(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 32406, 751] NotebookOptionsPosition[ 29673, 698] NotebookOutlinePosition[ 30101, 715] CellTagsIndexPosition[ 30058, 712] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0425\:044e\:043b\:044c\:0442\:0435\:043d\:043e\:0432\:0441\:043a\:043e\ \:0433\:043e", " ", "\:0430\:043d\:0437\:0430\:0446\:0430"}], ",", " ", RowBox[{ "\:044d\:043d\:0435\:0440\:0433\:0438\:0439", " ", "\:0441\:0432\:044f\:0437\:0438", " ", "\:0438", " ", "\:043c\:0430\:0441\:0441", " ", "\:0447\:0430\:0441\:0442\:0438\:0446"}]}], "*)"}], " ", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"m1", "=", "938.2723"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"m2", "=", "939.5656"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"eeD", "=", "2.225"}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"Eb2", "=", "1.296"}], ";", "\[IndentingNewLine]", RowBox[{"Eb3", "=", "7.77"}], ";"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"kProton", "=", SqrtBox[ RowBox[{"2", "*", "eeD", "*", FractionBox[ RowBox[{"m2", "*", "m1"}], RowBox[{"m2", "+", "m1"}]]}]]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"j", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"radCh", " ", "=", " ", "2.1421"}], ";"}]}]}]], "Input", CellChangeTimes->{{3.8418280761221857`*^9, 3.8418280761422033`*^9}, 3.841862171517088*^9, {3.8419262080807543`*^9, 3.841926219260518*^9}, { 3.841928038092181*^9, 3.8419280541030884`*^9}, {3.841928487899782*^9, 3.841928488076267*^9}, {3.8420066140269156`*^9, 3.8420066793455715`*^9}, { 3.8420171976184487`*^9, 3.8420172488882537`*^9}, {3.8424381617095547`*^9, 3.842438201338784*^9}, {3.8424382660884786`*^9, 3.8424382663017025`*^9}, { 3.842439900950303*^9, 3.842439905584711*^9}, {3.842440130144476*^9, 3.8424401408080816`*^9}, {3.8431287176062517`*^9, 3.8431287369491*^9}, { 3.868506577438991*^9, 3.868506607725766*^9}, {3.8685082343880377`*^9, 3.868508264626708*^9}, 3.868508295057948*^9, {3.8685088480586357`*^9, 3.8685088658482113`*^9}, 3.868510178130962*^9, {3.868511111974544*^9, 3.868511122212982*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"2526f2fe-15aa-4579-b9ea-decc3aa58e9d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["radii", "2"], "/", "4"}], " ", "+", " ", "0.64", " ", "-", "0.125"}], "==", SuperscriptBox["radCh", "2"]}], ",", "radii", ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{"radii", ">", "0"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{3.868508853568275*^9}, CellLabel->"In[43]:=",ExpressionUUID->"220ec690-b6e8-4041-b6db-85117c0aebe8"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"radii", "\[Rule]", "4.036628499131423`"}], "}"}], "}"}]], "Output",\ CellChangeTimes->{3.86850888104244*^9, 3.868510185941433*^9, 3.868510993241634*^9, 3.8685111274856873`*^9, 3.868512725087854*^9, 3.86859260104237*^9}, CellLabel->"Out[43]=",ExpressionUUID->"813107a7-fdc0-40c0-9f52-d9967b7b2e97"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Psi", "[", RowBox[{"r_", ",", " ", "q_", ",", " ", "k_"}], "]"}], ":=", RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "k"}], " ", "r"}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "q"}], " ", "r"}]]}], ")"}]}]], "Input", CellChangeTimes->{{3.841500617220299*^9, 