q5AfkMKjZOeCMGfyoUt3Y7C4a1H/H/TcmH0p/1eAbd4GFjyzZih3QCrU6r0 za5ZsOLNhMoXWjXcuGjx/J/jdbjSURj8idYOyilrxhQsH0J5ReKbw9qvIeZ3 nNwDShv4wIvczyEsaDIT2yE60AcBk2qs++UfQbE74fS2Jy+BVzFWZXzjDHwv LtzLW/wazgt1ql/ZPws61qd1r98bg+oN8g8sA2YhWlyZLNc8BoRrIPw5OQty Tl6WCYNjoH9H1HZv9izErDSxNvg5Bh92Op9a2TML/yQznLX0xsHwzJfe4/pz cCPm633eh+Mw/1PwiI3ET7ht9tGox/4teLyxrad2/YLAmjrSqa3vgDfvnX/w q19g1kOT0TV6B1WOAXLjU78gJ9IojrXrHVBfJxyvIf+GWJ4VproO7+DqcI1u 8IbfECBuuv18yDuYekkvGyv+DRvSi5VXX38HB/s+p1UfnwcIb14Q45kAkbTj oJIwD65JoZrCghNQY8X1NSNjHvK+rwpYIT4BfL00s6CKeThIeyoxQZ+A2902 nCqT8/A7y6zVauMEfO14fDxj9wIIxnV95z0wAcEtsR6BKotgIM93YrZuAhQI E65fuovgvzDKHGycgE4Kz80IXIQH2bKBFa0TsApTvifuY49TdhJ2fRPwqiYz +mrSInxVfsvwYE3AtsrrBa++LcLZLeWNR7lZIJz3/LXh4yWAvcPOCZYseFp9 LrKjeQnMR44WVduw4NCwOcP6xRII3uJ0nrJnQYv4Cz/X6SX4tKilp+PGguNp r+bD5f7AZr5su8hAFryLm5Yoj/4DaziDtgqnsuBuEP8eqZ1/4YSg5TS5gwVd l0SP37H/C9GlXpu6ulkw1SxTuN3rL6hGk8ZSX7BARlrt0+GovyDb9JhBfcWC 2EbjM40P/gKdE47lvmeBvUjUvYOMfxBvVbwllkpA0Jb4V8s6/6Bn9dfdLC4C zh1IWc7Y+g8aPyeU6vMSUF+TZ1bv8A9kDJUlh4UIUPV8zBJN/Qc67RLv6uUJ WLz3XfTJ0j+QjI3R2aVHgNjY/CYbnmUw0k+c2rKJAG1u0v73Esugue5Tj+oW AjydBW4Lr12Ga1sGdT5vI6CLQ8PogO8ysOy3SypaEFBg5xUm+HIZChzsb2/3 IOBx1KFLVyeWwVFQgvu5FwEDN0IaNs0sg/zM2XgTHwI4opCripOETkPaH7QP E7BxwNJmhE7C9TuSVO4cIeDKyUPTq/eSUP1l0ZRrAgGrG3jmE1xIKHfzyQOb RAIaOMo4xz1JqCSWF4lJBLxNIegpQSS8RbFf4kklQKHIZe/HRBLm9ntesM0i oJxY8sI0EmqdFKJJ5RCwVe1SSHYWCe8Hqha/zCXAuWooxbiEhC+2Xog3yCfg UrNV85U6Eh5tPVjTVkKAOs/XF/NNJByoT5x0vEZAtUXyuFU7CW+qrKZ8uE7A 8NDzxb8vSbhByFBg5gYBEh+3rXH8RkLrIF3vRxUEpK9cVyDCIONH7+t3GTUE MGz6b/mpkpGpFddkW0vA3ayg6gZtMj7lOv40uo6APtqdwQB9MrY/3na09SkB AmuV+TptyWgbozLC/Yy93kebpRhOZBTqCNnC20yAVq2H8nF3Mp5XMI7jbCHA 3Khwm0oAGY3f7Ov92MrOD3up8DMJZAw0uLrVr4MAmbyHca9TyPiFI+L1pk4C bozbXlyTQUaD1fUuHF0EPPe9UD5eREbVsTyJhG4CHO7o1OmVkrHo6zMz6CHg /ffu9pQ7ZOyKCjvwnW2uk7yT+jVk9P1eaGbYR0BWfdmP9AYyJlc9EmexvYpj B2m6lYyvHlxojnhBgFHKGdmcATJ6zb/qze8nYPCFotq3V2T8enhWY9UAO98k GvRM3pJx//lVh6+zHVP4x3ruMxn75rfmZA0SsHv142CNWTKOvd/rRX3Jjndj 6AWPBTJiw8zug2x/tta5m7tMxrJTn1w62a6ZmO7r46Rg5TPNJOUhAs6GXp9Z wU/Bj6OXhk+ybc/hIQQiFGyvlzfpZFspU371USkKDnMUDoj9R8CPVa+s7ihQ MGuG57QD2w0PMwIJJQqmBphZZrF9fsfuVFkNCrqJ2Oj3sO08zFdhs4aCDyQF TEnD7Pzxa+tJ3EBBV4/gME225xdivjZspaB+ZGCDDdut5wwE5g0paFv4VyOU 7QzZRS2dXez/uSLyKIVtj9sPLA7spuAMT6l7Mdurtwb759tTEDkeaNxl+1+3 ZsqgMwUtvTeK17Dd5frhNp8nBb/d0FZ4wvalbyVd2/0oKPA7y+T/477Rbp+P B1LwhXTI+f9/rycsy3/3CAVjEpp+/n9+juIhjQ8nKZjukhxxnu3+telmtBgK 3nB/yQhju+iZxSH7sxRMJl/7sIftAFuepJTzFFTaw9GjxfaWyeabzRkUjBP7 109mm/dodMfSJQqO3ir43cten2GuLdNrr1DwhMqcfg7b17N/8xwspWDLVoEi R7bDVO+pXblDwTUW/5iSbG+rDtg5fI+CVs7/tXWz4yOwS91PsIaCt6XLkyLZ Hnk9edakgYJv3+QEqrEd/sf5+f0uCtKF+XP82fE3SZH68KmfgrrH20e42BZT GFzBfEVBWh/H9kvsfKoEsx0XJikYdig4oIKdb5F9XD7PP7H/l0WsX8O2uXtT /PJ3Ckrfc1S4w87XDzGbWv3/UdBjlmVzkZ3P9FYV412SVEyde28p3UvAV3uW 12l5Kp6JH2UcZtdH3fuC2MdMKppXaElX/7+eeCSalVdTcfOeG/7b2PWWZs5h SN1JxcF9S7V87QS4jtZ7bLaiom5saZnOcwI0A07GBNux33cKqrZoY9dn6o/G cXcqqkc5mIaz65008BbrTlBReNUEI6GRgNiPT6+cOE1F0ePa270bCOAh5VM2 naVieujeyC31BIho7Wt+kEnFnIJOyyF2v1mV8GJHRSUVjdLTnR49IuBmfkWZ /yMqbh3j8Xd9yN4P7qfwaD6lYkr13YJ/99n9+t3OzrJOKt4I9vVSryJgl36T ZfEUFa1ZrfE6twnosS6q2P+Firm3VpQW3iRgj2+kEG2OigbfXD9xs/ujc+bm /jwyB65RDpxoZffTgG9VdplyHMjt55c7U0DAxZIS57M2HGgnNHB7id3PpWpO PzHZx4G/Ltfa/Esh4HKfmwLnfg4M1NFXXmT3/+t/Zd+e9ufAk9PlDqPs/eLx 3gzPk2c5cDvv/X/WUez84Is7GPCUA5WCFmbm2PvNfoZnp2YLBx5tvtBy7iAB kxu3aX7q5MCADXED0r7s+Hn//eLzigOf7H9SwPQkgNxwJNh9jgPFpip4phwI UA47EG6rzoliBqwfyobs/rt5fE/hak7srxpIO40ErCM56EzrceK8z3Xboa0E bE/eORVlyIm6izzWARvZ8b2qaXvLmRMjlbvWOmix++XgDx1KKifK+g9biUkQ wLk+6n3FLCf+/qL2U5fFAv6l302LC5wokh37dXCcBSKNQQXGJC58NF6pFjTC ArqFh90bfi6spR/2y3zJgi3exs+4lLmQ/mGXel4bC8Iy+QpdHLiQ1E7JyrjJ AuJntj3fEy4MKcg4b3KYBcXbdENHn3Hh8mui+5UPC9xSelIrOrjQT/vM0QOe LHitxNm+Z5jtG494Djuy4MWeEP3Ls1x47OMbD1VT9vnprjldS30FklLAwIfB gmx/8rRl9gqUuSmxzN0/AbbVl7kUC1ag7bey6K4u9nmRcyNz9uoKHOPTLkps m4DzlwOcs6tWYCJjY8MM+7wX2/mmZ7x7BfoZDT8MKZ2AILWH94I4uDEbnkrv ODkBuyYPnkoP5kaXx4oUUJgAk1PM20bh3HjhibSCvdQEbBcfef0rkhsNd5ta +ohMwGZji41OydxY8Udg9hjXBKhf05lllnJjUr1knM3Xd8DnPef7YIQbQyaF z36tewddxCnb4R08mEe9Z9dn9w4siTQNBQVePObpnH3v6Fvo0iAGnZV4UVwR u8YC34JZ6IbIPHVebBG7uIfT7y2YUsb6pDbw4hdZW3cjp7ewna5xVHQ3L8b7 alSeg7ew3rmlgTuGF883tw9tWvEW5AYX7GYneZH45da/X3kcpp95RD+/w4c8 i3+fvtcfBW3hIXlDt5W4pywo58nVYZhKmYrJ9F6Jz5lk27T0Ycjn/f3+/aGV qJbdSThFDwM/h1RVcvhK1K+1yBt1GobpX/tMhi6sRL8qve9JIsNwbWQ0wK95 Jf7JfT2TE/kfyJVN1qeqCaCux/m3tL1DwAs/3UdmBVBSJrQtfM0ghG9T5X64 KIDe7etO9NEGYcrQqTyVLIjiBfn5GwQGocm0cXG7oCCy7zGkdZ8G4IRNysUb 6oIoWT7zlHVtAD55r2o56i6IsqlxyaIKA9CVbKcq3CuIRS1UNUfpftjxxfE3 w04IOyTCNr7c2AcFYmcGohyE0Fvk2OR79T6Y079VMeIkhCsjfBO45Pug6NyS T5aHECoNCp72IffBosrlYZ4gITyk5OgckNkLtz1Gq2fOCWHxkrART30PCA27 RTxtEMIlx7uxysxuGG7yIjtqCmOELl/sR/UOmNn2WuaUjjBS0qyzZ8U7YEWj 