Commit cae261e1 authored by himyss's avatar himyss

added

parent 54699cbd
...@@ -10,10 +10,10 @@ ...@@ -10,10 +10,10 @@
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7] NotebookDataPosition[ 158, 7]
NotebookDataLength[ 55741, 1330] NotebookDataLength[ 72258, 1543]
NotebookOptionsPosition[ 52847, 1273] NotebookOptionsPosition[ 69330, 1485]
NotebookOutlinePosition[ 53245, 1289] NotebookOutlinePosition[ 69758, 1502]
CellTagsIndexPosition[ 53202, 1286] CellTagsIndexPosition[ 69715, 1499]
WindowFrame->Normal*) WindowFrame->Normal*)
(* Beginning of Notebook Content *) (* Beginning of Notebook Content *)
...@@ -34,20 +34,24 @@ Cell[BoxData[{ ...@@ -34,20 +34,24 @@ Cell[BoxData[{
RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}], RowBox[{"mass", " ", "of", " ", "neutron"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]", "*)"}]}], "\[IndentingNewLine]",
RowBox[{ RowBox[{
RowBox[{"Ebind1", "=", "3.925"}], " ", ";", RowBox[{
RowBox[{"Ebind1", "=", "3.925"}], " ", ";"}],
RowBox[{"(*", RowBox[{"(*",
RowBox[{ RowBox[{
RowBox[{"binding", " ", "energy", " ", RowBox[{"binding", " ", "energy", " ",
SuperscriptBox[ SuperscriptBox[
RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}], RowBox[{"of", " "}], "8"], "He"}], ",", " ", "MeV"}],
"\[IndentingNewLine]", "*)"}]}], "\[IndentingNewLine]",
RowBox[{"Esep1", "=", "24.81432"}], ";", " ", RowBox[{
RowBox[{
RowBox[{"Esep1", "=", "24.81432"}], ";"}], " ",
RowBox[{"(*", RowBox[{"(*",
RowBox[{ RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ", RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[ SuperscriptBox[
RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}], "*)"}], RowBox[{"for", " "}], "8"], "He"}], ",", " ", "MeV"}],
"\[IndentingNewLine]", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]", RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{ RowBox[{
RowBox[{"mass1", "=", "821"}], ";"}], "\[IndentingNewLine]", RowBox[{"mass1", "=", "821"}], ";"}], "\[IndentingNewLine]",
...@@ -64,7 +68,7 @@ Cell[BoxData[{ ...@@ -64,7 +68,7 @@ Cell[BoxData[{
3.8800877975749063`*^9, 3.880087987460205*^9}, 3.880694076159418*^9, { 3.8800877975749063`*^9, 3.880087987460205*^9}, 3.880694076159418*^9, {
3.880694106655357*^9, 3.88069421626336*^9}, {3.881205548538989*^9, 3.880694106655357*^9, 3.88069421626336*^9}, {3.881205548538989*^9,
3.881205552151064*^9}}, 3.881205552151064*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], CellLabel->"In[35]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{ Cell[BoxData[{
RowBox[{ RowBox[{
...@@ -140,7 +144,7 @@ Cell[BoxData[{ ...@@ -140,7 +144,7 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, { 3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9, 3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}, {3.88120555964981*^9, 3.881205560418138*^9}}, 3.8782888301901093`*^9}, {3.88120555964981*^9, 3.881205560418138*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], CellLabel->"In[42]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -198,106 +202,156 @@ Cell[BoxData[ ...@@ -198,106 +202,156 @@ Cell[BoxData[
3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9, 3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9,
3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9, { 3.879569049028247*^9}, 3.880087707720909*^9, 3.880860838537876*^9, {
3.881205565537171*^9, 3.881205582259083*^9}}, 3.881205565537171*^9, 3.881205582259083*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], CellLabel->"In[48]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[ Cell[BoxData[
GraphicsBox[{{{}, {}, GraphicsBox[{{{}, {},
TagBox[ TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData[" 1.], LineBox[{{1.020408163265306*^-6, 1.9542056510587136`}, {
1:eJwVkmk4FAoDhWcsY4axjZ2yJVESZh/VHEVETRJRSrfsEY0oQ6K4Ksl+dXOj 0.01533589602798134, 1.95450534532755}, {0.030670771647799414`,
vaRFsoWoSZZEm+pWSqlQuEQSwny+H+d5/5z3ec6PY7Qj3M1fikAgpMzm/zRO 1.954805312463711}, {0.061340522887435564`, 1.9554060669719528`}, {
nz5foF+yfGq18vxd9hJ+JdncYFdQOr/t9Bn/yw4Svjj6xgWzoNN87xXCoa5V 0.10673372170032629`, 1.956297235353765}}],
En6jlTCQFFTM96nAB8/VEn5z6nOnn4F3+c9PXLdxFEj4D3mJVQOBT/il2/LE LineBox[{{0.1744007795136938, 1.9576301702798387`}, {
dC8JvyWzQ/g18AP/nUrVaodQCd+5Vk7QEzjEf1t3MNn1Lwm/TZFFkdlKwLmP 0.49071704024234164`, 1.9639332656670865`}, {0.98143306007652,
tg9uj0j4K9Id7l1eR0azOE75xwIC/JdMKlorqoA9sX70jhcBa839hzUd1THW 1.9739537481472582`}, {2.0454178542729324`, 1.9967582383524491`}, {
bng3I5OAWy/ioh5ytKH4I2jidgsBtrSFxTLxc2AvKt/9QJGIwN9Z+Re9DDHe 2.616491096940589, 2.0096527244409996`}}],
+UO834OI8MZeevFaY6yKE5kKC4hI2UyaPx1qAqLgVa/NTyJ8m2IDrINMkea+ LineBox[{{2.6483788520426295`, 2.0103870163210384`}, {
SfO4QApiOZ31IZvMwIxJzfYsloK1akLut8iFsGjZ55NpIo0/fiyzEIRaoGys 3.9970850280545243`, 2.0429298667814453`}}],
n3zttDTOFjTM+XXcEr0eb0y2sWVQmsbreO5mhet3LMSWn2UQWb3MNX+NNQxX LineBox[{{4.028972783156565, 2.0437362945628186`}, {6.038824600370569,
fXxllC+L8s1NUm9crXHynmv5kTOyGJt0LVf3sIZHU0H38HlZiGz9dFO3WsOo 2.098497418319898}}],
/rHDoyJZHLiT8iUmzBqlZuYuebdlcbju32ivDGuYO2+4evWFLPLuC8+qvbAG LineBox[{{6.07071235547261, 2.099434012690164}, {8.173138546173233,
8ZZF3g0lEu62XBw56m0DKZH8rzcpJNzSfiqM22YDkkG21KU0Ei4ETH7f7WuD 2.1667418625401034`}, {8.190810618713272, 2.1673586083776293`}}],
qotmNZFZJKRIrRvyDLGBcb0bXzePBHfeeP/8WBvEpyf3/nmFhL4rzt3iPBvM LineBox[{{8.222698373815312, 2.1684738382815945`}, {10.212868840241999`,
JYT6f2omQf3o0L8Tb2xg61ia0EiRQ7AjtzbYi46EebIXJTlyGDTTaSjZQkeT 2.2447260010028462`}, {11.20350189457867, 2.2883550401698534`}, {
rpPgx0k5RMhPtE78QYeJ++qF/QVy2N92+93RYDoGFR9l9BbKIWMDZ+pKDB1F 12.174646887116866`, 2.335616257404832}, {13.228344634183118`,
9m/L1WrlULGNbdt3io72MkHE8h45SEUzq3Z20WEVfyCevJSMw5s0xLe66Yju 2.392855394392674}, {14.211533911287631`, 2.4529648491869356`}, {
zlZNsyODavuzefIbHaRfnHxtRzI0Zspep4zQce7VotqlbmSYJTHGi6QZ6Jor 15.188903992890594`, 2.520493246516589}}],
7BEHkbEug87un8/AynaBXWMuGacKrctDdjJw0m+H+X9jsz9849t8OoyBS1oK LineBox[{{15.220791747992635`, 2.522845469815221}, {15.56358972676484,
mdLTZIzK53a0RzBQ7Z9WYSBNgcuuSeLSWAaudL7bEqxMwaR1vYCaykCyizNp 2.548785629082597}}],
pRkFm2rcv167zgBvKvWQljcFmo/36Q1+Z8CW8SEnuYGCFZIrlsY/GbjeMLw1 LineBox[{{15.595477481866881`, 2.5512612249385356`}, {
oJWCMKt3dhsnGFhnnKOxtp2CxiwE1RGZ0C8YjV3SRUGUJ6U8jcbEf2Kjzaun 17.299275412626642`, 2.701724699706361}, {17.315811322851648`,
KXjxMU+whMFEcQDBrYMlj8wftQd372Oi/gZDta1YHmHPM7ZviWVigXC4XrdS 2.703385750319353}, {17.332347233076653`, 2.705051225574531}, {
HmtKfO2c4pnQdr78KrxOHqRwCtHwMBPRscbOVm3y2N/nnvAkl4nfHwtLFPrl 17.36541905352667, 2.708395524380095}, {17.431562694426695`,
EdDVf8Cygglqh6k220wBS5/o7B8YnfWVEsOrCxWgc2PA+/U4E96KrYHUEgWM 2.715138041680882}, {17.563849976226745`, 2.728843058089542}, {
pd61fTDFhJv3Tr/AKgWUOPv//keGhb8eqV7mtCjAtPFmjIs6C9+yhATnAQWo 17.828424539826848`, 2.7571689648523265`}, {18.221613151343977`,
1jqKiugsnDJs6GPaUNFTFLU3KIKFrx7fz1xpoGLj3JnOwr0s5DP9J+WfUtGQ 2.8016834891277576`}}],
nuz4LYaFJvXk/aK3VFyIPKG9M5EF2Qjx9gNDVOxYXlUdksPCvNbb6Qt1FdH5 LineBox[{{21.974823578504093`, 3.4621865169448443`}, {
bGomrIKF1iKrbSYRing5nng4apKFPeE3xKGLlWAfQv1ePsMCrVDmaBFXCWXv 22.018005096654353`, 3.473740868788307}, {22.07927672210476,
c7zGpNiIy/hz5YSDErLuXzTfp8DG6KYs4xYfJbimNj2KnsNGxnho9rJMJbQa 3.4903755221042627`}, {22.201819973005573`, 3.5245169011505606`}, {
KKjsX87GA6b7ZOqEEh6syvr70CE2Bkss9EdfK6M7oKYtJpkNZZvimQs9yiAd 22.4469064748072, 3.5965149472565265`}, {22.45504823382889,
/iK1J4UNEWvaK3hUGU5NrF2+WWz4Ov2dpUlWQatjh539OTYYacIhNxMVtDuZ 3.598996586630873}}], LineBox[CompressedData["
9Mven+1f9Xki9lHBJ+eKZUeJHFRV3lQ2facC6ZAPEQdlOSi+piv0+6ICk2Pk 1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAt3Yk5XnSOEBNpjvmkt8SQABISPIX