3.8415006194000273`*^9}, { 3.8415006763469276`*^9, 3.841500710264333*^9}, {3.8415121934261312`*^9, 3.8415122060456753`*^9}, {3.841926409979779*^9, 3.8419264177339487`*^9}, { 3.8419276456625643`*^9, 3.8419276518377705`*^9}, {3.841928494442438*^9, 3.841928503957432*^9}, {3.841928615751482*^9, 3.841928632201804*^9}, { 3.842033422958788*^9, 3.842033423943757*^9}, {3.842437713760228*^9, 3.842437735679245*^9}, {3.842438434224802*^9, 3.8424384347359476`*^9}, { 3.868510987173293*^9, 3.868510987328767*^9}}, CellLabel->"In[44]:=",ExpressionUUID->"86929842-b770-4ba7-b6e9-2ee5c585020a"], Cell[BoxData[ RowBox[{"(*", "\:041d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0430", "*)"}]], "Input", CellChangeTimes->{{3.86850598593543*^9, 3.868506006899047*^9}, { 3.86850635238809*^9, 3.8685063560504923`*^9}, 3.868506790939067*^9, { 3.868506872690419*^9, 3.868506873123567*^9}, {3.868507564336475*^9, 3.868507564837818*^9}, {3.868507601149354*^9, 3.8685076023106337`*^9}},ExpressionUUID->"3cba0c7d-b74d-44b7-be23-\ de4c6f445cac"], Cell[BoxData[ RowBox[{ RowBox[{"Norm1", "[", RowBox[{"q_", ",", "k_"}], "]"}], " ", ":=", " ", RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"Psi", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}], "2"], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"k", ">", "0"}], ",", RowBox[{"q", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8685067964058933`*^9, 3.868506817218575*^9}, { 3.868506878481089*^9, 3.868506881688241*^9}, {3.868506953305505*^9, 3.8685069547697687`*^9}, 3.868507608707961*^9, {3.8685096633820333`*^9, 3.868509668624763*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"4f4d5d61-fdf8-4144-922d-24a1a9bcf65e"], Cell[BoxData[ RowBox[{ RowBox[{"PsiNorm", "[", RowBox[{"r_", ",", "q_", ",", "k_"}], "]"}], " ", ":=", " ", FractionBox[ RowBox[{"Psi", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}], SqrtBox[ RowBox[{"Norm1", "[", RowBox[{"q", ",", "k"}], "]"}]]]}]], "Input", CellChangeTimes->{{3.868506842713272*^9, 3.868506890403079*^9}, { 3.8685096583025627`*^9, 3.86850965965059*^9}}, CellLabel->"In[46]:=",ExpressionUUID->"cfe62748-465f-49a4-8692-622aef7132ec"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ SuperscriptBox[ RowBox[{"PsiNorm", "[", RowBox[{"r", ",", "q", ",", "k"}], "]"}], "2"], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"k", ">", "0"}], ",", RowBox[{"q", ">", "0"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.86850691051902*^9, 3.868506919730239*^9}, { 3.868510573098914*^9, 3.868510576657299*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"dcf5ac81-7b56-4e36-9ec0-4771a2422a75"], Cell[BoxData["1"], "Output", CellChangeTimes->{3.868509676339554*^9, 3.868510199738626*^9, 3.8685110058216476`*^9, 3.8685111481268797`*^9, 3.868512732307797*^9, 3.868592609613551*^9}, CellLabel->"Out[47]=",ExpressionUUID->"16cf9198-eff9-447b-9532-0738cceb8c19"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{ "\:0417\:0430\:0434\:0430\:043d\:0438\:0435", " ", "\:0447\:0438\:0441\:043b\:0435\:043d\:043d\:043e\:0433\:043e", " ", "\:0437\:043d\:0430\:0447\:0435\:043d\:0438\:044f", " ", "\:043f\:0430\:0440\:0430\:043c\:0435\:0442\:0440\:0430", " ", "q", " ", "\:0434\:043b\:044f", " ", "Eb"}], "=", RowBox[{"2.224", " ", RowBox[{ "\:041c\:044d\:0412", ".", " ", "\:041f\:043e\:0438\:0441\:043a"}], " ", "\:0442\:043e\:0447\:043a\:0438"}]}], ",", " ", RowBox[{ "\:0432", " ", "\:043e\:043a\:0440\:0435\:0441\:0442\:043d\:043e\:0441\:0442\:0438", " ", "\:043a\:043e\:0442\:043e\:0440\:043e\:0439", " ", "\:0431\:0443\:0434\:0435\:043c", " ", "\:0438\:0441\:043a\:0430\:0442\:044c", " ", "\:0440\:0435\:0448\:0435\:043d\:0438\:0435", " ", "\:0443\:0440\:0430\:0432\:043d\:0435\:043d\:0438\:044f", " ", "\:043e\:0442\:043d\:043e\:0441\:0438\:0442\:0435\:043b\:044c\:043d\:043e\ ", " ", "q"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"PsiNorm", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox["kProton", "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", SuperscriptBox["4.04", "2"]}], ",", RowBox[{"{", RowBox[{"q", ",", "225", ",", "230"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8685069805632257`*^9, 3.8685069818154287`*^9}, { 3.868507500761157*^9, 3.8685075067124577`*^9}, {3.868508302006258*^9, 3.868508321256205*^9}, {3.868508565660277*^9, 3.868508568900975*^9}, { 3.868508628382997*^9, 3.8685086311346188`*^9}, {3.868508909149338*^9, 3.868508951272414*^9}, {3.868509027462365*^9, 3.8685090293204203`*^9}, { 3.868509127679667*^9, 3.86850912963724*^9}}, CellLabel-> "In[185]:=",ExpressionUUID->"eb7f236f-52d0-4b04-a063-b8cb0b97aab5"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV0ns022cYB/Cstm5unXFGrS5xP0spEUutzJtx5rBGOW3IKFamrRbR4qCl yKGkHFLarFGXZnFL/IhLxT3e9tRKXaraRFuj5lZmrdVl7VC19/3jOc/5/Pc8 5/s1C489enIXiUTyQYN3eD+dRCJHM0jl9w9OPYNAp3r/VS3sVYspmgoCmEkm G2LTjXJ5oxAYAQ2GI3bc5BJ1AAKVfDI9AttR/DSrCwKviqydfmxnh9D95RAc SHv8odAM2e+QacovEGzQONsWFsid87FWyz0geoZekmeN7MX0Wf5HAUSLzMSO r5H1BdNDuxRg7fr5oKe2yP2KiLyvuoF5ls2UswMy653vuEkX0B2k/HaChnzj j8+pTp1gkgXVhujITvezLegdoC8rPNbmELJ78dqGazuI0zq21/s75Ndr2gOs NrAxpgyTMZArH495BLaC7zcqFp97IKcb6DVy5EByl5v8rydyneLRCq8FLA29 kbB+RPaYGF7i3wbL9vX6F32QW2v4/TXNYFi1aTnrh9y23RpZ1wQGzdiurixk m4mfZuSNIPd3UuFxNvK4UnhS1ACs6lyye4KQF8tU1bJ6wF26174Qgrzno6Sc FwRoj5rMY4UhX1+QmixKwZ5rn0Q2RSAnbPmGbNUAa90UrvI0csZIjqlDNTBU cl1copAvftZ3260SDL9WOUZycH6ycAVHDET1zrTL57H9dx+ViIBvo61yPgH5 nHl3dVIZgBqcZq1kZEsKO3S6GGhIGNSkFJyfirpvRwAS/jbrGE1DZhoqtu2L gCjbL22Vi9yuKe/2zAc1ETpzAZeRHQIV64LLIPamcQ6Xh9wYNzT9JBUEJH5L K81D/lOjxIwfAwwFL9M3C5BJwjnNO0awTHNa3bQI+Y6abqd3DHzfG+2UI8Bu fMf8OA0ajf1QKhfivrDcu+2yYXC+nbayBN+nLRPT8mFSTrUJ/RbO/+zE+uki eOx5dEyoGPmZuoPrugC91xs8UIXznm3lDRbDaQnF31qKLFFSl/ll8ILLi1yv OuShSy0BV0TwlY5FmKwB2VPubXJODMlu8oTxZuQjq1wyvRImfBFQ+FaOvM7v GVitghU2vCMBHchLowb3lDXwmuBT79Ru3PcL1jq/SqFR6Qw7F1t8K3K+TAor xYpTQuxNtrizSgpbGuKzWrC9Mt5HyKVQ+WAKvsKWNR7uUEqh/oc2eogC97nU /4ReLRSeirR060E+sGUguVoLyTEeNCZ23BVmqrAWSuJN3IOwlUSyn6gWdmQo f07ENq9v+6+hFo7fZJTIsIMrHnmN1MJ9I3t1TSHu4xnOgjYBK1VrZDtsCsOo 60sC2k48tHfBDiXuFhgT0PWvLB829kPG2jd2BAxWW+HxselnVjKZBJxTH7pR hs1ZPM5mETBap6aawCZtKyjBBLxkHNLbh332ZeRoFAF3Wzo/UWEHdzVVxhOw gKI3M4s9brWalEJAferymxXst1aUw5kELD/4YGcHu7Mr0CSPgP8Dp706uA== "]]}, Annotation[#, "Charting`Private`Tag$3359577#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{225.0000000000005, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{225, 230}, {-0.05379576535584718, 