Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mathematica
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ivan
mathematica
Commits
a9d10661
Commit
a9d10661
authored
Dec 15, 2022
by
himyss
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
3He
parent
1d727bf3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4929 additions
and
26688 deletions
+4929
-26688
bounded3He.nb
bounded3He.nb
+459
-351
resonans14.nb
resonans14.nb
+4470
-26337
No files found.
bounded3He.nb
View file @
a9d10661
...
...
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 3
1511, 731
]
NotebookOptionsPosition[
29937, 696
]
NotebookOutlinePosition[ 3
0335, 712
]
CellTagsIndexPosition[ 3
0292, 709
]
NotebookDataLength[ 3
6218, 839
]
NotebookOptionsPosition[
34231, 798
]
NotebookOutlinePosition[ 3
4629, 814
]
CellTagsIndexPosition[ 3
4586, 811
]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
...
...
@@ -43,18 +43,20 @@ Cell[BoxData[{
RowBox[{"of", " "}], "3"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Esep", "=", "5.49351"}], ";", " ",
RowBox[{
RowBox[{"Esep", "=", "5.49351"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"1", "p", " ", "separation", " ", "energy", " ",
SuperscriptBox[
RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"for", " "}], "3"], "He"}], ",", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "197.327"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", "=", "625.411"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"range", "=", "
2.5
"}], ";"}]}], "Input",
RowBox[{"range", "=", "
0.912
"}], ";"}]}], "Input",
CellChangeTimes->{{3.8762198970264225`*^9, 3.8762199052580624`*^9}, {
3.8771827496672716`*^9, 3.8771827824193807`*^9}, {3.878286651057734*^9,
3.8782866641181517`*^9}, 3.87828681545533*^9, {3.878287607680107*^9,
...
...
@@ -63,8 +65,12 @@ Cell[BoxData[{
3.8782886526954603`*^9}, {3.879567012355792*^9, 3.879567019384864*^9}, {
3.879568558358831*^9, 3.879568558418344*^9}, {3.87956872817546*^9,
3.879568728576707*^9}, {3.879571401760208*^9, 3.87957144648076*^9}, {
3.87957152299862*^9, 3.8795715245943327`*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
3.87957152299862*^9, 3.8795715245943327`*^9}, 3.880085368016633*^9, {
3.880086070054988*^9, 3.880086097201236*^9}, {3.8800861558228188`*^9,
3.880086188062545*^9}, 3.880086260893177*^9, {3.880086310836638*^9,
3.8800863244282427`*^9}, {3.880086371096949*^9, 3.8800865058217907`*^9}},
CellLabel->
"In[350]:=",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[BoxData[{
RowBox[{
...
...
@@ -140,7 +146,8 @@ Cell[BoxData[{
3.8782876443143806`*^9}, {3.878288596072308*^9, 3.8782886055224047`*^9}, {
3.878288683259207*^9, 3.8782887288588037`*^9}, {3.878288791621035*^9,
3.8782888301901093`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
CellLabel->
"In[357]:=",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
...
...
@@ -181,132 +188,140 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}], "]"}]]}],
",",
RowBox[{"{",
RowBox[{"U", ",", "0", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQB2IQ/WOD21zfh28c9y2XXAiiNSrOrgbRHQxZG0D0fAnd
LSDaITlyN4iOCF97GUSXHrW/DqI7v+w8dANIK6XuB9Myj+adANGTuhecBNEv
7qZI3QTSJmKZ0iDascziy4xHbxy/vCv+CqJncd+XnAWkpfeXSoPoDbq/voDo
Kd4830E01zHZfcqP3zjmMfrtB9Hmy/pV7J++cTyxLFcdRB/fmdcPovv4ZoPp
dUnH5oPoPJGPS0C00frAlSC6JDgMTLMZmG0E0VIrKjeB6ICLG/aC6AWLZx4A
0aGOq06C6D1C26+AaLN22YMbnr9xPLR49REQvfVP7wkQPW/L9lMg+lH0lIsg
Ou25wmUQ/SJDj2UTkGboNwXTYsrMXCDaRKYDTAMAeD3S4g==
"],
CellLabel->"In[30]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
RowBox[{"U", ",", "0", ",", "200"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8762201382091026`*^9, 3.8762201688017263`*^9}, {
3.8762202544209175`*^9, 3.876220291312565*^9}, {3.8762203214092555`*^9,
3.8762203787933655`*^9}, {3.876220573416912*^9, 3.8762206019928536`*^9}, {
3.8765051098111005`*^9, 3.8765051099810953`*^9}, {3.8765051569651012`*^9,
3.8765051650170374`*^9}, {3.876505811152088*^9, 3.8765058192839603`*^9}, {
3.8768987217644353`*^9, 3.876898731622919*^9}, {3.876901070970166*^9,
3.8769010836795783`*^9}, {3.876902823818077*^9, 3.876902840384226*^9}, {
3.8771829609304247`*^9, 3.8771829704376745`*^9}, {3.87828765248904*^9,
3.878287675426609*^9}, {3.878288507460178*^9, 3.8782885088455267`*^9}, {
3.878288638199546*^9, 3.878288679533744*^9}, {3.878288714552636*^9,
3.878288714697687*^9}, {3.878288777693362*^9, 3.87828878780177*^9}, {
3.878288877525551*^9, 3.8782889008012238`*^9}, {3.878288973320475*^9,
3.878289061721037*^9}, {3.8795689049227552`*^9, 3.87956893336374*^9}, {
3.879568964437098*^9, 3.879568981740798*^9}, {3.879569036636216*^9,
3.879569049028247*^9}, {3.879571489450306*^9, 3.879571489673706*^9}, {
3.879571536098033*^9, 3.879571540253443*^9}, 3.880086196183363*^9,
3.8800862894777327`*^9, {3.880086334717277*^9, 3.880086336693862*^9}, {
3.880086380215939*^9, 3.8800863803996*^9}},
CellLabel->
"In[363]:=",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[{{1.020408163265306*^-6, 4.241741718763919}, {