QhGFg6yRLnHxgAoCHm2m7VTloFBDcn3XtAr6XCQ9zkYc7NF6vTjFQBUja5wy /ThAT6N6ywJiE0DIt8My/AA5QAdv2Y90bhNAkCc/c+AEOUATCBVQ/noTQCAH
qHYcvH9Wru4boAriuref0hM40OWqjeRKVNFc5zEvMokDAxPT+iQKDRmWz3y9 NvSoDDlAHey03lqUE0BAxiP2ORw5QB5MSixAyBNAgET/+Vs7OUCTnXUf/zQU
jnBQdtblRKIaDYZKzV8MMzjgLF36u2wBDWgr7yk5zcHTz57l/a40JLhk9rXX QABBtgGgeTlADyFX4rAkFUBaROfK2H05QC7fnHghNhVAtEcYlBGCOUB7hHe3
cfC8rp7RfokGpxrqotv3ObDsUNrbW0KDyqIjIacaOWhL6n+qXEvDGfn4Ab/H u0cVQGhOeiaDijlAk88Qj29rFUDRWz5LZps5QOqd8evltBVAonbGlCy9OUAk
HNTUBt/Kb6fh3sPQwZ/vORgPqA8pI6qB4OQ0ojXNwbrzMY+kdqihubLeZorA f7EBolAWQPx5911lwTlAjTCX4fpkFkBWfSgnnsU5QB1e+2KIeRZACoSKuQ/O
hVz4m/TIMDVkLODv+SjDhRpZw3UmRg2GcqzRQioXcwfKOjfnqAGN88a4c7jQ OUARX/qJRKMWQHORTt7y3jlAd267G1n5FkBErNYnuQA6QC0zun/AsBdAnq8H
X+NsgWY1JNhLJrxtucjOjzKQMNRBsKsgnhFxoWzk+emmiQY22/e2vI7jwvLD 8fEEOkDV9IuZzsgXQPiyOLoqCTpAU3ZthiDhF0CsuZpMnBE6QHVckmmUEhhA
qWgjlgbKHLVzVA9xEZu0r7LGUQNBghjTxJRZ/4lKeniIBp55L3cJ+IeLvvzh FcdecX8iOkBXzym+3XgYQObh5rpFRDpAIap1AxpUGUBA5ReEfkg6QAPu4x39
/u4yDZzb25hjUcuFSXwJ8ZyrJqZEv7b6i7k4bnWia9JPExvjzBYUNMzu8/m9 cBlAmuhITbdMOkAUHpazOY4ZQE7vqt8oVTpAswIp7sXJGUC3/G4EDGY6QCRk
44hIE/JJKVXKj7lQ3TZ51P68JvZkCjpHOrnYF1ajt2lCE/bXXi2oIvCwmF4d 6ERbRRpAiBf3TdKHOkANUWF4JVAbQJTIyOPCizpAdCvuax5xG0CfeZp5s486
f++mFgqK5YaHZXh4OXrs5ONmLYzf4lQvpPCwYe+uZMMuLVyryltzSpWHqC1Z QCr+k/yAkhtAtts9pZSXOkAgYcoGi9YbQOWfhPxWpzpANucvLu5jHEAklQ9W
wTk0bWg0+QjjjXnwfGJe9z5aGz1dPdUO9jwYFUVJ67rrAN1aSQeceJAe/Dx3 9LY6QCTIhpuO+xxApZHgTg==
ercO8r46ra1cw4O6fm4pN00HgqGiD2YePJRKmQ82PNRB5VSYDDWABxO/r/be
Dro4ovVr7fPDPCiu3x4931UPOc3Nn+8f4yFy0WCIvlAPp0V5otJ0HhbOZE8l
ZOmhomPZxZwTPBhubyEde6UH/ZemiT/zeLjn5hb0dlQP/wPemLhN
"]], LineBox[CompressedData[" "]], LineBox[CompressedData["
1:eJwVjnk8lPsegMcSXdINhZgilBRZb7mlz+/7DsYrcSOpDrKco4bIljXLpI6L 1:eJwVjnk8lPsegIdEl3RDIaZIUkpZb3Wlz+/7ToxX4iCpDrKco8aWrWyNpeV0
xCSnxVI6Rc5VtiIV/V6uZC2JMORaO8rOIDOvnO4fz+f54/nn2eYV4OgtzmAw EZrktNjiFDlXNJRS0e/lSnayREOutaPsDDLzyu3+8XyeP55/nq2eAQ5ekgwG
An7wf597MSWc9kWgURC1uWDNOqp22uF9ylkEjHh+6VuhLGX7+uKRpgAEvJ3R I/AH/3cu1yvM1BrBBD/k2IsT6yhTNS2Hn84ikA2PSxqxWEtVTdm/T/RFwLgs
JlUlspRr4KC9VQSCiacaVmnqslRsfa7tgSQEQxl+yslrZaiaYHUrnUIEAdwP KG4WyVHWby/Z1Qcg4O3kGpfz5SiXwAFbi3AE4880LW5oyFHRNdnWB+MRDKb6
Z/ol1lLChWkesxiBz7Te5FCTNGUaSfXJP0Ew86+R1Kvp0lRBnOd5+gWCZElu qSSskaUqgzUsdhQgCIhtP9u3ag0lmp/iMZ8g8J7Smxisl6FMIqhehacIpn8a
e6OWNMVLuX//fROCHSf2pabbSVEe+Tri0V8R/LPhUsfeKkkqU/ebXdAUgks+ Tk5KkaHyYzzO068QJEjFttVtk6F4iQ8evK9HoHNyf3KKjTTlnrdDkvsVwT9r
ZWc4KZJUx6OG26fnEHRnyPy02U2SIp/4GDkIEdRcuv/L7KoEpTJwzFBxDUAj r3TsK5ei0nS/2QRNIrjiXXKWkyhFdTyuvXdmFkF3quzPm1ylKPKpt6G9CEHl
czXd0laCWp246T62EWAwZqnz66IYlb2Hu2ZYCcCpT/vOvrdilFkgp/CTCkB+ lQe/zqysolT7jxsorQaoY66kmFuvolbG77iNbgAYiFrs/LogQWXsjV09pAzg
Jm04lidGBc+bLbUzAYCtO3/OWYz6vNyTWq0N0HX4qtLESwb1Vor5Kt0UIGxL 2Kudtb9ZgjoQyCn4pAqQl0YbjOZKUMFzBxbbmADA1p075yRBfV76mFyhDdB1
cq+UwSq+o5HLPOgEoF16LDJeQYTXJxs16DsDSNIKR3kfhThuvjZk6wkAvZRR NEl5/DWDapZmvkkxAQjdnNAjrb+CszSzmYccAbSLj0dcVhTjdQmGtXucAKRo
pJolxB71o02rLgB7hw7vz94uxJp+uyNrfwZgWg55G8Ayzn9W0WkdAmB5Peai xWO8DyIcM1cVsuUkgF7iCFJLF2H3mpH6FWeAfYNHTTO2i7CW3+6Iql8AmOaD
S/ISLrJvTXVMBxAvqSvX8hXgrZWn9ltkAIwdNx3deUCA07bNjJrcAGiz2RVy XvqwhPNePO+0DAEwvxV1yTlhERfZNiU7pABI8qtLt/kI8Zay06aHUwFGT5iM
aZ0ABwoUDm7KBIh3Wpk3LZnHxpknxrvuAWRsUCQDRXO4YnTY2q0UQPCo73Fi 7DwoxDe2To8Y3wZotdoVcmWtEAcKFQ9tTAO47Lg8Z8Kfw0ZpJ8e6cgBS1yuR
7iyujhYyOG0A78TH75WjKbxY/Hkmvh3g+g6p45cnJ7HhcPtATgeAYutDqeGs geJZ/HxkyNK1GED4uLcwLnsGV3BFDE4rQIvkWE4pmsQLTz5PX24DuKUjfeLq
SfzAppD60A1w9pDxwUPCCZys5MpFgwBnPiZduVE9jp1LqleV5gDC47LSxl2/ xAQ2GGrrz+wAUGp6JD2UPoEfWhVQ7d0AvkeMDh0RjeMEZZdYNABw9kP89dsV
4Olh7vfXigQc56g13V0YwTuV/acGNhFQvL65srNsBHsdOtkvUiZA0bXhRUjg Y9iJX7GiPAsQFpN+Y8zlC54aiv3+VomAExz1+vvzw3iniv9k/0YCnqxrKOss
CP5YYvTKiElA52k2Y2RiGFfFDMXkaBOgplASHvV1CCcqW66c/wcBV+/t2l2y GcaeR071iVUIUHKpfRUSOIw/8A3fGDIJ6DzDZgyPD+HyqMGoTG0C1BX5YZFf
NIC32UrTWscJiHWOlisq4GPTTot21ZME1MdNTTIJPma7cwvkXQgIlsmaV+D3 B3Gcivny+X8QkJSzazd/sR9vtZaht50gINqJK1+UL8AmnYfb1E4RUBMzOcEk
YN+QZafVUwRUFJbK8uR68NOs8cf80wR4KXl7lER1YfbEO/drYT/6b6Exv/t1 BJjtFpuv4ExAsGz6nKLgI/YJWXJcOU3A84JiOZ78R/wsfaxQcIYAT2Uvd35k
YN+rt/77/TcC/L5pVO53aMXRyp23F24SUHVW3uhvuS049Z584MRtAvS+13T9 F2aPt7jdDP3Rf78Q9YdfB/ZJuvuf778T4PdNs8zUvglzVTrvzd8hoNxXwfBv
Md2Mn5QnM/k5BNCeP7m7XGvC9Kfo0PI8ArIZB2Sc+t/gtD2eOn7lBKzz5Dfb 2Y04OUchcPweAXrfK7v+nGrAT0sTmIJMAmiPn92cb9Zj+hP3QmkuARmMg7KO
5dTip+90r/R0ELB2u7q5s20p5mnV5Ak/EjBj4u9uTRfjs+EnKLUeAjboRBnM fe/wjb0eO/xKCVjrIWiwyazCz1p0r3/sIGDNdg0zJ+tizNtWmSv6QMC0sb+b
/PIYa6r/e8HtEwG8vCL+UVSA086NuA+NEuDBjsm8aJCNfeXumo4vEgBbm7vb Jf0E+4adpNQ/ErB+R6T+9K+FWEvjX/Ounwjg5RYJjqF8fOPcsNvgCAHu7Ki0
KxKQhu3GflqFBSC1eGd3VjlKqf9uqOHGgrrLOxKN3jUjCPpstMWdBQ/6R9oN S/oZ2Ef+vsnYAgGwpaG77fk1pGm9oY9WZQFIL2TtTi9FiTXfDTRdWVB9VSfO
2C1IoPbWWNWTBZWhcYq1VS3INSjHdKM3CxI7DbfnFbQifaa52Vp/FjAKwqUj sKUBQdBnw81uLHjYN9ymz25EQvVmIzUPFpRdiFGqKm9ELkGZJhu8WBDXabA9
LrxDb4Mi0Uw0C5y9Z01mEt6jDVsEdlQ2C3wX9irRgg50PeSLr0cfC6S6zOYa N78J7WGaHVjjzwJGfphM+MUW1BwUgaa5LHDymjGevvYerd8stKEyWOAzv0+Z
7XuRKjsq6Gg/C7gx626pxfai31VkI9gDLOAlxlfbPO5FZdV6v+qNsIDDjzti FnagWyFffNx7WSDddWC2zrYHqbEjg471sSA2au1d9ege9IeqXDi7nwW8uMsV
LtuH2qQD734bZ8HnsEEJ7us+tD578QNPxIJuo8H5QpN+lFgncbBG1QLMW8wU VoU9qKRC7ze9YRZwBDF2ZnK9qFUm8P63MRZ8Dh1YFfu2F63LWGjniVnQbTgw
Ji4MoOhNW/+uedICqjw7Fhw3DqM/dNc0nR+wACHDcN5LfgxJCcQ215yyhIq2 V2Dch+KqVx2qVDsMZo0HFMcv9iPuxi1/1zp1GMo9OuYdNgyhP3VX15/vPwwi
61ui1CfQQ8PS2Dt/WsIN9zfPMqVmkK7Xf+xX/K3A+E6pbFfjLOq1eV52bNwK hsGcp8IokhZKbKo8bQ7PW29tjtQYR48MiqOz/jKH227vXqRJTyNdz3/bLvtb
zPXtsNaxedR+P0ofhbDBcZPN4osZAfr2xMFcc44N+fImt9/4LKLVyuDyhHPW gFFWsVxX3QzqsXpZcnzMAsz22OBtx+dQ24PIPSiEDQ4brRZeTQvRt6f2Zlqz
QC9+8HTpW0K2hmyr6AVrKPpKl2lELKM3bgY+Z0NIeJRk8ivIiJDCz5yXOaEk bMhTML73znsBrZQFl147Zwn0QruHc+8isjZgW3DnLaHoK12iGb6E3rnqe/uG
bKzltEXKi9Apzj25tnASGth/7itXEaHFYMUy02gSpORdfY11REg7cUm4cpmE kPA43vg3kBUjxV84rzMvkLChitMaoSBGpzk58q1hJNSy/9pfqipGC8FKJSZc
MPttdWxLEeKW4RTeDRJSK3VT+bEitF/6SEn5cxJIKulI44IIJaxLEh97SYJz EqQVXHyMdoiRdtyiaPkqCaG2W6vZ5mIUW4ITebdJSC7TTRZEi5GpjB2/9CUJ
YkCU3YoIvZevdVJ9RUK9rL15hySNOEzT5dhaEvzWBN76okijm0YqLLKZhKFr JBVvVzcvRtfWxkuOvibBKS4g0mZZjN4rVDmqvSGhRs7WrEOKRhymyVJ0FQl+
6TtMjWkkcBn4wO8jwXqDnO3hABqB5+Ydcv/78UuMjYvCaHTltGMEGiTBODef qwPvflGi0R1DVRbZQMLgzRQdEyMaCZ372wW9JFiul7c+GkAj8NikI//fH7/E
UxRLI82gOuaDURIe+HKkmak0ckgo8PafIkFJ4Yiz6mMaZV8ZfHZ3hoSR8BDH 6Jg4lEbXzziEowESjLLzOEXRNNIKqmY+HCHhoQ9HhplMI/tr+V7+kyQoK9o5
wac0GuOpyrTPkaC/x9C+sIpG3KyUor1LJOyKLHYmW2jUkvua4bNMQkp3lp9a qRXSKOP6wIv70yQMh4U4DDyj0ShPTbZtloQ9ew1sC8ppFJueWLRvkYRdEU+c
B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O yEYaNWa/ZXgvkZDYne6n3kEjlbzvDuliEoyNLqTO9NDIs2B/btMyCV3+n9rq
0+gvaaJrhg== h2hUxA9cXFkhof/lRb1HYzT6H+A0cJU=
"]], "]],
LineBox[{{28.992520401116344`, 6.989114408516514}, { LineBox[{{18.253500906446018`, 2.8054284400043947`}, {
28.992522325141426`, -3.5027620306546083`}}]}, 18.388442097790758`, 2.8215117093829716`}, {18.41931052855447,
Annotation[#, "Charting`Private`Tag$4194#1"]& ]}, {}}, 2.825245375359729}, {18.481047390081883`, 2.832774933618509}, {
18.60452111313672, 2.8480880664428825`}, {18.851468559246385`,
2.879773145171297}, {18.902745810684312`, 2.8865366857980708`}}],
LineBox[{{19.664811473124303`, 2.9953633972500637`}, {
19.894607490948285`, 3.031581190285004}}],
LineBox[{{22.70404483317278, 3.6779039853826045`}, {22.978355855674483`,
3.7721800929411358`}, {22.97861714578529, 3.7722738833006026`}}],
LineBox[{{19.374176545709584`, 2.9519238389151745`}, {19.41225986015114,
2.957472926327447}, {19.47915626883656, 2.9673227507815527`}, {
19.6129490862074, 2.9874237947720785`}, {19.632923718022262`,
2.9904717714292666`}}],
LineBox[{{20.6289927789888, 3.160051629138947}, {20.93253964723565,
3.219696628574586}}],
LineBox[{{21.611869798063996`, 3.3702447860964773`}, {21.94843370292227,