0.12440295325961159`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.8685075058507223`*^9, 3.868507544875833*^9, 3.8685083720129213`*^9, 3.8685086160246487`*^9, 3.868508678634019*^9, 3.868508950160479*^9, 3.868509001639771*^9, 3.868509076619823*^9, 3.868509178998495*^9, 3.868510237029114*^9, 3.8685110516609907`*^9, 3.868511192825335*^9}, CellLabel-> "Out[185]=",ExpressionUUID->"55793edb-d5b8-4858-95ca-e7c9b007d219"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"PsiNorm", "[", RowBox[{"r", ",", FractionBox["q", "j"], ",", FractionBox["kProton", "j"]}], "]"}], "2"], "*", SuperscriptBox["r", "2"]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"Re", "[", "q", "]"}], ">", "0"}]}]}], "]"}], "\[Equal]", SuperscriptBox["4.04", "2"]}], ",", RowBox[{"{", RowBox[{"q", ",", "228", ",", "229"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8424411355629845`*^9, 3.842441156587248*^9}, { 3.842441619365672*^9, 3.842441624049182*^9}, {3.868509077312571*^9, 3.8685090989579687`*^9}, {3.868509241184043*^9, 3.868509246764495*^9}, 3.868509283474368*^9}, CellLabel->"In[48]:=",ExpressionUUID->"d3c2ecc0-a8e6-4792-81ca-5b40050838c2"], Cell[BoxData[ RowBox[{"{", RowBox[{"q", "\[Rule]", "228.4649720223125`"}], "}"}]], "Output", CellChangeTimes->{3.868510327526165*^9, 3.868511062385458*^9, 3.868512738222055*^9, 3.868592614917831*^9}, CellLabel->"Out[48]=",ExpressionUUID->"1a6fdb34-67f5-4729-a6c5-ec30d105838b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PsiNorm", "[", RowBox[{"r", ",", FractionBox["228.4649720223125`", "j"], ",", FractionBox["kProton", "j"]}], "]"}]], "Input", CellChangeTimes->{{3.868511613342454*^9, 3.8685116202709827`*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"e7ab3299-968d-4d29-b2cd-447d8d1ff1e6"], Cell[BoxData[ RowBox[{"0.9320838334751147`", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "1.1577988416299467`"}], " ", "r"}]]}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "0.23162873939354178`"}], " ", "r"}]]}], ")"}]}]], "Output",\ CellChangeTimes->{3.868511621518509*^9, 3.8685127401428013`*^9, 3.868592617205583*^9}, CellLabel->"Out[49]=",ExpressionUUID->"528622d6-520d-4dfb-95cb-02eedf8f9d0f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"PsiD", "[", "r_", "]"}], ":=", RowBox[{"PsiNorm", "[", RowBox[{"r", ",", FractionBox["228.4649720223125`", "j"], ",", FractionBox["kProton", "j"]}], "]"}]}]], "Input", CellChangeTimes->{{3.868509307138521*^9, 3.868509435603945*^9}, 3.868509486682172*^9, {3.8685095247898083`*^9, 3.868509546146194*^9}, 3.8685098213255653`*^9, {3.868510083158072*^9, 3.868510085697418*^9}, 3.8685103325546827`*^9, {3.868510647018784*^9, 3.8685106476883497`*^9}, 3.8685110704035378`*^9, {3.868511671930978*^9, 3.86851168516597*^9}, { 3.8685118943199244`*^9, 3.8685118972365713`*^9}, {3.868512143956333*^9, 3.8685121468388042`*^9}, {3.868512197211124*^9, 3.868512199341248*^9}}, CellLabel->"In[50]:=",ExpressionUUID->"baaeb7e8-47ee-48ec-a1d3-3cd762829736"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"PsiD", "[", "rad", "]"}], ",", RowBox[{"{", RowBox[{"rad", ",", "0", ",", "20"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.86851220377577*^9, 3.868512215990354*^9}, { 3.868592491966135*^9, 