1bqitcJYe6c1TIDcAXr1m32mNgpjh02Ew9H/2iGjVqg7xFgYZ+6qWqyMawer +3U5Sa7C2K/F4WbOeg6t18RWP0kTRju39cT9W23w4GyzK/2nMBp0mDtH+rVA 2a5OqYR5YRzM8Yqasm+BS/z9/V+WhDHM5HGbq1ELRKeNm9RSRHAbJ19aFK0F zHMWte2FRJD/R+fx6KFmmChdvZykIYKPDZNvh+5oBoG2y4W/3UVweT69p3Hd MzjAeeRtT48IRvUf+qu7uRFkaO3/Lb0QQbvlNM4tmo3Qs1G+V/WlCMrWgLuV QiPoHW55EvNGBHkF4r5mUxqBa0A8T++DCK60dnGv6GyAa0UP7QrIopj44kXL N7cGIPTnO/zXiaKFMNe77/R68Aw5+YD/kija7kyNukOrA721Yw/U8kVRO7JY 04anDnh/4EOTIlGsYB4q5J6thcpgrkfR10Wxcv5q/s3WWvgTdOHxXJUoJpm/ D20MqIWswNLakU5RDPU56K3dVAPthwcab/8VRavM4LjrR6pBx0ejx9xdDJ/s 3rJPn/8RjPnRAu94iaHIj/q7TvMPIfmwqJCArxiWXQatFOIhfAxesu4NEEPt FCUb5pOHUBLR+dI6Qgx1T0w9lgl8CJLph0bts8XQViTNUm3oASzX3fq8v1sM 1/FlN3lU3odeEU2+I5vE0UXQoN0+vQoM/P0/5m0RR2ro6uteZ6qgvK28rQnY 46Y7z0WGVcH5iDWxQibiOC1isG3IvgrMp/T+3rIRR+1UcRcxuSroqN72beKQ OH4Ra/zTVHYXWvbvHdhdII4v+FdMl3VUQm15TJ4mVQIbXQqDrVzKgcvcTiab SwLtrQR2D24vB+uPKrlkXgmsG802CVIth/fM7qwhIQn8dCZC48vsHRDNlUyP VpBAQdrnq/NJd+DQmdtnBzdJIGeKnohxw22QdRg6EhEkgXRRmo7Wpltwkqy+ u2tUAludElM3+5bBlBHfsPI7CTyxR7DFdk8Z7D772e00IYHmmbTxaIMyUBKs CNT7JIGfT1w9IyBeBl1y61KL5iVwV0wM8bepFBQ2GvSEiUqieLf4BI1RCk0B NubyOyVRZe7rTt4v14B35IRpwH1JPHLzat7hqhLQO3ZjZeojSfTZuwh3i0vA XWS4v6JGEgt3fQ+jXCyBx6brXb43SGJq3nXfjtASOPDgW3BYtyTWnVHZ/219 CTSe98o7MSWJTRe3fI+tK2b3K8uv8VJSKJL3AfP6r8DkdcWMwggpTCwzwBB6 EXyOfbdAjZbChw4v350QKYIfHlfcfM9IoUtLT14qRxGQaIoaa85J4Vt9adea F4Ugk01vasqWwsxNRm6CXoWwO4E2M1nFnu/nL31GSgHU+ciba36UQr4WYrvb zGXIUJXmqLaTRl0z7nb+37ng7KpcynKQxoMhmTECE7mglKG7S8BZGh9lOaxX 7M6F+8sWaZ4e0silUWp1vCQXBodi5AQCpZG5YfTVj925IBr3eZ3nWWnsFXSI WC7PgfR39d4ra6UxrjdvmnEsG9IuHWhzp8ugo5TG8MC6TDh2NCY0gimDRN7c Sw6lTHC1KaBlK8tgINVH2VA0EzR5h451acqgoa9w5vvvGdB+3Fh1wyYZ5F83 cqanIgMo+5QS+W1kMHiLZyafdgYckZzY9eiMDLZeOlu8pHsRHDNcevjfy+AP LfUXmZ4XQO4er+yhaRlU3UUvumJ7AcZfPPJp/yKDkwY6ZjXGF8BLUIQcPyeD tlNePCKqFyDgXKvuMlkWQ73Gfuz7kgYx0Tq53+VkcSjR9N+2E2lw4zDZa8hG FvWPrv5lvTkV5o2uLRQ+lcWgjfw6wJsMEbWFZ5obZTH5Zje1fjYJSGsvrfzY LIvmTp1Tu0eTYAUtVXFtpyzmV6Tn36xMAomF8J3N/8niRHmE/jqHJNC9Y577 YUYWr400tF28eQ4CxOc2rmHKoWP8rw8M50RgTW4Pb0qQw4e95/nzvsXD9sKe YvUkOTznbMFR9iYeihwcu9PPyyFXopB9a1s8uHYGMzwz5ZAasadTrygeXlcW dVFL5FAkPnDfpHU89J/8Rzd+KoctxzJEDz+Ogybhmva2OTlUXXNCvPZCLBRv XSPb7S6PUPp7zC0kBposec8secljiqUq1cszBibcWNNqvvIY9VluT5htDDBj MmviA+Qx6WaPZbVeDFxtXdiHJ+VxrC2ieGDpNFyzasq5lyGPRw6bGmw7exrK 3PdIXGqTR7WLlQtPbkTDnbgjwj5aCsixOVstQSYSPm9xiYlbrYAbrveNp1Ai QXPOaLZEVwErKgvvlE6fgpseYi/fblLASNtNe8RqT0EZ3MtxNFHAytpcWp/z Kbi6MEOzdFNA6V1by5tLIuCS/2Ht9RcUcHPZ34v6cBIS7DzNqD8VcEuBrIDd jXAothpx9p5XwO1yX5S4M8KhbqddQNsSez7/qCvdkeHwY+uOC0kUGmo0eiWn 2oaDs7LGf6JCNOS8VhL4hRQOa3//8FDSoKFPPtFJdTkGYzkxJ4zdaSjGbEhf zTgK60eu3EjopmEJV1WH+2goCGn7zlf00VBwtG3WpTsUPkdp7xgeoKEijxqX z5NQuMqsJVRf03Dw1donhfmhIHZokNYxRcPd0ss2N11DYTGCasZFouP4sQgt WVYIvOLTazSVpmPVp5jnq34GQ45a3p1uMzpGhgmmtOsHwdysybUzFnTkPZls nacVBFZPf1zeZEVHjgKt48dpQcC1Z1fyNRs6XjTIb3WkBsGRiIWDp/bRsVVD 2Gl/diDY9O5V1fKhY9iXivZNTwKA/4hYSXIMHb3k1IwPyfhDVENKjlk1HfV7 nldGSByE6dGGjIUaOpZqd32TIx0E+6XZtNI6Oj77rOnW99EPNPUcE6kNdJzw w5SgJ34wfEv5RG0rHfOjHVwyvP1gbXa9k8YgHd96Y6VTtS9M+X9X4PtGx0tj 6zhOBviAhazdtQ4lRdznnHTwIZ835BDaDU7Kimhwej5lfNELiDvcbz6rKKLN sxJ1iWkviMA6IUENRTw3lX/11nMvuO3NjNizRhFTlD0Dj8Z7AW/ld5uRrYo4 VbtOIYbDC9qMzpO+2iuiYX5IghqvJ2wLaHMSTlTE8p/R0mmb3GFx+KNJ8zlF XHX/1FyBujvcN+RfeyxZEVUXylpqZN1BWdqaezRVEfXW58lL/9sP/M2v75dl KeKFkqhDgc/2w7D015V4VRHTBd3ehO/eD0EtYg0B9Yp4UUP0gc97VyiU81Dq +qmIGVl9E3LVTrBZV0Pb47cijrDsU8qKnWBw59yG+XlFTO6q9zFJdgLuY/Fm Sn8UsVd1X/BjNycIenEzJILCwA4lhkHYCifA+NkGTUEGxvYGShk4OsLEt1iX FFUGdketJT/m3wdKz0qzLJ0YWPnH47JNsT30aM5fHXFm4HX5zJx9afYQnmV6 76ArAy+d2fo6INIeOv0+9sa7M7DtwzVSs6M9hAhp8NT7MDBovq5AUswe6l3K T+qEMXClgK+XY6IdOM7f3y+UwsCXlO0USqQtpGk1qfc/ZSBHEik4I8UGyjY6 8cQ0MHBn1HOt3FM2UG84935NEwN7oxvLb/nbwNd9ytcutDAwhTzRvWBhA2bx 52jWXQz2/dR+wyZBG+AatxHre8XArhAiaXOGNZxMY/3tnmPgAQ3ND79Ld8OB WY4X7epMTL135Sn1gwW43jTqcdZkohctZsNCrwXYu8d2ftNi4l79SSrlsQWY 9FJbxdcwcV5Fdp/FWQtQvkWpdd/ARNc4W+N2NQuY9CBdWzBkotg2ots0yBy8 +pfC1VyYaPjQxv0frxl43P1BT0xl4suE2ecqYaZwOGbPn10XmBg2qKWwwdUU juy5/x//RSYeXaxhOJqawtmfR86nZTFxg8vG2ddyplC+aWEpO5+JXKnybS2t O2ChcXno+i0mOu59KrVGYQek9fOnNLcxsW7sy9EPr43hUom/b3w7E1+b994w bzOGkrAeQ9NOJnapR4c13TOGhxJpi509TNw4szl9ItkYRhxFfQdeMrGSK2vj LBiDCkvacILFxOSpRzdNbxjB6vsnFK5OMjE+nFe0PssINse9WfB+z8SQB8ry JrFGYK6SX/lxmonXRaXfxLkZQcghusL370wsrXF065AwgogtpxeqZplYUyC8 oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ NDieNYT/AXAvkZQ= "]]}, Annotation[#, "Charting`Private`Tag$82229#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0., 0.6514573659417787}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9}, { 3.880086754549075*^9, 3.8800867612813787`*^9}, 3.880087724555195*^9, { 3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9, 3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9}, 