3.455192738484164}}],
LineBox[{{23.747553452685903`, 4.087674495131448}, {23.990185443948018`,
4.2068284895341295`}}],
LineBox[{{19.926495246050326`, 3.036745422716521}, {20.014327538319918`,
3.0511510852118}, {20.14812035569076, 3.073620329111152}, {
20.407903505507523`, 3.1191608830283095`}}],
LineBox[{{23.06164794976241, 3.80248548354988}, {23.244080546108123`,
3.871850925154577}, {23.499443772016118`, 3.976487860558715}}],
LineBox[{{24.1125734651488, 4.271330804947326}, {24.254097955371385`,
4.349987338635825}, {24.4996062024744, 4.497954082107208}}],
LineBox[{{20.503121174462198`, 3.136521055959324}, {20.59710502388676,
3.154026471465027}}],
LineBox[{{22.48693598893093, 3.6087741586512894`}, {22.51333764741561,
3.616940273014054}, {22.57976882002402, 3.637776491953916}, {
22.67215707807074, 3.6674614587047976`}}],
LineBox[{{23.62018847806595, 4.029343924613762}, {23.715665697583862`,
4.072812203865003}}],
LineBox[{{24.53149395757644, 4.518345081057084}, {24.563001917687984`,
4.538776326705424}, {24.62380830706138, 4.579024156083463}, {
24.744378327546922`, 4.662175688029397}}],
LineBox[{{20.986383491526656`, 3.2307302782952756`}, {
21.072490038662597`, 3.2486750642349222`}, {21.189558183358017`,
3.273683547323134}}],
LineBox[{{23.56589895613415, 4.005294293164303}, {23.588300722963908`,
4.015160793327014}}],
LineBox[{{20.433413957044174`, 3.123775652804504}, {20.471233419360157`,
3.130665824554927}}],
LineBox[{{23.01050490088733, 3.7837799341325167`}, {23.02976019466037,
3.7907858578536966`}}],
LineBox[{{24.02207319905006, 4.223334566028984}, {24.045662821970478`,
4.235679386899559}}],
LineBox[{{24.776266082648963`, 4.684948473900576}, {24.79028471632805,
4.695067443574621}}],
LineBox[{{21.221445938460057`, 3.280621239272723}, {21.48095112173827,
3.339190246722059}}],
LineBox[{{23.525311334850716`, 3.987619390222114}, {23.534011201032108`,
3.9913863426390823`}}],
LineBox[{{20.95755283022232, 3.2248046245010387`}, {20.95755283022232,
3.2248046245010387`}}]},
Annotation[#, "Charting`Private`Tag$80288#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True}, Axes->{True, True},
AxesLabel->{None, None}, AxesLabel->{None, None},
...@@ -329,7 +383,7 @@ B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O ...@@ -329,7 +383,7 @@ B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O
Part[#, 1]], Part[#, 1]],
(Identity[#]& )[ (Identity[#]& )[
Part[#, 2]]}& )}}, Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {-3.5027620306546083`, 6.989114408516514}}, PlotRange->{{0, 50}, {-3.792830135315049, 7.245661192037037}},
PlotRangeClipping->True, PlotRangeClipping->True,
PlotRangePadding->{{ PlotRangePadding->{{
Scaled[0.02], Scaled[0.02],
...@@ -350,8 +404,8 @@ B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O ...@@ -350,8 +404,8 @@ B42U8787ZolIMDEOzZjtpZFX4b681hUSuvw/tTcN06ioJHBpdZWEgecX9B6O
3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9, 3.880086745707924*^9}, 3.880087709857608*^9, {3.880087803643498*^9,
3.880087992161138*^9}, 3.88069400745238*^9, {3.88086082362481*^9, 3.880087992161138*^9}, 3.88069400745238*^9, {3.88086082362481*^9,
3.880860840824017*^9}, 3.880869126504476*^9, 3.881204831143188*^9, 3.880860840824017*^9}, 3.880869126504476*^9, 3.881204831143188*^9,
3.881205584395485*^9}, 3.881205584395485*^9, 3.883471998256879*^9},
CellLabel->"Out[12]=",ExpressionUUID->"ab87c9e7-d22d-479e-8e60-a486d3571fb7"] CellLabel->"Out[48]=",ExpressionUUID->"4b9fe172-9212-4561-a287-0e5fcec3095b"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -406,7 +460,7 @@ Cell[BoxData[ ...@@ -406,7 +460,7 @@ Cell[BoxData[
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9}, 3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9},
3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9, { 3.880086673187624*^9, 3.8800877134548693`*^9, 3.880087807038721*^9, {
3.8812055878679543`*^9, 3.8812056017959967`*^9}}, 3.8812055878679543`*^9, 3.8812056017959967`*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], CellLabel->"In[49]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData["35.89034438287419`"], "Output", Cell[BoxData["35.89034438287419`"], "Output",
CellChangeTimes->{ CellChangeTimes->{
...@@ -421,8 +475,8 @@ Cell[BoxData["35.89034438287419`"], "Output", ...@@ -421,8 +475,8 @@ Cell[BoxData["35.89034438287419`"], "Output",
3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9, 3.880087808333634*^9, 3.880087992954145*^9}, 3.880694008901841*^9,
3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9}, 3.88069408135425*^9, {3.88069411322472*^9, 3.880694222245901*^9},
3.880860843173624*^9, 3.8808691277708607`*^9, 3.8812048322740593`*^9, 3.880860843173624*^9, 3.8808691277708607`*^9, 3.8812048322740593`*^9,
3.881205604361702*^9}, 3.881205604361702*^9, 3.883471999535993*^9},
CellLabel->"Out[13]=",ExpressionUUID->"d0b79513-3f3c-4a7e-9d4c-9cf52de46f51"] CellLabel->"Out[49]=",ExpressionUUID->"9335ded2-e54f-46a8-9b5a-6e4e244b2198"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -456,7 +510,7 @@ Cell[BoxData[ ...@@ -456,7 +510,7 @@ Cell[BoxData[
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, { 3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.8800866773952007`*^9, 3.880086704667201*^9}, {3.881205606847561*^9, 3.8800866773952007`*^9, 3.880086704667201*^9}, {3.881205606847561*^9,
3.881205617689822*^9}}, 3.881205617689822*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], CellLabel->"In[50]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData["25.351749791847226`"], "Output", Cell[BoxData["25.351749791847226`"], "Output",
CellChangeTimes->{ CellChangeTimes->{
...@@ -464,8 +518,8 @@ Cell[BoxData["25.351749791847226`"], "Output", ...@@ -464,8 +518,8 @@ Cell[BoxData["25.351749791847226`"], "Output",
3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9}, 3.880087717563438*^9, {3.880087810097796*^9, 3.880087994342682*^9},
3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9, 3.880694010579237*^9, 3.8806940829871798`*^9, {3.8806941143549423`*^9,
3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9, 3.88069422353505*^9}, 3.880860847232801*^9, 3.88086912945323*^9,
3.881204833642619*^9, 3.8812056191396523`*^9}, 3.881204833642619*^9, 3.8812056191396523`*^9, 3.883472004239254*^9},
CellLabel->"Out[14]=",ExpressionUUID->"f3d3808a-1e3a-4a37-b9ac-83ad7cab0a61"] CellLabel->"Out[50]=",ExpressionUUID->"1fefee2c-c22d-441e-b490-61523152bc95"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -519,7 +573,7 @@ Cell[BoxData[ ...@@ -519,7 +573,7 @@ Cell[BoxData[
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, { 3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.8800866795052*^9, 3.880086723648281*^9}, {3.881205621463208*^9, 3.8800866795052*^9, 3.880086723648281*^9}, {3.881205621463208*^9,
3.881205632051371*^9}}, 3.881205632051371*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], CellLabel->"In[51]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData["0.6514573663189586`"], "Output", Cell[BoxData["0.6514573663189586`"], "Output",
CellChangeTimes->{ CellChangeTimes->{
...@@ -528,8 +582,8 @@ Cell[BoxData["0.6514573663189586`"], "Output", ...@@ -528,8 +582,8 @@ Cell[BoxData["0.6514573663189586`"], "Output",
3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9}, 3.880087721464933*^9, {3.880087811800939*^9, 3.8800879962360888`*^9},
3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9, 3.880694013817318*^9, 3.8806940857627296`*^9, {3.8806941160551243`*^9,
3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9, 3.880694225103177*^9}, 3.88086085054058*^9, 3.8808691316909847`*^9,