3.868592493035427*^9}}, CellLabel->"In[51]:=",ExpressionUUID->"e5d127d6-d370-4347-8f24-faa40e61a8b6"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlXk81Nv/xzGukiVL9aVFdIsIYVLavE4JKakst5IoZcl6uVGRFoQUUcoS FZUlFYqKkLTYjYSs86mQPcsYZhj85vfHeZzH87/3eb+Wo2Tvae4gJCAg0MU/ /38nXbQX0T51Tz9m8TFXxyex+p++KZoeUjyPoQViD7fE+2DuS3GQouI1pFxv doy8chVJJREr/1KMR5rElZwG8ztw2+7jPrkyA/v23Y6lJh7j27RzzMjKfDjf yXU6sCsXvmUKWsM5BfCwsA2398rD0tsNVUMGhVB9p3mu+d5r2KsR2oDTe+zr ppnQ+t7i3DOx/LHvpaj/aNHcdqoI89p+qQytrEBH8oSfNasUzSVFPoO9FWCc +h6k4PsRT1PjPg7kVMLkuMnj/MmPMPM2s+s3qEbMspzfAZOfcFe04G6PEwP6 lEmWX98XyCSWC41+r8emlJSQpfGVSK584DWwsgUHDVOU3RPqMB6Xp0bdaEFp wqWY/Yw6GDlVddZzW1AnTwWk075ikDZpVfCtFfa3pTRLXb5Cb7vZlmuh7Xg6 99X3lU496rJ4QirDFFqvFRn5Pf0GGYjaSmj+gKmzetiu79+wVTlmS+ipH9i+ I3H6Dq0BkeMZLL+vP5A1oWBXb92ADdGNDvaZP7HN/vB0Fa0RlyrV92jbdUJu pZHPbdKE9Jw3ypl3OjGcVza+w7EJ9XE7aWuqOyF1QsY55HoTVjsdLpTb3IVh udx7DQ1NqKQFawrIdqN0UxUryf47lmxvk2F8+Q0v/5+tia7NIKsdh3fP/EaW i46P5PVmnBYbrSql98AyLnjB30+bUdgicvX1wx5saA7S0utphr2vzmSSXy/s Y1VtVY614EXWtTY3zX4EZB+WKdRrRb9M/409J/qhUf7Hce5AK1R89+ivjelH TQHz/rRzKx5uE0vu5PYjyeVWr2JcK25V3HC0/jyAqLHFXA1WK3w7b44a2wxh 2Ih9sSyxDS+NRlLW3BzC1T0lt5uz2zCcccCSVjqEgc8dzU8/tcH5X+k3xSp/ sC5u3e+YgTZYz9y6oMv6A9dgu/M3NrbjgVhVkLThCEql5wS8P7RDf7u/zWXb EYSG9Tyu/dqOdo91usNnRyDqQ7WxfrZDrv767+qnI9h3T7k4XrAD0XGmJmFS o2DUbTO00+9A0Jpaybm2URgb9llovujAqkMXe9zZo8geOetj9K4DJWGaJe2S Y3hpqlCoUd4B3kCkV8GOMaTldO90/dkBn5f7G3zSxnBG913jM2kmnPA1ftCb hQURBiWJp5kQSJkoaLvOQm+WkWTyf0zECS9vr3zMwon/hdMuBDBRXuGokNHE wkrlHZpvophYa8lLcdgyDjy74rY3j4mS10qfLC3GocSq+SFRzMRheeNuA7dx cCAamPGFiTBmtMqq++MYciFB7t+Z6HVWecYUZINxdX2f1iQTl6tMa2qWsuFZ 6qb9eZYJOU3vP4V0Ns71rJmvK0JhN6tQ654DG5yx0ND0RRQyAszzDlWwoR/C K/q9nsLOH2ebjH6x4Zpb7W63kZ+DnUmTutNsyMy7MpC3jcKC+b2bF2lMwKYt ynFmNwWXWwHFdVET2Nhj2TJjR0GInUK9z5jAmhVt590cKCQcKhfIKp1Am6XL vHcuFCqXyxpEjPN57K8RzhkK69LSy0wOT8K/6I7oXCiFT6K1vXpek5iZW7X2 zA0KNm4s0bXhkyhKPrGhKorCDW19U5HCSTgFxEkoxlMYfPetrnQlB++8Ezxd 0ykEK3BHc/Q44NjfyJzIpLD8ioJs8kEOhs6J5jtkUTA1Om11KYiD0fxjOiN5 FLrSI309Ejko+kyTEc+ncEEsN/ZYHgci+g1PxQspPK+bbdnaw8G8eYIDhR8o GNFXT6sJcHHlTYeQ+ycKzDsmy5fKcxEm2ZMrVEZB8miMLWcPF+1DCz9RVRRS i/Iv9ZzkAjPnIlVqKegrUg+bLnBhrP2oxqqOgke3amfuCy78DwVcdmyg8MO2 Zf6HCi6s7o2peDVRsGgO06zp4mKDQfF722YKXw7qWbbMcXGDeyR8fSsFvaqe 891Lp5DCzq/obKOQuSv2wajuFHQEzd77d1BQKDb6PHNgCroXhJ5NMinQcp5I LQmdwrNNLNfEnxR81aw2rkqZwiv1y8Wff1HofSRso1k0BQ6rTqShk8LRFblX tjRP4W/G/qCyLgq1d0+mGbGmgKA+r4fdFIiUbI255DSqzSSl7H5TeHWtdMxW dRpLmC8TaD0UlGnecq67phG7/aBZJJ/jLijpn7WbxvXKPsc5Pi+YqDsZ5DeN VCVhxUO9FAI8L1+7eWcaIuLZuXf4PNK7Pute9jQMXELs3vHZ3p5qSKuaxpcV T63L+dzQFjn16vc09oyUU4V8NrbSVywR5OHZ+eVr4/lcUDtkWL2ch2aaq9sx PqvvTnJt3sTDevf53aJ8vv/BNLrLnAfO/O8V9/nzSG/lvR5x54Fc3G2+nM/B uZntvDAeBJ/Y5gXy3zehcVRI9DEP0Seeqdbz3386bcHaxe95OHnxn+4FfG5X LNin1MrD5uBFChr8fZklnP5Pg83DpSht0c38fX6QlY/fLDUDPbWINk3+vjdE lBcbrpuB6uLECkm+Hqki57oOGs3A6+/T81oovt+5TetdLszgs5wN0eDrOesd YuUbO4MJekTyG77eXoO6/oEvZ9DlHaOgwffDP1TMl4TeGVi2N9Bb+f4pP7xr MJU2i+zUPk2ZRgpb61nSrxRm+f9thNjGbxQUP5sfq7KcxQuVcbWdDAr9T6XG p0tmkRq6eJPXF37+VpfIz2+fxe+D2r4SfL8zkjyxaHIW873HF8by85AbVRuu rjEHMVXu/P/4ebnke0PpWPwcWoxfssxzKIwNbzU+nTsHefa+IdsXFE6dHnDz YczBR9P10RF+Ptdormn/IiRAAqcvDi97wveDUrAKpSdA5BaGJzbH8uffFr3+ oqEA2Tc79CchhkLI4fubVpgLkJnG5n/2R/P7Juqt8VFXAbJj2qgvMpzC1Oyg 0/ckAcJmqce7XaAw0G6VzhASJMUh+g5Fxyg85dhneywUJDmD7oysIxScF/37 