3.880860852002902*^9, 3.880869132289547*^9, 3.881204836375863*^9, 3.8812056496910753`*^9, 3.883472007569745*^9}, CellLabel->"Out[52]=",ExpressionUUID->"6c8305ab-010c-412e-bcc8-acd2697db5e7"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{ "R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f8"}], " ", "==", " ", RowBox[{"1.688", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input", CellChangeTimes->{{3.880087741923903*^9, 3.88008775501427*^9}, { 3.880694241216975*^9, 3.880694245436596*^9}},ExpressionUUID->"3894cc59-ff84-4f88-8130-\ 0b3a87025770"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox["2", "3"], RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm1", "2"], SuperscriptBox[ RowBox[{"fIn", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "range1"}], "}"}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["myNorm1", "2"], " ", SuperscriptBox["myCoeff1", "2"], " ", SuperscriptBox[ RowBox[{"fOut", "[", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ",", "r", ",", "0"}], "]"}], "2"], SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.881205652720017*^9, 3.8812056628772306`*^9}}, CellLabel->"In[53]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], Cell[BoxData["1.6819723510511688`"], "Output", CellChangeTimes->{ 3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9}, 3.88086085882454*^9, 3.880869134852079*^9, 3.881204839005999*^9, 3.881205664575473*^9, 3.88347201133778*^9}, CellLabel->"Out[53]=",ExpressionUUID->"648f4a86-0b5a-41cd-89df-dd1b1815953b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], " ", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "b"}], " ", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "r", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"a", ">", "0"}], " ", "&&", " ", RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.880861385537384*^9, 3.880861404667945*^9}, { 3.880861435828167*^9, 3.880861482626848*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "b"}], " ", "r"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"a", " ", RowBox[{"Cos", "[", RowBox[{"a", " ", "r"}], "]"}]}], "+", RowBox[{"b", " ", RowBox[{"Sin", "[", RowBox[{"a", " ", "r"}], "]"}]}]}], ")"}]}], RowBox[{ SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]}]]], "Output", CellChangeTimes->{{3.880861434068989*^9, 3.880861457611085*^9}, 3.880861494055222*^9, 3.880869147295782*^9}, CellLabel->"Out[21]=",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"a", " ", "x"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"b", " ", "x"}], "]"}]}], ",", "x", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"a", ">", "0"}], " ", "&&", " ", RowBox[{"b", ">", "0"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.880861521929137*^9, 3.8808615332101803`*^9}, { 3.88120377534515*^9, 3.881203786644293*^9}}, CellLabel-> "In[134]:=",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}]}]], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}], " ", "x"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{"a", "+", "b"}], ")"}]}]]}]], "Output", CellChangeTimes->{ 3.8808615368747*^9, 3.880869149783291*^9, {3.8812037807260647`*^9, 3.881203787872303*^9}}, CellLabel-> "Out[134]=",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ", RowBox[{ FractionBox["1", "q"], SqrtBox[ FractionBox["1", RowBox[{"p", " "}]]], "myNorm1", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{ FractionBox["q", "p"], "-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}], " ", "range1"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ FractionBox["q", "p"], "-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}]}]], "-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{ FractionBox["q", "p"], "+", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}], " ", "range1"}], "]"}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ FractionBox["q", "p"], "+", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}]}]], "+", RowBox[{"myCoeff1", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ", "range1"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ FractionBox["q", "p"], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"q", " ", "range1"}], "p"], "]"}]}], "+", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"q", " ", "range1"}], "p"], "]"}]}]}], ")"}]}], RowBox[{ FractionBox[ SuperscriptBox["q", "2"], SuperscriptBox["p", "2"]], "+", SuperscriptBox[ RowBox[{"(", FractionBox[ SqrtBox[ RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], "2"]}]]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9}, 3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, { 3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9, 