0.0002625153897959781, 4.241762892770343}}],
LineBox[{{0.032150270491836795`, 4.244349502137258}, {
0.061340522887435564`, 4.246725267883429}, {0.12268002536670786`,
4.251742615733744}, {0.24535903032525244`, 4.261880121628202}, {
0.49071704024234164`, 4.282576552952344}, {0.98143306007652,
4.325740981044393}, {1.7571434715124448`, 4.399245471999349}}],
LineBox[{{1.7890312266144854`, 4.402416451480064}, {2.527954346461434,
4.479534064972313}}],
LineBox[{{2.5598421015634747`, 4.483027265533171}, {4.012882440943803,
4.659045426871684}, {4.6008376977796654`, 4.741106043528902}}],
LineBox[{{4.632725452881706, 4.7457631820549615`}, {5.073489574391078,
4.812494616133865}}], LineBox[CompressedData["
1:eJwVk2s41IkChycx2VKJMTPGDHOf//znIvW0tSG/ckluW2pbpFi5zMYiodyO
WmrlFJJkCyWtW6wutC0dD8oqxy2XbKkMlegmQhHOsR9+z+/L+7zfXp5PiKuf
BoVCiZnfP3+loE97KJAGu7rVZca2+ig66uszsIWJtAftz06/00fu147ffvFg
4qfvAuKqPugjOYspVcQxcel3x9PLPuljr+eNJ2l1TFDbjqs6FtJAezFk7eZg
CBDjU00cGiI/btd7tYuFZ6k9qenbaTDXI8s149m4OVMTxG2koXWBx/2WVDbs
byyNeNxEg/fo8eeZF9lYEkwGnG2lIbF9mCGtZ2O9xmU66+E8n1J82FmLA95E
gab1y3l+idQ1898c2OV/tBJrGiBRk5iQZBkjTOvXBCcbAwR8Sc/5zY0Lo4HN
WyhtBshweXsnypuLkcqcxbadBqjNs33trOIi/pzXxpM9BmDaf/568iAXRWYE
l1Ab4F7G7na7s1ykF7kbJY0aQKokFg51c2GzyubFOI2ON97/UZHbeUizfK+4
tIcOZgU9dc6DB3Vcs++evXTYLAqt7PDhwfhWUqGxio7sMr5GTBgPcw3pflf2
0+E0/cv5/57i4cmta26TiXSUnXZtDWrnIWV2rm9nKR0hf71aXe7Mx1jxwrx9
c3TUojRQvpOP24UJCSJNBnSrQ/OL9/DhG79Uc/ArBq6WT+ldDuHDkrhEOWTA
wFjWkrGsU3xsNVJ0q+UMRAaaXv25m4+hTWRqiycDsboH5Tt3C8B+ac3fUcdA
c7K5b6efAOOx5KauRgY4WpTsrcECqN/oK3e1MlAzlbTEMV6AirAFZ+J6GaA8
P/faKm+eH256YDDJQEJlTZH0pQCaKxYP58iZSPagimaDhKhvvNjmfYGJDSt1
JofDhciZPOvqWsDEqJZe48NYIXQiMhiOZUy4XeP8ePWEEDastDOu1UyItNeU
7S0V4tjWlKKqHiZqK/euaXoz78uNqpxaYYhJ3Trbs/tEyFpf4XDyhCFKBv+i
J4aJcNO7bkN8hiF2325+FRotwqPOXkZ0tiHuBvx93CFZhA/rEiqTSw1xqmak
ZbZYBKKNdDJsMYQ8yHin77AISaMr700tZ2FvY4y/mUqMOeFQ74YcFnwtxC6T
IWKYP5NoWxWw4H+tfU31QTEaJW+6t5SzoDov0rL9RQx+2kxefB0LwSFt+W4F
YuQUOLKCB1mIZgj641+Ica/Xm6FaZYT0gKZdrd4SeFn0cAI6jZDxJNz6tEoC
+mjYh+dPjXBmm4nMLVSC7h+Xi4OHjJBlHj7dHy9Bl/sN3pVZI+QuN/51IleC
kaD1lk0EGyV/7H/IfirBq9ib/6s4wkbdIsNtge4EWOxuho4VB4P5SodHPxDI
J568i3biQAc21pv3ESjYYa4x586B26GQNYIYAmaPK3I3RnAwMtRg2JtNoFE3
reNOKQecprABBzWBLJkwpM/EGFEnmg+QAVKkjpoGjzBMkEsMBGWFSJEsvsJ1
JExw9+4nP+ohKWx/8NGtX2cC3Vm+20CSFPrTRJWGhwkKf4qyOFciReSC6rcP
c0zQ7SLWWvxeCmmOsuOoARdmKw5nDoeTmKatLRr7nYsq7R6iMZYEddGH5P23
uNhEUVZfTiTxc0PdIKWeix0jvX1eGSRiR8tvbpvvNLJlrfThDRI2S1wyame4
uH18pLp+jMTKtFqrGRcebI/YuVycJvE5r8s2y52H1kM56jgNGUhJ+J3Nvjz0
BThqfaMng1dS9mx/FA8adoUu5WYyZComE74q4MFew6v/fKgMFrUTLm4afDyY
qjwQdUgGw62uz+yW8eExqkP9/rAMdydsip1YfASqq0i9NBkSQ18uvLCKj5Qa
enhSuQzXH18/6u/LR1d0KzXivQzCw0et65v58P5oKXcJkoNMtUqZuS7AUj1K
e1e4HB4uNn9X3xGgamX9gV1xcrzl9wTndwlAC7arVqXIkcZtaXk3KcC9IReH
hKtyUIKTFh22FGLlMy/VrXE5koc2EmSnEE9neDpWs3LY/fFt4J+DQiQbvShv
0FLgc6v+2ZhpIV64qT510BXwj1Q3n+fPd9YZeuzdOgWChvvO+USIQLl/5DI/
TgGqtZLdLhKj7JW1ffFRBcjXDTETFmJ4UKlvTVMUcHJ8c8BzhxgV1smrLS8o
oFnSn/kxQQxVTXr993UKZNNef/AfFKP9Rr76hJYSwZtzjsX8KUFch1+i/jIl
tM1X8527JSBHJcQ5uhJXqUHWEaMSJCpLQwolSuhuy45uIwmsK66Yq9uiBP9x
763HeQTychvYn04q4eAd0DV8SYpsT3nPd5lKbHoyZORxV4os1ulTFblKROcn
RZsPSpGS6U0NK1diladrhoeMRHTKl5G37UqErfPe7VxNIsLJp8TxkRLqVWXs
42oSoYvv+5b0K2GT39exhSqD/7HMRwFjSmT6LQ3x2y6D67/M7gzom8JCcWK5
+7gMzhZZcRvZpsiu67yy3FgO++m5tReFpriZu0PX116ODZHNpbvXmEJ7faH/
eK4cv6nZgSkOprCH5zc5KxT4PxetQL8=
1.], LineBox[{{4.081632653061224*^-6, 3.2503281874312813`}, {
4.081632653061224*^-6, 3.2503281874312813`}}], LineBox[CompressedData["
1:eJwVlHc81QsDxiXJCmfhcJQZjWuUFdEj4nQyfmfZGZWVrp3MpnI7RqJXyuiK
CmkYeTMSsnIVRcaNLpWUXBoaRnp7/3g+z5/P9/njeVT3hHB8hYWEhE7/0v99
G1OPd+CQOEbo7tfi9SXwaJWRuMhuFfg3WbxYeVIC28/saLzmqI2Xmy92EY8l
4Ks7v0p/lR7CjTq2LDEkYb/O96OcrQF6vFTNf4uTREVfwsGHJiYgarUWaocl
YUZef0vkyFa0qVAtRzhS8F/IyLviAgjcfdv/eiaFkLaJzbfst0Pu4Ijfgtcq
CNxENX8csIb2dflbqpLS2Nse56cfYIMzotmkhAfSaFpJZwe5MrH6plbN1DkZ
vCnUYQ35MOHS43W8OVsGUrC2st3PhFSR2tTFXBm4RIcYqscxsZWnVcYtksHM
21b681wmmgsUNoxXykC5M/wla5QJC8u8bEGvDGJSuiLW++/Egw1FT2MkZKFP
Opr1LpIFskcBoglZ1IoNaLfHszAnLDKew5HFdiGduqJEFgpiU8WaeLLgzTz/
x+scC9eY/r0yrrKIemS8rr+SBfr12aL7PrKoPz1T1/yJha7xyaLACFkwhb3G
ckJ34Ueu+7LP52Xh/dl8o8MBO3CHH4havZHFKrJQT1+kHezWUpok3/3K12uO
cE+ww9Euv67+97KgBtvUBaTZoY3UMBbxURYdbx1YJ27bodi10rVzURZ6L7wC
7s7aob4zUv09hQShh8eK1BLssTf1jBvZmoQbE1bMkpP2qL6vbLrBlgQ3UdEp
3TR7ZFwYe2LDIqHKSrDZ/JI93tVEmpwiSAhoyGh2brJH6Eo6c+1uEnoqC0dT
VjigLexIzXQUCQX5rYxvqQ4ovp6RWV9GQq7HxgF+lgOa+ndVqd8mIVsx82xV
vgPKip/PpFaSkJblLRp+ywFVDdkdQbUkxKYtzEz1OCC1/0uMfQcJnMP6D15S
HCH83bm57DUJIp55gY8vOILxZ8+LhTVk/FQS0fjtsiPu/TCz7FYnY35o/4vk
Uke8Ol/pfFWLjA98E+7OOkcI3dhf7aVLxrB979aWYUd4k5v6flqQ8Xe+iNiI
DAFPDyTNe5JRmWb6/CmHQO7v+f9dfpmMPTnSK2qdCNCijMWkr5JBLn6pU+BG
oHm825RRSkZok+B4yB4CqYYnPKwryNg4+/c6qXACZNNv+i3NZBS5xkXvOEtA
bInJSnpNxjmNetrdbgKdN4gemw0UWOmnb7vUSyBmMVpzSJeCT+b7Ak8NENB7
UKAVakAB4Sx1j/cPgYaMHscycwqkBB77Pk4T8NOZWtxNUJA4s1ixXpoN5wlF
/xtRFETWmhN5dmzgqneLQTsFd9zahYcINm7u2aU40kXB13niDpXPhu61h5op
TymIMdunmLKbjd3Zp1OXRig4XC94HRvMRnVf8VfDLxQkNQxEu6Sz8cLphM28
BhUXm8MKKH1sGBSlm5gIqHi+Z4HrOMjGgK9pX086FYzlJ0WTh9lY2xT2Kuw8
