EXP1803 - Developing #139

Developing # 134 (Открыта): Симуляция эксперимента - первое приближение

Спектр недостающей массы

02/17/2018 12:33 AM - Vratislav Chudoba

Status:	Открыта	Start date:	03/05/2018	
Priority:	Высокий	Due date:	03/09/2018	
Assignee:	Vratislav Chudoba	% Done:	0%	
Category:		Estimated time:	0.00 hour	
Target version:				
Description				

Построить спектр недостающей массы 5 H от 3 He регистрируемого с помощью телескопа T1.

History

#1 - 03/03/2018 09:36 PM - Vratislav Chudoba

- Due date changed from 02/28/2018 to 03/09/2018
- Start date changed from 02/26/2018 to 03/05/2018

#2 - 03/29/2018 05:36 PM - Vratislav Chudoba

Проблема:

При расчете кинетической энергии пучка в центре мишени получаются нефизические значения в виде трех пиков (панель три)

beamEnergy.png

Проблема связана с тем, что потери энергии пучка считаются следующим образом - берем направление пучковой частицы в центре мишени и проводим ее по этому направлению назад перед первый пластик ТОФ. Но даже при небольшом отклонении (видим, что примерно 0.2

04/03/2025 1/2

градуса уже достаточно) на базе ТОФ 15 метров не попадаем в самую далнюю пластину и очень часто даже в ближнюю пластину ТОФ.

Предлагаю следующую модификацию: в мишени надо учитывать направление пучковой частицы; в МWPC не знаю, но пока можем оставить как есть. А для пластиков просто можно предположить, что частица пролетает на сквоз всегда перпендикулярно. Точность реконструкции таким ходом точно не ухудшим, ее вклад маленький. Но зато у нас появится куча полезных событий, которые можно учесть при следующей обработке данных.

04/03/2025 2/2