VmK5IDlqJrftrhW/D/aGl+/VFSQFxtuisI+vZ0Fxb5mTIFm06gjm8fuvOk5F taRakDDKproD/0chPHeDtl2LIAnt9ogoleH3a92OzbPdgkTcLGtwUoLfZ/Ns TLbNCRLmr269XcIUCn2jTr/VFiIP7r+scBhh4rklNyP7rhDpcgje9ovf75FS VWrJx2nEUrIxzN6difxNK/LMPGiEnS7pJurERJetJ3j+NFJ6831c2nEmtj6X tTwUSyMt0qkbKi34/4GJTYBELY3YfM3RzdzMhEHQEOP8VmFiLHcyc5TGBIe9 0Md8yV9k2eMzL7Rud8C+zfI9rVqEPHuo4t39sB1en4PtPVUWkHT5eIEP91uR 86+4hZyJBHn/tsXFJrsZyf6u/VqHpEjkkw1iZ5ObEPiAd3B8UJpMGq9R0Khq gMC3H6TQT5YceL9RJ13uG5TPOJ6zVFtMkkTvpv088RVd7Nh/xIqWkLCv5lvP MxjY0+0ScMtLjvjb+C4yZVbDrCtqnYLCUmK4aWuG1NZK9H+0v1z+fBmpfXTE TXS6DJrSTSsM7FYQ22Ix55SSz1gA9ol2lgJ5aVhDrNs+wnjIenKVlSIRzz8Z H8f7gObSU4LW6kpkic3m48vNS5AX9slWka1EQjm+egGMIjj+5fOjtnYV0RER Njwo/A4nvf3zxBP+JkM8zkrpJ2+x3mldremJ1Xy91F79e/U1GDLqYj6b1xDZ m32rz7rl4t2LwHvqNGXyX8O5lrDHL+EvqHagukOZpPQFeCp3ZmNBu99uj1wV QhcL19+d+gLdqUoxDy6sJUe0hMSGZzMRs1ZeON9KlXCCFRSDj2cgKsGx7ISi Gkm3jld2VEmDdcyxWvEeNRLX6unTq/oEnF1PuA+K15Ebynlp53UeobN757nS UHWySKbWXDQ0GSnbtZfVnNAgbokHGld8fIDnV32knTQ0ySLD3o0PJxMRanVy L42tSQrL0poOnE2AbntyRmjNerI2UtJPcS4Wcar3ntfs1SLOMYU+Hr/v4FJJ RNzefC2itZDh86jxNvYts3pSuVqbLE7oXzR/Lho7PMqOSl/TJqUW/Uv+9YzC g+X2q6vZ2qTaIc/6v8oIrP6YdtfsqA6R5cre1tG4jiiNUrX6Yh1ibMHoXt0U BkeW8NcKNTqxMzjEdQgJgX3OmOK1m3RSW1dwViAqGG6BFrw90XSidDP95qPQ YPhY5H4Xv00nh4T3S+65FIwwtk9k1F06UVfU35LsEYwXm7nTsUl0QhsUVz63 LxjcD3NNqZl0op9/eWmZWDCi6sUjPpXRiWSjO48KD0LCI3fnkAo6eR0iv3so MAiPztQa7K6iE+/LpowZvyC8XhI1VVVLJ3p3Ra6vdQ1Cu7Ws87dGOpm3acXt x3uDoNIpb/Crk076GpVKdSWCoJXrp/C4m05ko9NVff8KwparbVyHHjppMRl6 kz8TCFOVpOy+fjphVEUZ7PkTCG9XRYXRUTqxbA1gRTECcWHbFe5LFp08T9F0 7y8LxFWJXw1n2HRiKu9KMy4JRFzWo+scDp1cKjp7WTQnECmXhZ0KpujEPfzD Kc+MQGQedNh5gUcnjQbhx5uTA5G76ssK/Vk6SRKM8t6VEIhiljJ3bo5O4myj 41/dCsT/Aat1JA8= "]]}, Annotation[#, "Charting`Private`Tag$1732599#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 20}, {0., 0.49858292440373153`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.868512420171845*^9, 3.868512754293762*^9, 3.868592575576458*^9, 3.868592693087129*^9}, CellLabel->"Out[51]=",ExpressionUUID->"63f8f5c6-4182-4b3d-b68c-44d53c19d555"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Psi2P", "[", "p_", "]"}], ":=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ FractionBox[ SqrtBox[ RowBox[{"4", " ", "\[Pi]"}]], "p"], RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"PsiD", "[", "r", "]"}], " ", RowBox[{"Sin", "[", RowBox[{"p", " ", "r"}], "]"}]}], ",", RowBox[{"{", RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"p", ">", "0"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, { 3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, { 3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, { 3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, { 3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, { 3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, { 3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, { 3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, { 3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 3.8429761802928667`*^9}, {3.868512449403376*^9, 3.86851247419938*^9}, { 3.868512560862237*^9, 3.868512586709832*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"a3525874-ec58-484d-b703-72e51a5213c4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Print", "[", RowBox[{"Psi2P", "[", "p", "]"}], "]"}]], "Input", CellChangeTimes->{{3.842429619361777*^9, 