FflW2UHC4794Tr7Pe1RERWFLg+HHL2zI1Uk6/XufirI2yc7H8hy4HEpeHP5G
xf3OK59Ou3Mg9YS0SyiEhgqFnrAELw4+mI+Z74iiochv/kPoXg4q2p8UZibQ
IBB2nHEO4qCfC4p9Cg080+/vNeM4CCzflGFQSsNkCWu86SIHIsFLNhMTNFBP
zwzMDXGw7+NkfmiQHEQH6M7/jnDQsTK+VzJSDnMa1v2jYxx4HttiVBkvhxeN
2X3t7zjI0+VPr02TQ8l3yyf/meNAt8eYfKVcDhYB5zr16Vxs9SEiqAtyCLTd
ci/QhQs7nbCkzGx5TGvTW8s9uFCITFr/V6E8wiXmuua8uXCYPXabdkse8Y/u
Dp8O5KJ2wUXzdas80rkmiyWxXHBmtBQOzMqj2svYbDL3V7lm6WQ+XwFmlvJW
mwq4WG26ybbXRwGNat9YsVe4OPx4ycg/WAEPx6vdJG5y8Ufmxj+fJilgOMgo
dv19LmbKIxwa6hQgHG1Ys3+Mi3i+yl1VbTqSXGlNFeNckH0ux6gY0SFl9qVj
/h0Xp0oPZmyxpoO2VDUo+MSF0c7pL3XedGgnGnwvXc5DeKbfV/EcOhzTNxu/
1+QhaqxqN5mmiNxi/TtB+3k4LGZb76yqhI6hvR2XgnmgEh9Gvm5SwqxE1vPe
cB4splsnaq2VsOv3+WVb43gYrXqSVBmghHn9Bw5SKTyUOrttiqxQgmsd723Z
DR46E7WHC+0ZSJw6tTBazsNGRlhulw8Dt5VrpGnVPCQ25iWrRTEgdlTZMKGB
h4BPb9xdLjFw1/rNMftu3q89CNR/fGZA7vEhpekPPHBeXVjeeFUZ23+W6Kh9
4UGlZdNF8QZlBOsNWzrN8fBHvzMn+Zky2jJ+Xd4yPqIZ8u6mK1bjoLP4nTQy
H/Ev8+U9/Vejb/Sig64BH3i4Iy/ReA3Ofr53LPQQH5s7oxztklQQ/DTdxyOO
j896llpElgrsyvdaMo/wUSSoqYm7ogLREPFlKkl8sKwMU+xaVBA/yTvancWH
6zM+dWK5KvzG3h/WqeZDufsO8pJVYd3Y4KlYywej0e9ncJ4qVC+dtRBt4OMG
bbtm5C1VDHsYL4208rHx2Yn1jD5VsAePJ6Q+42PU9MTI4ho1bO2mx0/N8qFb
sm9srFkN9JtT7oPf+eg+fN7ca1ANX1Pum7Us8uGrOVmvMq2GcpbvQo6IE1pf
3dlxUFEda9tux+6iOmHFDxsLQZQ6SPdsY0o3O0E4RzHqtrkGpnMUXbOMnbCz
sauH4aKBrth/TY6bOWFNyKENb8I1cMok87urlRO86z2Lz5doQHTk+LamnU5o
vlzL2zCogf8Bmje6oQ==
"]], LineBox[CompressedData["
1:eJwVlns0VIsfxeeMPIrcpITQ0MP0kseZF8P5kseJHrgllfoVkSipkGcNSR5z
M5WUVChJ6haFuF3OicJPSh5JlMb7kYSG0WDm5/fHXnvt9Vlrr7X/2/qeJ1y9
qRQKRTCn/3up1vBqhV4ziP18/Ir5O33y4p6lr57NZRzFXua80SdVLCZqJINm
UNs0uMkxVZ9cKi1sTRw3A0eHoP4Kjj5Jj0Wn8uRQMI3NzpFPoJE7BGas76tR
+JWwZN+CJD2y+aQ6ZrYOBYecqDd2mB7p/ucv+wgjFJ6mbY9KFumSnhrP3ZRZ
KKT9Nz+O5alLhtwyDVmPo/D20RmW/RYd8lauSZG/HwpjdNFJYxttsuazV01G
AAqGPIqBpoI2KVqQ2t50CoX+ukvGZbVapNNxCcKNQCErR+uaiZsWKTGp3K7C
n+P+IvxIsCa55+XOgcd/o0AEpMd4NWqQscNx08KCuX4avSUvU4PM1y1VXVqM
QoOlUgXvhAapxNNlRJWjcMxV0PteVYMsse2L3laPQkv13obCP5eSGu/PLB8Z
RcEp9q+/GkXqpI3soZHBBAqMXRRnylt1MsD4i7XbbxS4zmk6t7LUyaor4FuO
MEDW7629zFmdDN49v+jSYgYkVDYG/ShYTDYLb27fhDIgfzhKre6iGnn5V1l0
4BkG3H0jdzekT5UMaBQc8ohggIZG/BL5v1XJrQVe1vg5BqCVh9JVglRJhRPz
EdpFBvgqnxXx5FTJyKGdvPpUBnRp0QUthgtJn87vZ42KGaBEazZQuKBMcuu1
IodFDLCK3RavmKBEaj0Z3tc6xQDzy5Mtlh5K5CSfsHg9w4AY8dNz1ZuUyAJH
7+n0eUzQXq1m3fBJkVxTlR/utIQJ5LVHA/fXK5JqZQ5heWZM0OCGGad1ypN9
ecEhvqeY0MwWdntHy5FuutKO3BAmlAd/PBexV458kxznMBjOhJvMHXs+mcmR
2UHXNf3OM8FoXLf+QD+V9LQq/cc/hQmTK0yybrhQyY6GGWlAMRN66l2/6Jki
5Mep8xeDJUygS++J7aykhK2/ymiRlAlBvw0fR8hmicKvKe6TVBYEtV7XWfZq
lrhScX/tGWUW8OfdcIuwmyWc+dVvQ3VYMGDdLuxwnSHqVigvirRiwb/e80O2
nJMQr+2v3IiJYYGtVC5vTFNM9Pq8fBcex4IhdP73rIFJQuFiD/V0Igs8nHPD
U0omCbyaedzrCgvYRT+8rPZMEnUO7da2d1lQW2ZYmXp7gmjCV32Xr2BBwI0w
70ETEdHlWGyZgLDhsERruOXCGCHn/+1UtDwbqF169Z0eY8SqJKXcsPlsoPuN
+dDQMcLn7d7FfmpsaDkxtYHVPUoMOcn6HPXZENItSyY3jxLjW3GBijUbeOHb
7buXjxDIjrauZB4bSmSxrV3xg0RN+a6VQbFsOBj09Mjw5kFCYNTg5R7PhiUT
ErGtbICgqdb00ARsqGtJnBaGDBDwrqivIIMNFIH3z6Kj/QTP6fJQUzkb3OVC
vT339xIUHB9fNsuGf5NfPA0O6yRqXlSazlA4MPXegHrcspMQGGKnhfM4kPKV
fzQb6SRoikxRrgoHKO5O7Q2JQgKqVk5ydDiQWXPfnw3fCJ6t7Pc+Cw6E/ggt
MHncTlCsi5HMMA4sGpJscWtrJvba9te2RnGApx74dOhIM1HooJmiFsOBgTie
8vREE+G7PXzN+UQOQNh/ovjqTUTDPisnn3QO4Mb0aI+dDcTdkKqUDWUcMFa2
Dl3U+pawfdxiWEoxB+EhA573P2VE/DLxtsaL5pDZfq+VnliApdTUdFckzXEk
N9X34zMsI+xm2PNkcyBlbeExKwqx4nbL+ynXzYHinSx0zC/GejNiZ9wezPEg
2nP31y8xG/riR+1V5pAfc3hlW3sFNsPeqNQrbwGZ30KS7vrVYYF7vSrE5y2g
ZDNeVKPyCVPNGBJy4+c4HU0/t+sT9rj7pCyabwHC3Ftfxbc/Yf3HeFyVaxaQ
v3qE2GjUih04d7uYlmMBPTYfml44fca2Zn/K21JjAdlSPcvEiHaMPuJ0NV2F
C77HJl0Y+d+wzmj0MHaNC22WXnzb8m5sjYbqpcA0Lmi77ojwaO/G/PL6X2Td
5oLoR5/rgaluTNR4U3leDhfG16UZ0Ex7MKVVyPOaYi7kzv5SysjuwYyq3iGu
rVzgpv28mXGhFwtfcCTj8HJLMN3onu7C7seWXE1rS8iyBOrV5W4c7yEsZ9G6
sOp0K9BcX3hLN/sn9urUCjvDRxi4LAysXGMzjt2hZepY7gSoHQx1mzUXYWWR
EorvBwBPNZZYMjKB6TspzqzcbQ2vtSacxi6LscL6tUmfm62hXLmUmzMyhfGr
pMa0/TaQ0mEQbGcjwa6eHvQ7+MUGBuiOZ4cOTmORS/X+MNizGRhdHSdSDs1g
D9fK1wYJN0N974lK/sFZTEGEaL06YAsLdA97RVpIsQfGBWfv9NtCnSb38RsN
GbbWM2/77HE7KNcbVuB0yLD2LaXPdn23g6lwvtu4HQUa74VvxE7bQ+yBnLq1
dygw9dyFazBuD2mUjSWp3ykgKzlVFBfgAKQP86GXGQJOxvZ2kRMOsBGaT5tF
IVC9f9NR/9M45Dv/znpQjsBiL9+Xt4Nx0Jkxm3hNIHDAN2vhhzM4hC1tWthF
IjB5Sv0ZGonD1GhB8vJKBFbFiyWzsTjkXNH4nFSNAO8ZwRek4lASeCz90AcE
zBWd84tKcQieqb3b1YlAnEoCdeAlDhJdj89TXQg0qFXs1C7HYXP4h1bVHgR8
ddDfZytw0J15b2reh8B1E00b/C0OmnVL3C4NISDaJ2xq+4LDtdqVJzf8QgAO
aa1Z+A0H6fwzNpgIgSQf11CsE4ddz3Z3uEwgYHDytU52Lw5No2tDQsQIuMTl
eh8fwcF81TC9bBqBW0mdLzJGcWhQvODyfgaBAYH2gsZxHBZ6Rdh9m53bk85/
whTjUHepP3nuwUBd5hvK0d84/FEl6FuEUGFZjtQ1fRqHGBupkj6VCp6PWPff
zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg=
"]]},
Annotation[#, "Charting`Private`Tag$5733#1"]& ], {}}, {}},
1:eJwVj3k41PsXx2dQZMsWJUXIUqnE7XqKPqdui642/RC+s9r6jqikUhKTrYUr
kjZlWiwTJVujm+r7pWstayhxMxIjoiFl/7rz++M85znP6708Z5nXkf2+cjQa
LU42/98Go/2/Fgo8wcuFbHB1WUD2CKKn3bI84bBKiN14uw65xUIrp73CE8Sf
YzZ52WqTe9q64W2NJ7TSw/hX5bRJj0tPW1/UecLQq6SBwEYt8ug3d7m0Vk+w
4xVtnhekRQryBB6cXk+om12QHlesSU7bWSn1zMHg1vvdxk5sDVKpn7rTMg8D
pZDqmivrNUjt1AabCjUM1B00TN3UNcgVM8HsrAUYOM1a8RLC55Mepc9FvOUY
YFci/2e9W50U7XT0HdqKQaP7fNptLVWybHLR1CdHDFT0uy5W1amQtTkDifW7