3.88087538894692*^9}, {3.881035003112468*^9, 3.881035013631791*^9}, { 3.881203805263261*^9, 3.881203818283866*^9}, {3.881203924377963*^9, 3.881203938033923*^9}, {3.881204080636133*^9, 3.881204114844595*^9}, { 3.8812044164683723`*^9, 3.881204430878365*^9}, {3.8812047385493*^9, 3.881204786636528*^9}, {3.8812048642166367`*^9, 3.881204865174282*^9}, { 3.881204917757641*^9, 3.8812049207310743`*^9}, {3.8812056704257107`*^9, 3.881205704444508*^9}, {3.8834695079893436`*^9, 3.883469548235299*^9}, { 3.883472024232431*^9, 3.883472026203348*^9}, {3.88347208837014*^9, 3.883472144946068*^9}, {3.883472181679571*^9, 3.8834721826113234`*^9}, { 3.883472227747223*^9, 3.883472248968128*^9}, {3.8834723567622137`*^9, 3.883472365515347*^9}}, CellLabel->"In[65]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ "\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ", "\:0434\:043e\:043b\:0436\:043d\:043e", " ", "\:0431\:044b\:0442\:044c", " ", FractionBox["Pi", "2"]}], "*)"}], "\[IndentingNewLine]", RowBox[{"NIntegrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"q", " ", RowBox[{"PsiP", "[", "q", "]"}]}], ")"}], "2"], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, { 3.8808621852190742`*^9, 3.8808621872400637`*^9}, {3.8808622612561007`*^9, 3.8808622622720737`*^9}, {3.880869441370618*^9, 3.880869443208253*^9}, { 3.880869501822802*^9, 3.880869501983926*^9}, {3.880869536444581*^9, 3.8808695572733717`*^9}, 3.8808697342790833`*^9, 3.880869832570633*^9, { 3.880870060957982*^9, 3.880870064343985*^9}, {3.88087011615005*^9, 3.880870127514163*^9}, 3.8808701957015953`*^9, {3.8808705574838667`*^9, 3.88087055832367*^9}, {3.88087073089237*^9, 3.8808707380182533`*^9}, { 3.880874814478899*^9, 3.880874818483645*^9}, {3.8808752703279543`*^9, 3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, { 3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9, 3.880875587481934*^9}, {3.881204851540709*^9, 3.88120487584007*^9}, { 3.881204929685568*^9, 3.881204938728588*^9}, 3.883469588483089*^9, { 3.883472260370273*^9, 3.8834722755921593`*^9}, {3.8834724024046783`*^9, 3.8834724104031897`*^9}}, CellLabel->"In[68]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], Cell[BoxData["1.5707963215304706`"], "Output", CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, { 3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9, 3.880875593014206*^9}, {3.881204848107025*^9, 3.881204877006847*^9}, { 3.881204927752026*^9, 3.881204939243373*^9}, 3.8812057081188097`*^9, 3.883472196088427*^9, {3.883472244705304*^9, 3.883472281247822*^9}, 3.883472313051105*^9, 3.8834723684261103`*^9, {3.883472403405114*^9, 3.883472411008134*^9}}, CellLabel->"Out[68]=",ExpressionUUID->"5971acd3-cbbb-484c-b12e-d21fa3fd3fb6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"PsiP", "[", "q", "]"}], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "1000"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellLabel->"In[69]:=",ExpressionUUID->"21d21223-42d4-4fbf-851e-6b518f516178"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVl3k4VV8Xx02ZM1QKISEZS0qR7LM0IKSoFIoyJ2SeZ9dwDZdQyTwlUsh4 ia1MFSE3PyKUBiIkUynDe9+/7vN57j5rfdd3rbWfc3Zb3jKyYWJgYEDMDAz/ //0xv6qvZbuE8r4+kymetSDcHvgePJn7jnBxU47IorMP14ytUO4XIon5W1oQ nY+cFK1KdJ0h9ndqO5ymsz8uZGDJXSCeP3+3sD5jQQwNoYcE+Q9Rq6asmk3n o7/7z/i7rhGp34+pytG5i3zE74MCI0gPrC1mT1sQa/fCz6zkMMNty7JbDHRW KOwR3yHACtYqDcV6PyyIK1U7Fw+R2eEuNBWETlkQcc12L43WOMG7Mtwyb9KC aHhbmebiuhk0Flm+PfluQUyPbjhRvvFC9B3nfQUTFgRl+YF4vwI/lOmLaEaM WxCYZX5hIWcrDKvlv2H7akH0c6WOMH3YBpaiUnrFny2I2S3oJb/AdhC+pJql MmZBiO2OSdtPFgQJDd8enlEL4rCMEgm1CMGDzDdVZsMWhMH+fqcza8LgkcYQ mDxkQQRqSGjedBWFTdus21v6LYiUk6/k/ErE4Lf8kXMNfRbEYz3nbeRvuyBm 5kB3No2eT2HE/Z3CbpDwm63b203Ppy6r/StHEkwsmT6rt1oQj9Dqsz8aUrAl +1Rm3At6/uM9SgwfpKAwY7vPK0zPf9pTmFdAGjYK4x4w1lkQQZdezCiQZaCe a2ua32MLgtMsxfKQtCyYrL3k3FNsQdw1txtQb5GFQi1eWv0DC6LUZvML3TU5 UH95LLwoy4IYcTdJsXdVhD3/nTGKT7Ag7L0VOFx49sGoSeLl5FgLYtFvI9C7 ZB+Y5b/8TYqyILjDHthFftsPv8/f2SMfTNf/ykeUpnAAdI/1aJOc6Pr6W+d+ 5hyEvnqxIDctCyL441UTnuWDkHqBRaQNLIjy78svFPQOweM3XOEM6hYE/z+Z 5BtLh2BX6bPvB/ZbEH274lW+nD4MTLzJrSHbLQjTGxf9+udVwZJFnXnkkzkR 6zb7eVFbDYa5VatbBs2JBv8ova2ZajD9Re1oCs2cEKXUiZzTPgpHYrnYFlrM iU8Vok2v09XBVu/Ys+IH5oTd6jfmxpMIdrSMPOK2MSdSNwU7friP4OHKw9T7 V8yJVzyC/63MImDf03KX/4I5Ibdbt/DwfQK2TZYKtRw3J35LXJJ67wWwNGGa sW+XOVGv/azdsFMTqFGUA+p9Vwm4Hc51yuMkbB7YS+3Zf5V4ObodMWWcBJtn xdkFe64SBgqPXJpaToL+u8qRGzuvEldfvv1PbespSIv2qGhjvUr4rYnm7Ks4 BU3aEjvahq8QVTeohwTntOCJv9PAUsQVQub4zNUfN0+DVq5D4LMuM4J/wbj8 tpUBUD3Zz/w4YkqIXd19ISrGAKC1or5TzpRQePnjd8BTAwg0MnqSJ2pK6KSH EPYbBsDHti3wELMpEXTiUTdKPwv/RVzRmeoyIZZfBy173jgHNcHimRXXTQgr Ydo2yVxDKGGK8zIOv0ygZz6GgXwXYKjE78JopTGR446fDF82AfvUam/3TCNi 9PQI7Z+WOQhIJUgYNJ4hbPT8Zix7rsO1G3nG/Ge1CHHN95mfBq8DeZCti3ZQ ixg+fNjA/Ot10JroaiwQ1CKMJOZLTVauw70YxVN+n08RsHLD5ZykJWStW1jM eJ0iRB6aLGh4W8KIzpbW9byTxDsmtRXBXVbwzlC1ToT9BKFZ/5ulx9kaVM5+ cJdmB0LVcuJQqo81XFepj6j/RhBKnAPW18OsIajj4DWdZwQhZlrTunDHGh66 qY222hLE3xUPkmCjNezXuB+g2YSIKrV5ZksuGwjNsY7Q99IgpOummZYe2sBu DWebutWjhOj1YWX81AY4P2RpHeo/SmzjeGMZ9cwGXv+5nNNTdpRgMilpFuqx Ab7Ra1Q7q6PExz83wtCyDVw70H1G9I0akao6wRh90haymcQEM/JVCS7qGMPO MVvQ7eGe63E4TMyduxdZ+8MWnF/GCzidOkz0TepzX1i2BSKm7sN+8cNE5k7q jnguO+Cw/SUr3a9C7A+m7NtQsYM/Kuc/951QIc5rqV/5EmMH+0vOdyhLHyLS +1JqSw7Zw94niq4PWZWJECddDR3CHl6s4affvh0grFkZWr6etoc/4zXqOm0H CEXVm92iFvbw85bcsi/pANGUrvktgWwPE8Y6ERSWA8QXy9ktHqP2sCH8JfUW lxIh/0vb+Vj0DWjTgGMGdgqE/rEEd6mkGyA+ebnRRlmBcIzq9+HOuAGXfQ5K 1a3JE49FbcKHy27ADRcx5a135AkF3bDUgIEboGP4eN/tdjliX35Dc4O0Azx/ MyiffkiWUL54YIdGmwOsSk7/2HpMmjDK8RHZ0+MA6EBFoTOPNOH2o2n35kEH iHM182Mc20NUhhoojEw7gMgW/6nuyD3EodKbmoHbbsLLJ5xmm/6TIg6zFd5s tLoJW+8fTmrxlySO1gk/12ByBOZVPeX7v8SJgM6ysQUuR9BxWCv27RQn8MhJ 5kcCjhD0U/Nv7ANxQpPpltZ2WUcI8WTIOWUqTujotbyZPesI2eqsz7bE7SIu jdwczM50hAartjqHM6KEB2PjPKOaE7yV3PvQZocQUbPVaBv1uBN0nrjtLjwg SPzZM6HirO8EViw2fnL3BIkAXX7fIQsneCUcJmkmKEiEJ9tsVEQ6gbiigfFv sR1E0h4ebus+J/jUklY6ekyAKDttsaf9ljPEhKpNhNXxE6P69Rln/Zzh6UaM SFIwP8FzTmDbIMkZft+M92bS4iccjTuZpu87Q0+sztFNfXyEjNWRT/ytzhC0 Jd5+yyQvkRfAm35V8Bb4iDbv9qNwEyllTXxLz2/B49yXTW+usxItFcLRQZ23 wEynetMwCysxX+25wdZ/C4y2ldndK9pEGDbIzwr/uAUDlJdNvPMsRNTXTpsc ThfYKswWvRDHTJz8deRE+yEXSE9rUJwdYyAaOfnW+cku4N1YojDM9ge52UT6 rsa7gEwERPOF/EYyz1cXx5Nc4LVn/1fdlWWU5Dn541mGC+wS8DXoml1C9p+a B23KXUB24Gj11LcFtK3Gs7puwAW2UJ7E3mOeQx1800oFwy5Q/Kea13jHTxR8 0/IxZcwFajsTXtvKzqIp8bP5Vj9cIC/mGLfG+Wn0PFbm9uYNF7hAMLWGNn5H jtc/OF6XdoXehGt2d6fGkESD4Xc9eVeYPehmc1VwDA1sf2V1WMkV7B4ol01r f0LH31SZch11hcnFH29qL48gwSMUneozrsDqM10TuW0AtXBrSnF4uoKoTbNP 1fV2JEwt/FDe4gpfVmdTyolWrMXFwLTptSv0GJsWZX9vx27mJjIm3a7gPOEY dyXmNe5g4fZkHHSF4xZH9O2o3djf0JXHaNYVNn+LZZ2y6MPDU+qaC4JuYL52 U+l08whmR3fstMXcIP7VILPfx1F86PZsfLqkG5R5X/W0WPmI447kDp3Y5wbe PaT0J/xjWIPE6pFywg3uDH47f0bmC84S7S1UcXaD0mfUi7KcE7jDRa6L7O4G Ex1DOCR4Ai+3hC+M+LgBw8P+zksLE9jA4TBEhruBGJffz/j+73ijJn2wP9UN nKQf9JvETuFr52y5fVrc4NnOBwW25TM4Lr9J+c0rN9iLjYPaeWYxdVnQRLzb DRRMjtS9vjmL+TI7H7x67wbX93ayt+z+iV9MKhFCs26Qw24+MIrmsET4P9d6 QXfIfG99btD/F/5Y51+4JOoOn7ri7f5m/8IZc/+GlCTdQSGhczK85Rfebr56 4qGiOwx+JkT62Ocxp9qaQMpxd+D4ahBJipvHL28F6vZou0ND24AOy+N5TCpc C+I84w62QjHqix3zeH3r+kTIJXdgKmOLkGFbwL9m1+ucHN1B/3TEqTWfBVy6 J3i2yNUdePT/ygulLGCHKxsSX73cYUhP/7/HpQv46+uNWNNQd+A9OiRHfF7A 7wsYzLXvukO5h2+X7IlFfOdDSFJYujsoNRxrEDVdxEZbGF825riDI8tYV6LL In4TzKh0qMQdXhhU//2dvoifmzIx7X7uDpYL56u+TC/iwNthh6+0ucPeO94r kxuL+Ogrppv3OtyhZn8qxWvLEq5SYe7b/J87PHmlqiR9eAm7Ooaznx5yh3cX nNd1tZfwvnxmDdJHd0j7xJWzcmkJF/GxFP6ddIefSOL9b+8lbKNNGlL56Q4C 5TOyp6OWsEQQC6/rojvsON/etvfuEs74weIzse4Ow+H+pxMrlnBC+ybdvq0e wHdX86L0+BLWX4sI4hXyAP5pk96VX0uY/RBrpa6YBzxYdze/vraEw3JZRV7I eICT6r+Nn1uWMfE+8tyqogcMWyQ2CIou41UetogjBz2g9IL30HvpZewVwDb7 RMMDJLVbQiXUlvHByiiJyeMe8JZ19vETzWU8N8l2SUrHAxaUlgPenV7GDpfY n6cZeYDWL2ut+cvLeC8levG/Sx6wK13pw7TFMv7ayi7Lf9UDbP7k60XYLmNz ZY6kKDsPYLUgzyS5LWO140aR9o4eIHDLxrnUexlvM0r3O+3qAau3JrW9A5bx 7PWvznJeHmCd1SUyG7KMX7sqWnH50+NdUErYGrGMC0K9Lk0He4C48F34Hr2M g2436XWRPOBe7WSvY9wyNsllh1KyB+zRDviSm7CMDz01PJRA8QAHnU0C0UnL mPdFmoxLsgfEVOZtEr+zjKfefhExTPWAd5sHzzvcW8ZtnxT4lTM9wCcoOdPu /jLOmfPctDXPAwa+SIYIpi9jf4amlYVCDxicPJ4amLGMjfnYZ/tKPCBUnC/s XuYyVhI3/Fxd7gH7t24ZtM1axlxKaf13qz0g7dph1Wk6jxNfOrzrPSDkXa+a TPYyfn5WoelyE12/f473TjqnW3hWqrV6wEZ7W0w7/bzXLfxQ+LUHnM18wyVH Z8Ngtox/XR6Q7/swSYueTyHhXOIwzQOaI8trROh62LLvkxoHPOjfE8U8T9KW 8efSzz5Zwx6wuNCg9Cd1GTdieafgMfq8CARUrN9dxqndHtevjXuAtvSYzIuU Zew22nhR8wfdDycDGaD7dWaWVVdijt7vFMrJALqfMutnEfOSB9i+6OPzovvN xHNf+euKB3Q2NOzaR17GVEX5nYXMnvBOdEb/Q+gyTtbw4I1i94TMy77xvYHL 2PlMI7P9Zk+QO7v/YrTvMpZ0Ojstu8MTDNEeqprLMl4PSP3EKeIJjmcWXFRu LuP3cWN9P8Q9wS+ebXrBZhlTHrs3PpHzhPatj64+M13GNxoanlL2e4K7soBT 24VlfPLNpsJbhzxhS3CIS4rBMl75cY9yANF5e35QOH2ereUbLKoNPcFIP6y9 Soq+H+qbLtw19gQeZtfoJZFlLKxnoONt5gm7ON9FbGxbxj0On5TUbDyBKTlP z5VlGR99xMLU6OMJd6gzCUOfljC/7JmC1mxPuGSW6H84cQlbHvA9wfvAEyb2 jr0xIdHvC7UHn00eeYKdHKGv5bOEjXXXxH9WecJ8Q4lRoAV9328+yRTq8ISq BekXHvJLWKZ08z3nRU8IPtL1mK9+EfvVqB2uW/GE84HGv3lLFnEntvmPecMT novVc32m31/OPY1b73N4QcSWtRGGwEVcNeeU2CLmBa8yZfnVNBYxHOwmC572 gpSTSn58NQs4Sf2vjJWBF1DrVauDCxbwlxPSr56c9wJlgcHbHUkLOPJCEOsJ cy9Q4SDrLTkv4Dee+8Kd3L3gnU3d5Sd7FvBlKiWgOdMLXFMvKgnHz+NbGmdv Oc57wR07jsvntX/hUbGT3Vd+e4FQn0bBvYO/sAGDmuKZVS/w/VdZ83rXL6zQ IvFDkdUbpC6Xpv35PYendJZtfwp5w5YXXkdiH85h6wuZ5m6a3lCXnfHuLfMc Nr3544xPojd0SskdMbadwSfvRymQ9vnAmm+WWee/Cdy6JSiPNcIXdh44msIg PIjV3wbUa8f4woPxM4N1be9xRbw/LTrBF7ZlHDYodX2Ps9l9mbjSfOHmrW2H 9ToGsN+6uyVvmS8c9WPJsQnqxwembkgIDvrCoK7U3oz5dzjrxcU8WUU/qJ6s Grgm2o0Fgi/UOyj7AbP9+a/UiC4cd+w8reSIH2jE7ip/OPsG+9aeY9p33A9s 90rU6Dd34gtP9CyVL/lBryfTng6X15jzvqaEeqgfmH0bHFb50Yq9XRTz9P/z g3b/rsicKirmZlvyPTjkB5Nt1WyaTbU4J7PBUPijH3yL8Avl7KzBHR16jN+/ +4Fl08rRneNVWGSPw7XwVT/Y7ftkXEvuKW4eLBSrl/QHyznB3ML+fMx9Qjx9 r5s/7LCxOyBzPR7lDE648Xj7QwGLgOv+mdtIxaVMd8nfH5bcVuy/S91B5pno b3OEP7y5MLe3LCIdPf19xcT8vj9sjlNWVmctQMaP7++489wf7KsKmpK4ylGu wNYUJt4AIEX/Ld6r9Aw9Lmjcfn5bAJSucsxuHn+GqAft7+cLBUAgc+DZsLQG 1G3YmHVSKgD4N0IFtm80otV4u+JItQD4j2xyz9vsOTJmbcCc1gFw6MK/0Z65 ZmR5x1bT7EYAfH0t1qEJLchJir+1xDkAxs0dfq5SWhDpuO1rfd8A2Jt44ulZ uVb0NIivj0IJgM8JITOOl9sQ92/ryS11AbC8lzW8PuklEozkdbTCATDoxcf4 of8lkhSon61sCYDuoxfv6wi/QkcP8i5e6A4AlmgZbe7sV8juVt363S8BYPcq XwnlvEbNE5u37eQJhAMmAZV3QjtRlxf17s2tgfDMKEy7tL4Tvd9kJdQgGAgs sU4XhRY60U9JqthVyUBQlXaw/X79DRK5ZimbrRoIPgo5lz2PdCHv9zVI0ioQ hFxWbhQ2d6MckAsVsg+EpMBT99hmu1FHUWYLr1MglH2U0hsQ7EEiviSdVa9A MLDZ3NLi2IOeCxkZ/RcTCMKsXq0zrG/RZGhbSmdCIPie2914Vfgt2jKlOvAi JRBMtsmGRCq+RTb1u66UZgXClgh7JebzbxGn2YxNVEUgIN6m4dK0t+hgy7Wi wNpAoLA8eDVV8hZdke+bcm8IhMKfk2JjDW9R2b/6W9faA8FZPXpsbeQtupAR 7as2FAitzD6VayK9KGtEMv4HYxA0/9nQ0ab0open7vWMsQaB2cPA5yfSe9Hc E84t77mCQEpfas/6w150IujX3VaBIGBoe5j75Hkv+i7WlJMpGwSx/GOTa7O9 iD9K+UvyviDYvPWb7txKLzr688GemINBsMVryTuPhYbimuIeeWkEwb07U3La QjR04Jpp1VnDIJj7GluZStCQ6auu5VPGQfBUwE05UYeGSEqaasfMgiBo6JbT aUMa6meQwTI2QaCi7rCNyZKGNuzTGXY5BAG3lMkGowMNyfTynBC4FQQX3Y8X tLrSkF/u0ktG3yCY7nUQSQ6hoXyOG5x/AoNg8LaDS3YUDb1xHdafDQuCD6Zf g29RaGjX8ZbeobggUO6R+M8snYZaPyd+qMwJgpyhC8GOFTQUtE9e4faDILia yXGaVEtDqn5tAc6PgoDldISodQMNPeb/KypbFQS2AwljAW00ZHs1xZm1LgjO rXw3qHlNQ+LF+5q+NAZB1EZ6M7WLhlLA6lrWS7q/TQ71Qv/RkEHcWrn/myAI 9b3X6POehtjf32M06Q2Cu5moLfcDDTVLKhsd7g+CMpoO/51RGgq49SZv64cg SPzcMmY0RkOHn9kuzH0Mgu+rY14fvtDQHCvjye6vQeC99odv/zgNPTJKTymZ pJ9/Gjp35jsNWWepfIueDQJ9sR3GqlM0JDbVo2K7EARirz3DZn/Q0HsVh8gT f4KAY8OvxmWGhpJCWQbE14KgRlTqYNMsDel3Ze1dZwwGjtF4taGfNMQqpObz gTUYaJkLnM1zNPTc+t0rKlcwbC0p/e71i96Pciehu3zB8DJRZdsKnQ+tsjm4 CwSDhNXOHp15GprVzqs/JxwMTJt5zWzpXJR8jGvfrmDYnj20Ykhny4/9ZlxS wbA3y3KGi84i8q6Pv8sEg+b5B94p9Hj9XlxrbYrBsCpSP/SDnj+x+cGZfOVg +Nb09vIWOuvyQFbIkWCAOqVD7HS9LKZDs1ePBYNbkmpZF70+/MCDUNcMhpKD V7mtpmnI5xdPoqBWMKipyVJe0f1R1ij+tKQbDOs6x7zX6f5NR5848O5sMITb 6XJumqChwr6R0PILwRB3dmfM8FcauibuQ4s3oevvIKtFfKahvtrH7jpWwbDn 56aDeiM0RGHWbt1jT/+fIsF8Y4iGdM6ObWN2CoYfV1Z4TAZoqGFcoKbRKxis PzwYL39LQ17K5azp/sHgusauJkSfH6Ug3Us+IcFwfpbou0CfrwKB4D/KMcHA FjI0r/WChsyvC53mSwiGkw0qa2v0+RR8Unl/JjkYnmAjczKVvo8nvx8tygyG /bLHDoqV0ZCHu2Gg6NNg2PTsNUU7jYb2Nf3o+lsdDFrVn6qLUmjoO2ek2Pv6 YBDLcjf8RN+XK3n1TUmtwdBy133pXRgNneyVZGJ/Hwytzyuu9tnTkKdA7prB SDDEJDQJm1yn+2MitnLnczAod036lJnQENtnwTnJmWDQyEx3p52mIZsV1p+7 GEOgXDr149+99H1Lb3NsYQ6BxTN5Ett30dBdDdKULWsIzCzUN2zaTkPtoYzj T7hCIM3n3TkrZvr+c64Oq28PgcFHhm67h3sRPK43/SgYAuoumRPfe3vRZQPf 92E7QyDRucQ+6mUvIictv3stTj9vUj6hW9GLpoR/dVySDwGHL39PL0X0oify 41R3CAGXxzLzEtK9qL2r4PCOEyHAorQ1MlyoF43esqqqPxUCJ9J2Rzzn7kU8 VZ/KGPVCIOXwW6He+bfI5diHwoSLIZAbJTp9sfEtUj7zNqXEIQSmykYMVfXf IqpzvcuXlBA4k1bhevFhN7IIvNptci8EXvKsHS+J7kascQwKb++HwH3dTI3/ bnSji8VaEw1ZIfBrpKXxoXw3mv9Cu3q3KARG96uduPikCymY/NA93RACS1bD uieL36CcEyJ7yr6EgGDWisl8ZAciCwYN+imHwmhgnGPIYhtS6s3J0h4JhVqW QsUvu2vRh65Xl8c/hsI3VvOQ2N4aFNkxtyXicyiQD6aOnw2tQcMtENU8EQrZ +wK/7B+rRtE1n25pzIdC94XRrdfzqtCndHHNg2xhgBLLZ/fKV6BE25wvYgfC gMTyrJOt5hFSt3qV2XgwDMatv4ps3vUIjVvMXbpyOAxu8owe94wuRsdM4M19 9TD4W1jU6HalCH3X+1S1TSsMPOfP1B7nKERwQDyS0ywMmrPSfyh556K5f9ky y6QwEHtgwLPv0m0kZ/O42S4qDI4ruAy6XU5E1t3UK4PkMIj9W3JSrZqC3uf0 JjZQwuCNjHjO6ZYY9PwU80pYahjEeWqQriyFoYQE29e8j8Pg98Elt5mMq2if pKKD7LswGPnA2XzRmIzt49RY0v8Lg57JWzrZArE4b+lUFvf7MGgrTTGm0eLw 9lfmtJ/DYeB6NrzYSzIRrzsmHq0ZD4P46mjpsZhk3FWzwHnibxhEzkdfV5RO w4669SVXdofD4FUp3oST+Xhsv+pOZqlwkJ7Q+dn9KB8bC9TEFEuHw+2YQB0r vgKs+enpjWX5cLjXnMQYPViAt3sV7008HA79OwR1qVaF+Hluan6LXjiMtDir ul4qxipR27c6GIRDceWQ3buKYvzIMSWMzzAcQoYi/CI2P8J3jiRev2ocDgsu k87vnz/CDl1Ru35fCwfr/tHNh3Y9xttWvNLlvMKBZyi7NqO+FJNHFzl7fcLh SkTXiwnOMrze4ubn7R8Ow3v/KYeYluFJirNJa0g46Gxp/5X6uwxjKdsd5rHh wBfl9qsypRzbn7uYfDsnHNIvtqxSq5/iEZV3TKr54TCefjVW6/1TbLTT0G30 QThUM8rG+f19ijXG9Q3lS8JBS2xx8T+NCrwl4CRvW3U49NgNc5o9r8CNDw/G /ukIhwz2fq/CqkrcvHJnyLUrHGo6vjlX9VTidr0/sj96wsHY6d+cx1Ql7v7Z 8GqkLxx+vLfu3ryrCo8e0WJtGQ2HgTRUnkOqwgyvLofGz4dDgL/XATPNaswi /Owt61I4yP7Zy552qRqzO4qKh/wOB7Gha1lxTtWYn+8zdlul989a2jE+tRpL XL65eomVBFtUdl1n+FGNT34P9JYQJoFG0szh1tAarHP0U3u6CAnufGjp1Euu wfpxx7cL7CIBt8vQTHRBDb6oxFbNJkWCgKaGa1LtNdjWJ3F+WpEEtpV/e75s qsUOHfOatkokEDv08P5OgVrsLHLx9kdlEgic0ufmlKrFXs+FlGhHSBAjp0Pi 0qzFUez5TrWaJDA2XWJ84F2L40w3NSqdJAHfUKXRXVItTnxsx/1IiwTZH3eQ idu1OPWcQkmGHgk4pxIM6otrcVFq9ffQiySIKnWeuThQix9P7VD9d4kEHLE7 hLg+1+LyY35RHqYkaGo7E+k7XYvrPiFpOwsS6OWrD4cxUHGHzCsr/RskcIsM SNDfQ8V3pzWO1t0kwTm/ytRCRSq2Kq/kk3Ymwfnj0bxYhYpXj2Q3briR4Gnq w409p6j49b9tKY6eJHj0p7HfS5/+fFOMw6A3CbYR7AMR56l4v7bXjsoAEny+ vHPrx2v05zmnZ3YFk2Dzzc4yWTsqftV9vTUulASBZwOOHHSiYkvjM662kSSY LhvoCveh4n3CLdrvokmwp/omdAZS8b8RVTGIJcF7LpoNLYyKU2ykOoUSScA/ OJsiHkfF12TTciOTSJC3yWeTfSIVK87w+iykkEDiqvfyrRQq/lseYXDtHgm+ 9qpmqKZScbvHP6mu+yS4lHRdvjmdipNVXf+pZZDAHf18z51Nj7c63luYRQLm XUeGBPOoWOH5laKtuXR/r32zHi+g4pVwWlBIPgkUtVZLPR/S42nrXJx5QIJf 9u9m24upOIkLy5sWkcBjcrvZUAkVW/QcZHr5iARsj9rlyp/Q4yUXvz/4hATB ZJU7OmVU/Md4V1lOGQkYU9lp+eVU3CZ8J2JzBQmKLhwWan5KjzfKecWvigSf Pm7Kz6+gYvO8EOWJGvrz6jxFOpVULGe7zH6hjgQygSrXn9L5t6zjx+fPSODL U842SufWmbFqRUwCpU8bfd10Tnx6KS7tOQnqHy4wkeh81bPLkq2FBPt2FHau 0ePLqZ1Q82ij1ycUeOMYnZdXqbxjL+nzwSm7A+h6Wp7vGz/TQYJ/c/m8HHS9 iaSChvo3JEhvUKLcK6XiKzrCyXt7SFDlb9r94zEVy3In3kjpJcGr9AUuVrof yz2bgLGPBF27BMLHi6i4Odl/u3M/CcRHRV3iC6k44dKv6aH3dL8bnvL+y6di mY/D96tGSCC508JUPouKF/OMXHZ/IsHHji0hs2lU/ML2lRblMwm0XUhnfO9R sels5YLdBAlYvhUNjCdQsXSFbEffJH0eWzf4OmKpeMEzO0dzmgRDKmY/PKOo OG4t5szOXyQwNRcKlgmi4ssvGKSiF0gwWsVfu9+XivdEeP1dXCJByCXVeAYP Ksbclg+7/5Jg4nPnVoYbVPxrpxpjGEsEHGB+nRJ4jt5PM/EnkmwR0DC5O+vU aSpmyGAzaeOIgBbDCda3mlTMJ9Jfzs4bAQoLAVqKylSsJOJ+LUEoAiyp/c+2 8FGx6hVT7gMiEbDWHLu6zErFkKFJpYlFgNhb4xM5a7X4nAgf33apCEjfHax+ YqoWu4g8acrYR8+/9PtM3/Na7HMl5SY6EAGlhbdUpqprcUiG/45PByNgitY/ +PIR/X4R0b0lqRYBVi8O1X1Ipt8XIhNij05EwHEJjYBbVrX4p8juoNrLEdA4 rcVx508NXr7CLmdiFgGt/RaW56Zq8HrGz//+Xo2AmJ1Lmwc/1GAeUayIrCJA oHnt5Xlcg/eJmo20OkVAXINP05+QGuwseucYLYyut3ho8txaNZ4R5fg3/TgC 5P2VD73oq8Kkjr7I62UR4PRGqmZ/cxUW9s7Z0v80Al42pe4JKKvCOm+PyDXV RECzreRaGbkKF4TZmtx+HgHVVUGfYo9VYbOJllqVvgjoMv3LfSmjEr8uD/II +hcBW3c9Rme1KvCDE4szvLqRoC72npRcVIqVfZCG/WIkBLwUZBtMysH+b/Mj fJKjQAvrVq9fDMQFA+/PfL8TBdeMZQ4vv/fH3aObt19OjYKx2XH2iSt+WGLG u/BIZhTcCIzjaLLzxq849F8uF0aBV/rnU4lkV7ztxCK7Z30UnJXaypa1cQk/ rj4Z5zoWBVe/QTuzqgvqb/C9MPYlCvaHc51WvO2KNlpKRQzHo+BthcDglkk3 ZEQTfKL0IwoiIqVXOe54oj+z010/F6PA6Zq7vsuIHzopc4fXmT0avrWwMx2+ F4ZG0r4lOeyPBq4BhYwTlnHouFicEq9yNFSbKxaHbYpHhbnK3ZWHouH1hwvD Yw/jkUtRMMeaWjQcsbRbWZ2kIJYaoZCEk9FwXcHGoP1pIpLvPeNUZRIN77h4 JIoEklHihUVOkyvRUHPmndC2a8locSCtaM08GvifcVlxPEpGeHTii5Z1NExq MbhQjqUgo+lQ00HnaBijdnj+MbuDfNlqtNfDoyF/YbMBI+keGo258i0vMhoe NidrD7bfQ8d5mMO1ydHwmKXnqgpHKuIWOIcTKdEww1L6yicuFeVITB2SvB8N 9SdztPbE30cvNcQkdEqj4Qyj3amPXulIwCNy9fb7aHj2u/aoz1QWYrfm9+P4 EA3HnO/2sQpno9XzGb9DRuj12LNaSJ3ORl8PVszf+hwNXQXcf7kKs1HVwsj3 M9PREPGmpu6UYg4yclf5j4OBDFz8c7vEB3KQltVzo1AmMqgJXcow+5GDjp7X e/uHhQzcFcxHzDdy0O6D1zsnOOjnZ941U6Xp77/zcS/atpJBXPuscotbLkpw +/okdC8ZfpX+Yt3PkIfCLG/Jr8iSoeuh7twwXx7yMvpb5KJABgerSnGj3XnI XJmvwOIAGVzvSLklaeahffPqaRrqZBibJlXcDM5DEp/bd1Rr0J//sVBygZKH ttMM7ygAGcYz2/ZvysxDa0/tEneeIsPoIXXGxro89MY1OXLFgAw3fyjxkefy 0PPrYiyuhnS9Q7JZZWt5qMqwOPT7eTL8kZvakcWZj9IPNAUMXCaDc5E8+zvJ fOTwa8qt2pIMV1+MRmadz0fmY55zCjZkGOjj3slqkY+MehmcC+zIcKUtTOiw Qz46+nT7jWRHMiTRFjJ+BucjDtfjFq5eZBAL53zTUZSPVEdQhagvGaTusfuf rMxH9qfVN3X4kyFwQTs9sDEfte8+VCIRSoYjrUkZ+3rz0VK80np3OBkKNlKq C4fykdRfBUP/SDLkBLaWjX7JR2G0Pb/fxZKhLne8kbKUj54iCd0QCt1/6nUe tvV89OmRWKbCbTIYXhKqI1gLEBG+40TEXTJYfPbNmBcoQKsHORIO55JhpSPx kKVyAZLP2fT5cz4ZfCdvT39SLUCm3EwqCYVkYJaP5dpNFCDq179DEyVkKJdn 4x3XLUAT534rppSSQWtIQePmuQK0vXEhBJ6SYctnik3FxQLkeWda+n4NGazH uFGURQEqYJz0PVVHhpCrS+oC1gWoz+nbm1/PyGB5+2mPjX0BYh4a25WFydDG 67zb17EAKWuNuum+IIOH43uTsy4F6HrFUNtyCxmGbcXyvrsXoESxAcH8djIs 8sxInvIuQLPLPfhfJxl+K54L1AksQKJWb/iLusmwRK189DO4AOn3vLK+0Euf R7tjjaZhBchfva2WoY8MC2JsY2RSAXr08AXnk34y/f3u0fHAyAI0uBVfNRkk Q72VKq9KdAFiD6kv3zRMhq0Gqh5PyQVIdbqGuWKU3g+iJHs+pgDZXa40Nh+j z284+/M/sQXobmtZMedX+vxoa7C0xhWgdqXHqzXjZPjeWJJ+Ib4ALWUUnbWa JMMFQq7mEZ2lOB7k8U6TIdSRidRO5/OeuUvPZun5zs6pFNE5bCxTx/4XGd55 7147S+enZ9LSty3S91HiEBemx/9Ud3f2+TJdv8HhpHl6fl7pZE2nFTKUTRW0 ztD1oaSEFKFVej/HHf4ro+t3Wo+daFsnA7706bcqvb4Mh+ijbowxUJH+2oJM r7+znxQvxhIDYk7Gmrl0f/4eD/3UwRoDkRy7e0Po/smVBR705ogBr9OKJ2VC CpDJTr9ISW76+ZaJnnt0/6OjvAZ7eGLg4pjUox4/+vwsuCkE8MdAJ7M4x1t6 v7a/uUnr2x4DKzrqSvKuBeiUqv2eUKEYOD/3xjbSqQB5FFj7KIrEwPrw2vqj GwWIFnBVLHJ3DIRctlQxvF6AOkyd/uyRigH2/Y3V368UoBeqgbQ26RigeCU7 6F8uQOWLGZGbFGLAPt9K39egABXRHl97sC8GjgwmTBw/XYCyyxuOnjpA/98/ LXnwRAGiOA7Pkg7HgEKx2bozff4jdadfSanFQCvjtKIzfT8CZVbzWtVjYK2O +5y6QgFy/LrzEotmDEh/PGoIuwqQ3hWzpnC9GOgeupn5j6kAHT96876kQQxI PbeodvlHvx8E/d1bzsUA87xlUvVCPpLrS9vLbBwD/lyxMWX0fWbXH0oIuxYD uYGi3Ddf5KNWdZNroZ4xcLojhOmwRz5qELpxdLdPDDxp/7LRciMfVf722fbC LwZw0UbmHvp9lFeZ+oohJAas1M42WJ/ORyHy75VCYmKgkvgbP7gzHx3beYkx ODsGfP9TKOqn5qFDK7YfxPJioP1Dzt7GkjwkP+BVjQvofts7XPfPykPCyXdv rBfHgFZHJn9IeB76w9nfG1gVA4utR7uf6uWh6r8X8gJex0CR693U+b5cdOzU 6Ss/O2PA9XXooZD2XNScoLHdsjsGJB//C5itzUXdUtIx2u9iYIH1+7JTWi76 bvDbdctIDFic9u1cv5qLRPLvaxbNxUCBvuG+tI85iKQ3+undjligcf7E6RnZ 6HyG3S5521iQI4+283aloW1WXaU0+1hgtSmNzM1JQ/2yB5HfzVho1vosz+2R hkxr16+8dokFvsDkMGfhNGRJu5Nm5x8L6z+txrxt7iMX9laBgsRY6HXYv233 0j0U7yHOLfosFqQvbOr/sp6CXuoP/uHhiwOm9d11btR4tCxu2/moNA46BY+o jD+4iXjbW14IPo2D1qcu39wMHJDMzd3UyMo4GGqenS35bY9Mq4cLLKlxcCBt QUNR3xY1nT4fJNwcByIs/TaVa9dQtBsciPkvDra4RvF93KqLhFuF791YjYOz vfoKLHfN8MEbPvED63FwzbQ21YPPHOvz9IefYoyH7NiFnf4nr+Ggy7dddrPG A2dgGy9PvSX+Ms2mO8gbDwYOQj3ovh1+LLC0qiMZD0uCCaOMyS6YsOuxlNGN h2P/jE52V/vilOisfZ368SDNGFHMeNYPfy92+ut0Nh7i6kczgif8cOI0V1Ll hXiwV6tdMt4egD+76rxAFvHwdynPx/hmEI4MeLHrokc8bGSc+m/YJxR3364c Ds2Kh6wQB5PeqggsURlWJJUbD3X7eQ/sXYrA3n2GHi/z42EYns1vVYnE4jvm uDYXx0N5keWL8spI7JahoJ5aGQ8H9gxUzJRE4e0PH9wvfRUPFSXN3nLRZGze cM/4w3w86BJmIbkzcfi4rh6T4VI8ZM7/tP0gEo/3vF9/0v47HqxT+X481YvH 0ws2mypW4yG9dNveQ0Xx2Ff+UFU0KwXCvy9KkK9QcEraW/7DwhT6992JTcYV CdhHhtRYIkIBFfU0H50PCdis5siN3bsoIOWXVjnFmIglaFnPuaUosCzZuvej bCIu53C69UWRAv/pvhy09k7EnT4cXYmaFDCe5E0cYr+NS1kbfVhPUiA+1SJD Qvg2TkpxkQrQogDBKXbuiPxtfLl8wN9OjwIdd3pT2/Vv4/GJB3LoIgXCjN1U AuJvY6ZLx6N/2FOAsULMUHNTEh7/unTw+k0KbH0hec5oaxJ+7Vb8sd+Jrtc6 bmD/7iT6uyPfkWY3Csh350edO5aERdtHv6UGUKB14z6WcUnCqir+J7QSKTB4 rSJKtTsJ9/sfl9uUTAFuucL+80NJ2LOZg7/1DgVeC3k77h9PwhVnU0c10+l+ ZRtk711LwgoO1b4ahRQoiv1bJCqTjDvKA66tFlHAWdT46THlZHzj9wntZyUU 2DTx1kvkWDIuJNG2qT2lQPqLlBCxs8lYPPtn2aEGen2Swg/3uSVj/K3m7gKm gF9fWclFv2R8VSEosOIFBW5EtnCjsGScVsetp/SSAqZe68T528lYlaHvwM/X FLB/HKgZkpqMB7TSBUvfUCDNTnbdOTsZb+uTHZenUWB+wpUn6XEyrhD+9Waq jwLUYJ277RXJ2PA6tbJ4gAJmXY2ajdRkTJnVCt07QoGl7Sluv1qSsaIKj/34 R7qfBStK+18n4zf+/xk8+EyBA8mbIvZ3J2MODmsRye8UKFa7Y+szkIyLzsoz f56iQELu2wMvPiRjrbvzkzkzdP064jxdH5Pxt+G6txZzFDi82rsz40syJkmG 1ootUKBGst1/30QylnDQyRpZokASw62zpKlk/KKcNyLjDwW6vvVQM2eS8bXf /TfN/lGg1yVgyG8uGa9rZBkJr9Pjvbo3sHMhGWeQbNQGGRIgvP3du5ClZKze qSCeypwAIoTLQvHvZDzEv8h6iTUBYuSOmt1bScY+l5/NCHAkgNKnGKXT/5Lx 9uywvj6uBPiirX2/aTUZV387/SyZJwFGN3989nctGV9Q4M8z4k+Aj/16TX/X k/G82/to/m0JoOnI19m0kYwT67Jvvd1Oz79whE2XIQXvZ7AzThBKgO1CFzPu 07lba5+GgUgCnIDQylI6O8YvSW7elQBp1WZeZDpz9jVwvtmdAJU0dl45OhcL k37FSCVApMqBokR6fJ3reu9P702ApK8MTo30/OMPtzSxy9HjB0mTy+n6SLOD D14qJIC5BU3Gga5fUiU3LnJ/Aqy9rfaZ+puMm/3t3U8p0+tXZCo8QK//WvN+ UxaVBLDktB8l6P6ss/+GliP08+bbzwnQ/cs8i/eGHU0AhZI62Yr5ZHzsbgSP pkYCkET807bT/R8a1l/aIBLAmbrRe5zen/8BbmllzQ== "]]}, Annotation[#, "Charting`Private`Tag$84572#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8834722952053967`*^9, 3.8834723148474817`*^9}, 3.883472413855248*^9}, CellLabel->"Out[69]=",ExpressionUUID->"7e2c907c-5815-40ec-b0c6-09abd28924fd"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, Magnification:>1.1 Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 2017, 50, 174, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[2578, 72, 2849, 74, 200, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[CellGroupData[{ Cell[5452, 150, 2312, 54, 79, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[7767, 206, 11349, 201, 259, "Output",ExpressionUUID->"4b9fe172-9212-4561-a287-0e5fcec3095b"] }, Open ]], Cell[CellGroupData[{ Cell[19153, 412, 1967, 50, 79, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[21123, 464, 1003, 14, 37, "Output",ExpressionUUID->"9335ded2-e54f-46a8-9b5a-6e4e244b2198"] }, Open ]], Cell[CellGroupData[{ Cell[22163, 483, 1100, 29, 58, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[23266, 514, 503, 7, 37, "Output",ExpressionUUID->"1fefee2c-c22d-441e-b490-61523152bc95"] }, Open ]], Cell[CellGroupData[{ Cell[23806, 526, 1962, 49, 160, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[25771, 577, 583, 8, 37, "Output",ExpressionUUID->"a7b55ec3-e8e7-484e-86bc-a0bdc4afe276"] }, Open ]], Cell[CellGroupData[{ Cell[26391, 590, 1302, 35, 58, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[27696, 627, 11272, 203, 260, "Output",ExpressionUUID->"6c8305ab-010c-412e-bcc8-acd2697db5e7"] }, Open ]], Cell[38983, 833, 392, 10, 33, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"], Cell[CellGroupData[{ Cell[39400, 847, 1317, 39, 111, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], Cell[40720, 888, 334, 5, 37, "Output",ExpressionUUID->"648f4a86-0b5a-41cd-89df-dd1b1815953b"] }, Open ]], Cell[CellGroupData[{ Cell[41091, 898, 645, 17, 33, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"], Cell[41739, 917, 647, 19, 57, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"] }, Open ]], Cell[CellGroupData[{ Cell[42423, 941, 562, 15, 33, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"], Cell[42988, 958, 660, 22, 55, "Output",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"] }, Open ]], Cell[43663, 983, 3811, 106, 184, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"], Cell[CellGroupData[{ Cell[47499, 1093, 1743, 32, 62, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], Cell[49245, 1127, 587, 8, 37, "Output",ExpressionUUID->"5971acd3-cbbb-484c-b12e-d21fa3fd3fb6"] }, Open ]], Cell[CellGroupData[{ Cell[49869, 1140, 303, 7, 33, "Input",ExpressionUUID->"21d21223-42d4-4fbf-851e-6b518f516178"], Cell[50175, 1149, 19139, 333, 245, "Output",ExpressionUUID->"7e2c907c-5815-40ec-b0c6-09abd28924fd"] }, Open ]] } ] *)