3.842429677633604*^9}, { 3.842429720856079*^9, 3.842429753812727*^9}, {3.842430187216261*^9, 3.842430258057073*^9}, {3.842430358025407*^9, 3.842430363366953*^9}, { 3.842431304234517*^9, 3.8424313168119774`*^9}, 3.8424313659165783`*^9, { 3.84243142345732*^9, 3.8424314893812175`*^9}, {3.842432125684045*^9, 3.842432157645306*^9}, {3.8424321906882353`*^9, 3.8424322290137844`*^9}, { 3.842433503697682*^9, 3.8424335156930647`*^9}, {3.842433964243157*^9, 3.8424339654450226`*^9}, {3.842441765367482*^9, 3.842441789073285*^9}, { 3.8424418280029216`*^9, 3.8424418302671328`*^9}, {3.842441902445393*^9, 3.842441904619342*^9}, {3.842442407989282*^9, 3.8424424240173473`*^9}, { 3.8424446932159224`*^9, 3.84244470052919*^9}, {3.8424483586356497`*^9, 3.842448371032787*^9}, 3.8424486628033075`*^9, {3.8424492882931213`*^9, 3.842449296532782*^9}, {3.842458930056344*^9, 3.842458959414255*^9}, { 3.8429757852823305`*^9, 3.842975785602333*^9}, {3.8429758182078094`*^9, 3.8429758427135096`*^9}, {3.84297588039443*^9, 3.8429758824232917`*^9}, { 3.8429759476812525`*^9, 3.8429759822454915`*^9}, {3.8429761768185596`*^9, 3.8429761802928667`*^9}, {3.868512492672875*^9, 3.868512495395587*^9}, 3.8685125460867157`*^9}, CellLabel->"In[28]:=",ExpressionUUID->"cc59ea2d-418c-4b8c-ac8e-a4ae6081cd77"], Cell[BoxData[ TemplateBox[{ FractionBox[ RowBox[{"3.5449077018110318`", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"0``15.954589770191003", " ", "\[ImaginaryI]", " ", "p"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"0.`", "\[VeryThinSpace]", "+", RowBox[{"3.469446951953614`*^-18", " ", "\[ImaginaryI]"}]}], ")"}], "+", RowBox[{"1.1832672`", " ", "p"}], "-", RowBox[{ RowBox[{"(", RowBox[{"0.`", "\[VeryThinSpace]", "+", RowBox[{"1.1102230246251565`*^-16", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox["p", "2"]}]}], ")"}]}], RowBox[{"p", " ", RowBox[{"(", RowBox[{"0.06996024999999997`", "\[VeryThinSpace]", "+", RowBox[{"1.3753999999999997`", " ", SuperscriptBox["p", "2"]}], "+", SuperscriptBox["p", "4"]}], ")"}]}]], RowBox[{ RowBox[{"-", "0.23`"}], "<", RowBox[{"Im", "[", "p", "]"}], "<", "0.23`"}]}, "ConditionalExpression"]], "Print", CellChangeTimes->{{3.868512542207122*^9, 3.868512616831279*^9}, 3.868512815778482*^9}, CellLabel-> "During evaluation of \ In[28]:=",ExpressionUUID->"9a4bd1ce-ec2f-4298-a2b7-7b0fe899b662"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ "\:041f\:0440\:043e\:0432\:0435\:0440\:043a\:0430", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0438", " ", "\:043f\:043e\:043b\:0443\:0447\:0438\:0432\:0448\:0435\:0439\:0441\:044f\ ", " ", "\:0412\:0424"}], "*)"}], "\[IndentingNewLine]", RowBox[{"Simplify", "[", RowBox[{"Integrate", "[", RowBox[{ RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["p", "2"], " ", SuperscriptBox[ RowBox[{"Psi2P", "[", "p", "]"}], "2"], " ", FractionBox["1", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[Pi]"}], ")"}], "3"]]}], ",", RowBox[{"{", RowBox[{"p", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.843130807463869*^9, 3.8431308540633965`*^9}, { 3.868512639539876*^9, 3.868512664514215*^9}}, CellLabel->"In[10]:=",ExpressionUUID->"6673e5ab-f6af-4ce5-8409-31c716b83d8a"], Cell[BoxData[ RowBox[{ SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[{ FractionBox[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[{ RowBox[{ RowBox[{"PsiD", "[", "r", "]"}], " ", RowBox[{"Sin", "[", RowBox[{"p", " ", "r"}], "]"}]}], RowBox[{"\[DifferentialD]", "r"}]}]}], ")"}], "2"]}], "\[Pi]"], RowBox[{"\[DifferentialD]", "p"}]}]}]], "Output", CellChangeTimes->{3.868512666516981*^9}, CellLabel->"Out[10]=",ExpressionUUID->"b0e48659-f42d-4f96-84a1-34f3c8bb4a45"] }, Open ]] }, WindowSize->{1389.75, 768.75}, WindowMargins->{{0, Automatic}, {0, Automatic}}, Magnification:>1.1 Inherited, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"fbe802a9-0dee-4109-84a1-e1844fd98e1b" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 2258, 48, 248, "Input",ExpressionUUID->"2526f2fe-15aa-4579-b9ea-decc3aa58e9d"], Cell[CellGroupData[{ Cell[2841, 72, 487, 13, 35, "Input",ExpressionUUID->"220ec690-b6e8-4041-b6db-85117c0aebe8"], Cell[3331, 87, 363, 8, 37, "Output",ExpressionUUID->"813107a7-fdc0-40c0-9f52-d9967b7b2e97"] }, Open ]], Cell[3709, 98, 992, 20, 35, "Input",ExpressionUUID->"86929842-b770-4ba7-b6e9-2ee5c585020a"], Cell[4704, 120, 460, 8, 33, "Input",ExpressionUUID->"3cba0c7d-b74d-44b7-be23-de4c6f445cac"], Cell[5167, 130, 825, 20, 35, "Input",ExpressionUUID->"4f4d5d61-fdf8-4144-922d-24a1a9bcf65e"], Cell[5995, 152, 486, 12, 59, "Input",ExpressionUUID->"cfe62748-465f-49a4-8692-622aef7132ec"], Cell[CellGroupData[{ Cell[6506, 168, 596, 15, 35, "Input",ExpressionUUID->"dcf5ac81-7b56-4e36-9ec0-4771a2422a75"], Cell[7105, 185, 269, 4, 37, "Output",ExpressionUUID->"16cf9198-eff9-447b-9532-0738cceb8c19"] }, Open ]], Cell[CellGroupData[{ Cell[7411, 194, 2165, 49, 77, "Input",ExpressionUUID->"eb7f236f-52d0-4b04-a063-b8cb0b97aab5"], Cell[9579, 245, 3574, 78, 249, "Output",ExpressionUUID->"55793edb-d5b8-4858-95ca-e7c9b007d219"] }, Open ]], Cell[CellGroupData[{ Cell[13190, 328, 1009, 25, 52, "Input",ExpressionUUID->"d3c2ecc0-a8e6-4792-81ca-5b40050838c2"], Cell[14202, 355, 286, 5, 37, "Output",ExpressionUUID->"1a6fdb34-67f5-4729-a6c5-ec30d105838b"] }, Open ]], Cell[CellGroupData[{ Cell[14525, 365, 307, 6, 53, "Input",ExpressionUUID->"e7ab3299-968d-4d29-b2cd-447d8d1ff1e6"], Cell[14835, 373, 523, 14, 39, "Output",ExpressionUUID->"528622d6-520d-4dfb-95cb-02eedf8f9d0f"] }, Open ]], Cell[15373, 390, 813, 14, 53, "Input",ExpressionUUID->"baaeb7e8-47ee-48ec-a1d3-3cd762829736"], Cell[CellGroupData[{ Cell[16211, 408, 369, 8, 33, "Input",ExpressionUUID->"e5d127d6-d370-4347-8f24-faa40e61a8b6"], Cell[16583, 418, 6589, 127, 260, "Output",ExpressionUUID->"63f8f5c6-4182-4b3d-b68c-44d53c19d555"] }, Open ]], Cell[23187, 548, 1973, 37, 57, "Input",ExpressionUUID->"a3525874-ec58-484d-b703-72e51a5213c4"], Cell[CellGroupData[{ Cell[25185, 589, 1470, 21, 33, "Input",ExpressionUUID->"cc59ea2d-418c-4b8c-ac8e-a4ae6081cd77"], Cell[26658, 612, 1323, 34, 66, "Print",ExpressionUUID->"9a4bd1ce-ec2f-4298-a2b7-7b0fe899b662"] }, Open ]], Cell[CellGroupData[{ Cell[28018, 651, 977, 24, 77, "Input",ExpressionUUID->"6673e5ab-f6af-4ce5-8409-31c716b83d8a"], Cell[28998, 677, 659, 18, 59, "Output",ExpressionUUID->"b0e48659-f42d-4f96-84a1-34f3c8bb4a45"] }, Open ]] } ] *)