3.881204835578549*^9, 3.881205634171431*^9}, 3.881204835578549*^9, 3.881205634171431*^9, 3.8834720061461277`*^9},
CellLabel->"Out[15]=",ExpressionUUID->"413f2204-d5e7-4ebc-99c1-5d089819350a"] CellLabel->"Out[51]=",ExpressionUUID->"a7b55ec3-e8e7-484e-86bc-a0bdc4afe276"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -569,7 +623,7 @@ Cell[BoxData[ ...@@ -569,7 +623,7 @@ Cell[BoxData[
3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9, 3.879570725415313*^9, 3.87957082556467*^9}, {3.8800866815822*^9,
3.88008672825279*^9}, 3.880086759707464*^9, {3.88120563620135*^9, 3.88008672825279*^9}, 3.880086759707464*^9, {3.88120563620135*^9,
3.881205647216186*^9}}, 3.881205647216186*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], CellLabel->"In[52]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[ Cell[BoxData[
GraphicsBox[{{{}, {}, GraphicsBox[{{{}, {},
...@@ -728,7 +782,7 @@ oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP ...@@ -728,7 +782,7 @@ oZnDCOJWTgyG/WRiRtC1zT0/DCGnoiRpfp6JLjk+SSK9hlAczeFTs8jEQ2aP
a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ a82fGMIta+/tEX+YKJ2qPpZ1yxDuM1rlDf4xkT4aSMzkGsLTWeWF5WUm2sWZ
NDieNYT/AXAvkZQ= NDieNYT/AXAvkZQ=
"]]}, "]]},
Annotation[#, "Charting`Private`Tag$6329#1"]& ]}, {}}, Annotation[#, "Charting`Private`Tag$82229#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True}, Axes->{True, True},
AxesLabel->{None, None}, AxesLabel->{None, None},
...@@ -773,8 +827,8 @@ NDieNYT/AXAvkZQ= ...@@ -773,8 +827,8 @@ NDieNYT/AXAvkZQ=
3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9, 3.880087813143466*^9, 3.880087997646585*^9}, 3.880694015748687*^9,
3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9}, 3.880694087181596*^9, {3.880694118038547*^9, 3.8806942262383127`*^9},
3.880860852002902*^9, 3.880869132289547*^9, 3.881204836375863*^9, 3.880860852002902*^9, 3.880869132289547*^9, 3.881204836375863*^9,
3.8812056496910753`*^9}, 3.8812056496910753`*^9, 3.883472007569745*^9},
CellLabel->"Out[16]=",ExpressionUUID->"8082d315-b512-4039-9ab9-4f8290a4ac22"] CellLabel->"Out[52]=",ExpressionUUID->"6c8305ab-010c-412e-bcc8-acd2697db5e7"]
}, Open ]], }, Open ]],
Cell[BoxData[ Cell[BoxData[
...@@ -830,132 +884,14 @@ Cell[BoxData[ ...@@ -830,132 +884,14 @@ Cell[BoxData[
RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}], RowBox[{"r", ",", "range1", ",", "Infinity"}], "}"}]}], "]"}]}],
"]"}]}]], "Input", "]"}]}]], "Input",
CellChangeTimes->{{3.881205652720017*^9, 3.8812056628772306`*^9}}, CellChangeTimes->{{3.881205652720017*^9, 3.8812056628772306`*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], CellLabel->"In[53]:=",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"],
Cell[BoxData["1.6819723510511688`"], "Output", Cell[BoxData["1.6819723510511688`"], "Output",
CellChangeTimes->{ CellChangeTimes->{
3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9}, 3.880694061225527*^9, {3.880694092576046*^9, 3.8806942478489323`*^9},
3.88086085882454*^9, 3.880869134852079*^9, 3.881204839005999*^9, 3.88086085882454*^9, 3.880869134852079*^9, 3.881204839005999*^9,
3.881205664575473*^9}, 3.881205664575473*^9, 3.88347201133778*^9},
CellLabel->"Out[17]=",ExpressionUUID->"f0141514-31a9-41e5-9f3f-c4d639d78a0e"] CellLabel->"Out[53]=",ExpressionUUID->"648f4a86-0b5a-41cd-89df-dd1b1815953b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"r"}], "]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}], " ", "+",
" ",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm", " ", "myCoeff", " ",
RowBox[{"Integrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ", "r"}],
"]"}],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "r"}], "p"], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"q", ">", "0"}], " ", "&&", " ",
RowBox[{"q",
StyleBox["\[Element]", "TR"], "Reals"}]}]}]}], "]"}]}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"PsiP", "[", "q", "]"}], "]"}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.880694278090423*^9, 3.88069431541903*^9}, {
3.880694387538165*^9, 3.880694410158606*^9}, {3.88069522788339*^9,
3.880695238148691*^9}, {3.880695299107029*^9, 3.880695399255343*^9}, {
3.880695592119051*^9, 3.880695593735093*^9}, {3.880695831316757*^9,
3.8806958598656263`*^9}, {3.880696512328432*^9, 3.880696654085586*^9}, {
3.8806967062490797`*^9, 3.880696714868608*^9}, {3.88086092671025*^9,
3.880860943550437*^9}, {3.88086099431623*^9, 3.88086102694107*^9}, {
3.880861085731583*^9, 3.880861089817754*^9}, {3.880861136990347*^9,
3.880861156730859*^9}, 3.880861188011704*^9, {3.880861225989965*^9,
3.88086123636522*^9}, {3.88086158804482*^9,
3.880861594138795*^9}},ExpressionUUID->"16514567-4615-434d-b213-\
33ee847a7d1f"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "6.811476328478858`*^-9"}], " ", "q"}], "+",
RowBox[{"3.745279174922489`*^-13", " ",
SuperscriptBox["q", "3"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "3.3578902009161846`*^6"}], " ", "q"}], "-",
RowBox[{"1.4210854715202004`*^-14", " ",
SuperscriptBox["q", "3"]}]}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}],
"+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6.77804201786032`*^8"}], "+",
RowBox[{"1.0913936421275139`*^-11", " ",
SuperscriptBox["q", "2"]}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.01892797235046395`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ", "q"}], "]"}]}]}],
RowBox[{
RowBox[{"-", "7.41024534448729`*^8"}], "+",
RowBox[{"22558.281403320576`", " ",
SuperscriptBox["q", "2"]}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["q", "4"]}]}]]], "Print",
CellChangeTimes->{3.88086116052841*^9, 3.88086120125912*^9,
3.880861255393458*^9},
CellLabel->
"During evaluation of \
In[50]:=",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -1047,177 +983,96 @@ Cell[BoxData[ ...@@ -1047,177 +983,96 @@ Cell[BoxData[
Cell[BoxData[ Cell[BoxData[
RowBox[{ RowBox[{
RowBox[{"(*", RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{ RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ", FractionBox["1", "q"],
SqrtBox[
FractionBox["1",
RowBox[{"p", " "}]]], "myNorm1", " ",
RowBox[{"(",
RowBox[{ RowBox[{
FractionBox["1", "p"], FractionBox[
SqrtBox[ RowBox[{"Sin", "[",
FractionBox["2", "\[Pi]"]], "myNorm", " ", RowBox[{
RowBox[{"(", RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{ RowBox[{
FractionBox["q", "p"], "-",
FractionBox[ FractionBox[
SqrtBox[ SqrtBox[
RowBox[{"2", " ", "mass", " ", RowBox[{"2", " ", "mass1", " ",
RowBox[{"(", RowBox[{"(",
RowBox[{ RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ", RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
RowBox[{"Cos", "[", " ", "range1"}], "]"}],
RowBox[{ RowBox[{"2", " ",
FractionBox[ RowBox[{"(",
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "-",
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], " ",
"range"}], "]"}]}]}],
RowBox[{ RowBox[{
SuperscriptBox[ FractionBox["q", "p"], "-",
RowBox[{"(", FractionBox[
FractionBox["q", "p"], ")"}], "2"], "-", SqrtBox[
SuperscriptBox[ RowBox[{"2", " ", "mass1", " ",
RowBox[{"(", RowBox[{"(",
FractionBox[ RowBox[{
SqrtBox[ RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}],
RowBox[{"2", " ", "mass", " ", ")"}]}]], "-",
RowBox[{"(", FractionBox[
RowBox[{ RowBox[{"Sin", "[",
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ")"}], RowBox[{
"2"]}]], "+",
RowBox[{"myCoeff",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"]}], " ",
"range"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}], "+",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["q", "p"], " ", "range"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["q", "p"], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ")"}],
"2"]}]]}]}], ")"}]}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"PsiP", "[", "q_", "]"}], ":=", " ",
RowBox[{
SqrtBox[
FractionBox["2", "\[Pi]"]], "myNorm1", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"q", "-",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}],
")"}], " ", "range1"}], "]"}],
RowBox[{"2", " ",
RowBox[{"(", RowBox[{"(",
RowBox[{"q", "-", RowBox[{
FractionBox["q", "p"], "+",
FractionBox[ FractionBox[
SqrtBox[ SqrtBox[
RowBox[{"2", " ", "mass1", " ", RowBox[{"2", " ", "mass1", " ",
RowBox[{"(", RowBox[{"(",
RowBox[{ RowBox[{
RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}], ")"}],
")"}]}]], "-", " ", "range1"}], "]"}],
FractionBox[ RowBox[{"2", " ",
RowBox[{"Sin", "[", RowBox[{"(",
RowBox[{ RowBox[{
RowBox[{"(", FractionBox["q", "p"], "+",
RowBox[{"q", "+", FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}],
")"}]}]], "+",
RowBox[{"myCoeff1",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox[ FractionBox[
SqrtBox[ SqrtBox[
RowBox[{"2", " ", "mass1", " ", RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ",
RowBox[{"(", "range1"}]], " ",
RowBox[{
RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}],
")"}], " ", "range1"}], "]"}],
RowBox[{"2", " ",
RowBox[{"(", RowBox[{"(",
RowBox[{"q", "+", RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep1"}], "+", "myU1"}], ")"}]}]], "p"]}],
")"}]}]], "+",
RowBox[{"myCoeff1",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{ RowBox[{
RowBox[{"-", FractionBox["q", "p"], " ",
RowBox[{"Cos", "[",
FractionBox[ FractionBox[
SqrtBox[ RowBox[{"q", " ", "range1"}], "p"], "]"}]}], "+",
RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"]}], " ",
"range1"}]], " ",
RowBox[{"(",
RowBox[{ RowBox[{
RowBox[{"q", " ",
RowBox[{"Cos", "[",
RowBox[{"q", " ", "range1"}], "]"}]}], "+",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ",
RowBox[{"Sin", "[",
RowBox[{"q", " ", "range1"}], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox["q", "2"], "+",
SuperscriptBox[
RowBox[{"(",
FractionBox[ FractionBox[
SqrtBox[ SqrtBox[
RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}], RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], " ",
"2"]}]]}]}], ")"}]}]}]}]], "Input", RowBox[{"Sin", "[",
FractionBox[
RowBox[{"q", " ", "range1"}], "p"], "]"}]}]}], ")"}]}],
RowBox[{
FractionBox[
SuperscriptBox["q", "2"],
SuperscriptBox["p", "2"]], "+",
SuperscriptBox[
RowBox[{"(",
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass1", " ", "Esep1"}]], "p"], ")"}],
"2"]}]]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9}, CellChangeTimes->{{3.880861581160618*^9, 3.880861704887731*^9},
3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, { 3.8808617419572563`*^9, {3.880861875265856*^9, 3.8808619034776497`*^9}, {
3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9, 3.880861942515173*^9, 3.8808619704782467`*^9}, {3.880875342255783*^9,
...@@ -1227,8 +1082,12 @@ Cell[BoxData[ ...@@ -1227,8 +1082,12 @@ Cell[BoxData[
3.8812044164683723`*^9, 3.881204430878365*^9}, {3.8812047385493*^9, 3.8812044164683723`*^9, 3.881204430878365*^9}, {3.8812047385493*^9,
3.881204786636528*^9}, {3.8812048642166367`*^9, 3.881204865174282*^9}, { 3.881204786636528*^9}, {3.8812048642166367`*^9, 3.881204865174282*^9}, {
3.881204917757641*^9, 3.8812049207310743`*^9}, {3.8812056704257107`*^9, 3.881204917757641*^9, 3.8812049207310743`*^9}, {3.8812056704257107`*^9,
3.881205704444508*^9}}, 3.881205704444508*^9}, {3.8834695079893436`*^9, 3.883469548235299*^9}, {
CellLabel->"In[18]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"], 3.883472024232431*^9, 3.883472026203348*^9}, {3.88347208837014*^9,
3.883472144946068*^9}, {3.883472181679571*^9, 3.8834721826113234`*^9}, {
3.883472227747223*^9, 3.883472248968128*^9}, {3.8834723567622137`*^9,
3.883472365515347*^9}},
CellLabel->"In[65]:=",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{ Cell[CellGroupData[{
...@@ -1238,14 +1097,15 @@ Cell[BoxData[ ...@@ -1238,14 +1097,15 @@ Cell[BoxData[
RowBox[{ RowBox[{
"\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ", "\:041f\:0440\:043e\:0432\:0435\:0440\:0438\:043c", " ",
"\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ", "\:043d\:043e\:0440\:043c\:0438\:0440\:043e\:0432\:043a\:0443", " ",
"\:043e\:0442\:043a\:0443\:0434\:0430", " ", "\:0434\:043e\:043b\:0436\:043d\:043e", " ", "\:0431\:044b\:0442\:044c",
"\:0432\:0437\:044f\:043b\:0441\:044f", " ", " ",
RowBox[{"1", "/", "p"}], "??"}], "*)"}], "\[IndentingNewLine]", FractionBox["Pi", "2"]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[", RowBox[{"NIntegrate", "[",
RowBox[{ RowBox[{
SuperscriptBox[ SuperscriptBox[
RowBox[{"(", RowBox[{"(",
RowBox[{"PsiP", "[", "q", "]"}], ")"}], "2"], ",", RowBox[{"q", " ",
RowBox[{"PsiP", "[", "q", "]"}]}], ")"}], "2"], ",",
RowBox[{"{", RowBox[{"{",
RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input", RowBox[{"q", ",", "0", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, { CellChangeTimes->{{3.880862001847947*^9, 3.880862029306449*^9}, {
...@@ -1260,19 +1120,372 @@ Cell[BoxData[ ...@@ -1260,19 +1120,372 @@ Cell[BoxData[
3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, { 3.880875279874785*^9}, {3.880875321982376*^9, 3.880875327034482*^9}, {
3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9, 3.880875469296236*^9, 3.880875498161496*^9}, {3.8808755743169622`*^9,
3.880875587481934*^9}, {3.881204851540709*^9, 3.88120487584007*^9}, { 3.880875587481934*^9}, {3.881204851540709*^9, 3.88120487584007*^9}, {
3.881204929685568*^9, 3.881204938728588*^9}}, 3.881204929685568*^9, 3.881204938728588*^9}, 3.883469588483089*^9, {
CellLabel->"In[19]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], 3.883472260370273*^9, 3.8834722755921593`*^9}, {3.8834724024046783`*^9,
3.8834724104031897`*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[BoxData["0.9999998739674564`"], "Output", Cell[BoxData["1.5707963215304706`"], "Output",
CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, { CellChangeTimes->{{3.880875317306684*^9, 3.8808753918008947`*^9}, {
3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9, 3.880875476926515*^9, 3.880875499751493*^9}, {3.8808755895123568`*^9,
3.880875593014206*^9}, {3.881204848107025*^9, 3.881204877006847*^9}, { 3.880875593014206*^9}, {3.881204848107025*^9, 3.881204877006847*^9}, {
3.881204927752026*^9, 3.881204939243373*^9}, 3.8812057081188097`*^9}, 3.881204927752026*^9, 3.881204939243373*^9}, 3.8812057081188097`*^9,
CellLabel->"Out[19]=",ExpressionUUID->"b9b74f50-8c3b-4f99-adc7-2201a234e737"] 3.883472196088427*^9, {3.883472244705304*^9, 3.883472281247822*^9},
3.883472313051105*^9, 3.8834723684261103`*^9, {3.883472403405114*^9,
3.883472411008134*^9}},
CellLabel->"Out[68]=",ExpressionUUID->"5971acd3-cbbb-484c-b12e-d21fa3fd3fb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PsiP", "[", "q", "]"}], ",",
RowBox[{"{",
RowBox[{"q", ",", "0", ",", "1000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellLabel->"In[69]:=",ExpressionUUID->"21d21223-42d4-4fbf-851e-6b518f516178"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k4VV8Xx02ZM1QKISEZS0qR7LM0IKSoFIoyJ2SeZ9dwDZdQyTwlUsh4
ia1MFSE3PyKUBiIkUynDe9+/7vN57j5rfdd3rbWfc3Zb3jKyYWJgYEDMDAz/
//0xv6qvZbuE8r4+kymetSDcHvgePJn7jnBxU47IorMP14ytUO4XIon5W1oQ
nY+cFK1KdJ0h9ndqO5ymsz8uZGDJXSCeP3+3sD5jQQwNoYcE+Q9Rq6asmk3n
o7/7z/i7rhGp34+pytG5i3zE74MCI0gPrC1mT1sQa/fCz6zkMMNty7JbDHRW
KOwR3yHACtYqDcV6PyyIK1U7Fw+R2eEuNBWETlkQcc12L43WOMG7Mtwyb9KC
aHhbmebiuhk0Flm+PfluQUyPbjhRvvFC9B3nfQUTFgRl+YF4vwI/lOmLaEaM
WxCYZX5hIWcrDKvlv2H7akH0c6WOMH3YBpaiUnrFny2I2S3oJb/AdhC+pJql
MmZBiO2OSdtPFgQJDd8enlEL4rCMEgm1CMGDzDdVZsMWhMH+fqcza8LgkcYQ
mDxkQQRqSGjedBWFTdus21v6LYiUk6/k/ErE4Lf8kXMNfRbEYz3nbeRvuyBm
5kB3No2eT2HE/Z3CbpDwm63b203Ppy6r/StHEkwsmT6rt1oQj9Dqsz8aUrAl
+1Rm3At6/uM9SgwfpKAwY7vPK0zPf9pTmFdAGjYK4x4w1lkQQZdezCiQZaCe
a2ua32MLgtMsxfKQtCyYrL3k3FNsQdw1txtQb5GFQi1eWv0DC6LUZvML3TU5
UH95LLwoy4IYcTdJsXdVhD3/nTGKT7Ag7L0VOFx49sGoSeLl5FgLYtFvI9C7
ZB+Y5b/8TYqyILjDHthFftsPv8/f2SMfTNf/ykeUpnAAdI/1aJOc6Pr6W+d+
5hyEvnqxIDctCyL441UTnuWDkHqBRaQNLIjy78svFPQOweM3XOEM6hYE/z+Z
5BtLh2BX6bPvB/ZbEH274lW+nD4MTLzJrSHbLQjTGxf9+udVwZJFnXnkkzkR
6zb7eVFbDYa5VatbBs2JBv8ova2ZajD9Re1oCs2cEKXUiZzTPgpHYrnYFlrM
iU8Vok2v09XBVu/Ys+IH5oTd6jfmxpMIdrSMPOK2MSdSNwU7friP4OHKw9T7
V8yJVzyC/63MImDf03KX/4I5Ibdbt/DwfQK2TZYKtRw3J35LXJJ67wWwNGGa
sW+XOVGv/azdsFMTqFGUA+p9Vwm4Hc51yuMkbB7YS+3Zf5V4ObodMWWcBJtn
xdkFe64SBgqPXJpaToL+u8qRGzuvEldfvv1PbespSIv2qGhjvUr4rYnm7Ks4
BU3aEjvahq8QVTeohwTntOCJv9PAUsQVQub4zNUfN0+DVq5D4LMuM4J/wbj8
tpUBUD3Zz/w4YkqIXd19ISrGAKC1or5TzpRQePnjd8BTAwg0MnqSJ2pK6KSH
EPYbBsDHti3wELMpEXTiUTdKPwv/RVzRmeoyIZZfBy173jgHNcHimRXXTQgr
Ydo2yVxDKGGK8zIOv0ygZz6GgXwXYKjE78JopTGR446fDF82AfvUam/3TCNi
9PQI7Z+WOQhIJUgYNJ4hbPT8Zix7rsO1G3nG/Ge1CHHN95mfBq8DeZCti3ZQ
ixg+fNjA/Ot10JroaiwQ1CKMJOZLTVauw70YxVN+n08RsHLD5ZykJWStW1jM
eJ0iRB6aLGh4W8KIzpbW9byTxDsmtRXBXVbwzlC1ToT9BKFZ/5ulx9kaVM5+
cJdmB0LVcuJQqo81XFepj6j/RhBKnAPW18OsIajj4DWdZwQhZlrTunDHGh66
qY222hLE3xUPkmCjNezXuB+g2YSIKrV5ZksuGwjNsY7Q99IgpOummZYe2sBu
DWebutWjhOj1YWX81AY4P2RpHeo/SmzjeGMZ9cwGXv+5nNNTdpRgMilpFuqx
Ab7Ra1Q7q6PExz83wtCyDVw70H1G9I0akao6wRh90haymcQEM/JVCS7qGMPO
MVvQ7eGe63E4TMyduxdZ+8MWnF/GCzidOkz0TepzX1i2BSKm7sN+8cNE5k7q
jnguO+Cw/SUr3a9C7A+m7NtQsYM/Kuc/951QIc5rqV/5EmMH+0vOdyhLHyLS
+1JqSw7Zw94niq4PWZWJECddDR3CHl6s4affvh0grFkZWr6etoc/4zXqOm0H
CEXVm92iFvbw85bcsi/pANGUrvktgWwPE8Y6ERSWA8QXy9ktHqP2sCH8JfUW
lxIh/0vb+Vj0DWjTgGMGdgqE/rEEd6mkGyA+ebnRRlmBcIzq9+HOuAGXfQ5K
1a3JE49FbcKHy27ADRcx5a135AkF3bDUgIEboGP4eN/tdjliX35Dc4O0Azx/
MyiffkiWUL54YIdGmwOsSk7/2HpMmjDK8RHZ0+MA6EBFoTOPNOH2o2n35kEH
iHM182Mc20NUhhoojEw7gMgW/6nuyD3EodKbmoHbbsLLJ5xmm/6TIg6zFd5s
tLoJW+8fTmrxlySO1gk/12ByBOZVPeX7v8SJgM6ysQUuR9BxWCv27RQn8MhJ
5kcCjhD0U/Nv7ANxQpPpltZ2WUcI8WTIOWUqTujotbyZPesI2eqsz7bE7SIu
jdwczM50hAartjqHM6KEB2PjPKOaE7yV3PvQZocQUbPVaBv1uBN0nrjtLjwg
SPzZM6HirO8EViw2fnL3BIkAXX7fIQsneCUcJmkmKEiEJ9tsVEQ6gbiigfFv
sR1E0h4ebus+J/jUklY6ekyAKDttsaf9ljPEhKpNhNXxE6P69Rln/Zzh6UaM
SFIwP8FzTmDbIMkZft+M92bS4iccjTuZpu87Q0+sztFNfXyEjNWRT/ytzhC0
Jd5+yyQvkRfAm35V8Bb4iDbv9qNwEyllTXxLz2/B49yXTW+usxItFcLRQZ23
wEynetMwCysxX+25wdZ/C4y2ldndK9pEGDbIzwr/uAUDlJdNvPMsRNTXTpsc
ThfYKswWvRDHTJz8deRE+yEXSE9rUJwdYyAaOfnW+cku4N1YojDM9ge52UT6
rsa7gEwERPOF/EYyz1cXx5Nc4LVn/1fdlWWU5Dn541mGC+wS8DXoml1C9p+a
B23KXUB24Gj11LcFtK3Gs7puwAW2UJ7E3mOeQx1800oFwy5Q/Kea13jHTxR8
0/IxZcwFajsTXtvKzqIp8bP5Vj9cIC/mGLfG+Wn0PFbm9uYNF7hAMLWGNn5H
jtc/OF6XdoXehGt2d6fGkESD4Xc9eVeYPehmc1VwDA1sf2V1WMkV7B4ol01r
f0LH31SZch11hcnFH29qL48gwSMUneozrsDqM10TuW0AtXBrSnF4uoKoTbNP
1fV2JEwt/FDe4gpfVmdTyolWrMXFwLTptSv0GJsWZX9vx27mJjIm3a7gPOEY
dyXmNe5g4fZkHHSF4xZH9O2o3djf0JXHaNYVNn+LZZ2y6MPDU+qaC4JuYL52
U+l08whmR3fstMXcIP7VILPfx1F86PZsfLqkG5R5X/W0WPmI447kDp3Y5wbe
PaT0J/xjWIPE6pFywg3uDH47f0bmC84S7S1UcXaD0mfUi7KcE7jDRa6L7O4G
Ex1DOCR4Ai+3hC+M+LgBw8P+zksLE9jA4TBEhruBGJffz/j+73ijJn2wP9UN
nKQf9JvETuFr52y5fVrc4NnOBwW25TM4Lr9J+c0rN9iLjYPaeWYxdVnQRLzb
DRRMjtS9vjmL+TI7H7x67wbX93ayt+z+iV9MKhFCs26Qw24+MIrmsET4P9d6
QXfIfG99btD/F/5Y51+4JOoOn7ri7f5m/8IZc/+GlCTdQSGhczK85Rfebr56
4qGiOwx+JkT62Ocxp9qaQMpxd+D4ahBJipvHL28F6vZou0ND24AOy+N5TCpc
C+I84w62QjHqix3zeH3r+kTIJXdgKmOLkGFbwL9m1+ucHN1B/3TEqTWfBVy6
J3i2yNUdePT/ygulLGCHKxsSX73cYUhP/7/HpQv46+uNWNNQd+A9OiRHfF7A
7wsYzLXvukO5h2+X7IlFfOdDSFJYujsoNRxrEDVdxEZbGF825riDI8tYV6LL
In4TzKh0qMQdXhhU//2dvoifmzIx7X7uDpYL56u+TC/iwNthh6+0ucPeO94r
kxuL+Ogrppv3OtyhZn8qxWvLEq5SYe7b/J87PHmlqiR9eAm7Ooaznx5yh3cX
nNd1tZfwvnxmDdJHd0j7xJWzcmkJF/GxFP6ddIefSOL9b+8lbKNNGlL56Q4C
5TOyp6OWsEQQC6/rojvsON/etvfuEs74weIzse4Ow+H+pxMrlnBC+ybdvq0e
wHdX86L0+BLWX4sI4hXyAP5pk96VX0uY/RBrpa6YBzxYdze/vraEw3JZRV7I
eICT6r+Nn1uWMfE+8tyqogcMWyQ2CIou41UetogjBz2g9IL30HvpZewVwDb7
RMMDJLVbQiXUlvHByiiJyeMe8JZ19vETzWU8N8l2SUrHAxaUlgPenV7GDpfY
n6cZeYDWL2ut+cvLeC8levG/Sx6wK13pw7TFMv7ayi7Lf9UDbP7k60XYLmNz
ZY6kKDsPYLUgzyS5LWO140aR9o4eIHDLxrnUexlvM0r3O+3qAau3JrW9A5bx
7PWvznJeHmCd1SUyG7KMX7sqWnH50+NdUErYGrGMC0K9Lk0He4C48F34Hr2M
g2436XWRPOBe7WSvY9wyNsllh1KyB+zRDviSm7CMDz01PJRA8QAHnU0C0UnL
mPdFmoxLsgfEVOZtEr+zjKfefhExTPWAd5sHzzvcW8ZtnxT4lTM9wCcoOdPu
/jLOmfPctDXPAwa+SIYIpi9jf4amlYVCDxicPJ4amLGMjfnYZ/tKPCBUnC/s
XuYyVhI3/Fxd7gH7t24ZtM1axlxKaf13qz0g7dph1Wk6jxNfOrzrPSDkXa+a
TPYyfn5WoelyE12/f473TjqnW3hWqrV6wEZ7W0w7/bzXLfxQ+LUHnM18wyVH
Z8Ngtox/XR6Q7/swSYueTyHhXOIwzQOaI8trROh62LLvkxoHPOjfE8U8T9KW
8efSzz5Zwx6wuNCg9Cd1GTdieafgMfq8CARUrN9dxqndHtevjXuAtvSYzIuU
Zew22nhR8wfdDycDGaD7dWaWVVdijt7vFMrJALqfMutnEfOSB9i+6OPzovvN
xHNf+euKB3Q2NOzaR17GVEX5nYXMnvBOdEb/Q+gyTtbw4I1i94TMy77xvYHL
2PlMI7P9Zk+QO7v/YrTvMpZ0Ojstu8MTDNEeqprLMl4PSP3EKeIJjmcWXFRu
LuP3cWN9P8Q9wS+ebXrBZhlTHrs3PpHzhPatj64+M13GNxoanlL2e4K7soBT
24VlfPLNpsJbhzxhS3CIS4rBMl75cY9yANF5e35QOH2ereUbLKoNPcFIP6y9
Soq+H+qbLtw19gQeZtfoJZFlLKxnoONt5gm7ON9FbGxbxj0On5TUbDyBKTlP
z5VlGR99xMLU6OMJd6gzCUOfljC/7JmC1mxPuGSW6H84cQlbHvA9wfvAEyb2
jr0xIdHvC7UHn00eeYKdHKGv5bOEjXXXxH9WecJ8Q4lRoAV9328+yRTq8ISq
BekXHvJLWKZ08z3nRU8IPtL1mK9+EfvVqB2uW/GE84HGv3lLFnEntvmPecMT
novVc32m31/OPY1b73N4QcSWtRGGwEVcNeeU2CLmBa8yZfnVNBYxHOwmC572
gpSTSn58NQs4Sf2vjJWBF1DrVauDCxbwlxPSr56c9wJlgcHbHUkLOPJCEOsJ
cy9Q4SDrLTkv4Dee+8Kd3L3gnU3d5Sd7FvBlKiWgOdMLXFMvKgnHz+NbGmdv
Oc57wR07jsvntX/hUbGT3Vd+e4FQn0bBvYO/sAGDmuKZVS/w/VdZ83rXL6zQ
IvFDkdUbpC6Xpv35PYendJZtfwp5w5YXXkdiH85h6wuZ5m6a3lCXnfHuLfMc
Nr3544xPojd0SskdMbadwSfvRymQ9vnAmm+WWee/Cdy6JSiPNcIXdh44msIg
PIjV3wbUa8f4woPxM4N1be9xRbw/LTrBF7ZlHDYodX2Ps9l9mbjSfOHmrW2H
9ToGsN+6uyVvmS8c9WPJsQnqxwembkgIDvrCoK7U3oz5dzjrxcU8WUU/qJ6s
Grgm2o0Fgi/UOyj7AbP9+a/UiC4cd+w8reSIH2jE7ip/OPsG+9aeY9p33A9s
90rU6Dd34gtP9CyVL/lBryfTng6X15jzvqaEeqgfmH0bHFb50Yq9XRTz9P/z
g3b/rsicKirmZlvyPTjkB5Nt1WyaTbU4J7PBUPijH3yL8Avl7KzBHR16jN+/
+4Fl08rRneNVWGSPw7XwVT/Y7ftkXEvuKW4eLBSrl/QHyznB3ML+fMx9Qjx9
r5s/7LCxOyBzPR7lDE648Xj7QwGLgOv+mdtIxaVMd8nfH5bcVuy/S91B5pno
b3OEP7y5MLe3LCIdPf19xcT8vj9sjlNWVmctQMaP7++489wf7KsKmpK4ylGu
wNYUJt4AIEX/Ld6r9Aw9Lmjcfn5bAJSucsxuHn+GqAft7+cLBUAgc+DZsLQG
1G3YmHVSKgD4N0IFtm80otV4u+JItQD4j2xyz9vsOTJmbcCc1gFw6MK/0Z65
ZmR5x1bT7EYAfH0t1qEJLchJir+1xDkAxs0dfq5SWhDpuO1rfd8A2Jt44ulZ
uVb0NIivj0IJgM8JITOOl9sQ92/ryS11AbC8lzW8PuklEozkdbTCATDoxcf4
of8lkhSon61sCYDuoxfv6wi/QkcP8i5e6A4AlmgZbe7sV8juVt363S8BYPcq
XwnlvEbNE5u37eQJhAMmAZV3QjtRlxf17s2tgfDMKEy7tL4Tvd9kJdQgGAgs
sU4XhRY60U9JqthVyUBQlXaw/X79DRK5ZimbrRoIPgo5lz2PdCHv9zVI0ioQ
hFxWbhQ2d6MckAsVsg+EpMBT99hmu1FHUWYLr1MglH2U0hsQ7EEiviSdVa9A
MLDZ3NLi2IOeCxkZ/RcTCMKsXq0zrG/RZGhbSmdCIPie2914Vfgt2jKlOvAi
JRBMtsmGRCq+RTb1u66UZgXClgh7JebzbxGn2YxNVEUgIN6m4dK0t+hgy7Wi
wNpAoLA8eDVV8hZdke+bcm8IhMKfk2JjDW9R2b/6W9faA8FZPXpsbeQtupAR
7as2FAitzD6VayK9KGtEMv4HYxA0/9nQ0ab0open7vWMsQaB2cPA5yfSe9Hc
E84t77mCQEpfas/6w150IujX3VaBIGBoe5j75Hkv+i7WlJMpGwSx/GOTa7O9
iD9K+UvyviDYvPWb7txKLzr688GemINBsMVryTuPhYbimuIeeWkEwb07U3La
QjR04Jpp1VnDIJj7GluZStCQ6auu5VPGQfBUwE05UYeGSEqaasfMgiBo6JbT
aUMa6meQwTI2QaCi7rCNyZKGNuzTGXY5BAG3lMkGowMNyfTynBC4FQQX3Y8X
tLrSkF/u0ktG3yCY7nUQSQ6hoXyOG5x/AoNg8LaDS3YUDb1xHdafDQuCD6Zf
g29RaGjX8ZbeobggUO6R+M8snYZaPyd+qMwJgpyhC8GOFTQUtE9e4faDILia
yXGaVEtDqn5tAc6PgoDldISodQMNPeb/KypbFQS2AwljAW00ZHs1xZm1LgjO
rXw3qHlNQ+LF+5q+NAZB1EZ6M7WLhlLA6lrWS7q/TQ71Qv/RkEHcWrn/myAI
9b3X6POehtjf32M06Q2Cu5moLfcDDTVLKhsd7g+CMpoO/51RGgq49SZv64cg
SPzcMmY0RkOHn9kuzH0Mgu+rY14fvtDQHCvjye6vQeC99odv/zgNPTJKTymZ
pJ9/Gjp35jsNWWepfIueDQJ9sR3GqlM0JDbVo2K7EARirz3DZn/Q0HsVh8gT
f4KAY8OvxmWGhpJCWQbE14KgRlTqYNMsDel3Ze1dZwwGjtF4taGfNMQqpObz
gTUYaJkLnM1zNPTc+t0rKlcwbC0p/e71i96Pciehu3zB8DJRZdsKnQ+tsjm4
CwSDhNXOHp15GprVzqs/JxwMTJt5zWzpXJR8jGvfrmDYnj20Ykhny4/9ZlxS