MPi9sn5DfpwK+UXt8os8FwzWJCqPZSuqkNpNLdrBPhikrFbLGVJUJo96epeN
RWFAz2Gns8yVSHVBv9j+guzeuER+w1dF8lF30Oy5eAwcgr0sSnMUSUkA3141
BYPupTqvK9cpkqyIOyKjTAxqy0c9AxznkrvS32fvrMKgfICTIb2sQPb3saoT
3mKwYKvWM09Mgbxg1St514DB3pPOV/80VyBfi0ZNWW0YtLw6W1ZIypMbqjUF
x/oxWLQ4pvLkhBxpMeSUnKrKgJDr5Y9sztHJinXv8sUaDOAtqWUaudBJnxDP
huULGBDzfZ5jiDmdFNB4anlLGHCmwWaMWU8jdbVjz/+zmgFn32AREhMaqWBH
nhncx4DQyt+M4l7OEF3nbH1QCgPuUwGw0XyCMNNVTzh6kwErVsp1638ZJ/yz
JcX37jCAP+MsPndvnBhtuqWikMkAYYhrUueScULJlF5YJWLAqbIWUa7BGLG6
opa+/wMD5m7al+tm/ZMIVT4o8FnMBE7Z2ZCnj4cJIg2qUwyZsOEWrtV6aphQ
sNH/UWHChEceL11dtw4Tf2G12y1XMWFk3aLuQx1S4u4jm6FBeybgBqV2nzSk
ROUemkMIiwliH3czPZ1BQif55seL95ggHLggij4iIZRbtBuPZTDByFDJss5Q
QtD0Eiqxh0zIW9/sdrmhlxi8FVlklc+EdNWIguM2vUTF/UMJjSQT4ts/Ps+l
vhCnChy2LBIzwZ5Gd1LI/kz829j1ULiUBX1T8XZvUjuIZm3G3SRjFuR1LiSz
dDuIGtfWa6FmLDh601Bl45V2QtRWE7VrNQuU3kdq8OM+EoldhUypg8zfmvMM
i/1AbBmO0bRjsuDU5rofprebiUyNFacrU1kgvtfAWx5eQ6zu9RhXuMuCfUes
JngXq4nikoshW9JZcNdP2DSTUkVU+X098fIRC2hPL2YrFVYQ/S+Exwpfyvy3
fYK402WEFc88QNAp4wkPQ5uTi4miUlN2iAkbaBp6E1Ozccj+usunInM28A2X
FFuFXUXlAdHMkZUybo2M10hvoVa9L1igrYzXl3BHOh+gscAH7t7b2CBuTxdJ
UR7aoG+8f+9BNnBE2deiol6g0mOG28xzZHp2gkrEh2o0+fN7osETGc/t9xKH
1yDb02SHZqGMi56axJu+QcII7vHp52zIk2hFVwa+RYnxDx401rDhaLlFxuBY
HeJkmsuF9bNBicdwHvvZiGa/XWf36XDgxmXlZfKPW1Ga0V0DBxcOGIkbYxQ3
dyL1S9ZVVm4ckIbu+GHM70QRP8qCl7pzIL7kmZw80Yk4FT01sxgHEumWK+ct
FSPjgJWny7w5EGlf7V9yU4wyi0UtO4I54BNpJKqL60K5e2oT9l/hgJvakazn
WDd6GTZJwxtk+nxXNbOCXvTrSa80sokDfHkfVlxtL1rb3SS+08yBhWsT89/3
9aL0nTnkuw8cWAFKkuWGEnRJl8FHXRwgD7ttun1JgtzyXs7qjnDgquKnA2rM
PvS9m0+Va3NhixV9X7v0K1rmpDhtcoALaR1Jwj0fvyHblj+a9D24cJKvca5n
6BvazuYLNTEufEZh9wPkB5F/8ITLLIsLdfGrlHatGkRFqQOPP/rJ8qSBzs5n
B9H2b/XspJNcaIjI0YsxGEL+f914TaVwIfzgO725+76jonrLuLZmLuTtybPy
rpSiRJPSjMlWLmC7/7R+0iBFh0LcycVtXOD5NlmPtkmRseH5n8x/uZCRf2Yn
75sUXT78hf25hwuLNzo8oWkOI381ge3ALy5cD4pSH3AfRkZOOp+mF3qBojD0
flf3MIqvoNYaMb2gP8KjukEygpKDv/pzOryA3B4hLEoZRWELls439vCGH/Zp
U9vov9BDyzk1x8Xe0BNFCLIOjKG5o/RFpSwfaM7dmHz8yDjKWpsfnibxgQ8B
HYNLz0wgS6/sPTOBvnDjZ9Z9BZ9J1L7z7wLXAV+w/K3esc1sCjU9CLVCwX6g
Gplw1qNnCo0XOtsbj/iB3+aD6qdjp9Hss2NPYw8fhHSxmeST7gxyWrt9W9jP
gwCL3S/tzZxBlcw1vEPBOJh5OvrvWEYhLW+85M4JHObX3stwM6EQC7+n1hCC
AyQ5WPoup9CvY9oFtmE4RA9WKfMtKWR6YWxyJhqHd8kTmx9bU4hfQMQnXsMh
PNK6tWczhTYo7st7+jcOEcu4Nk1cCsWqXpTrK8Fh9QWTdW+8KdSoWeai/wqH
SWfVmNe+FMINbCfCy2R9m15YFPAodN164RbHNzj0dJ8IOh9EoVFM/O5jBw5/
lMe4aZ2jEHAXmal14vD4fkkpLYpCcX77T6EuHE4gYexQNIWMg/4xSO/B4aov
3bDqAoWcY4W+gUM42MyxSA5OpNDtuK5igRQHR/NLLYwrFOpL1FduGsFB6Oxy
fNtV2T+p8bnrx3Domz5epXODQm/vltN4EzjoKp8In7pJIb1Man/qFA7xdmuv
dKVSyCvn94zaGRw+vJiUr7xDody8o2OzszikJVk05wgo9B80W0QH
"]],
LineBox[{{1.045293530402965, 3.257984440454694}, {3.0557610692481476`,
3.273178129112488}}],
LineBox[{{0.33199357119643075`, 3.2527423191935627`}, {
0.9177425099948016, 3.257041469155708}}],
LineBox[{{0.10890748787908792`, 3.2511183198251805`}, {
0.2044425507882675, 3.25181289071185}}]},
Annotation[#, "Charting`Private`Tag$86638#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -338,7 +353,7 @@ zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0,
50}, {-8.900837493810066, 14.534402649413224
`}},
PlotRange->{{0,
200}, {-5.332358609904164, 10.422205589087188
`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -356,51 +371,58 @@ zeKAXd8iNpajwpP8QLFMhkO8I78A5lHhf5iuREg=
3.878289063704639*^9}, 3.878292725117619*^9, 3.879568890539933*^9,
3.8795689360093517`*^9, {3.87956897106921*^9, 3.879568983881357*^9}, {
3.879569032952899*^9, 3.8795690542179728`*^9}, {3.879571487079197*^9,
3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9}},
CellLabel->"Out[30]=",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c"]
3.8795714913553343`*^9}, {3.879571532521268*^9, 3.8795715419674997`*^9},
3.880084507024222*^9, 3.8800853736383677`*^9, 3.8800860259425*^9, {
3.8800860771259003`*^9, 3.88008610210466*^9}, {3.88008616318576*^9,
3.880086198003504*^9}, 3.8800862293413563`*^9, {3.880086266837357*^9,
3.8800863385534143`*^9}, {3.880086376964778*^9, 3.880086509882822*^9}},
CellLabel->
"Out[363]=",ExpressionUUID->"03952c6d-0c6b-45a2-91c0-9040c75e840d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"
FindRoot", "[
",
RowBox[{
RowBox[{
RowBox[{"
myU", "=
",
RowBox[{
"U", "/.",
RowBox[{
"FindRoot", "[",
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "range",
",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "30"}], "}"}]}], "]"}]], "Input",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",",
"range", ",", "0"}], "]"}],
RowBox[{"dfIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "U"}], ")"}]}]], "p"], ",", "0"}],
"]"}]], "-",
FractionBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}],
RowBox[{"dfOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "0"}],
"]"}]]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"U", ",", "150"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.876220514856612*^9, 3.8762205364843173`*^9}, {
3.87641380286448*^9, 3.876413813776764*^9}, 3.8765050174731894`*^9,
3.876505834830249*^9, {3.8768987485820503`*^9, 3.876898765145231*^9}, {
...
...
@@ -408,12 +430,14 @@ Cell[BoxData[
3.876902864692957*^9}, {3.876912179610631*^9, 3.876912183976046*^9}, {
3.8771829776133184`*^9, 3.8771829780132623`*^9}, {3.8782890831225157`*^9,
3.878289091001782*^9}, {3.878289430122672*^9, 3.878289446396935*^9},
3.87957154916846*^9},
CellLabel->"In[31]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
3.87957154916846*^9, {3.8800857093214073`*^9, 3.880085717549158*^9}, {
3.8800858670665894`*^9, 3.8800858795038633`*^9}, 3.8800861705593033`*^9,
3.880086201872179*^9, 3.8800862943082933`*^9, {3.880086341393777*^9,
3.8800863417389393`*^9}, 3.8800863843913307`*^9},
CellLabel->
"In[364]:=",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"U", "\[Rule]", "26.327091087132676`"}], "}"}]], "Output",
Cell[BoxData["124.41224361311541`"], "Output",
CellChangeTimes->{
3.8762205374997587`*^9, 3.8764138310515523`*^9, 3.8765050188080196`*^9,
3.8765050618099136`*^9, 3.8765058364421587`*^9, 3.8765058704783134`*^9, {
...
...
@@ -422,105 +446,138 @@ Cell[BoxData[
3.8769028659018292`*^9}, 3.8769121525485616`*^9, 3.876912185418889*^9, {
3.877182978736745*^9, 3.877183025647654*^9}, 3.878289092820195*^9,
3.878292505137838*^9, 3.8795690844906807`*^9, 3.879570642631118*^9,
3.879571550250393*^9},
CellLabel->"Out[31]=",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c"]
3.879571550250393*^9, 3.880084507942923*^9, 3.88008537507251*^9,
3.880085724042804*^9, {3.880085881510993*^9, 3.880085919139512*^9},
3.880086027259701*^9, {3.8800860790573597`*^9, 3.880086104048421*^9},
3.8800861718601227`*^9, {3.880086203223221*^9, 3.88008623091987*^9}, {
3.8800862683749933`*^9, 3.880086295540452*^9}, 3.880086343066498*^9, {
3.880086385464319*^9, 3.8800865107303*^9}},
CellLabel->
"Out[364]=",ExpressionUUID->"180f3cce-0016-47de-8516-e49d3b9341e3"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"0.6401531831830206", " ", "2.5426173021971623", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",", "0"}],
"]"}]}], "*)"}]], "Input",
CellChangeTimes->{{3.8800859130397387`*^9, 3.88008591646206*^9}},
CellLabel->"In[70]:=",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"
FindRoot", "[
",
RowBox[{
RowBox[{
RowBox[{"
myCoeff", "=
",
RowBox[{
"coeff", "/.",
RowBox[{
"FindRoot", "[",
RowBox[{
RowBox[{
"fIn", "[",
RowBox[{
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]],
"p"], ",", "range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]], "Input",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",",
"range", ",", "0"}], "]"}], "-",
RowBox[{"coeff", " ", "*",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "range", ",",
"0"}], "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"coeff", ",", "1"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.878289683612082*^9, 3.8782897289455433`*^9}, {
3.878289801822311*^9, 3.87828982476785*^9}, 3.879569118948894*^9, {
3.879571556146941*^9, 3.87957155754856*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
3.879571556146941*^9, 3.87957155754856*^9}, {3.880085925692211*^9,
3.8800859424236307`*^9}},
CellLabel->
"In[365]:=",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"coeff", "\[Rule]", "2.5426173021971623`"}], "}"}]], "Output",
CellChangeTimes->{3.879570442808729*^9, 3.87957064413636*^9,
3.8795715629434137`*^9},
CellLabel->"Out[32]=",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13"]
Cell[BoxData["1.434098657022119`"], "Output",
CellChangeTimes->{
3.879570442808729*^9, 3.87957064413636*^9, 3.8795715629434137`*^9,
3.880084509531536*^9, 3.8800853767467327`*^9, {3.880085901406917*^9,
3.880085945613738*^9}, {3.88008606422783*^9, 3.880086105861314*^9},
3.8800861742475863`*^9, 3.880086206862755*^9, {3.8800862701325703`*^9,
3.880086297423738*^9}, 3.8800863450137033`*^9, {3.8800863867709208`*^9,
3.880086511995571*^9}},
CellLabel->
"Out[365]=",ExpressionUUID->"7ab786b8-a8c7-4f5f-ab94-8d696a7c0fbe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"
FindRoot", "[
",
RowBox[{
RowBox[{
RowBox[{"
myNorm", "=
",
RowBox[{
"A", "/.",
RowBox[{
"FindRoot", "[",
RowBox[{
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "26.327091087132676"}], ")"}]}]],
"p"], ",", "r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"2.5426173021971623", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
SuperscriptBox["A", "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",",
"r", ",", "0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.2"}], "}"}]}], "]"}]], "Input",
RowBox[{"(",
RowBox[{"myCoeff", "*", "A"}], ")"}], "2"], " ",
RowBox[{"Integrate", "[",
RowBox[{
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]}],
"\[Equal]", "1"}], ",", " ",
RowBox[{"{",
RowBox[{"A", ",", "0.5"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.878289888090169*^9, 3.87828992516182*^9},
3.878290001694314*^9, {3.878290037135365*^9, 3.878290114624291*^9}, {
3.878290154622223*^9, 3.878290162835559*^9}, {3.8782925361300364`*^9,
3.87829257237002*^9}, 3.879569178546549*^9, {3.879569241919948*^9,
3.879569245267922*^9}, {3.879569277686201*^9, 3.879569279300724*^9},
3.879569335601615*^9, {3.879570630856184*^9, 3.879570632038727*^9}, {
3.879571567743319*^9, 3.879571576536313*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
3.879571567743319*^9, 3.879571576536313*^9}, {3.880085952401537*^9,
3.8800859833274717`*^9}},
CellLabel->
"In[366]:=",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"A", "\[Rule]", "0.6401531831830206`"}], "}"}]], "Output",
Cell[BoxData["0.7793879594854948`"], "Output",
CellChangeTimes->{
3.879569148123713*^9, 3.8795692505602217`*^9, 3.879569281919847*^9, {
3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9},
CellLabel->"Out[33]=",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322"]
3.879570637910142*^9, 3.879570646893675*^9}, 3.879571580819501*^9,
3.880084514207199*^9, {3.880085965594881*^9, 3.880085985349716*^9}, {
3.880086066066136*^9, 3.880086107886919*^9}, 3.880086176698345*^9,
3.8800862093348007`*^9, {3.880086271816217*^9, 3.880086299605596*^9},
3.8800863471623774`*^9, {3.880086388564464*^9, 3.8800865137393713`*^9}},
CellLabel->
"Out[366]=",ExpressionUUID->"129ca179-e6bb-47ec-97ae-7f1255d4dd2c"]
}, Open ]],
Cell[CellGroupData[{
...
...
@@ -533,7 +590,7 @@ Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"
0.6401531831830206
",
RowBox[{"
myNorm", "
",
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
...
...
@@ -541,12 +598,12 @@ Cell[BoxData[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "
26.327091087132676"}], ")"}]}]],
"
p"], ",", "r", "
,", "0"}], "]"}]}], ",",
RowBox[{"-", "Esep"}], "+", "
myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}]}], ",",
RowBox[{"r", "<", "range"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"
0.6401531831830206", " ", "2.5426173021971623
", " ",
RowBox[{"
myNorm", " ", "myCoeff
", " ",
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
...
...
@@ -557,99 +614,84 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8771831750308676`*^9, 3.877183283833062*^9}, {
3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9,
3.87957160585564*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
3.879570725415313*^9, 3.87957082556467*^9}, {3.879571586117661*^9,
3.87957160585564*^9}, {3.880085993645627*^9, 3.880086011757999*^9},
3.880086091143783*^9, {3.880086514826668*^9, 3.8800865176568737`*^9}},
CellLabel->
"In[368]:=",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k4VG0fxwdRIXtIWacoZa0eicfvRqWyj6VCKS12UumxRaSo3ilZYsaD
bJWyVSpLJEspshPyWuYcChExDGZ5z/vHuc71+edc931+n+/3PkfVI5Bynp9E
Ik0T1//vGZEeQnrn7posxPylGlYaYdLQpWJ1TMUbtEgZXlvtXYD3seaGikoo
6Fr9oo3Z+UBGLVVZUOU2DF15o//KLgz8/g72X1KmQViVI8nG7g50rXolzyoX
QGGb/OUpGzqs/c7QmFauAFWX+MawI88g+0tW0JTyZ5hu4jk1766E4pLb3/20
B8CIc6u8YuILeEIH7dclDCRrN2zPudMFAWM7sLLiCXC1fWovzt8PI6f61334
PAHu7hZfQuX7waEvXvsrPgFrHQzM+7T7YV/zj9AxhUmY6rUQCXLtB4EX+RKy
cZOQ4qfyRaKsH9IiVE3+cZ+CL34xjTyPAfggvYlmKDENjgbp/A5vv4OwaqzG
8L5Z0Jd/5p1hMARNxg90Ig/Ogv357tKgI0Nw63imgSJlFhTqtVwNXYeAP6Hc
wtV3FtrW91TlRA7BCveX57eMWagqmh0abBiCqUGnp238cyDakWv902YYWtI0
dtS2zMHHUMHl5F0jcKdsj557/xzkiKseK94zAofbTQ25Y3NwzzSJWWs8Ag1r
3Y4Y8+bgbLfIeIfVCLy7muBdrvcH6nWGDHL8RqDIcbmg9OEfuLL0/d3ysxG4
J9GsmX16Ho4FZ3b4q41ChYHia5uAebgqt/mhueYo4KcCgR0+D/Mn/JgS+qNg
VCTteCx1HlIo1sGJpqPw84jbtQ2t85DctVtC9/QomN+Ybgs1WgCd7OigzvRR
YDHFgymyTAizOP+aLsoAsqIHj0dmwp3LgbVu0gywOVB2u0iPCZs5VgsbFRiQ
n3g8c501EySM3D/7azCAopP9qeYGE368Gfr60pQBRV76CjvnmBB4Ou7q/SsM
8Pju+F6gZRG8xiWGr3UxQDh91D+ofxHIrfs/relnwEuXgC3D44tg4dnbEjPE
AIGBuNBKviUYfiSifm6CAXl9lbuDDJZA/NdSUxWXAeM9Kk+HcpaAF8vKeaeB
wb2UImer0iWwx2v3lO3C4C+n/YKV1Utg3BD3LkcPg7huB4+UviX4mdGUd84I
g+1dt7ZYibEgYkU4LdwGA5/2XwkVoSyIkjWTWyA8lUoIBY04FqwmUlZP/INB
pa3QTHIyC/aJ6r18E46BSJuy5cUSFpgnqiU4xmJQ+JUiqDHGAtUxx27VFAxm
vpSHJtstg7S7ShPpNQZBjbEegRorkPEOS6qfxkAJPyS0uHsF0gvcGptmMWjm
X/8sAq3A4wlOU+M8BtsQde72iRWISe0xfbKMQX9lyvW8uytgqOfat1YQB9PS
x5n9v1dgeaUn1UQBh5lWL7PT7BWIbpU/XbsFh/RpzfHxdauQahD+01AZB6Zm
idaC6ip8qkncK7MVh4L8t+/EHFfh3kpw/nktHCTTmwbMy1dhcluocLgJDjUV
dyK/NKxC8Bp7jxCEg2+flZp9xyqE9Gf7+pvh0Lixw/vU5CpU1IffNzmEQ2hC
PytkCxvqNvoLXbPGQb0k/V/edjZUW9l3G9ji0PX1JLq1lw1ZeLb1pB0OWiKM
uCQbNgw318FfjjiM3pyULb7OBje+k+I+Ljjcyyus3ENlQ+jw2DaGKw5G9QGn
qmhsiNlbwLA/iUMKaT6/6SUbqKfirORP43AkfHUPhrNhkbzSgc7jsEir7vOe
Y4PO4VThqxdwyC2PipjlsEFXV34sxxMHDlOggSPLgZ9K369h3ji8uCjqIH+E
AxVxNXqkABxa6NKhRc4cYHc2hQoF4jDeoJBldo4Dbf7T4/wXcVDYtGPKL4oD
hidytYeCcNhjrivJT+WA3kXbddWXcLD1NzBIpXOg9aylYOJlHGI/HLzx4TUH
3Gr+9VQKxiFzyqrAuZ4D1Sz9lh6Cyzc6tk21c0DoLZ1y4yoOneDKvD7EgdjD
11fU/8Fh2ttjs+wvDoi+T66vJXhdsrfp82UOyP2mFtmF4KBWc9ETreUCM1C9
vJdg45//UHtkuDCSrohRQnFwlop65aPGhZ0JBtqNBF80vtXP0+GCvdbfNK0w
HO5coPKS/+aCjByb/B+C8xKSt2lacuFh2aHWEYLfV6Zbvj/OhQDdhdSd4TgM
4DlBjhe48Dlk5LofwQtiz1InLnPhBPyKzyVYzPBFdWQ0F6jL7JJ2grefLcek
73MheoTNnCfYjPp+fcG/XJCbG3DZEIGD29uPOibPuLA0dWdoC8FXR786db3l
QpaTYLQawQ9EesK9GrngdNXCTIngwr2D2ZxOLpi6OKhJEPzRHfuUOMIFSoeO
Kot4/sjtyWmNGWJ/gT9NegleeTUnXb3KhZa71PBnBMsMsQwp63mwyWzPtysE
a68jnf4hywOjoEX7vQQf1l97K2IrD2ar/kxNEfs/6yZWKKnPgzvxVvlpBEfe
2tj5GHgwRdoVaURwWukWlpE1D3ykaq52E+/35QBZqcOFBw3+e+6fJbhlzc4D
F7x4IBDX+OknMZ9xbX2f1WAenE0pVDlHMOmEYULCDR7sSNpB7yHmu7fIYrAy
kwd9MpzfdMIHu282/HaFPKC7TrXMEL748DlvH6vgAZLLat73f5+czl0R7+GB
WWulTgnhW3mULz2PwYObWSMp3wkfuwou1RrO8kD9gYUyl/B1TRQSeilIQoI9
8RnbCJ8lZQ7QIkRJKFrYIkmT8F2pwGKXhTQJeaqLFW8j8rCvy4YyqEJCgWqv
HLm+OBz0oow91iAh81/00e8+OFA4TiFB2iR0PjArpYTIk5/GyUwhYxJ6WXYo
2JDIW3a476TuMRJKTZXY+u0MDrq161lxJ0loqv1geySR39o1TwWHz5LQzGLn
lKI7MT8qrkK9SELbF49cNnMj1vPo5LGJ2yS0qfpj91ZnHIrx1XMogYRc1WpE
44n++HsH/VLqQxKK6JapYFAIn172Ug/mktCbTU+DIon+oTfYNmS/I6EywSdX
bQ/joLl+poNVR0Jn4mvPBxD9VWH9n2Hbz8R6UtXbYg/g0NfbtMLpIaE4BWmZ
NKL/ZCdM9Vx+k5CtVce14/twSNywJ1NKjQ/dPFaZaqpO5I/S+dx7Ox9ibB5P
6iMTffLwYkWtNh8aXPwh76mKQ7tyUXeAER+aVaV+8CH6WUxfXaTZkQ/pVXCf
iUoR+XOWD7kRx4dOFup8q1rFQCH9zc0BKh+KDqzBmlkYFAw7Jukl86HwR0Z3
u5gYNHk9KB5+xId2/iVQ+vk3BkLhwmNGlXxo3xLtij2GQUwW237hFx+q6xWS
aW/CwE63PGjnPB+itNVP+zYS58+Hyw88lvmQqtDEF94H4nxjTLa3C/KjV7JL
yeJVGPzZ1m9bpMSPLG7n3G8rxMCj8LX1BTt+tLj78/nOexiYVgQc6XvFj0w2
TwbNWGEgdlTTW7ySH3UN3M2jHsZgcGAs/lAtPyrqEtqw7QAGIWy3prIWfuSu
9/yWMXH+loKlxYMxfsSot7MV24GBykeNg0flBJCNQWCPiQAGpK4R9C5MAFm1
+jqMvmBA7ERNdli0AFqduxQkW8iA9aQMfsN4AeT5xLLY7DEDpLRONLxOEUBz
uXfvX6czYFtch0VJqQAqbhs3SYxhwFGjOpuccQHUltTTJW7PgKTcXLd4yhoU
8f2iYfnkKKhfuRDiqCmIhMus65W2Et9TzFRnkWohpCKvpumbMAxHx3yuJQat
QxOFha+ODQ6CDZ6wU0lJGPE2Vjz5N2AAJus9rjcViSBLvk8HBF36QFuyV9Hc
fQNKta0afGzRC8LAPDM4L4bMBlKZXtHdYDHtsqTmJIHSg+V856s7oa/uHJ/L
LknUWVe3IXp7B7yObzilwpRE/dlVEX70NrggGDzS2iqF2q12yZn9aIGzl8Jf
i9Kl0SH7F1HHU7+AjufOVqszMogzs/BLJLoJ2qR2iQQbbkSDT3STKv0+QlVx
TPouAVmUJ8vFm/MaIJxP067lv7LoUmDPi0vDdSA8GHY4oEwOaRu37d1/+AOM
PVZNzoqQR9dIY7yW3veQvH3TmgqnTcinmyZtplINCfQLn86oKCD9Yb53fl8r
wSX5ZKvoDwW0/9Os2bmycmAdyF/OqtmMTk9QIjdlvAFszCykLm4LeuoK1rTO
Msj5W2/z1zOK6A0F2UUIv4Kim8GSnlpKKHasWolx4wXEOZ21FGAqIY4hPulM
LgWi7gviviqjDHJ+oVd8EaTtSC/6aqmCTF1Uv05rP4eoWmqaZYUK2uAvB2v7
n4L1Zqf8L1tV0bGSCw1CtY/BNOCTq+RtVXQ97bO38EIeZG3x2NrCVEWF45dx
Y81c2Fr/5KGNqxqKk8s/uTMnGxK06jQ7a9RQYGbSvDF6BBfm13R81iQjo2T3
ji3vM8DjxR+V2/fJSJsqfHPBIx38YhzYRx+QkeadnQUDx9Mh2KHsm2gSGSUd
F4lrsEmHeGbwvYSHZJTbE++Tuz8dig2XV1MzyKgkQ/UZVSodlj/weh8/J6Pp
udwBqXo6JHSKUhs+kVHmuZkHvep0oOf6e936TEZa/5Wy0VOkQ+6VVvPDzWTk
cIiZdl+aDm9kE1aaW8nIvq6sx5lEh0EXaa+uHjKKORH1UXyABhrYJnMGRkZ9
/UNnNO/RQLcsTClvjIxcfob5V8fSYP/N78vnf5DRh7US8w7hNLDSyCidmCQj
6p81nne9aHDJV0Vpbo6MzI3sWsnmNIgwjl5+OU9Ge81+3uw0pMHNDYzuK0wy
qrl3oChWlwZpJbl3WSwykojad2hekQY519d4Vq6Q0b4Hh1+XyNDguf15swg2
Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC
1:eJwVVHk01W0XVdRbktfQpMxXZppDxf5FkZKvDK8iKkN6K6QPlYiopIgrCiWh
DJUUmhSZZbrJNZX5jj8XIa5Zvvv98ayz9jrrnOfsffY6Ss5eVm4LhYSECgTv
/zHpqvPiTa53jDzMb15jdcQaldMVLewU/8XBRSHr9Sj/xXxlUaii4mV4a6ky
x5VDkVQcqbBIMRxqIvbsMOV7OGfo6zGhkADZJRV/ViilgT5zOnZYIQuJLdvD
Pdfl4a92htqgwkdkXT3PGxYpQ0pNsne/QjWCom0lUl80Yiz+rWZ3RDVEQtLL
rkw2wtS9ltk4VQ0Thzi+4l46BoQnbAvoNZgIP3KjppMOfUPLHeFhdaAHU/eG
ijWjIWd2odrQN8SVOTc3ObUiqEZ7/6bjdEh7LM5y/96OzDfvVV/E0VGZaXxf
eVUHGuONhdfX0SFjqF8VZd8BFfcjn9cYNGExP2k+kNGBGuHrukLSzdDf4Wke
96sTqwzbpb5VtqCiykdefKIbr3LC28/p/sSeLxehzugFT4oXsf/kT2SX9HyV
nuuFmt9+I/XYnzCjC/Hoqxl4smtZCnPqJ77wH440WDAQUx1xyr6iHWxvluL7
fAb8mFEjZsc6keTY+m7uChO5psOp66M6cZBp57oylomhrEM2wqWdOCPsRZ97
wcTp85Lvi9S6sGH0bwminQn7uZiAbaNduGgn2RCqx0LystpQyb098PnZe7iN
w4KR4ZVjwU49uFCxWYwxw0KHp9a2oYs9IL2YlI8SbKxpvMOpe96DKdP3qTQD
NqjxFua3JHrROuQUQA1nI3Q9TXy+vRdPg3U0DypwoGx3levB74Wz63m9VZs4
KL6lW9whzsAl3dH3WcYczPbf9S7YzcDQ5L1/N7hx4Jv7nybfDAZE4/OWvcng
wB3fEwYuMHGbEd15RpkLodTxgvY7TJQHz5QEb+QiXkS2o+YpE8kytM4TRlx8
rT4ln9UiyAd67gw6yoW6zWyq2w4WLNOPqW+K5KL4nVK5jTUL+g4nnOISuDgi
Y8Y2OcfCnNbKttJnXNzqoqopP2YhqHS16uVCLsjTai+7FrAxf3/ptkM8LoJr
Lerr17KhMpYROTPGxRrdC78+b2FDp2LG1muei32jnzc+dGOjbsKiOUeaRFag
1Vu7ajb6xh//FWNAwrjnYospgw2PSA/rq8YkfhonTWybYeO1qLbD5gMkRJeQ
Bit0OOj2MLQccSBxJiawqCGag8iS3Oyv/iQW8lO7v2RxsF7Ku3j4GolEu69C
OaUcVItPznTfIlEjK20SOcbB9rK72dL3STgH6bsGLOeitX9e5MgjEtO9jjfO
qnKBvlkzl1QSWhmZVeZHuHC9J3aUlk2ifCmN1PfmwrY4TUw3j8Sxc6NL1W8L
6ue/+dl8IBGxychi8WcutLyegV9CQiXWxYPfxIXBoukwr0oSn8dv3WUNciHx
aof96xoSA5/oDaUKJKSson1vNJK4Lj818kafxJoW/5cyLSRkr8lLpxwm0Z45
u8/nB4l8psnW6DMkvN0tTeI6SFiY/msbFErCx143NqCbBCvzrp+ngMfozZ6t
mgwSAcvyHzi+JcEp1FV4zCKxwvPHBwsaibznpw+2cUhkN/z5sZMr4NHjUtBG
kjDdojKjKdSHS+wrJ5N5JLrizGXXyvSBYxRjpD1Awm/S03Dp5j74Xxa3DBok
Ie4Q6zS5vw+7NndFxP8ikV74MYjr0ocoOd/Ji0MkjBS7n7QE9EFjef1duWES
LSEipRVxfXg85mYZLsCebA1m/qs+LBrcu/2TAPc4/VhSUt2HwPPTwzkCbN12
S7ee1YewkOUPTwhw5WF9mx/zfQjJsNtWL+ivX8u9zF7LQwzlbAlf8P+LPQ+S
R7bxcHj83u6fgvnki0wr5g7xcLOp9YO/YP5ovXHe0nM89CuMa7YK+Am/eSax
KowHdof7oyEBfz9N2+3KqTx4ph+XKhfoQ6aJHNMt5KEyuTrGRqCfg1z+tR1t
gv6uB1RSeknQ7rtkmI7ycJlvQsvqIkFISNdbiffjSXptvGe7QOfw0t9OGv1o
WZwfMdRKIj5Ayeji8X58y7q9WrVB4OfxBpdQ/344WX8sa68lEegVHB4V148c
VJcdrBL407m7KaO2HwdW/hk5VUiiqf3udB6nHxGt6jvFBX4zszVSLF4wgO97
CPELuSS09yWdbdMbAF9GK9orncTjEgsqy2oAyzdVHF/6hITkztl3wx4DUJls
mz6eQGJcx2Hh0qcD8C/r7DC5Q6JEWibBQGIQuwz9/MmzJLZGfi3aqzWIbVt/
15xxEex38SXWYdNBfGhU31BuL/D7VMuGMwGDWLBzqPKqOYl/umMrE8lBRLtr
vVyjRoL3XGJspvgXppsXOXQxuBBVuq7WrT+MoKDztVnHBPdoF3XD1b3DuLfz
o9GgDRc3jzzWk7MaRtxxxu4tB7lYGP3BzOHsMLY4eI9VGnIx/WfAvTVpGBo7
Gn+LKXDR32Gb+W3hCNbKLYuXYnBQF6+mUVw3gtYzJq/+/MvBXYlazZQTo3B8
amakfY0N53abL8J143DZkMvyzWTCu+K6s5faNNZtPx/SM9+LN+fFrNeYzyHq
dRRdN7YHKVfO8jbaCRFJbRMZR226EJI8e3hsYAGho1Nsa062Q4jeQ3z2FyZ+
BVl7hH74AVWfU5dsNBcR+2RHn2XcbgWL/+CfZYWLieevNh9qftmM/ewzgTHe
S4iwrUE+cd/psGRFa8nLixIfuq/Mp6k2glfmHPw1exlRyDFtIj80QFeyRc7k
+HLCVtWj9HQCDaLgn+wYFScMrVTPRmrUwWzQfkLZVoL4YU16XS+sRlup6wJ7
bUnC76ntguzoKry9Ve6kyJcktqfo6+TnVeDUIt8eGk2K6PL3d1zxowwuF668
FUuUJnZH3fv2yLgUG9y1aBYnVxA5v/vOvaUX45uU9jJfg5UEw8Q1z6auCJ9e
hTzUFl5F6A24z6jaf8aVBZqH6jpXEelLJItu9H+EaIf/Ps/81cSAuEiy0ef3
YKcrxSYHrCE0rubqana+Ray6jMhHWxmiOFE2T18oH9GJp6pOKq4lyEWiz7+4
58I+1pEmxl1LRPqvz5wYf43JPc+mkovWEcExdp5l4jlgso0vlYbJEtl+ljni
CS+RarhpXf1JOeL9kT7HFNXnyL7hK+muI0+M5Z2S0RHPRJitywFhvjyR5TjX
M6eRjm0dKVlh9QpE/bG1w4VmTxGv8TC7/oAiUfc2zDf/eSqCiiPjD3xUJLLU
4/UUJVJwcJ3tsxoVJeJdNcftk1EydntWOUiGKxFHpXaGz1Y+QrKss0odX4nY
eHqPjqFVIlTKMu5bOigT655NnavQi0e0TqlmY5EyMVln7vDq8H2cGhX5Xq1J
IRQi0hMsPWLh/Oa3YngUhYh86HHekxaDcyHWs/upFELbXqzgalUMfK3zW8Xu
UYhvxMMYanEMbvF970bfpxDzyWUDRbkxeGUwNfMgiUKENpKa+g9iMFUy35L+
gkKsn5+cTTsRg+hGscjyKgpxW6ch0J5PRWKax+mb1RTiUb5MW8EvKtJ8aCb7
aimETWxtmhxJxbtV0dO1NArRIEK7w/tJRYe99Gl6M4Vo/a52I6WYCjWmjAmD
SSEam1bahkZQsTHfX/4pm0L4lQbai96kYseN9ik3LoXY8ku07F4QFRZqSa/7
eBSiMufvguwLVFw4qyg/MkIhOho3qP05QkXArmtTuaMUwvCktk68FRU3ljOa
fPgUYufkgaitFlTE56TdmZykEG17L7v6gIrUYBH3gmkKUW5R07zagIoXh92M
A2YpRNpseXLhZirylSvljP5QCMeaOyVu2lQUjapOzc9TiIyA3TskVKn4H+t7
7Vs=
"]]},
Annotation[#, "Charting`Private`Tag$
7735
#1"]& ]}, {}},
Annotation[#, "Charting`Private`Tag$
88641
#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
...
...
@@ -681,7 +723,7 @@ Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.
6401531715334164
}},
PlotRange->{{0, 10}, {0., 0.
7793861446401996
}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
...
...
@@ -690,8 +732,68 @@ Gdk1brgfKEKDMrWPiiZcMiqLONipz0+Dmnn1ZeIHBA3fL7q2zEqD/wFDSFJC
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.879570843622718*^9, 3.879570853774201*^9},
3.879571608345409*^9},
CellLabel->"Out[34]=",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0"]
3.879571608345409*^9, 3.880084516269706*^9, 3.880086015267064*^9, {
3.8800860676554127`*^9, 3.8800861091655207`*^9}, 3.880086178702873*^9,
3.880086211051835*^9, {3.880086273266088*^9, 3.880086300605966*^9},
3.88008634841398*^9, {3.880086390133037*^9, 3.8800865180731173`*^9}},
CellLabel->
"Out[368]=",ExpressionUUID->"8d1df92d-d2a4-4a0f-a87d-f36befdc5a77"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{
"R", " ", "\:0434\:043b\:044f", " ", "\:0433\:0435\:043b\:0438\:044f3"}],
" ", "==", " ",
RowBox[{"1.646", " ", "\:0444\:043c"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.8800865535980377`*^9,
3.8800865699855547`*^9}},ExpressionUUID->"700162e1-a626-4c8d-a329-\
bbb787d8421f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"],
SuperscriptBox[
RowBox[{"fIn", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Esep"}], "+", "myU"}], ")"}]}]], "p"], ",", "r",
",", "0"}], "]"}], "2"], "r"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "range"}], "}"}]}], "]"}], "+",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["myNorm", "2"], " ",
SuperscriptBox["myCoeff", "2"], " ",
SuperscriptBox[
RowBox[{"fOut", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "mass", " ", "Esep"}]], "p"], ",", "r", ",",
"0"}], "]"}], "2"], "r"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "range", ",", "Infinity"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.880086242737124*^9, 3.880086251815425*^9}},
CellLabel->
"In[370]:=",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea"],
Cell[BoxData["1.646237974515782`"], "Output",
CellChangeTimes->{{3.880086253659615*^9, 3.880086304157057*^9},
3.880086352535798*^9, {3.8800863938671637`*^9, 3.880086521539238*^9}},
CellLabel->
"Out[370]=",ExpressionUUID->"4e50f98a-4679-4058-8e93-44eb471f3344"]
}, Open ]]
},
WindowSize->{1389.75, 768.75},
...
...
@@ -711,27 +813,33 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1864, 46, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2425, 68, 2802, 74, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[558, 20, 2143, 52, 154, "Input",ExpressionUUID->"ad6df89e-d3d8-490c-ae91-dac6d80d1b5a"],
Cell[2704, 74, 2806, 75, 179, "Input",ExpressionUUID->"2fc4ef7c-d275-441b-9d3d-7d7239f74130"],
Cell[CellGroupData[{
Cell[5535, 153, 2450, 57, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0"],
Cell[7988, 212, 9178, 167, 235, "Output",ExpressionUUID->"03952c6d-0c6b-45a2-91c0-9040c75e840d"]
}, Open ]],
Cell[CellGroupData[{
Cell[
5252, 146, 1588, 47, 75, "Input",ExpressionUUID->"c2ad0be7-22ee-4300-8ad8-45a6e113c1b0
"],
Cell[
6843, 195, 9076, 164, 235, "Output",ExpressionUUID->"8e664e95-9bfc-453e-8197-e74a2f6a249c
"]
Cell[
17203, 384, 2112, 53, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba
"],
Cell[
19318, 439, 1080, 16, 33, "Output",ExpressionUUID->"180f3cce-0016-47de-8516-e49d3b9341e3
"]
}, Open ]],
Cell[20413, 458, 420, 10, 39, "Input",ExpressionUUID->"0b790137-d050-4e54-820e-ce3bbd34ede5"],
Cell[CellGroupData[{
Cell[
15956, 364, 1731, 47, 75, "Input",ExpressionUUID->"22f1491b-05f8-4461-9d8a-7023940b0eba
"],
Cell[
17690, 413, 743, 12, 33, "Output",ExpressionUUID->"61cb5a0a-93c0-4b86-b0da-87abf1412e6c
"]
Cell[
20858, 472, 1095, 30, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630
"],
Cell[
21956, 504, 541, 9, 33, "Output",ExpressionUUID->"7ab786b8-a8c7-4f5f-ab94-8d696a7c0fbe
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
18470, 430, 955, 26, 53, "Input",ExpressionUUID->"444da03a-39cf-4c3d-bb1b-9d322299f630
"],
Cell[
19428, 458, 270, 5, 33, "Output",ExpressionUUID->"e3c27c07-1095-4202-bee1-1be442ec0d13
"]
Cell[
22534, 518, 1961, 50, 53, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c7
"],
Cell[
24498, 570, 586, 9, 33, "Output",ExpressionUUID->"129ca179-e6bb-47ec-97ae-7f1255d4dd2c
"]
}, Open ]],
Cell[CellGroupData[{
Cell[
19735, 468, 1805, 46, 111, "Input",ExpressionUUID->"7835cc6b-0406-456f-a3a3-ab6f89b509c
7"],
Cell[2
1543, 516, 339, 6, 33, "Output",ExpressionUUID->"813d67ce-1939-4667-91e9-5b84699af322
"]
Cell[
25121, 584, 1347, 36, 53, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a42
7"],
Cell[2
6471, 622, 5969, 117, 237, "Output",ExpressionUUID->"8d1df92d-d2a4-4a0f-a87d-f36befdc5a77
"]
}, Open ]],
Cell[32455, 742, 348, 9, 29, "Input",ExpressionUUID->"700162e1-a626-4c8d-a329-bbb787d8421f"],
Cell[CellGroupData[{
Cell[
21919, 527, 1267, 34, 101, "Input",ExpressionUUID->"fc251146-842e-4797-bd33-46971b36a427
"],
Cell[
23189, 563, 6732, 130, 237, "Output",ExpressionUUID->"ebb64a6a-a391-43b6-b5d3-6eaf854e33b0
"]
Cell[
32828, 755, 1116, 34, 53, "Input",ExpressionUUID->"1a4970d6-a8d9-4293-a27c-2d4dbe2240ea
"],
Cell[
33947, 791, 268, 4, 33, "Output",ExpressionUUID->"4e50f98a-4679-4058-8e93-44eb471f3344
"]
}, Open ]]
}
]
...
...
resonans14.nb
View file @
a9d10661
This source diff could not be displayed because it is too large. You can
view the blob
instead.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment