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Response of CsI(Tl) scintillators over a large range in energy
and atomic number of ions.
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Abstract

The light output of the 324 CsI(Tl) scintillators of INDRA has been measured over large ranges in energy:
1–80 AMeV and in atomic number of incident ions: Z ¼ 1–60. An analytical expression for the non-linear total light

response as a function of the energy and the identity of the ion is developed. It depends on four parameters. For three of
them, connected to CsI(Tl) intrinsic characteristics, fixed values are proposed. Two applications are presented: energy
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calibration and fragment identification in telescopes using a CsI(Tl) crystal as residual energy detector. r 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

INDRA is a 4p axially symmetrical array for the
detection of light and heavy charged nuclear
reaction products [1,2] covering huge dynamic
ranges, both in energy (from E1 MeV to
E6 GeV) and in atomic number (from proton to
uranium). It has a high granularity and a shell
structure, consisting of several detection layers.
For the last layer, which should stop all particles
and fragments produced, thallium-activated cae-
sium iodide scintillators (CsI(Tl)) coupled to
photomultiplier tubes were chosen.

The calibration procedure for CsI(Tl) consists in
finding a function L depending not only on the
energy, but also on the identity of the particle,
which describes the induced scintillation Q0: The
parameters of this function are determined by a
global fit procedure which simultaneously com-
pares the calculated scintillator response to the
experimental one for all particles and fragments of
well-known energies. The total scintillation is
reconstructed by software, starting from two
measured signal fractions, as shown in Sections 2
and 3. Afterwards, one may get a reference map
for the identification of the reaction products in a
two-dimensional plot showing DEFthe energy
deposited in the preceding detection layerFversus
the total light from the CsI(Tl) crystal.

For the forward angles of INDRA (31oyo451;
rings 2–9), the detection layers which precede the
scintillators consist of gas ionization chambers
(ICs) and 300 mm silicon detectors. The Si
detectors allowed an accurate determination of
the residual energyFas presented in Section
2.2Ffor all fragments passing through and
stopped in the scintillators. Thus, there is a
tremendous set of data which facilitated a
detailed study of the CsI(Tl) crystal light

response. The exact expression of the total light
output of a CsI(Tl) crystal, as predicted by the
recombination and nuclear quenching model
(RNQM) [3], implies a numerical integration
over the energy and this fact is prohibitive for
application purposes. Under suitable approxima-
tions, the integration may be analytically per-
formed and a very easy to handle expression is
deduced. The 3 or 4 involved parameters are
determined. Except for the gain parameter,
proper to each scintillator crystal and its electro-
nic chain, the values of the other fit parameters,
connected to intrinsic CsI(Tl) crystal properties,
are fixed. Procedures for fragment identification
in a DE �Q0 telescope-type map and for the
energy calibration of the scintillator are devel-
oped and critically analyzed in Section 4, contain-
ing the RNQM applications.

For the backward angles of INDRA (451o
yo1761; rings 10–17), the scintillators are pre-
ceded only by ionization chambers. The calibra-
tion of the scintillators leans on the above-
mentioned light response expression and the
CsI(Tl) characteristic parameter values, found at
forward angles; the individual gain parameter is
determined by means of light charged particle and
eventually light fragment data. The calibration so
found allows to safely extrapolate the charge
identification in a DE �Q0 map to regions where
no ridge lines are visible because of very low
statistics, improving then both charge and energy
determination for heavy fragments ðZX15Þ de-
tected beyond 451 with INDRA. Details are given
in Section 4.

Our findings are summarized in Section 5.
Notation and values of physical constants and

variables used in this paper. See also those in the
preceding paper [3]. (Most of the notations of the
original references have been kept.)
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Notation

Experimental light output and related variables

t time s
iðtÞ signal at the last dynode of the CsI(Tl) photomultiplier (PMT) a.u. s�1

Qf integral charge of the fast component of the signal a.u.
tf decay time constant of the fast component s
Qs integral charge of the slow component of the signal a.u.
ts decay time constant of the slow component s
Qfs integral charge corresponding to the whole signal a.u.
imesðtÞ measured signal at the output of the PMT anodic circuit a.u. s�1

Q0 approximate total integrated charge p experimental light output a.u.
t0 decay time constant s
t0min lower value of the decay time constant s
t rise-time constant at output of the PMT s
F experimental charge integrated in the ‘‘fast’’ gate a.u.
S experimental charge integrated in the ‘‘slow’’ gate a.u.

Calculated light output and related variables

Ce;n constants in the approximative expressions of Se;n a.u.
a1 gain fit parameter in the friendly analytical expression of L a.u.
a2 quenching fit parameter in the friendly analytical expression of L a.u.
a3 ed fit parameter in the friendly analytical expression of L MeV
a4 fractional energy loss transferred to a d-ray, a fit parameter in the friendly

analytical expression of L
fgeom light collection factor a.u.
fPMT PMT gain factor a.u.

2. The thallium-activated caesium iodide

scintillators

2.1. The CsI(Tl) crystals of INDRA and their
electronics

The 324 CsI(Tl) crystals of INDRA have
thicknesses ranging between 138 and 50 mm
from forward to backward angles [1]. Their
temperature is stabilized at 201C [4,5]. The CsI(Tl)
crystals are coupled to photomultipliers tubes
(PMT) [1] to achieve energy thresholds for mass
identification lower than those obtained with
photodiodes [6]. The stability control of the
scintillators is ensured by means of a nitrogen

laser system [1].2 The PMT signals are fed in 24
input VXI bus modules containing the processing
functions. Each channel comprises a constant
fraction discriminator, two integrators for ‘‘fast’’
and ‘‘slow’’ parts with accompanying delay and
gate generators. The analog-to-digital conversion
is performed by two multiplexed 12-bit converters.
Exhaustive descriptions of the CsI(Tl) crystals,
PMTs and associated electronics, as well as of the
data acquisition and triggering system are given in
Refs. [1,2]. For energy calibration purpose, rings
10–17 were each equipped with a single two-
element telescope (80 mm silicon and 2 mm Si(Li)

2Laser Science Inc., Cambridge, MA, USA.
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detectors)Fwhich will be referred to as the
calibration telescope (CT). The CT covers part of
one of the CsI(Tl) crystals in each backward ring.

2.2. Calculation of the deposited energy into the
scintillators

For rings 2–9, the calculation of the energy
deposited in a CsI(Tl) crystal, E0; is based on the
energy lost in the preceding silicon detector and on
range-energy tables [8,9]. The silicon detectors
were carefully calibrated taking into account the
pulse-height defect, with an absolute accuracy of
2–3% [7]. However, the relative accuracyFbe-
tween different ions up to Xe and for different
energies up to 80 AMeVFis within 1%. For ions
as light as boron, the consequent relative accuracy
for the residual energy in CsI(Tl) crystal worsens
from 1:3% at 50 AMeV to 3% at 5 AMeV: For
xenon, the consequent relative accuracies are 1:8%
at 50 AMeV and 10% at 5 AMeV: The relative
accuracy of the total energy of the ion, deposited
in both Si and CsI(Tl) detectors, never exceeds
2–3%. The particles are completely identified up to
Z ¼ 4; while for heavier fragments an hypothesis is
necessary for the mass.

For rings 10–17, the CTs provide reference
energy spectra. The spectrum of each reaction
product is adjusted on the associated reference
one. The calibration procedure for the backward
rings is presented in Section 4.4, followed by a
description of a rapid fragment identification
recipe.

Throughout this paper, the reaction products
emitted in collisions of 32 and 50 AMeV 129Xe
projectiles with Sn targets will be used. They cover
large energy and atomic number ranges. The
experimental data were taped only when at least
four detectors fired. Thus, the primary reaction
products originate in exit channels involving a
non-negligible transfer of kinetic energy into
internal degrees of freedom ðX1:5 AMeVÞ; leading
mainly to neutron evaporation. The secondary
fragments (after evaporation) populate the ‘‘at-
tractor’’ line in the map of nuclides [10] rather than
the ‘‘stability’’ line. The corresponding mass
formula [10] will be employed when the isotopic
mass was not determined. In most of the cases, one

CsI(Tl) detector will be used (module 2 of ring 3)
to illustrate the described procedure. The nominal
thickness of the preceding silicon detector is
304 mm:

2.3. The shape of the signal

The light emitted by a CsI(Tl) crystal hit by a
charged product has a rise time negligible [11–13]
as compared to the decay time which is in the
microsecond range. The rise time is related to the
transfer of the energy deposited by the particle to
the optical level involved into the scintillation,
while the decay time constant concerns the light
emission. Traditionally, the decaying part of a
CsI(Tl) scintillation is described by one [14,15] or
two [12] exponentials of short decay constant
ðE1 msÞ or, more often, by one short ðE1 msÞ and
one long ð7 msÞ decay-constant exponentials [16].
The short decay constant depends on the identity
of the particle, while the long one is considered to
be the same for all particles.

Proton-induced signals recorded by means of
flash ADCs up to 20 ms [17] have shown decaying
parts which are curved in a semilogarithmic scale.
For very low energy (a few MeV), the shape of the
decaying signal shows an exponential time de-
pendence. At higher energy, several exponentials
would be necessary for a perfect description of
the shape of the whole decaying curve. The
authors of Ref. [17] kept only two. The first
oneFthe ‘‘fast component’’Ffor the dominant
steep descent part, has a short decay constant
(0.5–1 ms), with a strong dependence on the
atomic number Z; mass number A and incident
energy E0 of the particle. The second oneFthe
‘‘slow component’’Fhas a long decay constant
ð5 msÞ nearly independent of the type of particle.
At the highest energies, the fast component covers
at least E65% of the integral of the signal for
hydrogen isotopes at 20–40 AMeV; E75% for
helium ones at 30 AMeV; E85% for light
fragments (Z ¼ 3–6) at 15–25 AMeV [17] and at
least 95% for heavy fragments, as shown in Fig. 1
for Si at 8 AMeV and Kr at 50 AMeV (present
work). The above-mentioned weights become
even more important when the incident energy
E0 decreases, i.e. when the average specific
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electronic stopping power E0=RðE0Þ is high
enough; RðE0Þ is the particle range. From
the above considerations, one may assume in
the latter case that only one decay constant
t0ðE0;A;ZÞ is involved for each event. Its value
will be close to that of the fast component.

A signal at the crystal PMT output, described as
in Ref. [17] by two exponential functions asso-
ciated to the fast and slow components

iðtÞ ¼
Qf

tf
e�t=tf þ

Qs

ts
e�t=ts ð1Þ

has the total charge Qfs ¼ Qf þQs got by inte-
grating iðtÞ over time between 0 and N:

In a single exponential approximation, the same
signal would be

iðtÞ ¼
Q0

t0
e�t=t0 ð2Þ

where Q0 approximates the integral of the signal,
Qfs:

3. Reconstruction of the total light output

In the case of INDRA, two parts of the signal
are integrated in the time gates 0–400 ns (for the

fast part F) and 1600–3100 ns (for the slow one S).
Let us make the following exercise: consider the
expressions of F and S provided by the two
exponential formula of the signal (1) on one hand,
and by the one exponential formula (2), on the
other hand. The values of the expressions of F and
S found in both cases have to be equal. From these
equalities, one can derive t0 and the ratio Q0=Qfs

for the data of Ref. [17], using the time gates of
INDRA. The results of this estimation are plotted
in Fig. 2(a) against the estimate AZ2=E0 of the
average specific electronic stopping power, derived
in the approximationFðdE=dxÞepAZ2=E of the
Bethe–Bloch formula. This plot has a predictive
character: the maximum error done in the integral
of the signal estimation would be of about 10% in
the case of the most energetic protons but much
lower for the charged reaction products with
Z > 1: Fig. 2(b) shows the ratio Q0=Qfs versus the
reciprocal of the decay-constant value t0; the
normalization constant t0min is the lower measured
value for ions at the lowest energies ðE1 AMeVÞ
and hence the highest stopping powers. This kind
of plot could eventually be used in order to correct
Q0: In any case, as long as AZ2=E0X0:4 (e.g. Ar
ions with E0=Ap810 MeV=nucleon), Q0 estimates
Qfs within 2%. This is the case for most of our
data.

In view of the above argument, we shall
suppose in the following that the current at the
last dynode of the PMT associated to a CsI(Tl)
scintillator varies exponentially in time as in
Eq. (2). This current, injected in the anodic
circuit of the PMT, leads to the measured
current at the output of the PMT base imesðtÞ;
which may be expressed [18] by means of the
equation

imesðtÞ ¼
Q0

t0 � t
ðe�t=t0 � e�t=tÞ: ð3Þ

The total light output is proportional to the total
charge Q0; t and t0 are the rise time and decay
time constants, respectively. t has been measured
for the bases of all PMTs (60 ns for rings 11–16
and 20 ns for other rings). The shape of the
signal given by Eq. (3) is shown in Fig. 1.
By integrating expression (3) within the gates
mentioned above,
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Fig. 1. The shape of the measured light signals induced by

8 AMeV 28Si and 50 AMeV 84Kr ions in two different CsI(Tl)

crystals of INDRAFsolid symbolsFis well described by one

exponential decaying curve provided by Eq. (3).
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one obtains

F ¼
Q0

t0 � t
½t0ð1� e�t1=t0 Þ � tð1� e�t1=tÞ� ð4Þ

SE
Q0t0
t0 � t

½e�t2=t0 � e�t3=t0 � ð5Þ

with t1 ¼ 390 ns; t2 ¼ 1590 ns and t3 ¼ 3090 ns
(the integration gates have undergone a diminu-
tion of 10 ns according to the delay of the signal in
the VXI cards). By means of the two Eqs. (4) and
(5), the two unknown quantities t0 and Q0 are
calculated and therefore, within a multiplicative
constant, the total experimental light output. The
measured resolutions (FWHM) of the CsI(Tl)
crystals for Si of 7:86 AMeV and a particles of
21 AMeV are of E3% for F and E4% for S: This
leads to an accuracy of E1:3% for Q0: For a

particles below a total energy of 10 MeV; the
accuracy progressively goes down to 3–4%, which
roughly corresponds to the measured resolution
on the total light at 5 MeV: For protons of
21 MeV; the resolutions (FWHM) are: E4% for
F and E7% for S; leading to an accuracy of E2%
for Q0 above 10 MeV: Below this energy, the
accuracy worsens to 6–7%.

4. Approximate formula from RNQM model

4.1. Analytical integration

In practical situations, an analytical integration
of the total light output issued from the RNQM [3]
would be more suited. This is possible starting
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Processed data from Ref. [17].
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from the first-order approximation for total light
output formula (expression ð18Þ in the previous
paper [3])

L ¼ aG

Z Ed

0

1

1þ anSnðEÞ þ aRSeðEÞ

�

�
dE

1þ SnðEÞ=SeðEÞ

þ
Z E0

Ed

1�FðEÞ
1þ anSnðEÞ þ aRSeðEÞ

�
dE

1þ SnðEÞ=SeðEÞ

þ
Z E0

Ed

FðEÞ dE
1þ SnðEÞ=SeðEÞ

�
ð6Þ

if approximations are made for the stopping
powers, the concentration NnðEÞ of the defects
created by the incident fragment and the fractional
energy loss FðEÞ deposited outside the primary
column by the generated d-rays. All these quan-
tities are discussed in the preceding paper [3].

(i) For the specific electronic stopping power
formula of Bethe–Bloch, the usual approx-
imation: ðdE=dxÞeðEÞ ¼ CeAZ

2=E; reason-
able above a few AMeV, may be used; here
Ce is a constant including the logarithmic
term in the Bethe–Bloch formula, which
varies much more slowly than 1=E:

(ii) The created defect concentration NnðEÞ esti-
mated by NRuthðEÞ; is well approximated by
neglecting the second term (pE�2) in Eq. (4)
of the preceding paper [3] NnpAZ2=E:

(iii) The specific nuclear stopping power,
ðdE=dxÞnðEÞ; may also be roughly estimated
by an AZ2=E behaviour, as shown in
Fig. 2(b) of the preceding paper [3]:
ðdE=dxÞnðEÞ ¼ CnAZ

2=E with Cn constant.
In this way, the factor ð1þ SnðEÞ=SEðEÞÞ in
the denominator of all the terms in expres-
sion (6) becomes a constant: 1þ Cn=Ce; to
be included in the multiplicative parameter
aG that will be called a1: The nuclear and
recombination quenching terms to the de-
nominator of the first two terms (concerning
the primary column) in the same expression
may be summed and replaced by only one:
a2AZ

2=E:

(iv) By keeping the zero and first-order terms in
the Taylor expansion around b2d of the
logarithmic term of the fractional energy
carried by the d-rays (see Eq. (7) of the
preceding paper [3]), one may get an
approximate expression of Fðb2Þ:

Fðb2Þ ¼
1

2

ðb2=b2dÞ � 1

lnð2mec2=I b2dÞ þ b2=b2d � 1
: ð7Þ

With the above items (i)–(iv) assumptions, the
first-order approximation formula (6) of the total
light output depends on three parameters only and
may be analytically integrated. The quality of the
fragment loci reproduction in a DESi �Q0 map
will be shown in the next subsection.

4.2. A friendly analytical formula for the total light
output

The alternative to the item (iv) approximation of
the fractional energy carried by the d-rays is to
consider it as a step function of energy

FðEÞ ¼
0; E=Apa3

a4; E=A > a3

(
ð8Þ

where a3 is the energy per nucleon threshold for
the d-ray production and a4 will be a fit parameter
too. The advantage is that the first-order approx-
imation of total light output expression (6)
becomes very simple

L ¼ a1 E0 1� a2
AZ2

E0
ln 1þ

1

a2AZ2=E0

� �� ��

þ a4a2AZ
2 ln

E0 þ a2AZ
2

Ed þ a2AZ2

� ��
ð9Þ

(Ed ¼ A� a3), very suitable for energy calibration
purposes. The fit parameter values are given in
column (a) of Table 1, and the quality of the fit is
shown in Figs. 3, 4 (solid lines) and 5. Even if the
total light outputs are no more as nicely repro-
duced as by exact calculations [3], especially for
high specific electronic stopping power values, the
description of the reaction product identification
in the two-dimensional plot (Fig. 4) and the
deviations of the calculated energies relative to
the true energies (Fig. 5) remain comparable to the
exact calculation case. More precisely, the heavy
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fragment identification in a DE �Q0 map is
possible with a resolution of one unit charge
around Z ¼ 45: The corresponding energy devia-
tions may locally reach up to 15–20%, but globally

they are inside E6%: About 3% of accuracy are
lost as compared to the exact calculations. Note in
Fig. 4 that the step function approximation for F
(solid lines) does not worsen the result as
compared to the physical approximation (7)
(dashed lines). In fact, it is approximation (i) for
the Bethe–Bloch formula which is distortingFvia
the fit procedureFthe shape of the light response
for the heaviest fragments (Fig. 3).

For the energetic light charged particles, there
are discrepancies at high energy, whose origin is
the slight underestimation of total light output (see
Section 2.3). For energy calibration purpose, the
recipe to ameliorate the situation was to use a
different gain parameter a1 for low average specific
electronic stopping power ðAZ2=E0o0:4), or
directly for protons, which constitute most of the
data for which the experimentally determined Q0

differs from the real experimental light output by
E2–10% (Fig. 2(a)). The alternative could be a

Table 1

Fit parameters a1; a2; a3; a4
a

(a) (b)

a1 (a.u.) 19.5 variable

a2 (a.u.) 0.71 0.25

a3 (MeV=u) 3.8 3.1 (1.0)b

a4 0.26 0.27

aThe errors on the parameters (one unit on the last digit) are

only statistical. The analytically integrated expression (9) of the

total light output has been used: (a) values obtained by means

of data concerning fragments with Zp45; for a forward module

(y ¼ 4:51) of INDRA; (b) values averaged over 8 modules

placed on the forward rings (yp451), for Zp15: These

recommended values of a2; a3; a4 to be used in Eq. (9) are

suitable for all INDRA CsI(Tl) crystals.
bSee the text for explanation.
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previous correction of Q0 concerning these data,
based on the t0min=t0 values, as suggested by
Fig. 2(b).

An interesting point is that the gain parameter
values got by using only light fragments, or even
light charged particles are very near the values
obtained by using a large ion data range up to
Z ¼ 45; if the other parameters are kept constant
at the values given in Table 1(a). Such a conclusion
clearly appears in Fig. 6: a1 values are found
nearly independent of the upper limit in Z ðZmaxÞ
considered. If only a3; a4 are kept constant at the
mentioned values, a1; a2 remain practically the
same as long as ZmaxX15: Otherwise, as the light
response induced by intermediate mass fragments
or light charged particles is less non-linear than
that corresponding to heavy ions, the parameter a2
has the tendency to diminish and, consequently, a1
too, for the same quality of the description.

A search of the fit parameter values was
performed for one module of each of the 8
forward rings of INDRA (yp451). For unitarity,
we have restricted the employed data to Zp15;
heavy products being available only at very
forward angles. Very similar values of the para-
meters a3; a4; close to those provided by large Z
scale data, have been obtained. The quenching
parameter a2 is related to the average stopping
power of the reaction product and also to the
activator concentration of the crystal, as we shall
see in the next subsection. It may vary from one
ring to another, but not dramatically. The
corresponding averaged values of these three
parametersFpresented in column (b) of Table
1Fare the recommended values for the applica-
tions when formula (9) is used. a3 was decreased at
the lower detection threshold (the value in
parentheses) in order to avoid the discontinuity
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in the energy spectra induced by the ‘‘non-
derivability’’ at E ¼ Ed of the light output expres-
sion as a function of the energy. By keeping
a2; a3; a4 fixed, the remaining gain parameter may
be accurately determined as a free parameter by
using simply light charged particles. The results are
very similar to those shown in Figs. 3, 4 with solid
lines and in Fig. 5.

4.3. Comparative study of the CsI(Tl) crystals of
INDRA

Formula (9) was used to perform a comparative
study of the CsI(Tl) crystals of INDRA. At
forward angles (rings 2–9), the experimental values
were obtained from light ions with atomic number
Z ¼ 1–6 and mass number A precisely identified,
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elastically scattered by various targets. The para-
meters a3; a4; related to d-ray production, were
fixed. The crystals belonging to one ring have the
same size, the same shape and similar Tl (as well as
eventually defect) concentrations. The gains of the
associated PMTs are the same. For this reason,
one would expect that the parameters a1 and a2:

a1pfgeom � fPMT �
LAeNA

LAeNA þ LDND
;

a2p
1

LAeNA þ LDND

take nearly the same values for the modules of one
ring; the quantities LAeNA;LDND were defined in
the previous paper [3] and fgeom; fPMT are factors
connected to the light collection (geometry of the
crystal) and to the PMT gain, respectively.

Actually, this is the situation, as shown in Fig. 7(a)
and (b) for the modules of ring 2.

If LDND=LAeNA51; the parameter a1=fgeom is
mainly related to the associated PMT gain. The
geometrical light collection factor fgeom is propor-
tional to the response of the crystal at 137Cs source
g-ray irradiation measured with the same PMT for
all the crystals of INDRA [1]. Averaged over the
modules of the same ring, the parameter
/a1S=/fgeomS plotted versus the ring number,
follows the approximately known values of the
PMT gains (provided by the manufacturer) as
shown in Fig. 7(c). The correlation of the two
parameters /a1S and /a2S may be followed in
Fig. 7(d), if /a1S is previously corrected for the
geometric and gain factors. Obviously, there is no
mathematical correlation: two groups of detectors
are put in evidence. They may correspond to
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different concentrations of the Tl activatorFfrom
200 to 2000 ppmF(and eventually of the other
crystal imperfections) which could appear during
the CsI(Tl) crystal growth through the Bridgman
method.3

The above statistics performed over more than
300 CsI(Tl) crystals belonging to the INDRA
array enforce the consistency of the RNQM and of
the exact or approximate light output expressions
obtained in its framework. The parameters a3; a4
and, to a certain extent, a2 may be considered as
intrinsic characteristics of the CsI(Tl) scintillators
used in nuclear physics applications. Insofar, the
rather simple formula (9) of the total light output,
together with the recommended values in Table
1(b) constitute a powerful tool to be used in heavy
ion experiments. It should be however noted that
these values are only valid as long as the time
dependence of the CsI(Tl) signals is not altered by
the PMT [1]. Starting from easily obtained light
charged particle experimental data (excluding
protons if their total light signal is not directly
measured), they allow to accomplish useful appli-
cations such as heavy fragment identification and
their energy determination. An example is given in
the following subsection.

4.4. Reaction product identification and energy
calibration of the backward angle modules of
INDRA

There are two major difficulties when the
CsI(Tl) scintillators of INDRA placed at polar
angles above 451 are exploited. Firstly, in a DEIC �
Q0 map the identification is perfect for low atomic
number, Z; of the fragments (Zp15), but it
becomes uncertain for higher Z values because of
the poor statistics and the low IC energy resolu-
tion. Secondly, at large angles it is quite difficult to
obtain elastic scattering data for fragments.
Insofar, the calibration of the module belonging
to the same ring is performed in two stages.

In the first stage, we consider the CsI(Tl)
partially obturated by the calibration telescope
CT. Most of the fragments (ZX4) are stopped in

the Si(Li) and therefore identified in the Si–Si(Li)
telescope. The corresponding energy spectra are
built for each atomic number Z: Energetic light
charged particles (> 20 AMeV) pass through the
silicon telescope and stop in the CsI(Tl) crystal
coupled behind. With the analytical expression
(9) of the light output, and the values from Table
1(b) for parameters a2; a3 and a4; the parameter
a1 is determined by a fit procedure. By means of
these parameters, the energy spectrum in the
scintillator is built for each of the light charged
particles punching through the silicon telescope.
Put together the silicon telescope and CsI(Tl)
scintillator spectra provide the whole energy
spectrum for a given particle. These spectra and
those of fragments up to Z ¼ 15 stopped in the
Si–Si(Li) telescope are the reference spectra for
the respective ring. At the same time, the
parameters allow to perform Z identification in
a DEIC �Q0 map for the whole range of atomic
number of light charged particles and fragments
passing beside the silicon telescope and entering
the CsI(Tl) coupled behind. The energy spectra
of these reaction products were compared with
the reference spectra; the superposition is quite
good.

In the second stage all the other CsI(Tl)
scintillators of the ring are calibrated. The energy
spectra for a given Z have to be identical to the
corresponding reference one (the trigger used in
the experiments did not break the axial symmetry
of INDRA). Each light response spectrum is thus
adjusted on the reference spectrum. A w2 minimiz-
ing procedure based on the MINUIT package
from CERN library is used. It provides the
parameters a1; for the considered module. The
parameters ai ði ¼ 1; 4Þ allow afterwards to extra-
polate the Z identification in the DEIC �Q0 map
[19]. The good quality of the procedure is
illustrated in Fig. 8, where energy spectra of
different particles stopped in one of the scintilla-
tors of ring 10 of INDRA are compared to the
reference spectra of the same ring.

4.5. And if the d-rays would be neglected?

We have to stress once again the importance of
taking into account the d-ray effect in the light

3BDH-Merck Ltd, West Quay Rd, Poole, BH15 1HX,

England.
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output, especially for heavy reaction products
(ZX15). By neglecting it, only the first term on
the right-hand side of Eq. (9) would appear. The
results remain reasonable for Zp15 but with
significantly different values of the fit parameters.
The quality of the fit is drastically degraded for
fragments heavier than Z ¼ 15: So are particle
identification (Fig. 4) and energy calibration.

5. Conclusions

The data obtained with the INDRA array (large
range in Z and E0) provided a good opportunity to
proceed to a basic study of the light output of
CsI(Tl) scintillators and to derive suitable calibra-
tion and identification procedures. Starting from
the fast and slow parts of the light output, it was
possible to rebuild the integral of the signal.

Under suitable approximations, the expression
of the total light output derived in the preceding
paper [3] may be analytically integrated. Even if up
to 3% of the accuracy may be lost, the fact
presents the huge advantage of extremely short
computing time. The derived expression, easy to

handle, was successfully applied for fragment
identification in DESi;IC �Q0 maps and for the
energy calibration of the CsI(Tl) scintillators. At
forward angles, where a Si detection layer exists,
these applications lead to an important reduction
of the computing time. At backward angles, where
two problems exist: fragment identification and
energy calibration of the CsI(Tl) crystals, the
above procedure plays an even more important
role and corresponds to the optimum way we have
found to solve these two tasks.

A comparative study of the CsI(Tl) scintillators
of INDRA has shown that the model parameters
are meaningful quantities, related to the light
collection and the PMT gain, to the activator and
eventually crystal imperfection concentrations and
to the d-ray production. All but the gain parameter
are characteristics of the usual CsI(Tl) scintillators.
Their averages, performed over the 324 CsI(Tl)
crystals of INDRA, allowed to find reliable,
recommended parameter values. Together with
the related total light expression, they constitute
good implements for energy calibration and heavy
ion identification applications in heavy ion physics
experiments.
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