wbA3y3KGi84i8q6Pv8sEg+b5B94p9Hj9XlxrbYrBsCpSP/SDnj+x+cGZfOVg
+Nb09vIWOuvyQFbIkWCAOqVD7HS9LKZDs1ePBYNbkmpZF70+/MCDUNcMhpKD
V7mtpmnI5xdPoqBWMKipyVJe0f1R1ij+tKQbDOs6x7zX6f5NR5848O5sMITb
6XJumqChwr6R0PILwRB3dmfM8FcauibuQ4s3oevvIKtFfKahvtrH7jpWwbDn
56aDeiM0RGHWbt1jT/+fIsF8Y4iGdM6ObWN2CoYfV1Z4TAZoqGFcoKbRKxis
PzwYL39LQ17K5azp/sHgusauJkSfH6Ug3Us+IcFwfpbou0CfrwKB4D/KMcHA
FjI0r/WChsyvC53mSwiGkw0qa2v0+RR8Unl/JjkYnmAjczKVvo8nvx8tygyG
/bLHDoqV0ZCHu2Gg6NNg2PTsNUU7jYb2Nf3o+lsdDFrVn6qLUmjoO2ek2Pv6
YBDLcjf8RN+XK3n1TUmtwdBy133pXRgNneyVZGJ/Hwytzyuu9tnTkKdA7prB
SDDEJDQJm1yn+2MitnLnczAod036lJnQENtnwTnJmWDQyEx3p52mIZsV1p+7
GEOgXDr149+99H1Lb3NsYQ6BxTN5Ett30dBdDdKULWsIzCzUN2zaTkPtoYzj
T7hCIM3n3TkrZvr+c64Oq28PgcFHhm67h3sRPK43/SgYAuoumRPfe3vRZQPf
92E7QyDRucQ+6mUvIictv3stTj9vUj6hW9GLpoR/dVySDwGHL39PL0X0oify
41R3CAGXxzLzEtK9qL2r4PCOEyHAorQ1MlyoF43esqqqPxUCJ9J2Rzzn7kU8
VZ/KGPVCIOXwW6He+bfI5diHwoSLIZAbJTp9sfEtUj7zNqXEIQSmykYMVfXf
IqpzvcuXlBA4k1bhevFhN7IIvNptci8EXvKsHS+J7kascQwKb++HwH3dTI3/
bnSji8VaEw1ZIfBrpKXxoXw3mv9Cu3q3KARG96uduPikCymY/NA93RACS1bD
uieL36CcEyJ7yr6EgGDWisl8ZAciCwYN+imHwmhgnGPIYhtS6s3J0h4JhVqW
QsUvu2vRh65Xl8c/hsI3VvOQ2N4aFNkxtyXicyiQD6aOnw2tQcMtENU8EQrZ
+wK/7B+rRtE1n25pzIdC94XRrdfzqtCndHHNg2xhgBLLZ/fKV6BE25wvYgfC
gMTyrJOt5hFSt3qV2XgwDMatv4ps3vUIjVvMXbpyOAxu8owe94wuRsdM4M19
9TD4W1jU6HalCH3X+1S1TSsMPOfP1B7nKERwQDyS0ywMmrPSfyh556K5f9ky
y6QwEHtgwLPv0m0kZ/O42S4qDI4ruAy6XU5E1t3UK4PkMIj9W3JSrZqC3uf0
JjZQwuCNjHjO6ZYY9PwU80pYahjEeWqQriyFoYQE29e8j8Pg98Elt5mMq2if
pKKD7LswGPnA2XzRmIzt49RY0v8Lg57JWzrZArE4b+lUFvf7MGgrTTGm0eLw
9lfmtJ/DYeB6NrzYSzIRrzsmHq0ZD4P46mjpsZhk3FWzwHnibxhEzkdfV5RO
w4669SVXdofD4FUp3oST+Xhsv+pOZqlwkJ7Q+dn9KB8bC9TEFEuHw+2YQB0r
vgKs+enpjWX5cLjXnMQYPViAt3sV7008HA79OwR1qVaF+Hluan6LXjiMtDir
ul4qxipR27c6GIRDceWQ3buKYvzIMSWMzzAcQoYi/CI2P8J3jiRev2ocDgsu
k87vnz/CDl1Ru35fCwfr/tHNh3Y9xttWvNLlvMKBZyi7NqO+FJNHFzl7fcLh
SkTXiwnOMrze4ubn7R8Ow3v/KYeYluFJirNJa0g46Gxp/5X6uwxjKdsd5rHh
wBfl9qsypRzbn7uYfDsnHNIvtqxSq5/iEZV3TKr54TCefjVW6/1TbLTT0G30
QThUM8rG+f19ijXG9Q3lS8JBS2xx8T+NCrwl4CRvW3U49NgNc5o9r8CNDw/G
/ukIhwz2fq/CqkrcvHJnyLUrHGo6vjlX9VTidr0/sj96wsHY6d+cx1Ql7v7Z
8GqkLxx+vLfu3ryrCo8e0WJtGQ2HgTRUnkOqwgyvLofGz4dDgL/XATPNaswi
/Owt61I4yP7Zy552qRqzO4qKh/wOB7Gha1lxTtWYn+8zdlul989a2jE+tRpL
XL65eomVBFtUdl1n+FGNT34P9JYQJoFG0szh1tAarHP0U3u6CAnufGjp1Euu
wfpxx7cL7CIBt8vQTHRBDb6oxFbNJkWCgKaGa1LtNdjWJ3F+WpEEtpV/e75s
qsUOHfOatkokEDv08P5OgVrsLHLx9kdlEgic0ufmlKrFXs+FlGhHSBAjp0Pi
0qzFUez5TrWaJDA2XWJ84F2L40w3NSqdJAHfUKXRXVItTnxsx/1IiwTZH3eQ
idu1OPWcQkmGHgk4pxIM6otrcVFq9ffQiySIKnWeuThQix9P7VD9d4kEHLE7
hLg+1+LyY35RHqYkaGo7E+k7XYvrPiFpOwsS6OWrD4cxUHGHzCsr/RskcIsM
SNDfQ8V3pzWO1t0kwTm/ytRCRSq2Kq/kk3Ymwfnj0bxYhYpXj2Q3briR4Gnq
w409p6j49b9tKY6eJHj0p7HfS5/+fFOMw6A3CbYR7AMR56l4v7bXjsoAEny+
vHPrx2v05zmnZ3YFk2Dzzc4yWTsqftV9vTUulASBZwOOHHSiYkvjM662kSSY
LhvoCveh4n3CLdrvokmwp/omdAZS8b8RVTGIJcF7LpoNLYyKU2ykOoUSScA/
OJsiHkfF12TTciOTSJC3yWeTfSIVK87w+iykkEDiqvfyrRQq/lseYXDtHgm+
9qpmqKZScbvHP6mu+yS4lHRdvjmdipNVXf+pZZDAHf18z51Nj7c63luYRQLm
XUeGBPOoWOH5laKtuXR/r32zHi+g4pVwWlBIPgkUtVZLPR/S42nrXJx5QIJf
9u9m24upOIkLy5sWkcBjcrvZUAkVW/QcZHr5iARsj9rlyp/Q4yUXvz/4hATB
ZJU7OmVU/Md4V1lOGQkYU9lp+eVU3CZ8J2JzBQmKLhwWan5KjzfKecWvigSf
Pm7Kz6+gYvO8EOWJGvrz6jxFOpVULGe7zH6hjgQygSrXn9L5t6zjx+fPSODL
U842SufWmbFqRUwCpU8bfd10Tnx6KS7tOQnqHy4wkeh81bPLkq2FBPt2FHau
0ePLqZ1Q82ij1ycUeOMYnZdXqbxjL+nzwSm7A+h6Wp7vGz/TQYJ/c/m8HHS9
iaSChvo3JEhvUKLcK6XiKzrCyXt7SFDlb9r94zEVy3In3kjpJcGr9AUuVrof
yz2bgLGPBF27BMLHi6i4Odl/u3M/CcRHRV3iC6k44dKv6aH3dL8bnvL+y6di
mY/D96tGSCC508JUPouKF/OMXHZ/IsHHji0hs2lU/ML2lRblMwm0XUhnfO9R
sels5YLdBAlYvhUNjCdQsXSFbEffJH0eWzf4OmKpeMEzO0dzmgRDKmY/PKOo
OG4t5szOXyQwNRcKlgmi4ssvGKSiF0gwWsVfu9+XivdEeP1dXCJByCXVeAYP
Ksbclg+7/5Jg4nPnVoYbVPxrpxpjGEsEHGB+nRJ4jt5PM/EnkmwR0DC5O+vU
aSpmyGAzaeOIgBbDCda3mlTMJ9Jfzs4bAQoLAVqKylSsJOJ+LUEoAiyp/c+2
8FGx6hVT7gMiEbDWHLu6zErFkKFJpYlFgNhb4xM5a7X4nAgf33apCEjfHax+
YqoWu4g8acrYR8+/9PtM3/Na7HMl5SY6EAGlhbdUpqprcUiG/45PByNgitY/
+PIR/X4R0b0lqRYBVi8O1X1Ipt8XIhNij05EwHEJjYBbVrX4p8juoNrLEdA4
rcVx508NXr7CLmdiFgGt/RaW56Zq8HrGz//+Xo2AmJ1Lmwc/1GAeUayIrCJA
oHnt5Xlcg/eJmo20OkVAXINP05+QGuwseucYLYyut3ho8txaNZ4R5fg3/TgC
5P2VD73oq8Kkjr7I62UR4PRGqmZ/cxUW9s7Z0v80Al42pe4JKKvCOm+PyDXV
RECzreRaGbkKF4TZmtx+HgHVVUGfYo9VYbOJllqVvgjoMv3LfSmjEr8uD/II
+hcBW3c9Rme1KvCDE4szvLqRoC72npRcVIqVfZCG/WIkBLwUZBtMysH+b/Mj
fJKjQAvrVq9fDMQFA+/PfL8TBdeMZQ4vv/fH3aObt19OjYKx2XH2iSt+WGLG
u/BIZhTcCIzjaLLzxq849F8uF0aBV/rnU4lkV7ztxCK7Z30UnJXaypa1cQk/
rj4Z5zoWBVe/QTuzqgvqb/C9MPYlCvaHc51WvO2KNlpKRQzHo+BthcDglkk3
ZEQTfKL0IwoiIqVXOe54oj+z010/F6PA6Zq7vsuIHzopc4fXmT0avrWwMx2+
F4ZG0r4lOeyPBq4BhYwTlnHouFicEq9yNFSbKxaHbYpHhbnK3ZWHouH1hwvD
Yw/jkUtRMMeaWjQcsbRbWZ2kIJYaoZCEk9FwXcHGoP1pIpLvPeNUZRIN77h4
JIoEklHihUVOkyvRUHPmndC2a8locSCtaM08GvifcVlxPEpGeHTii5Z1NExq
MbhQjqUgo+lQ00HnaBijdnj+MbuDfNlqtNfDoyF/YbMBI+keGo258i0vMhoe
NidrD7bfQ8d5mMO1ydHwmKXnqgpHKuIWOIcTKdEww1L6yicuFeVITB2SvB8N
9SdztPbE30cvNcQkdEqj4Qyj3amPXulIwCNy9fb7aHj2u/aoz1QWYrfm9+P4
EA3HnO/2sQpno9XzGb9DRuj12LNaSJ3ORl8PVszf+hwNXQXcf7kKs1HVwsj3
M9PREPGmpu6UYg4yclf5j4OBDFz8c7vEB3KQltVzo1AmMqgJXcow+5GDjp7X
e/uHhQzcFcxHzDdy0O6D1zsnOOjnZ941U6Xp77/zcS/atpJBXPuscotbLkpw
+/okdC8ZfpX+Yt3PkIfCLG/Jr8iSoeuh7twwXx7yMvpb5KJABgerSnGj3XnI
XJmvwOIAGVzvSLklaeahffPqaRrqZBibJlXcDM5DEp/bd1Rr0J//sVBygZKH
ttMM7ygAGcYz2/ZvysxDa0/tEneeIsPoIXXGxro89MY1OXLFgAw3fyjxkefy
0PPrYiyuhnS9Q7JZZWt5qMqwOPT7eTL8kZvakcWZj9IPNAUMXCaDc5E8+zvJ
fOTwa8qt2pIMV1+MRmadz0fmY55zCjZkGOjj3slqkY+MehmcC+zIcKUtTOiw
Qz46+nT7jWRHMiTRFjJ+BucjDtfjFq5eZBAL53zTUZSPVEdQhagvGaTusfuf
rMxH9qfVN3X4kyFwQTs9sDEfte8+VCIRSoYjrUkZ+3rz0VK80np3OBkKNlKq
C4fykdRfBUP/SDLkBLaWjX7JR2G0Pb/fxZKhLne8kbKUj54iCd0QCt1/6nUe
tvV89OmRWKbCbTIYXhKqI1gLEBG+40TEXTJYfPbNmBcoQKsHORIO55JhpSPx
kKVyAZLP2fT5cz4ZfCdvT39SLUCm3EwqCYVkYJaP5dpNFCDq179DEyVkKJdn
4x3XLUAT534rppSSQWtIQePmuQK0vXEhBJ6SYctnik3FxQLkeWda+n4NGazH
uFGURQEqYJz0PVVHhpCrS+oC1gWoz+nbm1/PyGB5+2mPjX0BYh4a25WFydDG
67zb17EAKWuNuum+IIOH43uTsy4F6HrFUNtyCxmGbcXyvrsXoESxAcH8djIs
8sxInvIuQLPLPfhfJxl+K54L1AksQKJWb/iLusmwRK189DO4AOn3vLK+0Euf
R7tjjaZhBchfva2WoY8MC2JsY2RSAXr08AXnk34y/f3u0fHAyAI0uBVfNRkk
Q72VKq9KdAFiD6kv3zRMhq0Gqh5PyQVIdbqGuWKU3g+iJHs+pgDZXa40Nh+j
z284+/M/sQXobmtZMedX+vxoa7C0xhWgdqXHqzXjZPjeWJJ+Ib4ALWUUnbWa
JMMFQq7mEZ2lOB7k8U6TIdSRidRO5/OeuUvPZun5zs6pFNE5bCxTx/4XGd55
7147S+enZ9LSty3S91HiEBemx/9Ud3f2+TJdv8HhpHl6fl7pZE2nFTKUTRW0
ztD1oaSEFKFVej/HHf4ro+t3Wo+daFsnA7706bcqvb4Mh+ijbowxUJH+2oJM
r7+znxQvxhIDYk7Gmrl0f/4eD/3UwRoDkRy7e0Po/smVBR705ogBr9OKJ2VC
CpDJTr9ISW76+ZaJnnt0/6OjvAZ7eGLg4pjUox4/+vwsuCkE8MdAJ7M4x1t6
v7a/uUnr2x4DKzrqSvKuBeiUqv2eUKEYOD/3xjbSqQB5FFj7KIrEwPrw2vqj
GwWIFnBVLHJ3DIRctlQxvF6AOkyd/uyRigH2/Y3V368UoBeqgbQ26RigeCU7
6F8uQOWLGZGbFGLAPt9K39egABXRHl97sC8GjgwmTBw/XYCyyxuOnjpA/98/
LXnwRAGiOA7Pkg7HgEKx2bozff4jdadfSanFQCvjtKIzfT8CZVbzWtVjYK2O
+5y6QgFy/LrzEotmDEh/PGoIuwqQ3hWzpnC9GOgeupn5j6kAHT96876kQQxI
PbeodvlHvx8E/d1bzsUA87xlUvVCPpLrS9vLbBwD/lyxMWX0fWbXH0oIuxYD
uYGi3Ddf5KNWdZNroZ4xcLojhOmwRz5qELpxdLdPDDxp/7LRciMfVf722fbC
LwZw0UbmHvp9lFeZ+oohJAas1M42WJ/ORyHy75VCYmKgkvgbP7gzHx3beYkx
ODsGfP9TKOqn5qFDK7YfxPJioP1Dzt7GkjwkP+BVjQvofts7XPfPykPCyXdv
rBfHgFZHJn9IeB76w9nfG1gVA4utR7uf6uWh6r8X8gJex0CR693U+b5cdOzU
6Ss/O2PA9XXooZD2XNScoLHdsjsGJB//C5itzUXdUtIx2u9iYIH1+7JTWi76
bvDbdctIDFic9u1cv5qLRPLvaxbNxUCBvuG+tI85iKQ3+undjligcf7E6RnZ
6HyG3S5521iQI4+283aloW1WXaU0+1hgtSmNzM1JQ/2yB5HfzVho1vosz+2R
hkxr16+8dokFvsDkMGfhNGRJu5Nm5x8L6z+txrxt7iMX9laBgsRY6HXYv233
0j0U7yHOLfosFqQvbOr/sp6CXuoP/uHhiwOm9d11btR4tCxu2/moNA46BY+o
jD+4iXjbW14IPo2D1qcu39wMHJDMzd3UyMo4GGqenS35bY9Mq4cLLKlxcCBt
QUNR3xY1nT4fJNwcByIs/TaVa9dQtBsciPkvDra4RvF93KqLhFuF791YjYOz
vfoKLHfN8MEbPvED63FwzbQ21YPPHOvz9IefYoyH7NiFnf4nr+Ggy7dddrPG
A2dgGy9PvSX+Ms2mO8gbDwYOQj3ovh1+LLC0qiMZD0uCCaOMyS6YsOuxlNGN
h2P/jE52V/vilOisfZ368SDNGFHMeNYPfy92+ut0Nh7i6kczgif8cOI0V1Ll
hXiwV6tdMt4egD+76rxAFvHwdynPx/hmEI4MeLHrokc8bGSc+m/YJxR3364c
Ds2Kh6wQB5PeqggsURlWJJUbD3X7eQ/sXYrA3n2GHi/z42EYns1vVYnE4jvm
uDYXx0N5keWL8spI7JahoJ5aGQ8H9gxUzJRE4e0PH9wvfRUPFSXN3nLRZGze
cM/4w3w86BJmIbkzcfi4rh6T4VI8ZM7/tP0gEo/3vF9/0v47HqxT+X481YvH
0ws2mypW4yG9dNveQ0Xx2Ff+UFU0KwXCvy9KkK9QcEraW/7DwhT6992JTcYV
CdhHhtRYIkIBFfU0H50PCdis5siN3bsoIOWXVjnFmIglaFnPuaUosCzZuvej
bCIu53C69UWRAv/pvhy09k7EnT4cXYmaFDCe5E0cYr+NS1kbfVhPUiA+1SJD
Qvg2TkpxkQrQogDBKXbuiPxtfLl8wN9OjwIdd3pT2/Vv4/GJB3LoIgXCjN1U
AuJvY6ZLx6N/2FOAsULMUHNTEh7/unTw+k0KbH0hec5oaxJ+7Vb8sd+Jrtc6
bmD/7iT6uyPfkWY3Csh350edO5aERdtHv6UGUKB14z6WcUnCqir+J7QSKTB4
rSJKtTsJ9/sfl9uUTAFuucL+80NJ2LOZg7/1DgVeC3k77h9PwhVnU0c10+l+
ZRtk711LwgoO1b4ahRQoiv1bJCqTjDvKA66tFlHAWdT46THlZHzj9wntZyUU
2DTx1kvkWDIuJNG2qT2lQPqLlBCxs8lYPPtn2aEGen2Swg/3uSVj/K3m7gKm
gF9fWclFv2R8VSEosOIFBW5EtnCjsGScVsetp/SSAqZe68T528lYlaHvwM/X
FLB/HKgZkpqMB7TSBUvfUCDNTnbdOTsZb+uTHZenUWB+wpUn6XEyrhD+9Waq
jwLUYJ277RXJ2PA6tbJ4gAJmXY2ajdRkTJnVCt07QoGl7Sluv1qSsaIKj/34
R7qfBStK+18n4zf+/xk8+EyBA8mbIvZ3J2MODmsRye8UKFa7Y+szkIyLzsoz
f56iQELu2wMvPiRjrbvzkzkzdP064jxdH5Pxt+G6txZzFDi82rsz40syJkmG
1ootUKBGst1/30QylnDQyRpZokASw62zpKlk/KKcNyLjDwW6vvVQM2eS8bXf
/TfN/lGg1yVgyG8uGa9rZBkJr9Pjvbo3sHMhGWeQbNQGGRIgvP3du5ClZKze
qSCeypwAIoTLQvHvZDzEv8h6iTUBYuSOmt1bScY+l5/NCHAkgNKnGKXT/5Lx
9uywvj6uBPiirX2/aTUZV387/SyZJwFGN3989nctGV9Q4M8z4k+Aj/16TX/X
k/G82/to/m0JoOnI19m0kYwT67Jvvd1Oz79whE2XIQXvZ7AzThBKgO1CFzPu
07lba5+GgUgCnIDQylI6O8YvSW7elQBp1WZeZDpz9jVwvtmdAJU0dl45OhcL
k37FSCVApMqBokR6fJ3reu9P702ApK8MTo30/OMPtzSxy9HjB0mTy+n6SLOD
D14qJIC5BU3Gga5fUiU3LnJ/Aqy9rfaZ+puMm/3t3U8p0+tXZCo8QK//WvN+
UxaVBLDktB8l6P6ss/+GliP08+bbzwnQ/cs8i/eGHU0AhZI62Yr5ZHzsbgSP
pkYCkET807bT/R8a1l/aIBLAmbrRe5zen/8BbmllzQ==
"]]},
Annotation[#, "Charting`Private`Tag$84572#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8834722952053967`*^9, 3.8834723148474817`*^9},
3.883472413855248*^9},
CellLabel->"Out[69]=",ExpressionUUID->"7e2c907c-5815-40ec-b0c6-09abd28924fd"]
}, Open ]] }, Open ]]
}, },
WindowSize->{1389.75, 768.75}, WindowSize->{1389.75, 768.75},
WindowMargins->{{0, Automatic}, {0, Automatic}}, WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification:>1.1 Inherited,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb", StyleDefinitions->"Default.nb",
ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911" ExpressionUUID->"64e28415-be8d-47eb-8c2a-84b3776a3911"
...@@ -1288,49 +1501,49 @@ CellTagsIndex->{} ...@@ -1288,49 +1501,49 @@ CellTagsIndex->{}
*) *)
(*NotebookFileOutline (*NotebookFileOutline
Notebook[{ Notebook[{
Cell[558, 20, 1962, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"], Cell[558, 20, 2017, 50, 174, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2523, 68, 2848, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"], Cell[2578, 72, 2849, 74, 200, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[5396, 146, 2312, 54, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"], Cell[5452, 150, 2312, 54, 79, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[7711, 202, 8151, 151, 239, "Output",ExpressionUUID->"ab87c9e7-d22d-479e-8e60-a486d3571fb7"] Cell[7767, 206, 11349, 201, 259, "Output",ExpressionUUID->"4b9fe172-9212-4561-a287-0e5fcec3095b"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15899, 358, 1967, 50, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"], Cell[19153, 412, 1967, 50, 79, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[17869, 410, 981, 14, 33, "Output",ExpressionUUID->"d0b79513-3f3c-4a7e-9d4c-9cf52de46f51"] Cell[21123, 464, 1003, 14, 37, "Output",ExpressionUUID->"9335ded2-e54f-46a8-9b5a-6e4e244b2198"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[18887, 429, 1100, 29, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"], Cell[22163, 483, 1100, 29, 58, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[19990, 460, 481, 7, 33, "Output",ExpressionUUID->"f3d3808a-1e3a-4a37-b9ac-83ad7cab0a61"] Cell[23266, 514, 503, 7, 37, "Output",ExpressionUUID->"1fefee2c-c22d-441e-b490-61523152bc95"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[20508, 472, 1962, 49, 82, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"], Cell[23806, 526, 1962, 49, 160, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[22473, 523, 559, 8, 33, "Output",ExpressionUUID->"413f2204-d5e7-4ebc-99c1-5d089819350a"] Cell[25771, 577, 583, 8, 37, "Output",ExpressionUUID->"a7b55ec3-e8e7-484e-86bc-a0bdc4afe276"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[23069, 536, 1302, 35, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"], Cell[26391, 590, 1302, 35, 58, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[24374, 573, 11249, 203, 237, "Output",ExpressionUUID->"8082d315-b512-4039-9ab9-4f8290a4ac22"] Cell[27696, 627, 11272, 203, 260, "Output",ExpressionUUID->"6c8305ab-010c-412e-bcc8-acd2697db5e7"]
}, Open ]], }, Open ]],
Cell[35638, 779, 392, 10, 29, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"], Cell[38983, 833, 392, 10, 33, "Input",ExpressionUUID->"3894cc59-ff84-4f88-8130-0b3a87025770"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[36055, 793, 1317, 39, 53, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"], Cell[39400, 847, 1317, 39, 111, "Input",ExpressionUUID->"6db522eb-96cb-477e-99c5-d27334b80d0b"],
Cell[37375, 834, 313, 5, 33, "Output",ExpressionUUID->"f0141514-31a9-41e5-9f3f-c4d639d78a0e"] Cell[40720, 888, 334, 5, 37, "Output",ExpressionUUID->"648f4a86-0b5a-41cd-89df-dd1b1815953b"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[37725, 844, 2750, 70, 117, "Input",ExpressionUUID->"16514567-4615-434d-b213-33ee847a7d1f"], Cell[41091, 898, 645, 17, 33, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"],
Cell[40478, 916, 1424, 41, 46, "Print",ExpressionUUID->"40fb7223-8e82-42ef-80cb-46c705e0366c"] Cell[41739, 917, 647, 19, 57, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[41939, 962, 645, 17, 29, "Input",ExpressionUUID->"d53a8a6a-e273-4a7d-85e5-98d445720389"], Cell[42423, 941, 562, 15, 33, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"],
Cell[42587, 981, 647, 19, 53, "Output",ExpressionUUID->"8b075045-5536-4e81-b7e7-6bb6c8e0532e"] Cell[42988, 958, 660, 22, 55, "Output",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"]
}, Open ]], }, Open ]],
Cell[43663, 983, 3811, 106, 184, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[43271, 1005, 562, 15, 29, "Input",ExpressionUUID->"0773e3b1-b600-49c8-a187-fa642d2580e8"], Cell[47499, 1093, 1743, 32, 62, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"],
Cell[43836, 1022, 660, 22, 50, "Output",ExpressionUUID->"cc9562cb-8b47-4ffb-a0f0-a0db873c2346"] Cell[49245, 1127, 587, 8, 37, "Output",ExpressionUUID->"5971acd3-cbbb-484c-b12e-d21fa3fd3fb6"]
}, Open ]], }, Open ]],
Cell[44511, 1047, 6271, 183, 204, "Input",ExpressionUUID->"c77c7be5-a519-41e6-b069-691e1006d400"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[50807, 1234, 1606, 29, 52, "Input",ExpressionUUID->"4e5819f2-d11b-4bce-b884-4cd47410fbd4"], Cell[49869, 1140, 303, 7, 33, "Input",ExpressionUUID->"21d21223-42d4-4fbf-851e-6b518f516178"],
Cell[52416, 1265, 415, 5, 33, "Output",ExpressionUUID->"b9b74f50-8c3b-4f99-adc7-2201a234e737"] Cell[50175, 1149, 19139, 333, 245, "Output",ExpressionUUID->"7e2c907c-5815-40ec-b0c6-09abd28924fd"]
}, Open ]] }, Open ]]
} }
] ]
......
This source diff could not be displayed because it is too large. You can view the blob instead.
File added
{
TFile *f = new TFile("myGraph.root");
TGraph *myGraph = (TGraph*)f->Get("Graph");
for (int i = 0; i < myGraph->GetN(); i++) {
cout << "{" << *(myGraph->GetX()+i) << "," << *(myGraph->GetY()+i) << "}, ";
}
// myGraph->Draw();
}
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment